839 lines
31 KiB
C
839 lines
31 KiB
C
|
/*
|
||
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
||
|
*
|
||
|
* Copyright (C) 2001-2003 Red Hat, Inc.
|
||
|
*
|
||
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
||
|
*
|
||
|
* For licensing information, see the file 'LICENCE' in this directory.
|
||
|
*
|
||
|
* $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/mtd/mtd.h>
|
||
|
#include <linux/compiler.h>
|
||
|
#include <linux/sched.h> /* For cond_resched() */
|
||
|
#include "nodelist.h"
|
||
|
|
||
|
/**
|
||
|
* jffs2_reserve_space - request physical space to write nodes to flash
|
||
|
* @c: superblock info
|
||
|
* @minsize: Minimum acceptable size of allocation
|
||
|
* @ofs: Returned value of node offset
|
||
|
* @len: Returned value of allocation length
|
||
|
* @prio: Allocation type - ALLOC_{NORMAL,DELETION}
|
||
|
*
|
||
|
* Requests a block of physical space on the flash. Returns zero for success
|
||
|
* and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC
|
||
|
* or other error if appropriate.
|
||
|
*
|
||
|
* If it returns zero, jffs2_reserve_space() also downs the per-filesystem
|
||
|
* allocation semaphore, to prevent more than one allocation from being
|
||
|
* active at any time. The semaphore is later released by jffs2_commit_allocation()
|
||
|
*
|
||
|
* jffs2_reserve_space() may trigger garbage collection in order to make room
|
||
|
* for the requested allocation.
|
||
|
*/
|
||
|
|
||
|
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len);
|
||
|
|
||
|
int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio)
|
||
|
{
|
||
|
int ret = -EAGAIN;
|
||
|
int blocksneeded = c->resv_blocks_write;
|
||
|
/* align it */
|
||
|
minsize = PAD(minsize);
|
||
|
|
||
|
D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
|
||
|
down(&c->alloc_sem);
|
||
|
|
||
|
D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
|
||
|
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
|
||
|
/* this needs a little more thought (true <tglx> :)) */
|
||
|
while(ret == -EAGAIN) {
|
||
|
while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
|
||
|
int ret;
|
||
|
uint32_t dirty, avail;
|
||
|
|
||
|
/* calculate real dirty size
|
||
|
* dirty_size contains blocks on erase_pending_list
|
||
|
* those blocks are counted in c->nr_erasing_blocks.
|
||
|
* If one block is actually erased, it is not longer counted as dirty_space
|
||
|
* but it is counted in c->nr_erasing_blocks, so we add it and subtract it
|
||
|
* with c->nr_erasing_blocks * c->sector_size again.
|
||
|
* Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
|
||
|
* This helps us to force gc and pick eventually a clean block to spread the load.
|
||
|
* We add unchecked_size here, as we hopefully will find some space to use.
|
||
|
* This will affect the sum only once, as gc first finishes checking
|
||
|
* of nodes.
|
||
|
*/
|
||
|
dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
|
||
|
if (dirty < c->nospc_dirty_size) {
|
||
|
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
|
||
|
printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n");
|
||
|
break;
|
||
|
}
|
||
|
D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
|
||
|
dirty, c->unchecked_size, c->sector_size));
|
||
|
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
up(&c->alloc_sem);
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
/* Calc possibly available space. Possibly available means that we
|
||
|
* don't know, if unchecked size contains obsoleted nodes, which could give us some
|
||
|
* more usable space. This will affect the sum only once, as gc first finishes checking
|
||
|
* of nodes.
|
||
|
+ Return -ENOSPC, if the maximum possibly available space is less or equal than
|
||
|
* blocksneeded * sector_size.
|
||
|
* This blocks endless gc looping on a filesystem, which is nearly full, even if
|
||
|
* the check above passes.
