kernel-ark/arch/ppc64/kernel/iSeries_pci.c

913 lines
25 KiB
C
Raw Normal View History

/*
* iSeries_pci.c
*
* Copyright (C) 2001 Allan Trautman, IBM Corporation
*
* iSeries specific routines for PCI.
*
* Based on code from pci.c and iSeries_pci.c 32bit
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ide.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/ppcdebug.h>
#include <asm/iommu.h>
#include <asm/iSeries/HvCallPci.h>
#include <asm/iSeries/HvCallSm.h>
#include <asm/iSeries/HvCallXm.h>
#include <asm/iSeries/LparData.h>
#include <asm/iSeries/iSeries_irq.h>
#include <asm/iSeries/iSeries_pci.h>
#include <asm/iSeries/mf.h>
#include "pci.h"
extern unsigned long io_page_mask;
/*
* Forward declares of prototypes.
*/
static struct iSeries_Device_Node *find_Device_Node(int bus, int devfn);
static void scan_PHB_slots(struct pci_controller *Phb);
static void scan_EADS_bridge(HvBusNumber Bus, HvSubBusNumber SubBus, int IdSel);
static int scan_bridge_slot(HvBusNumber Bus, struct HvCallPci_BridgeInfo *Info);
LIST_HEAD(iSeries_Global_Device_List);
static int DeviceCount;
/* Counters and control flags. */
static long Pci_Io_Read_Count;
static long Pci_Io_Write_Count;
#if 0
static long Pci_Cfg_Read_Count;
static long Pci_Cfg_Write_Count;
#endif
static long Pci_Error_Count;
static int Pci_Retry_Max = 3; /* Only retry 3 times */
static int Pci_Error_Flag = 1; /* Set Retry Error on. */
static struct pci_ops iSeries_pci_ops;
/*
* Table defines
* Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
*/
#define IOMM_TABLE_MAX_ENTRIES 1024
#define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
#define BASE_IO_MEMORY 0xE000000000000000UL
static unsigned long max_io_memory = 0xE000000000000000UL;
static long current_iomm_table_entry;
/*
* Lookup Tables.
*/
static struct iSeries_Device_Node **iomm_table;
static u8 *iobar_table;
/*
* Static and Global variables
*/
static char *pci_io_text = "iSeries PCI I/O";
static DEFINE_SPINLOCK(iomm_table_lock);
/*
* iomm_table_initialize
*
* Allocates and initalizes the Address Translation Table and Bar
* Tables to get them ready for use. Must be called before any
* I/O space is handed out to the device BARs.
*/
static void iomm_table_initialize(void)
{
spin_lock(&iomm_table_lock);
iomm_table = kmalloc(sizeof(*iomm_table) * IOMM_TABLE_MAX_ENTRIES,
GFP_KERNEL);
iobar_table = kmalloc(sizeof(*iobar_table) * IOMM_TABLE_MAX_ENTRIES,
GFP_KERNEL);
spin_unlock(&iomm_table_lock);
if ((iomm_table == NULL) || (iobar_table == NULL))
panic("PCI: I/O tables allocation failed.\n");
}
/*
* iomm_table_allocate_entry
*
* Adds pci_dev entry in address translation table
*
* - Allocates the number of entries required in table base on BAR
* size.
* - Allocates starting at BASE_IO_MEMORY and increases.
* - The size is round up to be a multiple of entry size.
* - CurrentIndex is incremented to keep track of the last entry.
* - Builds the resource entry for allocated BARs.
*/
static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
{
struct resource *bar_res = &dev->resource[bar_num];
long bar_size = pci_resource_len(dev, bar_num);
/*
* No space to allocate, quick exit, skip Allocation.
*/
if (bar_size == 0)
return;
/*
* Set Resource values.
*/
spin_lock(&iomm_table_lock);
bar_res->name = pci_io_text;
bar_res->start =
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
bar_res->start += BASE_IO_MEMORY;
bar_res->end = bar_res->start + bar_size - 1;
/*
* Allocate the number of table entries needed for BAR.
