kernel-ark/net/mac80211/rx.c

3668 lines
102 KiB
C
Raw Normal View History

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/jiffies.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
[MAC80211]: fix race conditions with keys During receive processing, we select the key long before using it and because there's no locking it is possible that we kfree() the key after having selected it but before using it for crypto operations. Obviously, this is bad. Secondly, during transmit processing, there are two possible races: We have a similar race between select_key() and using it for encryption, but we also have a race here between select_key() and hardware encryption (both when a key is removed.) This patch solves these issues by using RCU: when a key is to be freed, we first remove the pointer from the appropriate places (sdata->keys, sdata->default_key, sta->key) using rcu_assign_pointer() and then synchronize_rcu(). Then, we can safely kfree() the key and remove it from the hardware. There's a window here where the hardware may still be using it for decryption, but we can't work around that without having two hardware callbacks, one to disable the key for RX and one to disable it for TX; but the worst thing that will happen is that we receive a packet decrypted that we don't find a key for any more and then drop it. When we add a key, we first need to upload it to the hardware and then, using rcu_assign_pointer() again, link it into our structures. In the code using keys (TX/RX paths) we use rcu_dereference() to get the key and enclose the whole tx/rx section in a rcu_read_lock() ... rcu_read_unlock() block. Because we've uploaded the key to hardware before linking it into internal structures, we can guarantee that it is valid once get to into tx(). One possible race condition remains, however: when we have hardware acceleration enabled and the driver shuts down the queues, we end up queueing the frame. If now somebody removes the key, the key will be removed from hwaccel and then then driver will be asked to encrypt the frame with a key index that has been removed. Hence, drivers will need to be aware that the hw_key_index they are passed might not be under all circumstances. Most drivers will, however, simply ignore that condition and encrypt the frame with the selected key anyway, this only results in a frame being encrypted with a wrong key or dropped (rightfully) because the key was not valid. There isn't much we can do about it unless we want to walk the pending frame queue every time a key is removed and remove all frames that used it. This race condition, however, will most likely be solved once we add multiqueue support to mac80211 because then frames will be queued further up the stack instead of after being processed. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Acked-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-14 15:10:24 +00:00
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <asm/unaligned.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "led.h"
#include "mesh.h"
#include "wep.h"
#include "wpa.h"
#include "tkip.h"
#include "wme.h"
#include "rate.h"
static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
{
struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
u64_stats_update_begin(&tstats->syncp);
tstats->rx_packets++;
tstats->rx_bytes += len;
u64_stats_update_end(&tstats->syncp);
}
static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
enum nl80211_iftype type)
{
__le16 fc = hdr->frame_control;
if (ieee80211_is_data(fc)) {
if (len < 24) /* drop incorrect hdr len (data) */
return NULL;
if (ieee80211_has_a4(fc))
return NULL;
if (ieee80211_has_tods(fc))
return hdr->addr1;
if (ieee80211_has_fromds(fc))
return hdr->addr2;
return hdr->addr3;
}
if (ieee80211_is_mgmt(fc)) {
if (len < 24) /* drop incorrect hdr len (mgmt) */
return NULL;
return hdr->addr3;
}
if (ieee80211_is_ctl(fc)) {
if (ieee80211_is_pspoll(fc))
return hdr->addr1;
if (ieee80211_is_back_req(fc)) {
switch (type) {
case NL80211_IFTYPE_STATION:
return hdr->addr2;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
return hdr->addr1;
default:
break; /* fall through to the return */
}
}
}
return NULL;
}
/*
* monitor mode reception
*
* This function cleans up the SKB, i.e. it removes all the stuff
* only useful for monitoring.
*/
static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
struct sk_buff *skb,
unsigned int rtap_vendor_space)
{
if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
if (likely(skb->len > FCS_LEN))
__pskb_trim(skb, skb->len - FCS_LEN);
else {
/* driver bug */
WARN_ON(1);
dev_kfree_skb(skb);
return NULL;
}
}
__pskb_pull(skb, rtap_vendor_space);
return skb;
}
static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
unsigned int rtap_vendor_space)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr;
hdr = (void *)(skb->data + rtap_vendor_space);
if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
RX_FLAG_FAILED_PLCP_CRC))
return true;
if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
return true;
if (ieee80211_is_ctl(hdr->frame_control) &&
!ieee80211_is_pspoll(hdr->frame_control) &&
!ieee80211_is_back_req(hdr->frame_control))
return true;
return false;
}
static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
struct ieee80211_rx_status *status,
struct sk_buff *skb)
{
int len;
/* always present fields */
len = sizeof(struct ieee80211_radiotap_header) + 8;
/* allocate extra bitmaps */
if (status->chains)
len += 4 * hweight8(status->chains);
if (ieee80211_have_rx_timestamp(status)) {
len = ALIGN(len, 8);
len += 8;
}
if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
len += 1;
/* antenna field, if we don't have per-chain info */
if (!status->chains)
len += 1;
/* padding for RX_FLAGS if necessary */
len = ALIGN(len, 2);
if (status->flag & RX_FLAG_HT) /* HT info */
len += 3;
if (status->flag & RX_FLAG_AMPDU_DETAILS) {
len = ALIGN(len, 4);
len += 8;
}
if (status->flag & RX_FLAG_VHT) {
len = ALIGN(len, 2);
len += 12;
}
if (status->chains) {
/* antenna and antenna signal fields */
len += 2 * hweight8(status->chains);
}
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
/* vendor presence bitmap */
len += 4;
/* alignment for fixed 6-byte vendor data header */
len = ALIGN(len, 2);
/* vendor data header */
len += 6;
if (WARN_ON(rtap->align == 0))
rtap->align = 1;
len = ALIGN(len, rtap->align);
len += rtap->len + rtap->pad;
}
return len;
}
/*
* ieee80211_add_rx_radiotap_header - add radiotap header
*
* add a radiotap header containing all the fields which the hardware provided.
*/
static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
struct sk_buff *skb,
struct ieee80211_rate *rate,
int rtap_len, bool has_fcs)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_header *rthdr;
unsigned char *pos;
__le32 *it_present;
u32 it_present_val;
u16 rx_flags = 0;
u16 channel_flags = 0;
int mpdulen, chain;
unsigned long chains = status->chains;
struct ieee80211_vendor_radiotap rtap = {};
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
/* rtap.len and rtap.pad are undone immediately */
skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
}
mpdulen = skb->len;
if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
mpdulen += FCS_LEN;
rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
it_present = &rthdr->it_present;
/* radiotap header, set always present flags */
rthdr->it_len = cpu_to_le16(rtap_len);
it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
BIT(IEEE80211_RADIOTAP_CHANNEL) |
BIT(IEEE80211_RADIOTAP_RX_FLAGS);
if (!status->chains)
it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
it_present_val |=
BIT(IEEE80211_RADIOTAP_EXT) |
BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
put_unaligned_le32(it_present_val, it_present);
it_present++;
it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
}
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
BIT(IEEE80211_RADIOTAP_EXT);
put_unaligned_le32(it_present_val, it_present);
it_present++;
it_present_val = rtap.present;
}
put_unaligned_le32(it_present_val, it_present);
pos = (void *)(it_present + 1);
/* the order of the following fields is important */
/* IEEE80211_RADIOTAP_TSFT */
if (ieee80211_have_rx_timestamp(status)) {
/* padding */
while ((pos - (u8 *)rthdr) & 7)
*pos++ = 0;
put_unaligned_le64(
ieee80211_calculate_rx_timestamp(local, status,
mpdulen, 0),
pos);
rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
pos += 8;
}
/* IEEE80211_RADIOTAP_FLAGS */
if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
*pos |= IEEE80211_RADIOTAP_F_FCS;
if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
*pos |= IEEE80211_RADIOTAP_F_BADFCS;
if (status->flag & RX_FLAG_SHORTPRE)
*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
pos++;
/* IEEE80211_RADIOTAP_RATE */
if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
/*
* Without rate information don't add it. If we have,
* MCS information is a separate field in radiotap,
* added below. The byte here is needed as padding
* for the channel though, so initialise it to 0.
*/
*pos = 0;
} else {
int shift = 0;
rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
if (status->flag & RX_FLAG_10MHZ)
shift = 1;
else if (status->flag & RX_FLAG_5MHZ)
shift = 2;
*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
}
pos++;
/* IEEE80211_RADIOTAP_CHANNEL */
put_unaligned_le16(status->freq, pos);
pos += 2;
if (status->flag & RX_FLAG_10MHZ)
channel_flags |= IEEE80211_CHAN_HALF;
else if (status->flag & RX_FLAG_5MHZ)
channel_flags |= IEEE80211_CHAN_QUARTER;
if (status->band == IEEE80211_BAND_5GHZ)
channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
else if (rate)
channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
else
channel_flags |= IEEE80211_CHAN_2GHZ;
put_unaligned_le16(channel_flags, pos);
pos += 2;
/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
*pos = status->signal;
rthdr->it_present |=
cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
pos++;
}
/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
if (!status->chains) {
/* IEEE80211_RADIOTAP_ANTENNA */
*pos = status->antenna;
pos++;
}
/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
/* IEEE80211_RADIOTAP_RX_FLAGS */
/* ensure 2 byte alignment for the 2 byte field as required */
if ((pos - (u8 *)rthdr) & 1)
*pos++ = 0;
if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
put_unaligned_le16(rx_flags, pos);
pos += 2;
if (status->flag & RX_FLAG_HT) {
unsigned int stbc;
rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
*pos++ = local->hw.radiotap_mcs_details;
*pos = 0;
if (status->flag & RX_FLAG_SHORT_GI)
*pos |= IEEE80211_RADIOTAP_MCS_SGI;
if (status->flag & RX_FLAG_40MHZ)
*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
if (status->flag & RX_FLAG_HT_GF)
*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
if (status->flag & RX_FLAG_LDPC)
*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
pos++;
*pos++ = status->rate_idx;
}
if (status->flag & RX_FLAG_AMPDU_DETAILS) {
u16 flags = 0;
/* ensure 4 byte alignment */
while ((pos - (u8 *)rthdr) & 3)
pos++;
rthdr->it_present |=
cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
put_unaligned_le32(status->ampdu_reference, pos);
pos += 4;
if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
if (status->flag & RX_FLAG_AMPDU_IS_LAST)
flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
put_unaligned_le16(flags, pos);
pos += 2;
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
*pos++ = status->ampdu_delimiter_crc;
else
*pos++ = 0;
*pos++ = 0;
}
if (status->flag & RX_FLAG_VHT) {
u16 known = local->hw.radiotap_vht_details;
rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
put_unaligned_le16(known, pos);
pos += 2;
/* flags */
if (status->flag & RX_FLAG_SHORT_GI)
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
/* in VHT, STBC is binary */
if (status->flag & RX_FLAG_STBC_MASK)
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
if (status->vht_flag & RX_VHT_FLAG_BF)
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
pos++;
/* bandwidth */
if (status->vht_flag & RX_VHT_FLAG_80MHZ)
*pos++ = 4;
else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
*pos++ = 11;
else if (status->flag & RX_FLAG_40MHZ)
*pos++ = 1;
else /* 20 MHz */
*pos++ = 0;
/* MCS/NSS */
*pos = (status->rate_idx << 4) | status->vht_nss;
pos += 4;
/* coding field */
if (status->flag & RX_FLAG_LDPC)
*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
pos++;
/* group ID */
pos++;
/* partial_aid */
pos += 2;
}
for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
*pos++ = status->chain_signal[chain];
*pos++ = chain;
}
if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
/* ensure 2 byte alignment for the vendor field as required */
if ((pos - (u8 *)rthdr) & 1)
*pos++ = 0;
*pos++ = rtap.oui[0];
*pos++ = rtap.oui[1];
*pos++ = rtap.oui[2];
*pos++ = rtap.subns;
put_unaligned_le16(rtap.len, pos);
pos += 2;
/* align the actual payload as requested */
while ((pos - (u8 *)rthdr) & (rtap.align - 1))
*pos++ = 0;
/* data (and possible padding) already follows */
}
}
/*
* This function copies a received frame to all monitor interfaces and
* returns a cleaned-up SKB that no longer includes the FCS nor the
* radiotap header the driver might have added.
