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CHAPTER
ONE

INTRODUCTION

FreeFEM is a partial differential equation solver for non-linear multi-physics systems in 2D and 3D.

Problems involving partial differential equations from several branches of physics, such as fluid-structure interactions,
require interpolations of data on several meshes and their manipulation within one program. FreeFEM includes a fast
interpolation algorithm and a language for the manipulation of data on multiple meshes.

FreeFEM is written in C++ and its language is a C++ idiom.

FreeFEM currently interfaces to the following libraries:

e ARPACK

e BLAS

* OpenBLAS

e FFTW V3.3.2

* Ipopt V3.12.4

e Gmm++ V4.2

¢ freeYams

e METIS V5.1.0
e ParMETIS V4.0.3
¢ MMG3D V4.0
¢ mshmet

e MUMPS V5.0.2
* NLopt V2.2.4

e ScaLAPACK

e Scotch V6.0.4
e SuiteSparse V4.4.4
e SuperLU V5.2.1
e TetGen V1.5.1
e PETSc V3.11.2
e HTool

e HPDDM



https://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/blas/
http://www.openblas.net/
http://www.fftw.org
https://github.com/coin-or/Ipopt
http://getfem.org/gmm.html
https://www.ljll.math.upmc.fr/frey/software.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://www.mmgtools.org
https://www.ljll.math.upmc.fr/frey/software.html
http://mumps.enseeiht.fr/
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://www.netlib.org/scalapack/
https://gforge.inria.fr/projects/scotch/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://www.tetgen.org/
https://www.mcs.anl.gov/petsc/
https://pierremarchand.netlify.com/project/htool/
https://github.com/hpddm/hpddm
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1.1 Version 4: new features

1.1.1 Hash Matrix

A new internal managment of matrix inside the FreeFEM core have been introduced in FreeFEM 4.0, for better
performance.

1.1.2 Surface Finite Element

The surface finite element method is available since FreeFEM V4.2.1. | Some examples in examples/3dSurf.

Abstract about Surface FEM in FreeFEM.
* new meshsS type, refer to the section The type meshS in 3 dimension
— new type of surface mesh: meshsS
— the functionalities on the meshS type, it is necessary to load the plugin "msh3”.

— generator of meshS square3, sphere, ellipsoide or from a mesh using the command
movemesh?23.

— the old surface mesh3 object is removed and replaced by meshS type
— two possibilities to define a meshsS :
* the considered domain is a 3D surface, so naturally the FreeFEM type is a meshS

# let Th3 be a volume mesh (mesh3) and its border I'. FreeFEM allows to define the volume part with a
mesh3 type, and can extract and generate the entire border surface domain with meshS ThS=Th3.
Gamma or specific borders with meshS ThS=extract (Th3, label=11labs).

It is possible to build the underlying meshS from a mesh3 with the function buildSurface:
Th3=buildSurface (Th3) builds the surface domain associated to the mesh3 Th3.

— link with the mesh3 type
* by the command meshS ThS=Th3. Gamma
* operator on meshS type such as movemeshS, trunc, change...

% operator in relation mesh3 /meshS such as extract, buildSurface, gluing of meshS with the
operator +

* tetg allows to tetrahedralize the interior of the surface mesh with tetgen
* new FESpace with surface finite element type, see the section surface Lagrangian Finite Elements

* FESpace PO P1, P2, P1b Lagrange finite elements

1.1. Version 4: new features 5
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* as in the standard 2d or 3d case, the variational problem associated to surface PDE can be defined by using the
keywords

— problem
— varf to access to matrix and RHS vector
— available operators are int1d, int2d, on
* visualisation tools
— plot with plot of ffglut, mnedit meshes meshS and surface solutions
— loading, saving of meshes and solution at freefem’s format
+ “.mesh” mesh format file of Medit (P. Frey LJLL)
# “.msh” for mesh and “.sol” data solution at freefem format
# “.msh” data file of Gmsh (Mesh generator) (load “gmsh”)

+ vtk format for meshes and solutions (load “iovtk™)

Warning: Since the release 4.2.1, the surface mesh3 object (list of vertices and border elements, without tetahe-
dra elements) is remplaced by meshS type. For a FreeFEM V3 script working with surface meshes, try to change
mesh3 by meshs.

1.1.3 CMake

A compilation process using CMake is under development

1.2 Installation guide

To use FreeFEM, two installation methods are available: user access (binarie package) and access developers (from
the source code). Follow the section corresponding to your type of installation.

1.2.1 Using binaries package

First, open the following web page download page and choose your platform: Linux, MacOS or Windows.

Note: Binary packages are available for Microsoft Windows, MacOS and some Linux distributions.

Install FreeFEM by double-clicking on the appropriate file. Under Linux and MacOS the install directory is one of
the following /usr/local/bin, /usr/local/share/freefem++, /usr/local/lib/ff++

6 Chapter 1. Introduction
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Windows installation

First download the windows installation executable, then double click to install FreeFEM.
In most cases just answer yes (or type return) to all questions.

Otherwise in the Additional Task windows, check the box “Add application directory to your system path.” This is
required otherwise the program ffglut . exe will not be found.

By now you should have two new icons on your desktop:

e FreeFem++ (VERSION) .exe,the freefem++ application.

* FreeFem++ (VERSION) Examples,alinktothe freefem++ examples folder.
where (VERSION) is the version of the files (for example 3.59).

By default, the installed files are in C: \Programs Files\FreeFem++. In this directory, you have all the .d11
files and other applications: FreeFem++-nw.exe, ffglut.exe, ... The syntax for the command-line tools are
the same as those of FreeFem. exe.

macOS X installation

Download the MacOS X binary version file, extract all the files by double clicking on the icon of the file, go the the
directory and put the FreeFem++ . app application in the /Applications directory.

If you want terminal access to FreeFEM just copy the file FreeFem++ in a directory of your $PATH shell environ-
ment variable.

Ubuntu binary installation

Note: The Debian package is build for Ubuntu 18.04

Beforehand, install the following dependances libraries using the apt tool:

sudo apt-get install libhdf5-dev libsuitesparse-dev libarpack2-dev

Download the package FreeFEM .deb, install it by double clicking on the icon of the file. FreeFEM is directly available
in your terminal by the command “FreeFem++".

Arch AUR package

An up-to-date package of FreeFEM for Arch is available on the Archlinux user repository.

To install it:

git clone https://aur.archlinux.org/freefem++-git.git
cd freefemt++-git
makepkg -si

Note: Thanks to Stephan Husmann

1.2. Installation guide 7
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1.2.2 Compiling source code

2 worked versions of FreeFEM are possible: minimal and full - 1/ sequential and without plugins (contains
in 3rdparty) 2/ full: parallel with plugins. .. note:: We advise you to use the package manager for macOS
Homebrew to get the different packages required avalaible here

Compilation on OSX (>=10.13)

1. Install Xcode, Xcode Command Line tools and Xcode Additional Tools from the Apple website
2. Install gcc and gfortran from Homebrew
1 brew install gcc
3. To use FreeFEM parallel version, install the openmpi source code
1 curl -L https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz,
———output openmpi-4.0.l.tar.gz
2 tar xf openmpi-4.0.1
3 cd openmpi-4.0.1/
» with brew gcc gfortran compilers
4 ’ ./configure CC=clang =clang++ FC=gfortran-9 F77=gfortran-9 77prefix:/usr/local‘
» with LLVM gcc and brew gfortran compilers
4 ’./configure CC=gcc—-9 CXX=g++-9 FC=gfortran-9 F77=gfortran-9 --prefix=/usr/local ‘
5 make
6 sudo make install
4. Install the required libraries for FreeFEM
1 |brew install m4 git flex bison
5. If you want build your own configure according your system, install autoconf and automake from Homebrew
(optional, see note in step 10)
1 |brew install autoconf
> |brew install automake
6. To use FreeFEM with its plugins, install rom Homebrew suitesparse, hdf5, cmake, wget
1 |brew install suitesparse hdf5 cmake wget
7. Install gsl
i |curl -0 http://mirror.cyberbits.eu/gnu/gsl/gsl-2.5.tar.gz
2 |tar zxvf gsl-2.5.tar.gz
3 |cd gsl-2.5
4 | ./configure
5 |make
6 |sudo make install
8. Download the latest Git for Mac installer git and the FreeFEM source from the repository

Chapter 1. Introduction
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i |git clone https://github.com/FreeFem/FreeFem-sources.git

9. Configure your source code

1 cd FreeFem-sources
autoreconf -i

)

Note: if your autoreconf version is too old, do tar zxvf AutoGeneratedFile.tar.gz

» with LLVM gcc and brew gfortran compilers

3 ’./configure ——enable-download CC=clang CXX=clang++ F7/7=gfortran-9 FC=gfortran-9

* with brew gcc and brew gfortran compilers

3 ’./configure -—enable-download CC=gcc-9 CXX=g++-9 F77=gfortran-9 FC=gfortran-9

10. Download the 3rd party packages to use FreeFEM plugins

1 ’./3rdparty/getall -a ‘

Note: All the third party packages have their own licence

11. If you want use HPDDM (High Performance Domain Decomposition Methods) for massively parallel comput-
ing, install PETSc/SLEPc

1 |cd 3rdparty/ff-petsc

make petsc-slepc SUDO=sudo
3 |cd —

4 | ./reconfigure

)

12. Build your FreeFEM library and executable

1 |make —-j<nbProcs>
2> |make check

4 .. note:: " "make check ' 1is optionnally, but advise to check the
—validity of your xxFreeFEMxx building

13. Install the FreeFEM apllication sudo make install

Note: To install FreeFEM, it is recommanded to change the user ID of your installation
directory instead of using SUDO.

Compilation on Ubuntu

1. Install the following packages on you system

1 |sudo apt—get update && sudo apt—-get upgrade
> |sudo apt-get install cpp freeglut3-dev g++ gcc gfortran \

(continues on next page)

1.2. Installation guide 9
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(continued from previous page)

3 m4 make patch pkg-config wget python unzip \

4 libopenblas—-dev liblapack-dev libhdf5-dev libgsl-dev \

5 libscotch-dev libfftw3-dev libarpack2-dev libsuitesparse-dev \

6 libmumps—-seg-dev libnlopt-dev coinor-libipopt-dev libgmm++-dev libtetl.5-dev \
7 gnuplot—-gt autoconf automake autotools—-dev bison flex gdb valgrind git cmake

9 | # mpich is required for the FreeFem parallel computing version
10 | sudo apt-get install mpich

Warning: In the oldest distribution of Ubuntu, 1ibgsl-dev does not exists, use 1ibgsl2-dev instead

2. Download FreeFEM source from the repository

1 |git clone https://github.com/FreeFem/FreeFem-sources.git

3. Autoconf

1 cd FreeFem-sources
> |autoreconf -i

Note: if your autoreconf version is too old, do tar zxvf AutoGeneratedFile.tar.gz

4. Configure

i | ./configure --enable-download —--enable-optim

Note: To see all the options, type . /configure —--help

5. Download the 3rd party packages

i | ./3rdparty/getall -a

Note: All the third party packages have their own licence

6. If you want use HPDDM (High Performance Domain Decomposition Methods) for massively parallel comput-
ing, install PETSc/SLEPc

1 |cd 3rdparty/ff-petsc

> |make petsc-slepc SUDO=sudo
3 |cd —

4 | ./reconfigure

7. Build your FreeFEM library and executable

1 |make —j<nbProcs>
> |make check

10 Chapter 1. Introduction
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Note: make check is optionnally, but advise to check the validity of your FreeFEM building

9. Install the executable

1 |sudo make install

Compilation on Arch Linux

Warning: As Arch is in rolling release, the following information can be quickly outdated !

Warning: FreeFEM fails to compile using the newest version of gcc 8.1.0, use an older one instead.

1. Install the following dependencies:

1 |pacman —-Syu
2> |pacman -S git openmpi gcc-fortran wget python

3 freeglut m4 make patch gmm

4 blas lapack hdf5 gsl fftw arpack suitesparse
5 gnuplot autoconf automake bison flex gdb

6 valgrind cmake texlive-most

2. Download the FreeFEM source from the repository

1 |git clone https://github.com/FreeFem/FreeFem-sources.git

3. Autoconf

1 cd FreeFem-sources
> |autoreconf -1

4. Configure

1 | ./configure —--enable-download —--enable-optim

Note: To see all the options, type . /configure --help

5. Download the packages

1 | ./3rdparty/getall -a

Note: All the third party packages have their own licence

6. Compile petsc & slepc

1 | cd 3rdparty/ff-petsc
2 |make petsc-slepc SUDO=sudo
3 |cd -

1.2. Installation guide
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7. If you want use HPDDM (High Performance Domain Decomposition Methods) for massively parallel comput-
ing, install PETSc/SLEPc

1 ’./reconfigure

8. Compile the FreeFEM source

1 ’make

Note: If your computer has many threads, you can run make in parallel using make -7j16 for 16 threads, for
example.

Note: Optionnally, check the compilation with make check

9. Install the FreeFEM application

1 |sudo make install

Compilation on Linux with Intel software tools

Follow the guide

Compilation on Windows

Warning: The support ended for all releases under Windows 32 bits since the V4. We assume your development
machine is 64-bit, and you want your compiler to target 64-bit windows by default.

1. Install the Microsoft MPI v7.0 (archived) (msmpisdk.msi and MSMpiSetup.exe)

Note:
2019/07/07
* Microsoft MPI v10.0 isn’t usable in MSYS/mingw64 with gfortran more information here

* Microsoft MPI v9: mpiexec.exe doesn’t run

2. Download msys2-x86_64-latest.exe (x86_64 version) and run it.
3. Install the version control system Git for Windows

4. In the MSYS2 shell, execute the following. Hint: if you right click the title bar, go to Options -> Keys and tick
“Ctrl+Shift+letter shortcuts” you can use Ctrl+Shift+V to paste in the MSYS shell.

1 pacman —-Syuu

Close the MSYS2 shell once you're asked to. There are now 3 MSYS subsystems installed: MSYS2, MinGW32
and MinGW64. They can respectively be launched from C:devmsys64msys2.exe, C:devmsys64mingw32.exe and
C:devmsys64mingw64.exe Reopen MSYS2 (doesn’t matter which version, since we’re merely installing packages).

12 Chapter 1. Introduction
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Repeatedly run the following command until it says there are no further updates. You might have to restart your shell

again.

pacman —-Syuu

5. Now that MSYS?2 is fully up-to-date, install the following dependancies

* for 64bits system (all FreeFEM release version):

pacman —-S autoconf automake-wrapper bash bash-completion \
bison bsdcpio bsdtar bzip2 coreutils curl dash file filesystem \
findutils flex gawk gcc gcc-fortran gcc-libs grep gzip inetutils \
info less lndir make man-db git mingw-w64-x86_64-freeglut \
mingw-w64-x86_64—-toolchain mingw-w64-x86_64-gsl mingw-w64-x86_64-hdf5 \
mingw-w64-x86_64-openblas mintty msys2-keyring msys2-launcher—-git \
msys2-runtime ncurses pacman pacman-mirrors pactoys—git patch \
pax—-git python perl pkg-config pkgfile rebase sed tar tftp-hpa time \
tzcode unzip util-linux which mingw-w64-x86_64-libmicroutils \
mingw-w64-x86_64-arpack cmake python2

 for 32bits system (less FreeFEM release V4 is not currently supported):

pacman —-S autoconf automake-wrapper bash bash-completion \
bison bsdcpio bsdtar bzip2 coreutils curl dash file filesystem \
findutils flex gawk gcc gcc-fortran gcc-libs grep gzip inetutils \
info less lndir make man-db git mingw-w64-i686-freeglut \
mingw-w64-1686-toolchain mingw-w64-i686-gsl mingw-w64-1686-hdf5 \
mingw-w64-i686—-openblas mintty msys2-keyring msys2-launcher-git \
msys2-runtime ncurses pacman pacman-mirrors pactoys—git patch pax-git \
perl pkg-config pkgfile rebase sed tar tftp-hpa time tzcode unzip \

util-linux which

6. Open a MingWé64 terminal (or MingW32 for old 32 bits FreeFEM version) and compile the FreeFEM

source

git clone https://github.com/FreeFem/FreeFem-sources
cd FreeFem-sources
autoreconf -i

./configure ./configure -—-enable-generic --enable-optim \
-—enable-download —--enable-maintainer-mode \
CXXFLAGS=-mtune=generic CFLAGS=-mtune=generic \
FFLAGS=-mtune=generic--enable-download --disable-hips

./3rdparty/getall -a

make -7j4

make check
make install

The FreeFEM executable (and some other like ffmedit, ...) are in C:\msys64\mingw64\bin (or
C:\msys32\mingw32\bin).

1.2.3 Environment variables and init file

FreeFEM reads a user’s init file named freefem++.pref to initialize global variables: verbosity,
includepath, loadpath

Note: The variable verbosity changes the level of internal printing (0: nothing unless there are syntax errors, 1:
few, 10: lots, etc. ...), the default value is 2.

1.2. Installation guide 13
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The included files are found in the includepath list and the load files are found in the 1oadpath list.

The syntax of the file is:

verbosity = 5

loadpath += "/Library/FreeFem++/1ib"

loadpath += "/Users/hecht/Library/FreeFem++/1ib"
includepath += "/Library/FreeFem++/edp"

includepath += "/Users/hecht/Library/FreeFem++/edp"
# This 1is a comment

load += "funcTemplate"

load += "myfunction"

load += "MUMPS_seqg"

The possible paths for this file are

¢ under Unix and MacOs

/etc/freefem++.pref
$ (HOME) /. freefem++.pref
freefem++.pref

e under windows

freefem++.pref

We can also use shell environment variables to change verbosity and the search rule before the init files.

export FF_VERBOSITY=50
export FF_INCLUDEPATH="dir;;dir2"
export FF_LOADPATH="dir;;dir3"

[ [

Note: The separator between directories must be “;”” and not “:” because “:” is used under Windows.

Note: To show the list of init of FreeFEM , do

export FF_VERBOSITY=100;
./FreeFem++-nw

1.2.4 Coloring Syntax FreeFem++

Atom

In order to get the syntax highlighting in Atom, you have to install the FreeFEM language support.

You can do it directly in Atom: Edit -> Preferences -> Install, and search for language—freefem-offical.

14 Chapter 1. Introduction
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To launch scripts directly from Atom, you have to install the at om-runner package. Once installed, modify the
Atom configuration file (Edit -> Config...) to have something like that:

Wy

runner:
extensions:
edp: "FreeFem++"
Scopes:

"Freefem++": "FreeFem++"

Reboot Atom, and use Alt+R to run a FreeFem++ script.

Gedit

In order to get the syntax highlighting in Gedit, you have to downlaod the Gedit parser and copy itin /usr/share/
gtksourceview—-3.0/language—specs/.

Textmate 2, an editor under macOS
To use the coloring FreeFEM syntax with the Textmate 2 editor on Mac 10.7 or better, download from macro-

mates.com and download the textmate freefem++ syntax here (version june 2107). To install this parser, unzip
Textmate2-ff++.zip and follow the explanation given in file How_To.rtf.

rom www.freefem.org/ff++/Textmate2-ff++.zip (version june 2107) unzip Textmate2-

Notepad++,an editor under windows

Read and follow the instruction, FREEFEM++ COLOR SYNTAX OF WINDOWS .

Emacs editor

For emacs editor you can download ff++-mode.el .

1.3 Download

1.3.1 Latest binary packages

FreeFEM v4.2.1 release runs under MacOS X, Ubuntu and Windows 64 bits.

Operating System FreeFEM Version | Size Date
MacOS 10.14 -

MacOS 10.10.5 up to 10.13.5
Ubuntu 16.04 or higher
Windows 64bits
Source_4.2.1

previous releases

417 Mb | May 31, 2019
52.6 Mb | May 31, 2019
135Mb | May 31, 2019
32Mb | May 31, 2019

HNY N NG TN
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The source code is available on the FreeFEM GitHub Repository.
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Note: The support ended for all releases under Windows 32 bits.

1.3.2 Syntax highlighters

Lexer type | Version | Description

Emacs 0.3 freefem-mode.el

Textmate2 | 1.0 FreeFem.tmbundle

Gedit 1.0 ffpp.lang

Atom 0.3 language-freefem or via the Atom package manager
Pygments 1.0 freefem.py

Vim 0.1 edp.vim

1.4 History

The project has evolved from MacFem, PCfem, written in Pascal. The first C version lead to freefem
3. 4; it offered mesh adaptivity on a single mesh only.

A thorough rewriting in C++ led to freefem+ (freefem+ 1.2.10 was its last release), which included
interpolation over multiple meshes (functions defined on one mesh can be used on any other mesh); this
software is no longer maintained but is still in use because it handles a problem description using the
strong form of the PDEs. Implementing the interpolation from one unstructured mesh to another was not
easy because it had to be fast and non-diffusive; for each point, one had to find the containing triangle.
This is one of the basic problems of computational geometry (see [PREPARATA1985] for example).
Doing it in a minimum number of operations was the challenge. Our implementation is O(nlogn) and
based on a quadtree. This version also grew out of hand because of the evolution of the template syntax
in C++.

We have been working for a few years now on FreeFEM , entirely re-written again in C++ with a thorough
usage of template and generic programming for coupled systems of unknown size at compile time. Like
all versions of freefem, it has a high level user friendly input language which is not too far from the
mathematical writing of the problems.

The freefem language allows for a quick specification of any partial differential system of equa-
tions. The language syntax of FreeFEM is the result of a new design which makes use of the
STL [STROUSTRUP2000], templates, and bison for its implementation; more details can be found in
[HECHT2002]. The outcome is a versatile software in which any new finite elements can be included
in a few hours; but a recompilation is then necessary. Therefore the library of finite elements available
in FreeFEM will grow with the version number and with the number of users who program more new
elements. So far we have discontinuous Py elements,linear P; and quadratic P, Lagrangian elements,
discontinuous P; and Raviart-Thomas elements and a few others like bubble elements.
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The development of FreeFEM through more than 30 years

1987
MacFem/PCFem the old ones (O. Pironneau in Pascal) no free.
1992

FreeFem rewrite in C++ (P1,PO one mesh ) O. Pironneau, D. Bernardi, F.Hecht (mesh adaptation , bamg)
, C. Prudhomme .

1996
FreeFem+ rewrite in C++ (P1,PO more mesh) O. Pironneau, D. Bernardi, F.Hecht (algebra of function).
1998

FreeFem++ rewrite with an other finite element kernel and an new language F. Hecht, O. Pironneau,
K.Ohtsuka.

1999

FreeFem 3d (S. Del Pino), a fist 3d version base on fictitious domaine method.
2008

FreeFem-++ v3 use a new finite element kernel multidimensionnels: 1d,2d,3d...
2014

FreeFem-++ v3.34 parallel version
2017

FreeFem++ v3.57 parallel version
2018

FreeFem++ v4: New matrix type, Surface element, New Parallel tools ...

1.5 Citation

1.5.1 If you use FreeFEM, please cite the following reference in your work:

BibTeX
@article{MR3043640,
AUTHOR = {Hecht, F.},
TITLE = {New development in FreeFem++},

JOURNAL = {J. Numer. Math.},

FJOURNAL = {Journal of Numerical Mathematics},
VOLUME = {20}, YEAR = {2012},

NUMBER = {3-4}, PAGES = {251--265},

ISSN = {1570-2820},

MRCLASS = {65Y15},

MRNUMBER = {3043640},

(continues on next page)
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URL = {https://freefem.org/}

APA

Hecht, F. (2012). New development in FreeFem++. Journal of numerical mathematics,
—20(3-4), 251-266.

1ISO690

HECHT, Frédéric. New development in FreeFem++. Journal of numerical mathematics, 2012,
— vol. 20, no 3-4, p. 251-266.

MLA

Hecht, Frédéric. "New development in FreeFem++." Journal of numerical mathematics 20.
—3-4 (2012): 251-266.

1.6 Authors

Frédéric Hecht

Professor at Laboratoire Jacques Louis Lions (LJLL), Sorbonne University, Paris
frederic.hecht@sorbonne-universite.fr

https://www.ljll.math.upmc.fr/hecht/

Sylvain Auliac
Former PhD student at LJILL, optimization interface with nlopt, ipopt, cmaes, ...
https://www.]jll.math.upmc.fr/auliac/

Olivier Pironneau

Professor of numerical analysis at the Paris VI university and at LJLL, numerical methods in fluid
Member of the Institut Universitaire de France and Academie des Sciences
https://www.]jll.math.upmec.fr/pironneau/

Jacques Morice
Former Post-Doc at LJLL, three dimensions mesh generation and coupling with medit

Antoine Le Hyaric

CNRS research engineer at Laboratoire Jacques Louis Lions, expert in software engineering for scientific applica-
tions, electromagnetics simulations, parallel computing and three-dimensionsal visualization
https://www.ljll.math.upmc.fr/lehyaric/
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Kohji Ohtsuka

Academy and Society, Japan. Fracture dynamic, modeling and computing

Professor at Hiroshima Kokusai Gakuin University, Japan and chairman of the World Scientific and Engineering

https://sites.google.com/a/comfos.org/comfos/

Pierre-Henri Tournier

CNRS research engineer at Laboratoire Jacques Louis Lions (LJLL), Sorbonne University, Paris

Pierre Jolivet
CNRS researcher, MPI interface with PETSc, HPDDM, ...
http://jolivet.perso.enseeiht.fr/

Frédéric Nataf

CNRS senior researcher at Laboratoire Jacques Louis Lions (LJLL), Sorbonne University, Paris

https://www.ljll.math.upmc.fr/nataf/

Simon Garnotel
Reasearch engineer at Airthium
https://github.com/sgarnotel

Karla Pérez
Developer, Airthium internship
https://github.com/karlaprzbr

Loan Cannard
Web designer, Airthium internship
https://www.linkedin.com/in/loancannard

And all the dedicated Github contributors

1.7 Contributing

1.7.1 Bug report

Concerning the FreeFEM documentation

Open an Issue on FreeFem-doc repository.

Concerning the FreeFEM compilation or usage

Open an Issue on FreeFem-sources repository.

1.7. Contributing

19



http://www.hkg.ac.jp/html/
http://www.wseas.org
http://www.wseas.org
https://sites.google.com/a/comfos.org/comfos/
http://www.cnrs.fr
https://www.ljll.math.upmc.fr/
http://www.cnrs.fr
https://www.mcs.anl.gov/petsc/
https://github.com/hpddm/hpddm
http://jolivet.perso.enseeiht.fr/
http://www.cnrs.fr
https://www.ljll.math.upmc.fr/
https://www.ljll.math.upmc.fr/nataf/
https://www.airthium.com
https://github.com/sgarnotel
https://www.airthium.com
https://github.com/karlaprzbr
https://www.airthium.com
https://www.linkedin.com/in/loancannard
https://github.com/FreeFem/FreeFem-doc/graphs/contributors
https://github.com/FreeFem/FreeFem-doc/issues
https://github.com/FreeFem/FreeFem-sources/issues

FreeFEM Documentation, Release 4.2.1

1.7.2 Improve content

Ask one of the contributors for Collaborator Access or make a Pull Request.
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CHAPTER
TWO

LEARNING BY EXAMPLES

The FreeFEM language is typed, polymorphic and reentrant with macro generation.
Every variable must be typed and declared in a statement, that is separated from the next by a semicolon ; .
The FreeFEM language is a C++ idiom with something that is more akin to LaTeX.

For the specialist, one key guideline is that FreeFEM rarely generates an internal finite element array, this was adopted
for speed and consequently FreeFEM could be hard to beat in terms of execution speed, except for the time lost in
the interpretation of the language (which can be reduced by a systematic usage of varf and matrix instead of
problem).

The Development Cycle: Edit-Run/Visualize—Revise

Many examples and tutorials are given there after and in the examples section. It is better to study them and learn by
example.

If you are a beginner in the finite element method, you may also have to read a book on variational formulations.
The development cycle includes the following steps:

Modeling: From strong forms of PDE to weak forms, one must know the variational formulation to use FreeFEM;
one should also have an eye on the reusability of the variational formulation so as to keep the same internal matrices; a
typical example is the time dependent heat equation with an implicit time scheme: the internal matrix can be factorized
only once and FreeFEM can be taught to do so.

Programming: Write the code in FreeFEM language using a text editor such as the one provided in your integrated
environment.

Run: Run the code (here written in file mycode . edp). That can also be done in terminal mode by :

FreeFem++ mycode.edp

Visualization: Use the keyword plot directly in mycode . edp to display functions while FreeFEM is running.
Use the plot-parameter wait=1 to stop the program at each plot.

Debugging: A global variable debug (for example) can help as in wait=true to wait=false.

bool debug = true;

border a(t=0, 2.xpi) {x=cos(t); y=sin(t); label=1;};
border b (t=0, 2.xpi) {x=0.8+0.3%cos(t); y=0.3xsin(t); label=2;};

(continues on next page)
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(continued from previous page)

plot (a(50) + b(-30), wait=debug); //plot the borders to see the intersection
//so change (0.8 in 0.3 in b)
//1f debug == true, press Enter to continue

mesh Th = buildmesh (a(50) + b(-30));
plot (Th, wait=debug); //plot Th then press Enter

fespace Vh(Th,P2);
Vh f = sin(pi»x)~*cos(pi+y);
Vh g = sin(pi*x + cos (pi*y));

plot (f, wait=debuqg); //plot the function f
plot (g, wait=debug); //plot the function g

Changing debug to false will make the plots flow continuously. Watching the flow of graphs on the screen (while
drinking coffee) can then become a pleasant experience.

Error management

Error messages are displayed in the console window. They are not always very explicit because of the template
structure of the C++ code (we did our best!). Nevertheless they are displayed at the right place. For example, if you
forget parenthesis as in:

bool debug = true;
mesh Th = square(10,10;
plot (Th);

then you will get the following message from FreeFEM:

2 : mesh Th = square(10,10;
Error line number 2, in file bb.edp, before token ;
parse error

current line = 2
Compile error : parse error
line number :2, ;
error Compile error : parse error
line number :2, ;
code =1

If you use the same symbol twice as in:

real aaa = 1;
real aaa;

then you will get the message:

2 : real aaa; The identifier aaa exists
the existing type is <Pd>
the new type is <Pd>

If you find that the program isn’t doing what you want you may also use cout to display in text format on the console
window the value of variables, just as you would do in C++.

The following example works:

fespace Vh(Th, P1l);

(continues on next page)
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(continued from previous page)

Vh u;

cout << uj;

matrix A = a(Vh, Vh);
cout << A;

Another trick is to comment in and out by using // as in C++. For example:

real aaa =1;
// real aaa;

2.1 Getting started

For a given function f(z,y), find a function u(z, y) satisfying :

—Au(z,y) = f(z,y) forall (z,y)in

u(z,y) =0 for all (z,y) on 99 2.1

Here 0f2 is the boundary of the bounded open set 2 C R? and Au = gi?j + gz%.

We will compute u with f(z,y) = zy and  the unit disk. The boundary C' = 01 is defined as:

C ={(z,y)| ¢ = cos(t), y =sin(t), 0 <t < 27}

Note: In FreeFEM, the domain €2 is assumed to be described by the left side of its boundary.

The following is the FreeFEM program which computes u:

// Define mesh boundary
border C(t=0, 2xpi){x=cos(t); y=sin(t);}

// The triangulated domain Th is on the left side of its boundary
mesh Th = buildmesh (C(50));

// The finite element space defined over Th is called here Vh
fespace Vh(Th, P1l);
Vh u, v;// Define u and v as piecewise-P1l continuous functions

// Define a function f
func f= xry;

// Get the clock in second
real cpu=clock();

// Define the PDE
solve Poisson(u, v, solver=LU)
= int2d (Th) ( // The bilinear part
dx (u) *dx (v)
+ dy (u) »dy (v)
)
— int2d(Th) ( // The right hand side
fxv

(continues on next page)
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(a) Mesh Th by buildmesh (C (50)) (b) Isovalue by plot (u)

Fig. 2.1: Poisson’s equation

(continued from previous page)

)
+ on(C, u=0); // The Dirichlet boundary condition

// Plot the result
plot (u);

// Display the total computational time
cout << "CPU time = " << (clock()-cpu) << endl;

As illustrated in Fig. 2.1b, we can see the isovalue of u by using FreeFEM plot command (see line 29 above).

Note: The qualifier solver=LU (line 18) is not required and by default a multi-frontal LU is used.

The lines containing clock are equally not required.

Tip: Note how close to the mathematics FreeFEM language is.

Lines 19 to 24 correspond to the mathematical variational equation:

OJudv  Oudv
- 2 9% + 8—y8—y)dxdy = - fudady

for all v which are in the finite element space V}, and zero on the boundary C.

Tip: Change P1 into P2 and run the program.

This first example shows how FreeFEM executes with no effort all the usual steps required by the finite element
method (FEM). Let’s go through them one by one.

On the line 2:
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The boundary I is described analytically by a parametric equation for x and for y. When I' = Z}']:o I'; then each
curve I'; must be specified and crossings of I'; are not allowed except at end points.

The keyword label can be added to define a group of boundaries for later use (boundary conditions for instance).
Hence the circle could also have been described as two half circle with the same label:

1 |border Gammal (£=0, pi) {x=cos(t); y=sin(t); label=C};
2 |border GammaZ2 (t=pi, 2.*pi) {x=cos(t); y=sin(t); label=C};

Boundaries can be referred to either by name (Gamma 1 for example) or by label (C here) or even by its internal number
here 1 for the first half circle and 2 for the second (more examples are in Meshing Examples).

On the line 5
The triangulation 7Tj, of €2 is automatically generated by buildmesh (C (50) ) using 50 points on C as in Fig. 2.1a.

The domain is assumed to be on the left side of the boundary which is implicitly oriented by the parametrization. So
an elliptic hole can be added by typing:

1 ’border C(t=2.+pi, 0){x=0.1+0.3%cos(t); y=0.5xsin(t);};

If by mistake one had written:

1 ’border C(t=0, 2.xpi) {x=0.1+0.3%cos(t); y=0.5xsin(t);};

then the inside of the ellipse would be triangulated as well as the outside.

Note: Automatic mesh generation is based on the Delaunay-Voronoi algorithm. Refinement of the mesh are done by
increasing the number of points on I', for example buildmesh (C (100) ), because inner vertices are determined by
the density of points on the boundary.

Mesh adaptation can be performed also against a given function f by calling adaptmesh (Th, f).

Now the name 7}, (Th in FreeFEM) refers to the family {7} }x=1,... n, Of triangles shown in Fig. 2.1a.

Traditionally A refers to the mesh size, n; to the number of triangles in 7, and n,, to the number of vertices, but it is
seldom that we will have to use them explicitly.

If €2 is not a polygonal domain, a “skin” remains between the exact domain 2 and its approximation €2}, = U}* | T.
However, we notice that all corners of I';, = 9, are on I.

On line 8:

A finite element space is, usually, a space of polynomial functions on elements, triangles here only, with certain
matching properties at edges, vertices etc. Here fespace Vh (Th, P1) defines V}, to be the space of continuous
functions which are affine in x, y on each triangle of 7T},.

As it is a linear vector space of finite dimension, basis can be found. The canonical basis is made of functions, called
the hat function ¢, which are continuous piecewise affine and are equal to 1 on one vertex and O on all others. A
typical hat function is shown on Fig. 2.2b.

Note: The easiest way to define ¢y, is by making use of the barycentric coordinates \;(z,y), i = 1,2,3 of a point
q=(z,y) € T,definedby >, \; =1, >, \;q" = §where ¢*, i = 1,2, 3 are the 3 vertices of 7. Then it is easy to
see that the restriction of ¢ on T is precisely \.
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5
2 8
2 @ @ 83 7
@ 3 4
3 7
@ 8 (b) Graph of ¢, (left) and ¢ (right)
°\.©
7
4
(a) mesh Th
Fig. 2.2: Hat functions
Then:
M
Vi(Th, P1) = {w(m,y) w(z,y) = Zwkqbk(x, y), wy, are real numbers} 2.2)
k=1

where M is the dimension of V},, i.e. the number of vertices. The wy, are called the degree of freedom of w and M the
number of degree of freedom.

It is said also that the nodes of this finite element method are the vertices.
Setting the problem
On line 9, Vh u, v declares that v and v are approximated as above, namely:

M—1

u(w,y) ~ un(z,y) = Y urdr(z,y) (23)

k=0
On the line 12, the right hand side £ is defined analytically using the keyword func.
Line 18 to 26 define the bilinear form of equation (2.1) and its Dirichlet boundary conditions.

This variational formulation is derived by multiplying (2.1) by v(x, y) and integrating the result over 2:

—/vAudxdy:/vfdmdy
Q Q

Then, by Green’s formula, the problem is converted into finding u such that
a(u,v) —L(f,v) =0 Y satisfying v = 0 on 9.

with:

a(u,v) =[5 Vu-Vudzdy
Uf,v) = [ fodedy

In FreeFEM the Poisson problem can be declared only as in:

2.4)
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1 ’Vh u,v; problem Poisson (u,vVv)

and solved later as in:

1 ’Poisson; //the problem is solved here

or declared and solved at the same time as in:

1 ’Vh u,v; solve Poisson (u,vVv)

L T

and (2.4) is written with dx (u) = Ou/dz, dy (u) = Ou/dy and:

/Vu-Vvdxdy—>int2d(Th)( dx (u) *dx (v) + dy (u)*dy (v) )
Q

/fvdxdy — int2d (Th) ( f£*v ) (Notice here, u is unused)
Q

Warning: In FreeFEM bilinear terms and linear terms should not be under the same integral indeed to
construct the linear systems FreeFEM finds out which integral contributes to the bilinear form by checking if both
terms, the unknown (here u) and test functions (here v) are present.

Solution and visualization

On line 15, the current time in seconds is stored into the real-valued variable cpu.
Line 18, the problem is solved.

Line 29, the visualization is done as illustrated in Fig. 2.1b.

(see Plot for zoom, postscript and other commands).

Line 32, the computing time (not counting graphics) is written on the console. Notice the C++-like syntax; the user
needs not study C++ for using FreeFEM, but it helps to guess what is allowed in the language.

Access to matrices and vectors

Internally FreeFEM will solve a linear system of the type
M—1
> Ayuy—F=0, i=0,--- M~ 1; Fi:/fqz-dxdy 25)
Jj=0 Q

which is found by using (2.3) and replacing v by ¢; in (2.4). The Dirichlet conditions are implemented by penalty,
namely by setting A;; = 103% and F; = 103° % 0 if i is a boundary degree of freedom.

Note: The number 103Y is called t gv (trés grande valeur or very high value in english) and it is generally possible
to change this value, see the item :freefem‘solve, tgv="

The matrix A = (A;;) is called stiffness matrix. If the user wants to access A directly he can do so by using (see
section Variational form, Sparse matrix, PDE data vector for details).

varf a(u,v)
= 1int2d(Th) (
dx (u) *dx (v)
+ dy (u) xdy (v)

(continues on next page)
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(continued from previous page)

+ on(C, u=0)
7

matrix A = a(Vh, Vh); //stiffness matrix

The vector F'in (2.5) can also be constructed manually:

varf 1 (unused,v)
= int2d (Th) (
fxv

)
+ on(C, unused=0)

’

F[] = 1(0,Vh); //F[] is the vector associlated to the function F

The problem can then be solved by:

’u[] = A"-1«F[]; //u[] is the vector associated to the function u

Note: Here u and F are finite element function, and u[] and F [] give the array of value associated (u[] =
(ui)i=o,...mM—1 and F [ 1 = (F})i=o,... M—1)-

So we have:
we) = Y wlilorny) Faw)= Y Flioy

where ¢;,7 = 0...,, M — 1 are the basis functions of VA like in equation (ref{equation3}), and M = Vh.ndof is the
number of degree of freedom (i.e. the dimension of the space Vh).

The linear system (2.5) is solved by UMFPACK unless another option is mentioned specifically as in:

Vh u, v;
problem Poisson(u, v, solver=CG) = int2d(...

meaning that Poisson is declared only here and when it is called (by simply writing Poisson; ) then (2.5) will be
solved by the Conjugate Gradient method.

2.2 Classification of partial differential equations

Summary : It is usually not easy to determine the type of a system. Yet the approximations and algorithms suited to
the problem depend on its type:

e Finite Elements compatible (LBB conditions) for elliptic systems

* Finite difference on the parabolic variable and a time loop on each elliptic subsystem of parabolic systems;
better stability diagrams when the schemes are implicit in time.

e Upwinding, Petrov-Galerkin, Characteristics-Galerkin, Discontinuous-Galerkin, Finite Volumes for hyperbolic
systems plus, possibly, a time loop.

When the system changes type, then expect difficulties (like shock discontinuities) !

Elliptic, parabolic and hyperbolic equations
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A partial differential equation (PDE) is a relation between a function of several variables and its derivatives.

Oy 9p . 0% oy a
F  —(z), -, =— (), o =0, VzeQCR
(¢o) e @ g2 @) G G E !
The range of « over which the equation is taken, here €2, is called the domain of the PDE. The highest derivation index,
here m, is called the order. If F' and ¢ are vector valued functions, then the PDE is actually a system of PDEs.

Unless indicated otherwise, here by convention one PDE corresponds to one scalar valued F' and . If F' is linear with
respect to its arguments, then the PDE is said to be linear.

2

. . 0 p . d
The general form of a second order, linear scalar PDE is 0103, and A : B means ) ij=1 Gij bij.

ap+a-Vo+B:V(Vp)=f in QcCR?
where f(z),a(z) € R, a(x) € RY, B(z) € R?*4 are the PDE coefficients. If the coefficients are independent of ,
the PDE is said to have constant coefficients.
To a PDE we associate a quadratic form, by replacing ¢ by 1, dp/dz; by z; and 9%p/dx;0x; by z;2;, where z is a
vector in R%:

a+A-z+:'Bz=f.

If it is the equation of an ellipse (ellipsoid if d > 2), the PDE is said to be elliptic; if it is the equation of a parabola or
a hyperbola, the PDE is said to be parabolic or hyperbolic.

If A =0, the degree is no longer 2 but 1, and for reasons that will appear more clearly later, the PDE is still said to be
hyperbolic.

These concepts can be generalized to systems, by studying whether or not the polynomial system P(z) associated with
the PDE system has branches at infinity (ellipsoids have no branches at infinity, paraboloids have one, and hyperboloids
have several).

If the PDE is not linear, it is said to be non-linear. Those are said to be locally elliptic, parabolic, or hyperbolic
according to the type of the linearized equation.

For example, for the non-linear equation

2 0r0z2  woe2

which for the unknown u is locally elliptic if ‘Z—i < 0 and locally hyperbolic if ‘Z—i > 0.

Tip: Laplace’s equation is elliptic:

P Po, o _

Ap=—L 4+ L2 +... + 2—f7VxEQCRd
x oz

Tip: The heat equation is parabolic in Q = 2x]0, T[C R4*1:

%_MszfoeQCRd, vt €]0,T]
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Tip: If © > 0, the wave equation is hyperbolic:
0%

ﬁ—ﬂA@Zf in Q.

Tip: The convection diffusion equation is parabolic if ;1 # 0 and hyperbolic otherwise:

o
Eﬂtavw—/&w—f

Tip: The biharmonic equation is elliptic:

A(Ap) = f in Q.

Boundary conditions

A relation between a function and its derivatives is not sufficient to define the function. Additional information on the
boundary I' = 99 of Q, or on part of I" is necessary. Such information is called a boundary condition.

For example:
@(x) given, Vo € T,
is called a Dirichlet boundary condition. The Neumann condition is

0
22 (x) givenon T (orn - BV, given on T for a general second order PDE)

On
where n is the normal at z € IT" directed towards the exterior of 2 (by definition g—ﬁ =V -n).

Another classical condition, called a Robin (or Fourier) condition is written as:
0
e(x) + 5(96)%(33) givenon I
n

Finding a set of boundary conditions that defines a unique ¢ is a difficult art.

In general, an elliptic equation is well posed (i.e. ¢ is unique) with one Dirichlet, Neumann or Robin condition on the
whole boundary.

Thus, Laplace’s equation is well posed with a Dirichlet or Neumann condition but also with :
. dp . . .
p givenon I'y, I givenonT'y, T1UTy =T, T1 NIy = 0.

Parabolic and hyperbolic equations rarely require boundary conditions on all of I'x]0,T'[. For instance, the heat
equation is well posed with :

© given at t = 0 and Dirichlet or Neumann or mixed conditions on 0f2.

Here ¢ is time so the first condition is called an initial condition. The whole set of conditions is also called Cauchy
condition.

The wave equation is well posed with :

oy . .. . .
@ and a—f given at t = 0 and Dirichlet or Neumann or mixed conditions on 0f2.
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2.3 Membrane

Summary : Here we shall learn how to solve a Dirichlet and/or mixed Dirichlet Neumann problem for the Laplace
operator with application to the equilibrium of a membrane under load. We shall also check the accuracy of the
method and interface with other graphics packages

An elastic membrane 2 is attached to a planar rigid support I', and a force f(x)dx is exerted on each surface element
dz = dz1dxs. The vertical membrane displacement, ¢(x), is obtained by solving Laplace’s equation:

—Ap=finQ
As the membrane is fixed to its planar support, one has:
elr =0

If the support wasn’t planar but had an elevation z(x1, x2) then the boundary conditions would be of non-homogeneous
Dirichlet type.

plr=2

If a part I'5 of the membrane border I" is not fixed to the support but is left hanging, then due to the membrane’s rigidity
the angle with the normal vector n is zero; thus the boundary conditions are:

o
elr, = 2, %h“g =0

where I'y = I' — I'y; recall that g—i = V¢ - n Let us recall also that the Laplace operator A is defined by:

%o 0%

Ap=2% 9%
7 or?  0x3

Todo: Check references

With such “mixed boundary conditions” the problem has a unique solution (see Dautray-Lions (1988), Strang (1986)
and Raviart-Thomas (1983)). The easiest proof is to notice that ¢ is the state of least energy, i.e.

E(¢) = min E(v), with E(v):/ﬂ(%\vwszv)

p—z€V

and where V is the subspace of the Sobolev space H*(2) of functions which have zero trace on I';. Recall that
(xz € R?, d = 2 here):

HY Q) ={ue L*Q) : Vue (L*(Q)%}

Calculus of variation shows that the minimum must satisfy, what is known as the weak form of the PDE or its varia-
tional formulation (also known here as the theorem of virtual work)

/V@-Vw:/fw Yw eV
Q Q

Next an integration by parts (Green’s formula) will show that this is equivalent to the PDE when second derivatives
exist.
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Warning: Unlike Freefem+ which had both weak and strong forms, FreeFEM implements only weak formu-
lations. It is not possible to go further in using this software if you don’t know the weak form (i.e. variational
formulation) of your problem: either you read a book, or ask help form a colleague or drop the matter. Now if you
want to solve a system of PDE like A(u,v) = 0, B(u,v) = 0 don’t close this manual, because in weak form it is

/(A(u,v)wl + B(u,v)wz) =0 Ywy, ws...
Q

Example

Let an ellipse have the length of the semimajor axis a = 2, and unitary the semiminor axis. Let the surface force be
f = 1. Programming this case with FreeFEM gives:

// Parameters
real theta = 4.xpi/3.;

real a = 2.; //The length of the semimajor axis
real b = 1.; //The length of the semiminor axis
func z = x;

// Mesh

border Gammal (t=0., theta) {x=a*cos(t); y=bxsin(t);}
border GammaZ2 (t=theta, 2.xpi){x=axcos(t); y=bxsin(t);}
mesh Th = buildmesh (Gammal (100) + GammaZ2 (50));

// Fespace
fespace Vh(Th, P2); //P2 conforming triangular FEM
Vh phi, w, f=1;

// Solve
solve Laplace (phi, w)
= int2d (Th) (
dx (phi) »dx (w)
+ dy (phi) xdy (w)
)
- 1int2d(Th) (
frw
)
+ on(Gammal, phi=z)

’

// Plot
plot (phi, wait=true, ps="membrane.eps"); //Plot phi
plot (Th, wait=true, ps="membraneTh.eps"); //Plot Th

// Save mesh
savemesh (Th, "Th.msh") ;

A triangulation is built by the keyword buildmesh. This keyword calls a triangulation subroutine based on the
Delaunay test, which first triangulates with only the boundary points, then adds internal points by subdividing the
edges. How fine the triangulation becomes is controlled by the size of the closest boundary edges.

The PDE is then discretized using the triangular second order finite element method on the triangulation; as was briefly
indicated in the previous chapter, a linear system is derived from the discrete formulation whose size is the number of
vertices plus the number of mid-edges in the triangulation.

The system is solved by a multi-frontal Gauss LU factorization implemented in the package UMFPACK.
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(a) Mesh of the ellipse (b) Level lines of the membrane deformation

Fig. 2.3: Membrane

The keyword plot will display both T} and ¢ (remove Th if ¢ only is desired) and the qualifier fill=true
replaces the default option (colored level lines) by a full color display.

plot (phi,wait=true, fill=true); //Plot phi with full color display

Results are on Fig. 2.3a and Fig. 2.3b.
Next we would like to check the results !

One simple way is to adjust the parameters so as to know the solutions. For instance on the unit circle a=1, ¢, =
sin(2z? + y? — 1) solves the problem when:

2=0,f=—4(cos(x® +y* — 1) — (2 + y?)sin(z? +y*> — 1))

except that on I'y 05,0 = 2 instead of zero. So we will consider a non-homogeneous Neumann condition and solve:

/ch-sz/qu—/ 2w YweV
Q Q 2

We will do that with two triangulations, compute the L? error:

6:/ ‘<,0—<,0@|2
Q

and print the error in both cases as well as the log of their ratio an indication of the rate of convergence.

// Parameters

verbosity = 0; //to remove all default output
real theta = 4.xpi/3.;

real a=1.; //the length of the semimajor axis
real b=1.; //the length of the semiminor axis

func f = —4x(cos(x"2+y"2-1) - (x"2+y"2)*sin(x"2+y"2-1));
func phiexact = sin(x"2 + y*2 - 1);
// Mesh

(continues on next page)
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(continued from previous page)

border Gammal (t=0., theta) {x=a*cos(t); y=bxsin(t);}
border Gamma2 (t=theta, 2.xpi){x=axcos(t); y=bxsin(t);}

// Error loop
real[int] L2error(2); //an array of two values

for(int n = 0; n < 2; n++){
// Mesh
mesh Th = buildmesh (Gammal (20* (n+1)) + Gamma2 (10x (n+1)));

// Fespace
fespace Vh(Th, P2);
Vh phi, w;

// Solve
solve Laplace (phi, w)
= int2d (Th) (
dx (phi) ~dx (w)
+ dy (phi) xdy (w)

int2d (Th) (
frw

— intl1d(Th, Gamma2) (
2%xW

+ on (Gammal, phi=0)
// Plot
plot (Th, phi, wait=true, ps="membrane.eps");
// Error

L2error[n] = sqgrt (int2d(Th) ((phi-phiexact)"2));

// Display loop
for(int n = 0; n < 2; n++)
cout << "L2error " << n << " = " << L2error[n] << endl;

// Convergence rate
cout << "convergence rate = "<< log(L2error[0]/L2error[1l])/log(2.) << endl;

The output is:

L2error O = 0.00462991

L2error 1 = 0.00117128

convergence rate = 1.9829

times: compile 0.02s, execution 6.94s

We find a rate of 1.93591, which is not close enough to the 3 predicted by the theory.
The Geometry is always a polygon so we lose one order due to the geometry approximation in O (h?).

Now if you are not satisfied with the . eps plot generated by FreeFEM and you want to use other graphic facilities,
then you must store the solution in a file very much like in C++. It will be useless if you don’t save the triangulation
as well, consequently you must do
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ofstream ff ("phi.txt");
ff << phil];
}

savemesh (Th, "Th.msh");

For the triangulation the name is important: the extension determines the format.

"phi.txt"

2 - 2
15 < 15
o5 | ;
bl 0.5
or 0
05

9 + -0.5
15 + -1
2+ -1.5

-2

VaY

(VAVAVAa¥
AVA'#'I'A

a7
w
%)
7

Fig. 2.4: The 3D version drawn by gnuplot from a file generated by FreeFEM

Still that may not take you where you want. Here is an interface with gnuplot to produce the Fig. 2.4.

//to build a gnuplot data file

{
ofstream ff ("graph.txt");

for (int i = 0; i < Th.nt; i++)
{
for (int j = 0; J < 3; J++)
ff << Th[i][]j].x << " "<< Th[i][j]l.y << " " << phi[][Vh(i,J)] << endl;
ff << Th[i][0].x << " " << Th[i][0].y << " " << phi[][Vh(i,0)] << "\n\n\n"

We use the finite element numbering, where Wh (i, j) is the global index of j7” degrees of freedom of triangle
number :.

Then open gnuplot and do:

set palette rgbformulae 30,31,32
splot "graph.txt" w 1 pal

This works with P2 and P 1, but not with P1nc because the 3 first degrees of freedom of P2 or P2 are on vertices and
not with P1nc.
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2.4 Heat Exchanger

Summary: Here we shall learn more about geometry input and triangulation files, as well as read and write opera-
tions.

The problem Let {C;}1 2, be 2 thermal conductors within an enclosure Cj (see Fig. 2.5).

Fig. 2.5: Heat exchanger geometry
The first one is held at a constant temperature u; the other one has a given thermal conductivity xo 3 times larger than
the one of Cj.

We assume that the border of enclosure Cj is held at temperature 20°C' and that we have waited long enough for
thermal equilibrium.

In order to know u(x) at any point « of the domain €2, we must solve:
V- (kVu)=0inQ, ur=g

where (2 is the interior of Cjy minus the conductor C'; and I" is the boundary of (2, that is Cy U C'.
Here g is any function of x equal to u; on Cj.

The second equation is a reduced form for:
u:uionC’i, ’iZO,l.