|
||
|
*/
|
||
|
avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
|
||
|
if ( (avail / c->sector_size) <= blocksneeded) {
|
||
|
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
|
||
|
printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
|
||
|
avail, blocksneeded * c->sector_size));
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
up(&c->alloc_sem);
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
up(&c->alloc_sem);
|
||
|
|
||
|
D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
|
||
|
c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
|
||
|
c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
|
||
|
ret = jffs2_garbage_collect_pass(c);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
cond_resched();
|
||
|
|
||
|
if (signal_pending(current))
|
||
|
return -EINTR;
|
||
|
|
||
|
down(&c->alloc_sem);
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
}
|
||
|
|
||
|
ret = jffs2_do_reserve_space(c, minsize, ofs, len);
|
||
|
if (ret) {
|
||
|
D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
|
||
|
}
|
||
|
}
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
if (ret)
|
||
|
up(&c->alloc_sem);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
|
||
|
{
|
||
|
int ret = -EAGAIN;
|
||
|
minsize = PAD(minsize);
|
||
|
|
||
|
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
|
||
|
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
while(ret == -EAGAIN) {
|
||
|
ret = jffs2_do_reserve_space(c, minsize, ofs, len);
|
||
|
if (ret) {
|
||
|
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
|
||
|
}
|
||
|
}
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Called with alloc sem _and_ erase_completion_lock */
|
||
|
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
|
||
|
{
|
||
|
struct jffs2_eraseblock *jeb = c->nextblock;
|
||
|
|
||
|
restart:
|
||
|
if (jeb && minsize > jeb->free_size) {
|
||
|
/* Skip the end of this block and file it as having some dirty space */
|
||
|
/* If there's a pending write to it, flush now */
|
||
|
if (jffs2_wbuf_dirty(c)) {
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
|
||
|
jffs2_flush_wbuf_pad(c);
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
jeb = c->nextblock;
|
||
|
goto restart;
|
||
|
}
|
||
|
c->wasted_size += jeb->free_size;
|
||
|
c->free_size -= jeb->free_size;
|
||
|
jeb->wasted_size += jeb->free_size;
|
||
|
jeb->free_size = 0;
|
||
|
|
||
|
/* Check, if we have a dirty block now, or if it was dirty already */
|
||
|
if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
|
||
|
c->dirty_size += jeb->wasted_size;
|
||
|
c->wasted_size -= jeb->wasted_size;
|
||
|
jeb->dirty_size += jeb->wasted_size;
|
||
|
jeb->wasted_size = 0;
|
||
|
if (VERYDIRTY(c, jeb->dirty_size)) {
|
||
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
||
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
||
|
list_add_tail(&jeb->list, &c->very_dirty_list);
|
||
|
} else {
|
||
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
||
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
||
|
list_add_tail(&jeb->list, &c->dirty_list);
|
||
|
}
|
||
|
} else {
|
||
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
||
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
||
|
list_add_tail(&jeb->list, &c->clean_list);
|
||
|
}
|
||
|
c->nextblock = jeb = NULL;
|
||
|
}
|
||
|
|
||
|
if (!jeb) {
|
||
|
struct list_head *next;
|
||
|
/* Take the next block off the 'free' list */
|
||
|
|
||
|
if (list_empty(&c->free_list)) {
|
||
|
|
||
|
if (!c->nr_erasing_blocks &&
|
||
|
!list_empty(&c->erasable_list)) {
|
||
|
struct jffs2_eraseblock *ejeb;
|
||
|
|
||
|
ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
|
||
|
list_del(&ejeb->list);
|
||
|
list_add_tail(&ejeb->list, &c->erase_pending_list);
|
||
|
c->nr_erasing_blocks++;
|
||
|
jffs2_erase_pending_trigger(c);
|
||
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n",
|
||
|
ejeb->offset));
|
||
|
}
|
||
|
|
||
|
if (!c->nr_erasing_blocks &&
|
||
|
!list_empty(&c->erasable_pending_wbuf_list)) {
|
||
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
|
||
|
/* c->nextblock is NULL, no update to c->nextblock allowed */
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
jffs2_flush_wbuf_pad(c);
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
/* Have another go. It'll be on the erasable_list now */
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
if (!c->nr_erasing_blocks) {
|
||
|
/* Ouch. We're in GC, or we wouldn't have got here.