*/
static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
struct ieee80211_rate *rate)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
struct ieee80211_sub_if_data *sdata;
int rt_hdrlen, needed_headroom;
struct sk_buff *skb, *skb2;
struct net_device *prev_dev = NULL;
int present_fcs_len = 0;
unsigned int rtap_vendor_space = 0;
if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
}
/*
* First, we may need to make a copy of the skb because
* (1) we need to modify it for radiotap (if not present), and
* (2) the other RX handlers will modify the skb we got.
*
* We don't need to, of course, if we aren't going to return
* the SKB because it has a bad FCS/PLCP checksum.
*/
if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
present_fcs_len = FCS_LEN;
/* ensure hdr->frame_control and vendor radiotap data are in skb head */
if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
dev_kfree_skb(origskb);
return NULL;
}
if (!local->monitors) {
if (should_drop_frame(origskb, present_fcs_len,
rtap_vendor_space)) {
dev_kfree_skb(origskb);
return NULL;
}
return remove_monitor_info(local, origskb, rtap_vendor_space);
}
/* room for the radiotap header based on driver features */
rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
needed_headroom = rt_hdrlen - rtap_vendor_space;
if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
/* only need to expand headroom if necessary */
skb = origskb;
origskb = NULL;
/*
* This shouldn't trigger often because most devices have an
* RX header they pull before we get here, and that should
* be big enough for our radiotap information. We should
* probably export the length to drivers so that we can have
* them allocate enough headroom to start with.
*/
if (skb_headroom(skb) < needed_headroom &&
pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return NULL;
}
} else {
/*
* Need to make a copy and possibly remove radiotap header
* and FCS from the original.
*/
skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
origskb = remove_monitor_info(local, origskb,
rtap_vendor_space);
if (!skb)
return origskb;
}
/* prepend radiotap information */
ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
continue;
if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
continue;
if (!ieee80211_sdata_running(sdata))
continue;
if (prev_dev) {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2) {
skb2->dev = prev_dev;
netif_receive_skb(skb2);
}
}
prev_dev = sdata->dev;
ieee80211_rx_stats(sdata->dev, skb->len);
}
if (prev_dev) {
skb->dev = prev_dev;
netif_receive_skb(skb);
} else
dev_kfree_skb(skb);
return origskb;
}
static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int tid, seqno_idx, security_idx;
/* does the frame have a qos control field? */
if (ieee80211_is_data_qos(hdr->frame_control)) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
/* frame has qos control */
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
status->rx_flags |= IEEE80211_RX_AMSDU;
seqno_idx = tid;
security_idx = tid;
} else {
/*
* IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
*
* Sequence numbers for management frames, QoS data
* frames with a broadcast/multicast address in the
* Address 1 field, and all non-QoS data frames sent
* by QoS STAs are assigned using an additional single
* modulo-4096 counter, [...]
*
* We also use that counter for non-QoS STAs.
*/
seqno_idx = IEEE80211_NUM_TIDS;
security_idx = 0;
if (ieee80211_is_mgmt(hdr->frame_control))
security_idx = IEEE80211_NUM_TIDS;
tid = 0;
}
rx->seqno_idx = seqno_idx;
rx->security_idx = security_idx;
/* Set skb->priority to 1d tag if highest order bit of TID is not set.
* For now, set skb->priority to 0 for other cases. */
rx->skb->priority = (tid > 7) ? 0 : tid;
}
/**
* DOC: Packet alignment
*
* Drivers always need to pass packets that are aligned to two-byte boundaries
* to the stack.
*
* Additionally, should, if possible, align the payload data in a way that
* guarantees that the contained IP header is aligned to a four-byte
* boundary. In the case of regular frames, this simply means aligning the
* payload to a four-byte boundary (because either the IP header is directly
* contained, or IV/RFC1042 headers that have a length divisible by four are
* in front of it). If the payload data is not properly aligned and the
* architecture doesn't support efficient unaligned operations, mac80211
* will align the data.
*
* With A-MSDU frames, however, the payload data address must yield two modulo
* four because there are 14-byte 802.3 headers within the A-MSDU frames that
* push the IP header further back to a multiple of four again. Thankfully, the
* specs were sane enough this time around to require padding each A-MSDU
* subframe to a length that is a multiple of four.
*
* Padding like Atheros hardware adds which is between the 802.11 header and
* the payload is not supported, the driver is required to move the 802.11
* header to be directly in front of the payload in that case.
*/
static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
{
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
WARN_ONCE((unsigned long)rx->skb->data & 1,
"unaligned packet at 0x%p\n", rx->skb->data);
#endif
}
/* rx handlers */
static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (is_multicast_ether_addr(hdr->addr1))
return 0;
return ieee80211_is_robust_mgmt_frame(skb);
}
static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (!is_multicast_ether_addr(hdr->addr1))
return 0;
return ieee80211_is_robust_mgmt_frame(skb);
}
/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
{
struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
struct ieee80211_mmie *mmie;
struct ieee80211_mmie_16 *mmie16;
if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
return -1;
if (!ieee80211_is_robust_mgmt_frame(skb))
return -1; /* not a robust management frame */
mmie = (struct ieee80211_mmie *)
(skb->data + skb->len - sizeof(*mmie));
if (mmie->element_id == WLAN_EID_MMIE &&
mmie->length == sizeof(*mmie) - 2)
return le16_to_cpu(mmie->key_id);
mmie16 = (struct ieee80211_mmie_16 *)
(skb->data + skb->len - sizeof(*mmie16));
if (skb->len >= 24 + sizeof(*mmie16) &&
mmie16->element_id == WLAN_EID_MMIE &&
mmie16->length == sizeof(*mmie16) - 2)
return le16_to_cpu(mmie16->key_id);
return -1;
}
static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc;
int hdrlen;
u8 keyid;
fc = hdr->frame_control;
hdrlen = ieee80211_hdrlen(fc);
if (skb->len < hdrlen + cs->hdr_len)
return -EINVAL;
skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
keyid &= cs->key_idx_mask;
keyid >>= cs->key_idx_shift;
return keyid;
}
static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
char *dev_addr = rx->sdata->vif.addr;
if (ieee80211_is_data(hdr->frame_control)) {
if (is_multicast_ether_addr(hdr->addr1)) {
if (ieee80211_has_tods(hdr->frame_control) ||
!ieee80211_has_fromds(hdr->frame_control))
return RX_DROP_MONITOR;
if (ether_addr_equal(hdr->addr3, dev_addr))
return RX_DROP_MONITOR;
} else {
if (!ieee80211_has_a4(hdr->frame_control))
return RX_DROP_MONITOR;
if (ether_addr_equal(hdr->addr4, dev_addr))
return RX_DROP_MONITOR;
}
}
/* If there is not an established peer link and this is not a peer link
* establisment frame, beacon or probe, drop the frame.
*/
if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
struct ieee80211_mgmt *mgmt;
if (!ieee80211_is_mgmt(hdr->frame_control))
return RX_DROP_MONITOR;
if (ieee80211_is_action(hdr->frame_control)) {
u8 category;
/* make sure category field is present */
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
return RX_DROP_MONITOR;
mgmt = (struct ieee80211_mgmt *)hdr;
category = mgmt->u.action.category;
if (category != WLAN_CATEGORY_MESH_ACTION &&
category != WLAN_CATEGORY_SELF_PROTECTED)
return RX_DROP_MONITOR;
return RX_CONTINUE;
}
if (ieee80211_is_probe_req(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control) ||
ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_auth(hdr->frame_control))
return RX_CONTINUE;
return RX_DROP_MONITOR;
}
return RX_CONTINUE;
}
static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
int index,
struct sk_buff_head *frames)
{
struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
struct sk_buff *skb;
struct ieee80211_rx_status *status;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
if (skb_queue_empty(skb_list))
goto no_frame;
if (!ieee80211_rx_reorder_ready(skb_list)) {
__skb_queue_purge(skb_list);
goto no_frame;
}
/* release frames from the reorder ring buffer */
tid_agg_rx->stored_mpdu_num--;
while ((skb = __skb_dequeue(skb_list))) {
status = IEEE80211_SKB_RXCB(skb);
status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
__skb_queue_tail(frames, skb);
}
no_frame:
tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
}
static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
u16 head_seq_num,
struct sk_buff_head *frames)
{
int index;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
frames);
}
}
/*
* Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
* the skb was added to the buffer longer than this time ago, the earlier
* frames that have not yet been received are assumed to be lost and the skb
* can be released for processing. This may also release other skb's from the
* reorder buffer if there are no additional gaps between the frames.
*
* Callers must hold tid_agg_rx->reorder_lock.
*/
#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
struct sk_buff_head *frames)
{
int index, i, j;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
/* release the buffer until next missing frame */
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
tid_agg_rx->stored_mpdu_num) {
/*
* No buffers ready to be released, but check whether any
* frames in the reorder buffer have timed out.