The variational formulation for this problem is in the subspace H} () C H'(Q) of functions which have zero traces
onT"

u—g€ HH Q) : / VuVv = 0Vv € H}(Q)
Q

Let us assume that Cy is a circle of radius 5 centered at the origin, C; are rectangles, C; being at the constant
temperature u; = 60°C' (so we can only consider its boundary).
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// Parameters
int C1=99;
int C2=98; //could be anything such that !=0 and Cl!=C2

// Mesh
border CO(t=0., 2.xpi) {x=5.*cos(t); y=5.=*sin(t);}

border C11(t=0., 1.){x=1.+t; y=3.; label=Cl;}
border Cl2(t=0., 1.){x=2.; y=3.-6.xt; label=Cl;}
border C13(t=0., 1.){x=2.-t; y=-3.; label=Cl;}
border C14(t=0., 1.){x=1.; y=-3.+6.xt; label=Cl;}
border C21(t=0., 1.){x=-2.+t; y=3.; label=C2;}
border C22(t=0., 1.){x=-1.; y=3.-6.xt; label=C2;}
border C23(t=0., 1.){x=-1.-t; y=-3.; label=C2;}
border C24(t=0., 1.){x=-2.; y=-3.+6.xt; label=C2;}
plot ( C0(50) //to see the border of the domain

+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20),
wait=true, ps="heatexb.eps");

mesh Th=buildmesh (CO (50)
+ Cl1(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23 (-5)+C24(-20));

plot (Th,wait=1);

// Fespace

fespace Vh (Th, P1);

Vh u, v;

Vh kappa=1 + 2% (x<-1)*(x>-2)* (y<3) *x(y>-3);

// Solve
solve a(u, v)
= int2d (Th) (
kappa= (

// Plot
plot (u, wait=true, wvalue=true, fill=true, ps="HeatExchanger.eps");

Note the following:

e CO0 is oriented counterclockwise by ¢, while C1 is oriented clockwise and C2 is oriented counterclockwise. This
is why C1 is viewed as a hole by buildmesh.

e C1 and C2 are built by joining pieces of straight lines. To group them in the same logical unit to input the
boundary conditions in a readable way we assigned a label on the boundaries. As said earlier, borders have an
internal number corresponding to their order in the program (check it by adding a cout << C22; above).
This is essential to understand how a mesh can be output to a file and re-read (see below).

* As usual the mesh density is controlled by the number of vertices assigned to each boundary. It is not possible
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[

(a) Heat exchanger mesh

(b) Heat exchanger solution

Fig. 2.6: Heat exchanger

to change the (uniform) distribution of vertices but a piece of boundary can always be cut in two or more parts,
for instance C12 could be replaced by C121+C122:

// border Cl12(t=0.,1.){x=2.; y=3.-6.*t; label=Cl;}
border C121(t=0.,0.7){x=2.; y=3.-6.xt; label=Cl;}
border C122(t=0.7,1.) {x=2.; y=3.-6.xt; label=Cl;}

buildmesh (.../*+ C12(20) =/ + Cl21(12) + Cl22(8) + ...);

Tip: Exercise :
Use the symmetry of the problem with respect to the axes.

Triangulate only one half of the domain, and set Dirichlet conditions on the vertical axis, and Neumann conditions on
the horizontal axis.

Writing and reading triangulation files Suppose that at the end of the previous program we added the line

savemesh (Th, "condensor.msh");

and then later on we write a similar program but we wish to read the mesh from that file. Then this is how the condenser
should be computed:

// Mesh
mesh Sh = readmesh ("condensor.msh");

// Fespace
fespace Wh(Sh, P1);
Wh us, vs;

// Solve
solve b (us, vs)

(continues on next page)
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(continued from previous page)

= int2d (Sh) (
dx (us) *dx (vs)
+ dy (us) xdy (vs)
)
+on (1, us=0)
+on (99, us=1)
+on (98, us=-1)

’

// Plot
plot (us);

Note that the names of the boundaries are lost but either their internal number (in the case of C0) or their label number
(for C1 and C2) are kept.

2.5 Acoustics

Summary : Here we go to grip with ill posed problems and eigenvalue problems

Pressure variations in air at rest are governed by the wave equation:

% —*Au=0
When the solution wave is monochromatic (and that depends on the boundary and initial conditions), u is of the form
u(z,t) = Re(v(z)e’**) where v is a solution of Helmholtz’s equation:
Kv+c*Av =0 inQ
%’l Ir =g
where g is the source.

Note the “+” sign in front of the Laplace operator and that £ > 0 is real. This sign may make the problem ill posed for
some values of %, a phenomenon called “resonance”.

At resonance there are non-zero solutions even when g = 0. So the following program may or may not work:

// Parameters
real kc2 = 1.;
func g = y*x(1.-y);

// Mesh

border a0l
border al
border a2

(t=0 x=5.; y=1.+2.xt;}
(t=0
(t=0
border a3 (t=0.,
(t=0
(t=0
(t=0

x=5.-2.xt; y=3.;}
x=3.-2.*xt; y=3.-2.xt;}

N e

x=1.-t; y=1.;1}
border a4 (t=0., x=0.; y=1.-t;
border a5 (t=0., x=t; y=0.;}
border a6 (t=0., x=1.+4.xt; y=t;}

mesh Th = buildmesh (a0 (20) + al(20) + a2 (20)
+ a3 (20) + a4(20) + a5(20) + a6(20));

// Fespace
fespace Vh(Th, P1);
Vh u, v;

(continues on next page)
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(continued from previous page)

// Solve
solve sound(u, V)
= int2d(Th) (
u*xv * kc2
- dx (u) *dx (v)
- dy (u) xdy (v)
)
— int1d(Th, ad) (
g *x Vv

// Plot
plot (u, wait=1, ps="Sound.eps");

Results are on Fig. 2.7a. But when kc2 is an eigenvalue of the problem, then the solution is not unique:

* if u. # 0 is an eigen state, then for any given solution u 4 u. is another solution.

To find all the u, one can do the following :

// Parameters
real sigma = 20; //value of the shift

// Problem
// OP = A — sigma B ; // The shifted matrix
varf op(ul, u2)
= int2d (Th) (
dx (ul) ~dx (u2)
+ dy (ul) »dy (u2)
— sigmax ulxu2

varf b([ull, [u2l])
int2d (Th) (
ul+~u2

; // No Boundary condition see note \ref{note BC EV}

matrix OP = op(Vh, Vh, solver=Crout, factorize=1l);
matrix B = b(Vh, Vh, solver=CG, eps=1le-20);

// Eigen values
int nev=2; // Number of requested eigenvalues near sigma

real[int] ev(nev); // To store the nev eigenvalue
Vhlint] eV (nev); // To store the nev eigenvector

int k=EigenValue (OP, B, sym=true, sigma=sigma, value=ev, vector=eV,
tol=1e-10, maxit=0, ncv=0);

cout << ev(0) << " 2 eigen values " << ev(l) << endl;
v = eVI[0];
plot (v, wait=true, ps="eigen.eps");
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(a) Amplitude of an acoustic signal coming from the left (b) First eigen state (A = (k/ 6)2 = 19.4256) close to 20 of
vertical wall. eigenvalue problem: —Ap = Ap and g—ﬁ =0onT'}

Fig. 2.7: Acoustics

2.6 Thermal Conduction

Summary : Here we shall learn how to deal with a time dependent parabolic problem. We shall also show how to
treat an axisymmetric problem and show also how to deal with a nonlinear problem

How air cools a plate

We seek the temperature distribution in a plate (0, Lz) x (0, Ly) x (0, Lz) of rectangular cross section 2 = (0, 6) x
(0,1); the plate is surrounded by air at temperature u. and initially at temperature u = ug + Fu1. In the plane
perpendicular to the plate at z = Lz/2, the temperature varies little with the coordinate z; as a first approximation the
problem is 2D.

We must solve the temperature equation in € in a time interval (0,T).

Ou — V - (kVu) =0 inQ x (0,7)
u(z,y,0) =wug+ xuy
K%+ a(u — ue) =0 onT x (0,T)

Here the diffusion x will take two values, one below the middle horizontal line and ten times less above, so as to
simulate a thermostat.

The term «(u — u,.) accounts for the loss of temperature by convection in air. Mathematically this boundary condition
is of Fourier (or Robin, or mixed) type.

The variational formulation is in L?(0, T'; H*(£2)); in loose terms and after applying an implicit Euler finite difference
approximation in time; we shall seek u™(x, y) satisfying for all w € H*():

un/__un—l
/ (——=———w+rkVu"Vuw) + / a(u” —uye)w =0
Q ot r

// Parameters
func u0 = 10. + 90.*x%x/6.;
func k = 1.8%(y<0.5) + 0.2;

(continues on next page)

2.6. Thermal Conduction 41




23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

FreeFEM Documentation, Release 4.2.1

(continued from previous page)

real ue = 25.;
real alpha=0.25;
real T=5.;

real dt=0.1 ;

// Mesh

mesh Th = square (30, 5, [6.*x,y]);

// Fespace
fespace Vh(Th, P1l);
Vh u=u0, v, uold;

// Problem
problem thermic(u, v)
= int2d (Th) (
uxv/dt
+ kx(
dx (u) * dx(v)
+ dy(u) * dy(v)

+ intld(Th, 1, 3)(
alphaxuxv

~ int1d(Th, 1, 3)(
alphaxuex*v

— 1int2d (Th) (
uoldxv/dt

+ on(2, 4, u=ul)
// Time iterations

ofstream ff ("thermic.dat");
for(real t = 0; t < T; t += dt){

uold = u; //equivalent to u*{n-1} = u’n
thermic; //here the thermic problem is solved

ff << u(3., 0.5) << endl;
plot (u);

Note: We must separate by hand the bilinear part from the linear one.

Note: The way we store the temperature at point (3, 0.5) for all times in file thermic.dat. Should a one dimen-
sional plot be required, the same procedure can be used. For instance to print x — g—Z (z,0.9) one would do:

for(int 1 = 0; i < 20; i++)
cout << dy(u) (6.0%1/20.0,0.9)

<< endl;

Results are shown on Fig. 2.8a and Fig. 2.8b.
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(b) Decay of temperature versus time at z = 3,y = 0.5

(a) Temperature at ¢t = 4.9.

Fig. 2.8: Thermal conduction

2.6.1 Axisymmetry: 3D Rod with circular section

Let us now deal with a cylindrical rod instead of a flat plate. For simplicity we take x = 1.
In cylindrical coordinates, the Laplace operator becomes (r is the distance to the axis, z is the distance along the axis,
0 polar angle in a fixed plane perpendicular to the axis):

1 1 5 9
Au = ;ar(raru) + 728901‘ + 0z,.

Symmetry implies that we loose the dependence with respect to ; so the domain ) is again a rectangle |0, R[X]0, |] .
We take the convention of numbering of the edges as in square () (1 for the bottom horizontal ... ); the problem is
now:

royu — Op(ropu) — 0, (rd,u) =0 in Q
u(t=0) =uo+ £ (w1 —u)
uh4 = Up
uhz = U1
a(u—ue)+%|rlur3 =0

Note that the PDE has been multiplied by 7.

After discretization in time with an implicit scheme, with time steps dt, in the FreeFEM syntax r becomes x and 2
becomes y and the problem is:

problem thermaxi (u, v)
= 1int2d(Th) (
(uxv/dt + dx(u)*dx(v) + dy(u)*dy(v))*x

+

intld(Th, 3) (
alphaxx*u*v

intld(Th, 3) (
alpha*x*ue*v

(continues on next page)

2.6. Thermal Conduction 43




FreeFEM Documentation, Release 4.2.1

(continued from previous page)

- int2d(Th) (
uold*v+x/dt

+ on(2, 4, u=ul);

Note: The bilinear form degenerates at x = 0. Still one can prove existence and uniqueness for « and because of this
degeneracy no boundary conditions need to be imposed on I';.

2.6.2 A Nonlinear Problem : Radiation

Heat loss through radiation is a loss proportional to the absolute temperature to the fourth power (Stefan’s Law). This
adds to the loss by convection and gives the following boundary condition:

m% + a(u — ue) + c[(u+273)* — (u +273)*] =0

The problem is nonlinear, and must be solved iteratively. If m denotes the iteration index, a semi-linearization of the
radiation condition gives

aum+1
on

because we have the identity a* — b* = (a — b)(a + b)(a® + b?).

+a(u™ —uy) +e(u™ T = ue) (U™ + ue + 546) (U™ + 273)% 4 (ue + 273)%) = 0,

The iterative process will work with v = u — w,.

// Parameters
real rad=le-8;
real uek=ue+273;

// Mesh
fespace Vh(Th, P1);
Vh vold, w, v=ul-ue, b;

// Problem
problem thermradia (v, w)
= int2d (Th) (
vxw/dt
+ kx (dx(v) » dx(w) + dy(v) =* dy(w))

+

intl1ld(Th, 1, 3) (
bxvrw

- int2d(Th) (
vold+w/dt

)

+ on(2, 4, v=ul-ue)

’

for (real t=0;t<T;t+=dt) {
vold = v;
for (int m = 0; m < 5; m++) {
b = alpha + rad » (v + 2xuek) *» ((vtuek)”2 + uek”2);

(continues on next page)
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thermradia;

}

vold = v+tue;

// Plot
plot (vold);

2.7 Irrotational Fan Blade Flow and Thermal effects

Summary : Here we will learn how to deal with a multi-physics system of PDEs on a complex geometry, with multiple
meshes within one problem. We also learn how to manipulate the region indicator and see how smooth is the projection
operator from one mesh to another.

Incompressible flow
Without viscosity and vorticity incompressible flows have a velocity given by:
9%
u = a?ﬁb , where % is solution of A =0
e

This equation expresses both incompressibility (V - u = 0) and absence of vortex (V x u = 0).

As the fluid slips along the walls, normal velocity is zero, which means that 1) satisfies:
1) constant on the walls.

One can also prescribe the normal velocity at an artificial boundary, and this translates into non constant Dirichlet data
for 1.

Airfoil
Let us consider a wing profile S in a uniform flow. Infinity will be represented by a large circle C' where the flow is
assumed to be of uniform velocity; one way to model this problem is to write:

Ay =0 in €, Yls =0, Yo = uxy

where 90 =CU S
The NACA0012 Airfoil

An equation for the upper surface of a NACAO0012 (this is a classical wing profile in aerodynamics) is:

y = 0.17735v/x — 0.0755972 — 0.21283622 + 0.17363z> — 0.062542*.

// Parameters
real S = 99;

// Mesh
border C(t=0., 2.xpi) {x=5.xcos(t); y=5.*sin(t);}
border Splus(t=0., 1.){x=t; y=0.17735xsqrt(t) — 0.075597xt
- 0.212836%x(t"2) + 0.17363*«(t"3) — 0.06254x(t"4); label=S;}
border Sminus(t=1., 0.){x=t; y=-(0.17735+sqgrt(t) - 0.075597+t
-0.212836*(t"2) + 0.17363%x(t"3) — 0.06254%(t"4)); label=S;}

(continues on next page)
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(a) Zoom around the NACAO0O012 airfoil showing the
streamlines (curve 1 = constant). To obtain such a plot
use the interactive graphic command: “+” and p.

kovake

(b) Temperature distribution at time T=25 (now the maxi-
mum is at 90 instead of 120). Note that an incidence angle
has been added here.

Fig. 2.9: The NACAO0012 Airfoil

(continued from previous page)

mesh Th = buildmesh (C(50) + Splus(70) + Sminus(70));
// Fespace
fespace Vh(Th, P2);

Vh psi, w;

// Solve
solve potential (psi, w)
= int2d (Th) (
dx (psi) ~dx (w)
+dy (psi) »dy (w)
)
+ on (C,
+ on (S,

psi = y)
psi=0)

’

plot (psi, wait=1);

A zoom of the streamlines are shown on Fig. 2.9a.

2.7.1 Heat Convection around the airfoil

Now let us assume that the airfoil is hot and that air is there to cool it. Much like in the previous section the heat
equation for the temperature v is

ov
e p—

O — V- (kVv) +u-Vo =0, v(t=0)=uw, ™

But now the domain is outside AND inside S and « takes a different value in air and in steel. Furthermore there is
convection of heat by the flow, hence the term u - Vv above.
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Consider the following, to be plugged at the end of the previous program:

// Parameters
real S = 99;
real dt=0.05;
real nbT=50;

// Mesh
border C(t=0., 2.xpi) {x=5.*xcos(t); y=L.*sin(t);}
border Splus(t=0., 1.){x=t; y=0.17735xsqrt(t) — 0.075597xt
- 0.212836%(t"2) + 0.17363x(t"3) - 0.06254%(t"4); label=S;}
border Sminus(t=1., 0.){x=t; y=-(0.17735*sqgrt(t) - 0.075597«t
-0.212836%(£"2) + 0.17363x(t"3) - 0.06254%(t"4)); label=S;}

border D (t=0., 2.){x=1.+t; y=0.;} // Added to have a fine mesh at trail
mesh Sh = buildmesh (C(25) + Splus(-90) + Sminus(-90) + D(200));
int steel=Sh(0.5,0).region, air=Sh(-1,0).region;

// Fespaces
fespace Vh(Sh, P2);
Vh psi, w;

fespace Wh(Sh, P1);
Wh v, vv;

fespace WO (Sh,PO);

WO k=0.01% (region==air)+0.1l* (region==steel);

WO ul=dy (psi) » (region==air), u2=-dx(psi)* (region==air);
Wh vold = 120+ (region==steel);

// Problem
int i;
problem thermic (v, vv, init=i, solver=LU)
= int2d(Sh) (
v+vv/dt
+ kx (dx(v) = dx(vv) + dy(v) * dy(vv))
+ 10% (ulxdx (v)+tu2xdy (v)) xvv
)
- int2d(Sh) (
voldxvv/dt

for(i = 0; 1 < nbT; i++){
v = vold;
thermic;
plot (v);

Note: How steel and air are identified by the mesh parameter region which is defined when buildmesh is called and
takes an integer value corresponding to each connected component of €2;

How the convection terms are added without upwinding. Upwinding is necessary when the Pecley number |u|L/k is
large (here is a typical length scale), The factor 10 in front of the convection terms is a quick way of multiplying the
velocity by 10 (else it is too slow to see something).

The solver is Gauss’ LU factorization and when init # 0 the LU decomposition is reused so it is much faster after
the first iteration.
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2.8 Pure Convection : The Rotating Hill

Summary: Here we will present two methods for upwinding for the simplest convection problem. We will learn about
Characteristics-Galerkin and Discontinuous-Galerkin Finite Element Methods.

Let €2 be the unit disk centered at (0, 0); consider the rotation vector field
u = [ul, u2], Uy =9y, Uy=—T

Pure convection by u is

Oc+uVe =0 inQx(0,7)
ct=0) =c inQ.

The exact solution ¢(x, t) at time ¢ en point z; is given by:
C(xta t) = Co(xv O)
where z; is the particle path in the flow starting at point x at time 0. So x; are solutions of

d(t — .’Et)

2y = u(x), @x4—0 =z, where 2= %

The ODE are reversible and we want the solution at point x at time ¢ ( not at point x,) the initial point is x_;, and we
have

c(z,t) = P (x_4,0)

The game consists in solving the equation until 7" = 27, that is for a full revolution and to compare the final solution
with the initial one; they should be equal.
2.8.1 Solution by a Characteristics-Galerkin Method
In FreeFEM there is an operator called convect ([ul,u2], dt, c) whichcompute coX with X is the convect
field defined by X (z) = z4; and where z, is particule path in the steady state velocity field u = [ul, u2] starting at
point x at time 7 = 0, so x, is solution of the following ODE:

Ty = u(xr),Xr=0 = T.

When u is piecewise constant; this is possible because z- is then a polygonal curve which can be computed exactly
and the solution exists always when u is divergence free; convect returns c¢(z4r) = C o X.

// Parameters
real dt = 0.17;

// Mesh
border C(t=0., 2.xpi) {x=cos(t); y=sin(t);};
mesh Th = buildmesh(C(100));

// Fespace

fespace Uh(Th, P1);

Uh cold, ¢ = exp(-10x((x-0.3)"2 +(y-0.3)"2));
Uh ul =y, u2 = -x;

// Time loop

(continues on next page)
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real t = 0;
for (int m = 0; m < 2.xpi/dt; m++) {

t += dt;

cold = c;

c = convect ([ul, u2], -dt, cold);

plot (c, emm=" t="+t +", min="+c[].min+", max="+c[].max);

Note: 3D plots can be done by adding the qualifyer dim=3 to the plot instruction.

The method is very powerful but has two limitations:
* it is not conservative

* it may diverge in rare cases when |u| is too small due to quadrature error.

2.8.2 Solution by Discontinuous-Galerkin FEM

Discontinuous Galerkin methods take advantage of the discontinuities of c at the edges to build upwinding. There are
may formulations possible. We shall implement here the so-called dual-P”¢ formulation (see [ERN2006)):

Tt —en 1

/(7 —|—u-Vc)w—|—/ (afn - u| — =n - u)[cw :/ |- ulew Yw
Q ot E 2 B

where E is the set of inner edges and E. is the set of boundary edges where v - n < 0 (in our case there is no such

edges). Finally [c] is the jump of ¢ across an edge with the convention that ¢* refers to the value on the right of the

oriented edge.

// Parameters
real al=0.5;
real dt = 0.05;

// Mesh
border C(t=0., 2.xpi) {x=cos(t); y=sin(t);};
mesh Th = buildmesh (C(100));

// Fespace
fespace Vh (Th,Pldc);
Vh w, ccold, vl =y, v2 = —-x, cc = exp(—10*((x-0.3)"2 +(y-0.3)"2));

// Macro
macro n() (N.xxvl + N.y*v2) // Macro without parameter

// Problem
problem Adual (cc, w)
= int2d (Th) (
(cc/dt+ (vlxdx (cc) +v2xdy (cc))) *w
)
+ intalledges (Th) (
(1-nTonEdge) »w+ (al+abs (n) -n/2) « jump (cc)
)
— 1int2d(Th) (
ccold*w/dt
)

(continues on next page)
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\ / \ /

\ \ /
\ / \\\\\\\\\ ////////
\\\\7 N e / \\\,,\ ey >
(a) The rotating hill after one revolution with (b) The rotating hill after one revolution with Discontinuous

Characteristics-Galerkin P; Galerkin

Fig. 2.10: Rotating hill

(continued from previous page)

4

// Time iterations
for (real t = 0.; t < 2.xpi; t += dt) {
ccold = cc;
Adual;
plot (cc, £ill=1, cmm="t="+t+", min="+cc[].min+", max="+ cc[].max);

}

// Plot

real [int] viso = [-0.2, -0.1, O., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.
—17;

plot (cc, wait=1, £fill=1, ps="ConvectCG.eps", viso=viso);

plot (cc, wait=1, £fill=1, ps="ConvectDG.eps", viso=viso);

Note: New keywords: intalledges to integrate on all edges of all triangles

intalledges(Th) = Z/
Tem 0T

(so all internal edges are see two times), nTonEdge which is one if the triangle has a boundary edge and two otherwise,
jump to implement [c].

Results of both methods are shown on Fig. 2.10a nad Fig. 2.10b with identical levels for the level line; this is done
with the plot-modifier viso.

Notice also the macro where the parameter u is not used (but the syntax needs one) and which ends with a //; it
simply replaces the name n by (N.xxv1+N.y*v2). As easily guessed N. x, N.y is the normal to the edge.

Now if you think that DG is too slow try this:
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// Parameters
real al=0.5;
real dt = 0.05;

// Mesh
border C(t=0., 2.xpi) {x=cos(t); y=sin(t);};
mesh Th = buildmesh (C(100));

// Fespace

fespace Vh(Th,Pldc);

Vh w, ccold, vl =y, v2 = -x, cc = exp(-10x((x-0.3)"2 +(y-0.3)"2));
Vh rhs=0;

// Macro
macro n() (N.x+xvl + N.y*v2) // Macro without parameter

// Problem
real t = 0.;

varf vAdual (cc, w)
= 1int2d(Th) (
(cc/dt+ (vlixdx (cc) +v2xdy (cc)) ) *w

+

intalledges (Th) (
(1-nTonEdge) «w* (alxabs (n) -n/2) *jump (cc)

varf vBdual (cc, w)
= — int2d(Th) (
ccold*w/dt

matrix AA = vAdual (Vh, Vh);
matrix BB = vBdual (Vh, Vh);
set (AA, init=t, solver=sparsesolver);

// Time iterations
for (t = 0.; t < 2.xpi; t += dt) {
ccold = cc;
rhs[] = BB * ccoldl[];
cc[] = AA"-1 = rhs[];
plot (cc, £ill=1, cmm="t="+t+", min="+cc[].min+", max="+ cc[].max);

Notice the new keyword set to specify a solver in this framework; the modifier init is used to tell the solver that the
matrix has not changed (init=true), and the name parameter are the same that in problem definition (see Problem)

2.8.3 Finite Volume Methods can also be handled with FreeFEM but it requires pro-
gramming.

For instance the Py — P; Finite Volume Method of Dervieux et al associates to each P, function ¢! a P, function ¢°
with constant value around each vertex ¢* equal to ¢! (q*) on the cell o; made by all the medians of all triangles having
q" as vertex.
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Then upwinding is done by taking left or right values at the median:

1
/ a(cln-&-l 7C1n)+/ u-nc =0,Vi
e} doy

It can be programmed as :

load "mat_dervieux"; //External module in C++ must be loaded

// Parameters
real dt = 0.025;

// Mesh
border a(t=0., 2.xpi) {x=cos(t); y=sin(t);}
mesh th = buildmesh (a(100));

// Fespace

fespace Vh(th,Pl);

Vh vh, vold, ul=y, u2=-x;

Vh v=exp (-10* ((x-0.3)"2 +(y-0.3)"2)), vWall=0, rhs=0;

// Problem
//qflpTlump means mass lumping is used
problem FVM(v,vh) = int2d(th,qft=qflpTlump) (v+vh/dt)

- int2d (th,qft=qflpTlump) (vold+vh/dt)
+ intld(th,a) (((ul*N.x+u2+N.y) <0) » (ul*N.x+u2*N.y) »viWWallxvh)
+ rhs[] ;

matrix A;
MatUpWindO (A, th, vold, [ul, u2l]);

// Time loop
for (int t = 0; t < 2.%pi ; t += dt){

vold = v;
rhs[] = A »~ voldl[];
FVM;

plot (v, wait=0);

the “mass lumping” parameter forces a quadrature formula with Gauss points at the vertices so as to make the mass
matrix diagonal; the linear system solved by a conjugate gradient method for instance will then converge in one or two
iterations.

The right hand side rhs is computed by an external C++ function MatUpWindO (. . .) which is programmed as :

// Computes matrix a on a triangle for the Dervieux FVM
int fvmP1PO (double q[3]1[2], // the 3 vertices of a triangle T
double u[2], // convection velocity on T
double c([3], // the Pl function on T
double a[3][3],// output matrix
double where[3]) // where>0 means we're on the boundary

for (int i = 0; i < 3; i++)
for(int j = 0; j < 3; Jj++) alillj] = 0;
for(int i = 0; i < 3; i++){
int ip = (i+1)%3, ipp = (ip+l)%3;
double unL = - ((qlip] [1] + q[i][1] - 2+qlipp] [1])+u[0]
- (qlipl[0] + g[il1[0] - 2+qlippl[01)+*ulll)/6.;

(continues on next page)
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if (unL > 0){
ali] [i] += unL;

alipl [i] -=unL;
}
else{
alil [ip] += unL;
alip] [ip] —=unL;

}
if (where([i] && wherel[ipl){ // this is a boundary edge
unL = ((glip]l[1] - gl[il[11)*ul0] - (qlipl (0] - g[il[01)=*ull])/2;
if (unL > 0){
alil[i] += unL;
alipl [ip] += unL;

}
}

return 1;

It must be inserted into a larger .cpp file, shown in Appendix A, which is the load module linked to FreeFEM.

2.9 The System of elasticity

Elasticity
Solid objects deform under the action of applied forces:

a point in the solid, originally at (z,y, z) will come to (X,Y, Z) after some time; the vector u = (uy,us,uz) =
(X —2,Y —y,Z — 2) is called the displacement. When the displacement is small and the solid is elastic, Hooke’s
law gives a relationship between the stress tensor o(u) = (o;;(u)) and the strain tensor e(u) = €;;(u)

Uij(u) = A&ZjVu + 2M6ij (u),
where the Kronecker symbol d;; = 1if ¢ = j, 0 otherwise, with

);

€ij(u)
and where A, p are two constants that describe the mechanical properties of the solid, and are themselves related to the
better known constants E, Young’s modulus, and v, Poisson’s ratio:

FE FEv

Py T e -

Lamé’s system

Let us consider a beam with axis Oz and with perpendicular section {2. The components along = and y of the strain
u(z) in a section € subject to forces f perpendicular to the axis are governed by:

—pAu— (p+AN)V(V.aa) =£ in Q,

where A ,u are the Lamé coefficients introduced above.

Remark, we do not use this equation because the associated variational form does not give the right boundary condition,
we simply use:

—div(e) =f in Q

2.9. The System of elasticity 53




FreeFEM Documentation, Release 4.2.1

where the corresponding variational form is:

/Qa(u):e(v)dx—/gvfdx:();

where : denotes the tensor scalar product, i.e.a: b=}, ; a;;b;;.

So the variational form can be written as :

/ AV.uV.o +2ue(u) : e(v) de — / vfdr =0;
Q Q

Tip: Consider an elastic plate with the undeformed rectangle shape [0, 20] x [—1, 1].

The body force is the gravity force f and the boundary force g is zero on lower, upper and right sides. The left vertical
side of the beam is fixed. The boundary conditions are:

g

g =0 on F17F4ar3a
0

.n
u on I’

Here u = (u, v) has two components.

The above two equations are strongly coupled by their mixed derivatives, and thus any iterative solution on each of the
components is risky. One should rather use FreeFEM’s system approach and write:

// Parameters
real E = 21e5;

real nu = 0.28;
real f = -1;
// Mesh

mesh Th = square (10, 10, [20xx,2*xy-11);

// Fespace

fespace Vh(Th, P2);
Vh u, v;

Vh uu, vv;

// Macro
real sqrt2=sqrt(2.);
macro epsilon(ul,u2) [dx(ul),dy(u2), (dy(ul)+dx(u2))/sqrt2] //

// The sqgrt2 is because we want: epsilon(ul,u2)'* epsilon(vl,v2) = epsilon(u):_
—epsilon (v)

macro div(u,v) ( dx(u)+dy(v) ) //

// Problem

real mu= E/ (2% (1+nu));
real lambda = E*nu/ ((l+nu) =« (1-2%nu));

solve lame ([u, Vv], [uu, vv])

= int2d (Th) (
lambda * div(u, v) * div(uu, vv)
+ 2.xmu * ( epsilon(u,v)' x epsilon(uu,vv) )
)
— int2d (Th) (
frvv

(continues on next page)
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(a) Vector (b) Deformation

Fig. 2.11: Elasticity

(continued from previous page)

)
+ on (4, u=0, v=0)

’

// Plot
real coef=100;
plot ([u, v], wait=1l, ps="lamevect.eps", coef=coef);

// Move mesh
mesh thl = movemesh (Th, [x+tuxcoef, y+tvxcoef]);
plot (thl,wait=1,ps="lamedeform.eps");

// Output
real dxmin = ul[].min;
real dymin = v[].min;
cout << " - dep. max x = "<< dxmin << " y=" << dymin << endl;
cout << " dep. (20, 0) = " << u(20, 0) << " " << v(20, 0) << endl;
The output is:
—— square mesh : nb vertices =121 , nb triangles = 200 , nb boundary edges 40
-— Solve : min -0.00174137 max 0.00174105
min -0.0263154 max 1.47016e-29

- dep. max x = -0.00174137 y=-0.0263154

dep. (20,0) = -1.8096e-07 -0.0263154

times: compile 0.010219s, execution 1.5827s

Solution of Lamé’s equations for elasticity for a 2D beam deflected by its own weight and clamped by its left vertical
side is shown Fig. 2.11a and Fig. 2.11b. Result are shown with a amplification factor equal to 100. The size of the
arrow is automatically bound, but the color gives the real length.

2.10 The System of Stokes for Fluids

In the case of a flow invariant with respect to the third coordinate (two-dimensional flow), flows at low Reynolds
number (for instance micro-organisms) satisfy,

I
o

—Au+ Vp
V-u

|
o

where u = (u1, ug) is the fluid velocity and p its pressure.

The driven cavity is a standard test. It is a box full of liquid with its lid moving horizontally at speed one. The pressure
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and the velocity must be discretized in compatible fintie element spaces for the LBB conditions to be satisfied:

sup (1, Vp) > Blu] YueU,
pEP, |p|

// Parameters
int nn = 30;

// Mesh
mesh Th = square(nn, nn);

// Fespace

fespace Uh(Th, Plb);
Uh u, v;

Uh uu, vv;

fespace Ph(Th, P1l);
Ph p, pp;

// Problem

solve stokes ([u, v, pl, [uu, vv, ppl)
= int2d (Th) (

dx (u) »dx (uu

dy (u) »dy (uu

dx (v) *dx (vv

dy (v) xdy (vv

dx (p) *uu

dy (p) *vv

pp* (dx (u) + dy(v))

- le-10*p*pp

)
)
)
)

+ o+ o+ o+ + o+

)
+ on(l, 2, 4, u=0, v=0)
+ on(3, u=l, v=0)

’

// Plot
plot ([u, v], p, wait=1);

Note: We add a stabilization term —10e — 10 % p * pp to fix the constant part of the pressure.

Results are shown on Fig. 2.12.

2.11 A projection algorithm for the Navier-Stokes equations

Summary : Fluid flows require good algorithms and good triangultions. We show here an example of a complex
algorithm and or first example of mesh adaptation.

An incompressible viscous fluid satisfies:

du+u-Vu+Vp—vAu =0 inQx]0,T
V.ou =0 inQx]0,T]

ufi—g =u’

ur =ur
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Fig. 2.12: Solution of Stokes’ equations for the driven cavity problem, showing the velocity field and the pressure
level lines.
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A possible algorithm, proposed by Chorin, is:

L[um Tt —umoX™] + Vp™ —vAu™ = 0
11|r = ur
I/(()nuh“om = 0
—Apmtl =V .umoX™
8npm+1 =0 onI
pmtt =0 on Ty

where uoX(z) = u(x — u(x)dt) since Jyu + u - Vu is approximated by the method of characteristics, as in the
previous section.

We use the Chorin’s algorithm with free boundary condition at outlet (i.e. p = 0, v9,u = 0), to compute a correction,
g, to the pressure.

—-Aq =V-u
q = 0 on Cout
and define
u™tt = ua+ PVgit
prtt = p"—gq

where 11 is the (u™*+1, v™+1) of Chorin’s algorithm, and where P is the L? projection with mass lumping ( a sparse
matrix).

The backward facing step

The geometry is that of a channel with a backward facing step so that the inflow section is smaller than the outflow
section. This geometry produces a fluid recirculation zone that must be captured correctly.

This can only be done if the triangulation is sufficiently fine, or well adapted to the flow.

Note: There is a technical difficulty in the example: the output B.C. Here we put p = 0 and v9,,u = 0.

// Parameters
verbosity = 0;

int nn = 1;

real nu = 0.0025;
real dt = 0.2;
real epsv = le-6;
real epsu = le-6;

real epsp = le—6;

// Mesh

border al(t=1, 0){x=-2; y=t; label=1;}

border al (t=-2, 0){x=t; y=0; label=2;}

border a2 (t=0, -0.5) {x=0; y=t; label=2;}

border a3 (t=0, 1) {x=18«t"1.2; y=-0.5; label=2;}
border a4 (t=-0.5, 1) {x=18; y=t; label=3;}
border a5(t=1, 0){x=-2+20xt; y=1; label=4;}

mesh Th = buildmesh (a0 (3xnn) + al(20xnn) + a2(1l0xnn) + a3 (150xnn) + a4 (5xnn) +_
—ab5(100*nn)) ;
plot (Th);

// Fespace

(continues on next page)
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(continued from previous page)

fespace Vh(Th, P1l);

Vh w;

Vh u=0, v=0;
Vh p=0;

Vh g=0;

// Definition of Matrix dtMx and dtMy
matrix dtMlx, dtMly;

// Macro

macro BuildMat ()

{ /+ for memory managenemt #*/
varf vM(unused, v) = int2d(Th) (v);
varf vdx(u, v) = int2d(Th) (vxdx(u) +dt);
varf vdy(u, v) = int2d(Th) (v+dy (u)xdt);

real[int] Mlump = vM(0, Vh);
real[int] one (Vh.ndof); one = 1;
real[int] M1 = one ./ Mlump;
matrix dM1 = M1;
matrix Mdx = vdx(Vh, Vh);
matrix Mdy = vdy (Vh, Vh);
dtMlx = dM1+Mdx;
dtMly = dM1+Mdy;

Y //

// Build matrices
BuildMat

// Time iterations

real err = 1.;

real outflux = 1.;

for(int n = 0; n < 300; n++){
// Update
Vh uold=u, vold=v, pold=p;

// Solve
solve pb4u (u, w, init=n, solver=CG, eps=epsu)
= int2d(Th) (

uxw/dt
+ nux* (dx (u) *dx (w) + dy (u) «dy (w))
)
-int2d (Th) (
convect ([uold, vold], -dt, uold)/dt*w
- dx (p) *w

+ on(l, u=4xy=*(l-y))
+ on(2, 4, u=0)

plot (u);

solve pbdv (v, w, init=n, solver=CG, eps=epsv)
= int2d(Th) (
v+w/dt
+ nux (dx (v) *dx (w) + dy(v)xdy (w))

(continues on next page)
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(continued from previous page)

—int2d (Th) (
convect ([uold,vold], -dt,vold) /dt*w
- dy (p) *w
)
+on(l, 2, 3, 4, v=0)

solve pbdp (g, w, solver=CG, init=n, eps=epsp)
= int2d(Th) (
dx (q) »dx (w) +dy (q) »dy (w)

— 1nt2d(Th) (
(dx (u) + dy (v)) *w/dt

+ on (3, g=0)

//to have absolute epsilon in CG algorithm.

epsv = —abs (epsv);
epsu = -—-abs (epsu);
epsp = —abs (epsp);
p = pold-g;j

ul] += dtMlxxql];
v[] += dtMly=*qgl];

// Mesh adaptation

if (n%50 == 49){
Th = adaptmesh(Th, [u, Vv], g, err=0.04, nbvx=100000);
plot (Th, wait=true);
BuildMat // Rebuild mat.

// Error & Outflux

err = sqrt (int2d(Th) (square (u-uold) +square (v-vold)) /Th.area)
outflux = intld(Th) ([u,Vv] '+ [N.x,N.y]);

cout << " diter " << n << " Err L2 = " << err << " outflux =
if (err < le-3) break;

// Verification
assert (abs (outflux) < 2e-3);

// Plot
plot (p, wait=1, ps="NSprojP.eps");
plot (u, wait=1, ps="NSprojU.eps");

’

"

<< outflux <<

endl;

Rannacher’s projection algorithm: result on an adapted mesh, Fig. 2.13a, showing the pressure, Fig. 2.13b, and the
horizontal velocity Fig. 2.13c for a Reynolds number of 400 where mesh adaptation is done after 50 iterations on the

first mesh.
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(a) Adapted mesh
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(c) Velocity

Fig. 2.13: Navier-Stokes projection

2.12 Newton Method for the Steady Navier-Stokes equations

The problem is find the velocity field u = (u;)%_, and the pressure p of a Flow satisfying in the domain Q C R¢(d =
2,3):

(u-V)u—vAu+ Vp
V-u

0
0

where v is the viscosity of the fluid, V = (9;)%,, the dot product is -, and A = V - V with the same boundary
conditions (u is given on I).

The weak form is find u, p such that for Vv (zero on I'), and Vq:
/((u~V)u).v+1/Vu:VV—pV~quVou:0
Q

The Newton Algorithm to solve nonlinear problem is:
Find u € V such that F'(u) = 0 where F : V — V.
1. choose ug € R™ , ;
2. for (i =0;%<niter; i =i+ 1)
1. solve DF(u;)w; = F(u;);
2. Ujp1 = U — wy;
break ||w;|| < €.
Where DF'(u) is the differential of F' at point wu, this is a linear application such that:
F(u+0) = F(u) + DF(u)d + o(9)
For Navier Stokes, F' and DF are:
F(u,p) = [o((u-V)u)v+vVu:Vv—pV.-v—¢V.u
DF(u,p)(du,ép) = [((6u-V)u).v+ ((u-V)du).v
+ vVéu:Vv—4pV.-v—¢V:diu

So the Newton algorithm become:
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// Parameters
real R = 5.;
real L = 15.;

1./50.;
nufinal = 1/200.;
0.5;

real
real
real

nu =
cnu =
real

eps = le-6;

verbosity = 0;

// Mesh

border cc(t=0, 2xpi){x=cos(t)/2.; y=sin(t)/2.; label=1;}
border ce(t=pi/2, 3xpi/2) {x=cos(t)~*R; y=sin(t)«R; label=1;}
border beb (tt=0, 1) {real t=tt"1.2; x=txL; y=-R; label=1;}
border beu(tt=1, 0){real t=tt"1.2; x=t«L; y=R; label=1;}
border beo (t=-R, R) {x=L; y=t; label=0;}

border bei (t=-R/4, R/4){x=L/2; y=t; label=0;}

mesh Th = buildmesh (cc(-50) + ce(30) + beb(20) + beu(20) + beo(10) + bei(10));
plot (Th);

//bounding box for the plot

func bb = [[-1,-2],1[4,211;

// Fespace

fespace Xh(Th, P2);

Xh ul, u2;

Xh v1,v2;

Xh dul,du?2;

Xh ulp,u2p;

fespace Mh (Th,P1);

Mh p;

Mh g;

Mh dp;

Mh pp;

// Macro

macro Grad(ul,u2) [dx(ul), dy(ul), dx(u2),dy(u2)] //

macro UgradV(ul,u2,vl,v2) [[ul,u2]'x[dx(vl),dy(vl)],

[ul,u2] '+ [dx(v2),dy(v2)]1] //
macro div(ul,u2) (dx(ul) + dy(u2)) //
// Initialization
ul = (x"2+y"2) > 2;
u2 = 0;
// Viscosity loop
while (1) {
int n;
real err=0;
// Newton loop
for (n = 0; n < 15; n++){
// Newton
solve Oseen ([dul, du2, dpl, [v1, v2, gl)
= int2d (Th) (
(continues on next page)
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(continued from previous page)

—

nu * (Grad(dul,du2)' = Grad(vl,v2))
+ Ugradv (dul,duz, ul, u2)' » [vl,v2]
+ Ugradv( ul, u2,dul,du2)' * [vl,v2]
- div(dul,du2) * g
- div(vl,v2) * dp
- le-8xdp*q //stabilization term
)
— int2d(Th) (
nu * (Grad(ul,u2)' % Grad(vl,v2))
+ UgradV(ul,u2, ul, u2)' = [vl,v2]
- div(ul,u2) * g
- div(vl,v2) % p
)
+ on(l, dul=0, du2=0)

’

ulf[] -= dull];
uz2[] —= du2[];
pll —= dpll;

real Lul=ul[].linfty, Lu2=u2[].linfty, Lp=pl[].linfty;
err = dul[].linfty/Lul + du2[].linfty/Lu2 + dpl[].linfty/Lp;

cout << n << " err = " << err << " " << eps << " rey = " << 1./nu << endl;
if (err < eps) break; //converge
if( n>3 && err > 10.) break; //blowup

if (err < eps){ //converge: decrease S$\nu$S (more difficult)

// Plot
plot ([ul, u2], p, wait=1, cmm=" rey = " + 1./nu , coef=0.3, bb=bb);

// Change nu

if( nu == nufinal) break;
if( n < 4) cnu = cnu”l.5; //fast converge => change faster
nu = max (nufinal, nux cnu); //new viscosity
// Update
ulp = ul;
uz2p = u2;
pp = P/
}
else{ //blowup: increase S\nu$S (more simple)

)

assert (cnu< 0.95); //the method finally blowup

// Recover nu

nu = nu/cnu;

cnu= cnu”(1./1.5); //no conv. => change lower

nu = nu* cnu; //new viscosity

cout << " restart nu = " << nu << " Rey = " << 1l./nu << " (cnu = " << cnu <<
\n";

// Recover a correct solution

ul = ulp;

uz2 = ulp;

b = pps

(continues on next page)
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(a) Mesh

Fig. 2.14: Naver-Stokes newton

(b) Velocity and pressure

(continued from previous page)

Note: We use a trick to make continuation on the viscosity v, because the Newton method blowup owe start with the

final viscosity v.

v is gradually increased to the desired value.

2.13 A Large Fluid Problem

A friend of one of us in Auroville-India was building a ramp to access an air conditioned room. As I was visiting the
construction site he told me that he expected to cool air escaping by the door to the room to slide down the ramp and
refrigerate the feet of the coming visitors. I told him “no way” and decided to check numerically.

The fluid velocity and pressure are solution of the Navier-Stokes equations with varying density function of the tem-

perature.

The geometry is trapezoidal with prescribed inflow made of cool air at the bottom and warm air above and so are the
initial conditions; there is free outflow, slip velocity at the top (artificial) boundary and no-slip at the bottom. However
the Navier-Stokes cum temperature equations have a RANS k£ — ¢ model and a Boussinesq approximation for the

buoyancy. This comes to :

0.0 +uVO -V - (k7V0)
Ou+uVu — V- (urVu) + Vp + e(0 — 0y)és

V-u

mr

RT

Otk +uVk+e€—V - (urVk)

Oie +uVe + 02% - g—;V - (urVe)

o O O

K2
Clu?
KT
ML |y + VuT[?

Sk Vu+ Vul|?
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We use a time discretization which preserves positivity and uses the method of characteristics (X™ () ~ z—

L (gL — gm0 X™) — V- (RPVO™H)
LWt —um o X™) = V- (pVumtl) 4 Vpm 4+ e — 6)és
V7_unH4
E(kmHL— k™o X™) 4 kmHLEL — V- (i VET )
F (€T = €m0 X 4 e — 2V (g Vet
pr
m+1
K

In variational form and with appropriated boundary conditions the problem is :

™ (x)d0t)

OOO

B2 | Tum 4+ VT |2
Q%WWVU ‘FVumTP

load "iovtk"
verbosity=0;

// Parameters

H) {x=L;

int nn = 15;

int nnPlus = 5;

real 1 = 1.;

real L = 15.;

real hSlope = 0.1;

real H = 6.;

real h = 0.5;

real reylnods =500;

real beta = 0.01;

real eps = 9.81/303.;

real nu = 1;

real numu = nu/sqgrt (0.09);
real nuep = pow(nu,1.5)/4.1;
real dt = 0.;

real Penalty = l.e—6;

// Mesh

border bl (t=0, ){x=t; y=0;1}
border b2 (t=0,

border b3 (t= hSlope*(L 1),
border b4 (t=L, ) {x=t; y=H;}
border b5 (t=H, h){x—O, y:t,}
border b6 (t=h, 0) {x=0; e

mesh Th=buildmesh (bl (nnPlus*nn=*1)

—+ hSlopex* (L-1)))
plot (Th);

// Fespaces

fespace Vh2 (Th, P1lb);
Vh2 Ux, Uy;

Vh2 Vx, Vy;

Vh2 Upx, Upy;

fespace Vh(Th,Pl);
Vh p=0, qg;
Vh Tp, T=35;

+ b4 (nn«L)

+ bb

1) {x=1.+t; y=-hSlopext;}

y=t;}

+ b2 (nnxsqgrt ((L-1) "2+ (hSlope* (L-1))"2))
+ b6 (nnPlus+nn+h));

(nn* (H-h))

+ b3 (nn* (H_,

(continues on next page)
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(continued from previous page)

Vh k=0.0001, kp=k;
Vh ep=0.0001, epp=ep;

fespace VOh (Th,PO);

VOh muT=1;

VOh prodk, prode;

Vh kappa=0.25e-4, stress;

// Macro
macro grad
macro Grad

( [dx(u), dy(uw)]l //
(
macro Div (U

u)
U) [grad(U#x), grad(U#y)l //
) (dx (U#x) + dy(Uty)) //

// Functions
func g = (x) > (1-x) =* 4;

// Problem
real alpha = 0.;

problem Temperature(T, q)
= int2d(Th) (
alpha = T * g
+ kappa* grad(T)' = grad(q)

+

int2d (Th) (
— alphaxconvect ([Upx, Upyl, —-dt, Tp)=*q

on (b6, T=25)
on(bl, b2, T=30)

+ o=

problem KineticTurbulence (k, q)
= int2d (Th) (
(epp/kp + alpha) = k * g
+ muTx grad(k)' x grad(q)

+

int2d(Th) (
prodk * g
— alphaxconvect ([Upx, Upyl, —-dt, kp)x*g

on (b5, b6, k=0.00001)
on(bl, b2, k=betax*numu*stress)

+ o+ =

problem ViscosityTurbulence (ep, q)
= int2d(Th) (
(1.92+epp/kp + alpha) * ep * g
+ muT x= grad(ep)' = grad(q)

+ intld(Th, bl, b2) (
T » g = 0.001

)

+ int2d(Th) (
prode * g

— alphaxconvect ([Upx, Upyl], —-dt, epp)*q

+ on (b5, b6, ep=0.00001)

(continues on next page)
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(continued from previous page)

+ on(bl, b2, ep=betar*nuep*pow(stress,1.5))

’

// Initialization with stationary solution
solve NavierStokes ([Ux, Uy, pl, [Vx, Vy, ql)

= int2d(Th) (
alpha * [Ux, Uyl' % [Vx, Vy]
+ muT * (Grad(U) : Grad(V))
+ p * g * Penalty
- p % Div (V)

- Div(U) * g

+ int1d(Th, bl, b2, b4) (
Ux * Vx * 0.1

+ int2d(Th) (
eps * (T-35) * Vx
— alphaxconvect ([Upx, Upyl, —-dt, Upx)*Vx
- alphaxconvect ([Upx, Upyl, -dt, Upy)*Vy

on (b6, Ux=3, Uy=0)

on (b5, Ux=0, Uy=0)

b4, Uy=0)

on (b2, Uy=-Upx*N.x/N.y)
on (b3, Uy=0)

B
o
5
o
=
N

plot ([Ux, Uyl], p, value=true, coef=0.2, cmm="[Ux, Uy] - p");

real[int] xx(21), yy(21), pp(21);
for (int 1 = 0 ; 1 < 21; i++){
yyl[i] = 1/20.;
xx[1] Ux(0.5,1/20.);
pplil = p(i/20.,0.999);

}

cout << " " << yy << endl;

plot ([xx, yy], wait=true, cmm="Ux x=0.5 cup");
plot ([yy, ppl, wait=true, cmm="p y=0.999 cup");

// Initialization

dt = 0.1; //probably too big
int nbiter = 3;

real coefdt = 0.25"(1./nbiter);
real coefcut = 0.25"(1./nbiter);
real cut = 0.01;

real tol = 0.5;

real coeftol = 0.5"(1./nbiter);
nu = 1./reylnods;

T =T — 10*((x<1)*(y<0.5) + (x>=1)x(y+0.1%x(x-1)<0.5));

// Convergence loop

real TO = clock();
for (int iter = 1; iter <= nbiter; iter++) {
cout << "Iteration " << iter << " - dt = " << dt << endl;

(continues on next page)
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alpha = 1/dt;

// Time loop
real t = 0.;

for (int i = 0; i <= 500; i++){
t += dt;
cout << "Time step " << 1 << " - t = " << t << endl;
// Update
Upx = Ux;
Upy = Uy;
kp = k;
epp = ep;
Tp = max (T, 25); //for beauty only should be removed
Tp = min(Tp, 35); //for security only should be removed
kp = max(k, 0.0001); epp = max(ep, 0.0001); // to be secure:
—active
muT = 0.09+kp+kp/epp;

// Solve NS
NavierStokes;

should not be,

// Update

prode = -0.126+kp* (pow (2+dx (Ux) ,2) +pow (2+dy (Uy), 2) +2+pow (dx (Uy) +dy (Ux) ,2)) /2;
prodk = -prodexkp/eppx0.09/0.126;

kappa = muT/0.41;

stress = abs (dy (Ux));

// Solve k-eps-T
KineticTurbulence;
ViscosityTurbulence;
Temperature;

// Plot

plot (T, wvalue=true, fill=true);
plot ([Ux, Uyl, p, coef=0.2, cmm=" [Ux, Uy] - p", WindowIndex=1);
// Time

cout << "\tTime = " << clock()-TO0 << endl;

// Check

if (iter >= nbiter) break;
// Adaptmesh
Th = adaptmesh (Th,

—cutoff=cut, err=tol,
plot (Th);

[dx (Ux),
inquire=0,

dy (Ux),
ratio=1.5,

dx (Ux), dy(Uy)], splitpbedge=1,
hmin=1./1000) ;

// Update
dt = dt =«
tol = tol
cut = cut

coefdt;

* coeftol;
+ coefcut;
}

cout <<

"Total Time = " << clock()-TO << endl;

abserror=0

e
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Fig. 2.15: A large fluid problem
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2.14 An Example with Complex Numbers

In a microwave oven heat comes from molecular excitation by an electromagnetic field. For a plane monochromatic
wave, amplitude is given by Helmholtz’s equation:

Bv+ Av =0.

We consider a rectangular oven where the wave is emitted by part of the upper wall. So the boundary of the domain is

made up of a part I'; where v = 0 and of another part T's = [¢, d] where for instance v = sin (wy — 2) .
c—

Within an object to be cooked, denoted by B, the heat source is proportional to v2. At equilibrium, one has :

—-Af = U2IB
O = 0

where I is 1 in the object and 0 elsewhere.

In the program below 8 = 1/(1 — i/2) in the air and 2/(1 — /2) in the object (i = /—1):

// Parameters

int nn = 2;

real a = 20.;

real b = 20.;

real ¢ = 15.;

real d = 8.;

real e = 2.;

real 1 = 12.;

real f 2.3

real g = 2.;

// Mesh

border a0l (t=0, 1) {x=axt; y=0; label=1;}

border al (t=1, 2){x=a; y=bx(t-1); label=1;}
border a2 (t=2, 3){ x=ax(3-t); y=b; label=1;}
border a3 (t=3, 4){x=0; y=b—(b-c)=x*(t-3); label=1;}
border a4 (t=4, 5){x=0; y=c—(c-d)=x(t-4); label=2;}
border ab5(t=5, 6){x=0; y=dx(6-t); label=1;}
border b0 (t=0, 1) {x=a-f+ex(t-1); y=g; label=3;}
border bl (t=1, 4){x=a-f; y=gt+lx(t-1)/3; label=3;}
border b2 (t=4, 5){x=a-f-ex(t-4); y=1l+g; label=3;}
border b3 (t=5, 8){x=a-e-f; y=1l+g-1lx(t-5)/3; label=3;}

mesh Th = buildmesh (a0 (10+nn) + al(10xnn) + a2(10xnn) + a3 (10xnn) +a4(10xnn) +
—ab (10+nn)
+ b0 (5+nn) + bl (10xnn) + b2 (5+xnn) + b3 (10x*nn));
real meat = Th(a-f-e/2, g+1/2).region;
real air= Th(0.01,0.01) .region;
plot (Th, wait=1);

[

// Fespace

fespace Vh(Th, P1l);

Vh R=(region-air)/ (meat—-air);
Vh<complex> v, w;

Vh vr, vi;

fespace Uh(Th, P1);

(continues on next page)
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Uh u, uu, ff;

// Problem
solve muwave (v, W)
= int2d(Th) (
vrwx (1+R)
- (dx(v) *dx(w) + dy(v)=*dy(w))* (1l - 0.51)

+ on(l, v=0)
+ on(2, v=sin(pix*(y-c)/(c-d)))

vr = real (v);
vi = imag(v);
// Plot

plot (vr, wait=1, ps="rmuonde.ps", fill=true);
plot (vi, wait=1, ps="imuonde.ps", £fill=true);

// Problem (temperature)
ff=1lebx (vr"2 + vi"2)*R;

solve temperature (u, uu)
= int2d(Th) (
dx (u) » dx(uu)+ dy(u)* dy (uu)

— int2d (Th) (
ffxuu

+ on(l, 2, u=0)

’

// Plot
plot (u, wait=1, ps="tempmuonde.ps", fill=true);

Results are shown on Fig. 2.16a, Fig. 2.16b and Fig. 2.16c.