|
||
|
And there's no space left. At all. */
|
||
|
printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
|
||
|
c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
|
||
|
list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
/* Don't wait for it; just erase one right now */
|
||
|
jffs2_erase_pending_blocks(c, 1);
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
|
||
|
/* An erase may have failed, decreasing the
|
||
|
amount of free space available. So we must
|
||
|
restart from the beginning */
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
next = c->free_list.next;
|
||
|
list_del(next);
|
||
|
c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list);
|
||
|
c->nr_free_blocks--;
|
||
|
|
||
|
if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
|
||
|
printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
|
||
|
goto restart;
|
||
|
}
|
||
|
}
|
||
|
/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
|
||
|
enough space */
|
||
|
*ofs = jeb->offset + (c->sector_size - jeb->free_size);
|
||
|
*len = jeb->free_size;
|
||
|
|
||
|
if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
|
||
|
!jeb->first_node->next_in_ino) {
|
||
|
/* Only node in it beforehand was a CLEANMARKER node (we think).
|
||
|
So mark it obsolete now that there's going to be another node
|
||
|
in the block. This will reduce used_size to zero but We've
|
||
|
already set c->nextblock so that jffs2_mark_node_obsolete()
|
||
|
won't try to refile it to the dirty_list.
|
||
|
*/
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
jffs2_mark_node_obsolete(c, jeb->first_node);
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
}
|
||
|
|
||
|
D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* jffs2_add_physical_node_ref - add a physical node reference to the list
|
||
|
* @c: superblock info
|
||
|
* @new: new node reference to add
|
||
|
* @len: length of this physical node
|
||
|
* @dirty: dirty flag for new node
|
||
|
*
|
||
|
* Should only be used to report nodes for which space has been allocated
|
||
|
* by jffs2_reserve_space.
|
||
|
*
|
||
|
* Must be called with the alloc_sem held.
|
||
|
*/
|
||
|
|
||
|
int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new)
|
||
|
{
|
||
|
struct jffs2_eraseblock *jeb;
|
||
|
uint32_t len;
|
||
|
|
||
|
jeb = &c->blocks[new->flash_offset / c->sector_size];
|
||
|
len = ref_totlen(c, jeb, new);
|
||
|
|
||
|
D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
|
||
|
#if 1
|
||
|
if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) {
|
||
|
printk(KERN_WARNING "argh. node added in wrong place\n");
|
||
|
jffs2_free_raw_node_ref(new);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
#endif
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
|
||
|
if (!jeb->first_node)
|
||
|
jeb->first_node = new;
|
||
|
if (jeb->last_node)
|
||
|
jeb->last_node->next_phys = new;
|
||
|
jeb->last_node = new;
|
||
|
|
||
|
jeb->free_size -= len;
|
||
|
c->free_size -= len;
|
||
|
if (ref_obsolete(new)) {
|
||
|
jeb->dirty_size += len;
|
||
|
c->dirty_size += len;
|
||
|
} else {
|
||
|
jeb->used_size += len;
|
||
|
c->used_size += len;
|
||
|
}
|
||
|
|
||
|
if (!jeb->free_size && !jeb->dirty_size) {
|
||
|
/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
|
||
|
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
|
||
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
||
|
if (jffs2_wbuf_dirty(c)) {
|
||
|
/* Flush the last write in the block if it's outstanding */
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
jffs2_flush_wbuf_pad(c);
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
}
|
||
|
|
||
|
list_add_tail(&jeb->list, &c->clean_list);
|
||
|
c->nextblock = NULL;
|
||
|
}
|
||
|
ACCT_SANITY_CHECK(c,jeb);
|
||
|
D1(ACCT_PARANOIA_CHECK(jeb));
|
||
|
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void jffs2_complete_reservation(struct jffs2_sb_info *c)
|
||
|
{
|
||
|
D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
|
||
|