*/
int skipped = 1;
for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
j = (j + 1) % tid_agg_rx->buf_size) {
if (!ieee80211_rx_reorder_ready(
&tid_agg_rx->reorder_buf[j])) {
skipped++;
continue;
}
if (skipped &&
!time_after(jiffies, tid_agg_rx->reorder_time[j] +
HT_RX_REORDER_BUF_TIMEOUT))
goto set_release_timer;
/* don't leave incomplete A-MSDUs around */
for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
i = (i + 1) % tid_agg_rx->buf_size)
__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
ht_dbg_ratelimited(sdata,
"release an RX reorder frame due to timeout on earlier frames\n");
ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
frames);
/*
* Increment the head seq# also for the skipped slots.
*/
tid_agg_rx->head_seq_num =
(tid_agg_rx->head_seq_num +
skipped) & IEEE80211_SN_MASK;
skipped = 0;
}
} else while (ieee80211_rx_reorder_ready(
&tid_agg_rx->reorder_buf[index])) {
ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
frames);
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
}
if (tid_agg_rx->stored_mpdu_num) {
j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
for (; j != (index - 1) % tid_agg_rx->buf_size;
j = (j + 1) % tid_agg_rx->buf_size) {
if (ieee80211_rx_reorder_ready(
&tid_agg_rx->reorder_buf[j]))
break;
}
set_release_timer:
if (!tid_agg_rx->removed)
mod_timer(&tid_agg_rx->reorder_timer,
tid_agg_rx->reorder_time[j] + 1 +
HT_RX_REORDER_BUF_TIMEOUT);
} else {
del_timer(&tid_agg_rx->reorder_timer);
}
}
/*
* As this function belongs to the RX path it must be under
* rcu_read_lock protection. It returns false if the frame
* can be processed immediately, true if it was consumed.
*/
static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
struct sk_buff *skb,
struct sk_buff_head *frames)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
u16 sc = le16_to_cpu(hdr->seq_ctrl);
u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
u16 head_seq_num, buf_size;
int index;
bool ret = true;
spin_lock(&tid_agg_rx->reorder_lock);
/*
* Offloaded BA sessions have no known starting sequence number so pick
* one from first Rxed frame for this tid after BA was started.
*/
if (unlikely(tid_agg_rx->auto_seq)) {
tid_agg_rx->auto_seq = false;
tid_agg_rx->ssn = mpdu_seq_num;
tid_agg_rx->head_seq_num = mpdu_seq_num;
}
buf_size = tid_agg_rx->buf_size;
head_seq_num = tid_agg_rx->head_seq_num;
/* frame with out of date sequence number */
if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
dev_kfree_skb(skb);
goto out;
}
/*
* If frame the sequence number exceeds our buffering window
* size release some previous frames to make room for this one.
*/
if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
head_seq_num = ieee80211_sn_inc(
ieee80211_sn_sub(mpdu_seq_num, buf_size));
/* release stored frames up to new head to stack */
ieee80211_release_reorder_frames(sdata, tid_agg_rx,
head_seq_num, frames);
}
/* Now the new frame is always in the range of the reordering buffer */
index = mpdu_seq_num % tid_agg_rx->buf_size;
/* check if we already stored this frame */
if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
dev_kfree_skb(skb);
goto out;
}
/*
* If the current MPDU is in the right order and nothing else
* is stored we can process it directly, no need to buffer it.
* If it is first but there's something stored, we may be able
* to release frames after this one.
*/
if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
tid_agg_rx->stored_mpdu_num == 0) {
if (!(status->flag & RX_FLAG_AMSDU_MORE))
tid_agg_rx->head_seq_num =
ieee80211_sn_inc(tid_agg_rx->head_seq_num);
ret = false;
goto out;
}
/* put the frame in the reordering buffer */
__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
tid_agg_rx->reorder_time[index] = jiffies;
tid_agg_rx->stored_mpdu_num++;
ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
}
out:
spin_unlock(&tid_agg_rx->reorder_lock);
return ret;
}
/*
* Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
* true if the MPDU was buffered, false if it should be processed.
*/
static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
struct sk_buff_head *frames)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_local *local = rx->local;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct sta_info *sta = rx->sta;
struct tid_ampdu_rx *tid_agg_rx;
u16 sc;
u8 tid, ack_policy;
if (!ieee80211_is_data_qos(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1))
goto dont_reorder;
/*
* filter the QoS data rx stream according to
* STA/TID and check if this STA/TID is on aggregation
*/
if (!sta)
goto dont_reorder;
ack_policy = *ieee80211_get_qos_ctl(hdr) &
IEEE80211_QOS_CTL_ACK_POLICY_MASK;
tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
goto dont_reorder;
/* qos null data frames are excluded */
if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
goto dont_reorder;
/* not part of a BA session */
if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
goto dont_reorder;
/* new, potentially un-ordered, ampdu frame - process it */
/* reset session timer */
if (tid_agg_rx->timeout)
tid_agg_rx->last_rx = jiffies;
/* if this mpdu is fragmented - terminate rx aggregation session */
sc = le16_to_cpu(hdr->seq_ctrl);
if (sc & IEEE80211_SCTL_FRAG) {
skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
skb_queue_tail(&rx->sdata->skb_queue, skb);
ieee80211_queue_work(&local->hw, &rx->sdata->work);
return;
}
/*
* No locking needed -- we will only ever process one
* RX packet at a time, and thus own tid_agg_rx. All
* other code manipulating it needs to (and does) make
* sure that we cannot get to it any more before doing
* anything with it.
*/
if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
frames))
return;
dont_reorder:
__skb_queue_tail(frames, skb);
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
/*
* Drop duplicate 802.11 retransmissions
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
*/
if (rx->skb->len < 24)
return RX_CONTINUE;
if (ieee80211_is_ctl(hdr->frame_control) ||
ieee80211_is_qos_nullfunc(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1))
return RX_CONTINUE;
if (rx->sta) {
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
rx->sta->last_seq_ctrl[rx->seqno_idx] ==
hdr->seq_ctrl)) {
I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
rx->sta->num_duplicates++;
return RX_DROP_UNUSABLE;
} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
}
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
/* Drop disallowed frame classes based on STA auth/assoc state;
* IEEE 802.11, Chap 5.5.
*
* mac80211 filters only based on association state, i.e. it drops
* Class 3 frames from not associated stations. hostapd sends
* deauth/disassoc frames when needed. In addition, hostapd is
* responsible for filtering on both auth and assoc states.
*/
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
return ieee80211_rx_mesh_check(rx);
if (unlikely((ieee80211_is_data(hdr->frame_control) ||
ieee80211_is_pspoll(hdr->frame_control)) &&
rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
/*
* accept port control frames from the AP even when it's not
* yet marked ASSOC to prevent a race where we don't set the
* assoc bit quickly enough before it sends the first frame
*/
if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
ieee80211_is_data_present(hdr->frame_control)) {
unsigned int hdrlen;
__be16 ethertype;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
if (rx->skb->len < hdrlen + 8)
return RX_DROP_MONITOR;
skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
if (ethertype == rx->sdata->control_port_protocol)
return RX_CONTINUE;
}
if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
cfg80211_rx_spurious_frame(rx->sdata->dev,
hdr->addr2,
GFP_ATOMIC))
return RX_DROP_UNUSABLE;
return RX_DROP_MONITOR;
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local;
struct ieee80211_hdr *hdr;
struct sk_buff *skb;
local = rx->local;
skb = rx->skb;
hdr = (struct ieee80211_hdr *) skb->data;
if (!local->pspolling)
return RX_CONTINUE;
if (!ieee80211_has_fromds(hdr->frame_control))
/* this is not from AP */
return RX_CONTINUE;
if (!ieee80211_is_data(hdr->frame_control))
return RX_CONTINUE;
if (!ieee80211_has_moredata(hdr->frame_control)) {
/* AP has no more frames buffered for us */
local->pspolling = false;
return RX_CONTINUE;
}
/* more data bit is set, let's request a new frame from the AP */
ieee80211_send_pspoll(local, rx->sdata);
return RX_CONTINUE;
}
static void sta_ps_start(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct ps_data *ps;
int tid;
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
ps = &sdata->bss->ps;
else
return;
atomic_inc(&ps->num_sta_ps);
set_sta_flag(sta, WLAN_STA_PS_STA);
if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
sta->sta.addr, sta->sta.aid);
ieee80211_clear_fast_xmit(sta);
if (!sta->sta.txq[0])
return;
for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
if (!skb_queue_len(&txqi->queue))
set_bit(tid, &sta->txq_buffered_tids);
else
clear_bit(tid, &sta->txq_buffered_tids);
}
}
static void sta_ps_end(struct sta_info *sta)
{
ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
sta->sta.addr, sta->sta.aid);
if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
/*
* Clear the flag only if the other one is still set
* so that the TX path won't start TX'ing new frames
* directly ... In the case that the driver flag isn't
* set ieee80211_sta_ps_deliver_wakeup() will clear it.
*/
clear_sta_flag(sta, WLAN_STA_PS_STA);
ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
sta->sta.addr, sta->sta.aid);
mac80211: async station powersave handling Some devices require that all frames to a station are flushed when that station goes into powersave mode before being able to send frames to that station again when it wakes up or polls -- all in order to avoid reordering and too many or too few frames being sent to the station when it polls. Normally, this is the case unless the station goes to sleep and wakes up very quickly again. But in that case, frames for it may be pending on the hardware queues, and thus races could happen in the case of multiple hardware queues used for QoS/WMM. Normally this isn't a problem, but with the iwlwifi mechanism we need to make sure the race doesn't happen. This makes mac80211 able to cope with the race with driver help by a new WLAN_STA_PS_DRIVER per-station flag that can be controlled by the driver and tells mac80211 whether it can transmit frames or not. This flag must be set according to very specific rules outlined in the documentation for the function that controls it. When we buffer new frames for the station, we normally set the TIM bit right away, but while the driver has blocked transmission to that sta we need to avoid that as well since we cannot respond to the station if it wakes up due to the TIM bit. Once the driver unblocks, we can set the TIM bit. Similarly, when the station just wakes up, we need to wait until all other frames are flushed before we can transmit frames to that station, so the same applies here, we need to wait for the driver to give the OK. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-11-06 10:35:50 +00:00
return;
}
set_sta_flag(sta, WLAN_STA_PS_DELIVER);
clear_sta_flag(sta, WLAN_STA_PS_STA);
mac80211: async station powersave handling Some devices require that all frames to a station are flushed when that station goes into powersave mode before being able to send frames to that station again when it wakes up or polls -- all in order to avoid reordering and too many or too few frames being sent to the station when it polls. Normally, this is the case unless the station goes to sleep and wakes up very quickly again. But in that case, frames for it may be pending on the hardware queues, and thus races could happen in the case of multiple hardware queues used for QoS/WMM. Normally this isn't a problem, but with the iwlwifi mechanism we need to make sure the race doesn't happen. This makes mac80211 able to cope with the race with driver help by a new WLAN_STA_PS_DRIVER per-station flag that can be controlled by the driver and tells mac80211 whether it can transmit frames or not. This flag must be set according to very specific rules outlined in the documentation for the function that controls it. When we buffer new frames for the station, we normally set the TIM bit right away, but while the driver has blocked transmission to that sta we need to avoid that as well since we cannot respond to the station if it wakes up due to the TIM bit. Once the driver unblocks, we can set the TIM bit. Similarly, when the station just wakes up, we need to wait until all other frames are flushed before we can transmit frames to that station, so the same applies here, we need to wait for the driver to give the OK. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-11-06 10:35:50 +00:00
ieee80211_sta_ps_deliver_wakeup(sta);
}
int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
bool in_ps;
WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
/* Don't let the same PS state be set twice */
in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
if ((start && in_ps) || (!start && !in_ps))
return -EINVAL;
if (start)
sta_ps_start(sta);
else
sta_ps_end(sta);
return 0;
}
EXPORT_SYMBOL(ieee80211_sta_ps_transition);
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (void *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int tid, ac;
if (!rx->sta)
return RX_CONTINUE;
if (sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
return RX_CONTINUE;
/*
* The device handles station powersave, so don't do anything about
* uAPSD and PS-Poll frames (the latter shouldn't even come up from
* it to mac80211 since they're handled.)