2.15 Optimal Control

Thanks to the function BFGS it is possible to solve complex nonlinear optimization problem within FreeFEM. For
example consider the following inverse problem

minb,cﬁdeR J = fE(u — ’U,d)2
—V(k(b,e,d)-Vu) = 0
U|F = ur

where the desired state ug4, the boundary data ur and the observation set £ C 2 are all given. Furthermore let us
assume that:

k(z) =1+ blg(x) + clo(x) + dip(x) VreQ

where B, C, D are separated subsets of €).

To solve this problem by the quasi-Newton BFGS method we need the derivatives of .J with respect to b, ¢, d. We self
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(a) Real part (b) Imaginary part

(c) Temperature

Fig. 2.16: Microwave
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explanatory notations, if b, §c, dd are variations of b, ¢, d we have:

60 = 2[,(u—uqg)du
—V(k-Véu) = V(dk-Vu)
5U|F =0

Obviously J] is equal to 6.J when 6b = 1, dc = 0,d = 0, and so on for J and J}.

All this is implemented in the following program:

// Mesh

border aa(t=0, 2xpi) {x=5%cos(t); y=5xsin(t);};
border bb (t=0, 2xpi) {x=cos(t); y=sin(t);};
border cc(t=0, 2xpi) {x=-3+cos(t); y=sin(t);};
border dd(t=0, 2xpi) {x=cos(t); y =-3+sin(t);};

mesh th = buildmesh(aa(70) + bb(35) + cc(35) + dd(35));

// Fespace

fespace Vh(th, P1);

Vh Ib=((x"2+y"2)<1.0001),
Ic=(((x+3)"2+ y*2)<1.0001),
Id=((x"2+(y+3)"2)<1.0001),
ITe=(((x-1)"2+ y"2)<=4),
ud, u, uh, du;

// Problem
real[int] z(3);
problem A (u, uh)
= int2d(th) (
(1+z[0]*Ibtz[1]*Ic+z[2]*xId) * (dx (u) xdx (uh) + dy(u) xdy (uh))
)
+ on(aa, u=x"3-y"3)

’

// Solve

z[0]=2; =z[1]1=3; z[2]=4;
A;

ud = u;

ofstream f ("J.txt");
func real J(real[int] & Z) {

for (int i = 0; 1 < z.n; i++)
z[i] =2[i];

A;

real s = int2d(th) (Iex (u-ud)"2);

f << s << ™"y

return s;

}

// Problem BFGS
real[int] dz (3), dJdz(3);
problem B (du, uh)
= int2d(th) (
(1+z[0]*Ibtz[1]*Ic+z[2] xId) * (dx (du) xdx (uh) + dy (du) =dy (uh))
)
+ int2d(th) (
(dz[0]*Ib+dz[1]*Ic+dz[2]*Id) * (dx (u) *xdx (uh) + dy(u) *dy (uh))

(continues on next page)
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+on (aa, du=0)

’

func real[int] DJ(real[int] &Z) {
for(int i = 0; i < z.n; i++){
for(int j = 0; j < dz.n; j++)

dz[j] = 0;
dz[i] = 1;
B;
dddz [i] = 2+int2d(th) (Ie* (u-ud) «du) ;

}

return dJdz;

}

real[int]
for (int j
1

BFGS(J, DJ, Z, eps=l.e-6, nbiter=15, nbiterline=20);
cout << "BFGS: J(z) = " << J(Z) << endl;
for(int j = 0; j < z.n; Jj++)

cout << z[J] << endl;

// Plot
plot (ud, wvalue=1, ps="u.eps");

In this example the sets B, C, D, E are circles of boundaries bb, cc, dd, ee and the domain {2 is the circle of boundary
aa.

The desired state u, is the solution of the PDE for b = 2, ¢ = 3,d = 4. The unknowns are packed into array z.

Note: It is necessary to recopy Z into z because one is a local variable while the other one is global.

The program found b = 2.00125, ¢ = 3.00109, d = 4.00551.
Fig. 2.17a and Fig. 2.17b show w at convergence and the successive function evaluations of .J.

Note that an adjoint state could have been used. Define p by:
-V - (kVp) = 2Ig(u—ugq)
plp = 0
Consequently:
60 = — [o(V-(kVp))du

= [o(kVp-Viu)
= — [,(6kVp-Vu)

Then the derivatives are found by setting 0b = 1, ¢ = dd = 0 and so on:

J, = —J3Vp-Vu
J. = —[oVp-Vu
Jy = —[,Vp-Vu

Note: As BFGS stores an M x M matrix where M is the number of unknowns, it is dangerously expensive to use this
method when the unknown z is a Finite Element Function. One should use another optimizer such as the NonLinear
Conjugate Gradient NLCG (also a key word of FreeFEM).
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Fig. 2.17: Optimal control

2.16 A Flow with Shocks

10 15 20 25 30 35 40

(b) Successive evaluations of J by BFGS (5 values above
500 have been removed for readability)

Compressible Euler equations should be discretized with Finite Volumes or FEM with flux up-winding scheme but
these are not implemented in FreeFEM. Nevertheless acceptable results can be obtained with the method of character-

— 1
istics provided that the mean values f = 3 ( fr+f _) are used at shocks in the scheme, and finally mesh adaptation.

Op+uVp+pV - u
p(Oru + ZVu + Vp
op+uaVp+ (v —1)pV - u

One possibility is to couple u, p and then update p, i.e.:

(7—1%&15117 (Pt —pm o X™) + V- umH
%(um-i—l —u™o Xm) + vpm-‘rl

prtl=pto XM 4 (vf‘l)z‘w(P"H_1

A numerical result is given on Fig. 2.18 and the FreeFEM script is

0
0
0

— ploX™)

// Parameters
verbosity
int anew

int m

real
real
real
real
real
real
real

x0 =
y0 =
rr =
dt =
u0 =
err0
pena

// Mesh

border ccc (t=0,

hDnDo oo o

1;

1;

.5;
Ny
.2
.01;

.

0.00625;
2.;

2){x=2-t; y=1;};

(continues on next page)
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border ddd(t=0, 1) {x=0; y=1-t;};

border aaal (t=0, x0-rr) {x=t; y=0;};

border cercle (t=pi, 0) {x=x0+rr*cos(t); y=yO+rrxsin(t);}
border aaa2 (t=x0+rr, 2){x=t; y=0;};

border bbb (t=0, 1) {x=2; y=t;};

mesh Th;

if (anew)

Th = buildmesh
—bbb (2+m) ) ;

(ccc (5+m) + ddd(3+m) + aaal (2+*m)

else
Th = readmesh("Th_circle.mesh"); plot(Th);
// fespace
fespace Wh(Th, P1);
Wh u, v;
Wh ul, vl;
Wh uh, vh;

fespace Vh(Th, P1l);
Vh r, rh, rl;

// Macro
macro dn(u) (N.xxdx (u)+N.yxdy(u)) //
// Initialization

if (anew) {

ul = u0;
vl = 0;
rl = 1;
}
else(

ifstream g("u.txt");
ifstream gg("v.txt");
ifstream ggg("r.txt");

g >> ulll;
gg >> v1[];
ggg >> rll[];

plot (ul, ps="eta.eps", value=1l, wait=1l);
err0 = err0/10;
dt = dt/10;

}

// Problem

problem euler (u, v, r, uh, vh, rh)

= int2d (Th) (
(uxuh + vxvh + r*rh)/dt
+ ((dx(r)*uh + dy(r)=*vh) - (dx(rh)=*u + dy(rh)=*v))
)
+ int2d(Th) (
-
rhxconvect ([ul,vl],-dt,rl)
+ uh+*convect ([ul,vl], -dt,ul)
+ vh+convect ([ul,vl],-dt,vl)

) /dt
)
+int1d (Th, 6) (
rhxu
)
+ on (2, r=0)

+ cercle (5+m)

+ aaaz2 (5+xm) +_,

(continues on next page)
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+ on (2, u=u0)
+ on (2, v=0)

’

// Iterations
int j = 80;
for(int k = 0; k < 3; k++){

if (k==20){
err0 = err0/10;
dt = dt/10;
j =5
}
// Solve
for(int i = 0; i < jJ; 1i++){
euler;
ul=u;
vli=v;
rl=abs (r);
cout << "k = " << k << " E = " << int2d(Th) (u"2+v”*2+r) << endl;

plot (r, wvalue=1l);

// Mesh adaptation

Th = adaptmesh (Th, r, nbvx=40000, err=err(0, abserror=1, nbjacoby=2, omega=1.8,
—ratio=1.8, nbsmooth=3, splitpbedge=1, maxsubdiv=5, rescaling=1);

plot (Th);

u = u;

v = V;

r = r;

// Save

savemesh (Th, "Th_circle.mesh");
ofstream f ("u.txt"); f << ull;
ofstream ff ("v.txt"); ff << v[];
ofstream fff ("r.txt"); fff << r[];

rl = sqgrt (uxutvsv);
plot (rl, ps="mach.eps", value=1l);
rl = r;

2.17 Time dependent schema optimization for heat equations

First, it is possible to define variational forms, and use this forms to build matrix and vector to make very fast script (4
times faster here).

For example solve the ThermalConduction problem, we must solve the temperature equation in {2 in a time interval
0,1).

ou—V-(kVu) = 0 inQ x (0,7)
w(z,y,0) = wp+ zug
u = 30 onT'a4 x (0,7T)
kS +a(u—u) = 0 onT x (0,7)

2.17. Time dependent schema optimization for heat equations 77




FreeFEM Documentation, Release 4.2.1

Wz.E133
Wz75452

Fig. 2.18: Pressure for a Euler flow around a disk at Mach 2 computed by (2.6)
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The variational formulation is in L2(0, T'; H*(2)); we shall seek u™ satisfying:
n—1

no__
Yw € V; / LY wt kVu"Vw) + / a(u™ —uye)w =0
Q ot r

where V; = {U) € Hl(Q)/w\Fm = 0}'

So, to code the method with the matrices A = (A;;), M = (M;;), and the vectors u™, b™, b, b”, b (notation if w is a
vector then w; is a component of the vector).

1 "o
u” = 14—1bn7 b/ — bO + M’U,n_l, p = = bcl7 bln _ { bZ if 1 € F24
e

b else
Where with 1 = tgv = 10%:
1 ifi € Tyq,and  j =1

Aij = /iji/dt—l—k:(ij.Vwi)—&-/ aw;w; else

Q g

1 ifi € Tyg,and  j =i

Mi; = n/ w;w;/dt  else

Q
bo; = anB U e W;
by = u® theinitial data

The Fast version script:

Vh u0=ful0, u=ul;

Create three variational formulation, and build the matrices A, M.

varf vthermic (u, v)
int2d (Th) (
uxv/dt
+ kx (dx (u) »dx (v) + dy(u)xdy(v))

+

int1d(Th, 1, 3)(
alphaxuxv

)

+ on(2,4,u=1)

’

varf vthermicO (u, V)
= int1d(Th, 1, 3)(
alphaxuex*v
)
7
varf vMass (u,v)
= 1int2d(Th) (
uxv/dt

+

on(2, 4, u=1)

real tgv 1e30;
matrix A vthermic (Vh, Vh, tgv=tgv, solver=CG);
matrix M = vMass (Vh, Vh);

Now, to build the right hand size; we need 4 vectors.
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real[int] b0 = vthermicO0(0,Vh); //constant part of RHS
real[int] bcn = vthermic(0,Vh); //tgv on Dirichlet part
real[int] bcl tgv+ull[]; //the Dirichlet B.C. part

// The fast loop
for(real t = 0; t < T; t += dt) {
real[int] b = bO0; //the RHS
b += Mxu[l]l; //add the the time dependent part
b =becn ? bel : b; //do S\forall 1$S: b[i] = bcn[i] ? bcl[i] : b[i];
ull] = A*-1xb; //solve linear problem
plot (u);

2.18 Tutorial to write a transient Stokes solver in matrix form

Consider the following script to solve a time dependent Stokes problem in a cavity

// Parameters
real nu = 0.1;
real T=1.;

real dt = 0.1;

// Mesh
mesh Th = square (10, 10);

// Fespace
fespace Vh(Th, P2)
Vvh u, v;

Vh uu, vv;

Vh uold=0, vold=0;

fespace Qh(Th, P1);
oh pj
Qh pp;

// Problem
problem stokes (u, v, p, uu, Vvv, pp)
= 1int2d(Th) (
(uxuutv*vv) /dt

+ nux (dx (u) *dx (uu) + dy (u) *dy (uu) + dx(v)*dx(vv) + dy(v)=xdy (vv))
- p*pp*xl.e-6
- px (dx(uu) + dy(vv))

pp* (dx (u) + dy(v))

)

— int2d(Th) (
(uold+*uu+vold=*vv) /dt

)

+ on(l, 2, 4, u=0, v=0)

+ on (3, u=1l, v=0)

’

// Time loop

int m, M = T/dt;

for(m = 0; m < M; m++) {
stokes;

(continues on next page)
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uold = u;
vold

Vi

// Plot
plot(p, [u, v], value=true, wait=true, cmm="t="+mxdt);

Every iteration is in fact of the form A[u, v, p] = Bluold, vold, pold] + b where A, B are matrices and b is a vector
containing the boundary conditions. A, B, b are constructed by:

fespace Xh(Th, [P2, P2, P1l]);
varf aa ([u, v, pl, [uu, vv, ppl)
= int2d (Th) (
(uxuutv+vv) /dt
+ nux (dx (u) »dx (uu) + dy (u) »xdy (uu) + dx(v)*xdx(vv) + dy(v)xdy(vv))
- p*pp*l.e—6
- px (dx(uu) + dy(vv))
- ppx (dx(u) + dy(v))
)
+ on(l, 2, 4, u=0, v=0)
+ on (3, u=l, v=0)

’

varf bb ([uold, vold, pold], [uu, vv, ppl)
= int2d(Th) (
(uold+*uu+vold=*vv) /dt
)
//+ on(l, 2, 4, uold=0, vold=0)
//+ on (3, uold=1, vold=0)

’

varf bcl ([uold, vold, pold], [uu, vv, ppl)
= on(l, 2, 4, uold=0, vold=0)
+ on (3, uold=1l, wvold=0)

’

matrix A = aa(Xh, Xh, solver=UMFPACK) ;
matrix B = bb(Xh, Xh);
real[int] b = bcl (0, Xh);

Note that the boundary conditions are not specified in bb. Removing the comment // would cause the compiler to
multiply the diagonal terms corresponding to a Dirichlet degree of freedom by a very large term (tgv); if so b would
not be needed, on the condition that uold = 1 on boundary 3 initially. Note also that b has a tgv on the Dirichlet nodes,
by construction, and so does A.

The loop will then be:

real[int] sol (Xh.ndof), aux(Xh.ndof);
for (m = 0; m < M; m++) {

aux = Bxsol; aux += Db;

sol = A"-1 * aux;

There is yet a difficulty with the initialization of sol and with the solution from sol. For this we need a temporary
vector in X, and here is a solution:
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Xh [wl, w2, wp] = [uold, vold, ppl;
sol = wl[]; //cause also the copy of w2 and wp
for (m = 0; m < M; m++) {
aux = Bxsol; aux += Db;
sol = A"-1 » aux;
}
wl[]=so0l; u=wl; v= w2; p=wp;
plot (p, [u, v], value=true, wait=true, cmm="t="+mxdt);

The freefem team agrees that the line sol=wl []; is mysterious as it copies also w2 and wp into sol. Structured data
such as vectors of X}, here cannot be written component by component. Hence wl=u is not allowed.

2.19 Wifi Propagation

2.19.1 Summary

In this tutorial, we will study the wifi signal power in a flat. An awesome flat is especially designed for the experiment,
with 2 walls:

Fig. 2.19: Flat

Even if the flat seems small enough to be covered by wifi everywhere, it is still interesting to study where the signal’s
power is the lowest. We will study where to put the hotspot to get the best coverage, and as we’re a bit lazy we will
only put it next to the left wall.

2.19.2 Physics

In a nutshell, the Wifi is a electromagnetic wave that contains a signal : Internet data. Electromagnetic waves are well
know by physicists and are ruled by the 4 Maxwell equations which give you the solution for E, the electrical field,
and B, the magnetic field, in space but also in time.

We don’t care about the time here, because the signal period is really short so our internet quality will not change
with time. Without time, we’re looking for stationaries solutions, and the Maxwell equations can be simplified to one
equation, the Helmholtz one :

2 k2
VZE+ 5 E=0
n

Where £ is the angular wavenumber of the wifi signal, and » the refractive index of the material the wave is in.
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Indeed, the main point of this study is the impact of walls on the signal’s power, where the n is different from air
(where it is 1). In walls, the refractive index is a complex number in which the two parts have a physic interpretation:

¢ The real part defines the reflexion of the wall (the amount of signal that doesn’t pass).
* The imaginary part defines the absorption of the wall (the amount that disappears).

The wifi hotspot (simulated by a simple circle) will be the boundary condition, with a non null value for our electrical
field.

2.19.3 Coding

The domain

In order to create the domain of experimentation, we need to create border objects, like this :

real a = 40, b = 40, ¢ = 0.5;
border a00(t=0, 1) {x=axt; y=0; label=1;}

(

border al0(t=0, 1) {x=a; y=bxt; label=1;}

border a20(t=1, 0) {x=axt; y=b; label=1;}

border a30(t=1, 0) {x=0; y=bxt; label=1;}

border a0l (t=0, 1) {x=c+(a-c*2)xt; y=c; label=1;}
border all(t=0, 1) {x=a-c; y=c+(b-cx2)x*t; label=1;}
border a2l (t=1, 0) {x=ct(a-c*2)=x*t; y=b-c; label=1;}
border a3l (t=1, 0) {x=c; y=c+(b-cx2)*t; label=1;}

real p = 5, g = , d =34, e = 1;

20
border b00 (t=0, 1) {x=p+dxt; y=q; label=3;}
border bl0(t=0, 1) {x=p+td; y=gtext; label=3;}
border b20(t=1, 0) {x=ptdxt; y=gte; label=3;}
border b30(t=1, 0) {x=p; y=gtext; label=3;}

real r = 30, s =1, j =1, u=15;

border c00 (t=0, {x=r+j*t; y=s; label=3;}
border c10 ( {x=r+j; y=s+tuxt; label=3;}
border c20 (t=1, {x=r+j*t; y=s+tu; label=3;}
border c30 (t=1 {x=r; y=stuxt; label=3;}

Let’s create a mesh

int n=13;

mesh Sh = buildmesh (a00(10+n) + al0(1l0x*n) + a20(10xn) + a30(10*n)
+ a0l (10%n) + all(l0%n) + a2l1(10xn) + a31(10xn)
+ 00 (5#n) + bl0(5+n) + b20(5+n) + b30(5+n)
+ c00(5#*n) + cl0(5#n) + c20(5+n) + c30(5*n));

plot (Sh, wait=1);

So we are creating a me sh, and plotting it :

There is currently no wifi hotspot, and as we want to resolve the equation for a multiple number of position next to the
left wall, let’s do a for loop:

int bx;
for (bx = 1; bx <= 7; bx++){
border C(t=0, 2xpi){x=2+cos(t); y=bxx5+sin(t); label=2;}

(continues on next page)
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Fig. 2.20: Mesh

(continued from previous page)

mesh Th = buildmesh (a00(10xn) + al0(10+n) + a20(10+n) + a30(10xn)
+ a0l (10+n) + all(10*n) + a2l (1l0*n) + a31(10xn) + C(10)
+ b00 (5+n) + bl0(5*n) + b20(5+n) + b30(5%n)
+ c00(5+n) + cl0(5+n) + c20(5+n) + c30(5+n));

The border C is our hotspot and as you can see a simple circle. Th is our final mesh, with all borders and the hotspot.
Let’s resolve this equation !

fespace Vh(Th, P1);

func real wall() {
if (Th(x,y).region == Th(0.5,0.5).region || Th(x,y).region == Th(7,20.5) .region || _
—Th(x,y) .region == Th(30.5,2) .region) { return 1; }

else { return 0; }

Vh<complex> v, w;

randinit (900);
Vh wallreflexion = randreall();
Vh<complex> wallabsorption = randreall()*0.51i;

Vh k = 6;
cout << "Reflexion of walls : " << wallreflexion << "\n";
cout << "Absorption of walls : " << wallabsorption << "\n";

problem muwave (v, w) =
int2d (Th) (
(vxwxk"2)/ (1+(wallreflexiont+wallabsorption) xwall()) "2
- (dx (v) *dx (w) +dy (v) xdy (w) )
)
+ on (2, v=1)

(continues on next page)
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(continued from previous page)

muwave;
Vh vm = log(real(v)”"2 + imag(v)"2);
plot (vm, wait=1, fill=true, value=0, nbiso=65);

}

A bit of understanding here :
* The fespace keyword defines a finite elements space, no need to know more here.
* The function wall return O if in air and 1 if in a wall (x and y are global variables).
* For this example, random numbers are used for the reflexion and the absorption.
e The problem is defined with problem and we solve it by calling it.

Finally, I plotted the log of the module of the solution v to see the signal’s power, and here we are :

Fig. 2.21: Solution

Beautiful isn’t it ? This is the first position for the hotspot, but there are 6 others, and the electrical field is evolving
depending on the position. You can see the other positions here :

2.20 Plotting in Matlab and Octave

2.20.1 Overview

In order to create a plot of a FreeFEM simulation in Matlab© or Octave two steps are necessary:
* The mesh, the finite element space connectivity and the simulation data must be exported into files

¢ The files must be imported into the Matlab / Octave workspace. Then the data can be visualized with the ffmatlib
library
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(d) Point 5 (e) Point 6

Fig. 2.22: Wifi propagation

(f) Point 7
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The steps are explained in more detail below using the example of a stripline capacitor.

Note: Finite element variables must be in P1 or P2. The simulation data can be 2D or 3D.

2.20.2 2D Problem

Consider a stripline capacitor problem which is also shown in Fig. 2.23. On the two boundaries (the electrodes) C4,
Ck a Dirichlet condition and on the enclosure C'z a Neumann condition is set. The electrostatic potential u between
the two electrodes is given by the Laplace equation

Au(z,y) =0

and the electrostatic field E is calculated by

int CA=3, CK=4, CB=5;
real w2=1.0, h=0.4, d2=0.5;

border bottomA (t=-w2,w2){ x=t; y=d2; label=CA;};
border rightA (t=d2,d2+h){ x=w2; y=t; label=CA;};
border topA (t=w2,-w2){ x=t; y=d2+h; label=CA;};

border leftA(t=d2+h,d2){ x=-w2; y=t; label=CA;};

border bottomK (t=-w2,w2) { x=t; y=-d2-h; label=CK;};
border rightK(t=-d2-h,-d2){ x=w2; y=t; label=CK;};
border topK (t=w2,-w2){ x=t; y=-d2; label=CK;};
border leftK(t=-d2,-d2-h){ x=-w2; y=t; label=CK;};

border enclosure (t=0,2+pi) {x=5*cos(t); y=5+sin(t); label=CB;}

int n=15;

mesh Th = buildmesh (enclosure (3+n)+
bottomA (-w2+n) +topA (-w2+n) +rightA (-h*n)+leftA (-hxn)+
bottomK (-w2+*n) +topK (-w2+*n) +rightK (-h*n) +1leftK(-h*n));

fespace Vh(Th,P1l);

Vvh u,v;
real u0=2.0;

problem Laplace (u,v,solver=LU) =
int2d(Th) (dx (u) »dx (v) + dy(u) xdy(v))
+ on (CA,u=ul) +on (CK, u=0) ;

real error=0.01;

for (int i=0;i<1l;i++){
Laplace;
Th=adaptmesh (Th, u, err=error) ;
error=error/2.0;

}

Laplace;

Vh Ex, Ey;

(continues on next page)
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(continued from previous page)

Ex = —-dx(u);
Ey —dy (u) ;

plot (u, [Ex,Ey],wait=true);

2.20.3 Exporting Data

The mesh is stored with the FreeFEM command savemesh(), while the connectivity of the finite element space and the
simulation data are stored with the macro commands £f£SaveVh () and £ffSaveData (). These two commands are
located in the ffmatlib. idp file which is included in the £ fmat1ib. Therefore, to export the stripline capacitor
data the following statement sequence must be added to the FreeFEM code:

include "ffmatlib.idp"

//Save mesh

savemesh (Th, "capacitor.msh");

//Save finite element space connectivity
ffSaveVh (Th, Vh, "capacitor_vh.txt");
//Save some scalar data

ffSaveData (u, "capacitor_potential.txt");
//Save a 2D vector field
ffSaveData2 (Ex, Ey, "capacitor_field.txt");

2.20.4 Importing Data
The mesh file can be loaded into the Matlab / Octave workspace using the ffreadmesh () command. A mesh file
consists of three main sections:

1. The mesh points as nodal coordinates

2. A list of boundary edges including boundary labels

3. List of triangles defining the mesh in terms of connectivity

The three data sections mentioned are returned in the variables p, b and t. The finite element space connectivity
and the simulation data can be loaded using the f freaddata () command. Therefore, to load the example data the
following statement sequence must be executed in Matlab / Octave:

3Add ffmatlib to the search path

addpath ('add here the link to the ffmatlib');

$Load the mesh

[p,b,t,nv,nbe,nt,labels]=ffreadmesh ('capacitor.msh');
$Load the finite element space connectivity
vh=ffreaddata ('capacitor_vh.txt');

%Load scalar data

u=ffreaddata ('capacitor_potential.txt');

%Load 2D vector field data
[Ex,Ey]l=ffreaddata('capacitor_field.txt");

2.20.5 2D Plot Examples

ffpdeplot () is a plot solution for creating patch, contour, quiver, mesh, border, and region plots of 2D geometries.
The basic syntax is:
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[handles,varargout] = ffpdeplot (p,b,t,varargin)

varargin specifies parameter name / value pairs to control the plot behaviour. A table showing all options can be
found in the ffmatlib documentation. A small selection of possible plot commands is given as follows:

¢ Plot of the boundary and the mesh:

ffpdeplot (p,b,t, '"Mesh', 'on', "Boundary', 'on');
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Fig. 2.23: Boundary and Mesh

« Patch plot (2D map or density plot) including mesh and boundary:

ffpdeplot (p,b,t, 'VhSeq', vh, 'XYData',u, '"Mesh', 'on', 'Boundary"', 'on',
'XLim', [-2 2], 'YLim', [-2 2]);

ufvl]

Fig. 2.24: Patch Plot with Mesh

* 3D surf plot:
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ffpdeplot (p,b,t, 'VhSeq',vh, 'XYData',u, '2Style', 'continuous',
'Mesh', 'off');

lighting gouraud;

view([-47,241);

camlight ("headlight'");

urv]
2

Fig. 2.25: 3D Surf Plot

* Contour (isovalue) and quiver (vector field) plot:

ffpdeplot (p,b,t, 'VhSeqg',vh, 'XYData',u, 'Mesh', 'off', "Boundary', 'on'
'XLim', [-2 2], 'YLim', [-2 2], 'Contour','on', 'CColor', 'b',
'XYStyle','off', 'CGridParam',[150, 150],'ColorBar','off"',
'FlowData', [Ex,Ey], 'FGridParam', [24, 241);

¥
o

Fig. 2.26: Contour and Quiver Plot

Download run through example:
Matlab / Octave file

FreeFEM script
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2.20.6 3D Plot Examples

3D problems are handled by the ffpdeplot3D () command, which works similarly to the ffpdeplot () com-
mand. In particular in three-dimensions cross sections of the solution can be created. The following example shows a
cross-sectional problem of a three-dimensional parallel plate capacitor.

Fig. 2.27: Slice on a 3D Parallel Plate Capacitor

Download run through example:
Matlab / Octave file

FreeFEM script

2.20.7 References

e QOctave
¢ Matlab
¢ ffmatlib
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The fruit of a long maturing process, freefem, in its last avatar, FreeFEM , is a high level integrated development
environment (IDE) for numerically solving partial differential equations (PDE) in dimension 2 and 3. It is the ideal
tool for teaching the finite element method but it is also perfect for research to quickly test new ideas or multi-physics
and complex applications.

FreeFEM has an advanced automatic mesh generator, capable of a posteriori mesh adaptation; it has a general pur-
pose elliptic solver interfaced with fast algorithms, such as the multi-frontal method UMFPACK, SuperLU, MUMPS.
Hyperbolic and parabolic problems are solved by iterative algorithms prescribed by the user with the high level lan-
guage of FreeFEM. It has several triangular finite elements, including discontinuous elements. Everything is there
in FreeFEM to prepare research quality reports with online color display, zooming and other features as well as
postscript printouts.

This manual is meant for students at a Masters level, for researchers at any level, and for engineers (including financial
engineering) with some understanding of variational methods for partial differential equations.

Introduction

A partial differential equation is a relation between a function of several variables and its (partial) derivatives. Many
problems in physics, engineering, mathematics and even banking are modeled by one or several partial differential
equations.

FreeFEM is a software to solve these equations numerically. As its name implies, it is a free software (see the
copyrights for full detail) based on the Finite Element Method; it is not a package, it is an integrated product with its
own high level programming language. This software runs on all UNIX OS (with g++ 3.3 or later, and OpenGL), on
Window XP, Vista and 7, 8, 10 and on MacOS 10 intel.

Moreover FreeFEM is highly adaptive. Many phenomena involve several coupled systems. Fluid-structure interac-
tions, Lorentz forces for aluminum casting and ocean-atmosphere problems are three such systems. These require
different finite element approximations and polynomial degrees, possibly on different meshes. Some algorithms like
the Schwarz’ domain decomposition method also requires data interpolation on multiple meshes within one program.
FreeFEM can handle these difficulties, i.e. arbitrary finite element spaces on arbitrary unstructured and adapted bi-
dimensional meshes.

The characteristics of FreeFEM are:

» Problem description (real or complex valued) by their variational formulations, with access to the internal vectors
and matrices if needed.

e Multi-variables, multi-equations, bi-dimensional and three-dimensional static or time dependent, linear or non-
linear coupled systems; however the user is required to describe the iterative procedures which reduce the
problem to a set of linear problems.

» Easy geometric input by analytic description of boundaries by pieces; however this part is not a CAD system;
for instance when two boundaries intersect, the user must specify the intersection points.
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Automatic mesh generator, based on the Delaunay-Voronoi algorithm; the inner point density is proportional to
the density of points on the boundaries [GEORGE1996].

Metric-based anisotropic mesh adaptation. The metric can be computed automatically from the Hessian of any
FreeFEM function [HECHT1998].

High level user friendly typed input language with an algebra of analytic and finite element functions.

Multiple finite element meshes within one application with automatic interpolation of data on different meshes
and possible storage of the interpolation matrices.

A large variety of triangular finite elements: linear, quadratic Lagrangian elements and more, discontinuous P1
and Raviart-Thomas elements, elements of a non-scalar type, the mini-element,. .. (but no quadrangles).

Tools to define discontinuous Galerkin finite element formulations PO, P1dc, P2dc and keywords: jump, mean,
intalledges.

A large variety of linear direct and iterative solvers (LU, Cholesky, Crout, CG, GMRES, UMFPACK, MUMPS,
SuperLU, ...) and eigenvalue and eigenvector solvers (ARPARK) .

Near optimal execution speed (compared with compiled C++ implementations programmed directly).
Online graphics, generation of ,.txt,.eps,.gnu, mesh files for further manipulations of input and output data.

Many examples and tutorials: elliptic, parabolic and hyperbolic problems, Navier-Stokes flows, elasticity, fluid
structure interactions, Schwarz’s domain decomposition method, eigenvalue problem, residual error indicator,

A parallel version using MPI

3.1 Notations

Here mathematical expressions and corresponding FreeFEM commands are explained.

3.1.1 Generalities

[0;;] Kronecker delta (0 if ¢ # j, 1 if ¢ = j for integers 1, 7)

[V] for all

[d] there exists

[i.e.] that is

[PDE] partial differential equation (with boundary conditions)

[0] the empty set

[N] the set of integers (a € N < int a), int means long int inside FreeFEM
[R] the set of real numbers (a € R < real a), double inside FreeFEM

[C] the set of complex numbers (a € C < complex a), complex<double>

[R9] d-dimensional Euclidean space
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3.1.2 Sets, Mappings, Matrices, Vectors

Let I/, F, G be three sets and A the subset of F.

[{x € E| P}] the subset of E consisting of the elements possessing the property P
[E U F] the set of elements belonging to E or F'

[E N F] the set of elements belonging to £ and F’

[E\ Altheset {z € E| x &€ A}

[E+FIEUFwithENF =10

[E x F1] the Cartesian product of F and F’

[E™] the n-th power of E (E? = E x E, E" = E x E"™ 1)

[f: E — F]the mapping form F into F,ie.,E >z — f(x) € F

[I or I] the identity mapping in Ejie., [(z) =z Yz € FE

[foglforf: F—Gandg: E— F,E>x+~ (fog)(z) = f(g9(x)) € G (see Elementary function)
[f|a] the restriction of f : E — F to the subset A of F

[{ax}] column vector with components ay,

[(ax)] row vector with components ay,

[(ax)T] denotes the transpose of a matrix (ay), and is {ax }

[{a;;}] matrix with components a;;, and (a;;)T = (aj;)

3.1.3 Numbers

For two real numbers a, b

[a, ] is the interval {z € R| a < z < b}
la, b] is the interval {z € R| a < z < b}
[a, b] is the interval {z € R| a < x < b}
la, b[ is the interval {z € R| a < z < b}

3.1.4 Differential Calculus

[0f /Ox] the partial derivative of f : R? — R with respect to x (dx (£))

[V f] the gradient of f : Q — Riie., Vf = (0f/0x, 0f/0y)

[div(f) or V.f] the divergence of f : Q@ — R%, i.e., div(f) = 0f1/0x + Of2/0y
[Af] the Laplacian of f : Q — R,i.e., Af = 92f/0z? + 6% f/0y?

3.1.5 Meshes

[€2] usually denotes a domain on which PDE is defined
[I'] denotes the boundary of ,i.e., I' = 99 (keyword border, see Border)

3.1. Notations
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e [71] the triangulation of €2, i.e., the set of triangles Ty, where h stands for mesh size (keyword mesh,
buildmesh, see Mesh Generation)

¢ [ny] the number of triangles in 7}, (get by Th.nt)

* [©3] denotes the approximated domain ), = U}'"; T}, of €. If § is polygonal domain, then it will be = €,
¢ [I'},] the boundary of 2,

¢ [n,] the number of vertices in 7; (get by Th.nv)

* [np] the number of boundary element in 7}, (get by Th.nbe)

* [|€21]] the measure (area or volume) in 73, (get by Th.measure)

* [|0€4]] the measure of the border (length or area) in 7, (get by Th.bordermeasure)

* [hunin] the minimum edge size of 7;, (get by Th.hmin)

* [hnae] the maximum edge size of 7T;, (get by Th.hmax)

* [[¢°¢?]] the segment connecting ¢* and ¢’

ki1 k2
) )

* [¢"', ¢, "] the vertices of a triangle 7}, with anti-clock direction (get the coordinate of ¢ by
(Th(k-11[3-11.x, Th[k-11[3j-11.y))

e [Ig]theset {i € N| ¢ €T}

3.1.6 Functional Spaces

 [L?(Q)] the set {w(m,y) ’ / lw(z,y)|*dzdy < oo}
Q

1/2
norm: ||wlloq = (/ w(x,y)|2dscdy)
Q

scalar product: (v, w) = / vw
Q

o [H'(Q)] the set {w € L*(Q) ‘ / (|ow/0z|* + |0w/dy|?) dzdy < oo}
Q

1/2
norm: [l 0 = (Jw]dq + | Vulde) "
2 Al 2 2
o [H™(Q)] the set < w € L*(Q) ——— € L*()) Va=(o,a) €N |a| =01 + as
q 0x®1 0y

scalar product: (v, w)1,q = Z /D“vDo‘w
Q

la]<m

s [H}(Q)] the set {w € H'(Q)|u=0 onT}
[L%(2)?] denotes L2(2) x L*(Q), and also H!(Q)? = H'(Q) x H'(Q)
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3.1.7 Finite Element Spaces

* [V4] denotes the finite element space created by fespace Vh (Th, =) in FreeFEM (see Finite Elements for

*)
* [II,, f] the projection of the function f into V}, (func £=x"2+y”~3; Vh v = f;)meansv = Pi,(f)*[{v}]
for FE-function v in V}, means the column vector (vy, -+ ,vpr)T if v = v1¢1 + - -+ + varPar, which is shown

by fespace Vh(Th, P2); Vh v; cout << v[] << endl;

3.2 Mesh Generation

In this section, operators and tools on meshes are presented.
FreeFEM type for mesh variable:

* 2d mesh: mesh

* 3d mesh: mesh3

* 3d surface meshsS

Through this presentation, the principal commands for the mesh generation and links between mesh - mesh3 -meshs
are described.

3.2.1 The type mesh in 2 dimension

Commands for 2d mesh Generation
The FreeFEM type to define a 2d mesh object is mesh.
The command square

The command square triangulates the unit square.

The following generates a4 x 5 grid in the unit square [0, 1]2. The labels of the boundaries are shown in Fig. 3.1.

mesh Th = square (4, 5);

To construct a n X m grid in the rectangle [xq, 1] X [yo, y1], proceed as follows:

real x0 =
real x1 =
real y0 =
real yl =
int n = 5;
real m = 20;

mesh Th = square(n, m, [x0+(x1-x0)+*x, y0+(yl-y0)=*yl);

.2
.83

R o

’
’

Note: Adding the named parameter f1ags=1icase with icase:
0. will produce a mesh where all quads are split with diagonal x — y = constant
1. will produce a Union Jack flag type of mesh

2. will produce a mesh where all quads are split with diagonal x 4+ y = constant
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label=3

label label

label=1

Fig. 3.1: Boundary labels of the mesh by square (10, 10)

3. same as in case 0, except two corners where the triangles are the same as case 2, to avoid having 3 vertices on
the boundary

4. same as in case 2, except two corners where the triangles are the same as case 0, to avoid having 3 vertices on
the boundary

1 |mesh Th = square(n, m, [x0+(x1-x0)*x, yO0+(yl-y0)=y], flags=icase);

Note: Adding the named parameter label=1abs will change the 4 default label numbers to labs[i-1], for
example int [int] labs=[11, 12, 13, 14], and adding the named parameter region=10 will change the
region number to 10, for instance (v 3.8).

To see all of these flags at work, check Square mesh example:

1 |[for (int i = 0; 1 < 5; ++1i){

2 int[int] labs = [11, 12, 13, 1471;

3 mesh Th = square (3, 3, flags=i, label=labs, region=10);
4 plot (Th, wait=1, cmm="square flags = "+1i );

s |}

The command buildmesh

mesh building with border

Boundaries are defined piecewise by parametrized curves. The pieces can only intersect at their endpoints, but it is
possible to join more than two endpoints. This can be used to structure the mesh if an area touches a border and create
new regions by dividing larger ones:

1 |int upper = 1;
> |int others = 2;
3 |int inner = 3;

(continues on next page)
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A

(a) Multiple border ends intersect (b) Generated mesh

Fig. 3.2: Border

(continued from previous page)

border CO01 (t=0, 1) {x=0; y=-1+t; label=upper;}

border C02(t=0, 1){x=1.5-1.5+t; y=-1; label=upper;}
border CO03(t=0, 1){x=1.5; y=-t; label=upper;}

border C04 (t=0, 1) {x=1+0.5xt; y=0; label=others;}
border C05(t=0, 1) {x=0.5+0.5xt; y=0; label=others;}
border CO06(t=0, 1) {x=0.5xt; y=0; label=others;}
border C11(t=0, 1) {x=0.5; y=-0.5xt; label=inner;}
border C12(t=0, 1){x=0.5+0.5+t; y=-0.5; label=inner;}
border C13(t=0, 1){x=1; y=-0.5+0.5xt; label=inner;}
int n = 10;

plot (CO1(-n) + CO2(-n) + CO3(-n) + CO4(-n) + CO5(-n)
+ C06(-n) + Cll(n) + Cl2(n) + Cl3(n), wait=true);

mesh Th = buildmesh (C01l(-n) + C02(-n) + C03(-n) + CO04(-n) + CO5(-n)
+ C06(-n) + Cll(n) + Cl2(n) + Cl3(n));

plot (Th, wait=true);

cout << "Part 1 has region number " << Th(0.75, -0.25).region << endl;
cout << "Part 2 has redion number " << Th(0.25, -0.25).region << endl;

Borders and mesh are respectively shown in Fig. 3.2a and Fig. 3.2b.

Triangulation keywords assume that the domain is defined as being on the left (resp right) of its oriented parameterized
boundary

Fj = {(m,y) | T = Saf(t)a Y= Qoy(t)a a; <t < bj}

To check the orientation plot ¢ — (4 (t), ¢y (t)), to <t < ty. Ifitis asin Fig. 3.3, then the domain lies on the shaded
area, otherwise it lies on the opposite side.

The general expression to define a triangulation with buildmesh is

mesh Mesh_Name = buildmesh (Gammal (ml)+...+GammaJ (mj), OptionalParameter);

where m; are positive or negative numbers to indicate how many vertices should be on I';, I' = szll" J, and the
optional parameter (see also References), separated with a comma, can be:

e nbvx= 1int, to set the maximum number of vertices in the mesh.
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1=t E= 4N
x=t,y=p G@=ty=-0)

Fig. 3.3: Orientation of the boundary defined by (¢, (), ¢y (t))

e fixedborder= bool, to say if the mesh generator can change the boundary mesh or not (by default the
boundary mesh can change; beware that with periodic boundary conditions (see. Finite Element), it can be
dangerous.

The orientation of boundaries can be changed by changing the sign of m;.

The following example shows how to change the orientation. The example generates the unit disk with a small circular
hole, and assigns “1” to the unit disk (‘“2” to the circle inside). The boundary label must be non-zero, but it can also
be omitted.

border a(t=0, 2xpi) {x=cos(t); y=sin(t); label=1;}

border b (t=0, 2xpi) {x=0.3+0.3*cos(t); y=0.3xsin(t); label=2;}
plot (a(50) + b(30)); //to see a plot of the border mesh

mesh Thwithouthole = buildmesh (a(50) + b(30));

mesh Thwithhole = buildmesh (a(50) + b(-30));

plot (Thwithouthole, ps="Thwithouthole.eps");

plot (Thwithhole, ps="Thwithhole.eps");

Note: Notice that the orientation is changed by b (=30) in the 5Sth line. In the 7th line, ps="fileName" is used
to generate a postscript file with identification shown on the figure.

Note: Borders are evaluated only at the time plot or buildmesh is called so the global variables are defined at
this time. In this case, since r is changed between the two border calls, the following code will not work because the
first border will be computed with r=0.3:

real r=1;

border a(t=0, 2xpi) {x=r*cos(t); y=rxsin(t); label=1;}

r=0.3;

border b (t=0, 2xpi) {x=r=xcos(t); y=rxsin(t); label=1l;}

mesh Thwithhole = buildmesh(a(50) + b(-30)); // bug (a trap) because
// the two circles have the same radius = :math: 0.3"

mesh building with array of border

Sometimes it can be useful to make an array of the border, but unfortunately it is incompatible with the FreeFEM
syntax. To bypass this problem, if the number of segments of the discretization n is an array, we make an implicit loop
on all of the values of the array, and the index variable ¢ of the loop is defined after the parameter definition, like in
border a(t=0, 2xpi; 1) ...
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(a) Mesh without hole

VA
A
500
AR RIADINRICKS,
IS0
SNPRESEAE R
ERLAE S
A A < AN
N e

(b) Mesh with hole

Fig. 3.4: Mesh with a hole

A first very small example:

border a(t=0, 2xpi; 1) {x=(i+1l)~*cos(t);
int[int] nn = [10, 20, 30];
plot(a(nn)); //plot 3 circles with 10,

y=(i+1l) *sin(t); label=1;}

, 30 points

And a more complex example to define a square with small circles:

real[int] xx (o, », 1, 03,

Yy (0, 0, 1, 11;
//radius, center of the 4 circles
real[int] RC = [0.1, 0.05, 0.05, 0.11,

—~circles borders

border bb (t=0, 1; i)
{

int ii = (i+1)%4;
real tl 1-t;
x = xx[1]+tl + xx[1i]~*t;

]
y = yyl[il#tl + yy[ii]~t;
label = 0

’

}

border cc(t=0, 2xpi; 1)

{
X RC[i]*cos(t) + XC[i];
y RC[i]*sin(t) + YC[i];
label = 1 + 1;

}

XCc = [0.2, 0.8, 0.2, 0.8],
Yc = [0.2, 0.8, 0.8, 0.2];
int[int] NC = [-10,-11,-12,13]1; //list number of :math: \pm ' segments of the 4

// 1 is the index variable of the multi border loop

int[int] nn = [4, 4, 5, 71; //4 border, with 4, 4, 5, 7 segment respectively

(continues on next page)
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(continued from previous page)

plot (bb(nn), cc(NC), wait=1);
mesh th = buildmesh (bb(nn) + cc(NC));
plot (th, wait=1);

Mesh Connectivity and data

The following example explains methods to obtain mesh information.

// Mesh
mesh Th = square (2, 2);

cout << "// Get data of the mesh" << endl;
{

int NbTriangles = Th.nt;

real MeshArea = Th.measure;

real BorderLength = Th.bordermeasure;

cout << "Number of triangle(s) = " << NbTriangles << endl;
cout << "Mesh area = " << MeshArea << endl;
cout << "Border length = " << BorderLength << endl;

// Th(i) return the vextex i1 of Th
// Th[k] return the triangle k of Th
// Th[k][i1] return the vertex 1 of the triangle k of Th

for (int i = 0; i < NbTriangles; i++)
for (int j = 0; J < 3; Jj++)
cout << 1 << " " << § << " — Th[i][]j] = " << Th[i][]]
<< ", x =" << Th[i][]j].x
<< ", y= " << Th[i][]j].y

<< ", label=" << Th[i][]j].label << endl;

cout << "// Hack to get vertex coordinates" << endl;

{
fespace fempl (Th, P1);
fempl Thx=x, Thy=y;

int NbVertices = Th.nv;

cout << "Number of vertices = " << NbVertices << endl;
for (int i = 0; i1 < NbVertices; i++)
cout << "Th(" << i << ") : " << Th(i).x << " " << Th(i).y << " " << Th(i).
—label
<< endl << "\told method: " << Thx[][i] << " " << Thy[][i] << endl;

cout << "// Method to find information of point (0.55,0.6)" << endl;
{
int TNumber = Th(0.55, 0.6).nuTriangle; //the triangle number
int RLabel = Th(0.55, 0.6).region; //the region label

cout << "Triangle number in point (0.55, 0.6): " << TNumber << endl;
cout << "Region label in point (0.55, 0.6): " << RLabel << endl;

(continues on next page)
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(continued from previous page)

cout << "// Information of triangle" << endl;
{
int TNumber = Th(0.55, 0.6).nuTriangle;
real TArea = Th[TNumber].area; //triangle area
real TRegion = Th[TNumber].region; //triangle region
real TLabel = Th[TNumber].label; //triangle label, same as region for triangles

cout << "Area of triangle " << TNumber << ": " << TArea << endl;
cout << "Region of triangle " << TNumber << ": " << TRegion << endl;
cout << "Label of triangle " << TNumber << ": " << TLabel << endl;

cout << "// Hack to get a triangle containing point x, y or region number (old method)
" << endl;
{

fespace fempO (Th, PO);

fempO TNumbers; //a PO function to get triangle numbering

for (int i = 0; i < Th.nt; i++)
TNumbers[] [1] = 1i;
fempO RNumbers = region; //a PO function to get the region number

int TNumber = TNumbers(0.55, 0.6); // Number of the triangle containing (0.55, 0,
—6)
int RNumber = RNumbers (0.55, 0.6); // Number of the region containing (0.55, 0,6)

cout << "Point (0.55,0,6) :" << endl;
cout << "\tTriangle number = " << TNumber << endl;
cout << "\tRegion number = " << RNumber << endl;

cout << "// New method to get boundary information and mesh adjacent" << endl;
{
int k
int 1=
int e=

- 0;
1;

1;

// Number of boundary elements
int NbBoundaryElements = Th.nbe;

cout << "Number of boundary element = " << NbBoundaryElements << endl;
// Boundary element k in {0, ..., Th.nbe}

int BoundaryElement = Th.be (k);

cout << "Boundary element " << k << " = " << BoundaryElement << endl;

// Vertice 1 in {0, 1} of boundary element k

int Vertex = Th.be (k) [1];

cout << "Vertex " << 1 << " of boundary element " << k << " = " << Vertex << endl;

// Triangle containg the boundary element k

int Triangle = Th.be (k) .Element;

cout << "Triangle containing the boundary element " << k << "
—endl;

// Triangle egde nubmer containing the boundary element k

int Edge = Th.be (k) .whoinElement;

cout << "Triangle edge number containing the boundary element " << k << " = " <<
—Edge << endl;

// Adjacent triangle of the triangle k by edge e

int Adjacent = Thlk].adj(e); //The value of e is changed to the corresponding,_
—edge 1in the adjacent triangle

cout << "Adjacent triangle of the triangle " << k << " by edge " << e << " =" <<

" << Triangle <<,

—Adjacent << endl; (continues on next page)

3.2. Mesh Generation 103




99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

FreeFEM Documentation, Release 4.2.1

(continued from previous page)

cout << "\tCorresponding edge = " << e << endl;
// If there is no adjacent triangle by edge e,
//Th[k] == Th[k].adj(e)

// Else a different triangle 1is returned

the same triangle 1is returned

//Th[k] != Th[k].adj(e)
}
cout << "// Print mesh connectivity " << endl;
{
int NbTriangles = Th.nt;
for (int k = 0; k < NbTriangles; k++)
cout << k << " : " << int(Th[k][0]) << " " << int(Th[k][1])
<< " " << int (Th[k][2])
<< ", label " << Thlk].label << endl;
for (int k = 0; k < NbTriangles; k++)
for (int e = 0, ee; e < 3; et+)
//set ee to e, and ee is change by method adj,
cout << k << " " << e << " <=> " << int (Th([k].adj((ee=e))) << " " << ee
<< ", adj: " << (Th[k].adj((ee=e)) != Thl[k]) << endl;
int NbBoundaryElements = Th.nbe;
for (int k = 0; k < NbBoundaryElements; k++)
cout << k << " : " << Th.be (k) [0] << "™ " << Th.be(k) [1]
<< " , label " << Th.be (k) .label
<< ", triangle " << int (Th.be (k) .Element)
<< " " << Th.be (k) .whoinElement << endl;
real[int] bb (4);
boundingbox (Th, bb);
// bb[0] = xmin, bb[l] = xmax, bb[2] = ymin, bb[3] =ymax
cout << "boundingbox:" << endl;
cout << "xmin = " << bb[0]
<< ", xmax = " << bb[1]
<< ", ymin = " << bb[2]
<< ", ymax = " << bb[3] << endl;
}
The output is:
// Get data of the mesh
Number of triangle = 8
Mesh area = 1
Border length = 4
0 0 - Th[(i][j] = 0, x = 0, y= 0, label=4
01 - Th{i]l[]j] =1, x = 0.5, y= 0, label=1
0 2 - Th[i][]j] = 4, x = 0.5, y= 0.5, label=0
10 - Th[(i][3j] = 0, x = 0, y= 0, label=4
1 1 - Th[i]l[]J] = 4, x = 0.5, y= 0.5, label=0
12 - Th{i]l[]j] = 3, x =0, y= 0.5, label=4
2 0 - Thli][j] =1, x = 0.5, y= 0, label=1
2 1 - Th[i] []] 2, x =1, y= 0, label=2
2 2 - Th[i][j] = 5, x =1, y= 0.5, label=2
30 - Th(i][3j] =1, x = 0.5, y= 0, label=1
31 - Th[i][j] =5, x = 1, y= 0.5, label=2
32 - Thl[i][]j] = 4, x = 0.5, y= 0.5, label=0
4 0 - Th[(i][j] = 3, x =0, y= 0.5, label=4
(continues on next page)
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(continued from previous page)

~N 3 oy O O U1 U1 Ul

- Th
- Th

NPFPONEFEFONME ODNR
|

7

// Hack to get vertex

Number o
Th (0)
old
Th (1)
old
Th(2)
old
Th(3)
old
Th (4)
old
Th(5)
old
Th (6)
old
Th(7)
old
Th(8)

old method:

// Metho
Triangle
Region 1

[i1[3] = 4, x = 0.5, y= 0.5, label=0
(41031 = 7, x = 0.5, y=1, label=3
[i1031 = 3, x = 0, y= 0.5, label=4
[i1[3] = 7, x = 0.5, y= 1, label=3
[i1[j]1 = 6, x = 0, y= 1, label=4
[i11[3] = 4, x = 0.5, y= 0.5, label=0
[i1[3] = 5, x =1, y= 0.5, label=2
[i1[(3] = 8, x =1, y= 1, label=3
[11[3] = 4, x = 0.5, y= 0.5, label=0
[i1[3] = 8, x =1, y= 1, label=3
(411031 = 7, x = 0.5, y= 1, label=3
coordinates

f vertices = 9
00 4

method: 0 0

0.5 01

method: 0.5 0

102

method: 1 0

0 0.5 4

method: 0 0.5

0.5 0.5 0

method: 0.5 0.5

1 0.5 2

method: 1 0.5

014

method: 0 1

0.51 3

method: 0.5 1

113
11

d to find the information of point (0.55,0.6)
number in point (0.55, 0.6): 7
abel in point (0.55, 0.6): 0

// Information of a triangle

Area of triangle 7:

Region o
Label of

0.125
f triangle 7: O
triangle 7: O

// Hack to get a triangle containing point x,
Point (0.55,0,6)

Triangle number = 7

Region number = 0

y or region number

// New method to get boundary information and mesh adjacent

Number of boundary element = 8
Boundary
Vertex 1
Triangle
Triangle
Adjacent triangle of the triangle 0 by edge 1
Corresponding edge = 2

// Print mesh connectivity

0 1 4, label O

, label
, label
, label
label
label

element 0 = 0
of boundary element 0 = 1
containing the boundary element 0 =

~

(G ROV N e
w W = O
~ 0N
oY b U1 W
~

O O O O O

0

edge number containing the boundary element 0 = 2

=1

(old method)

(continues on next page)
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(continued from previous page)

6 4 5 8, label
7 : 4 8 7, label
00 <=> 31, adj:
01 <=>1 2, adj:
02 <=>0 2, adj:
10 <=> 4 2, adj:
11 <=> 11, adj:
12 <=> 01, adj:
2 0 <=> 20, adj:
2 1 <=> 3 2, adj:
2 2 <=> 2 2, adj:
30 <=> 6 2, adj:
31 <=>0 0, adj:
32 <=> 21, adj:
4 0 <=> 7 1, adj:
4 1 <=> 5 2, adj:
4 2 <=> 1 0, adj:
50 <=>5 0, adj:
51 <=> 51, adj:
52 <=>4 1, adj:
6 0 <=> 6 0, adj:
6 1 <=> 72, adj:
6 2 <=> 3 0, adj:
70 <=> 7 0, adj:
7 1 <=> 4 0, adj:
72 <=> 61, adj:
0 01 , label

1 1 2, label

2 2 5, label

3 5 8 , label

4 6 7 , label

5 7 8 , label

6 : 0 3, label

7 : 3 6 , label
boundingbox:

xmin = 0, xmax =

0
0

H R ORPRRPOFOORREFRERREROROROROR &

~ N~ 0~

~

~

~

S W W NN R e
~

~

1,

triangle
triangle
triangle
triangle
triangle
triangle
triangle
triangle

0= 30 oD O

ymin = 0,

P O OO OoNIN

ymax = 1

The real characteristic function of a mesh Th is chi (Th) in 2D and 3D where:

chi(Th) (P)=1if PeTh

chi (Th) (P)=0if P ¢ Th

The keyword “triangulate”

FreeFEM is able to build a triangulation from a set of points. This triangulation is a Delaunay mesh of the convex

hull of the set of points. It can be useful to build a mesh from a table function.