jffs2_garbage_collect_trigger(c);
|
||
|
up(&c->alloc_sem);
|
||
|
}
|
||
|
|
||
|
static inline int on_list(struct list_head *obj, struct list_head *head)
|
||
|
{
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, head) {
|
||
|
if (this == obj) {
|
||
|
D1(printk("%p is on list at %p\n", obj, head));
|
||
|
return 1;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
|
||
|
{
|
||
|
struct jffs2_eraseblock *jeb;
|
||
|
int blocknr;
|
||
|
struct jffs2_unknown_node n;
|
||
|
int ret, addedsize;
|
||
|
size_t retlen;
|
||
|
|
||
|
if(!ref) {
|
||
|
printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
|
||
|
return;
|
||
|
}
|
||
|
if (ref_obsolete(ref)) {
|
||
|
D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
|
||
|
return;
|
||
|
}
|
||
|
blocknr = ref->flash_offset / c->sector_size;
|
||
|
if (blocknr >= c->nr_blocks) {
|
||
|
printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
|
||
|
BUG();
|
||
|
}
|
||
|
jeb = &c->blocks[blocknr];
|
||
|
|
||
|
if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
|
||
|
!(c->flags & JFFS2_SB_FLAG_MOUNTING)) {
|
||
|
/* Hm. This may confuse static lock analysis. If any of the above
|
||
|
three conditions is false, we're going to return from this
|
||
|
function without actually obliterating any nodes or freeing
|
||
|
any jffs2_raw_node_refs. So we don't need to stop erases from
|
||
|
happening, or protect against people holding an obsolete
|
||
|
jffs2_raw_node_ref without the erase_completion_lock. */
|
||
|
down(&c->erase_free_sem);
|
||
|
}
|
||
|
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
|
||
|
if (ref_flags(ref) == REF_UNCHECKED) {
|
||
|
D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) {
|
||
|
printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
|
||
|
ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
|
||
|
BUG();
|
||
|
})
|
||
|
D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
|
||
|
jeb->unchecked_size -= ref_totlen(c, jeb, ref);
|
||
|
c->unchecked_size -= ref_totlen(c, jeb, ref);
|
||
|
} else {
|
||
|
D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) {
|
||
|
printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
|
||
|
ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
|
||
|
BUG();
|
||
|
})
|
||
|
D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
|
||
|
jeb->used_size -= ref_totlen(c, jeb, ref);
|
||
|
c->used_size -= ref_totlen(c, jeb, ref);
|
||
|
}
|
||
|
|
||
|
// Take care, that wasted size is taken into concern
|
||
|
if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) {
|
||
|
D1(printk("Dirtying\n"));
|
||
|
addedsize = ref_totlen(c, jeb, ref);
|
||
|
jeb->dirty_size += ref_totlen(c, jeb, ref);
|
||
|
c->dirty_size += ref_totlen(c, jeb, ref);
|
||
|
|
||
|
/* Convert wasted space to dirty, if not a bad block */
|
||
|
if (jeb->wasted_size) {
|
||
|
if (on_list(&jeb->list, &c->bad_used_list)) {
|
||
|
D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
|
||
|
jeb->offset));
|
||
|
addedsize = 0; /* To fool the refiling code later */
|
||
|
} else {
|
||
|
D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
|
||
|
jeb->wasted_size, jeb->offset));
|
||
|
addedsize += jeb->wasted_size;
|
||
|
jeb->dirty_size += jeb->wasted_size;
|
||
|
c->dirty_size += jeb->wasted_size;
|
||
|
c->wasted_size -= jeb->wasted_size;
|
||
|
jeb->wasted_size = 0;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
D1(printk("Wasting\n"));
|
||
|
addedsize = 0;
|
||
|
jeb->wasted_size += ref_totlen(c, jeb, ref);
|
||
|
c->wasted_size += ref_totlen(c, jeb, ref);
|
||
|
}
|
||
|
ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
|
||
|
|
||
|
ACCT_SANITY_CHECK(c, jeb);
|
||
|
|
||
|
D1(ACCT_PARANOIA_CHECK(jeb));
|
||
|
|
||
|
if (c->flags & JFFS2_SB_FLAG_MOUNTING) {
|
||
|
/* Mount in progress. Don't muck about with the block
|
||
|
lists because they're not ready yet, and don't actually
|
||
|
obliterate nodes that look obsolete. If they weren't
|
||
|
marked obsolete on the flash at the time they _became_
|
||
|