*/
while (bar_size > 0 ) {
iomm_table[current_iomm_table_entry] = dev->sysdata;
iobar_table[current_iomm_table_entry] = bar_num;
bar_size -= IOMM_TABLE_ENTRY_SIZE;
++current_iomm_table_entry;
}
max_io_memory = BASE_IO_MEMORY +
(IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry);
spin_unlock(&iomm_table_lock);
}
/*
* allocate_device_bars
*
* - Allocates ALL pci_dev BAR's and updates the resources with the
* BAR value. BARS with zero length will have the resources
* The HvCallPci_getBarParms is used to get the size of the BAR
* space. It calls iomm_table_allocate_entry to allocate
* each entry.
* - Loops through The Bar resources(0 - 5) including the ROM
* is resource(6).
*/
static void allocate_device_bars(struct pci_dev *dev)
{
struct resource *bar_res;
int bar_num;
for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num) {
bar_res = &dev->resource[bar_num];
iomm_table_allocate_entry(dev, bar_num);
}
}
/*
* Log error information to system console.
* Filter out the device not there errors.
* PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
* PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
* PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
*/
static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
int AgentId, int HvRc)
{
if (HvRc == 0x0302)
return;
printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
Error_Text, Bus, SubBus, AgentId, HvRc);
}
/*
* build_device_node(u16 Bus, int SubBus, u8 DevFn)
*/
static struct iSeries_Device_Node *build_device_node(HvBusNumber Bus,
HvSubBusNumber SubBus, int AgentId, int Function)
{
struct iSeries_Device_Node *node;
PPCDBG(PPCDBG_BUSWALK,
"-build_device_node 0x%02X.%02X.%02X Function: %02X\n",
Bus, SubBus, AgentId, Function);
node = kmalloc(sizeof(struct iSeries_Device_Node), GFP_KERNEL);
if (node == NULL)
return NULL;
memset(node, 0, sizeof(struct iSeries_Device_Node));
list_add_tail(&node->Device_List, &iSeries_Global_Device_List);
#if 0
node->DsaAddr = ((u64)Bus << 48) + ((u64)SubBus << 40) + ((u64)0x10 << 32);
#endif
node->DsaAddr.DsaAddr = 0;
node->DsaAddr.Dsa.busNumber = Bus;
node->DsaAddr.Dsa.subBusNumber = SubBus;
node->DsaAddr.Dsa.deviceId = 0x10;
node->AgentId = AgentId;
node->DevFn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(AgentId), Function);
node->IoRetry = 0;
iSeries_Get_Location_Code(node);
return node;
}
/*
* unsigned long __init find_and_init_phbs(void)
*
* Description:
* This function checks for all possible system PCI host bridges that connect
* PCI buses. The system hypervisor is queried as to the guest partition
* ownership status. A pci_controller is built for any bus which is partially
* owned or fully owned by this guest partition.
*/
unsigned long __init find_and_init_phbs(void)
{
struct pci_controller *phb;
HvBusNumber bus;
PPCDBG(PPCDBG_BUSWALK, "find_and_init_phbs Entry\n");
/* Check all possible buses. */
for (bus = 0; bus < 256; bus++) {
int ret = HvCallXm_testBus(bus);
if (ret == 0) {
printk("bus %d appears to exist\n", bus);
phb = (struct pci_controller *)kmalloc(sizeof(struct pci_controller), GFP_KERNEL);
if (phb == NULL)
return -ENOMEM;
pci_setup_pci_controller(phb);
phb->pci_mem_offset = phb->local_number = bus;
phb->first_busno = bus;
phb->last_busno = bus;
phb->ops = &iSeries_pci_ops;
PPCDBG(PPCDBG_BUSWALK, "PCI:Create iSeries pci_controller(%p), Bus: %04X\n",
phb, bus);
/* Find and connect the devices. */
scan_PHB_slots(phb);
}
/*
* Check for Unexpected Return code, a clue that something
* has gone wrong.
*/
else if (ret != 0x0301)
printk(KERN_ERR "Unexpected Return on Probe(0x%04X): 0x%04X",
bus, ret);
}
return 0;
}
/*
* iSeries_pcibios_init
*
* Chance to initialize and structures or variable before PCI Bus walk.