The coordinates of the points and the value of the table function are defined separately with rows of the form: x y

f (x,y) inafile such as:

0.51387 0.175741 0.636237
0.308652 0.534534 0.746765
0.947628 0.171736 0.899823
0.702231 0.226431 0.800819
0.494773 0.12472 0.580623
(continues on next page)
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(a) Delaunay mesh of the convex hull of point set in file xy

(b) Isolvalue of table function

Fig. 3.5: Triangulate

(continued from previous page)

0.0838988 0.389647 0.456045

The third column of each line is left untouched by the t riangulate command. But you can use this third value to
define a table function with rows of the form: x y f (x,vy).

The following example shows how to make a mesh from the file xy £ with the format stated just above. The command
triangulate only uses the 1st and 2nd columns.

// Build the Delaunay mesh of the convex hull
mesh Thxy=triangulate ("xyf"); //points are defined by the first 2 columns of file_
- xyf’

// Plot the created mesh
plot (Thxy) ;

// Fespace
fespace Vhxy (Thxy, P1);
Vhxy fxy;

// Reading the 3rd column to define the function fxy
{
ifstream file("xyf");
real xx, VVy;
for(int i = 0; i < fxy.n; i++)
file >> xx >> yy >> fxy[][i]; //to read third row only.
//xx and yy are just skipped

}

// Plot
plot (fxy);

One new way to build a mesh is to have two arrays: one for the = values and the other for the y values.
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//set two arrays for the x's and y's
Vhxy xx=x, yy=y;

//build the mesh

mesh Th = triangulate(xx[], yvyI[]);

2d Finite Element space on a boundary

To define a Finite Element space on a boundary, we came up with the idea of a mesh with no internal points (called
empty mesh). It can be useful to handle Lagrange multipliers in mixed and mortar methods.

So the function empt ymesh removes all the internal points of a mesh except points on internal boundaries.

{
border a(t=0, 2xpi){x=cos(t); y=sin(t); label=1;}
mesh Th = buildmesh (a(20));
Th = emptymesh (Th);
plot (Th);

It is also possible to build an empty mesh of a pseudo subregion with emptymesh (Th, ssd) using the set of edges
from the mesh Th; an edge e is in this set when, with the two adjacent triangles e = t1 N ¢2 and ssd[T'1] # ssd[T2]
where ssd refers to the pseudo region numbering of triangles, they are stored in the int [int] array of size “the
number of triangles”.

{
mesh Th = square (10, 10);
int [int] ssd(Th.nt);
//build the pseudo region numbering
for(int i = 0; i < ssd.n; i++){

int iqg = i/2; //because 2 triangles per quad
int ix = 1g%10;

int iy = ig/10;

ssd[i] = 1 + (ix>=5) + (iy>=5)=*2;

}

//build emtpy with all edges $e=T1 \cap T2$ and $ssd[T1] \neq ssd[T2]$
Th = emptymesh (Th, ssd);

//plot

plot (Th);

savemesh (Th, "emptymesh.msh");

Remeshing

The command movemesh

Meshes can be translated, rotated, and deformed by movemesh; this is useful for elasticity to watch the deformation
due to the displacement ®(z, y) = (P1(x,y), P2(x,y)) of shape.

It is also useful to handle free boundary problems or optimal shape problems.

If Q) is triangulated as T}, (2), and @ is a displacement vector then ®(7},) is obtained by:

mesh Th = movemesh (Th, [Phil, Phi2]);
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(a) The empty mesh with boundary (b) An empty mesh defined from a pseudo region number-
ing of triangle

Fig. 3.6: Empty mesh

Sometimes the transformed mesh is invalid because some triangles have flipped over (meaning it now has a neg-
ative area). To spot such problems, one may check the minimum triangle area in the transformed mesh with
checkmovemesh before any real transformation.

For example:

) = x+kx*sin(yxm)/10)
Do(x,y) = y+ k=*cos(ym)/10)

for a big number k& > 1.

verbosity = 4;

// Parameters
real coef = 1;

// Mesh

border a(t=0, 1) {x=t; y=0; label=1;};

border b (t=0, 0.5){x=1; y=t; label=1;};

border c(t=0, 0.5){x=1-t; y=0.5; label=1;};

border d(t=0.5, 1) {x=0.5; y=t; label=1;};

border e (t=0.5, 1) {x=1-t; y=1; label=1;};

border f (t=0, 1) {x=0; y=1-t; label=1;};

mesh Th = buildmesh(a(6) + b(4) + c(4) + d(4) + e(4) + £(6));

plot (Th, wait=true, fill=true, ps="Lshape.eps");
// Function
func uu = sin(y*pi)/10;

func vv = cos(xxpi)/10;

// Checkmovemesh

real minT0 = checkmovemesh (Th, [x, yl); //return the min triangle area
while(1l){ // find a correct move mesh
real minT = checkmovemesh (Th, [xtcoefxuu, ytcoefxvv]);

if (minT > minT0/5) break; //if big enough
coef /= 1.5;

// Movemesh
Th = movemesh (Th, [xtcoefxuu, ytcoefxvv]);
plot (Th, wait=true, fill=true, ps="MovedMesh.eps");

3.2. Mesh Generation 109




FreeFEM Documentation, Release 4.2.1

(a) L-shape (b) Moved L-shape

Fig. 3.7: Move mesh

Note: Consider a function v defined on a mesh Th. A statement like Th=movemesh (Th. ..) does not change u
and so the old mesh still exists. It will be destroyed when no function uses it. A statement like v = wu redefines u on
the new mesh Th with interpolation and therefore destroys the old Th, if « was the only function using it.

Now, we give an example of moving a mesh with a Lagrangian function u defined on the moving mesh.

// Parameters
int nn = 10;
real dt = 0.1;

// Mesh
mesh Th = square (nn, nn);

// Fespace
fespace Vh(Th, P1);
Vh u=y;

// Loop
real t=0;
for (int i = 0; 1 < 4; i++){
t = ixdt;
Vh f=x+*t;
real minarea = checkmovemesh (Th, [x, y+f]);
if (minarea > 0) //movemesh will be ok
Th = movemesh (Th, [x, y+£f]);

cout << " Min area = " << minarea << endl;

[int] tmp(ul].n);

= ull; //save the value

= 0;//to change the FEspace and mesh associated with u
[1 = tmp; //set the value of u without any mesh update

(continues on next page)
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(continued from previous page)

plot (Th, u, wait=true);
}
// In this program, since u is only defined on the last mesh, all the
// previous meshes are deleted from memory.

The command hTriangle

This section presents the way to obtain a regular triangulation with FreeFEM.

For a set S, we define the diameter of .S by
diam(S) = sup{|x - y|; x, y € S}

The sequence {7}, } o of € is called regular if they satisfy the following:
1. limp o max{diam(T%)| T € Tn} =0

2. There is a number ¢ > 0 independent of & such that dig rE]T(le =20 forall Ty, € T;, where p(T}) are the
diameter of the inscribed circle of T}.

We put h(7r) = max{diam(T})| T € Tp}, which is obtained by

mesh Th = ...... ;

fespace Ph(Th, PO);

Ph h = hTriangle;

cout << "size of mesh = " << h[].max << endl;

The command adaptmesh

The function:
f(z,y) = 10.02° + y* + tan~'[/(sin(5.0y) — 2.0z)], € = 0.0001

sharply varies in value and the initial mesh given by one of the commands in the Mesh Generation part cannot reflect
its sharp variations.

// Parameters
real eps = 0.0001;

real h = 1;

real hmin = 0.05;

func £ = 10.0+x"3 + y"3 + hxatan2(eps, sin(5.0xy)-2.0%x);

// Mesh
mesh Th = square (5, 5, [-1+2xx, —-1+2xy]);

// Fespace
fespace Vh(Th,P1);
Vh fh = f;

plot (fh);

// Adaptmesh
for (int i = 0; i < 2; i++){
Th adaptmesh (Th, fh);
tfh = £; //old mesh is deleted

(continues on next page)
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plot (Th, fh, wait=true);

500 e 540

Initial First _ Second

mesh adaptation adaptation
el o 00

Fig. 3.8: 3D graphs for the initial mesh and 1st and 2nd mesh adaptations

FreeFEM uses a variable metric/Delaunay automatic meshing algorithm.

The command:

mesh ATh = adaptmesh (Th, f);

create the new mesh ATh adapted to the Hessian
D*f = (8°f/0x*, 8 [ |0xdy, 8% f |0y®)
of a function (formula or FE-function).

Mesh adaptation is a very powerful tool when the solution of a problem varies locally and sharply.

Here we solve the Poisson’s problem, when f = 1 and {2 is an L-shape domain.

Tip: The solution has the singularity /2, 7 = |& — 7| at the point + of the intersection of two lines bc and bd (see
Fig. 3.9a).

// Parameters
real error = 0.1;

// Mesh
border ba (t=0, 1) {x=t; y=0; label=1;}
border bb (t=0, 0.5) {x=1; y=t; label=1;}

(continues on next page)
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be

ba

(a) L-shape domain and its boundary name

(b) Final solution after 4-times adaptation

Fig. 3.9: Mesh adaptation

(continued from previous page)

border bc(t=0, 0.5){x=1-t; y=0.5; label=1l;}

border bd(t=0.5, 1) {x=0.5; y=t; label=1;}

border be (t=0.5, 1) {x=1-t; y=1; label=1;}

border bf (t=0, 1) {x=0; y=1-t; label=1;}

mesh Th = buildmesh(ba(6) + bb(4) + bc(4) + bd(4) + be(4) + bf(6));
// Fespace

fespace Vh(Th, P1l);

Vh u, v;

// Function
func £ = 1;

// Problem
problem Poisson(u, v, solver=CG, eps=1.e-0)
= 1int2d(Th) (
dx (u) *dx (v)
+ dy (u) xdy (v)
)
- 1int2d(Th) (
fxv
)

+ on(l, u=0);

// Adaptmesh loop

for (int 1 = 0; 1 < 4; i++){
Poisson;
Th = adaptmesh (Th, u, err=error);
error = error/2;

}

// Plot

(continues on next page)
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3% |plot (u);

To speed up the adaptation, the default parameter err of adaptmesh is changed by hand; it specifies the required
precision, so as to make the new mesh finer or coarser.

The problem is coercive and symmetric, so the linear system can be solved with the conjugate gradient method (pa-
rameter solver=CG) with the stopping criteria on the residual, here eps=1.e-6).

By adaptmesh, the slope of the final solution is correctly computed near the point of intersection of bc and bd as in
Fig. 3.9b.

This method is described in detail in [HECHT1998]. It has a number of default parameters which can be modified.

If £1, £2 are functions and thold, Thnew are meshes:
1 Thnew = adaptmesh (Thold, f1 ... );
2 Thnew = adaptmesh (Thold, f1,f2 ... 1);
3 Thnew = adaptmesh (Thold, [f1l,f2] ... );

The additional parameters of adaptmesh are:

See Reference part for more inforamtions

hmin= Minimum edge size. Its default is related to the size of the domain to be meshed and the precision of
the mesh generator.

hmax= Maximum edge size. It defaults to the diameter of the domain to be meshed.
err= P; interpolation error level (0.01 is the default).

errg= Relative geometrical error. By default this error is 0.01, and in any case it must be lower than 1//2.
Meshes created with this option may have some edges smaller than the ~hmin due to geometrical con-
straints.

nbvx= Maximum number of vertices generated by the mesh generator (9000 is the default).
nbsmooth= number of iterations of the smoothing procedure (5 is the default).

nb jacoby= number of iterations in a smoothing procedure during the metric construction, 0 means no smooth-
ing, 6 is the default.

ratio= ratio for a prescribed smoothing on the metric. If the value is O or less than 1.1 no smoothing is
done on the metric. 1.8 is the default. If ratio > 1.1, the speed of mesh size variations is bounded by
log(ratio).

Note: As ratio gets closer to 1, the number of generated vertices increases. This may be useful to
control the thickness of refined regions near shocks or boundary layers.

omega= relaxation parameter for the smoothing procedure. 1.0 is the default.
iso= If true, forces the metric to be isotropic. false is the default.

abserror= If false, the metric is evaluated using the criteria of equi-repartion of relative error. false
is the default. In this case the metric is defined by:

1 H P
. 2 )
err coef max(Cut0£f, |n))
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Otherwise, the metric is evaluated using the criteria of equi-distribution of errors. In this case the metric is
defined by:

_ 1 ] g
M= (err coef? sup(n) — inf(n)) '

e cutof f= lower limit for the relative error evaluation. 1.0e-6 is the default.

* verbosity= informational messages level (can be chosen between 0 and co). Also changes the value of
the global variable verbosity (obsolete).

* inquire= To inquire graphically about the mesh. false is the default.

* splitpbedge= If true, splits all internal edges in half with two boundary vertices. true is the default.

* maxsubdiv= Changes the metric such that the maximum subdivision of a background edge is bound by val.

Always limited by 10, and 10 is also the default.

¢ rescaling= if true, the function, with respect to which the mesh is adapted, is rescaled to be between 0 and 1.

true is the default.

* keepbackvertices= if true, tries to keep as many vertices from the original mesh as possible. true
is the default.

¢ IsMetrics= if true, the metric is defined explicitly. false is the default. If the 3 functions m11, m12, Mos
are given, they directly define a symmetric matrix field whose Hessian is computed to define a metric. If
only one function is given, then it represents the isotropic mesh size at every point.

For example, if the partial derivatives fxx (= 02 f/dz?%), fxy (= 0%f/0x0y), fyy (= 0 f/0y?) are
given, we can set Th = adaptmesh(Th, fxx, fxy, fyy, IsMetric=1, nbvx=10000,
hmin=hmin) ;

e power= exponent power of the Hessian used to compute the metric. 1 is the default.

* thetamax= minimum corner angle in degrees. Default is 10° where the corner is ABC and the angle is the
angle of the two vectors AB, BC, (0 imply no corner, 90 imply perpendicular corner, ...).

* splitin2=boolean value. If true, splits all triangles of the final mesh into 4 sub-triangles.

* metric= an array of 3 real arrays to set or get metric data information. The size of these three arrays
must be the number of vertices. So if m11,m12,m22 are three P1 finite elements related to the mesh
to adapt, you can write: metric=[ml1[],m12[],m22[]] (see file convect—apt .edp for a full
example)

* nomeshgeneration= If true, no adapted mesh is generated (useful to compute only a metric).

e periodic= Writing periodic=[[4,y], [2,y], [1,x], [3,x]]; builds an adapted periodic mesh.
The sample builds a biperiodic mesh of a square. (see periodic finite element spaces, and see the Sphere
example for a full example)

We can use the command adaptmesh to build a uniform mesh with a constant mesh size. To build a mesh with a

: 1o
constant mesh size equal to g5 try:

mesh Th=square (2, 2); //the initial mesh
plot (Th, wait=true, ps="square-0.eps");

Th = adaptmesh(Th, 1./30., IsMetric=1, nbvx=10000);
plot (Th, wait=true, ps="square-1l.eps");

Th = adaptmesh(Th, 1./30., IsMetric=1, nbvx=10000); //More the one time du to
Th = adaptmesh(Th, 1./30., IsMetric=1, nbvx=10000); //Adaptation bound “maxsubdiv="
plot (Th, wait=true, ps="square-2.eps");
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(a) Mesh of support the function P1 number 0, split in 5x5 (b) Mesh of support the function P1 number 6, split in 5x5

Fig. 3.11: Trunc

The command trunc

Two operators have been introduced to remove triangles from a mesh or to divide them. Operator t runc has the
following parameters:

* boolean function to keep or remove elements
* label= sets the label number of new boundary item, one by default.
¢ split=sets the level n of triangle splitting. Each triangle is split in n X n, one by default.

To create the mesh Th3 where all triangles of a mesh Th are split in 3 x 3, just write:

mesh Th3 = trunc(Th, 1, split=3);

The following example construct all “trunced” meshes to the support of the basic function of the space Vh
(cf. abs (u) >0), split all the triangles in 5x 5, and put a label number to 2 on a new boundary.

// Mesh
mesh Th = square (3, 3);

// Fespace
fespace Vh(Th, P1);
Vh u=0;

// Loop on all degrees of freedom
int n=u.n;
for (int i = 0; 1 < n; i++){
ullli] = 1; // The basis function 1
plot (u, wait=true);
mesh Shl = trunc(Th, abs(u)>1.e-10, split=5, label=2);
plot (Th, Shl, wait=true, ps="trunc"+i+".eps");
ull[i] = 0; // reset

The command change

This command changes the label of elements and border elements of a mesh.

Changing the label of elements and border elements will be done using the keyword change. The parameters for this
command line are for two dimensional and three dimensional cases:

e refe=is an array of integers to change the references on edges

3.2. Mesh Generation 117




FreeFEM Documentation, Release 4.2.1

* reft=is an array of integers to change the references on triangles
e label=is an array of integers to change the 4 default label numbers
* region=is an array of integers to change the default region numbers

e renumv= is an array of integers, which explicitly gives the new numbering of vertices in the new mesh. By
default, this numbering is that of the original mesh

* renumt= is an array of integers, which explicitly gives the new numbering of elements in the new mesh,
according the new vertices numbering given by renumv=. By default, this numbering is that of the original
mesh

* flabel=is an integer function given the new value of the label
* fregion=is an integer function given the new value of the region
* rmledges= is an integer to remove edges in the new mesh, following a label

e rmInternalEdges=is aboolean, if equal to true to remove the internal edges. By default, the internal edges
are stored

These vectors are composed of n; successive pairs of numbers O, N where n; is the number (label or region) that we
want to change. For example, we have :
label =[Oy, Ny, ..., On,, Ny,]

) 3.1
region = [O1, Ny, ...,Op,, Ny, ]

An application example is given here:

// Mesh
mesh Thl = square (10, 10);
mesh Th2 = square (20, 10, [x+1, y]1);

int[int] r1=[2,0];
plot (Thl, wait=true);

Thl = change (Thl, label=rl); //change the label of Edges 2 in 0.
plot (Thl, wait=true);

// boundary label: 1 -> 1 bottom, 2 -> 1 right, 3->1 top, 4->1 left boundary label 1is_
-1

int[int] re=[1,1, 2,1, 3,1, 4,1]

Th2=change (Th2, refe=re) ;

plot (Th2,wait=1) ;

The command splitmesh

Another way to split mesh triangles is to use splitmesh, for example:

// Mesh

border a(t=0, 2xpi) {x=cos(t); y=sin(t); label=1;}
mesh Th = buildmesh (a(20));

plot (Th, wait=true, ps="NotSplittedMesh.eps");

// Splitmesh
Th = splitmesh(Th, 1 + 5« (square(x-0.5) + y*y));
plot (Th, wait=true, ps="SplittedMesh.eps");
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(b) AIll left mesh triangle is split conformaly in
int (1+5% (square (x-0.5) +yxy) "2 triangles

(a) Initial mesh

Fig. 3.12: Split mesh

Meshing Examples

Tip: Two rectangles touching by a side

border a (t=0, 1) {x=t; y=0;};

border b (t=0, 1) {x=1; y=t;};

border c(t=1, 0){x=t; y=1;1};

border d(t=1, 0){x=0; y=t;};

border cl(t=0, 1) {x=t; y=1;1};

border e (t=0, 0.2){x=1; y=1+t;};

border f (t=1, 0){x=t; y=1.2;};

border g(t=0.2, 0){x=0; y=1+t;};

int n=1;

mesh th = buildmesh(a(10+n) + b(10+n) + c(10*n) + d(10*n));
mesh TH = buildmesh(cl(10xn) + e(5+n) + f£(10xn) + g(5%n));
plot (th, TH, ps="TouchSide.esp");

Tip: NACAO0012 Airfoil

border upper (t=0, 1) {x=t; y=0.17735xsgrt(t) - 0.075597xt - 0.212836+(t"2) + 0.
—17363x(£"3) — 0.06254x(t"4);}

border lower (t=1, 0){x = t; y=-(0.17735%sqgrt (t)
—17363%(£"3) — 0.06254x(t"4));}
border c(t=0, 2xpi) {x=0.8xcos(t)
mesh Th = buildmesh (c(30) + upper (35)

plot (Th, ps="NACA00l2.eps", bw=true);

-0.075597«t - 0.212836%(t"2) + O.

+ 0.5; y=0.8xsin(t);}
+ lower (35));

Tip: Cardioid
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real b = 1, a = b;

border C (t=0, 2+pi) {x=(at+b)*cos(t)-bxcos((atb)*t/b); y=(atb)x*sin(t)-bxsin((a+tb)x*t/b);}
mesh Th = buildmesh (C(50));

plot (Th, ps="Cardioid.eps", bw=true);

VAVATATATs7:

\/)
"m AR

A6
AR

Fig. 3.15: Domain with Cardioid curve boundary

Tip: Cassini Egg

border C(t=0, 2xpi) {x=(2xcos(2+t)+3)*cos(t); y=(2+cos(2xt)+3)*sin(t);}
mesh Th = buildmesh (C(50));
plot (Th, ps="Cassini.eps", bw=true);

Fig. 3.16: Domain with Cassini egg curve boundary

Tip: By cubic Bezier curve

// A cubic Bezier curve connecting two points with two control points
func real bzi(real p0O, real pl, real gl, real g2, real t){

(continues on next page)
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(continued from previous page)

return pOx (1-t) "3 + gl*3%(1l-t)" 2+t + g2+3*x(1l-t)*t"2 + plx*t"3;
}

real[int] pOO = [0, 1], pOl1 = [O, -1], 90O = [-2, 0.1], g0l = [-2, -0.5];
real[int] pll = [1,-0.9], gl0 = [0.1, -0.95], gll1=[0.5, 11;

real[int] p21 = [2, 0.7], g20 = [3, -0.4], 921 = [4, 0.5];

real[int] g30 = [0.5, 1.1], 931 = [1.5, 1.2];

border G1 (t=0, 1) {

x=bzi (p00[0], p01[0], 9O00[0], gO01[0], t);
y=bzi(p00[1], pO01[1], gO00[1], gO1([1], t);
}
border G2 (t=0, 1) {
x=bzi (p01[0], pl1[0], gl0[0], gll1[O0], t);
y=bzi(p01[1], pl1([1], glO[1], gll([1l], t);
}

border G3 (t=0, 1) {
x=bzi(pl1[0], p21[0], g20[0], 921[0], t);
y=bzi(pll[1], p21[1], 920([1], g21[1], t);

}
border G4 (t=0, 1) {
x=bzi (p21[0], p00[0], g30[0], g31[0], t);
y=bzi(p21[1], p00[1], g30([1], g31[1], t);
}
int m = 5;
mesh Th = buildmesh (Gl (2+m) + G2(m) + G3(3+*m) + G4 (m));
plot (Th, ps="Bezier.eps", bw=true);

Fig. 3.17: Boundary drawn by Bezier curves

Tip: Section of Engine

real a = 6., b =1., ¢ = 0.5;

border L1 (t=0, 1) {x=-a; y=1l+b-2x(1l+b)x*t;}

border 12 (t=0, 1) {x=-a+2+axt; y=-1-bx(x/a)*(x/a)~*(3-2+abs(x)/a );}
border L3 (t=0, 1) {x=a; y=-1-b+(l+b)xt; }

border L4 (t=0, 1) {x=a-ax*t; y=0;}

border 15 (t=0, pi) {x=-cxsin(t)/2; y=c/2-cxcos(t)/2;}

border L6(t=0, 1) {x=ax*t; y=c;}

border L7 (t=0, 1) {x=a; y=ct+(lt+b-c)*t;}

border 18 (t=0, 1) {x=a-2+axt; y=1l+bx(x/a)~*(x/a)* (3-2+abs(x)/a);}

(continues on next page)
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mesh Th =
—L8(30));
plot (Th, ps="Engine.eps",

buildmesh (L1 (8)

+ L2(26)

bw=true) ;

+ L3(8)

+

L4 (20)

+ L5(8) + L6(30) + L7(8) +
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Fig. 3.18: Section of Engine
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po2) {(x=-1+t; y=-1;
y=d;
y=d-t;
o D) {x=-t; y=-d;}
y=—1+t;}
r 2){x=1-t; y=1;}

+ L2(n/2)
bw=true) ;

+ B(n)

+ Cl(n)

+ C2(3) + C3(n) + R(n) + T(n));

(-ca

,cb)

L1
/¢

(tip,d)

C3
L2

(tip,-d)

(ca,cb)

B

Fig. 3.19: Domain with U-shape channel changed by d

Tip: Domain with V-shape cut
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real dAg = 0.02; //angle of V-shape

border C(t=dAg, 2xpi-dAg) {x=cos(t); y=sin(t);};

real[int] pa(2), pb(2), pc(2);

pal0] = cos (dAg);

pall]l = sin(dAg);

pb[0] = cos (2xpi-dAg);

pb[l] = sin(2+pi-dAg);

pc[0] = 0;

pcll] = 0;

border segl (t=0, 1) {x=(1l-t)+pb[0]+txpc[0]; y=(1-t)*pb[l]l+txpcll];};
border seg2(t=0, 1) {x=(1-t)*pc[0]l+txpal0]; y=(1-t)*pc[ll+txpalll;};
mesh Th = buildmesh (segl (20) + C(40) + seg2(20));

plot (Th, ps="V-shape.eps", bw=true);

seg1

FAETET RV LY

ANAN

C seg2

Fig. 3.20: Domain with V-shape cut changed by dAg

Tip: Smiling face

real d=0.1; int m = 5; real a = 1.5, b =2, ¢ = 0.7, e = 0.01;

border F (t=0, 2xpi) {x=axcos(t); y=bxsin(t);}
border E1 (t=0, 2xpi) {x=0.2xcos(t)-0.5; y=0.2xsin(t)+0.5;}
border E2 (t=0, 2xpi) {x=0.2xcos(t)+0.5; y=0.2xsin(t)+0.5;}

func real st (real t) {
return sin(pixt) - pi/2;
}
border Cl(t=-0.5, 0.5) {x=(1-d)+*c*cos(st(t)); y=(1-d)+*cxsin(st(t));}
border C2(t=0, 1) {x=((1l-d)+d*t)+*cxcos(st(0.5)); y=((1l-d)+d*t)*cxsin(st(0.5));}
border C3(t=0.5, -0.5) {x=cxcos(st(t)); y=cxsin(st(t));}
border C4 (t=0, 1) {x=(l-dxt)xcxcos(st(-0.5)); y=(l-dxt)*cxsin(st(-0.5));}
border CO(t=0, 2xpi) {x=0.1lxcos(t); y=0.1lxsin(t);}

mesh Th=puildmesh (F (10xm) + Cl(2xm) + C2(3) + C3(2xm) + C4(3)
+ CO(m) + E1(-2+m) + E2(-2%m));

(continues on next page)
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(continued from previous page)

plot (Th, ps="SmileFace.eps", bw=true);

Fig. 3.21: Smiling face (Mouth is changeable)

Tip: 3 points bending

// Square for Three—-Point Bend Specimens fixed on Fixl, Fix2

// It will be loaded on Load.

real a = 1, b =5, ¢ = 0.1;

int n = 5, m = b*n;

border Left (t=0, 2xa) {x=-b; y=a-t;}

border Botl (t=0, b/2-c) {x=-b+t; y=-a;}

border Fixl (t=0, 2+*c){x=-b/2-c+t; y=-a;}

border Bot2 (t=0, b-2xc) {x=-b/2+c+t; y=-a;}

border Fix2 (t=0, 2+*c){x=b/2-c+t; y=-a;}

border Bot3(t=0, b/2-c) {x=b/2+c+t; y=-a;}

border Right (£t=0, 2xa) {x=b; y=-a+tt;}

border Topl (t=0, b-c) {x=b-t; y=a;}

border Load(t=0, 2*c) {x=c-t; y=a;}

border Top2 (t=0, b-c) {x=-c-t; y=a;}

mesh Th = buildmesh (Left (n) + Botl(m/4) + Fix1(5) + Bot2(m/2)
+ Fix2(5) + Bot3(m/4) + Right(n) + Topl(m/2) + Load(l0) + Top2(m/2));

plot (Th, ps="ThreePoint.eps", bw=true);
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(-b,a) _ Top2 ~ Loadtgp1
P Ve

W

Left Right

Bot1 © Bot2 ' Bot3(P-a)
" Fix1 Fix2—

Fig. 3.22: Domain for three-point bending test

3.2.2 The type mesh3 in 3 dimension

Note: Up to the version 3, FreeFEM allowed to consider a surface problem such as the PDE is treated like boundary
conditions on the boundary domain (on triangles describing the boundary domain). With the version 4, in particular
4.2.1, a completed model for surface problem is possible, with the definition of a surface mesh and a surface problem
with a variational form on domain ( with triangle elements) and application of boundary conditions on border domain
(describing by edges). The keywords to define a surface mesh is meshS.

3d mesh generation

Note: For 3D mesh tools, put load "msh3" at the top of the .edp script.

The command cube

The function cube like its 2d function square is a simple way to build cubic objects, it is contained in plugin msh3
(import with 1load "msh3").

The following code generates a 3 x 4 x 5 grid in the unit cube [0, 1]3.

i |mesh3 Th = cube (3, 4, 5);

By default the labels are :

1. facey =0,
2. facex =1,
3. facey =1,
4. facex =0,
5. face z = 0,
6. facez =1

and the region number is 0.

A full example of this function to build a mesh of cube | — 1, 1[> with face label given by (iz+4x* (iy+1)+16x%(iz+1))
where (ix, iy, iz) are the coordinates of the barycenter of the current face, is given below.
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load "msh3"

int[int] 16 = [37, 42, 45, 40, 25, 571;
int rl1l = 11;
mesh3 Th = cube (4, 5, 6, [x*x2-1, y*x2-1, z+x2-1], label=16, flags =3, region=rll);

cout << "Volume = " << Th.measure << ", border area = " << Th.bordermeasure << endl;
int err = 0;
for(int i = 0; i < 100; ++1i){

)
real s = int2d(Th,i) (1.);
real sx = int2d(Th, i) (x);
)
)

’

real sy int2d(Th, 1) (y
real sz = int2d(Th, i) (z

’

if (s){
int ix = (sx/s+1.5);
int iy = (sy/s+1.5);
int iz = (sz/s+1.5);
int ii = (ix + 4x(iy+1l) + 16x(iz+1) );
//value of ix,iy,iz => face min 0, face max 2, no face 1
cout << "Label = " << i1 << ", 5 =" << 5 << " " o<< ix << iy << iz << "o "o<<
—1i << endl;
if( i !'= ii ) err++;

}
real volrll = int3d(Th,r11) (1.);

cout << "Volume region = " << 11 << ": " << volrll << endl;
if((volrll - Th.measure )>1e-8) err++;

plot (Th, fill=false);

cout << "Nb err = " << err << endl;

assert (err==0) ;

The output of this script is:

Enter: BuildCube: 3
kind = 3 n tet Cube = 6 / n slip 6 19
Cube nv=210 nt=720 nbe=296
Out: BuildCube
Volume = 8, border area = 24
Label = 25, s = 4 110 : 25

Label = 37, s =4 101 : 37
Label = 40, s = 4 011 : 40
Label = 42, s = 4 211 : 42
Label = 45, s = 4 121 : 45
Label = 57, s = 4 112 : 57
Volume region = 11: 8

Nb err = 0

The command buildlayers

This mesh is obtained by extending a two dimensional mesh in the z-axis.

The domain 34 defined by the layer mesh is equal to Q34 = Qaq X [2min, zmazx] where a4 is the domain defined
by the two dimensional meshes. zmin and zmax are functions of 25,4 in R that defines respectively the lower surface
and upper surface of 234.
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Fig. 3.23: The 3D mesh of function cube (4, 5, 6, flags=3)

upper surface

T

Middle surface

/

Lower surfy

Fig. 3.24: Example of Layer mesh in three dimensions.
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For a vertex of a two dimensional mesh V;?¢ = (z;,;), we introduce the number of associated vertices in the z—axis
M, + 1.

We denote by M the maximum of M; over the vertices of the two dimensional mesh. This value is called the number
of layers (if Vi, M; = M then there are M layers in the mesh of Q3,). V;>? generated M + 1 vertices which are
defined by:

Vi=0,...,M, V= (2, 0:(z;))
where (2; ;) j—0,...,;s are the M + 1 equidistant points on the interval [zmin(V;?), zmax(V24)]:

zmaz (V) — zmin(V2%)
M

2 = j oo+ zmin(V), da =

The function 6;, defined on [zmin(V;*4), zmax(V;2?)], is given by:

i e (12d
0:(z) = i.0 ¥fz zmin(V2%),
0i ifz €]0;5-1,0i 5],
with (0; ;) j—o.... ., are the M; + 1 equidistant points on the interval [zmin(V2?), zmax(V;24))].

Set a triangle K = (V3%, V24, V.2%) of the two dimensional mesh. K is associated with a triangle on the upper surface

(resp. on the lower surface) of layer mesh:
3d 3d 3d 3d_ 1/3d 1/3d
(Vﬂ,Mv ‘/;2,1»1’ ViS,JW) (resp. (Vm,m ‘/i2,07 ‘/;3,0))-

Also K is associated with M volume prismatic elements which are defined by:

. _ (1/3d 173d 1,3d 71,3d 3d 3d
Vj=0,...,M, H; = (Vﬂ,jaViz,jaVis,jvvﬂ,j-«-pViz,j+1avi3,j+1)-

Theses volume elements can have some merged point:
* 0 merged point : prism
* 1 merged points : pyramid
* 2 merged points : tetrahedra
* 3 merged points : no elements

The elements with merged points are called degenerate elements. To obtain a mesh with tetrahedra, we decompose the
pyramid into two tetrahedra and the prism into three tetrahedra. These tetrahedra are obtained by cutting the quadrilat-
eral face of pyramid and prism with the diagonal which have the vertex with the maximum index (see [HECHT1992]
for the reason of this choice).

The triangles on the middle surface obtained with the decomposition of the volume prismatic elements are the triangles
generated by the edges on the border of the two dimensional mesh. The label of triangles on the border elements and
tetrahedra are defined with the label of these associated elements.

The arguments of buildlayers is a two dimensional mesh and the number of layers M.
The parameters of this command are:

* zbound= [zmin, zmaz]| where zmin and zmax are functions expression. Theses functions define the
lower surface mesh and upper mesh of surface mesh.

* coef= A function expression between [0,1]. This parameter is used to introduce degenerate element in mesh.
The number of associated points or vertex V;>¢ is the integer part of coe f (V;24) M.
* region= This vector is used to initialize the region of tetrahedra.

This vector contains successive pairs of the 2d region number at index 2¢ and the corresponding 3d region
number at index 2¢ + 1, like change.
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e labelmid= This vector is used to initialize the 3d labels number of the vertical face or mid face from the 2d
label number.

This vector contains successive pairs of the 2d label number at index 2¢ and the corresponding 3d label number
atindex 27 + 1, like change.

e labelup= This vector is used to initialize the 3d label numbers of the upper/top face from the 2d region
number.

This vector contains successive pairs of the 2d region number at index 27 and the corresponding 3d label number
at index 2¢ + 1, like change.

* labeldown= Same as the previous case but for the lower/down face label.

Moreover, we also add post processing parameters that allow to moving the mesh. These parameters correspond to
parameters transfo, facemerge and ptmerge of the command line movemesh.

The vector region, labelmid, labelup and labeldown These vectors are composed of n; successive pairs of
number O;, N; where n; is the number (label or region) that we want to get.

An example of this command is given in the Build layer mesh example.

Tip: Cube

//Cube.idp

load "medit"

load "msh3"

func mesh3 Cube (int[int] &NN, reall[int, int] &BB, int[int, int] &L) {
real x0 = BB(0,0), x1 = BB(0,1);
real y0 = BB(1,0), yl = BB(1,1);
real z0 = BB(2,0), z1 = BB(2,1);

int nx = NN[O], ny = NN[1], nz = NN[2];

// 2D mesh
mesh Thx = square(nx, ny, [x0+(x1-x0)*x, yO0+(yl-v0)=*yl);

// 3D mesh

int[int] rup = [0, L(2,1)], rdown=[0, L(2,0)];

int[int] rmid=[1, L(1,0), 2, L(O,1), 3, L(1,1), 4, L(0,0)1;
mesh3 Th = buildlayers (Thx, nz, zbound=[z0,zl],
labelmid=rmid, labelup = rup, labeldown = rdown);

return Th;

Tip: Unit cube

include "Cube.idp"

int[int] NN = [10,10,10]; //the number of step in each direction

real [int, int] BB = [[0,1],([0,11,[0,111; //the bounding box

int [int, int] L = [[1,2],1[3,41,1[5,61]1; //the label of the 6 face left,right, front,_
—back, down, right

mesh3 Th = Cube (NN, BB, L);

medit ("Th", Th);
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Fig. 3.25: The mesh of a cube made with cube . edp

Tip: Cone

An axisymtric mesh on a triangle with degenerateness

load "msh3"
load "medit"

// Parameters
real RR = 1;
real HH = 1;

int nn=10;

// 2D mesh

border Taxe (t=0, HH) {x=t; y=0; label=0;}
border Hypo (t=1, 0) {x=HHxt; y=RRxt; label=1;}
border Vert (t=0, RR) {x=HH; y=t; label=2;}

mesh Th2 = buildmesh (Taxe (HHxnn) + Hypo (sgrt (HH*xHH+RR*RR) *nn) + Vert (RR*nn));

plot (Th2, wait=true);

// 3D mesh

real h = 1./nn;

int MaxLayersT = (int (2+pi*RR/h) /4)*4;//number of layers
real zminT = 0;

real zmaxT = 2+pi; //height 2xpi

func fx = y*cos(z);

func fy = y*sin(z);

func fz = x;

int[int] rl1T = [0,0], r2T = [0,0,2,2], rd4T = [0,2];
//trick function:

(continues on next page)
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(continued from previous page)

//The function defined the proportion
//of number layer close to axis with reference MaxLayersT

func deg = max (.01, y/max(x/HH, 0.4)/RR);
mesh3 Th3T = buildlayers(Th2, coef=deg, MaxLayersT,
zbound=[zminT, zmaxT], transfo=[fx, fy, fz],

facemerge=0, region=r1T, labelmid=r2T);

medit ("cone™, Th3T);

Fig. 3.26: The mesh of a cone made with cone . edp

Tip: Buildlayer mesh

load "msh3"
load "TetGen"
load "medit"

// Parameters

int C1 = 99;
int C2 = 98;
// 2D mesh
border CO01 (t=0, pi) {x=t; y=0; label=1;}
border C02 (t=0, 2+pi){ x=pi; y=t; label=1;}
border CO03(t=0, pi){ x=pi-t; y=2+pi; label=1;}
border C04 (t=0, 2xpi){ x=0; y=2+pi-t; label=1;}
border C11(t=0, 0.7){x=0.5+t; y=2.5; label=Cl;}
border C12(t=0, 2){x=1.2; y=2.5+t; label=Cl;}
border C13(t=0, 0.7){x=1.2-t; y=4.5; label=Cl;}
border C14 (t=0, 2){x=0.5; y=4.5-t; label=Cl;}
border C21 (t=0, 0.7) {x=2.3+t; y=2.5; label=C2;}
border C22(t=0, 2){x=3; y=2.5+t; label=C2;}
border C23(t=0, 0.7) {x=3-t; y=4.5; label=C2;}
border C24 (t=0, 2){x=2.3; y=4.5-t; label=C2;}
(continues on next page)
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(continued from previous page)

mesh Th = buildmesh(C01(10) + C02(10) + CO03(10) + C04(10)
+ Cl1(5) + Cl2(5) + C13(5) + Cl4(5)
+ C21(-5) + C22(-5) + C23(-5) + C24(-5));

mesh Ths = buildmesh(C01(10) + C02(10) + CO3(10) + C04(10)
+ Cl1l(5) + Cl2(5) + C1l3(5) + Cl4(5));

// Construction of a box with one hole and two regions
func zmin = 0.;

func zmax = 1.;

int MaxLayer = 10;

func XX = x*cos(y);

func YY = xxsin(y);
func 7272 = z;
int[int] rl1 = [0, 41], r2 = [98, 98, 99, 99, 1, 56];

int[int] r3 [4, 121; //the triangles of uppper surface mesh
//generated by the triangle in the 2D region
//of mesh Th of label 4 as label 12
int[int] r4 = [4, 45]; //the triangles of lower surface mesh
//generated by the triangle in the 2D region

//of mesh Th of label 4 as label 45.
mesh3 Th3 = buildlayers (Th, MaxLayer, zbound=[zmin, zmax], region=rl,
labelmid=r2, labelup=r3, labeldown=r4);
medit ("box 2 regions 1 hole", Th3);

// Construction of a sphere with TetGen

func XX1 = cos(y)*sin(x);
func YY1l = sin(y)*sin(x);
func 7721 = cos(x);

real[int] domain = [0., 0., 0., 0, 0.00171;

string test = "paACQ";

cout << "test = " << test << endl;

mesh3 Th3sph = tetgtransfo(Ths, transfo=[XX1, YY1, zz1],
switch=test, nbofregions=1, regionlist=domain);

medit ("sphere 2 regions", Th3sph);

Remeshing

Note: if an operation on a mesh3 is performed then the same operation is applyed on its surface part (its meshS
associated)

The command change

This command changes the label of elements and border elements of a mesh. It’s the equivalent command in 2d mesh
case.
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Changing the label of elements and border elements will be done using the keyword change. The parameters for this
command line are for two dimensional and three dimensional cases:

* reftet=is a vector of integer that contains successive pairs of the old label number to the new label number.
* refface=isa vector of integer that contains successive pairs of the old region number to new region number.
* flabel=is an integer function given the new value of the label.

* fregion=is an integer function given the new value of the region.

* rmInternalFaces=is a boolean, equal true to remove the internal faces.

e rmlfaces=is a vector of integer, where triangle’s label given are remove of the mesh

These vectors are composed of n; successive pairs of numbers O, N where n; is the number (label or region) that we
want to change. For example, we have:

label = [Olava ~~~7OnmNn1,]
region = [O1, Ny, ...,Op,, Ny, |

An example of use:

// Mesh
mesh3 Thl = cube (10, 10);
mesh3 Th2 cube (20, 10, [x+1, y,z]);

int[int] r1=[2,0];
plot (Thl, wait=true);

Thl = change (Thl, label=rl); //change the label of Edges 2 in 0.
plot (Thl, wait=true);

// boundary label: 1 -> 1 bottom, 2 -> 1 right, 3->1 top, 4->1 left boundary label 1is_
-1

int [int] re=[1,1, 2,1, 3,1, 4,1]

Th2=change (Th2, refe=re) ;

plot (Th2,wait=1) ;

The command trunc

This operator have been introduce to remove peace of mesh and split all element or for a particular label element The
three named parameter - boolean function to keep or remove elements - split= sets the level n of triangle splitting.
each triangle is splitted in n X n ( one by default) - freefem:label= sets the label number of new boundary item (1 by
default)

An example of use

load "msh3"// buildlayer
load "medit"// medit
int nn=8;
mesh Th2=square (nn,nn);
fespace Vh2 (Th2,P2);
Vh2 ux,uz,p2;
int[int] rup=[0,2], // upper face 2d region 0 -> 3d label 2
rdown=[0,1], // lower face 2d region 0 —-> 3d label 1
rmid=[1,1, // vert face. 2d label 1 -> 3d label 1
2,1, // vert face. 2d label 2 -> 3d label 1
3,1, // wvert face. 2d label 3 -> 3d label 1

(continues on next page)
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(continued from previous page)

4,17, // vert face. 2d label 4 -> 3d label 1
rtet=[0,0]; // 2d region 0-> 3d region 0
real zmin=0, zmax=1;

mesh3 Th=buildlayers (Th2,nn,
zbound=[zmin, zmax],
region=rtet, // region number
labelmid=rmid, // 4 vert. faces labels number
labelup = rup,
labeldown = rdown) ;
// remove the small cube S$]1/2,1["25
Th= trunc(Th, ((x<0.5) | (y< 0.5)| (z<0.5)), split=3, label=3);
medit ("cube", Th);

The command movemesh3

3D meshes can be translated, rotated, and deformed using the command line moveme sh as in the 2D case (see section
movemesh). If € is tetrahedrized as T (2), and ®(z, y) = (P1(z, y, 2), P2(x,y, z), P3(x, y, 2)) is the transformation
vector then ®(7},) is obtained by:

mesh3 Th = movemesh (Th, [Phil, Phi2, Phi3], ...);
mesh3 Th = movemesh3 (Th, transfo=[Phil, Phi2, Phi3], ...); (syntax with transfo=)

The parameters of movemesh in three dimensions are:
* transfo= sets the geometric transformation ®(z,y) = (P1(x,y, ), P2(x, y, 2), P3(z,y, 2))
* region= sets the integer labels of the tetrahedra. 0 by default.
* label= sets the labels of the border faces. This parameter is initialized as the label for the keyword change.

* facemerge= An integer expression. When you transform a mesh, some faces can be merged. This parame-
ter equals to one if the merges’ faces is considered. Otherwise it equals to zero. By default, this parameter
is equal to 1.

* ptmerge = A real expression. When you transform a mesh, some points can be merged. This parameter is
the criteria to define two merging points. By default, we use

ptmerge = le — 7 Vol(B),

where B is the smallest axis parallel boxes containing the discretion domain of €2 and Vol(B) is the volume of
this box.

* orientation = An integer expression equal 1, give the oientation of the triangulation, elements must be in
the reference orientation (counter clock wise) equal -1 reverse the orientation of the tetrahedra

Note: The orientation of tetrahedra are checked by the positivity of its area and automatically corrected during the
building of the adjacency.

An example of this command can be found in the Poisson’s equation 3D example.

load "medit"
include "cube.idp"
int[int] Nxyz=[20,5,51;

(continues on next page)
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real [int,int] Bxyz=[[0.,5.1,[0.,1.1,[0.,1.11;
int [int,int] Lxyz=[[1,2]1,12,21,12,2]11;

real E = 21.5e4;

real sigma = 0.29;

real mu = E/ (2% (1l+sigma));

real lambda = Exsigma/ ((l+sigma) * (1-2+sigma));
real gravity = -0.05;

real sqgrt2=sqrt(2.);

mesh3 Th=Cube (Nxyz,Bxyz,Lxyz) ;
fespace Vh(Th, [P1,P1,P1]);
Vvh [ul,u2,u3], [vl,v2,v3];

macro epsilon(ul,u2,u3) [dx (ul),dy (u2),dz (u3), (dz (u2) +dy (u3)) /sqrt2, (dz (ul) +dx (u3) )/
—sqrt2, (dy (ul) +dx (u2)) /sqgrt2] // EOM
macro div(ul,u2,u3) ( dx(ul)-+dy(u2)+dz(u3) ) // EOM

solve Lame ([ul,u2,u3], [vl,v2,v3])=
int3d(Th) (
lambda*div (ul,u2,u3) «div(vl,v2,v3)
+2.+mux ( epsilon(ul,u2,u3) '+xepsilon(vl,v2,v3) )
)
— 1int3d(Th) (gravity=*v3)
+ on(l,ul=0,u2=0,u3=0);

real dmax= ul[] .max;
real coef= 0.1/dmax;

int[int] ref2=[1,0,2,0]; // array
mesh3 Thm=movemesh (Th, [x+ulx+coef, y+tu2+coef, z+u3+coef], label=ref?2);
// mesh3 Thm=movemesh3 (Th, transfo=[x+ul*coef, y+ul*coef, z+u3+coef], label=ref2); older,

—syntax
Thm=change (Thm, label=ref2) ;
plot (Th, Thm, wait=1,cmm="coef amplification = "+coef );

movemesh doesn’t use the prefix tranfo= [.,.,.], the geometric transformation is directly given by [.,.,.] in the arguments
list

The command extract

This command offers the possibility to extract a boundary part of a mesh3

* refface,is a vector of integer that contains a list of triangle face references, where the extract function must
be apply.

* label, is a vector of integer that contains a list of tetrahedra label

load"msh3"
int nn = 30;
int[int] labs = [1, 2, 2, 1, 1, 21; // Label numbering

mesh3 Th = cube (nn, nn, nn, label=labs);

// extract the surface (boundary) of the cube
int[int] llabs = [1, 2];

meshS ThS = extract (Th,label=11labs);
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The command buildSurface

This new function allows to build the surface mesh of a volume mesh, under the condition the surface is the boundary of
the volume. By definition, a mesh3 is defined by a list of vertices, tetrahedron elements and triangle border elements.
buildSurface function create the meshS corresponding, given the list vertices which are on the border domain, the
triangle elements and build the list of edges. Remark, for a closed surface mesh, the edges list is empty.

The command movemesh23

A simple method to tranform a 2D mesh in 3D Surface mesh. The principe is to project a two dimensional domain in
a three dimensional space, 2d surface in the (x,y,z)-space to create a surface mesh 3D, meshS.

Warning: Since the release 4.2.1, the FreeFEM function movemesh23 returns a meshS type.

This corresponds to translate, rotate or deforme the domain by a displacement vector of this form ®(x,y) =
(®1(z,y), P2(x,y), P3(z,v)).

The result of moving a two dimensional mesh Th2 by this three dimensional displacement is obtained using:

++meshS++ Th3 = movemesh23(Th2, transfo=[Phi (1), Phi(2), Phi(3)1);

1

The parameters of this command line are:

e transfo= [®1, ®2, &3] sets the displacement vector of transformation ®(x,y) =
[@1(x,y), P2(z,y), P3(z, y)].

e label= sets an integer label of triangles.

* orientation= sets an integer orientation to give the global orientation of the surface of mesh. Equal 1, give
a triangulation in the reference orientation (counter clock wise) equal -1 reverse the orientation of the triangles

* ptmerge= A real expression. When you transform a mesh, some points can be merged. This parameter is the
criteria to define two merging points. By default, we use

ptmerge = le — 7 Vol(B),

where B is the smallest axis, parallel boxes containing the discretized domain of €2 and Vol(B) is the volume
of this box.

We can do a “gluing” of surface meshes using the process given in Change section. An example to obtain a three
dimensional mesh using the command line tetg and movemesh23 is given below.