obsolete, there was probably a reason for that. */
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
/* We didn't lock the erase_free_sem */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (jeb == c->nextblock) {
|
||
|
D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
|
||
|
} else if (!jeb->used_size && !jeb->unchecked_size) {
|
||
|
if (jeb == c->gcblock) {
|
||
|
D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
|
||
|
c->gcblock = NULL;
|
||
|
} else {
|
||
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
|
||
|
list_del(&jeb->list);
|
||
|
}
|
||
|
if (jffs2_wbuf_dirty(c)) {
|
||
|
D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
|
||
|
list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
|
||
|
} else {
|
||
|
if (jiffies & 127) {
|
||
|
/* Most of the time, we just erase it immediately. Otherwise we
|
||
|
spend ages scanning it on mount, etc. */
|
||
|
D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
|
||
|
list_add_tail(&jeb->list, &c->erase_pending_list);
|
||
|
c->nr_erasing_blocks++;
|
||
|
jffs2_erase_pending_trigger(c);
|
||
|
} else {
|
||
|
/* Sometimes, however, we leave it elsewhere so it doesn't get
|
||
|
immediately reused, and we spread the load a bit. */
|
||
|
D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
|
||
|
list_add_tail(&jeb->list, &c->erasable_list);
|
||
|
}
|
||
|
}
|
||
|
D1(printk(KERN_DEBUG "Done OK\n"));
|
||
|
} else if (jeb == c->gcblock) {
|
||
|
D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
|
||
|
} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
|
||
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
|
||
|
list_del(&jeb->list);
|
||
|
D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
|
||
|
list_add_tail(&jeb->list, &c->dirty_list);
|
||
|
} else if (VERYDIRTY(c, jeb->dirty_size) &&
|
||
|
!VERYDIRTY(c, jeb->dirty_size - addedsize)) {
|
||
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
|
||
|
list_del(&jeb->list);
|
||
|
D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
|
||
|
list_add_tail(&jeb->list, &c->very_dirty_list);
|
||
|
} else {
|
||
|
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
|
||
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
|
||
|
}
|
||
|
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
|
||
|
if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) {
|
||
|
/* We didn't lock the erase_free_sem */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* The erase_free_sem is locked, and has been since before we marked the node obsolete
|
||
|
and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
|
||
|
the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
|
||
|
by jffs2_free_all_node_refs() in erase.c. Which is nice. */
|
||
|
|
||
|
D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
|
||
|
ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
|
||
|
if (ret) {
|
||
|
printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
|
||
|
goto out_erase_sem;
|
||
|
}
|
||
|
if (retlen != sizeof(n)) {
|
||
|
printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
|
||
|
goto out_erase_sem;
|
||
|
}
|
||
|
if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) {
|
||
|
printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref));
|
||
|
goto out_erase_sem;
|
||
|
}
|
||
|
if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
|
||
|
D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
|
||
|
goto out_erase_sem;
|
||
|
}
|
||
|
/* XXX FIXME: This is ugly now */
|
||
|
n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
|
||
|
ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
|
||
|
if (ret) {
|
||
|
printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
|
||
|
goto out_erase_sem;
|
||
|
}
|
||
|
if (retlen != sizeof(n)) {
|
||
|
printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
|
||
|
goto out_erase_sem;
|
||
|
}
|
||
|
|
||
|
/* Nodes which have been marked obsolete no longer need to be
|
||
|
associated with any inode. Remove them from the per-inode list.