*/
void iSeries_pcibios_init(void)
{
PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_init Entry.\n");
iomm_table_initialize();
find_and_init_phbs();
io_page_mask = -1;
PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_init Exit.\n");
}
/*
* iSeries_pci_final_fixup(void)
*/
void __init iSeries_pci_final_fixup(void)
{
struct pci_dev *pdev = NULL;
struct iSeries_Device_Node *node;
char Buffer[256];
int DeviceCount = 0;
PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_fixup Entry.\n");
/* Fix up at the device node and pci_dev relationship */
mf_display_src(0xC9000100);
printk("pcibios_final_fixup\n");
for_each_pci_dev(pdev) {
node = find_Device_Node(pdev->bus->number, pdev->devfn);
printk("pci dev %p (%x.%x), node %p\n", pdev,
pdev->bus->number, pdev->devfn, node);
if (node != NULL) {
++DeviceCount;
pdev->sysdata = (void *)node;
node->PciDev = pdev;
PPCDBG(PPCDBG_BUSWALK,
"pdev 0x%p <==> DevNode 0x%p\n",
pdev, node);
allocate_device_bars(pdev);
iSeries_Device_Information(pdev, Buffer,
sizeof(Buffer));
printk("%d. %s\n", DeviceCount, Buffer);
iommu_devnode_init_iSeries(node);
} else
printk("PCI: Device Tree not found for 0x%016lX\n",
(unsigned long)pdev);
pdev->irq = node->Irq;
}
iSeries_activate_IRQs();
mf_display_src(0xC9000200);
}
void pcibios_fixup_bus(struct pci_bus *PciBus)
{
PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_fixup_bus(0x%04X) Entry.\n",
PciBus->number);
}
void pcibios_fixup_resources(struct pci_dev *pdev)
{
PPCDBG(PPCDBG_BUSWALK, "fixup_resources pdev %p\n", pdev);
}
/*
* Loop through each node function to find usable EADs bridges.
*/
static void scan_PHB_slots(struct pci_controller *Phb)
{
struct HvCallPci_DeviceInfo *DevInfo;
HvBusNumber bus = Phb->local_number; /* System Bus */
const HvSubBusNumber SubBus = 0; /* EADs is always 0. */
int HvRc = 0;
int IdSel;
const int MaxAgents = 8;
DevInfo = (struct HvCallPci_DeviceInfo*)
kmalloc(sizeof(struct HvCallPci_DeviceInfo), GFP_KERNEL);
if (DevInfo == NULL)
return;
/*
* Probe for EADs Bridges
*/
for (IdSel = 1; IdSel < MaxAgents; ++IdSel) {
HvRc = HvCallPci_getDeviceInfo(bus, SubBus, IdSel,
ISERIES_HV_ADDR(DevInfo),
sizeof(struct HvCallPci_DeviceInfo));
if (HvRc == 0) {
if (DevInfo->deviceType == HvCallPci_NodeDevice)
scan_EADS_bridge(bus, SubBus, IdSel);
else
printk("PCI: Invalid System Configuration(0x%02X)"
" for bus 0x%02x id 0x%02x.\n",
DevInfo->deviceType, bus, IdSel);
}
else
pci_Log_Error("getDeviceInfo", bus, SubBus, IdSel, HvRc);
}
kfree(DevInfo);
}
static void scan_EADS_bridge(HvBusNumber bus, HvSubBusNumber SubBus,
int IdSel)
{
struct HvCallPci_BridgeInfo *BridgeInfo;
HvAgentId AgentId;
int Function;
int HvRc;
BridgeInfo = (struct HvCallPci_BridgeInfo *)
kmalloc(sizeof(struct HvCallPci_BridgeInfo), GFP_KERNEL);
if (BridgeInfo == NULL)
return;
/* Note: hvSubBus and irq is always be 0 at this level! */
for (Function = 0; Function < 8; ++Function) {
AgentId = ISERIES_PCI_AGENTID(IdSel, Function);
HvRc = HvCallXm_connectBusUnit(bus, SubBus, AgentId, 0);
if (HvRc == 0) {
printk("found device at bus %d idsel %d func %d (AgentId %x)\n",
bus, IdSel, Function, AgentId);
/* Connect EADs: 0x18.00.12 = 0x00 */