1 | load "msh3"
2 | load "tetgen"

4 | // Parameter
5 |real x10 = 1.
6 |real x11 = 2.;
7 |real y10 = 0

8 |real yll = 2

10 | func ZZIlmin = 0;

1 | func ZZlmax = 1.5;
2 | func XX1 = x;

13 | func YY1 = y;

(continues on next page)
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(continued from previous page)

x20 =
x21 =
y20=
y21=

real
real
real
real

= o |
~e N

~ .
~.

func
func
func
func

72722 = y;

XX2 = x;
YY2min = 0.;
YY2max = 2xpi;

real
real
real
real

x30=0.;
x31=2+pi;
y30=0.;
y31=1.5;

func
func
func
func

XX3min = 1.;
XX3max = 2.;
YY3 = x;
2723 =y;

// Mesh

mesh Thsqgl =
mesh Thsg2 =
mesh Thsg3 =

[x10+(x11-x10) »x,
[x20+ (x21-x20) *x,
[x30+(x31-x30) *x,

square (5, 35,
square (5, 8,
square (35, 8,

y10+(y1ll-y10) =yl);
y20+(y21-y20) xy]1);
y30+(y31-y30) xyl);

// Mesh 2D to 3D surface

meshS Th3lh = movemesh23(Thsgl, transfo=[XX1l, YY1, ZZlmax],
meshS Th31lb = movemesh23(Thsqgl, transfo=[XX1, YY1, ZZlmin],
meshS Th32h = movemesh23 (Thsg2, transfo=[XX2, YY2max, ZZ2],
meshS Th32b = movemesh23(Thsqg2, transfo=[XX2, YY2min, ZZ2],
meshS Th33h = movemesh23 (Thsg3, transfo=[XX3max, YY3, ZZ3],
meshS Th33b = movemesh23(Thsqg3, transfo=[XX3min, YY3, ZZ3],

// Gluing surfaces
meshS Th33 = Th31lh + Th31lb + Th32h + Th32b + Th33h + Th33b;
plot (Th33, cmm="Th33");

// Tetrahelize the interior of the cube with TetGen

real[int] domain =[1.5, pi, 0.75, 145, 0.0025];

meshS Thfinal = tetg(Th33, switch="paAAQY", regionlist=domain);
plot (Thfinal, cmm="Thfinal");

// Build a mesh of a half cylindrical shell of interior radius 1,
—2 and a height of 1.5

func mv2x = x*cos(y);

func mv2y = x*sin(y);

func mv2z = z;

meshS Thmv2 = movemesh (Thfinal,
plot (Thmv2, cmm="Thmv2");

transfo=[nmv2x, mv2y, mv2z],

orientation=1);
orientation=-1);

orientation=-1);
orientation=1);

orientation=1);
orientation=-1);

and exterior radius,

facemerge=0) ;

3d Meshing examples
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Tip: Lake

load "msh3"
load "medit"

// Parameters
int nn = 5;

// 2D mesh
border cc(t=0, 2xpi) {x=cos(t); y=sin(t); label=1;}
mesh Th2 = buildmesh (cc(100));

// 3D mesh
int[int] rup = [0, 2], rlow = [0, 1];
int [int] rmid = [1, 1, 2, 1, 3, 1, 4, 11;

14
func zmin = 2-sqgrt (4— (x*xxty*y));
func zmax = 2-sqrt(3.);

mesh3 Th = buildlayers(Th2, nn,
coef=max ( (zmax—zmin) /zmax, 1./nn),
zbound=[zmin, zmax],
labelmid=rmid,
labelup=rup,
labeldown=rlow) ;

medit ("Th", Th);

Tip: Hole region

load "msh3"
load "TetGen"
load "medit"

// 2D mesh
mesh Th = square (10, 20, [x*xpi-pi/2, 2xy»pil); // ]-pi/2, pi/2[X]0,2pi][

// 3D mesh
//parametrization of a sphere

func f1 = cos(x)*cos(y);

func f2 = cos(x)=*sin(y);

func f3 = sin(x);

//partial derivative of the parametrization
func flx = sin (x)*cos(y);

func fly = -cos(x)*sin(y);

func f2x = -sin(x)»*sin(y);

func f2y = cos (x)=*cos(y);

func f3x = cos(x);

func f3y = 0;

//M = DF"t DF

func mll = fl1x"2 + f2x"2 + £3x"2;

func m21 = flxxfly + f2xx£f2y + £3xx£3y;
func m22 fly~2 + f2y"2 + £3y"2;

func perio = [[4, yIl, [2, yIl, [1, x], [3, x1];
real hh = 0.1;

(continues on next page)
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(continued from previous page)

real vv = 1/square (hh);

verbosity = 2;

Th = adaptmesh(Th, mllxvv, m2lxvv, m22xvv, IsMetric=1, periodic=perio);
Th = adaptmesh (Th, mll*vv, m2lxvv, m22+vv, IsMetric=1, periodic=perio);
plot (Th, wait=true);

//construction of the surface of spheres
real Rmin = 1.;

func flmin = Rmin*fl;

func f2min = Rmin*f2;

func f3min = Rminx£3;

meshS ThSsph = movemesh23 (Th, transfo=[flmin, f2min, f3min]);

real Rmax = 2.;

func flmax = Rmax*fl;
func f2max = Rmaxx£f2;
func f3max = Rmax*f3;

meshS ThSsph2 = movemesh23(Th, transfo=[flmax, f2max, f3max]);

//gluing meshes
meshS ThS = ThSsph + ThSsph2;

cout << " TetGen call without hole " << endl;

real[int] domain2 = (1.5, 0., 0., 145, 0.001, 0.5, 0., 0., 18, 0.001];

mesh3 Th3fin = tetg(ThS, switch="paAAQYY", nbofregions=2, regionlist=domain2);
medit ("Sphere with two regions", Th3fin);

cout << " TetGen call with hole " << endl;
real[int] hole = [0.,0.,0.171;
real[int] domain = [1.5, 0., 0., 53, 0.0017];
mesh3 Th3finhole = tetg(ThS, switch="paAAQYY",
nbofholes=1, holelist=hole, nbofregions=1, regionlist=domain);
medit ("Sphere with a hole", Th3finhole);

Tip: Build a 3d mesh of a cube with a balloon

load "msh3"

load "TetGen"

load "medit"

include "MeshSurface.idp"

// Parameters

real hs = 0.1; //mesh size on sphere

int[int] N = [20, 20, 20];

real [int,int] B = [[-1, 1], [-1, 1], [-1, 11];
int [int,int] L = [[1, 2], [3, 41, [5, 611;

// Meshes

meshS ThH = SurfaceHex (N, B, L, 1);
meshS ThS = Sphere(0.5, hs, 7, 1);

meshS ThHS = ThH + ThS;

(continues on next page)
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(a) The surface mesh of the hex with internal sphere (b) The tetrahedral mesh of the cube with internal ball

Fig. 3.27: Cube sphere

(continued from previous page)

medit ("Hex-Sphere", ThHS);

real voltet = (hs"3)/6.;

cout << "voltet = " << voltet << endl;

real[int] domain = [0, O, O, 1, voltet, O, 0, 0.7, 2, voltet];

mesh3 Th = tetg(ThHS, switch="pgaAAYYQ", nbofregions=2, regionlist=domain);
medit ("Cube with ball", Th);

3.2.3 The type meshS in 3 dimension

Warning: Since the release 4.2.1, the surface mesh3 object (list of vertices and border elements, without tetahe-
dra elements) is remplaced by meshs type.

Commands for 3d surface mesh generation

The command square3

The function square3 like the function square in 2d is the simple way to a build the unit square plan in the space
R¥. To use this command, it is necessary to load the pluging msh3 (need 1oad "msh3"). A square in 3d consists
in building a 2d square which is projected from R” to R¥. The parameters of this command line are:

* n,m generates a nxm grid in the unit square
e .,.,.]is[ ®1, 2, ®3]is the geometric transformation from R* to R¥. By default, [ 1, ®2, 3 | = [x,y,0]

* orientation= equal 1, gives the orientation of the triangulation, elements are in the reference orientation
(counter clock wise) equal -1 reverse the orientation of the triangles it’s the global orientation of the surface 1
extern (-1 intern)
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real R = 3, r=1;

real h = 0.2; //

int nx R+2xpi/h;

int ny = r*2xpi/h;

func torex= (Rtrxcos (y*pix2))*cos (xxpix2);
func torey= (Rtrxcos(y*pix2))*sin(xxpix2);
func torez= rxsin(y*pi~*2);

meshS ThS=square3 (nx,ny, [torex,torey,torez],orientation=-1) ;

The following code generates a 3 X 4 x 5 grid in the unit cube [0, 1]* with a clock wise triangulation.

surface mesh builders

Adding at the top of a FreeFEM script include "MeshSurface.idp", constructors of sphere, ellipsoid, surface
mesh of a 3d box are available.

e SurfaceHex (N, B, L, orient)

— this operator allows to build the surface mesh of a 3d box

— int[int] N=[nx,ny,nz]; // the number of seg in the 3 direction

— real [int,int] B=[[xmin,xmax],[ymin,ymax],[zmin,zmax]]; // bounding bax

— int [int,int] L=[[1,2],[3,4],[5,6]]; // the label of the 6 face left,right, front, back, down, right

— orient the global orientation of the surface 1 extern (-1 intern),

— returns a meshs type

¢ Sphere (R, h, L, orient)

where R is the raduis of the sphere,

h is the mesh size of the shpere

L is the label the the sphere

returns a meshs type

orient the global orientation of the surface 1 extern (-1 intern)

e Ellipsoide (RX, RY, RZ, h, L, orient)

h is the mesh size

L is the label

returns a meshs type

orient the global orientation of the surface 1 extern (-1 intern)

z=Rx cos(u)sin(v)

Yu € [0, 271'[ and v € [O, 71'], y=Ry sin(u)sin(v)

z=Rz cos(v)

where RX, RY, RZ are real numbers such as the parametric equations of the ellipsoid is:
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func meshS SurfaceHex (int[int] & N,real[int,int] &B ,int[int,int] & L,int orientation)

—{

real x0=B(0,0),x1=B(0,1);

real y0=B(1,0),yl=B(1l,1);

real z0=B(2,0),z1=B(2,1);

int nx=N[0],ny=N[1],nz=N[2];

mesh Thx = square(ny,nz, [y0+(yl-y0) *x,z0+(z1-20) *xy]);

mesh Thy = square (nx,nz, [x0+(x1-x0) *x,z0+(z1-2z0) *xy]);

mesh Thz = square (nx,ny, [x0+(x1-x0)*x,y0+ (y1l-y0)*yl);

int[int] refx=[0,L(0,0)],refX=[0,L(0,1)]; // Xmin, Ymax faces labels,
—renumbering

int[int] refy=[0,L(1,0)],refY=[0,L(1,1)]; // Ymin, Ymax faces labesl_
—renumbering

int[int] refz=[0,L(2,0)],refz=[0,L(2,1)]; // Zmin, Zmax faces labels_,
—renumbering

meshS Thx0 = movemesh23 (Thx,transfo=[x0,x,y],orientation=-orientation, label=refx);
meshS Thxl = movemesh23 (Thx,transfo=[x1l,x,y],orientation=+torientation, label=refX);
meshS Thy0 = movemesh23 (Thy,transfo=[x,y0,y],orientation=+orientation, label=refy);
meshS Thyl = movemesh23 (Thy,transfo=[x,yl,y],orientation=-orientation, label=refY);
meshS Thz0 = movemesh23 (Thz,transfo=[x,y,z0],orientation=-orientation, label=refz);
meshS Thzl = movemesh23 (Thz,transfo=[x,y,z1],orientation=+orientation, label=ref?Z);
meshS Th= Thx0+Thx1+Thy0+Thyl+Thz0+Thz1l;

return Th;

}

func meshS Sphere (real R,real h,int L,int orientation) ({
return Ellipsoide (R,R,R,h,L,orientation);

func meshS Ellipsoide (real RX,real RY, real RZ,real h,int L, int orientation) ({

mesh Th=square (10,20, [x+xpi-pi/2,2+y*pPil); //  S]\frac{-pi}{2},frac{-pi}{2}
—[\times]0,2\pi[ $

// a parametrization of a sphere

func f1 =RX=*cos (x)*cos(y);

func f2 =RY~*cos (x)*sin(y);

func f3 =RZ*sin (x);

// partiel derivative
func flx= -RXxsin(x)~*cos(y);
func fly= -RXxcos(x y

(

(x) *sin(y)
func f2x= -RY#*sin(x)*sin(y);

(x) (y)

x

4
func f2y= +RYxcos (x)*cos (y
func f3x=-RZxcos (x);
func £3y=0;

// the metric on the sphere $ M = DF"t DF S

func mll=f1x"2+£f2x"2+£f3x"2;

func m21=flx+xfly+f2x+«f2y+£f3x+£3y;

func m22=£fly"2+£2y"2+£3y"2;

func perio=[[4,y],[2,y],[1,x],[3,x]]; // to store the periodic condition
real hh=h;// hh mesh size on unite sphere

real vv= 1/square (hh);

Th=adaptmesh (Th, mllxvv, m21xvv,m22+vv, IsMetric=1,periodic=perio);
Th=adaptmesh (Th, mllxvv, m21lxvv,m22+vv, IsMetric=1,periodic=perio);

I

(continues on next page)
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(continued from previous page)

Th=adaptmesh (Th, mllxvv, m21lxvv,m22+vv, IsMetric=1,periodic=perio);

Th=adaptmesh (Th, mllxvv, m21xvv,m22+vv, IsMetric=1,periodic=perio);

int[int] ref=[0,L];

meshS ThS=movemesh23 (Th,transfo=[fl, f2,f3],orientation=orientation, refface=ref);
ThS=freeyams (ThS, hmin=h, hmax=h, gradation=2., verbosity=-10,mem=100, option=0) ;

return ThS;

2D mesh generators combined with movemesh23

FreeFEM ‘s meshes can be built by the composition of the movemesh?23 command from a 2d mesh generation. The
operation is a projection of a 2d plane in R¥ following the geometric transformation [ ®1, ®2, ®3 ].

load "msh3"
real 1 = 3;
border a(t=-1,1) {x=t; y=-1;label=1;};
border b (t=-1,1) {x=1; y=t;label=1;};
border c(t=1,-1) {x=t; y=1;label=1;};
border d(t=1,-1) {x=-1; y=t;label=1;};

int n = 100;

border i (t=0,2xpi){x=1.1xcos(t);y=1.1xsin(t);label=5;1};
mesh th= buildmesh (a(n)+b(n)+c(n)+d(n)+i(-n));

meshS Th= movemesh23 (th, transfo=[x,y,cos(x)"2+sin(y)"2]);

Remeshing

The command trunc

This operator allows to define a meshsS by truncating another one, i.e. by removing triangles, and/or by splitting each
triangle by a given positive integer s. In a FreeFEM script, this function must be called as follows:

meshsS TS2=trunc (TSI, boolean function to keep or remove elements, split =s, label =...)

The command has the following arguments:
* boolean function to keep or remove elements
e split= sets the level n of triangle splitting. each triangle is splitted in n x n ( one by default)
* label= sets the label number of new boundary item (1 by default)

An example of how to call the function

real R = 3, r=1;

real h = 0.2; //

int nx = R#2xpi/h;

int ny = r+2+pi/h;

func torex= (Rtrxcos(y*pix2))*cos (xxpix2);

func torey= (Rtrxcos(y*pix*2))*sin(xxpi*2);

func torez= rxsin(y*pi=*2);

// build a tore

meshS ThS=square3 (nx,ny, [torex,torey,torez]) ;

ThS=trunc (ThS, (x < 0.5) | (y < 0.5) | (z > 1.), split=4);
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The command movemeshS

Like 2d and 3d type meshes in FreeFEM, meshS can be translated, rotated or deformated by an application ®1, $2,
®3]. The image 7},(2) is obtained by the command movemeshs.

The parameters of movemeshS are:
* transfo= sets the geometric transformation ®(z,y) = (®1(x, y, 2), P2(x, y, 2), P3(z, y, 2))
* region= sets the integer labels of the triangles. O by default.
* label= sets the labels of the border edges. This parameter is initialized as the label for the keyword change.

* facemerge= An integer expression. When you transform a mesh, some triangles can be merged and fix the
parameter to 1, else 0 By default, this parameter is equal to 1.

* ptmerge = A real expression. When you transform a mesh, some points can be merged. This parameter is
the criteria to define two merging points. By default, we use

ptmerge = le — 7 Vol(B),
where B is the smallest axis parallel boxes containing the discretion domain of Q and Vol(B) is
the volume of this box.

* orientation = An integer expression equal 1, give the oientation of the triangulation, elements must be
in the reference orientation (counter clock wise) equal -1 reverse the orientation of the triangles. It’s the
global orientation of the normals at the surface 1 extern (-1 intern)

Example of using

meshS Thl = square3(n,n, [2+x,y,1],orientation=-1);
meshS Th2=movemeshS (Thl, transfo=[x,y,z]);
meshS Th2=movemesh (Thl, [x,y,z]);

The command change

Equivalent for a 2d or 3d mesh, the command change changes the label of elements and border elements of a meshS.
The parameters for this command line are:

* reftri=is a vector of integer that contains successive pairs of the old label number to the new label number
for elements.

* refedge= is a vector of integer that contains successive pairs of the old region number to new region number
for boundary elements.

* flabel=is an integer function given the new value of the label.

* fregion=is an integer function given the new value of the region.

e rmInternalEdges= is a boolean, equal true to remove the internal edges.

* rmledges= is a vector of integer, where edge’s label given are remove of the mesh

These vectors are composed of n; successive pairs of numbers O, N where n; is the number (label or region) that we
want to change. For example, we have:

label = [01,]\717 ~-~70n17Nn1]
region = [O1, Ny, ...,Op,, Ny, |
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Link with a mesh3

In topology and mathematics, the boundary of a subset S of a topological space X is the set of points which can
be approached both from S and from the outside of S. The general definitions to the boundary of a subset S of a
topological space X are:

* the closure of S without the interior of S 95 = S\S
* the intersection of the closure of S with the closure of its complement 95 = S N (X\S).

* the set of points p of X such that every neighborhood of p contains at least one point of S and at least one point
not of S.

More concretely in FreeFEM, the gestion of a 3D mesh is as follows. Let be £ a subset of R3 and 052 is boundary, the
finite element discretization €2, of this domain gives:

* a mesh3 type, denotes Th3, meshing the volume domain. It contains all the nodes, the tetrahedrons €2; such as
Qp, = U;; and the list of triangles describing the boundary domain

* a meshS type, denotes ThS, meshing the boundary of the volume domain. Typically, containing the nodes
belonging to the boundary of Th3 and, if it exists the boundary triangles and the edges.

Remark: Condition of meshS existence | In FreeFEM, a meshS can be defined in 2 cases such as:
* Th3 C ThS where it exactly describes the bounder of Th3.

* a mehS is an explicite surface mesh given by a list of vertices, triangle finite elements and boundary edge
elements (can be optional follows the geometry domain)

Note: Hence, if an input mesh (.msh freefem or .mesh format) contains a list of vertices, tetrahedra, triangles and
edges, FreeFEM builds a me sh3 whitch contains explicitly a surface mesh type meshs.

The command Gamma

The command Gamma allows to build and manipulate the border mesh independly of a volume mesh such as the
surface is described by triangle elements and edges border elements in 3d. Use this function, suppose that the mesh3
object even contains the geometric description of its surface. That means, the input mesh explicitly contains the list
of vertices, tetrahedra, triangles and edges. In case where the surface mesh doesn’t exist, before calling Gamma, must
build it by calling the buildSurface function (see the next function description).

load "msh3"

int n= 10;

int nvb = (n+1)"3 - (n-1)"3;// Nb boundary vertices

int ntb = nxnx12; // Nb of Boundary triangle

mesh3 Th=cube (n,n,n);

Th = buildSurface(Th); // build the surface mesh

// build Thl, the surface of Th, defined by triangles elements and edges border,,
—elements 1list

meshS Thl = Th.Gamma;

The command buildSurface

Let Th3 a volume mesh (mesh3 type) ; such as the geometry description is a list of vertices, tetrahedra elements
and triangle border elements. FreeFEM can generate the surface mesh associated to Th3. The intern mechanism
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of FreeFEM created directly the meshS associated to Th3 and accessible by the command meshS ThS = Th3.
Gamma; .

The command savesurfacemesh

Available for 3d meshes, the command savesurfacemesh saves the entire surface of a 3d volume mesh?3 at the
format .mesh. Two possibilies about the mesh3 surface:

* the geometric surface isn’t explicite, that means the me sh3 doesn’t contain surface elements (triangles) and bor-
der surface elements (edge). The surface is defined by the border of the volume. Hence, savesurfacemesh
returns the list of vertices and faces of the volume mesh, according to a local numbring at the border mesh.

* the geometric surface is explicite and known by the mesh3 type. This may be due to the nature of the data
mesh (list of vertices, tetrahedra, triangles, edges) or a surface building by FreeFEM with the calling of
buildSurface operator. In this case, savesurfacemesh allows to save the real geometry of the sur-
face 3d mesh (list of vertices, triangles, edges)

Example of use

load "msh3"

mesh3 Th3=cube (10,15,5);

savemesh (Th3, "surf.mesh");
savesurfacemesh (Th3, "surfreal.mesh");
mesh3 ThS3 trunc(Th3, 1, split=3);

meshS ThSS = ThS3.Gamma;
savesurfacemesh (ThS3, "surfacesplit.mesh");
savemesh (ThSS, "GammaSplit.mesh" );

volume mesh and meshS=NULL

savesurfmesh(Th,filename_mesh) write in the file the vertices list and the triangle list (face of the volum mesh) ac-
cording to a numbering in local surface

savesurfmesh(Th,filename_points,filename_faces) The operation does the same thing that the first exept to

Glue of meshS meshes

A surface 3d mesh can be the result of the generation of several assembled meshes, with caution of the right orientation
at the merged interfaces.

meshS Thl = square3(n,n, [2xx,y,1],orientation=-1);
meshS Th2 = square3(n,n, [2+x,y,0],orientation=1);
meshS Thll = square3(n,n, [2x%x,1,y],orientation=1);
meshS Th22 = square3(n,n, [2xx,0,y],orientation=-1);
meshS Th5 = square3(n,n, [1l,y,x]);
meshS Th6 = square3(n,n, [2,y,x],orientation=1);

meshS Th = Thl+Th2+Thl1+Th22+Th5+Tho6;
assert (Th.nbnomanifold==40) ;

Warning: For the moment, the case of no manifold mesh are not considered in FreeFEM. To check if the meshS
contains no manifold elements, the command nbnomanifold.
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TetGen: A tetrahedral mesh generator

TetGen is a software developed by Dr. Hang Si of Weierstrass Institute for Applied Analysis and Stochastics in Berlin,
Germany [HANG2006]. TetGen is free for research and non-commercial use. For any commercial license utilization,
a commercial license is available upon request to Hang Si.

This software is a tetrahedral mesh generator of a three dimensional domain defined by its boundary (a surface). The
input domain takes into account a polyhedral or a piecewise linear complex. This tetrahedralization is a constrained
Delaunay tetrahedralization.

The method used in TetGen to control the quality of the mesh is a Delaunay refinement due to Shewchuk
[SHEWCHUK1998]. The quality measure of this algorithm is the Radius-Edge Ratio (see Section 1.3.1 [HANG2006]
for more details). A theoretical bound of this ratio of the Shewchuk algorithm is obtained for a given complex of
vertices, constrained segments and facets of surface mesh, with no input angle less than 90 degrees. This theoretical
bound is 2.0.

The launch of TetGen is done with the keyword tetg. The parameters of this command line is:
* reftet= sets the label of tetrahedra.

* label=is a vector of integers that contains the old labels number at index 2; and the new labels number at index 2; + 1 «
This parameter is initialized as a label for the keyword change.

* switch= A string expression. This string corresponds to the command line switch of TetGen see Section 3.2
of [HANG2006].

¢ nbofholes= Number of holes (default value: “size of holelist /3”).

¢ holelist= This array corresponds to holelist of TetGenio data structure [HANG2006]. A real vec-
tor of size 3 » nbofholes. In TetGen, each hole is associated with a point inside this domain. This
vector is af, ylt, 20 ah b 2h ... where ol yl, 21 is the associated point with the i*! hole.

* nbofregions= Number of regions (default value: “size of regionlist /5”).
* regionlist= This array corresponds to regionlist of TetGenio data structure [HANG2006].

The attribute and the volume constraint of region are given in this real vector of size 5  nbofregions. The
ith region is described by five elements: 2—coordinate, y—coordinate and z—coordinate of a point inside this
domain (x;, y;, 2;); the attribute (at;) and the maximum volume for tetrahedra (mwol;) for this region.

The regionlist vectoris: x1, Y1, 21, at1, mvoly, Ta, Yo, 22, ata, mvols, - - -.
¢ nboffacetcl= Number of facets constraints “size of facetcl /2”).
e facetcl= This array corresponds to facetconstraintlist of TetGenio data structure [HANG2006].

The ‘" facet constraint is defined by the facet marker Re fif “ and the maximum area for faces mareazf “. The

facetcl array is: Ref{®, marea!, Refl®, mareal®, .

This parameters has no effect if switch g is not selected.
Principal switch parameters in TetGen:
* p Tetrahedralization of boundary.

* g Quality mesh generation. The bound of Radius-Edge Ratio will be given after the option g. By default, this
value is 2.0.

¢ a Constructs with the volume constraints on tetrahedra. These volumes constraints are defined with the
bound of the previous switch g or in the parameter regionlist.

* A Attributes reference to region given in the regionlist. The other regions have label 0.

The option AA gives a different label at each region. This switch works with the option p. If option r is used,
this switch has no effect.
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* r Reconstructs and Refines a previously generated mesh. This character is only used with the command line
tetgreconstruction.

* Y This switch preserves the mesh on the exterior boundary.

This switch must be used to ensure a conformal mesh between two adjacent meshes.
* YY This switch preserves the mesh on the exterior and interior boundary.
* C The consistency of the result’s mesh is testing by TetGen.

* CC The consistency of the result’s mesh is testing by TetGen and also constrained checks of Delaunay mesh (if
p switch is selected) or the consistency of Conformal Delaunay (if g switch is selected).

* V Give information of the work of TetGen. More information can be obtained in specified VV or VVV.
* QO Quiet: No terminal output except errors

* M The coplanar facets are not merging.

* T Sets a tolerance for coplanar test. The default value is 1e — 8.

* d Intersections of facets are detected.

To obtain a tetrahedral mesh with TetGen, we need the surface mesh of a three dimensional domain. We now give the
command line in FreeFEM to construct these meshes.

The keyword tetgtransfo

This keyword corresponds to a composition of command line tet g and movemesh23.

tetgtransfo(Th2, transfo=[Phi(l), Phi(2), Phi(3)]), ...) = tetg(Th3surf, ...),

where Th3surf = movemesh23(Th2, transfo=[Phi(l), Phi(2), Phi(3)]) and Th2 is the input
two dimensional mesh of tetgtransfo.

The parameters of this command line are, on one hand, the parameters label, switch, regionlist,
nboffacetcl, facetcl of keyword tetg and on the other hand, the parameter ptmerge of keyword
movemesh?23.

Note: To use tetgtransfo, the result’s mesh of movemesh23 must be a closed surface and define one region
only. Therefore, the parameter regionlist is defined for one region.

An example of this keyword can be found in line 61 of the Build layer mesh example.

The keyword tetgconvexhull

FreeFEM, using TetGen, is able to build a tetrahedralization from a set of points. This tetrahedralization is a Delaunay
mesh of the convex hull of the set of points.

The coordinates of the points can be initialized in two ways. The first is a file that contains the coordinate of points
X; = (i, Yi, 2;)- This file is organized as follows:

Ny
X1 U1 Z1
X2 Y2 22

Tn, Yn, Z2n,

The second way is to give three arrays that correspond respectively to the z—coordinates, y—coordinates and
z—coordinates.

The parameters of this command line are :
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* switch= A string expression. This string corresponds to the command line switch of TetGen see Section
3.2 of [HANG2006].

* reftet= An integer expression. Set the label of tetrahedra.
* label= An integer expression. Set the label of triangles.

In the string switch, we can’t used the option p and g of TetGen.

Reconstruct/Refine a 3d mesh with TetGen

Meshes in three dimension can be refined using TetGen with the command line tetgreconstruction.
The parameter of this keyword are

* region= an integer array that changes the region number of tetrahedra. This array is defined as the pa-
rameter reftet in the keyword change.

* label= an integer array that changes the label of boundary triangles. This array is defined as the param-
eter label in the keyword change.

¢ sizeofvolume= areel function. This function constraints the volume size of the tetrahedra in the domain
(see Isotrope mesh adaption section to build a 3d adapted mesh).

The parameters switch, nbofregions, regionlist, nboffacetcl and facetcl of the command line
which call TetGen (tetq) is used for tetgrefine.

In the parameter switch=, the character r should be used without the character p.
For instance, see the manual of TetGen [HANG2006] for effect of r to other character.

The parameter regionlist defines a new volume constraint in the region. The label in the regionlist will be
the previous label of region.

This parameter and nbofregions can’t be used with the parameter sizeofvolume.

**Example refinesphere.edp**

load "msh3"
load "tetgen"
load "medit"

mesh Th=square (10,20, [x+pi-pi/2,2xy*pil); // $S]i\frac{-pi} {2}, frac{-pi}{2}[\times]O,
// a parametrization of a sphere

func f1l =cos (x) *cos(y);

func f2 =cos(x)*sin(y);

func f3 = sin(x);

// partiel derivative of the parametrization DF
func flx=sin(x)*cos (y);

func fly=-cos (x)*sin(y);

func f2x=-sin(x)*sin(y);

func f2y=cos (x) xcos (y);

func f3x=cos (x);

func £3y=0;

// $§ M = DF"t DF §

func mll=f1x"2+f2x"2+£f3x"2;

func m21=flx*«fly+f2x+~£f2y+£3x+£3y;

func m22=fly"2+£f2y"2+£f3y"2;

func perio=[[4,y],[2,y],[1,x],[3,x]];

(continues on next page)
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real hh=0.1;

real vv= 1/square (hh);

verbosity=2;

Th=adaptmesh (Th, mllxvv,m21lxvv,m22+vv, IsMetric=1,periodic=perio);
Th=adaptmesh (Th, mll+vv,m21lxvv, m22+vv, IsMetric=1,periodic=perio);
plot (Th,wait=1);

verbosity=2;

// construction of the surface of spheres
real Rmin = 1.;

func flmin
func f2min = Rmin*f2;
func f3min Rmin*f£3;

Rmin*fl;

meshS ThS=movemesh23 (Th,transfo=[flmin, f2min, f3min]);

real[int] domain = [0.,0.,0.,145,0.017;
mesh3 Th3sph=tetg(ThS, switch="paAAQYY",nbofregions=1, regionlist=domain);

int[int] newlabel = [145,18];

real[int] domainrefine = [0.,0.,0.,145,0.00017];

mesh3 Th3sphrefine=tetgreconstruction (Th3sph, switch="ra”AQ", region=newlabel,
—nbofregions=1, regionlist=domainrefine,sizeofvolume=0.0001) ;

int[int] newlabel2 = [145,53];

func fsize = 0.01/(( 1 + 5Sxsqgrt( (x-0.5)"2+(y-0.5)"2+(2z-0.5)"2) )"3);

mesh3 Th3sphrefine2=tetgreconstruction (Th3sph,switch="raAQ", region=newlabel2,
—sizeofvolume=fsize);

medit ("sphere", Th3sph,wait=1);
medit ("sphererefinedomain",wait=1, Th3sphrefine);
medit ("sphererefinelocal",wait=1,Th3sphrefine?2);

// FFCS: testing 3d plots
plot (Th3sph);

plot (Th3sphrefine);

plot (Th3sphrefine2);

3.2.4 Read/Write Statements for meshes

2d case

format of mesh data

Users who want to read a triangulation made elsewhere should see the structure of the file generated below:

border C(t=0, 2xpi) {x=cos(t); y=sin(t);}
mesh Thl = buildmesh (C(10));

savemesh (Thl, "mesh.msh");

mesh Th2=readmesh ("mesh.msh") ;

The mesh is shown on Fig. 3.28.
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The information about Th are saved in the file mesh.msh whose structure is shown on Table 3.1. An external file
contains a mesh at format .mesh can be read by the ommand readmesh (file_name).

There, n,, denotes the number of vertices, n; the number of triangles and n, the number of edges on boundary.

For each vertex ¢%, i = 1,--- , n,, denoted by (¢Z, q;) the z-coordinate and y-coordinate.
Each triangle T}, k = 1, - - - , n; has three vertices ¢**, ¢*2, ¢*2 that are oriented counter-clockwise.
The boundary consists of 10 lines L;, i = 1,--- , 10 whose end points are ¢'*, ¢2.

1 2

Fig. 3.28: Mesh by buildmesh (C (10))

In the Fig. 3.28, we have the following.
n, = 14,ny = 16,ns = 10
q' = (—0.309016994375,0.951056516295)

¢** = (—0.309016994375, —0.951056516295)

The vertices of T} are ¢°, ¢'2, ¢'°.

The vertices of Ty are ¢°, ¢*°, ¢°.

The edge of the 1st side L, are ¢%, ¢°.

The edge of the 10th side L1 are ¢'°, 5.

Table 3.1: The structure of mesh_sample.msh
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Content of the file Explanation

1416 10 Ny Nt Me

-0.309016994375 0.951056516295 1 ql ¢l boundary label = 1
0.309016994375 0.951056516295 1 q> q% boundary label = 1
-0.309016994375 -0.951056516295 1 qlt q;‘l boundary label = 1
912100 13 1o 13 regionlabel =0
5960 21 29 23 regionlabel =0
91060 16; 165 163 region label =0
651 1; 1, boundary label = 1
521 21 2o Dboundary label = 1
1061 10; 102 boundary label = 1

In FreeFEM there are many mesh file formats available for communication with other tools such as emc2, modulef,
... (see Mesh format chapter ).

The extension of a file implies its format. More details can be found on the file format .msh in the article by F. Hecht
“bamg : a bidimensional anisotropic mesh generator” [HECHT1998_2].

A mesh file can be read into FreeFEM except that the names of the borders are lost and only their reference numbers
are kept. So these borders have to be referenced by the number which corresponds to their order of appearance in the
program, unless this number is overwritten by the keyword 1abel. Here are some examples:

// Parameters
int n = 10;

// Mesh

border floor (t=0, 1) {x=t; y=0; label=1;};
border right (t=0, 1) {x=1; y=t; label=5;};
border ceiling(t=1, 0) {x=t; y=1; label=5;};
border left (t=1, 0) {x=0; y=t; label=5;};

mesh th = buildmesh (floor (n) + right(n) + ceiling(n) + left(n));

//save mesh in different formats

savemesh (th, "toto.am_fmt"); // format "formated Marrocco"
savemesh (th, "toto.Th"); // format database db mesh "bamg"
savemesh (th, "toto.msh"); // format freefem

savemesh (th, "toto.nopo"); // modulef format

// Fespace

fespace fempl (th, P1);

fempl f = sin(x)~*cos(y);

fempl g;

//save the fespace function in a file
{
ofstream file("f.txt");
file << f[] << endl;
} //the file is automatically closed at the end of the block
//read a file and put it in a fespace function
{
ifstream file("f.txt");
file >> g[] ;
}//the file is equally automatically closed

(continues on next page)
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(continued from previous page)

// Plot
plot (g);

// Mesh 2
//read the mesh for freefem format saved mesh
mesh th2 = readmesh ("toto.msh");

// Fespace 2
fespace Vh2 (th2,
Vh2 u, v;

Pl);

// Problem
//solve:
// Su + \Delta u = g$ in S$\Omega $
//  Su=0S$ on $\Gamma_1$
// S\frac{\partial u }{\partial n} =
solve Problem(u, V)
int2d (th2) (
u*v
— dx (u) *xdx (v)
- dy (u) xdy (v)

gs on $\Gamma_2$

+ int2d(th2) (
~ gy

+ intld(th2, 5) (

g*v

+ on(l, u=0)

// Plot

plot (th2, u);

Input/output for a mesh

¢ the command readmesh

The function readmesh allows to build a mesh from a data file

1 |mesh Th=readmeshS ("Th.mesh");

2> |mesh Thff = readmesh ("Thff.msh"); // FreeFEM format

¢ the command savemesh

The function savemesh allows to export a mesh

1 savemesh (Th, "Th.mesh")

2> |savemesh (Thff, "Thff.msh") // FreeFEM format
4 |savemesh (th, "toto.msh"); // format freefem
"formated Marrocco"

"toto.Th"); // format database db mesh
"toto.nopo"); // modulef format

—format
5 | savemesh (th,
6 savemesh (th,

savemesh (th,

/7

"toto.am _fmt");

[

"bamg"

(continues on next page)
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(continued from previous page)

// allows to save the 2d mesh with the 3rd space coordinate as a scalar solution,
—~for visualise

savemesh (Th, "mn", [x,y,ul); // save surface mesh for medit, see for example,,
—minimal-surf.edp

exec ("medit mm; rm mm.bb mm.faces mm.points");

¢ the command vtkloadS

The function vtkload allows to build a mesh from a data mesh at vtk format mesh

load "iovtk"
mesh Th=vtkloadS ("mymesh.vtk");

¢ the command savevtk

The function savevtk allows to export a mesh to a data mesh at vtk format mesh

1

2

load "iovtk"
savevtk ("Th.vtk", Th);

¢ the command gmshload

The function gmshloads allows to build a mesh from a data mesh file at formatmsh (GMSH)

)

load "gmsh"
mesh Th=gmshload ("mymesh.msh");

¢ the command savegmsh

The function savegmsh allows to export a mesh to a data mesh msh (GMSH)

load "gmsh"
savegmsh (Th, "Th");

3d case

format of mesh data

In three dimensions, the file mesh format supported for input and output files by FreeFEM are the extension .msh and
.mesh. These formats are described in the Mesh Format section.
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Extension file .msh The structure of the files with extension .msh in 3D is given by:

Ny TNtet TNtri

ql q! ql Vertexlabel

q> qg q Vertexlabel

qr qrv qzy Vertexlabel

1; 1, 13 14 regionlabel
21 29 23 24 regionlabel

(ntet)1 (Neet)2  (Mger)3 (Ntet)a regionlabel

14 1, 13 boundarylabel

21 29 23 boundarylabel

(nyri)r (ngri)2 (ngri)s  boundarylabel

In this structure, n,, denotes the number of vertices, n;.; the number of tetrahedra and n;,.; the number of triangles.

For each vertex ¢*, i = 1,-- - ,n,, we denote by (¢, ;,, ¢’) the z-coordinate, the y-coordinate and the z-coordinate.
Each tetrahedra Ty, k = 1, - - - , nses has four vertices ¢*1, ¢*2, ¢*3, ¢*.
The boundary consists of a union of triangles. Each triangle ¢7i;,7 = 1, - - - , n4,; has three vertices @, 72, ¢,

extension file .mesh The data structure for a three dimensional mesh is composed of the data structure presented in
Mesh Format section and a data structure for the tetrahedra. The tetrahedra of a three dimensional mesh are referred
using the following field:

Tetrahedra
NbTetrahedra
Vertexl Vertex2 Vertex3 Vertex4 Label

Vertexl Vertex2 Vertex3 Vertex4 Label
Triangles

NbTriangles

Vertexl Vertex2 Vertex3 Label

Vertexl Vertex2 Vertex3 Label

This field is express with the notation of Mesh Format section.

Input/output for a mesh3

¢ the command readmesh3

The function readmesh3 allows to build a mesh3 from a data file

1 |mesh3 Th3=readmesh3 ("Th3.mesh");
> |mesh3 Th3ff = readmesh3("Th3ff.msh"); // FreeFEM format

¢ the command savemesh

The function savemesh allows to export a mesh3

1 savemesh (Th3, "Th3.mesh")
2 | savemesh (Th3ff, "Th3ff.msh") // FreeFEM format

156 Chapter 3. Documentation



FreeFEM Documentation, Release 4.2.1

The function vtkload3 allows to build a mesh3 from a data mesh at vtk format mesh

)

The function savevtk allows to export a mesh3 to a data mesh at vtk format mesh

1

2

The function gmshload3 allows to build a mesh3 from a data mesh file at formatmsh (GMSH)

1

2

The function savegmsh allows to export a mesh3 to a data mesh msh (GMSH)

1

2

¢ the command vtkload3

load "iovtk"
mesh3 Th3=vtkloadS ("mymesh.vtk");

¢ the command savevtk

load "iovtk"
savevtk ("Th3.vtk", Th3);

¢ the command gmshload3

load "gmsh"
mesh3 Th3=gmshload3 ("mymesh.msh") ;

¢ the command savegmsh

load "gmsh"
savegmsh (Th3, "Th3");

Surface 3d case

format of mesh data

Like 2d and 3d, the input and output format files supported by FreeFEM are the extension .msh and .mesh. These
formats are described in the Mesh Format section.

Extension file .msh The structure of the files with extension .msh in surface 3D is given by:

Ny Nitri
a0y qé
q q;
R
1; 1o
21 29
(ntm’)l (ntr‘i)Z
1 15

2 29

(nedge)l (nedge)2

Nedges

s
q?

qm
13
23

(ntri)3
boundarylabel
boundarylabel

boundarylabel

Vertexlabel
Vertexlabel

Vertexlabel
regionlabel
regionlabel

regionlabel

In this structure, n,, denotes the number of vertices, n;.; the number of tetrahedra and ny,.; the number of triangles.

For each vertex ¢*, i = 1,- - - ,n,, we denote by (g%, ¢}, ¢%) the z-coordinate, the y-coordinate and the z-coordinate.

Each tetrahedra T}, k = 1, - - - , nse; has four vertices ¢*, ¢

k2
b)

q

k3
)

q

ka
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The boundary consists of a union of triangles. Each triangle be;, j = 1, - - - , n4; has three vertices @, 72, ¢,

extension file .mesh The data structure for a three dimensional mesh is composed of the data structure presented in
Mesh Format section and a data structure for the tetrahedra. The tetrahedra of a three dimensional mesh are referred

using the following field:

MeshVersionFormatted 2
Dimension 3

Vertices

NbVertices

(vO)x (v0)y (vO0)z

(vn)x (vn)y (vn)z

Triangles

NbTriangles

Vertexl Vertex2 Vertex3 Label
Vertexl Vertex2 Vertex3 Label
Edges

NbEdges

Vertexl Vertex2 Label

Vertexl Vertex2 Label

End

This field is express with the notation of Mesh Format section.

Input/output for a meshS

¢ the command readmesh3

The function readmeshs allows to build a meshs from a data file

1 |meshS ThS=readmeshS ("ThS.mesh");
> |meshS Th3ff = readmeshS ("ThSff.msh"); // FreeFEM format

¢ the command savemesh

The function savemesh allows to export a meshS

1 savemesh (ThS, "ThS.mesh")
2 | savemesh (ThSff, "ThSff.msh") // FreeFEM format

¢ the command vtkloadS

The function vtkloads allows to build a meshsS from a data mesh at vtk format mesh

1 | load "iovtk"
meshS ThS=vtkloadS ("mymesh.vtk");

)

¢ the command savevtk

The function savevtk allows to export a meshs to a data mesh at vtk format mesh
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1 load "iovtk"
savevtk ("ThS.vtk", ThS);

)

* the command gmshloadS

The function gmshloads allows to build a meshs from a data mesh file at formatmsh (GMSH)

1 | load "gmsh"
> |meshS ThS=gmshloadS ("mymesh.msh");

¢ the command savegmsh

The function savegmsh allows to export a meshsS to a data mesh msh (GMSH)

1 load "gmsh"
> | savegmsh (ThS, "ThS");

3.2.5 Medit

The keyword medit allows to display a mesh alone or a mesh and one or several functions defined on the mesh using
the Pascal Frey’s freeware medit. medit opens its own window and uses OpenGL extensively. Naturally to use this
command medit must be installed.

A vizualisation with medit of scalar solutions f1 and f2 continuous, piecewise linear and known at the vertices of
the mesh Th is obtained using:

medit ("soll sol2", Th, fl1, f2, order=1l);

The first plot named sol1 display f1. The second plot names so12 display f2.

The arguments of the function medit are the name of the differents scenes (separated by a space) of medit, a mesh
and solutions.

Each solution is associated with one scene. The scalar, vector and symmetric tensor solutions are specified in the
format described in the section dealing with the keyword savesol.

The parameters of this command line are :

¢ order= () if the solution is given at the center of gravity of elements. 1 is the solution is given at the ver-
tices of elements.

* medit f£f= set the name of execute command of medit. By default, this string is medit.
* save= set the name of a file . sol or . solb to save solutions.

This command line allows also to represent two differents meshes and solutions on them in the same windows. The
nature of solutions must be the same. Hence, we can vizualize in the same window the different domains in a domain
decomposition method for instance. A vizualisation with medit of scalar solutions ~1 and h2 at vertices of the mesh
Th1 and Th2 respectively are obtained using:

medit ("sol2domain”, Thl, hl, Th2, h2, order=1l);

Tip: Medit

load "medit"

// Initial Problem:

(continues on next page)
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(continued from previous page)

// Resolution of the following EDP:

// —-Delta u_s = f on \Omega = { (x,y) | 1 <= sqrt(x"2
// —-Delta u_1 = f1 on \Omega_1 = { (x,y) | 0.5 <= sqgr
// u =1 on Gamma

// Null Neumman condition on Gamma_l and on Gamma_Z2

v
//

We find the solution u by solving two EDP defined
This solution is visualize with medit

verbosity=3;
// Mesh

border Gamma (t=0,
border Gammal (t=0,

label=1;}
labe

2xpi) {x=cos (t); y=sin(t);
2+pi) {x=2*cos (t); y=2+sin(t);

+yn2) <= 2}
t(x"2+y"2) <= 1. }

on domain Omega and Omega_l

’

1=2;1;

border Gamma2 (t=0, 2+pi) {x=0.5%cos(t); y=0.5xsin(t); label=3;};
mesh Th = buildmesh (Gammal (40) + Gamma (-40)); //Omega

mesh Thl = buildmesh (Gamma (40) + Gamma?2 (-40)); //Omega_1

// Fespace

fespace Vh(Th, P2);

func f = sqgrt(x*x + y*y);

Vh us, v;

fespace Vhl (Thl, P2);

func fl = 10xsqrt (x*xt+y=*y);

Vvhl ul, vl;

// Macro

macro Grad2 (us) [dx(us), dy(us)] // EOM

// Problem
problem Lap2dOmega
= int2d(Th) (
Grad2 (v) '

(us, v, init=false)
+ Grad2 (us)
)
- 1int2d(Th) (

fxv
)
+on (1, us=1)

2
problem Lap2dOmegal (ul, vl, init=false)
int2d (Thl) (

Grad2 (v1l)'

* Grad2 (ul)

int2d (Thl) (
flxvl

+

on(l, ul=1)

// Solve
Lap2dOmega;
Lap2dOmegal;

// Plot with medit

medit ("solution", Th, us, Thl, ul, order=1, save="tes

tsavemedit.solb");
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3.2.6 Mshmet

Mshmet is a software developed by P. Frey that allows to compute an anisotropic metric based on solutions
(i.e. Hessian-based). This software can return also an isotropic metric. Moreover, mshmet can also construct a metric
suitable for levelset interface capturing. The solution can be defined on 2D or 3D structured/unstructured meshes. For
example, the solution can be an error estimate of a FE solution.

Solutions for mshmet are given as an argument. The solution can be a func, a vector func, a symmetric tensor, a
fespace function, a fespace vector function and a fespace symmetric tensor. The symmetric tensor argument
is defined as this type of data for datasol argument. This software accepts more than one solution.

For example, the metric M computed with mshmet for the solution v defined on the mesh T'h is obtained by writing:

fespace Vh(Th, P1l);
Vh u; //a scalar fespace function
real[int] M mshmet (Th, u);

The parameters of the keyword mshmet are :
* normalization =(b)do anormalization of all solution in [0, 1].
* aniso = (b) build anisotropic metric if 1 (default O: isotropic)
¢ levelset = (b) build metric for levelset method (default: false)
e verbosity = (1) level of verbosity
* nbregul = (1) number of regularization’s iteration of solutions given (default 0).
e hmin = (d)
* hmax = (d)
e err =(d) level of error.
e width = (d) the width

e metric = avector of double. This vector contains an initial metric given to mshmet. The structure of the
metric vector is described in the next paragraph.

* loptions = a vector of integer of size 7. This vector contains the integer parameters of mshmet (for expert
only).

loptions(0): normalization (default 1).

loptions(1): isotropic parameters (default 0). 1 for isotropic metric results otherwise 0.

loptions(2): level set parameters (default 0). 1 for building level set metric otherwise 0.

loptions(3): debug parameters (default 0). 1 for turning on debug mode otherwise 0.

loptions(4): level of verbosity (default 10).

loptions(5): number of regularization’s iteration of solutions given (default 0).

loptions(6): previously metric parameter (default 0). 1 for using previous metric otherwise 0.

* doptions= a vector of double of size 4. This vector contains the real parameters of mshmet (for expert
only).

— doptions(0): hmin : min size parameters (default 0.01).

— doptions(1): hmax : max size parameters (default 1.0).
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— doptions(2): eps : tolerance parameters (default 0.01).
— doptions(2): width : relative width for Level Set (0 < w < 1) (default 0.05).

The result of the keyword mshmet is a real [int ] which contains the metric computed by mshmet at the different
vertices V; of the mesh.

With nwv is the number of vertices, the structure of this vector is:
t
Miso = (m(VO)a m(vl)a oo 7m(an))
mi1 M2 MmMi3
for a isotropic metric m. For a symmetric tensor metric h = Mo1 Moy  Ma3 , the parameters metric is:
m31 M3z M33

Maniso - (H(VO)a sy H(an))t

where H (V;) is the vector of size 6 defined by [m11, m21, m22,m31, m32, m33]

Tip: mshmet

load "mshmet"
load "medit"
load "msh3"

// Parameters

real error = 0.01;
func zmin = 0;
func zmax = 1;

int MaxLayer = 10;

// Mesh

border a(t=0, 1.0){x=t; y=0; label=1;};

border b (t=0, 0.5){x=1; y=t; label=2;};

border c(t=0, 0.5){x=1-t; y=0.5; label=3;};

border d(t=0.5, 1) {x=0.5; y=t; label=4;};

border e(t=0.5, 1) {x=1-t; y=1; label=5;};

border f(t=0.0, 1) {x=0; y=1-t; label=6;};

mesh Th = buildmesh(a(6) + b(4) + c(4) + d(4) + e(4) + £(6));

mesh3 Th3 = buildlayers(Th, MaxLayer, zbound=[zmin, zmax]);

// Fespace
fespace Vh3(Th3, P2);
Vh3 u3, v3;

fespace Vh3P1 (Th3, P1);
Vh3P1 usol;

// Problem
problem Problem2 (u3, v3, solver=sparsesolver)
= int3d(Th3) (
u3+v3+1.0e-10
+ dx (u3) xdx (v3)
+ dy (u3) xdy (v3)
+ dz (u3) «dz (v3)
)
- 1int3d(Th3) (
v3

(continues on next page)
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(continued from previous page)

// Solve
Problem?2;
cout << u3[].min << " " << u3[].max << endl;

medit ("Sol", Th3, u3);

real[int] bb = mshmet (Th3,u3);

cout << "Metric:" << bb << endl;
for (int ii = 0; 1ii < Th3.nv; ii++)
usol[][ii] = bb[ii];

medit ("Metric", Th3, usol);

3.2.7 FreeYams

FreeYams is a surface mesh adaptation software which is developed by P. Frey. This software is a new version of
yams. The adapted surface mesh is constructed with a geometric metric tensor field. This field is based on the intrinsic
properties of the discrete surface.

Also, this software allows to construct a simplification of a mesh. This decimation is based on the Hausdorff distance
between the initial and the current triangulation. Compared to the software yams, FreeYams can be used also to
produce anisotropic triangulations adapted to levelset simulations. A technical report on freeYams documentation is
available here.

To call FreeYams in FreeFEM, we used the keyword freeyams. The arguments of this function are the initial
mesh and/or metric. The metric with freeyams are a func, a fespace function, a symmetric tensor function, a
symmetric tensor fespace function or a vector of double (real [int]). If the metric is a vector of double, this
data must be given in met ric parameter. Otherwise, the metric is given in the argument.

For example, the adapted mesh of Thinit defined by the metric u defined as fespace function is obtained by
writing:

fespace Vh(Thinit, P1);
Vh u;
mesh3 Th = freeyams (Thinit, u);

The symmetric tensor argument for freeyams keyword is defined as this type of data for datasol argument.
¢ aniso= (b) aniso or iso metric (default 0, iso)
* mem= (1) memory of for freeyams in Mb (default -1, freeyams choose)
¢ hmin= (d)
¢ hmax= (d)
* gradation=(d)
e option=(l)
— 0 : mesh optimization (smoothing+swapping)

— 1 : decimation+enrichment adaptated to a metric map. (default)
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-1 : decimation adaptated to a metric map.
— 2 : decimation+enrichment with a Hausdorff-like method

— -2 : decimation with a Hausdorff-like method

4 : split triangles recursively.
— 9 : No-Shrinkage Vertex Smoothing
ridgeangle= (d)
absolute= (b)
verbosity= (i)

metric= vector expression. This parameters contains the metric at the different vertices on the initial mesh.
With nv is the number of vertices, this vector is:

Miso = (m(V0)7 m(vl)7 cee 7Tn(‘/7w))t

mi1 M1z Mg
for a scalar metric m. For a symmetric tensor metric h = Mol Maoa Mao3 |, the parameters metric is:
m31 M3z M3z

Maniso = (H(V), ..., H(Vyy))t

where H (V;) is the vector of size 6 defined by [m11,m21, m22,m31,m32, m33]

loptions= a vector of integer of size 13. This vectors contains the integer options of FreeYams. (just for
the expert)

loptions(0): anisotropic parameter (default 0). If you give an anisotropic metric 1 otherwise 0.

loptions(1): Finite Element correction parameter (default 0). 1 for no Finite Element correction
otherwise 0.

loptions(2): Split multiple connected points parameter (default 1). 1 for splitting multiple con-
nected points otherwise 0.

loptions(3): maximum value of memory size in Mbytes (default -1: the size is given by freeyams).

loptions(4): set the value of the connected component which we want to obtain. (Remark:
freeyams give an automatic value at each connected component).

loptions(5): level of verbosity

loptions(6): Create point on straight edge (no mapping) parameter (default 0). 1 for creating
point on straight edge otherwise 0.

loptions(7): validity check during smoothing parameter. This parameter is only used with No-
Shrinkage Vertex Smoothing optimization (optimization option parameter 9). 1 for No validity
checking during smoothing otherwise 0.

loptions(8): number of desired’s vertices (default -1).

loptions(9): number of iteration of optimizations (default 30).

loptions(10): no detection parameter (default 0). 1 for detecting the ridge on the mesh otherwise
0. The ridge definition is given in the parameter doptions(12).

loptions(11): no vertex smoothing parameter (default 0). 1 for smoothing the vertices otherwise
0.
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loptions(12): Optimization level parameter (default 0).

— 0: mesh optimization (smoothing+swapping)

— 1 : decimation+enrichment adaptated to a metric map.

— -1: decimation adaptated to a metric map.

— 2: decimation+enrichment with a Hausdorff-like method
— -2: decimation with a Hausdorff-like method

— 4 : split triangles recursively.

— 9: No-Shrinkage Vertex Smoothing

* doptions= a vector of double of size 11. This vectors contains the real options of freeyams.

— doptions(0): Set the geometric approximation (Tangent plane deviation) (default 0.01).

— doptions(1): Set the lamda parameter (default -1).
— doptions(2): Set the mu parmeter (default -1).

— doptions(3): Set the gradation value (Mesh density control) (default 1.3).

— doptions(4): Set the minimal size(hmin) (default -2.0: the size is automatically computed).
— doptions(5): Set the maximal size(hmax) (default -2.0: the size is automatically computed).

— doptions(6): Set the tolerance of the control of Chordal deviation (default -2.0).

— doptions(7): Set the quality of degradation (default 0.599).
— doptions(8): Set the declic parameter (default 2.0).
— doptions(9): Set the angular walton limitation parameter (default 45 degree).

— doptions(10): Set the angular ridge detection (default 45 degree).

Tip: freeyams

load "msh3"
load "medit"
load "freeyams"

// Parameters

int nn = 20;

real zmin = 0;

real zmax = 1;

// Mesh

mesh Th2 = square (nn, nn);

int[int] rup = [0, 2], rdown = [0, 1];
int[(int] rmid = (1, 1, 2, 1, 3, 1, 4, 1]1;

mesh3 Th = buildlayers(Th2, nn, zbound=[zmin, zmax], reffacemid=rmid, reffaceup=rup,

—reffacelow=rdown) ;
mesh3 Th3 = freeyams (Th);

medit ("SurfaceMesh", Th3);

[
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3.2.8 mmg3d

Todo: mmg3d-v4.0

Mmg3d is a 3D remeshing software developed by C. Dobrzynski and P. Frey.