*/
if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
return RX_CONTINUE;
/*
* Don't do anything if the station isn't already asleep. In
* the uAPSD case, the station will probably be marked asleep,
* in the PS-Poll case the station must be confused ...
*/
if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
return RX_CONTINUE;
if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
ieee80211_sta_ps_deliver_poll_response(rx->sta);
else
set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
}
/* Free PS Poll skb here instead of returning RX_DROP that would
* count as an dropped frame. */
dev_kfree_skb(rx->skb);
return RX_QUEUED;
} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
ieee80211_has_pm(hdr->frame_control) &&
(ieee80211_is_data_qos(hdr->frame_control) ||
ieee80211_is_qos_nullfunc(hdr->frame_control))) {
tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
ac = ieee802_1d_to_ac[tid & 7];
/*
* If this AC is not trigger-enabled do nothing.
*
* NB: This could/should check a separate bitmap of trigger-
* enabled queues, but for now we only implement uAPSD w/o
* TSPEC changes to the ACs, so they're always the same.
*/
if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
return RX_CONTINUE;
/* if we are in a service period, do nothing */
if (test_sta_flag(rx->sta, WLAN_STA_SP))
return RX_CONTINUE;
if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
ieee80211_sta_ps_deliver_uapsd(rx->sta);
else
set_sta_flag(rx->sta, WLAN_STA_UAPSD);
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
{
struct sta_info *sta = rx->sta;
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int i;
if (!sta)
return RX_CONTINUE;
/*
* Update last_rx only for IBSS packets which are for the current
* BSSID and for station already AUTHORIZED to avoid keeping the
* current IBSS network alive in cases where other STAs start
* using different BSSID. This will also give the station another
* chance to restart the authentication/authorization in case
* something went wrong the first time.
*/
if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
NL80211_IFTYPE_ADHOC);
if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
sta->last_rx = jiffies;
if (ieee80211_is_data(hdr->frame_control) &&
!is_multicast_ether_addr(hdr->addr1)) {
sta->last_rx_rate_idx = status->rate_idx;
sta->last_rx_rate_flag = status->flag;
sta->last_rx_rate_vht_flag = status->vht_flag;
sta->last_rx_rate_vht_nss = status->vht_nss;
}
}
} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
sta->last_rx = jiffies;
} else if (!is_multicast_ether_addr(hdr->addr1)) {
/*
* Mesh beacons will update last_rx when if they are found to
* match the current local configuration when processed.
*/
sta->last_rx = jiffies;
if (ieee80211_is_data(hdr->frame_control)) {
sta->last_rx_rate_idx = status->rate_idx;
sta->last_rx_rate_flag = status->flag;
sta->last_rx_rate_vht_flag = status->vht_flag;
sta->last_rx_rate_vht_nss = status->vht_nss;
}
}
if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
ieee80211_sta_rx_notify(rx->sdata, hdr);
sta->rx_fragments++;
sta->rx_bytes += rx->skb->len;
if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
sta->last_signal = status->signal;
ewma_signal_add(&sta->avg_signal, -status->signal);
}
if (status->chains) {
sta->chains = status->chains;
for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
int signal = status->chain_signal[i];
if (!(status->chains & BIT(i)))
continue;
sta->chain_signal_last[i] = signal;
ewma_signal_add(&sta->chain_signal_avg[i], -signal);
}
}
/*
* Change STA power saving mode only at the end of a frame
* exchange sequence.
*/
if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
!ieee80211_has_morefrags(hdr->frame_control) &&
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
/* PM bit is only checked in frames where it isn't reserved,
* in AP mode it's reserved in non-bufferable management frames
* (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
*/
(!ieee80211_is_mgmt(hdr->frame_control) ||
ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
if (!ieee80211_has_pm(hdr->frame_control))
sta_ps_end(sta);
} else {
if (ieee80211_has_pm(hdr->frame_control))
sta_ps_start(sta);
}
}
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-30 17:14:08 +00:00
/* mesh power save support */
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
ieee80211_mps_rx_h_sta_process(sta, hdr);
/*
* Drop (qos-)data::nullfunc frames silently, since they
* are used only to control station power saving mode.
*/
if (ieee80211_is_nullfunc(hdr->frame_control) ||
ieee80211_is_qos_nullfunc(hdr->frame_control)) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
/*
* If we receive a 4-addr nullfunc frame from a STA
* that was not moved to a 4-addr STA vlan yet send
* the event to userspace and for older hostapd drop
* the frame to the monitor interface.
*/
if (ieee80211_has_a4(hdr->frame_control) &&
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
(rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
!rx->sdata->u.vlan.sta))) {
if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
cfg80211_rx_unexpected_4addr_frame(
rx->sdata->dev, sta->sta.addr,
GFP_ATOMIC);
return RX_DROP_MONITOR;
}
/*
* Update counter and free packet here to avoid
* counting this as a dropped packed.
*/
sta->rx_packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
return RX_CONTINUE;
} /* ieee80211_rx_h_sta_process */
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int keyidx;
int hdrlen;
ieee80211_rx_result result = RX_DROP_UNUSABLE;
struct ieee80211_key *sta_ptk = NULL;
int mmie_keyidx = -1;
__le16 fc;
const struct ieee80211_cipher_scheme *cs = NULL;
/*
* Key selection 101
*
* There are four types of keys:
* - GTK (group keys)
* - IGTK (group keys for management frames)
* - PTK (pairwise keys)
* - STK (station-to-station pairwise keys)
*
* When selecting a key, we have to distinguish between multicast
* (including broadcast) and unicast frames, the latter can only
* use PTKs and STKs while the former always use GTKs and IGTKs.
* Unless, of course, actual WEP keys ("pre-RSNA") are used, then
* unicast frames can also use key indices like GTKs. Hence, if we
* don't have a PTK/STK we check the key index for a WEP key.
*
* Note that in a regular BSS, multicast frames are sent by the
* AP only, associated stations unicast the frame to the AP first
* which then multicasts it on their behalf.
*
* There is also a slight problem in IBSS mode: GTKs are negotiated
* with each station, that is something we don't currently handle.
* The spec seems to expect that one negotiates the same key with
* every station but there's no such requirement; VLANs could be
* possible.
*/
/* start without a key */
rx->key = NULL;
fc = hdr->frame_control;
if (rx->sta) {
int keyid = rx->sta->ptk_idx;
if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
cs = rx->sta->cipher_scheme;
keyid = iwl80211_get_cs_keyid(cs, rx->skb);
if (unlikely(keyid < 0))
return RX_DROP_UNUSABLE;
}
sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
}
if (!ieee80211_has_protected(fc))
mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
rx->key = sta_ptk;
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
/* Skip decryption if the frame is not protected. */
if (!ieee80211_has_protected(fc))
return RX_CONTINUE;
} else if (mmie_keyidx >= 0) {
/* Broadcast/multicast robust management frame / BIP */
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
if (mmie_keyidx < NUM_DEFAULT_KEYS ||
mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
return RX_DROP_MONITOR; /* unexpected BIP keyidx */
if (rx->sta)
rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
if (!rx->key)
rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
} else if (!ieee80211_has_protected(fc)) {
/*
* The frame was not protected, so skip decryption. However, we
* need to set rx->key if there is a key that could have been
* used so that the frame may be dropped if encryption would
* have been expected.
*/
struct ieee80211_key *key = NULL;
struct ieee80211_sub_if_data *sdata = rx->sdata;
int i;
if (ieee80211_is_mgmt(fc) &&
is_multicast_ether_addr(hdr->addr1) &&
(key = rcu_dereference(rx->sdata->default_mgmt_key)))
rx->key = key;
else {
if (rx->sta) {
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = rcu_dereference(rx->sta->gtk[i]);
if (key)
break;
}
}
if (!key) {
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = rcu_dereference(sdata->keys[i]);
if (key)
break;
}
}
if (key)
rx->key = key;
}
return RX_CONTINUE;
} else {
u8 keyid;
/*
* The device doesn't give us the IV so we won't be
* able to look up the key. That's ok though, we
* don't need to decrypt the frame, we just won't
* be able to keep statistics accurate.
* Except for key threshold notifications, should
* we somehow allow the driver to tell us which key
* the hardware used if this flag is set?
*/
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
hdrlen = ieee80211_hdrlen(fc);
if (cs) {
keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
if (unlikely(keyidx < 0))
return RX_DROP_UNUSABLE;
} else {
if (rx->skb->len < 8 + hdrlen)
return RX_DROP_UNUSABLE; /* TODO: count this? */
/*
* no need to call ieee80211_wep_get_keyidx,
* it verifies a bunch of things we've done already
*/
skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
keyidx = keyid >> 6;
}
/* check per-station GTK first, if multicast packet */
if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
/* if not found, try default key */
if (!rx->key) {
rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
/*
* RSNA-protected unicast frames should always be
* sent with pairwise or station-to-station keys,
* but for WEP we allow using a key index as well.
