kernel-ark/fs/udf/partition.c

227 lines
6.3 KiB
C
Raw Normal View History

/*
* partition.c
*
* PURPOSE
* Partition handling routines for the OSTA-UDF(tm) filesystem.
*
* CONTACTS
* E-mail regarding any portion of the Linux UDF file system should be
* directed to the development team mailing list (run by majordomo):
* linux_udf@hpesjro.fc.hp.com
*
* COPYRIGHT
* This file is distributed under the terms of the GNU General Public
* License (GPL). Copies of the GPL can be obtained from:
* ftp://prep.ai.mit.edu/pub/gnu/GPL
* Each contributing author retains all rights to their own work.
*
* (C) 1998-2001 Ben Fennema
*
* HISTORY
*
* 12/06/98 blf Created file.
*
*/
#include "udfdecl.h"
#include "udf_sb.h"
#include "udf_i.h"
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/udf_fs.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
inline uint32_t udf_get_pblock(struct super_block *sb, uint32_t block, uint16_t partition, uint32_t offset)
{
if (partition >= UDF_SB_NUMPARTS(sb))
{
udf_debug("block=%d, partition=%d, offset=%d: invalid partition\n",
block, partition, offset);
return 0xFFFFFFFF;
}
if (UDF_SB_PARTFUNC(sb, partition))
return UDF_SB_PARTFUNC(sb, partition)(sb, block, partition, offset);
else
return UDF_SB_PARTROOT(sb, partition) + block + offset;
}
uint32_t udf_get_pblock_virt15(struct super_block *sb, uint32_t block, uint16_t partition, uint32_t offset)
{
struct buffer_head *bh = NULL;
uint32_t newblock;
uint32_t index;
uint32_t loc;
index = (sb->s_blocksize - UDF_SB_TYPEVIRT(sb,partition).s_start_offset) / sizeof(uint32_t);
if (block > UDF_SB_TYPEVIRT(sb,partition).s_num_entries)
{
udf_debug("Trying to access block beyond end of VAT (%d max %d)\n",
block, UDF_SB_TYPEVIRT(sb,partition).s_num_entries);
return 0xFFFFFFFF;
}
if (block >= index)
{
block -= index;
newblock = 1 + (block / (sb->s_blocksize / sizeof(uint32_t)));
index = block % (sb->s_blocksize / sizeof(uint32_t));
}
else
{
newblock = 0;
index = UDF_SB_TYPEVIRT(sb,partition).s_start_offset / sizeof(uint32_t) + block;
}
loc = udf_block_map(UDF_SB_VAT(sb), newblock);
if (!(bh = sb_bread(sb, loc)))
{
udf_debug("get_pblock(UDF_VIRTUAL_MAP:%p,%d,%d) VAT: %d[%d]\n",
sb, block, partition, loc, index);
return 0xFFFFFFFF;
}
loc = le32_to_cpu(((__le32 *)bh->b_data)[index]);
udf_release_data(bh);
if (UDF_I_LOCATION(UDF_SB_VAT(sb)).partitionReferenceNum == partition)
{
udf_debug("recursive call to udf_get_pblock!\n");
return 0xFFFFFFFF;
}
return udf_get_pblock(sb, loc, UDF_I_LOCATION(UDF_SB_VAT(sb)).partitionReferenceNum, offset);
}
inline uint32_t udf_get_pblock_virt20(struct super_block *sb, uint32_t block, uint16_t partition, uint32_t offset)
{
return udf_get_pblock_virt15(sb, block, partition, offset);
}
uint32_t udf_get_pblock_spar15(struct super_block *sb, uint32_t block, uint16_t partition, uint32_t offset)
{
int i;
struct sparingTable *st = NULL;
uint32_t packet = (block + offset) & ~(UDF_SB_TYPESPAR(sb,partition).s_packet_len - 1);