This software allows to remesh an initial mesh made of tetrahedra. This initial mesh is adapted to a geometric metric
tensor field or to a displacement vector (moving rigid body). The metric can be obtained with mshmet.

Note:
* If no metric is given, an isotropic metric is computed by analyzing the size of the edges in the initial mesh.

« If a displacement is given, the vertices of the surface triangles are moved without verifying the geometrical
structure of the new surface mesh.

The parameters of mmg3d are :

¢ options= vector expression. This vector contains the option parameters of mmg3d. It is a vector of 6 values,
with the following meaning:

— Optimization parameters : (default 1)
0 : mesh optimization.
1 : adaptation with metric (deletion and insertion vertices) and optimization.
-1 : adaptation with metric (deletion and insertion vertices) without optimization.
4 : split tetrahedra (be careful modify the surface).
9 : moving mesh with optimization.
-9 : moving mesh without optimization.
— Debug mode : (default 0)
1 : turn on debug mode.
0 : otherwise.
— Specify the size of bucket per dimension (default 64)
— Swapping mode : (default 0)
1 : no edge or face flipping.
0 : otherwise.
— Insert points mode : (default 0)
1 : no edge splitting or collapsing and no insert points.
0 : otherwise.
5. Verbosity level (default 3)

* memory= integer expression. Set the maximum memory size of new mesh in Mbytes. By default the number
of maximum vertices, tetrahedra and triangles are respectively 500 000, 3000 000, 100000 which represent
approximately a memory of 100 Mo.
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* metric= vector expression. This vector contains the metric given at mmg3d. It is a vector of size nv or 6 nv
respectively for an isotropic and anisotropic metric where nv is the number of vertices in the initial mesh.
The structure of met ric vector is described in the mshmet.

e displacement= [®1, P2, P3] set the displacement vector of the initial mesh ®(x,y)
[@1(z, y), P2(x,y), 3(z, y)].

* displVect= sets the vector displacement in a vector expression. This vector contains the displacement at
each point of the initial mesh. It is a vector of size 3 nv.

Tip: mmg3d

load "msh3"

load "medit"

load "mmg3d"
include "Cube.idp"

// Parameters

int n = 6;

int[int] Nxyz = [12, 12, 12];

real [int, int] Bxyz = [[0., 1.], [0., 1.1, [0., 1.11;
int [int, int] Lxyz = [[1, 11, [2, 2], [2, 2]11;

// Mesh

mesh3 Th = Cube (Nxyz, Bxyz, Lxyz);

real[int] isometric (Th.nv);
for (int ii = 0; ii < Th.nv; ii++)
isometric([ii] = 0.17;

mesh3 Th3 = mmg3d(Th, memory=100, metric=isometric);
// Plot

medit ("Initial", Th);
medit ("Isometric", Th3);

Tip: Falling spheres

load "msh3"

load "TetGen"

load "medit"

load "mmg3d"

include "MeshSurface.idp"

// Parameters
real hs = 0.8;

int[int] N = [4/hs, 8/hs, 11.5/hs];

real [int, int] B = [[-2, 2], [-2, 6], [-10, 1.511;

int [int, int] L = [[311, 311], [311, 311], [311, 311]1];
int[int] opt = [9, 0O, 64, 0, 0, 3];

real[int] vit=[0, 0, -0.3];

func zero = 0.;

func dep = vit[2];

(continues on next page)
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(continued from previous page)

// Meshes

meshS ThH = SurfaceHex (N, B, L, 1);
meshS ThSg = Sphere(l, hs, 300, -1);
meshS ThSd = Sphere(l, hs, 310, -1);
ThSd = movemesh (Thsd, [x, 4+y, z]);

meshS ThHS = ThH + ThSg + ThSd;

medit ("ThHS", ThHS);

real voltet = (hs”3)/6.;

real[int] domain = [0, 0, -4, 1, voltet];
real [int] holes = [0, O, O, 0, 4, 01];
mesh3 Th = tetg(ThHS, switch="pgaAAYYQ", nbofregions=1,
—~nbofholes=2, holelist=holes);

medit ("Box-With-two-Ball", Th);

// Fespace

fespace Vh(Th, P1l);

Vh uh, vh;

// Macro

macro Grad(u) [dx(u),dy(u),dz(u)]

// Problem

problem Lap (uh, vh, solver=CG)
= 1int3d(Th) (
Grad (uh) ' * Grad(vh)
)
+ on (310, 300, uh=dep)
+ on (311, uh=0.)
7
// Falling loop
for(int it = 0; it < 29; 1it++){
cout << " ITERATION " << it << endl;
// Solve
Lap;
// Plot
plot (Th, uh);

// Sphere falling

Th = mmg3d(Th, options=opt, displacement=[zero, zero, uh],

regionlist=domaine,

memory=1000) ;

3.2.9 A first 3d isotrope mesh adaptation process

Tip: Adaptation 3D

load "msh3"
load "TetGen"
load "mshmet"
load "medit"
(continues on next page)
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(continued from previous page)

// Parameters

int nn = 6;

int [int] 11111 = [1, 1, 1, 11; //labels
int[int] 101 = [0, 1];

int[int] 111 = [1, 1];

real errm = le-2; //level of error

// Mesh
mesh3 Th3 = buildlayers(square(nn, nn, region=0, label=11111),
nn, zbound=[0, 1], labelmid=111, labelup=101, labeldown=101);

Th3 = trunc(Th3, (x<0.5) | (y < 0.5) | (z < 0.5), label=1l); //remove the ]0.5,1["3_
—cube

// Fespace
fespace Vh(Th3, P1);
Vh u, v, usol, h;

// Macro
macro Grad(u) [dx(u), dy(u), dz(u)] // EOM

// Problem
problem Poisson (u, v, solver=CG)
= 1int3d(Th3) (
Grad(u) " * Grad(v)

int3d(Th3) (
1xv

+ on(l, u=0)

// Loop
for (int ii = 0; ii < 5; 1ii++){
// Solve
Poisson;
cout << "u min, max = " << u[].min << " "<< u[].max << endl;

h=0.; //for resizing h[] because the mesh change

h[] = mshmet (Th3, u, normalization=1, aniso=0, nbregul=1, hmin=le-3, hmax=0.3, |
—err=errm) ;
cout << "h min, max = " << h[].min << " "<< h[].max << " " << h[].n << " " << Th3.

—nv << endl;
plot (u, wait=true);

errm = 0.8; //change the level of error

cout << "Th3 " << Th3.nv < " " << Th3.nt << endl;

Th3 = tetgreconstruction(Th3, switch="raAQ", sizeofvolume=hxh+h/6.); //rebuild
—mesh

medit ("U-adap-iso-"+ii, Th3, u, wait=true);
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3.2.10 Build a 2d mesh from an isoline

The idea is to get the discretization of an isoline of fluid meshes, this tool can be useful to construct meshes from
image. First, we give an example of the isovalue meshes 0.2 of analytical function /(x — 1/2)2 + (y — 1/2)2, on
unit square.

load "isoline"

real[int,int] xy (3, 1); //to store the isoline points
int[int] be(l); //to store the begin, end couple of lines
{

mesh Th = square (10, 10);

fespace Vh(Th, P1);

Vh u = sqgrt(square(x-0.5) + square(y-0.5));

real iso = 0.2 ;

real[int] viso = [iso];

plot (u, wviso=viso,Th);//to see the iso line

int nbc = isoline(Th, u, xy, close=1, iso=iso, beginend=be, smoothing=0.1);

The isoline parameters are Th the mesh, the expression u, the bidimentionnal array xy to store the list coordinate
of the points. The list of named parameter are :

* iso= value of the isoline to compute (0 is the default value)

* close= close the isoline with the border (default t rue), we add the part of the mesh border such the value is
less than the isovalue

* smoothing= number of smoothing process is the {"s where [ is the length of the current line component, r
the ratio, s is smoothing value. The smoothing default value is 0.

* ratio= the ratio (1 by default).

¢ eps=relative £ (default 1e-10)

* beginend= array to get begin, end couple of each of sub line (resize automatically)
e file= to save the data curve in data file for gnuplot

In the array xy you get the list of vertices of the isoline, each connex line go from ¢ = 3§, . .., 4§ — 1 with i§ = be(2xc)
i§ = be(2 * ¢ + 1), and where z; = zy(0,1),y; = yx(1,4),l; = 2y(2,1).

Here [; is the length of the line (the origin of the line is point 5§).

The sense of the isoline is such that the upper part is at the left size of the isoline. So here : the minimum is a point

0.5, 05 so the curve 1 turn in the clockwise sense, the order of each component are sort such that the number of point
by component is decreasing.

cout << "Number of the line component = " << nbc << endl;
cout << "Number of points = " << xy.m << endl;
cout << "be = " << be << endl;

// shows the lines component

for (int ¢ = 0; c < nbc; ++c){
int i0 = be[2*c], il = be[2*c+1]-1;
cout << "Curve " << ¢ << endl;
for(int i = i0; 1 <= 11; ++1)
cout << "x= " << xy(0,i) << " y= " << xy(l,1) << " os= " << xy(2, i) <<,
—endl;

plot ([xy (0, i0:1i1), =xy(l, i10:il)], wait=true, viso=viso, cmm=" curve "+cC);

(continues on next page)
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(continued from previous page)

cout << "length of last curve = " << xy (2, xy.m-1) << endl;

We also have a new function to easily parametrize a discrete curve defined by the couple be, zy.

border CurveO (t=0, 1) {
int c=0; //component 0
int i0=be[2xc], il=be[2xc+1]-1;
P=Curve (xy, i0, 11, t); //Curve 0
label=1;

border Curvel (t=0, 1) {
int c=1; //component 1
int i0=be[2xc], il=be[2xc+1]-1;
P=Curve (xy, i0, i1, t); //Curve 1
label=1;

plot (Curvel (100)); //show curve
mesh Th = buildmesh (Curvel (-100));
plot (Th, wait=true);

Secondly, we use this idea to build meshes from an image, we use the plugins ppm2rnm to read pgm a gray scale
image and then we extract the gray contour at level 0.25.

Tip: Leman lake

load "ppm2rnm"
load "isoline"

// Parameters

string leman = "LemanLake.pgm";
real Arealac = 580.03; //in km"2
real hsize = 5;

real[int, int] Curves (3, 1);
int[int] be (1);
int nc; //nb of curve
{
real[int, int] ffl(leman); //read image
//and set it in a rect. array
int nx = ffl.n, ny = ffl.m;
//build a Cartesian mesh such that the origin is in the right place.
mesh Th = square(nx-1, ny-1, [(nx-1)x(x), (ny-1)x(l-y)1);
//warning the numbering of the vertices (x,y) 1is
//given by $i = x/nx + nx* y/ny S
fespace Vh(Th, P1);
Vvh f1;
f1[] = f£fl; //transform array in finite element functions.
nc = isoline(Th, f1, iso=0.25, close=1, Curves, beginend=be, smoothing=.1,
—ratio=0.5);

}

//The longest isoline: the lake
int ic0 = be(0), icl = be(l)-1;

(continues on next page)
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(a) The image of the Leman lake meshes

(b) The mesh of the lake

Fig. 3.29: Isoline

(continued from previous page)

plot ([Curves (0, ic0:icl), Curves(l, icO:icl)], wait=true);

int NC = Curves (2, icl)/hsize;

real x1 = Curves (0, icO:icl) .max - 5;

real yl = Curves(l, icO:icl).min + 5;

border G(t=0, 1) {P=Curve (Curves, ic0, icl, t); label=1+(x>xl)*2+ (y<yl);}
plot (G(-NC), wait=true);

mesh Th = buildmesh (G(-NC));
plot (Th, wait=true);

real scale = sqgrt (Arealac/Th.area);
Th = movemesh (Th, [x*scale, y=*scalel);
cout << "Th.area = " << Th.area << " Km"2 " << " == " << Arealac << " Km"2 " << endl;

plot (Th, wait=true, ps="leman.eps");

3.3 Finite element

As stated in tutorials, FEM approximates all functions w as:

w(z,y) ~ wodo(x,y) + wid1(x,y) + - +wy—10m—1(x,y)

with finite element basis functions ¢ (z,y) and numbers wy (k = 0,--- , M — 1). The functions ¢ (z,y) are con-
structed from the triangle T3, , and called shape functions.

In FreeFEM, the finite element space:
Vi = {w| wodo + w11 + -+ wayr—1ép—1, wi € R}

is easily created by

e in2d

1 | fespace IDspace (IDmesh, <IDFE>) ;

or with £ pairs of periodic boundary conditions in 2D:
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fespace IDspace (IDmesh, <IDFE>,
periodic=[[lal, sall], [1lbl, sbl],

SO -

[lak, sak], [1lbk, sbl]l]);

e in 3D:

fespace IDspace (IDmesh3, <IDFE>,
periodic=[[lal, sal, tal], [lbl, sbl, tbl],

S

[lak, sak, tak], [1lbk, sbl, tbl]l]);

¢ in surface 3D:

fespace IDspace (IDmeshS, <IDFE>,
periodic=[[lal, sal, tal], [lbl, sbl, tbl],

T R

[lak, sak, tak], [1lbk, sbl, tbl]]);

where IDspace is the name of the space (e.g. Vh), IDmesh IDmesh3 IDmeshS "is respectly the name
of the associated :freefem: mesh,mesh3, meshS and <IDFE> is an identifier of finite element type.

In 2D we have a pair of periodic boundary conditions, if [la;, sa;], [Ib;, sb;] is a pair of int, and the 2 labels la; and
lb; refer to 2 pieces of boundary to be in equivalence.

If [la;, sa;], [Ib;, sb;] is a pair of real, then sa; and sb; give two common abscissa on the two boundary curves, and
two points are identified as one if the two abscissa are equal.

In 2D, we have a pair of periodic boundary conditions, if [la;, sa;, ta;], [Ib;, sb;, th;] is a pair of int, the 2 labels la;
and [b; define the 2 pieces of boundary to be in equivalence.

If [la;, sa;, ta;], [Ib;, sbi, th;] is a pair of real, then say, ta; and sb;, tb; give two common parameters on the two
boundary surfaces, and two points are identified as one if the two parameters are equal.

Note: The 2D mesh of the two identified borders must be the same, so to be sure, use the parameter
fixedborder=true in buildmesh command (see fixedborder).

3.3.1 List of the types of finite elements

As of today, the known types of finite elements are:

e [PO] piecewise constant discontinuous finite element (2d, 3d, surface 3d), the degrees of freedom are the
barycenter element value.

Py ={ve L*(Q)|forall K € T}, thereisax € R: vk =ag } (3.2)

e [P1] piecewise linear continuous finite element (2d, 3d, surface 3d), the degrees of freedom are the vertices
values.

P, ={ve H(Q)|VK € Ty, vk € P1 } (3.3)

e [P1ldc] piecewise linear discontinuous finite element (2d, 3d with load”’Element_P1dc1”)
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Php = {v e L*(Q)| VK € Th, vk € P1 } (3.4)

Warning: Due to an interpolation problem, the degree of freedom is not the vertices but three vertices
which move inside T'(X) = G + .99(X — G) where G is the barycenter.

* [P1b] piecewise linear continuous finite element plus bubble (2d, 3d)

The 2D Case:

Py, = {v € H'(Q) | VK € Th, vk € P1 @ Span{Af Af AL} } (3.5)

The 3D Case:

Py = {v e H'(Q) | VK € Th, vk € P1 & Span{AF A AS A} } (3.6)

where AKX i = 0,..,d are the d + 1 barycentric coordinate functions of the element K (triangle or
tetrahedron).

* P1bl,P1bl3d piecewise linear continuous finite element plus linear bubble (with load”’Element_P1bl” 2d,
3d).

The bubble is built by splitting the K, a barycenter in d + 1 sub element. (need 1load "Element_P1bl")

e [P2, P2] piecewise P continuous finite element (2d, 3d, surface 3d)

PZZ{U€H1(9)|VKGE, U|K€P2}

where P is the set of polynomials of R? of degrees < 2.
e [P2b, P2b3d] piecewise P, continuous finite element plus bubble (2d, 3d with load”Element_P2bulle3”)
The 2D Case:

Ph = {ve H'(Q)| VK € Ty, vjx € P, ® Span{A{ A AS}}

The 3D Case:

Ph = {ve H'(Q)| VK € Th, vjx € P ® Span{\{ A AN} }

e [P2dc] piecewise P, discontinuous finite element (2d)

]P’Zcm ={veL’()|VK €T vk € P}
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Warning: Due to an interpolation problem, the degree of freedom is not the six P2 nodes but six nodes
which move inside T'(X) = G + .99(X — G) where G is the barycenter.

e [P2h] quadratic homogeneous continuous (without P1).

e [P3] piecewise P53 continuous finite element (2d) (needs Load "Element_P3")

Py ={ve H(Q)|VK €T, vx € P3}

where P is the set of polynomials of R? of degrees < 3.

e [P3dc] piecewise Ps discontinuous finite element (2d) (needs 1oad "Element_P3dc")

Phen = {v e L*(Q)| VK € Th, vk € Ps}

where P is the set of polynomials of R? of degrees < 3.

e [P4] piecewise P, continuous finite element (2d) (needs 1load "Element_P4")

Py ={veH (Q)|VK € Th, vjx € Ps }

where P is the set of polynomials of R? of degrees < 4.

e [P4dc] piecewise Py discontinuous finite element (2d) (needs load "Element_P4dc")

Pﬁclh ={veL*(Q)|VK €Ty, v € P}

where P, is the set of polynomials of R? of degrees < 3.
* [POEdge] piecewise Py discontinuous finite element (2d) contained on each edge of the mesh.

e [P1Edge] piecewise P; discontinuous finite element (2d) (needs load "Element_PkEdge") P; oneach
edge of the mesh.

* [P2Edge] piecewise P discontinuous finite element (2d) (needs 1load "Element_PkEdge") P, on each
edge of the mesh.

e [P3Edge] piecewise P5 discontinuous finite element (2d) (needs load "Element_PkEdge") P; on each
edge of the mesh.

e [P4Edge] piecewise P, discontinuous finite element (2d) (needs 1load "Element_PkEdge") P, on each
edge of the mesh.

e [P5Edge] piecewise P discontinuous finite element (2d) (needs load "Element_PkEdge") P5 on each
edge of the mesh.

* [P2Morley] piecewise P, non conform finite element (2d) (needs 1oad "Morley")

P2 — {v e I2(Q) ‘ VK € Th, v € Ps, { v continuous at vertices, }

Onv continuous at middle of edge,

where P is the set of polynomials of R? of degrees < 2.
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Warning: To build the interplant of a function u (scalar) for this finite element, we need the func-
tion and 2 partial derivatives (u, us, u, ), creating this vectorial finite element with 3 components

(’LL, 'U/x, “y)

See our example for solving the BiLaplacien problem:

1 | load "Morley"

s | // Parameters
4 |int nn = 10;
5 |real h = 0.01;

7 |real £ = 1;

8

9 | // Mesh

10 |mesh Th = square (nn, nn);

1 |Th = adaptmesh(Th, h, IsMetric=1);

3 | // Fespace
4+ | fespace Vh(Th, P2Morley); //The Morley finite element space
15 |Vh [u, ux, uyl, [v, vx, vyl;

7 | // Macro
18 |macro bilaplacien(u, v) (dxx(u)x*dxx(v) + dyy(u)=*dyy(v) + 2.

—xdxy (u) xdxy (v)) //

20 |// Problem

21 | solve bilap ([u, ux, uy]l, [v, vx, vyl)
2 = 1int2d(Th) (

23 bilaplacien(u, v)

24 )

25 — int2d(Th) (

26 fxv

27 )

28 + on(l, 2, 3, 4, u=0, ux=0, uy=0)

29 ;

s | // Plot
2 |plot(u, cmm="u");

e [HCT] P; C" conforms finite element (2d) (needs 1oad "Element_HCT") one 3 sub triangles.

Lets call 7;LA the sub mesh of 7, where all triangles are split in 3 at the barycenter.
PHCOT — {v e CH(Q) ‘ VK € T2, vk € P3}

where Pj is the set of polynomials of R? of degrees < 3.

The degrees of freedom are the values of the normal derivative at the mid-point of each edge
[BERNADOU1980].

Warning: To build the interplant of a function u (scalar) for this finite element, we need the func-
tion and 2 partial derivatives (u, us, u, ), creating this vectorial finite element with 3 components
(u, uz, uy) like in previous finite element.
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e [P2BR] (needs load "BernadiRaugel") the Bernadi Raugel Finite Element is a Vectorial element (2d)
with 2 components, see [BERNARDI1985].

It is a 2D coupled Finite Element, where the Polynomial space is P? with 3 normal bubble edge
functions (Ps). There are 9 degrees of freedom:

— 2 components at each of the 3 vertices and
— the 3 flux on the 3 edges.

e [RTO, RT03d] Raviart-Thomas finite element of degree 0.

The 2D Case:
1
RT0, = {v € H(div) ’ VK € T, vix(2,y) = ’jg + i1y } 3.7)
The 3D Case:
ax .
RT0, = v e H(div) | VK € Ty, Vig(2,y,2) = | ek + Bk |v (3.8)
o #

where by writing div w = Z?:l Ow; /Ox; with w = (w;)%_:
H(div) = {w € L*(Q)" |divw € L*(Q) }
and where a}(, a%(, aﬁ(, Bx are real numbers.

* [RT0Ortho] Raviart-Thomas Orthogonal, or Nedelec finite element type I of degree 0 in dimension 2

RT00rthoh = {v € H(curl) | VK € Ta, vix(e,y) = | °F +5rc | } (3.9)
AR

* [Edge03d] 3d Nedelec finite element or Edge Element of degree 0.

al /31 -
Edge0y, = {v € H(Curl) | VK € Ty, Vg (2,y,2) = oéi + ﬁg X |y } s label : eq : Edge03d
o |8k 7

6w2/8m3—8w3/6z2 .
dws /1 —wn [0z with w = (w;)%_;:
Swl/aa:zf@wg/azl

where by writing curlw =

H(curl) = {w € L*(Q)¢ |curl w € LQ(Q)d}
and ok, a2 a3, B B2, 33 are real numbers.
[Edgel3d] (needs load "Element_Mixte3d") 3d Nedelec finite element or Edge Element of degree 1.
[Edge23d] (needs load "Element_Mixte3d") 3d Nedelec finite element or Edge Element of degree 2.

[P1lnc] piecewise linear element continuous at the mid-point of the edge only in 2D (Crouzeix-Raviart Finite
Element 2D).

[P2pnc] piecewise quadratic plus a P3 bubble element with the continuity of the 2 moments on each edge
(needs 1load "Element_P2pnc")

[RT1] (needs load "Element_Mixte")

RT1, = {v € H(div) ’ YK € T, ak,a%, Bk € P, Py, vix(z,y) = ji; +Bx | } (3.10)
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e [RT10rtho] (needs load "Element_Mixte")

RT1, = {v € H(curl) | VK € Th, ok, 0%, Bic € P2, Py, v (x,y) = ZE; + B |y }
G.11)

e [RT2] (needs load "Element_Mixte")

RT2, = {v € H(d) ’ YK € Th, ok, %, Bk € P2, Py, vix(z,y) = ‘Zi‘ + iy | Ga2)
K
e [RT20rtho] (needs load "Element_Mixte")

1
RT2), = {V € H(curl) ‘ VK € Tp, aj, a3, Bk € P3P, vig(z,y) = ‘25 + Bk |7 }
K
(3.13)

e [BDM1] (needs load "Element_Mixte™) the Brezzi-Douglas-Marini finite element:

BDM1,, = {v € H(div) | VK € Ty, v|x € P} } (3.14)

e [BDM1Ortho] (needs load "Element_Mixte") the Brezzi-Douglas-Marini Orthogonal also call Ned-
elec of type II, finite element

BDM10Ortho, = {v € H(curl) | VK € T, vix € P} } (3.15)

* [FEQF] (needs load "Element_QF") the finite element to store functions at default quadrature points (so
the quadrature is g£5pT in 2D and is g£V5 in 3d).

For over quadrature you have the following corresponding finite element’s quadrature formula.

FEQF1 — gflpT,

FEQF2 +— gf2pT,
— FEQF5 — gf5pT,
— FEQF7 +— gqf7pT,
— FEQF9 — gf9pT,
- FEQF13d > gfVl,
- FEQF23d — gfV2,
— FEQF53d +— gfV5

You can use this element to optimize the storage and reuse of functions with a long formula inside an integral for non
linear processes.
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3.3.2 Use of fespace in 2D
With the 2D finite element spaces
X, ={ve H'(0,1)|VK € T, vk € P1}
Xpp ={veXplv(?)=v(!) v(o)=0v(i)}
My, ={ve H'(]0,1*)|VK € T;, vk € P2}

Ry ={ve H'(0,1»?| VK € Tr, vix(z,y) = |35 +vx |} }

when 7}, is a mesh 10 x 10 of the unit square ]0, 1[2, we only write in FreeFEM:

mesh Th = square (10, 10);
fespace Xh(Th, Pl); //scalar FE
fespace Xph (Th,P1,
periodic=[[2, yl, [4, yl, [1, %], [3, x]1); //bi-periodic FE
fespace Mh (Th, P2); //scalar FE
fespace Rh(Th, RTO0); //vectorial FE

where Xh, Mh, Rh expresses finite element spaces (called FE spaces) X}, M}, Ry, respectively.

To use FE-functions up, vn, € Xp, pr, qn € My and Uy, Vi, € Ry, we write:

Xh uh, vh;

Xph uph, vph;

Mh ph, gh;

Rh [Uxh, Uyh], [Vxh, Vyh];

Xh[int] Uh(10); //array of 10 functions in Xh

Rh[int] [Wxh, Wyh] (10); //array of 10 functions in Rh

Wxh[5] (0.5,0.5); //the 6th function at point (0.5, 0.5)

Wxh[5][]; //the array of the degree of freedom of the 6th function

The functions Uy, V}, have two components so we have

__ | Uzh __ | Vzh
Uh — | Uyh and Vh — { Vyh

3.3.3 Use of fespace in 3D
With the 3D finite element spaces
Xp={ve H'(0,1)|VK € Tp, vk € P1}
Xn={vexao(|V) =0 ([2) 0 (0) =v ()0 lls) = (1)}
M, ={ve H(0,1*)|VK € Tr, vk € P2}

Ry, = {v e H'(10,1P)*|VK € T, vik(z,y,2) =

aK x
Bk —l—(SK)y}
YK z

when 7}, is a mesh 10 x 10 x 10 of the unit cubic 0, 1[?, we write in FreeFEM:
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//label: 0 up, 1 down, 2 front, 3 left, 4 back, 5 right
int nn=10;
mesh3 Th=buildlayers (square (nn, nn, region=0),nn,
zbound=[zmin, zmax], labelmid=rmid, reffaceup = rup,
reffacelow = rdown);

fespace Xh(Th, Pl); //scalar FE
// a FE space with full periodic condition in 3 axes
fespace Xph (Th,Pl,periodic=[[1l,y,2z],[2,y,2],
[3,x,2],[4,%,2],[5,%,y],[6,%,¥]1);
fespace Mh (Th, P2); //scalar FE
fespace Rh(Th, RTO03d); //vectorial FE

where Xh, Mh, Rh expresses finite element spaces (called FE spaces) X}, My, Ry, respectively.

The functions Uy, V}, have two components so we have

3.3.4 Use of fespace in surface 3D
With the 3D finite element spaces

X, ={ve H(0,1*)|VK € Tr, vk € P}

meshS Th = square3 (10, 10);
fespace Xh(Th, P1l); //scalar FE

where Xh expresses finite element spaces (called FE spaces) X, respectively.

To use FE-functions up, vp, € Xy, Dh, qn € My and U, Vi, € Ry, we write:

Xh uh, vh;
Xh[int] Uh(10); //array of 10 functions in Xh

3.3.5 Finite Element functions

To define and use FE-functions uy, vy, € Xy, pr, qn € My, and Uy, V;, € Ry, we write:

Xh uh, vh;

Xph uph, vph;

Mh ph, gh;

Rh [Uxh, Uyh, Uyzh], [Vxh, Vyh, Vyzh];

Xh[int] Uh(10); //array of 10 functions in Xh

Rh[int] [Wxh,Wyh,Wzh] (10); // array of 10 functions in Rh

Wxh([5] (0.5,0.5,0.5); //the 6th function at point (0.5, 0.5, 0.5)

Wxh[5][]; //the array of the degree of freedom of the é6th function

The functions Uj,, Vj, have three components, so we have:

(Uh)m (Vh)a:
Up = | (Un)y and V= | (Vh)y
(Uh)z (Vh)z

Note: One challenge of the periodic boundary condition is that the mesh must have equivalent faces.
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The buildlayers mesh generator splits each quadrilateral face with the diagonal passing through the vertex with
maximum number, so to be sure to have the same mesh one both face periodic the 2D numbering in corresponding
edges must be compatible (for example the same variation).

By Default, the numbering of square vertex is correct.

To change the mesh numbering you can use the change function like:

[ R Y N S VR R

{
int[int] old2new(0:Th.nv-1); //array set on 0, 1, .., nv-1
fespace Vh2 (Th, P1);
Vh2 sorder = x+y; //choose an order increasing on 4 square borders with x or y
sort (sorder[], old2new); //build the inverse permutation
int[int] new20ld = old2new”"-1; //inverse the permutation
Th = change (Th, renumv=new2o0ld);

The full example is in examples.

3.3.6 Lagrangian Finite Elements
P0-element

For each triangle (d=2) or tetrahedron (d=3) T}, the basis function ¢ in Vh (Th, PO0) is given by:

1 if(x)eT,
¢’“(x):{0 if(x)géTZ

If we write:

Vh (Th, PO);
Vh fh = f(x,vy);

2
d

ki
then for vertices g%, i = 1,2, ..d + 1 in Fig. 3.30, fy is built as £h= f;,(z,y) = Z I :_ql )or
k

See Fig. 3.31b for the projection of f(x,y) = sin(wx) cos(mwy) on Vh (Th, PO) when the mesh Th is a 4 x 4-grid
of [~1,1]? as in Fig. 3.31a.

P1-element

For each vertex ¢°, the basis function ¢; in Vh (Th, P1) is given by:
¢i(x,y) = af + iz + iy for (x,y) € T,
¢i(g) =1, ¢i(¢’) =0ifi#j

The basis function ¢y, (,y) with the vertex ¢** in Fig. 3.30 at point p = (x,y) in triangle T} simply coincide with
the barycentric coordinates )\’f (area coordinates):

area of triangle(p, ¢*2, ¢**)

=)\ =
Ok, (7, ) 1(z,y) area of triangle(g¥1, g2, ¢%s)

If we write:
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qkz qk3

Fig. 3.30: P, and P, degrees of freedom on triangle T

Vh(Th, P1);
Vh fh = g(x.y);

then:
th = fuloy) = 3 fla)oia,y)
=1

See Fig. 3.32a for the projection of f(x,y) = sin(wz) cos(my) into Vh (Th, P1).

P2-element

For each vertex or mid-point qi. The basis function ¢; in Vh (Th, P2) is given by:

¢il,y) = ai‘c+b§xfcfy+dfx2+@fﬁy+ff92for(:my)ETk,
¢i(q') = 1, ¢i(¢’)=0ifi#j

The basis function ¢, (z,y) with the vertex ¢** in Fig. 3.30 is defined by the barycentric coordinates:

¢k1 (l‘,y) = A’f(m,y)(QA’f(x,y) - 1)

and for the mid-point ¢*2:

d)kz (Cﬂ,y) = 4)\’1€($,y)>\2($,y)

If we write:

Vh (Th, P2);
Vh fh = f(x.y);

then:
M

fh = fu(z,y) = Z f(¢")¢i(z,y) (summation over all vertex or mid-point)
i=1

See Projection to Vh(Th, P2) for the projection of f(x,y) = sin(nzx) cos(my) into Vh (Th, P2).
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(b) Projection to Vh (Th, PO0)

(a) Test mesh Th for projection

Fig. 3.31: Finite element PO

080

(a) Projection to Vh (Th, P1)

100

(b) Projection to Vh (Th, P2)

Fig. 3.32: Finite elements P1, P2
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3.3.7 Surface Lagrangian Finite Elements
Definition of the surface P1 Lagragian element

To build the surface Pk-Lagrange, the main idea is to consider the usual 2d Lagrangian Finite Elements ; and its writing
in barycentric coordinates ; apply a space transformation and barycentric properties. The FreeFEM finite elements for
surface problem are: PO P1 P2 P1b.

0) Notation
« Let K be the shape triangle in the space R? of vertice (i, i1, i2)
* Let K be a triangle of the space R? of vertice (Ag, A1, A2)
* x4 a quadrature point on K
* X, a quadrature point on A
e Ply, designates 2d P1 Lagrangian Finite Elements
e Plg designates surface 3d P1 Lagrangian Finite Elements
« (\)2_, shape fonction of & (P1y4)
* (ti)7_, shape fonction of of K (P1lg)

1) Geometric transformation: from the current FE to the reference FE

. x
Letbe & = (g) a point of the triangle KcR?andX = [y ] a point of the triangle K C R3, where 4 and X are
z

expressed in baricentric coordinates.

The motivation here is to parameterize the 3d surface mesh to the reference 2d triangle, thus to be reduced to a finite
element 2d P1. Let’s define a geometric transformation F, such as F' : R? — R3

However, thus defines transformation F as not bijective.

So, consider the following approximation

F:R? 5 R3
z— X
AoA,
— m (z — Ap)
AAL A Ao

ow &

where A denote the usual vector product.

Ny

e i B

Note: A0AL A AgAz = | ny | defines the normal to the tangent plane generated by (Ao, Ao A1, AgA2)
ny

The affine transformation F' allows you to pass from the 2d reference triangle, which we project in R? to the 3d current
triangle, discretizing the surface we note I'.

Then F~ is well defined and allows to return to the reference triangle K, to the usual coordinates of R2 completed
by the coordinate z = 0.

2) Interpolation element fini
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A0

Al <

>
&
N
B!

A2
i0 i

Fig. 3.33: F, a parameterization from the reference 2d triangle to a 3d surface triangle

Remember that the reference geometric element for the finite element P1s that we are building is the reference triangle
K in the vertex plane (ig, 1, i2), which we project into space by posing z = 0 by the membrane hypothesis.

0 1 0
Henceig=[0],i7=(0],51=1[1
0 0 0

Let X be a point of the current triangle K, we have X= F‘(:%) The barycentric coordinates of X in K are given by:
X =372 AA(E) on

¢ A; the points of the current triangle K
o 5\2- basic functions Plyy

* do(zy)=1—z—y

° 5\1 (LC ) y) =
* do(z,y) =y
We need to define a quadrature formula for the finite element approximation. The usual formulation for a 2d triangle
i.q
will be used by redefining the quadrature points X, = x4 = | 94
0

3) The Lagragian P1 functions and theirs 1st order derivatives

The finite element interpolation gives us the following relationship: ;(X) = F~'(t;)(F~*(X)). To find the ex-
pression of the basic functions ¢ on the current triangle K, it is sufficient to use the inverse of the transformation F to
get back to the reference triangle K. However in FreeFEM, the definition of the reference ﬁpite element, the current

geometry is based on barycentric coordinates in order not to use geometric transformation. F'. The method used here
is geometric and based on the properties of the vector product and the area of the current triangle K.

i) The shape functions

Let be the triangle K of vertices ig, 4,42 C R® and ()\Z-)Z:O the local barycentric coordinates at K. The normal is

> ey Ty
defined as the tangent plane generated by (Ao, Ao A1, AgA2),\ 7T = AgA1 A AgAg avec || T ||= 2 mes (K).
Le denotes the operator V, defines the usual vector product of R3 such as V (A4, B,C) = (B — A) A (C — A)

The mixed product of three vectors u, v, w, noté [u, v, w], is the determinant of these three vectors in any direct
orthonormal basis, thus (A A V,C) = det (4, B,C)

with (.,.) is the usual scalar product of R3. \ Let Ph :math:* in mathbb{R}*3* and P his projected in the triangle K
such as:

Let’s lay the sub-triangles as follows :
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.« Ko = (P, Al, A2)

o K1 = (A0, P, A2)

o K, = (A0, A1, P)
with K = Ko U K7 U Ko,

Note:

Properties in R>
* Let 7 be the normal to the tangent plane generated by (A, /TAI , /TA; )
. ii = AgAy A AgAy

* By definition, A = 1 |< 7,7 >| and the vectorial area by A° =
AS(PBC) = & < iy, >, with iy the normal vector to the plane (PBC)

% < n,7m > hence

Let’s define the respective vector areas
« No(P) = V(P, A1, A2) the vectorial area of KO
« Ni(P) = V(AO0, P, A2) the vectorial area of K1
« Ny(P) = V(AO0, A1, P) the vectorial area of K2

By definition, in 3d, the barycentric coordinates are given by algebraic area ratio: :math:‘ lambda_i(P) = frac {(vec
N_i(P),vec N)}{(vec N,vec N)}label{basisfunc}*

Note that (N;(P), N) = 2 sign mes (K;) || N || and (N, N) = 2 sign mes (K) || N ||, avec sign the orientation of
the current triangle compared to the reference triangle.

We find the finite element interpolation, P = Z?:o Xi(P)A;.
ii) 1st order derivatives of Lagrangian P1 FE

Let Y be any vector of € R3.

—

(N2(P),Y) = (A1 = Ao) A (P = Ao),Y)
= det(A1 — Ao, P — Ao,Y)
= det(A1 — Ag, P, Y) - det(A1 — Ag, Ag, Y)
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Let’s calculate the differential of (No(P),Y),VY
Dp(Ny(P),Y) = det(A; — Ay, P',Y)dP
Vp(No(P),Y) = det (A; — Ag, P',Y)
= —det(A; — A, Y, P')
=—(A1 — A) NY.P'
=Y A (41 — Ag)

Consider in particular Y=N , then

= N/\Ez = —det(A1 —Ao,}_},Pl)
This leads to :math:‘ nabla_P lambda_2(P) = frac {(vec N wedge E_2)}{(vec N,vec N)} *
By similar calculations for No(P) et Ny (P)

VpAi(P) = ((]\1]\7/\]%))

Note: With the definition of the surface gradient and the 2d Pk-Lagrange FE used barycentric coordinates, surface
Pk-Langrange FE are trivial.

3.3.8 P1 Nonconforming Element

Refer to [THOMASSET2012] for details; briefly, we now consider non-continuous approximations so we will lose
the property:

wp, € Vi, € HY(Q)

If we write:

Vh (Th, Plnc);
Vh fh = f(x.y);

then:

Ny

th = fr(z,y) = Z f(m")¢i(x,y) (summation over all midpoint)

i=1

Here the basis function ¢; associated with the mid-point m’ = (¢ 4 ¢*i+1)/2 where ¢* is the i-th point in T}, and
we assume that j + 1 =0if j = 3:

¢i(x,y) = af + bjz + cfy for (z,y) € T,
gi(m') =1, ¢i(m?) = 0ifi # j
Strictly speaking 0¢; /0z, 0¢; /Oy contain Dirac distribution pdgr, .

The numerical calculations will automatically ignore them. In [THOMASSET2012], there is a proof of the estimation

" 1/2
(Z/ [Vw — th|2te:ctdxtextdy> =O(h)
k=1"Tk

The basis functions ¢, have the following properties.
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(b) Projection to Vh (Th, P1lb)

100

(a) Projection to Vh (Th, Plnc)

Fig. 3.34: Finite elements P1nc, P1lb

1. For the bilinear form a defined in Fig. 3.34a satisfy:
Zkvzl a(¢ia¢k) > 0

2. f>0=up>0

3. If i # j, the basis function ¢; and ¢; are L?-orthogonal:

/ 0;¢; textdrtertdy = 0 ifi#j
Q

which is false for P;-element.

See Fig. 3.34a for the projection of f(xz,y) = sin(wz) cos(my) into Vh (Th, Plnc).

3.3.9 Other FE-space

For each triangle T}, € T, let Ak, (2, y), Ak, (2, Y), Ak, (2, y) be the area cordinate of the triangle (see Fig. 3.30), and
put:

ﬂk (l’, y) = 27>\k‘1 (Ia y))‘kz (.CL’, y)>\k3 (Ia y)
called bubble function on T},. The bubble function has the feature: 1. 8y (z,y) =0 if (x,y) € 0T}.

k k k
2. Br(q*) = 1 where ¢** is the barycenter gi‘l;—ﬂ—a

If we write:

188 Chapter 3. Documentation



1

FreeFEM Documentation, Release 4.2.1

Vh (Th, P1b);
Vh fh = f(x.y);

then:
£h = fu(z,y) = Z F(@)oila,y) + 3 F(d)Bu(.y)
=1 k=1

See Fig. 3.34b for the projection of f(z,y) = sin(wx) cos(wy) into Vh (Th, P1lb).

3.3.10 Vector Valued FE-function

Functions from R? to RN with N = 1 are called scalar functions and called vector valued when N > 1. When N = 2

fespace Vh(Th, [PO, P1]) ;

makes the space

Vi, ={w = (w1, w2)| w1 € Vi(Th, Fo), w2 € Vi(Th, P1)}

Raviart-Thomas Element
In the Raviart-Thomas finite element 70y, the degrees of freedom are the fluxes across edges e of the mesh, where
the flux of the function f : R2 — R2 is fe f.n., ne is the unit normal of edge e.

This implies an orientation of all the edges of the mesh, for example we can use the global numbering of the edge
vertices and we just go from small to large numbers.

To compute the flux, we use a quadrature with one Gauss point, the mid-point of the edge.
Consider a triangle T}, with three vertices (a, b, c).

Lets denote the vertices numbers by i, ip, ., and define the three edge vectors e!,e? e3 by sgn(ip — i.)(b — c),
sgnic — iq)(c — a), sgn(i, — ip)(a — b).

We get three basis functions:

gk sgnliy —ic) k_ sgnlic —ia) gk sgnlia —dp)
¢1 - 2|Tk| ( a)v ¢2 - 2|Tk‘ ( b)v 3 2‘Tk‘ ( C)v

where |T}| is the area of the triangle T}. If we write:

Vh (Th, RTO);

Vh [flh, f2h] = [fl(x, y), £2(x, y)]1;
then:
ne 6
fho=fu(2,9) =YD il fi, (m") i
k=1 1=1

where n;, j, is the j;-th component of the normal vector n;,,

(1, ma, ms)} — b+c a+c b+a
1, 71102, 11403 § — 2 ) 9 ) 2

andi; = {1,1,2,2,3,3}, 5, = {1,2,1, 2,1, 2} with the order of [.
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Fig. 3.35: Normal vectors of each edge

// Mesh
mesh Th = square (2, 2);

// Fespace
fespace Xh(Th, P1);
Xh uvh = x"2 + y*2, vh;

fespace Vh(Th, RTO);
Vh [Uxh, Uyh] = [sin(x), cos(y)]; //vectorial FE function

// Change the mesh
Th = square(5,5);

//Xh is unchanged

//Uxh = x; //error: impossible to set only 1 component
//of a vector FE function

vh = Uxh; //ok

//and now vh use the 5x5 mesh

//but the fespace of vh is always the 2x2 mesh

// Plot

plot (uh);

uh = uh; //do a interpolation of uh (old) of 5x5 mesh
//to get the new uh on 10x10 mesh

plot (uh);

vh([x-1/2, y]) = x"2 + y"2; //interpolate vh = ((x-1/2)"2 + y"2)

To get the value at a point z = 1, y = 2 of the FE function uh, or [Uxh, Uyh], one writes:
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(a) vh Iso on mesh 2 x 2 (b) vh Iso on mesh 5 x 5

real value;

value = uh(2,4); //get value = uh(2, 4)
value = Uxh (2, 4); //get value = Uxh(2, 4)
//OR

x=1; vy = 2;

value = uh; //get value = uh(1l, 2)

value = Uxh; //get value = Uxh(1, 2)

value = Uyh; //get value = Uyh(1, 2)

To get the value of the array associated to the FE function uh, one writes

real value = uh[][0]; //get the value of degree of freedom 0

real maxdf = uh[].max; //maximum value of degree of freedom
int size = uh.n; //the number of degree of freedom
real[int] array(uh.n) = uh[]; //copy the array of the function uh

Warning: For a non-scalar finite element function [Uxh, Uyh] the two arrays Uxh [] and Uyh [] are the same
array, because the degree of freedom can touch more than one component.

3.3.11 A Fast Finite Element Interpolator

In practice, one may discretize the variational equations by the Finite Element method. Then there will be one mesh
for 21 and another one for €25. The computation of integrals of products of functions defined on different meshes is
difficult.

Quadrature formula and interpolations from one mesh to another at quadrature points are needed. We present below
the interpolation operator which we have used and which is new, to the best of our knowledge.

Let 70 = U TP, T,k = UL T} be two triangulations of a domain €. Let:
V(T;) ={C°(Y,) : flr; € Po}, i=0,1

be the spaces of continuous piecewise affine functions on each triangulation.
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Let f € V(T,?). The problem is to find g € V(7;}) such that:
g(q) = f(q) Vqvertex of T;!

Although this is a seemingly simple problem, it is difficult to find an efficient algorithm in practice.

We propose an algorithm which is of complexity N log N°, where N is the number of vertices of 7, and which is
very fast for most practical 2D applications.

Algorithm
The method has 5 steps.

First a quadtree is built containing all the vertices of the mesh 7,2 such that in each terminal cell there are at least one,
and at most 4, vertices of 720

For each ¢*, vertex of '7'h1 do:
1. Find the terminal cell of the quadtree containing ¢*.
2. Find the the nearest vertex ¢j to ¢ in that cell.
3. Choose one triangle T € 7, which has ¢ for vertex.
4. Compute the barycentric coordinates {\;};—1,2,3 of ¢! in T}
« if all barycentric coordinates are positive, go to Step 5

« otherwise, if one barycentric coordinate ); is negative, replace 7)) by the adjacent triangle opposite ¢{ and
go to Step 4.

* otherwise, if two barycentric coordinates are negative, take one of the two randomly and replace 7} by the
adjacent triangle as above.

5. Calculate g(q') on T} by linear interpolation of f:

Fig. 3.37: To interpolate a function at ¢°, the knowledge of the triangle which contains ¢ is needed. The algorithm
may start at ¢! € T,S and stall on the boundary (thick line) because the line ¢°¢! is not inside €2. But if the holes are
triangulated too (doted line) then the problem does not arise.

Two problems need to be solved:
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o What if :math: ‘g™l “ is not in 29 ? Then Step 5 will stop with a boundary triangle.

So we add a step which tests the distance of ¢! with the two adjacent boundary edges and selects the
nearest, and so on till the distance grows.

* What if Q% is not convex and the marching process of Step 4 locks on a boundary? By construction Delaunay-
Voronoi’s mesh generators always triangulate the convex hull of the vertices of the domain.

Therefore, we make sure that this information is not lost when 7,°, 7;! are constructed and we keep
the triangles which are outside the domain on a special list.

That way, in step 5 we can use that list to step over holes if needed.

Note: Sometimes, in rare cases, the interpolation process misses some points, we can change the search algorithm
through a global variable searchMethod

searchMethod = 0; // default value for fast search algorithm

searchMethod = 1; // safe search algorithm, uses brute force in case of missing point
// (warning: can be very expensive in cases where a lot of points are outside of the,
—domain)

searchMethod = 2; // always uses brute force. It is very computationally expensive.

Note: Step 3 requires an array of pointers such that each vertex points to one triangle of the triangulation.

Note: The operator = is the interpolation operator of FreeFEM, the continuous finite functions are extended by
continuity to the outside of the domain.

Try the following example :

1 | // Mesh

> |mesh Ths = square (10, 10);

3 |mesh Thg = square (30, 30, [xx3-1, y*x3-11);
4 |plot (Ths, Thg, wait=true);

¢ |// Fespace
7 | fespace Ch(Ths, P2);
8 |Ch us = (x-0.5)%(y-0.5);

10 | fespace Dh(Ths, P2dc);
in |Dh vs = (x-0.5)*(y-0.5);

13 | fespace Fh(Thg, P2dc);
4 |Fh ug=us, vg=vs;

6 | // Plot
17 |plot (us, ug, wait=true);
18 |plot(vs, vg, wait=true);

3.3.12 Keywords: Problem and Solve

For FreeFEM, a problem must be given in variational form, so we need a bilinear form a(u, v), a linear form ¢(f, v),
and possibly a boundary condition form must be added.
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(a) Extension of a continuous FE-function (b) Extension of discontinuous FE-function

Fig. 3.38: Extension of FE-function

problem P (u, V)
= a(u,v) - 1(f,v)
+ (boundary condition)

’

Note: When you want to formulate the problem and solve it in the same time, you can use the keyword solve.

Weak Form and Boundary Condition

To present the principles of Variational Formulations, also called weak form, for the Partial Differential Equations,
let’s take a model problem: a Poisson equation with Dirichlet and Robin Boundary condition.

The problem: Find u a real function defined on a domain  of R? (d = 2, 3) such that:

-V (kVu) = f inQ

au+mg—z = b onl,
u = g only
where:
* if d = 2 then V.(kVu) = 8, (k0yu) + 9y (kyu) with ,u = % and du = G

if d = 3 then V.(kVu) = 0,(kd,u) + 0y(kdyu) + 0 (k. u) with dyu = S, Oyu = %Z and, ,u = 2%
* The border I' = 9Q is splitin 'y and I',, such that Ty N T, = Pand Ty UT,, = 09,
* k is a given positive function, such that 3k € R, 0 < kg < k.

* g a given non negative function,

* b a given function.

Note: This is the well known Neumann boundary condition if @ = 0, and if I'y is empty.

In this case the function appears in the problem just by its derivatives, so it is defined only up to a constant (if u is a
solution then u + ¢ is also a solution).
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Let v, a regular test function, null on I';, by integration by parts we get:

—/V~(/@Vu)vdw=//<Vv-Vudw— vf@@d'y,:/fvdw
Q Q T on Q

where if d = 2 the Vo.Vu = (84 9v 4 dudvy

Oz Ox Jy Oy
where if d = 3 the Vu.Vu = (3452 4+ %Z% + Ju iy,

and where n is the unitary outer-pointing normal of the I".

Now we note that ’f% =—au+bonl,andv=0onT andI' =T, UT,, thus:

frge = [ =
— | vk— = auv — bu
r oOn T, r

The problem becomes:

Findu € V, = {w € H(Q)/w = g on 'y} such that:
/ kVv.Vudw +/ auwvdy = [ fuvdw +/ bvdy, Yvel (3.16)
Q r, Q T,

where Vo = {v € H'(Q)/v =00nTy}

Except in the case of Neumann conditions everywhere, the problem (3.16) is well posed when Kk > k¢ > 0.

Note: If we have only the Neumann boundary condition, linear algebra tells us that the right hand side must be
orthogonal to the kernel of the operator for the solution to exist.

One way of writing the compatibility condition is:

/fder/bd’y:O
Q r

and a way to fix the constant is to solve for u € H*(£2) such that:

/(suv + kVou.Vu) dw:/fvder/ bvdy, Yve HY(Q)
Q Q T

T

where ¢ is a small parameter (~ x 10~10[Q|7).

Remark that if the solution is of order % then the compatibility condition is unsatisfied, otherwise we get the solution
such that fQ u = 0, you can also add a Lagrange multiplier to solve the real mathematical problem like in the Lagrange
multipliers example.

In FreeFEM, the bidimensional problem (3.16) becomes:

problem Pw (u, v)
= int2d(Th) ( //int_{Omega} kappa nabla v . nabla u
kappax (dx (u) xdx (v) + dy(u)xdy (v))

+ int1d(Th, gn) ( //int_{Gamma_r} a u v
a * u*v

- int2d(Th) ( //int_{Omega} f v
fxv

- intl1d(Th, gn) ( //int_{Gamma_r} b v

(continues on next page)
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(continued from previous page)

b x v
)
+ on(gd, u=g) //u = g on Gamma_d

’

where Th is a mesh of the bi-dimensional domain 2, and gd and gn are respectively the boundary labels of boundary
I'yand I',,.

And the three dimensional problem (3.16) becomes

macro Grad(u) [dx(u), dy(u), dz(u) 1//
problem Pw (u, V)
= int3d(Th) ( //int_{Omega} kappa nabla v . nabla u
kappax (Grad (u) '+«Grad(v))

+ int2d(Th, gn) ( //int_{Gamma_r} a u v
a * u*v

- int3d(Th) ( //int_{Omega} f v
frv

- int2d(Th, gn) ( //int_{Gamma_r} b v
b » v

+ on(gd, u=g) //u = g on Gamma_d

where Th is a mesh of the three dimensional domain €2, and gd and gn are respectively the boundary labels of
boundary I'; and T',,.

3.3.13 Parameters affecting solve and problem

The parameters are FE functions real or complex, the number n of parameters is even (n = 2 x k), the k first function
parameters are unknown, and the % last are test functions.

Note: If the functions are a part of vectorial FE then you must give all the functions of the vectorial FE in the same
order (see Poisson problem with mixed finite element for example).

Note: Don’t mix complex and real parameters FE function.

Warning: Bug:
The mixing of multiple fe space with different periodic boundary conditions are not implemented.

So all the finite element spaces used for tests or unknown functions in a problem, must have the same type of
periodic boundary conditions or no periodic boundary conditions.

No clean message is given and the result is unpredictable.

The parameters are:

¢ solver= LU, CG, Crout, Cholesky, GMRES, sparsesolver, UMFPACK ...
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The default solver is sparsesolver (it is equal to UMFPACK if no other sparse solver is defined)
or is set to LU if no direct sparse solver is available.

The storage mode of the matrix of the underlying linear system depends on the type of solver cho-
sen; for LU the matrix is sky-line non symmetric, for Crout the matrix is sky-line symmetric, for
Cholesky the matrix is sky-line symmetric positive definite, for CG the matrix is sparse symmetric
positive, and for GMRES, sparsesolver or UMFPACK the matrix is just sparse.

* eps= areal expression.
€ sets the stopping test for the iterative methods like CG.

Note that if € is negative then the stopping test is:

|| Az —b]| < [e]
if it is positive, then the stopping test is:
el
Ar —b|| < m———
4w == g

* init= boolean expression, if it is false or 0 the matrix is reconstructed.
Note that if the mesh changes the matrix is reconstructed too.
* precon= name of a function (for example P) to set the preconditioner.

The prototype for the function P must be:

1 func real[int] P (real[int] & xx);

* tgv= Huge value (10°°) used to implement Dirichlet boundary conditions.
« tolpivot= sets the tolerance of the pivot in UMFPACK (10~ !) and, LU, Crout, Cholesky factorisation (10~29),
* tolpivotsym= sets the tolerance of the pivot sym in UMFPACK

* strategy= sets the integer UMFPACK strategy (0 by default).