*/
if (rx->key &&
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
!is_multicast_ether_addr(hdr->addr1))
rx->key = NULL;
}
}
if (rx->key) {
if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
return RX_DROP_MONITOR;
/* TODO: add threshold stuff again */
} else {
return RX_DROP_MONITOR;
}
switch (rx->key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
result = ieee80211_crypto_wep_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_TKIP:
result = ieee80211_crypto_tkip_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_CCMP:
result = ieee80211_crypto_ccmp_decrypt(
rx, IEEE80211_CCMP_MIC_LEN);
break;
case WLAN_CIPHER_SUITE_CCMP_256:
result = ieee80211_crypto_ccmp_decrypt(
rx, IEEE80211_CCMP_256_MIC_LEN);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
result = ieee80211_crypto_aes_cmac_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
result = ieee80211_crypto_aes_gmac_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
result = ieee80211_crypto_gcmp_decrypt(rx);
break;
default:
result = ieee80211_crypto_hw_decrypt(rx);
}
/* the hdr variable is invalid after the decrypt handlers */
/* either the frame has been decrypted or will be dropped */
status->flag |= RX_FLAG_DECRYPTED;
return result;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
unsigned int frag, unsigned int seq, int rx_queue,
struct sk_buff **skb)
{
struct ieee80211_fragment_entry *entry;
entry = &sdata->fragments[sdata->fragment_next++];
if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
sdata->fragment_next = 0;
if (!skb_queue_empty(&entry->skb_list))
__skb_queue_purge(&entry->skb_list);
__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
*skb = NULL;
entry->first_frag_time = jiffies;
entry->seq = seq;
entry->rx_queue = rx_queue;
entry->last_frag = frag;
entry->ccmp = 0;
entry->extra_len = 0;
return entry;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
unsigned int frag, unsigned int seq,
int rx_queue, struct ieee80211_hdr *hdr)
{
struct ieee80211_fragment_entry *entry;
int i, idx;
idx = sdata->fragment_next;
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
struct ieee80211_hdr *f_hdr;
idx--;
if (idx < 0)
idx = IEEE80211_FRAGMENT_MAX - 1;
entry = &sdata->fragments[idx];
if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
entry->rx_queue != rx_queue ||
entry->last_frag + 1 != frag)
continue;
f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
/*
* Check ftype and addresses are equal, else check next fragment
*/
if (((hdr->frame_control ^ f_hdr->frame_control) &
cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
!ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
!ether_addr_equal(hdr->addr2, f_hdr->addr2))
continue;
if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
__skb_queue_purge(&entry->skb_list);
continue;
}
return entry;
}
return NULL;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr;
u16 sc;
__le16 fc;
unsigned int frag, seq;
struct ieee80211_fragment_entry *entry;
struct sk_buff *skb;
struct ieee80211_rx_status *status;
hdr = (struct ieee80211_hdr *)rx->skb->data;
fc = hdr->frame_control;
if (ieee80211_is_ctl(fc))
return RX_CONTINUE;
sc = le16_to_cpu(hdr->seq_ctrl);
frag = sc & IEEE80211_SCTL_FRAG;
if (is_multicast_ether_addr(hdr->addr1)) {
I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
goto out_no_led;
}
if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
goto out;
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
if (skb_linearize(rx->skb))
return RX_DROP_UNUSABLE;
/*
* skb_linearize() might change the skb->data and
* previously cached variables (in this case, hdr) need to
* be refreshed with the new data.
*/
hdr = (struct ieee80211_hdr *)rx->skb->data;
seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
if (frag == 0) {
/* This is the first fragment of a new frame. */
entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
rx->seqno_idx, &(rx->skb));
if (rx->key &&
(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
ieee80211_has_protected(fc)) {
int queue = rx->security_idx;
/* Store CCMP PN so that we can verify that the next
* fragment has a sequential PN value. */
entry->ccmp = 1;
memcpy(entry->last_pn,
rx->key->u.ccmp.rx_pn[queue],
IEEE80211_CCMP_PN_LEN);
}
return RX_QUEUED;
}
/* This is a fragment for a frame that should already be pending in
* fragment cache. Add this fragment to the end of the pending entry.
*/
entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
rx->seqno_idx, hdr);
if (!entry) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
return RX_DROP_MONITOR;
}
/* Verify that MPDUs within one MSDU have sequential PN values.
* (IEEE 802.11i, 8.3.3.4.5) */
if (entry->ccmp) {
int i;
u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
int queue;
if (!rx->key ||
(rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
return RX_DROP_UNUSABLE;
memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
pn[i]++;
if (pn[i])
break;
}
queue = rx->security_idx;
rpn = rx->key->u.ccmp.rx_pn[queue];
if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
return RX_DROP_UNUSABLE;
memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
}
skb_pull(rx->skb, ieee80211_hdrlen(fc));
__skb_queue_tail(&entry->skb_list, rx->skb);
entry->last_frag = frag;
entry->extra_len += rx->skb->len;
if (ieee80211_has_morefrags(fc)) {
rx->skb = NULL;
return RX_QUEUED;
}
rx->skb = __skb_dequeue(&entry->skb_list);
if (skb_tailroom(rx->skb) < entry->extra_len) {
I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
GFP_ATOMIC))) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
__skb_queue_purge(&entry->skb_list);
return RX_DROP_UNUSABLE;
}
}
while ((skb = __skb_dequeue(&entry->skb_list))) {
memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
dev_kfree_skb(skb);
}
/* Complete frame has been reassembled - process it now */
status = IEEE80211_SKB_RXCB(rx->skb);
out:
ieee80211_led_rx(rx->local);
out_no_led:
if (rx->sta)
rx->sta->rx_packets++;
return RX_CONTINUE;
}
static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
{
if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
return -EACCES;
return 0;
}
static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
/*
* Pass through unencrypted frames if the hardware has
* decrypted them already.
*/
if (status->flag & RX_FLAG_DECRYPTED)
return 0;
/* Drop unencrypted frames if key is set. */
if (unlikely(!ieee80211_has_protected(fc) &&
!ieee80211_is_nullfunc(fc) &&
ieee80211_is_data(fc) && rx->key))
return -EACCES;
return 0;
}
static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
__le16 fc = hdr->frame_control;
/*
* Pass through unencrypted frames if the hardware has
* decrypted them already.
*/
if (status->flag & RX_FLAG_DECRYPTED)
return 0;
if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
if (unlikely(!ieee80211_has_protected(fc) &&
ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
rx->key)) {
if (ieee80211_is_deauth(fc) ||
ieee80211_is_disassoc(fc))
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
return -EACCES;
}
/* BIP does not use Protected field, so need to check MMIE */
if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
if (ieee80211_is_deauth(fc) ||
ieee80211_is_disassoc(fc))
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
return -EACCES;
}
/*
* When using MFP, Action frames are not allowed prior to
* having configured keys.
*/
if (unlikely(ieee80211_is_action(fc) && !rx->key &&
ieee80211_is_robust_mgmt_frame(rx->skb)))
return -EACCES;
}
return 0;
}
static int
__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
bool check_port_control = false;
struct ethhdr *ehdr;
int ret;
*port_control = false;
if (ieee80211_has_a4(hdr->frame_control) &&
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
return -1;
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
!!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
if (!sdata->u.mgd.use_4addr)
return -1;
else
check_port_control = true;
}
if (is_multicast_ether_addr(hdr->addr1) &&
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
return -1;
ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
if (ret < 0)
return ret;
ehdr = (struct ethhdr *) rx->skb->data;
if (ehdr->h_proto == rx->sdata->control_port_protocol)
*port_control = true;
else if (check_port_control)
return -1;
return 0;
}
/*
* requires that rx->skb is a frame with ethernet header
*/
static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
{
static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
/*
* Allow EAPOL frames to us/the PAE group address regardless
* of whether the frame was encrypted or not.
*/
if (ehdr->h_proto == rx->sdata->control_port_protocol &&
(ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
ether_addr_equal(ehdr->h_dest, pae_group_addr)))
return true;
if (ieee80211_802_1x_port_control(rx) ||
ieee80211_drop_unencrypted(rx, fc))
return false;
return true;
}
/*
* requires that rx->skb is a frame with ethernet header
*/
static void
ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct net_device *dev = sdata->dev;
struct sk_buff *skb, *xmit_skb;
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
struct sta_info *dsta;
skb = rx->skb;
xmit_skb = NULL;
ieee80211_rx_stats(dev, skb->len);
if ((sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
(sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
if (is_multicast_ether_addr(ehdr->h_dest)) {
/*
* send multicast frames both to higher layers in
* local net stack and back to the wireless medium
*/
xmit_skb = skb_copy(skb, GFP_ATOMIC);
if (!xmit_skb)
net_info_ratelimited("%s: failed to clone multicast frame\n",
dev->name);
} else {
dsta = sta_info_get(sdata, skb->data);
if (dsta) {
/*
* The destination station is associated to
* this AP (in this VLAN), so send the frame
* directly to it and do not pass it to local
* net stack.
*/
xmit_skb = skb;
skb = NULL;
}
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (skb) {
/* 'align' will only take the values 0 or 2 here since all
* frames are required to be aligned to 2-byte boundaries
* when being passed to mac80211; the code here works just
* as well if that isn't true, but mac80211 assumes it can
* access fields as 2-byte aligned (e.g. for ether_addr_equal)
*/
int align;
align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
if (align) {
if (WARN_ON(skb_headroom(skb) < 3)) {
dev_kfree_skb(skb);
skb = NULL;
} else {
u8 *data = skb->data;
size_t len = skb_headlen(skb);
skb->data -= align;
memmove(skb->data, data, len);
skb_set_tail_pointer(skb, len);
}
}
}
#endif
if (skb) {
/* deliver to local stack */
skb->protocol = eth_type_trans(skb, dev);
memset(skb->cb, 0, sizeof(skb->cb));
if (rx->napi)
napi_gro_receive(rx->napi, skb);
else
netif_receive_skb(skb);
}
if (xmit_skb) {
/*
* Send to wireless media and increase priority by 256 to
* keep the received priority instead of reclassifying
* the frame (see cfg80211_classify8021d).