PPCDBG(PPCDBG_BUSWALK,
"PCI:Connect EADs: 0x%02X.%02X.%02X\n",
bus, SubBus, AgentId);
HvRc = HvCallPci_getBusUnitInfo(bus, SubBus, AgentId,
ISERIES_HV_ADDR(BridgeInfo),
sizeof(struct HvCallPci_BridgeInfo));
if (HvRc == 0) {
printk("bridge info: type %x subbus %x maxAgents %x maxsubbus %x logslot %x\n",
BridgeInfo->busUnitInfo.deviceType,
BridgeInfo->subBusNumber,
BridgeInfo->maxAgents,
BridgeInfo->maxSubBusNumber,
BridgeInfo->logicalSlotNumber);
PPCDBG(PPCDBG_BUSWALK,
"PCI: BridgeInfo, Type:0x%02X, SubBus:0x%02X, MaxAgents:0x%02X, MaxSubBus: 0x%02X, LSlot: 0x%02X\n",
BridgeInfo->busUnitInfo.deviceType,
BridgeInfo->subBusNumber,
BridgeInfo->maxAgents,
BridgeInfo->maxSubBusNumber,
BridgeInfo->logicalSlotNumber);
if (BridgeInfo->busUnitInfo.deviceType ==
HvCallPci_BridgeDevice) {
/* Scan_Bridge_Slot...: 0x18.00.12 */
scan_bridge_slot(bus, BridgeInfo);
} else
printk("PCI: Invalid Bridge Configuration(0x%02X)",
BridgeInfo->busUnitInfo.deviceType);
}
} else if (HvRc != 0x000B)
pci_Log_Error("EADs Connect",
bus, SubBus, AgentId, HvRc);
}
kfree(BridgeInfo);
}
/*
* This assumes that the node slot is always on the primary bus!
*/
static int scan_bridge_slot(HvBusNumber Bus,
struct HvCallPci_BridgeInfo *BridgeInfo)
{
struct iSeries_Device_Node *node;
HvSubBusNumber SubBus = BridgeInfo->subBusNumber;
u16 VendorId = 0;
int HvRc = 0;
u8 Irq = 0;
int IdSel = ISERIES_GET_DEVICE_FROM_SUBBUS(SubBus);
int Function = ISERIES_GET_FUNCTION_FROM_SUBBUS(SubBus);
HvAgentId EADsIdSel = ISERIES_PCI_AGENTID(IdSel, Function);
/* iSeries_allocate_IRQ.: 0x18.00.12(0xA3) */
Irq = iSeries_allocate_IRQ(Bus, 0, EADsIdSel);
PPCDBG(PPCDBG_BUSWALK,
"PCI:- allocate and assign IRQ 0x%02X.%02X.%02X = 0x%02X\n",
Bus, 0, EADsIdSel, Irq);
/*
* Connect all functions of any device found.
*/
for (IdSel = 1; IdSel <= BridgeInfo->maxAgents; ++IdSel) {
for (Function = 0; Function < 8; ++Function) {
HvAgentId AgentId = ISERIES_PCI_AGENTID(IdSel, Function);
HvRc = HvCallXm_connectBusUnit(Bus, SubBus,
AgentId, Irq);
if (HvRc != 0) {
pci_Log_Error("Connect Bus Unit",
Bus, SubBus, AgentId, HvRc);
continue;
}
HvRc = HvCallPci_configLoad16(Bus, SubBus, AgentId,
PCI_VENDOR_ID, &VendorId);
if (HvRc != 0) {
pci_Log_Error("Read Vendor",
Bus, SubBus, AgentId, HvRc);
continue;
}
printk("read vendor ID: %x\n", VendorId);
/* FoundDevice: 0x18.28.10 = 0x12AE */
PPCDBG(PPCDBG_BUSWALK,
"PCI:- FoundDevice: 0x%02X.%02X.%02X = 0x%04X, irq %d\n",
Bus, SubBus, AgentId, VendorId, Irq);
HvRc = HvCallPci_configStore8(Bus, SubBus, AgentId,
PCI_INTERRUPT_LINE, Irq);
if (HvRc != 0)
pci_Log_Error("PciCfgStore Irq Failed!",
Bus, SubBus, AgentId, HvRc);
++DeviceCount;
node = build_device_node(Bus, SubBus, EADsIdSel, Function);
node->Vendor = VendorId;
node->Irq = Irq;
node->LogicalSlot = BridgeInfo->logicalSlotNumber;
} /* for (Function = 0; Function < 8; ++Function) */
} /* for (IdSel = 1; IdSel <= MaxAgents; ++IdSel) */
return HvRc;
}
/*
* I/0 Memory copy MUST use mmio commands on iSeries
* To do; For performance, include the hv call directly
*/
void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count)
{
u8 ByteValue = c;
long NumberOfBytes = Count;