3.3.14 Problem definition

Below v is the unknown function and w is the test function.
After the “=" sign, one may find sums of:
¢ Identifier(s); this is the name given earlier to the variational form(s) (type varf ) for possible reuse.

Remark, that the name in the varf of the unknown test function is forgotten, we use the order in the
argument list to recall names as in a C++ function,

* The terms of the bilinear form itself: if K is a given function,

* Bilinear part for 3D meshes Th

— int3d(Th) (K«vsw) = Z Kovw

Tem” T
— int3d(Th, 1) (Kxv+w) = Z /Kvw
Teth, T, VT
— int3d(Th, levelset=phi) (Kxvs*w) = / Kow
T,$<0

TeTh
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int3d(Th,

int2d (Th,

int2d (Th,

int2d (Th,

int2d(Th,

int2d (Th,

1, levelset=phi) (K*vxw) = Z / Kovw
Teth,TCy Y 1H9<0
2, 5) (Kxv*w) = / Kovw
TeTn Y (OTUL)N(I2UT's)

1) (K«vrw) = Z /Kvw
T

TETh,TCOQ

2, 5) (Kxvxw) = Kow

Te€Th

/(;’)TUF)Q(FZ UF5)

levelset=phi) (Kxvxw) = / Kow
Tetn’ T¢=0

1, levelset=phi) (K*xv*w) = Z / Kow
T,6=0

TETh, TCQy

intallfaces (Th) (Kxvxw) = Z Kow

Tetn” 0T

intallfaces (Th, 1) (Kxvxw) = Z Kow

Tet,Tc, ¥ OT

They contribute to the sparse matrix of type matrix which, whether declared explicitly or not, is con-
structed by FreeFEM.

* Bilinear part for 2D meshes Th

int2d (Th) (Kxv+w) = Z/Kvw

int2d (Th,

int2d (Th,

int2d (Th,

int1d (Th,

int1d (Th,

int1ld (Th,

int1d (Th,

int1ld (Th,

1) (Kxvxw) = Z /Kvw
T

TETh,TCQ

levelset=phi) (Kxvxw) = / Kow
Teth’ T:9<0

1, levelset=phi) (K*v*w) = Z / Kow
T,<0

TeTh, TCQy

2, 5) (Kxv*w) = Kow

T€Th

1) (Kxvxw) = Z /Kvw
T

TETh,TCO

/(\aTUF)ﬁ(Fg uT's)

2, 5) (Kxvxw) = Kovw

TETh

/(BTUF)m(F2uF5)

levelset=phi) (Kxvxw) = / Kvw
Teth” T:¢=0

1, levelset=phi) (Kxvxw) = Z / Kow
T,$=0

TeTh, TCQy
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— intalledges (Th) (Kxv*w) = Z Kow
Teth /9T

— intalledges (Th, 1) (Kxvxw) = Z Kow
Tem,TcQ, Vo7

— They contribute to the sparse matrix of type matrix which, whether declared explicitly or not, is con-

structed by FreeFEM.
* The right hand-side of the Partial Differential Equation in 3D, the terms of the linear form: for given functions
K, f:
— int3d(Th) (Kxw) = » / Kw
Tem’ T
- int3d(Th, 1) (Kxw) = Y /Kw
Teth,Teq, ¥ T
— int3d(Th, levelset=phi) (Kxw) = / Kw
TenV Th¢<0
— int3d(Th, 1, levelset=phi) (Kxw) = Z / Kw
Teth,TcQ, / T9<0
— int2d(Th, 2, 5) (Kxw) = / Kw
Tetn Y (OTUD)N(I'2UT's)
— int2d(Th, levelset=phi) (K+w) = / Kuw
Tetn”/ T:¢=0
— int2d(Th, 1, levelset=phi) (Kxw) = Z / Kw
Teth,TcQ, / T:9=0

— intallfaces (Th) (fxw) = Z fw
Teth” 0T

A vector of type real [int]

* The right hand-side of the Partial Differential Equation in 2D, the terms of the linear form: for given functions
K, f:

int2d (Th) (Kxw) = Z/Kw
T

TETh

— int2d(Th, 1) (Kxw) = Z /Kw
Teth,Te V7T

— int2d(Th, levelset=phi) (K*xw) = / Kw
Tetn’ Th9<0

— int2d(Th, 1, levelset=phi) (K*w) = Z / Kw
Teth, T, Y Th9<0

— intld(Th, 2, 5) (K*xw) = Kw

TE€Th

‘/(8TUF)I'-W(F2 UF5)

— int1d(Th, levelset=phi) (K*xw) = / Kuw
Tetn Y T09=0
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- intld(Th, 1, levelset=phi) (Kxw) = Y / Kuw
Teth,TCQ, Y T#=0

- intalledges (Th) (f+w) = » fw
Tetn /9T
— avector of type real [int]
* The boundary condition terms:
— An “on” scalar form (for Dirichlet) : on (1, u=g)

Used for all degrees of freedom 7 of the boundary referred by “1”, the diagonal term of
the matrix a;; = tgv with the terrible giant value t gv (= 103° by default), and the right
hand side b[i] = 7 (I1xg)[i]” % tgv, where the ” (I1,g)g[¢]” is the boundary node value
given by the interpolation of g.

Note: if tgv < 0 then we put to O all term of the line 7 in the matrix, except diagonal
term a;; = 1, and b[é] = 7 (I g)[7]”.

— An “on” vectorial form (for Dirichlet): on (1, ul=gl, u2=g2)

If you have vectorial finite element like RTO, the 2 components are coupled, and so you have :
bli] =7 (115 (g1, g2))[i]” % tgv, where IIj, is the vectorial finite element interpolant.

— A linear form on I' (for Neumann in 2d) —int1d (Th) (f*w) or —int1d (Th, 3) (f*w)

— A bilinear form on I' or I's (for Robin in 2d) intl1d(Th) (Kxvxw) or intld(Th,
2) (K*xv*w)

— A linear form on I' (for Neumann in 3d) -int2d (Th) (fxw) or —int2d (Th, 3) (f*w)

— A bilinear form on I' or I's (for Robin in 3d) int2d (Th) (Kxvxw) or int2d(Th,
2) (K*xv*w)

Note:
* If needed, the different kind of terms in the sum can appear more than once.

* The integral mesh and the mesh associated to test functions or unknown functions can be different in the case of
linear form.

* N.x,N.y and N. z are the normal’s components.

Warning: It is not possible to write in the same integral the linear part and the bilinear part such as in
intld(Th) (Kxv*w — f*w).

3.3.15 Numerical Integration

Let D be a N-dimensional bounded domain.

For an arbitrary polynomial f of degree r, if we can find particular (quadrature) points &;, j = 1,---,J in D and
(quadrature) constants w; such that

L
[ 169 =3 eetten
D (=1
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then we have an error estimate (see [CROUZEIX1984]), and then there exists a constant C' > 0 such that

L
/ F69 =Y wef(€)
D =1

for any function r 4 1 times continuously differentiable f in D, where h is the diameter of D and | D| its measure (a
point in the segment [¢"¢’] is given as

S C|D|h7'+1

{(,y)lz= (1 —-t)g, +tql, y= (1 —t)g) +tq), 0 <t <1}

For a domain Q = >";'*, Tk, T5, = {T%}, we can calculate the integral over I';, = 99, by:
th f(x)ds =int1ld(Th) (f£) =intl1ld(Th, gfe=x) (f) =intld(Th, gforder=x) (f)

where * stands for the name of the quadrature formula or the precision (order) of the Gauss formula.

Quadrature formula on an edge
L gfe gforderPointin [¢*, ¢7] Wy Exact on
Py, k=
1 gflpE | 2 1/2 llg'’ || 1
2 | qf2pE |3 (1£+/1/3)/2 llg'q’]| /2 3
3 qf3pE | 6 (1++/3/5)/2 (5/18)llg°¢’ || 5
1/2 (8/18)[lg"¢’ ||
4 [afape |8 (1 S2AZOVI0) /9 Y0l | 7
(14 20=0/90) /2 a0
5 |atspE [ 10| (1x 250/ 8220 g1 | 9
1/2 e lla'd ||
(1 £ 250V0) /2 U
2 | gflpEluh@ 0 llg'q’1[/2 1
1 llg'’|1/2

where |¢'q?| is the length of segment giq/.

For a part I'y of '}, with the label “1”, we can calculate the integral over I'; by:
fFl f(z,y)ds =int1d(Th, 1) (f) =intld(Th, 1, gfe=gf2pE) (f)
The integrals over I'y, I's are given by:

frlurg [, y)ds

For each triangle Ty, = [¢"* ¢*2¢"3], the point P(z,y) in T}, is expressed by the area coordinate as P(&,7):

| Loa ey 1 oy Log gy S
Tl =51 & @ | D=1 qr q’iz Dy=|1 x 'y | Ds=|1 ¢k g
1 gk g L g g 1 g g 1 oz oy
1 1 1
E=5D/ITkl n=5D:/ITe|  thenl—¢&—n=2Ds/|Ti|

For a two dimensional domain or a border of three dimensional domain €2, = ZZ‘:l Tk, Tn = {1k}, we can calculate
the integral over €2, by:

th f(z,y)=int2d(Th) (£) =int2d (Th, gft=x) (f) =int2d(Th, gforder=x) (f)

where * stands for the name of quadrature formula or the order of the Gauss formula.
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Quadrature formula on a triangle
L gft | gfordaintin T} we Ex-
act on
Py, k=
1 gflpT?2 (%,%) |T%| 1
3 qf2pT 3 (%,%) |T%:|/3 2
(2.0) IT/3
(0,1) ITh|/3
7 qf5pT 6 (3.3) 0.225|T}| 5
(6—\/ﬁ 6—\/ﬁ) (155—v/15)|Ty|
21 21 1200
(67\/@ 9+2\/ﬁ) %@E”m
21 21 (155—/15)| T3]
9+2V15 6—15 T 1200
( 21 0 21 ) (155+/15)| Ty |
(6+2\1/ﬁ, 6+2‘1/ﬁ) (155-&-1\2/01%)\Tk|
(6+\/ﬁ 9—2\/6) (155+1\2/(%)\Tk|
21 21 1200
(9—2\/ﬁ 6+\/ﬁ)
21 0 21
3 gflpTlumg (0,0) |T%|/3 1
(1,0) IT41/3
(0,1) A
9 | af2pf4rl | (3.3) || /12 1
(0,4) |Tk|/12
(0, %) ITi]/12
(1,0) |Tk|/12
(ﬁ 0) |Tk|/12
a IT31/6
(i’ i) |Tk|/6
12 |T%|/6
(57 Z)
15 qf7pT 8 See [TAYLOR2005] for detail 7
21 qfopT 10 See [TAYLOR2005] for detail 9
For a three dimensional domain 25, = Zz;l Tk, T, = {T1}, we can calculate the integral over ), by:
th f(z,y)=int3d(Th) (£) =int3d (Th, gfV=x) (£) =int3D (Th, gforder=x*) (f)
where * stands for the name of quadrature formula or the order of the Gauss formula.
Quadrature formula on a tetrahedron
L qfv | gfordeRointin T, € R? we Exact on
Py, k=
1 [qgfvi |2 155 || 1
qfv2 | 3 G4(0.58...,0.13...,0.13...) |T%|/4 2
14 qfvs | 6 G4(0.72...,0.092...,0.092...) 0.073...|Tk| 5
G4(0.067...,0.31...,0.31...) 0.11...|Tk|
G6(0.45...,0.045...,0.45...) 0.042. .. |Tk|
4 qfVvllpump G4(1,0,0) |T%|/4 1

Where G4(a, b, b) such that a + 3b = 1 is the set of the four point in barycentric coordinate:

{(Cl, ba ba b)7 (ba a, b7 b)’ (b7 b7 a, b)7 (ba ba b7 CL)}
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and where G6(a, b, b) such that 2a + 2b = 1 is the set of the six points in barycentric coordinate:

{(a,a,b,b), (a,b,a,b), (a,b,b,a),(bb,a,a), (b a,b,a),(ba ab)}

Note: These tetrahedral quadrature formulae come from http://nines.cs.kuleuven.be/research/ecf/mtables.html

Note: By default, we use the formula which is exact for polynomials of degree 5 on triangles or edges (in bold in
three tables).

It is possible to add an own quadrature formulae with using plugin gf11to025 on segment, triangle or Tetrahedron.

The quadrature formulae in D dimension is a bidimentional array of size N, x (D + 1) such that the D + 1 value of on
rowi =0,...,N, — 1 are w?, &%, ..., 2%, where w' is the weight of the quadrature point, and 1 — 25:1 i};, 21, .., 80
is the barycentric coordinate the quadrature point.

load "qgfllto25"

// Quadrature on segment
real[int, int] ggl = [
[0.5, 071,
[0.5, 1]
1;

QFl gfl(l, gql); //def of quadrature formulae gfl on segment
//remark:
//1 is the order of the quadrature exact for polynome of degree < 1

//Quadrature on triangle

real[int, int] qgg2 = [
[1./3., 0, 01,
[1./3., 1, 01,
[1./3., 0, 1]

1;

QF2 agf2(1l, gqg2); //def of quadrature formulae gf2 on triangle
//remark:

//1 is the order of the quadrature exact for polynome of degree < 1
//so must have sum w’i = 1

// Quadrature on tetrahedron

real[int, int] qgg3 = [
[1./4., 0, 0, 0]
[1./4., 1, 0, 01,
[1./4., 0, 1, 0]
[1./4., 0, 0, 11

’ ’

QF3 gf3(1l, gg3); //def of quadrature formulae qf3 on get
//remark:
//1 is the order of the quadrature exact for polynome of degree < 1)

// Verification in 1d and 2d
mesh Th = square (10, 10);

(continues on next page)
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(continued from previous page)

real I1 = intld(Th, gfe=qgfl) (x"2);
real I1l1 = intld(Th, gfe=qflpElump) (x"2);

real I2 = int2d(Th, qgft=gf2) (x°2);
real I21 = int2d(Th, qft=qflpTlump) (x"2);

cout << Il << " == " << I1l1 << endl;
cout << I2 << " == " << I21 << endl;
assert ( abs (I1-I11) < 1le-10 );
assert ( abs (I2-I21) < 1le-10 );

The output is

1.67 == 1.67
0.335 == 0.335

3.3.16 Variational Form, Sparse Matrix, PDE Data Vector

In FreeFEM it is possible to define variational forms, and use them to build matrices and vectors, and store them to
speed-up the script (4 times faster here).

For example let us solve the Thermal Conduction problem.

The variational formulation is in L?(0,T; H*(2)); we shall seek u™ satisfying:

u” — un—l
Yw € Vy; / ———w+ kVu"Vuw) + / a(u” = Uye)w =0
Q at r

where Vy = {w € H'(Q) /wr,, = 0}.

So to code the method with the matrices A = (A4;;), M = (M,;), and the vectors u™, b", V', b”, b (notation if w is a
vector then w; is a component of the vector).

_ _ 1 b’y ifiel
n __ 1in /o n—1 » __ no_ 2 24
ut = AT b =bo+ Mu™", b7 = € bet, i { b elseif ¢ Tag

Where with 1 = tgv = 10%:

1 if i € T'y4,andj = i

Aij = / ’iji/dt + k(VwJle) + / aw;w; elseifi € I'yy,or] 1

Q i3

1 ifi € T'oq,andj =i
M’L" = op . . .
ww; /dt  elseifi & T'og,0r) # i

Q

bO,i Tis QUqeW;
bg = u® the initial data

// Parameters

func fu0 = 10 + 90xx/6;
func k = 1.8x(y<0.5) + 0.2;
real ue = 25.;

real alpha = 0.25;

real T = 5;

real dt = 0.1 ;

(continues on next page)
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(continued from previous page)

// Mesh
mesh Th = square (30, 5, [6x*x, y]);

// Fespace
fespace Vh (Th, P1);
Vh u0 = fu0, u = u0;

Create three variational formulation, and build the matrices A,M.

// Problem
varf vthermic (u, v)
= int2d (Th) (
uxv/dt
+ kx (dx (u) »dx (v) + dy(u)xdy(v))
)
+ intld(Th, 1, 3)(
alphaxuxv

+ on(2, 4, u=1l)

’

varf vthermicO (u, V)
= intl1ld(Th, 1, 3)(
alphaxuex*v

varf vMass (u, V)
= 1int2d(Th) (
uxv/dt

+

on(2, 4, u=l)

real tgv = 1e30;
matrix A = vthermic(Vh, Vh, tgv=tgv, solver=CG);
matrix M = vMass (Vh, Vh);

Now, to build the right hand size we need 4 vectors.

real[int] b0 = vthermicO0(0, Vh); //constant part of the RHS

real[int] bcn = vthermic (0, Vh); //tgv on Dirichlet boundary node ( !=0 )
//we have for the node 1 : 1 in Gamma_Z24 -> bcn[i] != 0

real[int] bcl = tgvxul[]; //the Dirichlet boundary condition part

Note: The boundary condition is implemented by penalization and vector bcn contains the contribution of the
boundary condition v = 1, so to change the boundary condition, we have just to multiply the vector bcn [] by the
current value £ of the new boundary condition term by term with the operator . *.

Uzawa model gives a real example of using all this features.

And the new version of the algorithm is now:
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// Time loop
ofstream ff ("thermic.dat");

for

(real £t = 0; t < T; t += dt){

// Update

real[int] b = b0; //for the RHS

b += Mxul[]; //add the the time dependent part

//lock boundary part:

b =bcn ? bel : b; //do forall i: b[i] = bcn[i] ? bcl[i] : b[i]

// Solve
ul] = A"-1xb;

// Save
ff << £ << " " << u(3, 0.5) << endl;

// Plot
plot (u);

// Display

for

(int 1 = 0; i < 20; i++)
cout << dy(u) (6.0%1/20.0, 0.9) << endl;

// Plot
plot (u, fill=true, wait=true);

Note: The functions appearing in the variational form are formal and local to the var £ definition, the only important
thing is the order in the parameter list, like in:

varf vbl ([ul, u2], g) = int2d(Th) ((dy(ul) + dy(u2))=*qg) + int2d(Th) (1xq);
varf vb2 ([vl, v2], p) = int2d(Th) ((dy(vl) + dy(v2))+*p) + int2d(Th) (1*p);

To build matrix A from the bilinear part the variational form a of type var f simply write:

A =
//

a(vh, Wh , []...]);
where

//Vh is "fespace" for the unknown fields with a correct number of component
//Wh is "fespace" for the test fields with a correct number of component

Possible named parametersin , [...] are

* solver=1U, CG, Crout, Cholesky, GMRES, sparsesolver, UMFPACK...
The default solver is GMRES.

The storage mode of the matrix of the underlying linear system depends on the type of solver cho-
sen; for LU the matrix is sky-line non symmetric, for Crout the matrix is sky-line symmetric, for
Cholesky the matrix is sky-line symmetric positive definite, for CG the matrix is sparse symmetric
positive, and for GMRES, sparsesolver or UMFPACK the matrix is just sparse.

e factorize = If true then do the matrix factorization for LU, Cholesky or Crout, the default value is
false.

* eps= A real expression.

€ sets the stopping test for the iterative methods like CG.
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Note that if € is negative then the stopping test is:

[|Az —b]| < e
if it is positive then the stopping test is
le]
Az - b|| < ————
Mz =0 < Taag =

* precon= Name of a function (for example P) to set the preconditioner.

The prototype for the function P must be:

1 func real[int] P (real[int] & xx) ;

* tgv= Huge value (103°) used to implement Dirichlet boundary conditions.

* tolpivot= Set the tolerance of the pivot in UMFPACK (10~1) and, LU, Crout, Cholesky factorization
(10729,

* tolpivotsym= Set the tolerance of the pivot sym in UMFPACK

* strategy= Set the integer UMFPACK strategy (0 by default).

Note: The line of the matrix corresponding to the space Wh and the column of the matrix corresponding to the space
Vh.

To build the dual vector b (of type real [int]) from the linear part of the variational form a do simply:

real b (Vh.ndof);
b = a(0, Vh);

A first example to compute the area of each triangle K of mesh Th, just do:

fespace Nh(Th, PO); //the space function constant / triangle

Nh areak;
varf varea (unused, chiK) = int2d(Th) (chiK);
etaK[] = wvarea (0, Ph);

Effectively, the basic functions of space Nh, are the characteristic function of the element of Th, and the numbering
is the numeration of the element, so by construction:

etakK|[i] :/1\& :/ 1;
K;

Now, we can use this to compute error indicators like in example Adaptation using residual error indicator.

First to compute a continuous approximation to the function A “density mesh size” of the mesh Th.

fespace Vh(Th, P1l);

Vh h ;

real[int] count (Th.nv);
varf vmeshsizen (u, v)
varf vedgecount (u, v)

intalledges (Th, gfnbpE=1) (v);
intalledges (Th, gfnbpE=1) (v/lenEdge) ;

// Computation of the mesh size

count = vedgecount (0, Vh); //number of edge / vertex
h[] = vmeshsizen (0, Vh); //sum length edge / vertex
h{] = h[]./count; //mean length edge / vertex
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To compute error indicator for Poisson equation:

ou
me = [ W+ danP+ [ hl(GeP
K oK n

where h is size of the longest edge (hTriangle), h. is the size of the current edge (LenEdge), n the normal.

fespace Nh(Th, PO); // the space function constant / triangle
Nh etak;
varf vetaK (unused, chiK)
= intalledges (Th) (
chiK+lenEdgex*square (jump (N.xxdx (u) + N.yxdy(u)))
)
+ int2d(Th) (
chiK+square (hTriangle* (f + dxx(u) + dyy(u)))

etak[] = vetaK (0, Ph);

We add automatic expression optimization by default, if this optimization creates problems, it can be removed with
the keyword opt imize as in the following example:

varf a (ul, u2)
= int2d (Th, optimize=0) (
dx (ul) »dx (u2)
+ dy (ul) xdy (u2)

+ on(l, 2, 4, ul=0)
+ on (3, ul=1)

or you can also do optimization and remove the check by setting opt imize=2.

Remark, it is all possible to build interpolation matrix, like in the following example:

mesh TH = square (3, 4);
mesh th = square (2, 3);
mesh Th = square (4, 4);

fespace VH(TH, P1);
fespace Vh(th, P1l);
fespace Wh(Th, P1);

matrix B = interpolate(VH, Vh); //build interpolation matrix Vh->VH
matrix BB = interpolate (Wh, Vh); //build interpolation matrix Vh->Wh

and after some operations on sparse matrices are available for example:

int N = 10;
real [int, int] A(N, N); //a full matrix
real [int] a(N), b(N);

A = 0;

for (int i1 = 0; 1 < N; i++){
A(i, 1) = 1+i;
if (i+1 < N) A(i, i+1l) = —-i;
alil = i;

(continues on next page)
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(continued from previous page)

b = Axb;

matrix sparseA = A;

cout << sparseA << endl;

sparseA = 2xsparseA + sparseA';

sparseA = 4xsparseA + sparseAx*5;

matrix sparseB = sparseA + sparseA + sparsed; ;
cout << "sparseB = " << sparseB(0,0) << endl;

3.3.17 Interpolation matrix
It is also possible to store the matrix of a linear interpolation operator from a finite element space V}, to another W, to
interpolate(Wy,Vs,...) a function.
Note that the continuous finite functions are extended by continuity outside of the domain.
The named parameters of function interpolate are:
* inside= set true to create zero-extension.
e t=set true to get the transposed matrix

e op= set an integer written below

0 the default value and interpolate of the function

1 interpolate the 0,

2 interpolate the 0,

3 interpolate the 0,

* U2Vc= set the which is the component of W}, come in V}, in interpolate process in a int array so the size of the
array is number of component of W}, if the put —1 then component is set to 0, like in the following example:
(by default the component number is unchanged).

1 | fespace V4h(Th4, [Pl1, P1l, P1l, P1l]);
> | fespace V3h(Th, [P1, P1l, P1]);
3 |int[int] u2vce = [1, 3, -11; //-1 —-> put zero on the component
4 |matrix IV34 = interpolate (V3h, V4h, inside=0, U2Vc=ulvc); //V3h <- V4h
s |Vdh [al, a2, a3, a4] = [1, 2, 3, 4];
¢ |V3h [bl, b2, b3] = [10, 20, 3071;
7 |b1[] = IV34xalll;
So here we have: freefem bl == 2, b2 == 4, b3 == 0

Tip: Matrix interpolation

// Mesh

mesh Th = square (4, 4);

mesh Th4 = square(2, 2, [x%x0.5, y*x0.51);
plot (Th, Th4, wait=true);

// Fespace

fespace Vh(Th, P1);
Vh v, vv;

fespace Vh4 (Th4, P1);
Vhd vid=xxy;

(continues on next page)
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(continued from previous page)

fespace Wh(Th, PO);
fespace Wh4 (Th4, PO);

// Interpolation
matrix IV = interpolate(Vh, Vh4); //here the function is exended by continuity
cout << "IV Vh<-Vh4 " << IV << endl;

v=vi;

vv([]= IVxv4[]; //here v == vv

real[int] diff= vv[] - vI[];

cout << "|| v - vv || = " << diff.linfty << endl;

assert ( diff.linfty<= le-6);

matrix IVO = interpolate(Vh, Vh4, inside=1); //here the function 1is exended by zero
cout << "IV Vh<-Vh4 (inside=1) " << IV0 << endl;

matrix IVt0 = interpolate(Vh, Vh4, inside=1, t=1);
cout << "IV Vh<-Vh4"t (inside=1) " << IVt0 << endl;

matrix IV4t0 = interpolate (Vh4, Vh);
cout << "IV Vh4<-Vh"t " << IV4t0 << endl;

matrix IW4 = interpolate (Wh4, Wh);
cout << "IV Wh4<-Wh " << IW4 << endl;

matrix IW4V = interpolate (Wh4, Vh);
cout << "IV Wh4<-Vh " << IW4 << endl;

Build interpolation matrix A at a array of points (zz[j], yy[j]), ¢ = 0, 2 here:

a;j = dop(wi(zz[j], yy[4]))

where w; is the basic finite element function, ¢ the component number, dop the type of diff operator like in op def.

real[int] xx = [.3, .41, yy = [.1, .41;

int ¢ = 0, dop = O;

matrix Ixx = interpolate(Vh, xx, yy, op=dop, composante=c);
cout << Ixx << endl;

Vh ww;

real[int] dd = [1, 2];

ww([] = Ixx+dd;

Tip: Schwarz

The following shows how to implement with an interpolation matrix a domain decomposition algorithm based on
Schwarz method with Robin conditions.

Given a non-overlapping partition Q = Qg U Q; with Qo N Q; = 0, 3 := Qg N Q; the algorithm is:

—Aui = f in Qi, 1= 071,
8(u1 —Uo)

o + a(u; —ug) =0o0nX.
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The same in variational form is:

fQi Vu; - Vv + [ oaupw = fQi fo
— fQj(Vuj -V — fv) + [y aujv, Yo e HJ(Q),i,5 =[0,1] U[L,0]

To discretized with the P triangular Lagrangian finite element space V;, simply replace Hg (2) by V3,(Q0) U V4 (Q1).
Then difficulty is to compute fQ Vu; - Vv when v is a basis function of V3, (€;), i # j.

It is done as follows (with I' = 9):

// Parameters
int n = 30;

int Gamma = 1;
int Sigma = 2;

func £ = 1.;
real alpha = 1.;

int Niter = 50;
// Mesh

mesh[int] Th(2);
int[int] reg(2);

border a0l (t=0, 1) {x=t; y=0; label=Gamma; }

border al(t=1, 2){x=t; y=0; label=Gamma; }

border bl (t=0, 1) {x=2; y=t; label=Gamma; }

border cl(t=2, 1) {x=t; y=1; label=Gamma; }

border cO(t=1, 0){x=t; y=1; label=Gamma; }

border b0 (t=1, 0){x=0; y=t; label=Gamma; }

border d(t=0, 1){x=1; y=t; label=Sigma;}

plot(al(n) + al(n) + bl(n) + cl(n) + cO(n) + bO(n) + d(n));

(

mesh TH = buildmesh(aO(n) + al(n) + bl(n) + cl(n) + cO0(n) + b0O(n) + d(n));

reg(0) = TH(0.5, 0.5).region;
reg(l) = TH(1.5, 0.5).region;
for(int 1 = 0; i < 2; i++) Th[i] = trunc(TH, region==reg(i));

// Fespace
fespace VhO(Th([0], P1);
VhO u0 = 0;

fespace Vhl (Th([1l], P1);
Vhl ul = 0;

// Macro
macro grad(u) [dx(u), dy(u)]l //

// Problem
int i;
varf a (u, v)
= int2d(Th[i]) (
grad (u) "~grad(v)
)
+ intld(Th[i], Sigma) (
alphaxux*v

(continues on next page)
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(continued from previous page)

+ on (Gamma, u=0)

’

varf b (u, v)
= int2d(Th[i]) (
fxv

+ on (Gamma, u=0)

varf duldn (u, V)

=—int2d(Th[1]) (
grad(ul) "+grad(v)
- fxv

)

+ intld(Th[1], Sigma) (
alphaxul+*v

)

+on (Gamma, u=0)

’

varf dulOdn (u, v)

=—int2d (Th[0]) (
grad (u0) '"~grad(v)
- fxv

)

+ int1ld(Th[0], Sigma) (
alphaxulxv

)

+on (Gamma, u=0)

4

matrix I01 = interpolate(Vhl, VhO);
matrix I10 = interpolate(Vh0, Vhl);

matrix[int] A(2);
i = 0; A[i] = a(vh0, Vh0);
i = 1; A[i] = a(Vhl, Vhl);

// Solving loop

for (int iter = 0; iter < Niter; iter++) {

// Solve on Th[O0]

{
i = 0;
real[int] b0 = b(0, VhO);
real[int] Duldn = duldn (O,

real[int] Tduldn (VhO.ndof);

b0 += Tduldn;
ul0[] = A[0]"-1+b0;
}
// Solve on Th[1]
{
i=1;
real[int] bl = b(0, Vhl);
real[int] DuOdn = duOdn (0,

real[int] TduOdn (Vhl.ndof);

bl += TduOdn;

I01'"+Duldn;

I10'"+DulOdn;

(continues on next page)
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(continued from previous page)

ul[] = A[1]"-1+bl;
}

plot (u0, ul, cmm="iter="+iter);

3.3.18 Finite elements connectivity
Here, we show how to get informations on a finite element space W}, (7, ), where “*” may be P1, P2, Plnc,
etc.

* Wh.nt gives the number of element of W,

* Wh.ndof gives the number of degrees of freedom or unknown

e Wh.ndofK gives the number of degrees of freedom on one element

e Wh(k, 1) gives the number of ith degrees of freedom of element k.

See the following example:

Tip: Finite element connectivity

// Mesh
mesh Th = square (5, 5);

// Fespace
fespace Wh(Th, P2);

cout << "Number of degree of freedom " << Wh.ndof << endl;
cout << "Number of degree of freedom / ELEMENT = " << Wh.ndofK << endl;

int k = 2, kdf = Wh.ndofK; //element 2

cout << "Degree of freedom of element " << k << ":" << endl;
for (int i1 = 0; i < kdf; i++)
cout << Whi(k,1i) << " ";

cout << endl;

The output is:

Number of degree of freedom = 121

Number of degree of freedom / ELEMENT = 6
Degree of freedom of element 2:

78 95 83 87 79 92

3.4 Visualization

Results created by the finite element method can be a huge set of data, so it is very important to render them easy to
grasp.

There are two ways of visualization in FreeFEM:
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* One, the default view, which supports the drawing of meshes, isovalues of real FE-functions, and of vector
fields, all by the command plot (see Plot section below). For publishing purpose, FreeFEM can store these

plots as postscript files.

¢ Another method is to use external tools, for example, gnuplot (see Gnuplot section, medit section, Paraview
section, Matlab/Octave section) using the command system to launch them and/or to save the data in text

files.

3.4.1 Plot

With the command plot, meshes, isovalues of scalar functions, and vector fields can be displayed.

The parameters of the plot command can be meshes, real FE functions, arrays of 2 real FE functions, arrays of two
double arrays, to plot respectively a mesh, a function, a vector field, or a curve defined by the two double arrays.

Note: The length of an arrow is always bound to be in [5%o, 5%] of the screen size in order to see something.

The plot command parameters are listed in the Reference part.

The keyboard shortcuts are:

enter tries to show plot
p previous plot (10 plots saved)
? shows this help
+,- zooms in/out around the cursor 3/2 times
= resets the view
r refreshes plot
up, down, left, right special keys to tanslate
3 switches 3d/2d plot keys :
- z,Z focal zoom and zoom out
— H,h increases or decreases the Z scale of the plot
mouse motion:
— left button rotates
— right button zooms (ctrl+button on mac)
— right button +alt tanslates (alt+ctrl+button on mac)
a,A increases or decreases the arrow size
B switches between showing the border meshes or not
i,I updates or not: the min/max bound of the functions to the window
n,N decreases or increases the number of iso value arrays
b switches between black and white or color plotting
g switches between grey or color plotting
f switches between filling iso or iso line

1 switches between lighting or not

214
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* v switches between show or not showing the numerical value of colors

* m switches between show or not showing the meshes

* w window dump in file ffglutXXXX.ppm

 * keep/drop viewpoint for next plot

* k complex data / change view type

¢ ESC closes the graphics process before version 3.22, after no way to close
* otherwise does nothing

For example:

real[int] xx(10), yy(10);
mesh Th = square(5,5);
fespace Vh(Th, P1);

//plot scalar and vectorial FE function
Vh uh=x*x+ty*y, vh=-y"2+x"2;
plot (Th, uh, [uh, vh], value=true, ps="three.eps", wait=true);

//zoom on box defined by the two corner points [0.1,0.2] and [0.5,0.6]
plot (uh, [uh, vh], bb=[[0.1, 0.2], [0.5, 0.611,
wait=true, grey=true, fill=true, wvalue=true, ps="threeg.eps");

//compute a cut
for (int i = 0; i < 10; i++){
x = 1i/10.;
y = 1/10.;
xx[1] = 1;
yyl[i] = uh; //value of uh at point (i/10., 1/10.)
}
plot ([xx, yyl, ps="likegnu.eps", wait=true);

To change the color table and to choose the value of iso line you can do:

// from: \url{http://en.wikipedia.org/wiki/HSV_color_space}

// The HSV (Hue, Saturation, Value) model defines a color space

// in terms of three constituent components:

// HSV color space as a color wheel

// Hue, the color type (such as red, blue, or yellow):

// Ranges from 0-360 (but normalized to 0-100% in some applications, like here)
// Saturation, the "vibrancy" of the color: Ranges from 0-100%

// The lower the saturation of a color, the more "grayness" is present

// and the more faded the color will appear.

// Value, the brightness of the color: Ranges from 0-100%

mesh Th = square (10, 10, [2xx-1, 2xy-11);

fespace Vh(Th, P1);
Vh uh=2-x+x-y*y;

real[int] colorhsv=[ // color hsv model
4./6., 1, 0.5, // dark blue
4./6., 1 , 1, // blue

(continues on next page)
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(a) Mesh, isovalue and vector (b) Enlargement in grey of isovalue and vector

(c) Plots a cut of uh. Note that a refinement of the same can
be obtained in combination with gnuplot

Fig. 3.39: Plot
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(b) Isovalue with an other color table

(a) HSV color cylinder

Fig. 3.40: HSV

(continued from previous page)

5./6., 1 , 1, // magenta
1, 1. , 1, // red
1, 0.5, 1 // light red
1;

real[int] wviso(31);

for (int 1 = 0; i < viso.n; i++)
viso[i] = 1x0.1;

plot (uh, wviso=viso(0:viso.n-1), value=true, fill=true, wait=true, hsv=colorhsv);

Note: See HSV example for the complete script.

3.4.2 Link with gnuplot

Example Membrane shows how to generate a gnuplot from a FreeFEM file. Here is another technique which has the
advantage of being online, i.e. one doesn’t need to quit FreeFEM to generate a gnuplot.

However, this works only if gnuplot is installed, and only on an Unix-like computer.

Add to the previous example:

{// file for gnuplot
ofstream gnu("plot.gp");
for (int i = 0; i < n; i++)
gnu << xx[i] << " " << yy[i] << endl;

// to call gnuplot command and wait 5 second (due to the Unix command)

// and make postscript plot

exec ("echo 'plot \"plot.gp\" w 1 \n pause 5 \n set term postscript \n set output \
—"gnuplot.eps\" \n replot \n quit' | gnuplot");
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Fig. 3.41: Plots a cut of uh with gnuplot
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Note: See Plot example for the complete script.

3.4.3 Link with medit

As said above, medit is a freeware display package by Pascal Frey using OpenGL. Then you may run the following

example.

Now medit software is included in FreeFEM under £ fmedit name.

The medit command parameters are listed in the Reference part.

With version 3.2 or later

Fig. 3.42: :freefem:medit’ plot

load "medit"

mesh Th = square (10,

fespace Vh(Th, P1);
Vh u=2-x*x-y~*y;

medit ("u", Th, u);

10,

[2+x-1, 2xy-11);

Before:

mesh Th = square (10,

fespace Vh(Th, P1l);
Vh u=2-x*x-y*y;

savemesh (Th, "u", I[x,

10,

Y/

[2+x-1, 2xy-1]);

u*x.51); //save u.points and u.faces file

// build a u.bb file for medit

{

ofstream file("u.bb");

file << "2 1 1 " << u[]l.n << " 2 \n";
for (int j = 0; j < ull.n; j++)

(continues on next page)
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(continued from previous page)

file << u[]l[j] << endl;
}
//call medit command
exec ("ffmedit u");
//clean files on unix-like 0S
exec("rm u.bb u.faces u.points");

Note: See Medit example for the complete script.

3.4.4 Link with Paraview

One can also export mesh or results in the . vtk format in order to post-process data using Paraview.

load "iovtk"
mesh Th = square (10, 10, [2xx-1, 2xy-11);

fespace Vh(Th, P1);
Vh u=2-x*x-y*y;

int[int] Order = [17];
string DataName = "u";
savevtk ("u.vtu", Th, u, dataname=DataName, order=Order);

Fig. 3.43: Paraview plot

Warning: Finite element variables saved using paraview must be in P0 or P1

Note: See Paraview example for the complete script.
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3.4.5 Link with Matlab© and Octave

In order to create a plot from a FreeFEM simulation in Octave and Matlab the mesh, the finite element space connec-
tivity and the simulation data must be written to files:

include "ffmatlib.idp"

mesh Th = square (10, 10, [2xx-1, 2xy-11);
fespace Vh(Th, P1l);
Vh u=2-x*x-y*y;

savemesh (Th, "export_mesh.msh") ;
ffSaveVh (Th, Vh, "export_vh.txt");
ffSaveData (u, "export_data.txt");

Within Matlab or Octave the files can be plot with the ffmatlib library:

addpath ('path to ffmatlib');

[p,b,t]=ffreadmesh ('export_mesh.msh'");

vh=ffreaddata ('export_vh.txt');

u=ffreaddata ('export_data.txt");

ffpdeplot (p,b,t, 'VhSeq',vh, 'XYData',u, '2Style', 'continuous', '"Mesh', 'on');
grid;

Fig. 3.44: Matlab / Octave plot

Note: For more Matlab / Octave plot examples have a look at the tutorial section Matlab / Octave Examples or visit
the ffmatlib library on github.

3.5 Algorithms & Optimization

3.5.1 Conjugate Gradient/GMRES

Suppose we want to solve the Euler problem (here = has nothing to do with the reserved variable for the first coordinate
in FreeFEM):
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find z € R"™ such that

V(@) = (gi (x)) ~0 (3.17)

where .J is a function (to minimize for example) from R” to R.

If the function is convex we can use the conjugate gradient algorithm to solve the problem, and we just need the
function (named dJ for example) which computes V.J, so the parameters are the name of that function with prototype
func reallint] dJ(real[int] &xx); which computes V.J, and a vector x of type (of course the number
20 can be changed) real [int] x (20) ; toinitialize the process and get the result.

Given an initial value x(*), a maximum number imax Of iterations, and an error tolerance 0 < ¢ < 1:

Put x = x(® and write

NLCG (dJ, x, precon=M, nbiter=imax, eps=epsilon, stop=stopfunc);

will give the solution of x of VJ(x) = 0. We can omit parameters precon, nbiter, eps, stop. Here M is
the preconditioner whose default is the identity matrix.

The stopping test is
IVIG)llp < el VI =)l

Writing the minus value in eps=, i.e.,

NLCG(dJ, x, precon=M, nbiter=imax, eps=-epsilon);

We can use the stopping test:
VI < e
The parameters of these three functions are:

* nbiter= set the number of iteration (by default 100)

* precon= set the preconditioner function (P for example) by default it is the identity, note the prototype is
func real[int] P (real[int] &x).

» eps= set the value of the stop test € (= 1076 by default) if positive then relative test ||VJ(z)||p <
el|VJ(z0)||p, otherwise the absolute test is || V.J (z)||% < |e].

» veps= set and return the value of the stop test, if positive, then relative test is ||V.J(z)||p < €||VJ(z0)||p,
otherwise the absolute test is ||V.J(x)||% < |¢|. The return value is minus the real stop test (remark: it is useful
in loop).

* stop= stopfunc add your test function to stop before the eps criterion. The prototype for the function
stopfunc is

1 | func bool stopfunc(int iter, real[int] u, reall[int] g)

where u is the current solution, and g, the current gradient, is not preconditioned.

Tip: Algorithms.edp
For a given function b, let us find the minimizer u of the function

3 Jo FUVUP) = fo ub
ar +z —In(l + ), f/(x):a—’_Him’ f//(x):ﬁ

==

8

S—
|

under the boundary condition u = 0 on 9f2.
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fespace Ph(Th, PO);
Ph alpha; //store df(|nabla ul|"2)

// The functionn J
//J(u) = 1/2 int_Omega f(|nabla u/"2) - int_Omega u b
func real J (real[int] & u){

Vh w;

w[] = u;

real r = int2d(Th) (0.5 f (dx (w) »dx (w) + dy(w)*dy(w)) - b*w);
cout << "J(u) = " << r << " " << u.min << " " << u.max << endl;

return r;

// The gradiant of J
func real[int] dJ (real[int] & u) {
Vh w;
wl] = u;
alpha = df (dx(w) xdx (w) + dy(w)=xdy(w));
varf au (uh, vh)
= int2d (Th) (
alphax (dx (w) xdx (vh) + dy(w) xdy (vh))
- bxvh

+ on(l, 2, 3, 4, uh=0)

u = au(0, Vh);
return u; //warning: no return of local array

We also want to construct a preconditioner C' with solving the problem:

find uy, € Vyy, such that:

Yun € Von, /aVuh.Vvh = / by,
Q Q

where a = f/(|Vul?).

alpha = df (dx(u) *dx (u) + dy(u)=*dy(u));
varf alap (uh, vh)
= int2d(Th) (
alphax (dx (uh) xdx (vh) + dy (uh) xdy (vh))

+ on(l, 2, 3, 4, uh=0)
varf amass (uh, vh)
= int2d(Th) (
uh+*vh
+ on(l, 2, 3, 4, uh=0)
matrix Amass = amass (Vh, Vh, solver=CG);

matrix Alap= alap(Vh, Vh, solver=Cholesky, factorize=1);

// Preconditionner

(continues on next page)
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(continued from previous page)

func real[int] C(real[int] & u) {
real[int] w = u;

Alap”—1xw;

//warning: no return of local array variable

u =
return u;

To solve the problem, we make 10 iterations of the conjugate gradient, recompute the preconditioner and restart the
conjugate gradient:

int conv=0;

for(int i = 0; i < 20; i++){
conv = NLCG(dJ, u[], nbiter=10, precon=C, veps=eps, verbosity=5);
if (conv) break;
alpha = df (dx (u) *dx (u) + dy(u)xdy(u));

factorize=1);
<< conv << ",

Alap = alap(Vh, Vh, solver=Cholesky,

cout << "Restart with new preconditionner " << eps << endl;

eps ="

}

// Plot
plot (u,

wait=true, cmm="solution with NLCG");

For a given symmetric positive matrix A, consider the quadratic form

J(x)::%XTAx——bTX

then J(x) is minimized by the solution x of Ax = b. In this case, we can use the function AffineCG

1 ’AffineCG(A, X, precon=M, nbiter=imax, eps=epsilon, stop=stp); ‘

If A is not symmetric, we can use GMRES(Generalized Minimum Residual) algorithm by

1 ’AffineGMRES(A, X, precon=M, nbiter=imax, eps=epsilon); ‘

Also, we can use the non-linear version of GMRES algorithm (the function J is just convex)

1 ’AffineGMRES(dJ, X, precon=M, nbiter=imax, eps=epsilon);

For the details of these algorithms, refer to [PIRONNEAU1998], Chapter 1V, 1.3.

3.5.2 Algorithms for Unconstrained Optimization

Two algorithms of COOOL package are interfaced with the Newton Raphson method (called Newt on) and the BEGS
method. These two are directly available in FreeFEM (no dynamical link to load). Be careful with these algorithms,
because their implementation uses full matrices. We also provide several optimization algorithms from the NLopt
library as well as an interface for Hansen’s implementation of CMAES (a MPI version of this one is also available).

Example of usage for BFGS or CMAES

Tip: BFGS
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real[int] b (10), u(10);

/ /T
func real J (real[int] & u){
real s = 0;
for (int i = 0; i < u.n; i++)
s += (i+1)+uli]+uli]*0.5 — blil*ulil];
if (debugd)
cout << "J = " << 5 << ", u =" << u[0] << " " << u[l] << endl;

return s;

//the gradiant of J (this is a affine version (the RHS is 1in)
func real(int] DJ (real[int] «&u) {

for (int i = 0; 1 < u.n; i++)
uli] = (i+1)*uli];
if (debugddJd)
cout << "dJ: u = " << uf[0] << " " << ull] << " " << ul[2] << endl;
u —= b;
if (debugddJd)
cout << "dJ-b: u = " << u[0] << " " << u[l] << " " << u[2] << endl;

return u; //return of global variable ok

b=1;

u=2;

BFGS (J, DJ, u, eps=1l.e—-6, nbiter=20, nbiterline=20);

cout << "BFGS: J(u) = " << J(u) << ", err = " << error(u, b) << endl;

It is almost the same a using the CMA evolution strategy except, that since it is a derivative free optimizer, the dJ
argument is omitted and there are some other named parameters to control the behavior of the algorithm. With the
same objective function as above, an example of utilization would be (see CMAES Variational inequality for a complete
example):

load "ff-cmaes"
//define J, u,
real min = cmaes (J, u, stopTolFun=le-6, stopMaxIter=3000);

cout << "minimum value is " << min << " for u = " << u << endl;

This algorithm works with a normal multivariate distribution in the parameters space and tries to adapt its covariance
matrix using the information provided by the successive function evaluations (see NLopt documentation for more
details). Therefore, some specific parameters can be passed to control the starting distribution, size of the sample
generations, etc... Named parameters for this are the following:

* seed= Seed for random number generator (val is an integer). No specified value will lead to a clock based
seed initialization.

* initialStdDev= Value for the standard deviations of the initial covariance matrix ( val is a real). If the
value o is passed, the initial covariance matrix will be set to o 1. The expected initial distance between initial X
and the argmin should be roughly initialStdDev. Default is 0.3.

e initialStdDevs= Same as above except that the argument is an array allowing to set a value of the initial
standard deviation for each parameter. Entries differing by several orders of magnitude should be avoided (if it
can’t be, try rescaling the problem).

* stopTolFun= Stops the algorithm if function value differences are smaller than the passed one, default is
10-12,
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* stopTolFunHist= Stops the algorithm if function value differences from the best values are smaller than
the passed one, default is O (unused).

* stopTolX= Stopping criteria is triggered if step sizes in the parameters space are smaller than this real value,
default is 0.

* stopTolXFactor= Stopping criteria is triggered when the standard deviation increases more than this value.
The default value is 103.

* stopMaxFunEval= Stops the algorithm when st opMaxFunEval function evaluations have been done. Set
to 900(n + 3)? by default, where n is the parameters space dimension.

* stopMaxIter= Integer stopping the search when stopMaxIter generations have been sampled. Unused
by default.

» popsize= Integer value used to change the sample size. The default value is 4 + [31n(n)|. Increasing the
population size usually improves the global search capabilities at the cost of, at most, a linear reduction of the
convergence speed with respect to popsize.

* paramFile= This st ring type parameter allows the user to pass all the parameters using an extern file, as in
Hansen’s original code. More parameters related to the CMA-ES algorithm can be changed with this file. Note
that the parameters passed to the CMAES function in the FreeFEM script will be ignored if an input parameters
file is given.

3.5.3 IPOPT

The ff-Ipopt package is an interface for the IPOPT [WACHTER2006] optimizer. IPOPT is a software library for
large scale, non-linear, constrained optimization. It implements a primal-dual interior point method along with filter
method based line searches.

IPOPT needs a direct sparse symmetric linear solver. If your version of FreeFEM has been compiled with the
-—enable-downlad tag, it will automatically be linked with a sequential version of MUMPS. An alternative
to MUMPS would be to download the HSL subroutines (see Compiling and Installing the Java Interface JIPOPT)
and place them in the /ipopt/Ipopt—-3.10.2/ThirdParty/HSL directory of the FreeFEM downloads folder
before compiling.

Short description of the algorithm

In this section, we give a very brief glimpse at the underlying mathematics of IPOPT. For a deeper introduction on
interior methods for nonlinear smooth optimization, one may consult [FORSGREN2002], or [WACHTER2006] for
more [POPT specific elements. [POPT is designed to perform optimization for both equality and inequality constrained
problems. However, nonlinear inequalities are rearranged before the beginning of the optimization process in order to
restrict the panel of nonlinear constraints to those of the equality kind. Each nonlinear inequality is transformed into a
pair of simple bound inequalities and nonlinear equality constraints by the introduction of as many slack variables as
is needed : ¢;(x) < 0 becomes ¢;(x) + s; = 0 and s; < 0, where s; is added to the initial variables of the problems
z;. Thus, for convenience, we will assume that the minimization problem does not contain any nonlinear inequality
constraint. It means that, given a function f : R™ — R, we want to find:

xo = argminf(z)
eV (3.18)
withV ={z e R" | ¢(z) =0and z; < = < x,,}

Where ¢ : R — R™ and x;, z,, € R" and inequalities hold componentwise. The f function as well as the constraints
c should be twice-continuously differentiable.
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As a barrier method, interior points algorithms try to find a Karush-Kuhn-Tucker point for (3.18) by solving a sequence
of problems, unconstrained with respect to the inequality constraints, of the form:

foragiven p > 0, findz, = argmin B(z,p) (3.19)
z€R™ | ¢(x)=0 '

Where p is a positive real number and

m

n
B(e,u) = f(@) = py_ (e — i) = p Y In(e; = 21,)
i=1 i=1
The remaining equality constraints are handled with the usual Lagrange multipliers method. If the sequence of barrier

parameters 4 converge to 0, intuition suggests that the sequence of minimizers of (3.19) converge to a local constrained
minimizer of (3.18). For a given p, (3.19) is solved by finding (z,, A,) € R™ x R™ such that:

VB 1) + > MuiVei(wp) = VB(@, i) + Je(@u) Ay =0

g (3.20)
c(x,) =0

The derivations for V B only holds for the z variables, so that:

p/ (Tuy — 1) /(w1 — w1,1)

VB(x,p) = Vf(z) + : - I

U/(mun - In) #/(xn - Il,n)
If we respectively call z,(x, 1) = (p/(€u1 — 1), ..., 1/ (Tun — ) and z;(z, 1) the other vector appearing in the
above equation, then the optimum (x,,, A,) satisfies:

Vi) + Je(@) Ny + 2u(@p, 1) — 21(2, 1) =0 and  c(z,) =0 3.21)

In this equation, the z; and z,, vectors seem to play the role of Lagrange multipliers for the simple bound inequalities,
and indeed, when i — 0, they converge toward some suitable Lagrange multipliers for the KKT conditions, provided
some technical assumptions are fulfilled (see [FORSGREN2002]).

Equation (3.21) is solved by performing a Newton method in order to find a solution of (3.20) for each of the decreasing
values of ;1. Some order 2 conditions are also taken into account to avoid convergence to local maximizers, see
[FORSGREN2002] for details about them. In the most classic IP algorithms, the Newton method is directly applied to
(3.20). This is in most case inefficient due to frequent computation of infeasible points. These difficulties are avoided
in Primal-Dual interior point methods where (3.20) is transformed into an extended system where z,, and z; are treated
as unknowns and the barrier problems are finding (z, A, 2, 2;) € R™ x R™ x R™ x R™ such that:

Vf(x)+Jc(x)T/\+Zu -z = 0
clx) = 0
(X — X))z —pe = 0 (3-22)
(X —-X)z—pe = 0
Where if a is a vector of R", A denotes the diagonal matrix A = (a;0;5)1<;,j<n and e € R™ = (1,1,...,1). Solving

this nonlinear system by the Newton method is known as being the primal-dual interior point method. Here again,
more details are available in [FORSGREN2002]. Most actual implementations introduce features in order to globalize
the convergence capability of the method, essentially by adding some line-search steps to the Newton algorithm, or by
using trust regions. For the purpose of IPOPT, this is achieved by a filter line search methods, the details of which can
be found in [WACHTER2006].

More IPOPT specific features or implementation details can be found in [WACHTER2006]. We will just retain that
IPOPT is a smart Newton method for solving constrained optimization problems, with global convergence capabilities
due to a robust line search method (in the sense that the algorithm will converge no matter the initializer). Due to the
underlying Newton method, the optimization process requires expressions of all derivatives up to the order 2 of the
fitness function as well as those of the constraints. For problems whose Hessian matrices are difficult to compute or
lead to high dimensional dense matrices, it is possible to use a BFGS approximation of these objects at the cost of a
much slower convergence rate.
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IPOPT in FreeFEM

Calling the IPOPT optimizer in a FreeFEM script is done with the TPOPT function included in the ff-TIpopt
dynamic library. IPOPT is designed to solve constrained minimization problems in the form:

findzy = argminf(z)

rER®
¢ Vi <mn, xﬁb <gzg; < x?b (simple bounds)
T Vi <m, P <ei(z) < ¥ (constraints functions)

Where ub and 1b stand for “upper bound” and “lower bound”. If for some ¢,1 < ¢ < m we have ci»b =

that ¢; is an equality constraint, and an inequality one if > < ciP.

ub it means

There are different ways to pass the fitness function and constraints. The more general one is to define the functions
using the keyword func. Any returned matrix must be a sparse one (type matrix,nota real[int, int]):

func real J (real[int] &X) {...} //Fitness Function, returns a scalar
func real[int] gradJ (reallint] &X) {...} //Gradient is a vector
func real[int] C (real[int] &X) {...} //Constraints

func matrix jacC (real[int] &X) {...} //Constraints Jacobian

Warning: In the current version of FreeFEM, returning a mat rix object that is local to a function block leads to
undefined results. For each sparse matrix returning function you define, an extern matrix object has to be declared,
whose associated function will overwrite and return on each call. Here is an example for jaccC:

matrix jacCBuffer; //just declare, no need to define yet
func matrix jacC (reallint] &X) {

...//fill jacCBuffer

return jacCBuffer;

Warning: IPOPT requires the structure of each matrix at the initialization of the algorithm. Some errors may occur
if the matrices are not constant and are built with the matrix A = [I,J,C] syntax, or with an intermediary
full matrix (real [int, int]), because any null coefficient is discarded during the construction of the sparse
matrix. It is also the case when making matrices linear combinations, for which any zero coefficient will result in
the suppression of the matrix from the combination. Some controls are available to avoid such problems. Check the
named parameter descriptions (checkindex, structhess and struct jac can help). We strongly advice to
use varf as much as possible for the matrix forging.