*/
xmit_skb->priority += 256;
xmit_skb->protocol = htons(ETH_P_802_3);
skb_reset_network_header(xmit_skb);
skb_reset_mac_header(xmit_skb);
dev_queue_xmit(xmit_skb);
}
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
{
struct net_device *dev = rx->sdata->dev;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
struct sk_buff_head frame_list;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (unlikely(!ieee80211_is_data(fc)))
return RX_CONTINUE;
if (unlikely(!ieee80211_is_data_present(fc)))
return RX_DROP_MONITOR;
if (!(status->rx_flags & IEEE80211_RX_AMSDU))
return RX_CONTINUE;
if (ieee80211_has_a4(hdr->frame_control) &&
rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
!rx->sdata->u.vlan.sta)
return RX_DROP_UNUSABLE;
if (is_multicast_ether_addr(hdr->addr1) &&
((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
rx->sdata->u.vlan.sta) ||
(rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
rx->sdata->u.mgd.use_4addr)))
return RX_DROP_UNUSABLE;
skb->dev = dev;
__skb_queue_head_init(&frame_list);
if (skb_linearize(skb))
return RX_DROP_UNUSABLE;
ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
rx->sdata->vif.type,
rx->local->hw.extra_tx_headroom, true);
while (!skb_queue_empty(&frame_list)) {
rx->skb = __skb_dequeue(&frame_list);
if (!ieee80211_frame_allowed(rx, fc)) {
dev_kfree_skb(rx->skb);
continue;
}
ieee80211_deliver_skb(rx);
}
return RX_QUEUED;
}
#ifdef CONFIG_MAC80211_MESH
static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *fwd_hdr, *hdr;
struct ieee80211_tx_info *info;
struct ieee80211s_hdr *mesh_hdr;
struct sk_buff *skb = rx->skb, *fwd_skb;
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
u16 q, hdrlen;
hdr = (struct ieee80211_hdr *) skb->data;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
/* make sure fixed part of mesh header is there, also checks skb len */
if (!pskb_may_pull(rx->skb, hdrlen + 6))
return RX_DROP_MONITOR;
mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
/* make sure full mesh header is there, also checks skb len */
if (!pskb_may_pull(rx->skb,
hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
return RX_DROP_MONITOR;
/* reload pointers */
hdr = (struct ieee80211_hdr *) skb->data;
mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
return RX_DROP_MONITOR;
/* frame is in RMC, don't forward */
if (ieee80211_is_data(hdr->frame_control) &&
is_multicast_ether_addr(hdr->addr1) &&
mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
return RX_DROP_MONITOR;
if (!ieee80211_is_data(hdr->frame_control))
return RX_CONTINUE;
if (!mesh_hdr->ttl)
return RX_DROP_MONITOR;
if (mesh_hdr->flags & MESH_FLAGS_AE) {
struct mesh_path *mppath;
char *proxied_addr;
char *mpp_addr;
if (is_multicast_ether_addr(hdr->addr1)) {
mpp_addr = hdr->addr3;
proxied_addr = mesh_hdr->eaddr1;
} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
/* has_a4 already checked in ieee80211_rx_mesh_check */
mpp_addr = hdr->addr4;
proxied_addr = mesh_hdr->eaddr2;
} else {
return RX_DROP_MONITOR;
}
rcu_read_lock();
mppath = mpp_path_lookup(sdata, proxied_addr);
if (!mppath) {
mpp_path_add(sdata, proxied_addr, mpp_addr);
} else {
spin_lock_bh(&mppath->state_lock);
if (!ether_addr_equal(mppath->mpp, mpp_addr))
memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
spin_unlock_bh(&mppath->state_lock);
}
rcu_read_unlock();
}
/* Frame has reached destination. Don't forward */
if (!is_multicast_ether_addr(hdr->addr1) &&
ether_addr_equal(sdata->vif.addr, hdr->addr3))
return RX_CONTINUE;
q = ieee80211_select_queue_80211(sdata, skb, hdr);
if (ieee80211_queue_stopped(&local->hw, q)) {
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
return RX_DROP_MONITOR;
}
skb_set_queue_mapping(skb, q);
if (!--mesh_hdr->ttl) {
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
goto out;
}
if (!ifmsh->mshcfg.dot11MeshForwarding)
goto out;
fwd_skb = skb_copy(skb, GFP_ATOMIC);
if (!fwd_skb) {
net_info_ratelimited("%s: failed to clone mesh frame\n",
sdata->name);
goto out;
}
fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
info = IEEE80211_SKB_CB(fwd_skb);
memset(info, 0, sizeof(*info));
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
info->control.vif = &rx->sdata->vif;
info->control.jiffies = jiffies;
if (is_multicast_ether_addr(fwd_hdr->addr1)) {
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-30 17:14:08 +00:00
/* update power mode indication when forwarding */
ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-30 17:14:08 +00:00
/* mesh power mode flags updated in mesh_nexthop_lookup */
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
} else {
/* unable to resolve next hop */
mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
fwd_hdr->addr3, 0,
WLAN_REASON_MESH_PATH_NOFORWARD,
fwd_hdr->addr2);
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
kfree_skb(fwd_skb);
return RX_DROP_MONITOR;
}
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
ieee80211_add_pending_skb(local, fwd_skb);
out:
if (is_multicast_ether_addr(hdr->addr1))
return RX_CONTINUE;
return RX_DROP_MONITOR;
}
#endif
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_local *local = rx->local;
struct net_device *dev = sdata->dev;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
__le16 fc = hdr->frame_control;
bool port_control;
int err;
if (unlikely(!ieee80211_is_data(hdr->frame_control)))
return RX_CONTINUE;
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
return RX_DROP_MONITOR;
if (rx->sta) {
/* The seqno index has the same property as needed
* for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
* for non-QoS-data frames. Here we know it's a data
* frame, so count MSDUs.
*/
rx->sta->rx_msdu[rx->seqno_idx]++;
}
/*
* Send unexpected-4addr-frame event to hostapd. For older versions,
* also drop the frame to cooked monitor interfaces.
*/
if (ieee80211_has_a4(hdr->frame_control) &&
sdata->vif.type == NL80211_IFTYPE_AP) {
if (rx->sta &&
!test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
cfg80211_rx_unexpected_4addr_frame(
rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
return RX_DROP_MONITOR;
}
err = __ieee80211_data_to_8023(rx, &port_control);
if (unlikely(err))
return RX_DROP_UNUSABLE;
if (!ieee80211_frame_allowed(rx, fc))
return RX_DROP_MONITOR;
/* directly handle TDLS channel switch requests/responses */
if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
cpu_to_be16(ETH_P_TDLS))) {
struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
if (pskb_may_pull(rx->skb,
offsetof(struct ieee80211_tdls_data, u)) &&
tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
tf->category == WLAN_CATEGORY_TDLS &&
(tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
schedule_work(&local->tdls_chsw_work);
if (rx->sta)
rx->sta->rx_packets++;
return RX_QUEUED;
}
}
if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
unlikely(port_control) && sdata->bss) {
sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
u.ap);
dev = sdata->dev;
rx->sdata = sdata;
}
rx->skb->dev = dev;
if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
!is_multicast_ether_addr(
((struct ethhdr *)rx->skb->data)->h_dest) &&
(!local->scanning &&
!test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
}
ieee80211_deliver_skb(rx);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
struct tid_ampdu_rx *tid_agg_rx;
u16 start_seq_num;
u16 tid;
if (likely(!ieee80211_is_ctl(bar->frame_control)))
return RX_CONTINUE;
if (ieee80211_is_back_req(bar->frame_control)) {
struct {
__le16 control, start_seq_num;
} __packed bar_data;
struct ieee80211_event event = {
.type = BAR_RX_EVENT,
};
if (!rx->sta)
return RX_DROP_MONITOR;
if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
&bar_data, sizeof(bar_data)))
return RX_DROP_MONITOR;
tid = le16_to_cpu(bar_data.control) >> 12;
tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
return RX_DROP_MONITOR;
start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
event.u.ba.tid = tid;
event.u.ba.ssn = start_seq_num;
event.u.ba.sta = &rx->sta->sta;
/* reset session timer */
if (tid_agg_rx->timeout)
mod_timer(&tid_agg_rx->session_timer,
TU_TO_EXP_TIME(tid_agg_rx->timeout));
spin_lock(&tid_agg_rx->reorder_lock);
/* release stored frames up to start of BAR */
ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
start_seq_num, frames);
spin_unlock(&tid_agg_rx->reorder_lock);
drv_event_callback(rx->local, rx->sdata, &event);
kfree_skb(skb);
return RX_QUEUED;
}
/*
* After this point, we only want management frames,
* so we can drop all remaining control frames to
* cooked monitor interfaces.
*/
return RX_DROP_MONITOR;
}
static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *resp;
if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
/* Not to own unicast address */
return;
}
if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
/* Not from the current AP or not associated yet. */
return;
}
if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
/* Too short SA Query request frame */
return;
}
skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
if (skb == NULL)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(resp, 0, 24);
memcpy(resp->da, mgmt->sa, ETH_ALEN);
memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
memcpy(resp->u.action.u.sa_query.trans_id,
mgmt->u.action.u.sa_query.trans_id,
WLAN_SA_QUERY_TR_ID_LEN);
ieee80211_tx_skb(sdata, skb);
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
/*
* From here on, look only at management frames.
* Data and control frames are already handled,
* and unknown (reserved) frames are useless.