|
||
|
|
||
|
Note we can't do this for NAND at the moment because we need
|
||
|
obsolete dirent nodes to stay on the lists, because of the
|
||
|
horridness in jffs2_garbage_collect_deletion_dirent(). Also
|
||
|
because we delete the inocache, and on NAND we need that to
|
||
|
stay around until all the nodes are actually erased, in order
|
||
|
to stop us from giving the same inode number to another newly
|
||
|
created inode. */
|
||
|
if (ref->next_in_ino) {
|
||
|
struct jffs2_inode_cache *ic;
|
||
|
struct jffs2_raw_node_ref **p;
|
||
|
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
|
||
|
ic = jffs2_raw_ref_to_ic(ref);
|
||
|
for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
|
||
|
;
|
||
|
|
||
|
*p = ref->next_in_ino;
|
||
|
ref->next_in_ino = NULL;
|
||
|
|
||
|
if (ic->nodes == (void *)ic) {
|
||
|
D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino));
|
||
|
jffs2_del_ino_cache(c, ic);
|
||
|
jffs2_free_inode_cache(ic);
|
||
|
}
|
||
|
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Merge with the next node in the physical list, if there is one
|
||
|
and if it's also obsolete and if it doesn't belong to any inode */
|
||
|
if (ref->next_phys && ref_obsolete(ref->next_phys) &&
|
||
|
!ref->next_phys->next_in_ino) {
|
||
|
struct jffs2_raw_node_ref *n = ref->next_phys;
|
||
|
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
|
||
|
ref->__totlen += n->__totlen;
|
||
|
ref->next_phys = n->next_phys;
|
||
|
if (jeb->last_node == n) jeb->last_node = ref;
|
||
|
if (jeb->gc_node == n) {
|
||
|
/* gc will be happy continuing gc on this node */
|
||
|
jeb->gc_node=ref;
|
||
|
}
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
|
||
|
jffs2_free_raw_node_ref(n);
|
||
|
}
|
||
|
|
||
|
/* Also merge with the previous node in the list, if there is one
|
||
|
and that one is obsolete */
|
||
|
if (ref != jeb->first_node ) {
|
||
|
struct jffs2_raw_node_ref *p = jeb->first_node;
|
||
|
|
||
|
spin_lock(&c->erase_completion_lock);
|
||
|
|
||
|
while (p->next_phys != ref)
|
||
|
p = p->next_phys;
|
||
|
|
||
|
if (ref_obsolete(p) && !ref->next_in_ino) {
|
||
|
p->__totlen += ref->__totlen;
|
||
|
if (jeb->last_node == ref) {
|
||
|
jeb->last_node = p;
|
||
|
}
|
||
|
if (jeb->gc_node == ref) {
|
||
|
/* gc will be happy continuing gc on this node */
|
||
|
jeb->gc_node=p;
|
||
|
}
|
||
|
p->next_phys = ref->next_phys;
|
||
|
jffs2_free_raw_node_ref(ref);
|
||
|
}
|
||
|
spin_unlock(&c->erase_completion_lock);
|
||
|
}
|
||
|
out_erase_sem:
|
||
|
up(&c->erase_free_sem);
|
||
|
}
|
||
|
|
||
|
#if CONFIG_JFFS2_FS_DEBUG >= 2
|
||
|
void jffs2_dump_block_lists(struct jffs2_sb_info *c)
|
||
|
{
|
||
|
|
||
|
|
||
|
printk(KERN_DEBUG "jffs2_dump_block_lists:\n");
|
||
|
printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size);
|
||
|
printk(KERN_DEBUG "used_size: %08x\n", c->used_size);
|
||
|
printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size);
|
||
|
printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size);
|
||
|
printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size);
|
||
|
printk(KERN_DEBUG "free_size: %08x\n", c->free_size);
|
||
|
printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size);
|
||
|
printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size);
|
||
|
printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size);
|
||
|
printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write);
|
||
|
|
||
|
if (c->nextblock) {
|
||
|
printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size);
|
||
|
} else {
|
||
|
printk(KERN_DEBUG "nextblock: NULL\n");
|
||
|
}
|
||
|
if (c->gcblock) {
|
||
|
printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size);
|
||
|
} else {
|
||
|
printk(KERN_DEBUG "gcblock: NULL\n");
|
||
|
}
|
||
|
if (list_empty(&c->clean_list)) {
|
||
|
printk(KERN_DEBUG "clean_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
int numblocks = 0;
|
||
|