while (NumberOfBytes > 0) {
iSeries_Write_Byte(ByteValue, dest++);
-- NumberOfBytes;
}
}
EXPORT_SYMBOL(iSeries_memset_io);
void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count)
{
char *src = source;
long NumberOfBytes = count;
while (NumberOfBytes > 0) {
iSeries_Write_Byte(*src++, dest++);
-- NumberOfBytes;
}
}
EXPORT_SYMBOL(iSeries_memcpy_toio);
void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count)
{
char *dst = dest;
long NumberOfBytes = count;
while (NumberOfBytes > 0) {
*dst++ = iSeries_Read_Byte(src++);
-- NumberOfBytes;
}
}
EXPORT_SYMBOL(iSeries_memcpy_fromio);
/*
* Look down the chain to find the matching Device Device
*/
static struct iSeries_Device_Node *find_Device_Node(int bus, int devfn)
{
struct list_head *pos;
list_for_each(pos, &iSeries_Global_Device_List) {
struct iSeries_Device_Node *node =
list_entry(pos, struct iSeries_Device_Node, Device_List);
if ((bus == ISERIES_BUS(node)) && (devfn == node->DevFn))
return node;
}
return NULL;
}
#if 0
/*
* Returns the device node for the passed pci_dev
* Sanity Check Node PciDev to passed pci_dev
* If none is found, returns a NULL which the client must handle.
*/
static struct iSeries_Device_Node *get_Device_Node(struct pci_dev *pdev)
{
struct iSeries_Device_Node *node;
node = pdev->sysdata;
if (node == NULL || node->PciDev != pdev)
node = find_Device_Node(pdev->bus->number, pdev->devfn);
return node;
}
#endif
/*
* Config space read and write functions.
* For now at least, we look for the device node for the bus and devfn
* that we are asked to access. It may be possible to translate the devfn
* to a subbus and deviceid more directly.
*/
static u64 hv_cfg_read_func[4] = {
HvCallPciConfigLoad8, HvCallPciConfigLoad16,
HvCallPciConfigLoad32, HvCallPciConfigLoad32
};
static u64 hv_cfg_write_func[4] = {
HvCallPciConfigStore8, HvCallPciConfigStore16,
HvCallPciConfigStore32, HvCallPciConfigStore32
};
/*
* Read PCI config space
*/
static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 *val)
{
struct iSeries_Device_Node *node = find_Device_Node(bus->number, devfn);
u64 fn;
struct HvCallPci_LoadReturn ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255) {
*val = ~0;
return PCIBIOS_BAD_REGISTER_NUMBER;
}
fn = hv_cfg_read_func[(size - 1) & 3];
HvCall3Ret16(fn, &ret, node->DsaAddr.DsaAddr, offset, 0);
if (ret.rc != 0) {
*val = ~0;
return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
}
*val = ret.value;
return 0;
}
/*
* Write PCI config space
*/
static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 val)
{
struct iSeries_Device_Node *node = find_Device_Node(bus->number, devfn);
u64 fn;
u64 ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255)
return PCIBIOS_BAD_REGISTER_NUMBER;
fn = hv_cfg_write_func[(size - 1) & 3];
ret = HvCall4(fn, node->DsaAddr.DsaAddr, offset, val, 0);
if (ret != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
return 0;
}
static struct pci_ops iSeries_pci_ops = {
.read = iSeries_pci_read_config,
.write = iSeries_pci_write_config
};
/*
* Check Return Code
* -> On Failure, print and log information.
* Increment Retry Count, if exceeds max, panic partition.