*/
if (rx->skb->len < 24)
return RX_DROP_MONITOR;
if (!ieee80211_is_mgmt(mgmt->frame_control))
return RX_DROP_MONITOR;
if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
ieee80211_is_beacon(mgmt->frame_control) &&
!(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
int sig = 0;
if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
sig = status->signal;
cfg80211_report_obss_beacon(rx->local->hw.wiphy,
rx->skb->data, rx->skb->len,
status->freq, sig);
rx->flags |= IEEE80211_RX_BEACON_REPORTED;
}
if (ieee80211_drop_unencrypted_mgmt(rx))
return RX_DROP_UNUSABLE;
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int len = rx->skb->len;
if (!ieee80211_is_action(mgmt->frame_control))
return RX_CONTINUE;
/* drop too small frames */
if (len < IEEE80211_MIN_ACTION_SIZE)
return RX_DROP_UNUSABLE;
if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
return RX_DROP_UNUSABLE;
switch (mgmt->u.action.category) {
case WLAN_CATEGORY_HT:
/* reject HT action frames from stations not supporting HT */
if (!rx->sta->sta.ht_cap.ht_supported)
goto invalid;
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_ADHOC)
break;
/* verify action & smps_control/chanwidth are present */
if (len < IEEE80211_MIN_ACTION_SIZE + 2)
goto invalid;
switch (mgmt->u.action.u.ht_smps.action) {
case WLAN_HT_ACTION_SMPS: {
struct ieee80211_supported_band *sband;
enum ieee80211_smps_mode smps_mode;
/* convert to HT capability */
switch (mgmt->u.action.u.ht_smps.smps_control) {
case WLAN_HT_SMPS_CONTROL_DISABLED:
smps_mode = IEEE80211_SMPS_OFF;
break;
case WLAN_HT_SMPS_CONTROL_STATIC:
smps_mode = IEEE80211_SMPS_STATIC;
break;
case WLAN_HT_SMPS_CONTROL_DYNAMIC:
smps_mode = IEEE80211_SMPS_DYNAMIC;
break;
default:
goto invalid;
}
/* if no change do nothing */
if (rx->sta->sta.smps_mode == smps_mode)
goto handled;
rx->sta->sta.smps_mode = smps_mode;
sband = rx->local->hw.wiphy->bands[status->band];
rate_control_rate_update(local, sband, rx->sta,
IEEE80211_RC_SMPS_CHANGED);
goto handled;
}
case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
struct ieee80211_supported_band *sband;
u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
/* If it doesn't support 40 MHz it can't change ... */
if (!(rx->sta->sta.ht_cap.cap &
IEEE80211_HT_CAP_SUP_WIDTH_20_40))
goto handled;
if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
max_bw = IEEE80211_STA_RX_BW_20;
else
max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
/* set cur_max_bandwidth and recalc sta bw */
rx->sta->cur_max_bandwidth = max_bw;
new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
if (rx->sta->sta.bandwidth == new_bw)
goto handled;
rx->sta->sta.bandwidth = new_bw;
sband = rx->local->hw.wiphy->bands[status->band];
rate_control_rate_update(local, sband, rx->sta,
IEEE80211_RC_BW_CHANGED);
goto handled;
}
default:
goto invalid;
}
break;
case WLAN_CATEGORY_PUBLIC:
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
goto invalid;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
if (!rx->sta)
break;
if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
break;
if (mgmt->u.action.u.ext_chan_switch.action_code !=
WLAN_PUB_ACTION_EXT_CHANSW_ANN)
break;
if (len < offsetof(struct ieee80211_mgmt,
u.action.u.ext_chan_switch.variable))
goto invalid;
goto queue;
case WLAN_CATEGORY_VHT:
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_ADHOC)
break;
/* verify action code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
goto invalid;
switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
case WLAN_VHT_ACTION_OPMODE_NOTIF: {
u8 opmode;
/* verify opmode is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 2)
goto invalid;
opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
opmode, status->band,
false);
goto handled;
}
default:
break;
}
break;
case WLAN_CATEGORY_BACK:
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_ADHOC)
break;
/* verify action_code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
break;
switch (mgmt->u.action.u.addba_req.action_code) {
case WLAN_ACTION_ADDBA_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_req)))
goto invalid;
break;
case WLAN_ACTION_ADDBA_RESP:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_resp)))
goto invalid;
break;
case WLAN_ACTION_DELBA:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.delba)))
goto invalid;
break;
default:
goto invalid;
}
goto queue;
case WLAN_CATEGORY_SPECTRUM_MGMT:
/* verify action_code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
break;
switch (mgmt->u.action.u.measurement.action_code) {
case WLAN_ACTION_SPCT_MSR_REQ:
if (status->band != IEEE80211_BAND_5GHZ)
break;
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.measurement)))
break;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
ieee80211_process_measurement_req(sdata, mgmt, len);
goto handled;
case WLAN_ACTION_SPCT_CHL_SWITCH: {
u8 *bssid;
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.chan_switch)))
break;
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
break;
if (sdata->vif.type == NL80211_IFTYPE_STATION)
bssid = sdata->u.mgd.bssid;
else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
bssid = sdata->u.ibss.bssid;
else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
bssid = mgmt->sa;
else
break;
if (!ether_addr_equal(mgmt->bssid, bssid))
break;
goto queue;
}
}
break;
case WLAN_CATEGORY_SA_QUERY:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.sa_query)))
break;
switch (mgmt->u.action.u.sa_query.action) {
case WLAN_ACTION_SA_QUERY_REQUEST:
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
ieee80211_process_sa_query_req(sdata, mgmt, len);
goto handled;
}
break;
case WLAN_CATEGORY_SELF_PROTECTED:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.self_prot.action_code)))
break;
switch (mgmt->u.action.u.self_prot.action_code) {
case WLAN_SP_MESH_PEERING_OPEN:
case WLAN_SP_MESH_PEERING_CLOSE:
case WLAN_SP_MESH_PEERING_CONFIRM:
if (!ieee80211_vif_is_mesh(&sdata->vif))
goto invalid;
if (sdata->u.mesh.user_mpm)
/* userspace handles this frame */
break;
goto queue;
case WLAN_SP_MGK_INFORM:
case WLAN_SP_MGK_ACK:
if (!ieee80211_vif_is_mesh(&sdata->vif))
goto invalid;
break;
}
break;
case WLAN_CATEGORY_MESH_ACTION:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.mesh_action.action_code)))
break;
if (!ieee80211_vif_is_mesh(&sdata->vif))
break;
if (mesh_action_is_path_sel(mgmt) &&
!mesh_path_sel_is_hwmp(sdata))
break;
goto queue;
}
return RX_CONTINUE;
invalid:
status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
/* will return in the next handlers */
return RX_CONTINUE;
handled:
if (rx->sta)
rx->sta->rx_packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
queue:
rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
skb_queue_tail(&sdata->skb_queue, rx->skb);
ieee80211_queue_work(&local->hw, &sdata->work);
if (rx->sta)
rx->sta->rx_packets++;
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int sig = 0;
/* skip known-bad action frames and return them in the next handler */
if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
return RX_CONTINUE;
/*
* Getting here means the kernel doesn't know how to handle
* it, but maybe userspace does ... include returned frames
* so userspace can register for those to know whether ones
* it transmitted were processed or returned.
*/
if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
sig = status->signal;
if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
rx->skb->data, rx->skb->len, 0)) {
if (rx->sta)
rx->sta->rx_packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct sk_buff *nskb;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (!ieee80211_is_action(mgmt->frame_control))
return RX_CONTINUE;
/*
* For AP mode, hostapd is responsible for handling any action
* frames that we didn't handle, including returning unknown
* ones. For all other modes we will return them to the sender,
* setting the 0x80 bit in the action category, as required by
* 802.11-2012 9.24.4.
* Newer versions of hostapd shall also use the management frame
* registration mechanisms, but older ones still use cooked
* monitor interfaces so push all frames there.
*/
if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
(sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
return RX_DROP_MONITOR;
if (is_multicast_ether_addr(mgmt->da))
return RX_DROP_MONITOR;
/* do not return rejected action frames */
if (mgmt->u.action.category & 0x80)
return RX_DROP_UNUSABLE;
nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
GFP_ATOMIC);
if (nskb) {
struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
nmgmt->u.action.category |= 0x80;
memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
memset(nskb->cb, 0, sizeof(nskb->cb));
if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
IEEE80211_TX_CTL_NO_CCK_RATE;
if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
info->hw_queue =
local->hw.offchannel_tx_hw_queue;
}
__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
status->band);
}
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
__le16 stype;
stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
if (!ieee80211_vif_is_mesh(&sdata->vif) &&
sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_OCB &&
sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_DROP_MONITOR;
switch (stype) {
case cpu_to_le16(IEEE80211_STYPE_AUTH):
case cpu_to_le16(IEEE80211_STYPE_BEACON):
case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
/* process for all: mesh, mlme, ibss */
break;
case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
if (is_multicast_ether_addr(mgmt->da) &&
!is_broadcast_ether_addr(mgmt->da))
return RX_DROP_MONITOR;
/* process only for station */
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_DROP_MONITOR;
break;
case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
/* process only for ibss and mesh */
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
return RX_DROP_MONITOR;
break;
default:
return RX_DROP_MONITOR;
}
/* queue up frame and kick off work to process it */
rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
skb_queue_tail(&sdata->skb_queue, rx->skb);
ieee80211_queue_work(&rx->local->hw, &sdata->work);
if (rx->sta)
rx->sta->rx_packets++;
return RX_QUEUED;
}
static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
struct ieee80211_rate *rate)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb, *skb2;
struct net_device *prev_dev = NULL;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
int needed_headroom;
/*
* If cooked monitor has been processed already, then
* don't do it again. If not, set the flag.
*/
if (rx->flags & IEEE80211_RX_CMNTR)
goto out_free_skb;
rx->flags |= IEEE80211_RX_CMNTR;
/* If there are no cooked monitor interfaces, just free the SKB */
if (!local->cooked_mntrs)
goto out_free_skb;
/* vendor data is long removed here */
status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
/* room for the radiotap header based on driver features */
needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
if (skb_headroom(skb) < needed_headroom &&
pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
goto out_free_skb;
/* prepend radiotap information */
ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
false);
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
!(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
continue;
if (prev_dev) {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2) {
skb2->dev = prev_dev;
netif_receive_skb(skb2);
}
}
prev_dev = sdata->dev;
ieee80211_rx_stats(sdata->dev, skb->len);
}
if (prev_dev) {
skb->dev = prev_dev;
netif_receive_skb(skb);
return;
}
out_free_skb:
dev_kfree_skb(skb);
}
static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
ieee80211_rx_result res)
{
switch (res) {
case RX_DROP_MONITOR:
I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
if (rx->sta)
rx->sta->rx_dropped++;
/* fall through */
case RX_CONTINUE: {
struct ieee80211_rate *rate = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rx_status *status;
status = IEEE80211_SKB_RXCB((rx->skb));
sband = rx->local->hw.wiphy->bands[status->band];
if (!(status->flag & RX_FLAG_HT) &&
!(status->flag & RX_FLAG_VHT))
rate = &sband->bitrates[status->rate_idx];
ieee80211_rx_cooked_monitor(rx, rate);
break;
}
case RX_DROP_UNUSABLE:
I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
if (rx->sta)
rx->sta->rx_dropped++;
dev_kfree_skb(rx->skb);
break;
case RX_QUEUED:
I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
break;
}
}
static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
struct sk_buff_head *frames)
{
ieee80211_rx_result res = RX_DROP_MONITOR;
struct sk_buff *skb;
#define CALL_RXH(rxh) \
do { \
res = rxh(rx); \
if (res != RX_CONTINUE) \
goto rxh_next; \
} while (0);
/* Lock here to avoid hitting all of the data used in the RX
* path (e.g. key data, station data, ...) concurrently when
* a frame is released from the reorder buffer due to timeout
* from the timer, potentially concurrently with RX from the
* driver.