uint32_t dirty = 0;
|
||
|
|
||
|
list_for_each(this, &c->clean_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
numblocks ++;
|
||
|
dirty += jeb->wasted_size;
|
||
|
printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks);
|
||
|
}
|
||
|
if (list_empty(&c->very_dirty_list)) {
|
||
|
printk(KERN_DEBUG "very_dirty_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
int numblocks = 0;
|
||
|
uint32_t dirty = 0;
|
||
|
|
||
|
list_for_each(this, &c->very_dirty_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
numblocks ++;
|
||
|
dirty += jeb->dirty_size;
|
||
|
printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
|
||
|
numblocks, dirty, dirty / numblocks);
|
||
|
}
|
||
|
if (list_empty(&c->dirty_list)) {
|
||
|
printk(KERN_DEBUG "dirty_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
int numblocks = 0;
|
||
|
uint32_t dirty = 0;
|
||
|
|
||
|
list_for_each(this, &c->dirty_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
numblocks ++;
|
||
|
dirty += jeb->dirty_size;
|
||
|
printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
|
||
|
numblocks, dirty, dirty / numblocks);
|
||
|
}
|
||
|
if (list_empty(&c->erasable_list)) {
|
||
|
printk(KERN_DEBUG "erasable_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, &c->erasable_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
}
|
||
|
if (list_empty(&c->erasing_list)) {
|
||
|
printk(KERN_DEBUG "erasing_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, &c->erasing_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
}
|
||
|
if (list_empty(&c->erase_pending_list)) {
|
||
|
printk(KERN_DEBUG "erase_pending_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, &c->erase_pending_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
}
|
||
|
if (list_empty(&c->erasable_pending_wbuf_list)) {
|
||
|
printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, &c->erasable_pending_wbuf_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
}
|
||
|
if (list_empty(&c->free_list)) {
|
||
|
printk(KERN_DEBUG "free_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, &c->free_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
}
|
||
|
if (list_empty(&c->bad_list)) {
|
||
|
printk(KERN_DEBUG "bad_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, &c->bad_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
}
|
||
|
if (list_empty(&c->bad_used_list)) {
|
||
|
printk(KERN_DEBUG "bad_used_list: empty\n");
|
||
|
} else {
|
||
|
struct list_head *this;
|
||
|
|
||
|
list_for_each(this, &c->bad_used_list) {
|
||
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
||
|
printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
|
||
|
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif /* CONFIG_JFFS2_FS_DEBUG */
|
||
|
|
||
|
int jffs2_thread_should_wake(struct jffs2_sb_info *c)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
uint32_t dirty;
|
||
|
|
||
|
if (c->unchecked_size) {
|
||
|
D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
|
||
|
c->unchecked_size, c->checked_ino));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* dirty_size contains blocks on erase_pending_list
|
||
|
* those blocks are counted in c->nr_erasing_blocks.
|
||
|
* If one block is actually erased, it is not longer counted as dirty_space
|
||
|
* but it is counted in c->nr_erasing_blocks, so we add it and subtract it
|
||
|
* with c->nr_erasing_blocks * c->sector_size again.
|
||
|
* Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
|
||
|
* This helps us to force gc and pick eventually a clean block to spread the load.
|
||
|
*/
|
||
|
dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
|
||
|
|
||
|
if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
|
||
|
(dirty > c->nospc_dirty_size))
|
||
|
ret = 1;
|
||
|
|
||
|
D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n",
|
||
|
c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
|
||
|
|
||
|
return ret;
|
||
|
}
|