for (i=0; i<4; i++)
{
if (UDF_SB_TYPESPAR(sb,partition).s_spar_map[i] != NULL)
{
st = (struct sparingTable *)UDF_SB_TYPESPAR(sb,partition).s_spar_map[i]->b_data;
break;
}
}
if (st)
{
for (i=0; i<le16_to_cpu(st->reallocationTableLen); i++)
{
if (le32_to_cpu(st->mapEntry[i].origLocation) >= 0xFFFFFFF0)
break;
else if (le32_to_cpu(st->mapEntry[i].origLocation) == packet)
{
return le32_to_cpu(st->mapEntry[i].mappedLocation) +
((block + offset) & (UDF_SB_TYPESPAR(sb,partition).s_packet_len - 1));
}
else if (le32_to_cpu(st->mapEntry[i].origLocation) > packet)
break;
}
}
return UDF_SB_PARTROOT(sb,partition) + block + offset;
}
int udf_relocate_blocks(struct super_block *sb, long old_block, long *new_block)
{
struct udf_sparing_data *sdata;
struct sparingTable *st = NULL;
struct sparingEntry mapEntry;
uint32_t packet;
int i, j, k, l;
for (i=0; i<UDF_SB_NUMPARTS(sb); i++)
{
if (old_block > UDF_SB_PARTROOT(sb,i) &&
old_block < UDF_SB_PARTROOT(sb,i) + UDF_SB_PARTLEN(sb,i))
{
sdata = &UDF_SB_TYPESPAR(sb,i);
packet = (old_block - UDF_SB_PARTROOT(sb,i)) & ~(sdata->s_packet_len - 1);
for (j=0; j<4; j++)
{
if (UDF_SB_TYPESPAR(sb,i).s_spar_map[j] != NULL)
{
st = (struct sparingTable *)sdata->s_spar_map[j]->b_data;
break;
}
}
if (!st)
return 1;
for (k=0; k<le16_to_cpu(st->reallocationTableLen); k++)
{
if (le32_to_cpu(st->mapEntry[k].origLocation) == 0xFFFFFFFF)
{
for (; j<4; j++)
{
if (sdata->s_spar_map[j])
{
st = (struct sparingTable *)sdata->s_spar_map[j]->b_data;
st->mapEntry[k].origLocation = cpu_to_le32(packet);
udf_update_tag((char *)st, sizeof(struct sparingTable) + le16_to_cpu(st->reallocationTableLen) * sizeof(struct sparingEntry));
mark_buffer_dirty(sdata->s_spar_map[j]);
}
}
*new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) +
((old_block - UDF_SB_PARTROOT(sb,i)) & (sdata->s_packet_len - 1));
return 0;
}
else if (le32_to_cpu(st->mapEntry[k].origLocation) == packet)
{
*new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) +
((old_block - UDF_SB_PARTROOT(sb,i)) & (sdata->s_packet_len - 1));
return 0;
}
else if (le32_to_cpu(st->mapEntry[k].origLocation) > packet)
break;
}
for (l=k; l<le16_to_cpu(st->reallocationTableLen); l++)
{
if (le32_to_cpu(st->mapEntry[l].origLocation) == 0xFFFFFFFF)
{
for (; j<4; j++)
{
if (sdata->s_spar_map[j])
{
st = (struct sparingTable *)sdata->s_spar_map[j]->b_data;
mapEntry = st->mapEntry[l];
mapEntry.origLocation = cpu_to_le32(packet);
memmove(&st->mapEntry[k+1], &st->mapEntry[k], (l-k)*sizeof(struct sparingEntry));
st->mapEntry[k] = mapEntry;
udf_update_tag((char *)st, sizeof(struct sparingTable) + le16_to_cpu(st->reallocationTableLen) * sizeof(struct sparingEntry));
mark_buffer_dirty(sdata->s_spar_map[j]);
}
}
*new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) +
((old_block - UDF_SB_PARTROOT(sb,i)) & (sdata->s_packet_len - 1));
return 0;
}
}
return 1;
}
}
if (i == UDF_SB_NUMPARTS(sb))
{
/* outside of partitions */
/* for now, fail =) */
return 1;
}
return 0;
}