*/
spin_lock_bh(&rx->local->rx_path_lock);
while ((skb = __skb_dequeue(frames))) {
/*
* all the other fields are valid across frames
* that belong to an aMPDU since they are on the
* same TID from the same station
*/
rx->skb = skb;
CALL_RXH(ieee80211_rx_h_check_more_data)
CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
CALL_RXH(ieee80211_rx_h_sta_process)
CALL_RXH(ieee80211_rx_h_decrypt)
CALL_RXH(ieee80211_rx_h_defragment)
CALL_RXH(ieee80211_rx_h_michael_mic_verify)
/* must be after MMIC verify so header is counted in MPDU mic */
#ifdef CONFIG_MAC80211_MESH
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
CALL_RXH(ieee80211_rx_h_mesh_fwding);
#endif
CALL_RXH(ieee80211_rx_h_amsdu)
CALL_RXH(ieee80211_rx_h_data)
/* special treatment -- needs the queue */
res = ieee80211_rx_h_ctrl(rx, frames);
if (res != RX_CONTINUE)
goto rxh_next;
CALL_RXH(ieee80211_rx_h_mgmt_check)
CALL_RXH(ieee80211_rx_h_action)
CALL_RXH(ieee80211_rx_h_userspace_mgmt)
CALL_RXH(ieee80211_rx_h_action_return)
CALL_RXH(ieee80211_rx_h_mgmt)
rxh_next:
ieee80211_rx_handlers_result(rx, res);
#undef CALL_RXH
}
spin_unlock_bh(&rx->local->rx_path_lock);
}
static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
{
struct sk_buff_head reorder_release;
ieee80211_rx_result res = RX_DROP_MONITOR;
__skb_queue_head_init(&reorder_release);
#define CALL_RXH(rxh) \
do { \
res = rxh(rx); \
if (res != RX_CONTINUE) \
goto rxh_next; \
} while (0);
CALL_RXH(ieee80211_rx_h_check_dup)
CALL_RXH(ieee80211_rx_h_check)
ieee80211_rx_reorder_ampdu(rx, &reorder_release);
ieee80211_rx_handlers(rx, &reorder_release);
return;
rxh_next:
ieee80211_rx_handlers_result(rx, res);
#undef CALL_RXH
}
/*
* This function makes calls into the RX path, therefore
* it has to be invoked under RCU read lock.
*/
void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
{
struct sk_buff_head frames;
struct ieee80211_rx_data rx = {
.sta = sta,
.sdata = sta->sdata,
.local = sta->local,
/* This is OK -- must be QoS data frame */
.security_idx = tid,
.seqno_idx = tid,
.napi = NULL, /* must be NULL to not have races */
};
struct tid_ampdu_rx *tid_agg_rx;
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
return;
__skb_queue_head_init(&frames);
spin_lock(&tid_agg_rx->reorder_lock);
ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
spin_unlock(&tid_agg_rx->reorder_lock);
if (!skb_queue_empty(&frames)) {
struct ieee80211_event event = {
.type = BA_FRAME_TIMEOUT,
.u.ba.tid = tid,
.u.ba.sta = &sta->sta,
};
drv_event_callback(rx.local, rx.sdata, &event);
}
ieee80211_rx_handlers(&rx, &frames);
}
/* main receive path */
static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
int multicast = is_multicast_ether_addr(hdr->addr1);
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (!bssid && !sdata->u.mgd.use_4addr)
return false;
if (multicast)
return true;
return ether_addr_equal(sdata->vif.addr, hdr->addr1);
case NL80211_IFTYPE_ADHOC:
if (!bssid)
return false;
if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
return false;
if (ieee80211_is_beacon(hdr->frame_control))
return true;
if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
return false;
if (!multicast &&
!ether_addr_equal(sdata->vif.addr, hdr->addr1))
return false;
if (!rx->sta) {
int rate_idx;
if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
rate_idx = 0; /* TODO: HT/VHT rates */
else
rate_idx = status->rate_idx;
ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
BIT(rate_idx));
}
return true;
case NL80211_IFTYPE_OCB:
if (!bssid)
return false;
if (!ieee80211_is_data_present(hdr->frame_control))
return false;
if (!is_broadcast_ether_addr(bssid))
return false;
if (!multicast &&
!ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
return false;
if (!rx->sta) {
int rate_idx;
if (status->flag & RX_FLAG_HT)
rate_idx = 0; /* TODO: HT rates */
else
rate_idx = status->rate_idx;
ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
BIT(rate_idx));
}
return true;
case NL80211_IFTYPE_MESH_POINT:
if (multicast)
return true;
return ether_addr_equal(sdata->vif.addr, hdr->addr1);
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_AP:
if (!bssid)
return ether_addr_equal(sdata->vif.addr, hdr->addr1);
if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
/*
* Accept public action frames even when the
* BSSID doesn't match, this is used for P2P
* and location updates. Note that mac80211
* itself never looks at these frames.
*/
if (!multicast &&
!ether_addr_equal(sdata->vif.addr, hdr->addr1))
return false;
if (ieee80211_is_public_action(hdr, skb->len))
return true;
return ieee80211_is_beacon(hdr->frame_control);
}
if (!ieee80211_has_tods(hdr->frame_control)) {
/* ignore data frames to TDLS-peers */
if (ieee80211_is_data(hdr->frame_control))
return false;
/* ignore action frames to TDLS-peers */
if (ieee80211_is_action(hdr->frame_control) &&
!ether_addr_equal(bssid, hdr->addr1))
return false;
}
return true;
case NL80211_IFTYPE_WDS:
if (bssid || !ieee80211_is_data(hdr->frame_control))
return false;
return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
case NL80211_IFTYPE_P2P_DEVICE:
return ieee80211_is_public_action(hdr, skb->len) ||
ieee80211_is_probe_req(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control) ||
ieee80211_is_beacon(hdr->frame_control);
default:
break;
}
WARN_ON_ONCE(1);
return false;
}
/*
* This function returns whether or not the SKB
* was destined for RX processing or not, which,
* if consume is true, is equivalent to whether
* or not the skb was consumed.
*/
static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
struct sk_buff *skb, bool consume)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
rx->skb = skb;
if (!ieee80211_accept_frame(rx))
return false;
if (!consume) {
skb = skb_copy(skb, GFP_ATOMIC);
if (!skb) {
if (net_ratelimit())
wiphy_debug(local->hw.wiphy,
"failed to copy skb for %s\n",
sdata->name);
return true;
}
rx->skb = skb;
}
ieee80211_invoke_rx_handlers(rx);
return true;
}
/*
* This is the actual Rx frames handler. as it belongs to Rx path it must
* be called with rcu_read_lock protection.
*/
static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct napi_struct *napi)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
struct ieee80211_hdr *hdr;
__le16 fc;
struct ieee80211_rx_data rx;
struct ieee80211_sub_if_data *prev;
struct sta_info *sta, *prev_sta;
struct rhash_head *tmp;
int err = 0;
fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
memset(&rx, 0, sizeof(rx));
rx.skb = skb;
rx.local = local;
rx.napi = napi;
if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
if (ieee80211_is_mgmt(fc)) {
/* drop frame if too short for header */
if (skb->len < ieee80211_hdrlen(fc))
err = -ENOBUFS;
else
err = skb_linearize(skb);
} else {
err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
}
if (err) {
dev_kfree_skb(skb);
return;
}
hdr = (struct ieee80211_hdr *)skb->data;
ieee80211_parse_qos(&rx);
ieee80211_verify_alignment(&rx);
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
ieee80211_is_beacon(hdr->frame_control)))
ieee80211_scan_rx(local, skb);
if (ieee80211_is_data(fc)) {
const struct bucket_table *tbl;
prev_sta = NULL;
tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
if (!prev_sta) {
prev_sta = sta;
continue;
}
rx.sta = prev_sta;
rx.sdata = prev_sta->sdata;
ieee80211_prepare_and_rx_handle(&rx, skb, false);
prev_sta = sta;
}
if (prev_sta) {
rx.sta = prev_sta;
rx.sdata = prev_sta->sdata;
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
return;
goto out;
}
}
prev = NULL;
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
continue;
/*
* frame is destined for this interface, but if it's
* not also for the previous one we handle that after
* the loop to avoid copying the SKB once too much
*/
if (!prev) {
prev = sdata;
continue;
}
rx.sta = sta_info_get_bss(prev, hdr->addr2);
rx.sdata = prev;
ieee80211_prepare_and_rx_handle(&rx, skb, false);
prev = sdata;
}
if (prev) {
rx.sta = sta_info_get_bss(prev, hdr->addr2);
rx.sdata = prev;
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
return;
}
out:
dev_kfree_skb(skb);
}
/*
* This is the receive path handler. It is called by a low level driver when an
* 802.11 MPDU is received from the hardware.
*/
void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb,
struct napi_struct *napi)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
WARN_ON_ONCE(softirq_count() == 0);
if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
goto drop;
sband = local->hw.wiphy->bands[status->band];
if (WARN_ON(!sband))
goto drop;
/*
* If we're suspending, it is possible although not too likely
* that we'd be receiving frames after having already partially
* quiesced the stack. We can't process such frames then since
* that might, for example, cause stations to be added or other
* driver callbacks be invoked.
*/
if (unlikely(local->quiescing || local->suspended))
goto drop;
/* We might be during a HW reconfig, prevent Rx for the same reason */
if (unlikely(local->in_reconfig))
goto drop;
/*
* The same happens when we're not even started,
* but that's worth a warning.
*/
if (WARN_ON(!local->started))
goto drop;
if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
/*
* Validate the rate, unless a PLCP error means that
* we probably can't have a valid rate here anyway.
*/
if (status->flag & RX_FLAG_HT) {
/*
* rate_idx is MCS index, which can be [0-76]
* as documented on:
*
* http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
*
* Anything else would be some sort of driver or
* hardware error. The driver should catch hardware
* errors.
*/
if (WARN(status->rate_idx > 76,
"Rate marked as an HT rate but passed "
"status->rate_idx is not "
"an MCS index [0-76]: %d (0x%02x)\n",
status->rate_idx,
status->rate_idx))
goto drop;
} else if (status->flag & RX_FLAG_VHT) {
if (WARN_ONCE(status->rate_idx > 9 ||
!status->vht_nss ||
status->vht_nss > 8,
"Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
status->rate_idx, status->vht_nss))
goto drop;
} else {
if (WARN_ON(status->rate_idx >= sband->n_bitrates))
goto drop;
rate = &sband->bitrates[status->rate_idx];
}
}
status->rx_flags = 0;
/*
* key references and virtual interfaces are protected using RCU
* and this requires that we are in a read-side RCU section during
* receive processing
*/
rcu_read_lock();
/*
* Frames with failed FCS/PLCP checksum are not returned,
* all other frames are returned without radiotap header
* if it was previously present.
* Also, frames with less than 16 bytes are dropped.
*/
skb = ieee80211_rx_monitor(local, skb, rate);
if (!skb) {
rcu_read_unlock();
return;
}
ieee80211_tpt_led_trig_rx(local,
((struct ieee80211_hdr *)skb->data)->frame_control,
skb->len);
__ieee80211_rx_handle_packet(hw, skb, napi);
rcu_read_unlock();
return;
drop:
kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_rx_napi);
/* This is a version of the rx handler that can be called from hard irq
* context. Post the skb on the queue and schedule the tasklet */
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ieee80211_local *local = hw_to_local(hw);
BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
skb->pkt_type = IEEE80211_RX_MSG;
skb_queue_tail(&local->skb_queue, skb);
tasklet_schedule(&local->tasklet);
}
EXPORT_SYMBOL(ieee80211_rx_irqsafe);