* -> If in retry, print and log success
*
* PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
* PCI: Device 23.90 ReadL Retry( 1)
* PCI: Device 23.90 ReadL Retry Successful(1)
*/
static int CheckReturnCode(char *TextHdr, struct iSeries_Device_Node *DevNode,
u64 ret)
{
if (ret != 0) {
++Pci_Error_Count;
++DevNode->IoRetry;
printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
TextHdr, DevNode->DsaAddr.Dsa.busNumber, DevNode->DevFn,
DevNode->IoRetry, (int)ret);
/*
* Bump the retry and check for retry count exceeded.
* If, Exceeded, panic the system.
*/
if ((DevNode->IoRetry > Pci_Retry_Max) &&
(Pci_Error_Flag > 0)) {
mf_display_src(0xB6000103);
panic_timeout = 0;
panic("PCI: Hardware I/O Error, SRC B6000103, "
"Automatic Reboot Disabled.\n");
}
return -1; /* Retry Try */
}
/* If retry was in progress, log success and rest retry count */
if (DevNode->IoRetry > 0)
DevNode->IoRetry = 0;
return 0;
}
/*
* Translate the I/O Address into a device node, bar, and bar offset.
* Note: Make sure the passed variable end up on the stack to avoid
* the exposure of being device global.
*/
static inline struct iSeries_Device_Node *xlate_iomm_address(
const volatile void __iomem *IoAddress,
u64 *dsaptr, u64 *BarOffsetPtr)
{
unsigned long OrigIoAddr;
unsigned long BaseIoAddr;
unsigned long TableIndex;
struct iSeries_Device_Node *DevNode;
OrigIoAddr = (unsigned long __force)IoAddress;
if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
return NULL;
BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
DevNode = iomm_table[TableIndex];
if (DevNode != NULL) {
int barnum = iobar_table[TableIndex];
*dsaptr = DevNode->DsaAddr.DsaAddr | (barnum << 24);
*BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
} else
panic("PCI: Invalid PCI IoAddress detected!\n");
return DevNode;
}
/*
* Read MM I/O Instructions for the iSeries
* On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
* else, data is returned in big Endian format.
*
* iSeries_Read_Byte = Read Byte ( 8 bit)
* iSeries_Read_Word = Read Word (16 bit)
* iSeries_Read_Long = Read Long (32 bit)
*/
u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
struct HvCallPci_LoadReturn ret;
struct iSeries_Device_Node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);
return 0xff;
}
do {
++Pci_Io_Read_Count;
HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
} while (CheckReturnCode("RDB", DevNode, ret.rc) != 0);
return (u8)ret.value;
}
EXPORT_SYMBOL(iSeries_Read_Byte);
u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
struct HvCallPci_LoadReturn ret;
struct iSeries_Device_Node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);
return 0xffff;
}
do {
++Pci_Io_Read_Count;
HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
BarOffset, 0);
} while (CheckReturnCode("RDW", DevNode, ret.rc) != 0);
return swab16((u16)ret.value);
}
EXPORT_SYMBOL(iSeries_Read_Word);
u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
struct HvCallPci_LoadReturn ret;
struct iSeries_Device_Node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);
return 0xffffffff;
}
do {
++Pci_Io_Read_Count;
HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
BarOffset, 0);
} while (CheckReturnCode("RDL", DevNode, ret.rc) != 0);
return swab32((u32)ret.value);
}
EXPORT_SYMBOL(iSeries_Read_Long);
/*
* Write MM I/O Instructions for the iSeries
*
* iSeries_Write_Byte = Write Byte (8 bit)
* iSeries_Write_Word = Write Word(16 bit)
* iSeries_Write_Long = Write Long(32 bit)
*/
void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
u64 rc;
struct iSeries_Device_Node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
return;
}
do {
++Pci_Io_Write_Count;
rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
} while (CheckReturnCode("WWB", DevNode, rc) != 0);
}
EXPORT_SYMBOL(iSeries_Write_Byte);
void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
u64 rc;
struct iSeries_Device_Node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);
return;
}
do {
++Pci_Io_Write_Count;
rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);
} while (CheckReturnCode("WWW", DevNode, rc) != 0);
}
EXPORT_SYMBOL(iSeries_Write_Word);
void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
u64 rc;
struct iSeries_Device_Node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);
return;
}
do {
++Pci_Io_Write_Count;
rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);
} while (CheckReturnCode("WWL", DevNode, rc) != 0);
}
EXPORT_SYMBOL(iSeries_Write_Long);