The Hessian returning function is somewhat different because it has to be the Hessian of the Lagrangian function:
m
(z,00,A) = o, V2f(2) + Z A\iV2¢;(z) where A € R™ and o € R
i=1

Your Hessian function should then have the following prototype:

matrix hessianlLBuffer; //Just to keep it in mind
func matrix hessianl (real[int] &X, real sigma, reallint] &lambda){...}

If the constraints functions are all affine, or if there are only simple bound constraints, or no constraint at all, the
Lagrangian Hessian is equal to the fitness function Hessian, one can then omit the sigma and 1ambda parameters:
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matrix hessianJBuffer;
func matrix hessianJd (real[int] &X){...} //Hessian prototype when constraints are_,
—affine

When these functions are defined, [POPT is called this way:

real[int] Xi = ... ; //starting point
IPOPT (J, gradJd, hessianl, C, jacC, Xi, /#some named parameters+/);

If the Hessian is omitted, the interface will tell IPOPT to use the (L)BFGS approximation (it can also be enabled with
a named parameter, see further). Simple bound or unconstrained problems do not require the constraints part, so the
following expressions are valid:

IPOPT (J, gradd, C, jacC, Xi, ... ); //IPOPT with BFGS
IPOPT (J, gradJd, hessiand, Xi, ... ); //Newton IPOPT without constraints
IPOPT (J, gradd, Xi, ... ); //BFGS, no constraints

Simple bounds are passed using the 1b and ub named parameters, while constraint bounds are passed with the c1b
and cub ones. Unboundedness in some directions can be achieved by using the 1e!® and —1e!? values that IPOPT
recognizes as +oo and —oo:

real[int] xlb(n), xub(n), clb(m), cub(m);

//fill the arrays...

IPOPT (J, gradJd, hessianL, C, jacC, Xi, lb=xlb, ub=xub, clb=clb, cub=cub, /*some other
—named parametersx/);

P2 fitness function and affine constraints function : In the case where the fitness function or constraints function
can be expressed respectively in the following forms:

Ve e R, f(x)

=1 (Az,z) + (b,x) (A,b) € My, (R) x R"
or, C(z) =

Az +b (A,b) € Mppp(R) x R™

where A and b are constant, it is possible to directly pass the (A, b) pair instead of defining 3 (or 2) functions. It also
indicates to [POPT that some objects are constant and that they have to be evaluated only once, thus avoiding multiple
copies of the same matrix. The syntax is:

// Affine constraints with "standard" fitness function

matrix A = ... ; //linear part of the constraints

real[int] b = ... ; //constant part of constraints

IPOPT (J, gradJd, hessiand, [A, bl, Xi, /#bounds and named parametersx*/);
//[b, A] would work as well.

Note that if you define the constraints in this way, they don’t contribute to the Hessian, so the Hessian should only take
one real [int] as an argument.

// Affine constraints and P2 fitness func

matrix A = ... ; //bilinear form matrix

real[int] b = ... ; //linear contribution to f
matrix Ac = ... ; //linear part of the constraints
real[int] bc = ... ; //constant part of constraints

IPOPT ([A, bl, [Ac, bcl, Xi, /#bounds and named parameters#*/);

If both objective and constraint functions are given this way, it automatically activates the IPOPT
mehrotra_algorithmoption (better for linear and quadratic programming according to the documentation). Oth-
erwise, this option can only be set through the option file (see the named parameters section).

A false case is the one of defining f in this manner while using standard functions for the constraints:
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matrix A = ... ; //bilinear form matrix

real[int] b = ... ; //linear contribution to f

func real[int] C(real[int] &X){...} //constraints

func matrix jacC(real[int] &X){...} //constraints Jacobian

IPOPT ([A, b]l, C, jacC, Xi, /#bounds and named parameters#*/);

Indeed, when passing [A, b] inorder to define f, the Lagrangian Hessian is automatically built and has the constant
x — A function, with no way to add possible constraint contributions, leading to incorrect second order derivatives.
So, a problem should be defined like that in only two cases:

1. constraints are nonlinear but you want to use the BFGS mode (then add bfgs=1 to the named parameter),
2. constraints are affine, but in this case, compatible to pass in the same way

Here are some other valid definitions of the problem (cases when f is a pure quadratic or linear form, or C' a pure
linear function, etc...):

// Pure quadratic f - A 1s a matrix

IPOPT (A, /#constraints argumentsx/, Xi, /*bound and named parameters+/);

// Pure linear f - b 1is a real[int]

IPOPT (b, /#constraints argumentsx/, Xi, /#*bound and named parameters*/);

// Linear constraints — Ac 1s a matrix

IPOPT (/#fitness function argumentsx/, Ac, Xi, /#bound and named parametersx/);

Returned Value : The IPOPT function returns an error code of type int. A zero value is obtained when the
algorithm succeeds and positive values reflect the fact that IPOPT encounters minor troubles. Negative values reveal
more problematic cases. The associated IPOPT return tags are listed in the table below. The IPOPT pdf documentation
provides a more accurate description of these return statuses:

Success Failures

0 Solve_Succeeded

1 Solved_To_Acceptable_Level -1 Maximum_Iterations_Exceeded
2 Infeasible_Problem Detected -2 Restoration_Failed

3 Search_Direction_Becomes_Too_Small | -3 Error_In_Step_Computation
4Diverging_Iterates -4 Maximum_CpuTime_Exceeded

5 User_Requested_Stop

6 Feasible Point_ Found

Problem definition issues Critical errors

-10 Not_Enough_Degrees_0Of_Freedom | -100 Unrecoverable_Exception
-11 Invalid_Problem Definition -101 NonIpopt_Exception_Thrown
-12 Invalid_Option -102 Insufficient_Memory

-13 Invalid_Number_Detected -199 Internal_Error

Named Parameters : The available named parameters in this interface are those we thought to be the most subject
to variations from one optimization to another, plus a few that are interface specific. Though, as one could see at
IPOPT Linear solver, there are many parameters that can be changed within IPOPT, affecting the algorithm behavior.
These parameters can still be controlled by placing an option file in the execution directory. Note that [POPT’s pdf
documentation may provides more information than the previously mentioned online version for certain parameters.
The in-script available parameters are:

e 1b,ub: real[int] for lower and upper simple bounds upon the search variables must be of size n (search
space dimension). If two components of the same index in these arrays are equal then the corresponding search
variable is fixed. By default [IPOPT will remove any fixed variable from the optimization process and always
use the fixed value when calling functions. It can be changed using the fixedvar parameter.
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clb, cub: real[int] of size m (number of constraints) for lower and upper constraints bounds. Equality
between two components of the same index ¢ in c1b and cub reflect an equality constraint.

structjacc : To pass the greatest possible structure (indexes of non null coefficients) of the constraint
Jacobians under the form [I, J] where I and J are two integer arrays. If not defined, the structure of the
constraint Jacobians, evaluated in Xi, is used (no issue if the Jacobian is constant or always defined with the
same var £, hazardous if it is with a triplet array or if a full matrix is involved).

structhess : Same as above but for the Hessian function (unused if f is P2 or less and constraints are affine).
Here again, keep in mind that it is the Hessian of the Lagrangian function (which is equal to the Hessian of f
only if constraints are affine). If no structure is given with this parameter, the Lagrangian Hessian is evaluated on
the starting point, with o = 1 and A = (1,1,...,1) (it is safe if all the constraints and fitness function Hessians
are constant or build with var £, and here again it is less reliable if built with a triplet array or a full matrix).

checkindex : A bool that triggers a dichotomic index search when matrices are copied from FreeFEM
functions to IPOPT arrays. It is used to avoid wrong index matching when some null coefficients are removed
from the matrices by FreeFEM. It will not solve the problems arising when a too small structure has been
given at the initialization of the algorithm. Enabled by default (except in cases where all matrices are obviously
constant).

warmstart : If set to t rue, the constraints dual variables A, and simple bound dual variables are initialized
with the values of the arrays passed to 1m, 1z and uz named parameters (see below).

1m: real[int] of size m, which is used to get the final values of the constraints dual variables A and/or
initialize them in case of a warm start (the passed array is also updated to the last dual variables values at the
end of the algorithm).

lz,uz: real[int] of size n to get the final values and/or initialize (in case of a warm start) the dual variables
associated to simple bounds.

tol: real, convergence tolerance for the algorithm, the default value is 10~8,
maxiter : int, maximum number of iterations with 3000 as default value.
maxcputime : real value, maximum runtime duration. Default is 105 (almost 11 and a halfdays).

bfgs : bool enabling or not the (low-storage) BFGS approximation of the Lagrangian Hessian. It is set to
false by default, unless there is no way to compute the Hessian with the functions that have been passed to
IPOPT.

derivativetest : Used to perform a comparison of the derivatives given to [IPOPT with finite differences
computation. The possible st ring values are : "none" (default), "first-order", "second-order"
and "only-second-order". The associated derivative error tolerance can be changed via the option file.
One should not care about any error given by it before having tried, and failed, to perform a first optimization.

dth : Perturbation parameter for the derivative test computations with finite differences. Set by default to 1078,
dttol : Tolerance value for the derivative test error detection (default value unknown yet, maybe 10~°).

optfile: string parameter to specify the IPOPT option file name. [POPT will look for a ipopt . opt file
by default. Options set in the file will overwrite those defined in the FreeFEM script.

printlevel : An int to control IPOPT output print level, set to 5 by default, the possible values are from 0
to 12. A description of the output information is available in the PDF documentation of IPOPT.

fixedvar : string for the definition of simple bound equality constraints treatment : use
"make_parameter" (default value) to simply remove them from the optimization process (the functions
will always be evaluated with the fixed value for those variables), "make_constraint™" to treat them as any
other constraint or "relax_bounds" to relax fixing bound constraints.

mustrategy : a string to choose the update strategy for the barrier parameter ;.. The two possible tags are
"monotone", to use the monotone (Fiacco-McCormick) strategy, or "adaptive" (default setting).
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e muinit : real positive value for the barrier parameter initialization. It is only relevant when mustrategy
has been set to monotone.

* pivtol : real value to set the pivot tolerance for the linear solver. A smaller number pivots for sparsity, a
larger number pivots for stability. The value has to be in the [0, 1] interval and is set to 10~% by default.

* brf : Bound relax factor: before starting the optimization, the bounds given by the user are relaxed. This option
sets the factor for this relaxation. If it is set to zero, then the bound relaxation is disabled. This real has to be
positive and its default value is 1078,

* objvalue : Anidentifier to a real type variable to get the last value of the objective function (best value in
case of success).

e mumin : minimum value for the barrier parameter p, a real with 1011 as default value.

e linesearch : A boolean which disables the line search when set to false. The line search is activated by
default. When disabled, the method becomes a standard Newton algorithm instead of a primal-dual system. The
global convergence is then no longer assured, meaning that many initializers could lead to diverging iterates.
But on the other hand, it can be useful when trying to catch a precise local minimum without having some out
of control process making the iterate caught by some other near optimum.

3.5.4 Some short examples using IPOPT

Tip: Ipopt variational inequality A very simple example consisting of, given two functions f and g (defined on

1
Q C R?), minimizing J(u) = 3 |Vu|> — [ fu, with u < g almost everywhere:
Q Q

// Solve
//— Delta u = £
//u < g
//u = 0 on Gamma

load "ff-Ipopt";

// Parameters

int nn = 20;

func f = 1.; //rhs function
real r = 0.03, s = 0.1;

func g = r - r/2xexp(-0.5* (square (x-0.5) + square(y-0.5))/square(s));
// Mesh
mesh Th = square (nn, nn);

// Fespace

fespace Vh(Th, P2);
Vh u = 0;

Vh 1lb = -1.el19;

Vh ub = g;

// Macro
macro Grad(u) [dx(u), dy(u)] //

// Problem
varf vP (u, v)
= int2d(Th) (
Grad(u) '+Grad (v)

int2d(Th) (

(continues on next page)
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(continued from previous page)

fxv

Here we build the matrix and second member associated to the function to fully and finally minimize it. The [A, b]
syntax for the fitness function is then used to pass it to IPOPT.

matrix A = vP(Vh, Vh, solver=CG);
real[int] b = vP (0, Vh);

We use simple bounds to impose the boundary condition © = 0 on 052, as well as the u < g condition.

varf vGamma (u, v) = on(l, 2, 3, 4, u=l);
real[int] onGamma = vGamma (0, Vh);

//warning: the boundary conditions are given with 1b and ub on border

ub[] = onGamma ? 0. : ub[];
1b[] = onGamma ? 0. : 1b[];
// Solve

IPOPT ([A, b], ull], 1lb=1lb[], ub=ubl]);

// Plot
plot (u);

Tip: Ipopt variational inequality 2

Let 2 be a domain of R?. f1, fo € L*(Q) and g1, g2 € L?(9) four given functions with g; < g almost everywhere.
We define the space:

V= {(”17”2) € Hl(Q)Qwﬂc‘m = g1, V2|90 = g2,v1 < vy ae. }

as well as the function J : H*(Q)? — R:

1 1
J(’Ul,vg) = 5/ ‘VU1|2 — / flvl + 5/ |VU2|2 _/ f2’U2
Q Q Q Q

The problem entails finding (numerically) two functions (u1,u2) = argmin J(vy,vs).
(v1,v2)€V

load "ff-Ipopt";

// Parameters

int nn = 10;

func f1 = 10; //right hand side

func f2 = -15;

func gl = -0.1; //Boundary condition functions

func g2 = 0.1;

// Mesh

mesh Th = square(nn, nn);
// Fespace

fespace Vh(Th, [P1l, P1]);
Vh [uz, uz2] = [1, 11;

(continues on next page)
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(continued from previous page)

Vh
Vh

[1z,
[ul, //starting point
fespace Wh(Th,
Wh 1m=1.;

[P1]);

// Macro
macro Grad(u)

[dx(u), dy(uw) ]l //
// Loop
int iter=0;
while (++iter) {
// Problem
varf vP ([ul, u2],
= int2d (Th) (
Grad (ul) '«Grad(vl)
+ Grad(u2) '+«Grad (v2)

(vl, v21)

int2d(Th) (
flxvl
+ £2xv2

matrix A = vP(Vh, Vh); //fitness function matrix

real[int] b = vP (0, Vh); //and linear form

int[int] II1 = [0], II2 = [1];//Constraints matrix
matrix Cl = interpolate (Wh, Vh, U2Ve=IIl);

matrix C2 = interpolate (Wh, Vh, U2Vec=II2);

matrix CC = -1«Cl + C2; // u2 - ul > 0

Wh cl = 0; //constraints lower bounds (no upper bounds)

//Boundary conditions
varf vGamma ([ul, u2],
real[int] onGamma =
Vh [ubl, ub2] [gl, g2]
Vh [1lbl, 1b2] [gl, g2]
ubl[] = onGamma ? ubl[]

1bl[] = onGamma ? 1bl[]

Vh [uzi, uzi2] = [uz,
Wh Imi = 1m;

Vh [uil, ui2] = [ul, u2]
// Solve

IPOPT ([b, A], CC, uill],

1z=1zi[], 1lm=1lmi[]);

// Plot
plot (uil, uiz,
if (iter > 1) break;

// Mesh adpatation
Th = adaptmesh (Th,
[uz, uz2] = [uzi,

[uil,
uzi2];

[vl,
vGamma (0,

uz?2],

wait=true,

v2]) =
Vh) ;

3, 4, ul=1,
7
lel9;
-1el9;

//Unbounded in interior

[1zi, 1zi2] = [1lz, 1z2];

’

1b=1bl[], clb=cl[], ub=ubll],

nbiso=60, dim=3);

ui2], err=0.004, nbwvx=100000);

uz2=1);

warmstart=iter>1, uz=uzil],

(continues on next page)
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(a) Numerical Approximation of the Variational Inequality

(b) Numerical Approximation of the Variational Inequality

Fig. 3.45: Variational inequality

(continued from previous page)

[lz, 1z2] = [lzi, 1zi2];
[ul, u2] = [uil, ui2];
Im = 1mi;

3.5.5 3D constrained minimum surface with IPOPT
Area and volume expressions

This example is aimed at numerically solving some constrained minimum surface problems with the IPOPT algorithm.
We restrain to C'* (k > 1), closed, spherically parametrizable surfaces, i.e. surfaces .S such that:

p(0, )
Jp € C*([0,27] x [0,7])|S = ¢ X = 0 ,(0,0) € [0,2n] x [0, 7]
0

Where the components are expressed in the spherical coordinate system. Let’s call ) the [0,27] x [0, 7] angular
parameters set. In order to exclude self crossing and opened shapes, the following assumptions upon p are made:

p >0 and Vo, p(0,6) = p(2r, ¢)

For a given function p the first fundamental form (the metric) of the defined surface has the following matrix repre-
sentation:

2 2 2
_ [ p*sin®(¢) + (Oap) 9o pOyp
¢= ( Dopdyp p* + (9pp)? 629

This metric is used to express the area of the surface. Let g = det(G), then we have:

Alp) = [ 05X 13X = [ 27

3.24
= Q\/ p2(9gp)2 + ptsin® () + p2(dyp)? sin?(¢)dodg (024
The volume of the space enclosed within the shape is easier to express:
p(8,9) 1
V(p) = / Q / P2 sin(o)drdbde = / Qp sin(6)d0de (325)
0
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Derivatives

In order to use a Newton based interior point optimization algorithm, one must be able to evaluate the derivatives of
A and V with respect to rho. Concerning the area, we have the following result:

Yo € CY(Q), (dA(p),v) = /Q;@(%”dam

Where g is the application mapping the (0, ¢) — g(0, ¢) scalar field to p. This leads to the following expression, easy
to transpose in a freefem script using:

Vv e CHQ)
(dA(p),v) = [Q(20%sin?(9) + p(Dep)® + p(Dyp)? sin®(4)) v (3.26)
+ [ Q p20ppdgv + p*04psin®(¢)d4v

With a similar approach, one can derive an expression for second order derivatives. However, comporting no specific
difficulties, the detailed calculus are tedious, the result is that these derivatives can be written using a 3 x 3 matrix B
whose coefficients are expressed in term of p and its derivatives with respect to 6 and ¢, such that:

v
Y(w,v) € CHQ), d*A(p)(w,v) = /Q( w dpw Ogw )B| Opv | dbde (3.27)
8¢1}

Deriving the volume function derivatives is again an easier task. We immediately get the following expressions:

Vo, (dV(p),v) = [Qp*sin(¢)v dfde

Yw, v, d*V(p)(w,v) = [Q2psin(¢p)wv dOde (3.28)

The problem and its script

The whole code is available in /POPT minimal surface & volume example. We propose to solve the following problem:

Tip: Given a positive function popject piecewise continuous, and a scalar Vimax > V(pobject ), find po such that:

po = argmin A(p) , s.t. po > pobject a0d V(p0) < Vimax
peEC(Q)

If pobject 1s the spherical parametrization of the surface of a 3-dimensional object (domain) O, it can be interpreted
as finding the surface with minimum area enclosing the object with a given maximum volume. If V. is close to
V(Pobject ), s0 should be pg and pobject. With higher values of V., p should be closer to the unconstrained minimum
surface surrounding O which is obtained as soon as Vinax > 27| pob ject ||2, (sufficient but not necessary).

It also could be interesting to solve the same problem with the constraint V(pg) > Viin Which leads to a sphere when
Vmin > é?fdiam(O)3 and moves toward the solution of the unconstrained problem as V;,,;,, decreases.

We start by meshing the domain [0, 27] x [0, 7], then a periodic P1 finite elements space is defined.

load "msh3";
load "medit";
load "ff-Ipopt";

// Parameters
int nadapt = 3;
real alpha = O.
int np = 30;
real regtest;

9;

(continues on next page)
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int shapeswitch = 1;
real sigma = 2+pi/40.;
real treshold = 0.1;
real e = 0.1;

real r0 = 0.25;

real rr = 2-r0;

real E 1./ (exe);
real RR = 1./ (rr*rr);

// Mesh
mesh Th = square (2xnp, np, [2xpi*x, pixyl);

// Fespace

fespace Vh(Th, P1l, periodic=[[2, y]l, [4, y11);

//Initial shape definition

//outside of the mesh adaptation loop to initialize with the previous optimial shape_
—found on further iterations

Vh startshape = 5;

We create some finite element functions whose underlying arrays will be used to store the values of dual variables
associated to all the constraints in order to reinitialize the algorithm with it in the case where we use mesh adaptation.
Doing so, the algorithm will almost restart at the accuracy level it reached before mesh adaptation, thus saving many
iterations.

Vh uz = 1., 1z = 1.;
rreal[int] 1m = [1];

Then, follows the mesh adaptation loop, and a rendering function, P1ot 3D, using 3D mesh to display the shape it is
passed with medit (the movemesh23 procedure often crashes when called with ragged shapes).

for (int kkk = 0; kkk < nadapt; ++kkk) {
int iter=0;
func sin2 = square(sin(y));

// A function which transform Th in 3d mesh (r=rho)
//a point (theta,phi) of Th becomes ( r (theta,phi) +cos (theta) +sin(phi) , r(theta,
—phi)*sin(theta) *sin(phi) , r(theta,phi) *cos (phi) )
//then displays the resulting mesh with medit
func int Plot3D (real[int] &rho, string cmm, bool ffplot) {
Vh rhoo;
rhoo[] = rho;
//mesh sTh = square (np, np/2, [2#+pi*x, pi*y]);
//fespace sVh(sTh, P1);
//Vh rhoplot = rhooy;

try{
mesh3 Sphere = movemesh23 (Th, transfo=[rhoo(x,y)*cos(x)+*sin(y), rhoo(x,
—y)*sin(x)*sin(y), rhoo(x,y)=*cos(y)]l);
if (ffplot)
plot (Sphere);
else
medit (cmm, Sphere);
}
catch(...){

cout << "PLOT ERROR" << endl;
}

return 1;

(continues on next page)
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Here are the functions related to the area computation and its shape derivative, according to equations (3.24) and
(3.26):

// Surface computation

//Maybe is it possible to use movemesh23 to have the surface function less complicated
//However, it would not simplify the gradient and the hessian

func real Area (real[int] &X) {

Vh rho;

rhol[] = X;

Vh rho2 = square(rho);

Vh rho4 = square(rho2);

real res = int2d(Th) (sgrt (rhod4xsin2 + rho2xsquare (dx(rho)) +_
—rho2+sin2+square (dy (rho)))) ;

++iter;

if (1)

plot (rho, wvalue=true, fill=true, cmm="rho (theta,phi) on [0,2pilx[0,pi] - S=

—"+res, dim=3);

else

Plot3D(rho[], "shape_evolution", 1);
return res;

func real[int] GradArea (real[int] &X) {
Vh rho, rho2;
rho[] = X;
rho2[] = square (X);
Vh sgrtPsi, alpha;
{
Vh dxrho2 = dx(rho)*dx(rho), dyrho2 = dy(rho)*dy(rho);
sgrtPsi = sqgrt(rho2xrho2+sin2 + rho2xdxrho2 + rho2xdyrho2xsin2);
alpha = 2.xrho2xrho*sin2 + rhoxdxrho2 + rhoxdyrho2xsin2;
}
varf dArea (u, v)
= int2d(Th) (
1./sqgrtPsi % (alphaxv + rho2+dx(rho)+dx(v) + rho2xdy(rho)+sin2xdy (v))

real[int] grad = dArea (0, Vh);
return grad;

The function returning the hessian of the area for a given shape is a bit blurry, thus we won’t show here all of equation
(3.27) coefficients definition, they can be found in the edp file.

matrix hessianh;
func matrix HessianArea (real[int] &X) {
Vh rho, rho2;
rhol[] = X;
rho2 = square (rho);
Vh sgrtPsi, sqgrtPsi3, €00, C01, C02, Cll1l, Cl2, C22, A;
{
vh C0, C1, C2;

(continues on next page)
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Vh dxrho2 = dx(rho)*dx(rho), dyrho2 = dy(rho)*dy(rho);

sgqrtPsi = sgrt( rho2+rho2+sin2 + rho2+dxrho2 + rho2xdyrho2+sin2);
sqrtPsi3 = (rho2xrho2xsin2 + rho2xdxrho2 + rho2xdyrho2xsin2)*sqrtPsi;
CO0 = 2xrho2+rhoxsin2 + rhoxdxrho2 + rhoxdyrho2xsin2;

Cl = rho2+dx(rho);

c2 rho2+sin2~+dy (rho) ;

C00 = square (CO);

C01 = CO0=xC1;

C02 = CO0xC2;

Cll = square(Cl);

Cl2 = C1xC2;

C22 = square(C2);

A = 6.%rho2+sin2 + dxrho2 + dyrho2xsin2;

}
varf d2Area (w, V)

=int2d (Th) (

1./sqgrtPsi = (

AxWHV
2+rho*dx (rho) ~dx (w) *v
2+xrhoxdx (rho) »wxdx (v)
2+rhoxdy (rho) xsin2+dy (w) *v
2xrhoxdy (rho) xsin2+w+dy (v)
rho2+dx (w) »dx (v)
rho2+sin2+dy (w) xdy (v)

+ 4+ + + + +

)
+ 1./sqgrtPsi3 * (
COO0xw*v

+ COlxdx (w) *v
+ COlxwxdx (V)
+ C02xdy (w) *v
+ CO02xwxdy (V)
+ Cllxdx (w) »dx (V)
+ Cl2+dx (w) *dy (V)
+ Cl2xdy (w) »dx (V)
+ C22xdy (w) »dy (V)

)
hessianA = d2Area(Vh, Vh);
return hessianh;

And the volume related functions:

// Volume computation
func real Volume (reall[int] &X) {
Vh rho;
rho[] = X;
Vh rho3 = rhoxrhoxrho;
real res = 1./3.%xint2d(Th) (rho3*sin(y));
return res;

func real[int] GradVolume (real[int] &X) {
Vh rho;
rho[] = X;
varf dvolume (u, v) = int2d(Th) (rhos*rhoxsin(y) *Vv) ;

(continues on next page)
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real[int] grad = dVolume (0, Vh);
return grad;

matrix hessianV;
func matrix HessianVolume (real[int] &X) {
Vh rho;
rhol[] = X;
varf d2vVolume (w, v) = int2d(Th) (2«rhoxsin(y) *v*w);
hessianV = d2Volume (Vh, Vh);
return hessianV;

If we want to use the volume as a constraint function we must wrap it and its derivatives in some FreeFEM functions
returning the appropriate types. It is not done in the above functions in cases where one wants to use it as a fitness
function. The lagrangian hessian also has to be wrapped since the Volume is not linear with respect to p, it has some
non-null second order derivatives.

func real[int] ipVolume (real[int] &X){ real[int] vol = [Volume (X)]; return vol; }
matrix mdv;
func matrix ipGradvVolume (reallint] &X) { real[int,int] dvol(l,Vh.ndof); dvol(0,:) =_

—GradvVolume (X); mdV = dvol; return mdvV; }

matrix HLagrangian;

func matrix ipHessianlag (reallint] &X, real objfact, real[int] &lambda) {
HLagrangian = objfact+HessianArea (X) + lambda[0]+xHessianVolume (X);
return HLagrangian;

The ipGradVolume function could pose some troubles during the optimization process because the gradient vector
is transformed in a sparse matrix, so any null coefficient will be discarded. Here we create the IPOPT structure
manually and use the checkindex named-parameter to avoid bad indexing during copies. This gradient is actually
dense, there is no reason for some components to be constantly zero:

int[int] gvi(Vh.ndof), gvij=0:Vh.ndof-1;
gvi = 0;

These two arrays will be passed to IPOPT with st ruct jacc=[gvi, gvj]. The last remaining things are the bound
definitions. The simple lower bound must be equal to the components of the P1 projection of pypjec:. And we choose
a € [0,1] to set Viax t0 (1 — a)V(pobject) + 37| pobject ||

func discl = sqrt(l./(RR+(E-RR) *cos(y)*cos(y)))* (1+0.1xcos (7*x));
func disc2 = sqgrt(l./(RR+(E-RR) *cos (x)*cos (x)*sin2));

if (1) {

1b = r0;

for (int g = 0; g < 5; ++qg){
func f = rr+Gaussian(x, y, 2+g+pi/5., pi/3.);
func g = rrxGaussian(x, y, 2xq+pi/5.+pi/5., 2.xpi/3.);
1b = max (max(lb, f), g);

}

1lb = max (lb, rrxGaussian(x, y, 2+pi, pi/3));

1b max (1lb, max(discl, disc2));
real Vobj = Volume (1b[]);
real Vnvc = 4./3.«pi*pow (1lb[].linfty, 3);

(continues on next page)
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if (1)
Plot3D(1b[], "object_inside", 1);
real[int] clb = 0., cub = [(l-alpha)+Vob]j + alphaxVnvc];

Calling IPOPT:

int res = IPOPT (Area, GradArea, ipHessianlag, ipVolume, ipGradVolume,

rc[], ub=ub[], 1lb=1b[], clb=clb, cub=cub, checkindex=1, maxiter=kkk<nadapt-1 7 _
~40:150,

warmstart=kkk, lm=1lm, uz=uz([], lz=1lz[], tol=0.00001, structjacc=[gvi,gvi]);
cout << "IPOPT: res =" << res << endl ;

// Plot
Plot3D(rc[], "Shape_at_"+kkk, 1);
Plot3D (GradArea(rc[]), "ShapeGradient", 1);

Finally, before closing the mesh adaptation loop, we have to perform the said adaptation. The mesh is adaptated with
respect to the X = (p,0,0) (in spherical coordinates) vector field, not directly with respect to p, otherwise the true
curvature of the 3D-shape would not be well taken into account.

if (kkk < nadapt-1){
Th = adaptmesh(Th, rc+cos(x)+sin(y), rc*sin(x)=*sin(y), rc*cos(y),
nbvx=50000, periodic=[[2, yl, [4, yl1);
plot (Th, wait=true);

startshape = rc;
uz = uz;
lz = 1z;

Here are some pictures of the resulting surfaces obtained for decreasing values of « (and a slightly more complicated
object than two orthogonal discs). We return to the enclosed object when o = 0:

3.5.6 The nlOpt optimizers

The £f-NLopt package provides a FreeFEM interface to the free/open-source library for nonlinear optimization,
easing the use of several different free optimization (constrained or not) routines available online along with the PDE
solver. All the algorithms are well documented in NLopt documentation, therefore no exhaustive information con-
cerning their mathematical specificities will be found here and we will focus on the way they are used in a FreeFEM
script. If needing detailed information about these algorithms, visit the website where a description of each of them is
given, as well as many bibliographical links.

Most of the gradient based algorithms of NLopt uses a full matrix approximation of the Hessian, so if you’re planning
to solve a large scale problem, use the IPOPT optimizer which definitely surpass them.

All the NLopt features are identified that way:

load "ff-NLopt"
//define J, u, and maybe grad(J), some constraints etc..
real min = nloptXXXXXX(J, u, //Unavoidable part

grad=<name of grad(J)>, //if needed

lb= //Lower bounds array

ub= //Upper bounds array

//Some optional arguments:
//Constraints functions names,

(continues on next page)
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Medit - [Shape_wt_2] #1 &00 Medit - [Shape_at_2] #1 .06 Medit - [Shape at 2| #1
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//Stopping criteria,
//Algorithm specific parameters,
//Etc. ..

)i

XXXXXX refers to the algorithm tag (not necessarily 6 characters long). u is the starting position (a real [int ] type
array) which will be overwritten by the algorithm, the value at the end being the found argmin. And as usual, J is a
function taking a real [int] type array as argument and returning a real. grad, 1b and ub are “half-optional”
arguments, in the sense that they are obligatory for some routines but not all.

The possible optionally named parameters are the following, note that they are not used by all algorithms (some do
not support constraints, or a type of constraints, some are gradient-based and others are derivative free, etc...). One
can refer to the table after the parameters description to check which are the named parameters supported by a specific
algorithm. Using an unsupported parameter will not stop the compiler work, seldom breaks runtime, and will just be
ignored. When it is obvious you are missing a routine, you will get a warning message at runtime (for example if
you pass a gradient to a derivative free algorithm, or set the population of a non-genetic one, etc...). In the following
description, n stands for the dimension of the search space.

Half-optional parameters :

e grad= The name of the function which computes the gradient of the cost function (prototype should be
real[int] — real[int], both argument and result should have the size n). This is needed as soon as
a gradient-based method is involved, which is ignored if defined in a derivative free context.

* 1b/ub = Lower and upper bounds arrays ( real [int] type) of size n. Used to define the bounds within which
the search variable is allowed to move. Needed for some algorithms, optional, or unsupported for others.

* subOpt : Only enabled for the Augmented Lagrangian and MLSL methods who need a sub-optimizer in order
to work. Just pass the tag of the desired local algorithm with a string.

Constraints related parameters (optional - unused if not specified):

* IConst/EConst : Allows to pass the name of a function implementing some inequality (resp. equality)
constraints on the search space. The function type must be real [int] — real [int ] where the size of the
returned array is equal to the number of constraints (of the same type - it means that all of the constraints are
computed in one vectorial function). In order to mix inequality and equality constraints in a same minimization
attempt, two vectorial functions have to be defined and passed. See example (3.29) for more details about how
these constraints have to be implemented.

* gradIConst/gradEConst : Use to provide the inequality (resp. equality) constraints gradient. These are
real[int] — real[int, int] type functions. Assuming we have defined a constraint function (either
inequality or equality) with p constraints, the size of the matrix returned by its associated gradient must be p x n
(the i-th line of the matrix is the gradient of the i-th constraint). It is needed in a gradient-based context as soon
as an inequality or equality constraint function is passed to the optimizer and ignored in all other cases.

* tolIConst/tolEConst : Tolerance values for each constraint. This is an array of size equal to the number
of inequality (resp. equality) constraints. Default value is set to 10~'2 for each constraint of any type.

Stopping criteria :
* stopFuncValue : Makes the algorithm end when the objective function reaches this real value.

* stopRelXTol : Stops the algorithm when the relative moves in each direction of the search space is smaller
than this real value.

* stopAbsXTol : Stops the algorithm when the moves in each direction of the search space is smaller than the
corresponding value in this real [int] array.

* stopRelFTol : Stops the algorithm when the relative variation of the objective function is smaller than this
real value.
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* stopAbsFTol : Stops the algorithm when the variation of the objective function is smaller than this real
value.

* stopMaxFEval : Stops the algorithm when the number of fitness evaluations reaches this integer value.

e stopTime : Stops the algorithm when the optimization time in seconds exceeds this real value. This is not a
strict maximum: the time may exceed it slightly, depending upon the algorithm and on how slow your function
evaluation is.

Note that when an AUGLAG or MLSL method is used, the meta-algorithm and the sub-algorithm may have
different termination criteria. Thus, for algorithms of this kind, the following named parameters has been
defined (just adding the SO prefix - for Sub-Optimizer) to set the ending condition of the sub-algorithm (the
meta one uses the ones above): SOStopFuncValue, SOStopRelXTol, and so on... If these are not used,
the sub-optimizer will use those of the master routine.

Other named parameters :

* popSize : integer used to change the size of the sample for stochastic search methods. Default value is a
peculiar heuristic to the chosen algorithm.

* SOPopSize : Same as above, but when the stochastic search is passed to a meta-algorithm.

* nGradStored: The number (integer type) of gradients to “remember” from previous optimization steps:
increasing this increases the memory requirements but may speed convergence. It is set to a heuristic value by
default. If used with AUGLAG or MLSL, it will only affect the given subsidiary algorithm.

The following table sums up the main characteristics of each algorithm, providing the more important information
about which features are supported by which algorithm and what are the unavoidable arguments they need. More
details can be found in NLopt documentation.

Tip: Variational inequality
Let €2 be a domain of R?, f1, fo € L?(Q) and g1, g2 € L?(99) four given functions with g; < go almost everywhere.
We define the space:

V = {(v1,v2) € H' ()% v1]oq = g1,v2l00 = g2, v1 < vz ace. }

as well as the function J : H'(Q)? — R:

1 1
J(v1,v2) = */ Vo |* — / fivr + */ [V, |? */ fava (3.29)
2 Ja Q 2 Ja Q
The problem consists in finding (numerically) two functions (u1,u2) = argmin J(vq, va).
(v1,v2)€V

This can be interpreted as finding uq,us as close as possible (in a certain sense) to the solutions of the Laplace
equation with respectively f1, fo second members and g1, go Dirichlet boundary conditions with the u; < us almost
everywhere constraint.

Here is the corresponding script to treat this variational inequality problem with one of the NLOpt algorithms.

//A brief script to demonstrate how to use the freefemm interfaced nlopt routines
//The problem consist in solving a simple variational inequality using one of the
//optimization algorithm of nlopt. We restart the algorithlm a few times after
//performing some mesh adaptation to get a more precise output

load "ff-NLopt"

// Parameters
int kas = 3; //choose of the algorithm

(continues on next page)
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Gradient o Constraints  Sub-
Id Tag Full Name Bounds "o o4 Stochastic Equality Inequality OPt
DIRECT Dividing rectangles )
Locally biased dividing
DIRECTL rectangles ®
Randomized locally biased
DIRECTLRand dividing rectangles ®
DIRECTNoScal Dividing rectangles - no scaling )
Locally biased dividing
DIRECTLNoScal rectangles - no scaling ®
Randomized locally biased dividing
DIRECTLRandNoScal o scaling [}
. Original Glabonsky’s dividing
OrigDIRECT rectangles [}
. Original Glabonsky’s locally
OrigDIRECTL biased dividing rectangles ®
Stochastic(?) Global
StoGO Optimization ® L]
Randomized Stochastic(?)
StoGORand Global Optimization ® L]
LBFGS Low-storage BFGS )
PRAXIS Principal AXIS v
Rank-1 shifted limited-memory
Nand variable-metric °
Rank-2 shifted limited-memory
\Var2 variable-metric °
TNewton Truncated Newton o
Steepest descent restarting
TNewtonRestart truncated Newton °
BFGS preconditionned
TNewtonPrecond truncated Newton °
BFGS preconditionned truncated
TNewtonRestartPrecond e, ion witn steepest descent restarting °
Controled random search with
CRS2 local mutation L
MMA Method of moving asymptots (]
Constrained optimization by
COBYLA linear approximations
NEWUOA NEWUOA
NEWUOA for bounded
NEWUOABound optimization
NelderMead Nelder-Mead simplex
Sbplx Subplex
BOBYQA BOBYQA
Improved stochastic ranking
ISRES evolution strategy ®
Sequential least-square
sLsap quadratic programming °
MLSL Multi-level single-linkage )
Low discrepancy multi-level
MLSLLDS single-linkage o
Constraints augmented
AUGLAG lagrangian ‘/ L
Equality constraints augmented
AUGLAGEQ lagrangian ‘/ ®
Legend : Supported and optional
v Should be supported and optional, may
lead to weird behaviour though.
Intrinsic characteristic of the algorithm
which then need one or more unavoidable
° parameter to work (for stochastic

algorithm, the population size always have
a default value, they will then work if it is
ommited)

For routines with subsidiary algorithms
only, indicates that the corresponding
feature will depend on the chosen sub-
optimizer.
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(continued from previous page)

int NN = 10;

func f1 = 1.;

func f2 = -1.;

func gl = 0.;

func g2 = 0.1;

int iter = 0;

int nadapt = 2;

real starttol = le-6;
real bctol = 6.e-12;
// Mesh

mesh Th = square (NN, NN);
// Fespace

fespace Vh(Th, P1);
Vh oldul, oldu2;

// Adaptation loop

"+al+" - iteration

for (int al = 0; al < nadapt; ++al){
varf BVEF (v, w) = int2d(Th) (0.5+dx (v) »dx(w) + 0.5xdy(v)=*dy(w));
varf LVF1 (v, w) = int2d(Th) (fl*w);
varf LVF2 (v, w) = int2d(Th) (f2+w);
matrix A = BVF (Vh, Vh);
real[int] bl = LVF1(0, Vh), b2 = LVF2(0, Vh);
varf Vbord (v, w) = on(l, 2, 3, 4, v=1);
Vh In, Bord;
Bord[] = Vbord(0, Vh, tgv=l);
In[] = Bord[] ? 0:1;
Vh ghl = Bordxgl, gh2 = Bord*g2;
func real J (real[int] &X) {
Vh ul, u2;
ulf[] = X(0:Vh.ndof-1);
u2[] = X(Vh.ndof:2+Vh.ndof-1);
iter++;
real[int] Aul = Axul[], Au2 = Axu2l];
Aul —= bl;
Au2 —-= b2;
real val = ul[]'+«Aul + u2[]'~*Au2;
if (iter%10 == 9)
plot (ul, u2, nbiso=30, fill=1, dim=3, cmm="adapt level
—"+iter+" - J = "+val, wvalue=1);
return val;
}
varf dBFV (v, w) = int2d(Th) (dx (v) *dx (w) +dy (v) xdy (w) ) ;

matrix dA = dBFV (Vh, Vh);

func real[int] dJ (real[int] &X) {
Vh ul, u2;
ul[] = X(0:Vh.ndof-1);

uz2[] = X(Vh.ndof:2xVh.ndof-1);

real[int] gradl = dAxull[], grad2 = dAxu2l[];

gradl -= Dbl;
grad2 -= b2;

(continues on next page)
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(continued from previous page)

real[int] Grad(X.n);

Grad (0:Vh.ndof-1) = gradl;
Grad (Vh.ndof:2+Vh.ndof-1) =
return Grad;

func real[int] (real[int]
real[int]
for (int i1 = 0; 1 < Vh.ndof;

return constraints;

IneqC

func real[int, int] (real|
real[int, int]

dconst = 0

dIneqC

[~

dconst (Vh.ndof,

grad2;

&X) {

constraints (Vh.ndof) ;

++1)

int] &X) {

for (int i 0; i < Vh.ndof; ++1){
dconst (i, i) = 1.;
dconst (i, i+Vh.ndof) = -1.;

}

return dconst;

real[int] BordIndex (Th.nbe);
{

constraints[i] =

X[i] - X[i+Vh.ndof];

2+Vh.ndof) ;

//Indexes of border d.f.

int k = 0;
for (int i = 0; i < Bord.n; ++i) if (Bord[][i]){ BordIndex[k] = i; ++k; }
}
func real[int] BC (real[int] &X) {
real[int] bc (2+Th.nbe);
for (int i = 0; i < Th.nbe; ++1i){
int I = BordIndex[i];
bcli] = X[I] - ghl[][I];
bc[i+Th.nbe] = X[I+Th.nv] - gh2[][I];

}

return bc;

func real[int, int]
real[int, int]
dbc = 0.;
for (int 1 = 0; i < Th.nbe;
int I = BordIndex[i];
dbc (i, I) = 1.;
dbc (i+Th.nbe,
}

return dbc;

real[int] start (2+xVh.ndof),

if (al == 0){
start (0:Vh.ndof-1) = 0.;
start (Vh.ndof:2+Vh.ndof-1) =
}
else{
start (0:Vh.ndof-1) = oldull[];

dBC (real[int]
dbc (2+«Th.nbe, 2+xTh.nv) ;

I+Th.nv) = 1

&X) {

++1) {

-

up (2+Vh.ndof) ,

0.01;

lo(2xVh.ndof) ;

(continues on next page)
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(continued from previous page)

start (Vh.ndof:2+Vh.ndof-1) = oldu2[];

up = 1000000;

lo = -1000000;
for (int i1 = 0; 1 < Vh.ndof; ++1i){
if (Bord[][i]){
upl[i] = ghl[][i] + bctol;
lo[i] = ghl[][i] - bctol;
up[i+Vh.ndof] = gh2[][i] + bctol;
lo[i+Vh.ndof] = gh2[][i] - bctol;
}
}
real mini = 1e100;
if (kas == 1)

mini = nloptAUGLAG(J, start, grad=dJ, lb=lo,
ub=up, IConst=IneqC, gradIConst=dIneqC,
subOpt="LBFGS", stopMaxFEval=10000, stopAbsFTol=starttol);
else if (kas == 2)
mini = nloptMMA (J, start, grad=dJ, lb=lo, ub=up, stopMaxFEval=10000,
—stopAbsFTol=starttol);
else if (kas == 3)
mini = nloptAUGLAG (J, start, grad=dJ, IConst=IneqC,
gradIConst=dIneqC, EConst=BC, gradEConst=dBC,
subOpt="LBFGS", stopMaxFEval=200, stopRelXTol=le-2);
else if (kas == 4)
mini = nloptSLSQP (J, start, grad=dJ, IConst=IneqC,
gradIConst=dIneqC, EConst=BC, gradEConst=dBC,
stopMaxFEval=10000, stopAbsFTol=starttol);
Vh bestl, best2;
bestl[] = start (0:Vh.ndof-1);
best2[] = start (Vh.ndof:2+Vh.ndof-1);

Th = adaptmesh (Th, bestl, best2);
oldul = bestl;
oldu2 = best2;

3.5.7 Optimization with MPI

The only quick way to use the previously presented algorithms on a parallel architecture lies in parallelizing the used
cost function (which is in most real life cases, the expensive part of the algorithm). Somehow, we provide a parallel
version of the CMA-ES algorithm. The parallelization principle is the trivial one of evolving/genetic algorithms: at
each iteration the cost function has to be evaluated NV times without any dependence at all, these IV calculus are then
equally distributed to each process. Calling the MPI version of CMA-ES is nearly the same as calling its sequential
version (a complete example of use can be found in the CMAES MPI variational inequality example):

load "mpi-cmaes"

// Define J, u and all here
real min = cmaesMPI (J, u, stopTolFun=le-6, stopMaxIter=3000);
cout << "minimum value is " << min << " for u = " << u << endl;

If the population size is not changed using the popsize parameter, it will use the heuristic value slightly changed
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to be equal to the closest greatest multiple of the size of the communicator used by the optimizer. The FreeFEM
mpicommworld is used by default. The user can specify his own MPI communicator with the named parameter
comm=, see the MPI section of this manual for more information about communicators in FreeFEM.

3.6 Parallelization

A first attempt of parallelization of FreeFEM is made here with MPI. An extended interface with MPI has been added
to FreeFEM version 3.5, (see the MPI documentation for the functionality of the language).

3.6.1 MPI

MPI Keywords

The following keywords and concepts are used:
¢ mpiComm to defined a communication world
* mpiGroup to defined a group of processors in the communication world

* mpiRequest to defined a request to wait for the end of the communication

MPI Constants

* mpisize The total number of processes,

* mpirank the id-number of my current processin {0, ..., mpisize-1},
e mpiUndefined The MPI_Undefined constant,

e mpiAnySource The MPI_ANY_SOURCE constant,

e mpiCommWorld The MPTI_COMM_WORLD constant,

e [... ] and all the keywords of MPI_Op for the reduce operator: mpiMAX, mpiMIN, mpiSUM, mpiPROD,
mpiLAND, mpiLOR, mpiLXOR, mpiBAND, mpiBXOR.

MPI Constructor

// Parameters

int[int] procl = [1, 2], proc2 = [0, 31;
int color = 1;
int key = 1;

// MPI ranks
cout << "MPI rank = " << mpirank << endl;

// MPI
mpiComm comm (mpiCommWorld, O, 0); //set a MPI_Comm to MPI_COMM_WORLD

mpiGroup grp (procl); //set MPI_Group to proc 1,2 in MPI_COMM_WORLD
mpiGroup grpl (comm, procl); //set MPI_Group to proc 1,2 in comm

mpiComm ncomml (mpiCommWorld, grp); //set the MPI_Comm form grp

(continues on next page)
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(continued from previous page)

mpiComm ncomm?2 (comm, color, key); //MPI_Comm_split (MPI_Comm comm, int color, int key,
—MPI_Comm *ncomm)

mpiRequest rqg; //defined an MPI_Request
mpiRequest [int] arq(l10); //defined an array of 10 MPI_Request

[

MPI Functions

mpiComm Comm (mpiCommWorld, 0, O0);

int MPICommSize = mpiSize (Comm) ;
int MPIRank = mpiRank (Comm) ;

if (MPIRank == 0) cout << "MPI Comm size = " << MPICommSize << endl;
cout << "MPI rank in Comm = " << mpiRank (Comm) << endl;

mpiRequest Req;
mpiRequest [int] RegArray (10);

for (int i1 = 0; i < MPICommSize; i++){

//return processor i with no Resquest in MPI_COMM_WORLD

processor (i) ;

//return processor any source with no Resquest in MPI_COMM_WORLD

processor (mpiAnySource) ;

//return processor i with no Resquest in Comm

processor (i, Comm) ;

//return processor 1 with no Resquest in Comm

processor (Comm, 1);

//return processor 1 with Resquest rg in Comm

/#* processor (i, Reqg, Comm);

//return processor 1 with Resquest rq in MPI_COMM_WORLD

processor (i, Req); */

//return processor i in MPI_COMM_WORLD in block mode for synchronously,,
—communication

processorblock (i) ;

//return processor any source in MPI_COMM_WORLD in block mode for synchronously,,
—communication

processorblock (mpiAnySource) ;

//return processor 1 in in Comm in block mode

processorblock (i, Comm) ;

mpiBarrier (Comm); //do a MPI_Barrier on communicator Comm
mpiWaitAny (RegArray); //wait add of Request array,
mpiWait (Req); //wait on a Request

real t = mpiWtime(); //return MPIWtime in second

real tick = mpiWtick(); //return MPIWTick in second

where a processor is just a integer rank, pointer to a MPI_comm and pointer to a MPI_Request, and

processorblock with a special MPI_Request.
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MPI Communicator operator

int status; //to get the MPI status of send / recv
real a, b;

mpiComm comm (mpiCommWorld, 0, O0);
mpiRequest req;

//send a,b asynchronously to the process 1
processor (l) << a << b;

//receive a,b synchronously from the process 10
processor (10) >> a >> b;

//broadcast from processor of comm to other comm processor
// broadcast (processor (10, comm), a);

//send synchronously to the process 10 the data a

status = Send(processor (10, comm), a);

//receive synchronously from the process 10 the data a
status = Recv (processor (10, comm), a);

//send asynchronously to the process 10 the data a without request

status = Isend(processor (10, comm), a);

//send asynchronously to the process 10 the data a with request
status = Isend(processor (10, comm, req), a);

//receive asynchronously from the process 10 the data a

status = Irecv (processor (10, req), a);

//Error asynchronously without request.

// status = Irecv (processor(10), a);

where the data type of a can be of type of int, real, complex, int[int], real[int], complex[i
int[int, int], double[int, int], complex[int, int], mesh, mesh3, mesh[int], mesh3[1i

matrix, matrix<complex>

nt],
nt],

//send asynchronously to the process 10 the data a with request
processor (10, req) << a ;

//receive asynchronously from the process 10 the data a with request
processor (10, req) >> a ;

If a, D are arrays or full matrices of int, real, or complex, we can use the following MPI functions:

mpiAlltoall(a, b, [comm]);
mpiAllgather(a, b, [comm]);

mpiGather (a, b, processor(..) );
mpiScatter(a, b, processor(..));
mpiReduce (a, b, processor(..), mpiMAX);

mpiAllReduce (a, b, comm, mpiMAX);

Thank you to Guy-Antoine Atenekeng Kahou for his help to code this interface.

Schwarz example in parallel

This example is a rewritting of example Schwarz overlapping.

ff-mpirun -np 2 SchwarzParallel.edp
# OR
mpirun -np 2 FreeFem++-mpi SchwarzParallel.edp

3.6. Parallelization
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if (mpisize != 2) {
cout << " sorry, number of processors !=2 "
exit (1);

// Parameters
verbosity = 0;
int interior = 2;
int exterior = 1;
int n = 4;

// Mesh
border a(t=1, 2){x=t; y=0; label=exterior;}
border b (t=0, 1) {x=2; y=t; label=exterior;}
border c(t=2, 0){x=t; y=1; label=exterior;}
border d(t=1, 0){x=1-t; y=t; label=interior;}
border e (t=0, pi/2) {x=cos(t); y=sin(t);
border el (t=pi/2, 2xpi) {x=cos(t); y=sin(t);
mesh[int] Th (mpisize);
if (mpirank == 0)

Th[0] = buildmesh(a(5*n) + b(5*n) + c(10xn)
else

Th[1l] = buildmesh (e (5+n) + el (25+n));
broadcast (processor (0), Th[O0]);
broadcast (processor (1), Th[1l]);
// Fespace
fespace Vh(Th[mpirank], P1);

Vh u = 0, v;

fespace Vhother (Th[l-mpirank],
Vhother U = 0;

P1);

//Problem
int 1 = 0;
problem pb (u, v, init=i,
= int2d (Th[mpirank]) (
dx (u) »dx (v)
+ dy (u) xdy (v)

solver=Cholesky)

- int2d(Th[mpirank]) (
v

+ + =

on(interior, u=0U)
on (exterior, u= 0 )
4
// Loop
for (i = 0; 1 < 20; 1i++){
cout << mpirank << " - Loop " << i << endl;
// Solve
pb;
//send u to the other proc, receive in U
processor (l-mpirank) << ufl];
processor (l-mpirank) >> U[];

<< endl;

label=interior;}
label=exterior;}

+ d(5#n));

(continues on next page)
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(continued from previous page)

// Error
real err0, errl;
err0 = intld(Th[mpirank], interior) (square(U - u));
// send err(Q to the other proc, receive in errl
processor (l-mpirank) << err0;
processor (l-mpirank) >> errl;
real err = sqgrt (err0 + errl);
cout << " err = " << err << " - err0 = " << err0 << " - errl = " << errl << endl;
if (err < le-3) break;
}
if (mpirank == 0)
plot (u, U);

Todo: script freeze in the loop

True parallel Schwarz example

Thank you to F. Nataf

This is a explanation of the two examples MPI-GMRES 2D and MPI-GMRES 3D, a Schwarz parallel with a complexity
almost independent of the number of process (with a coarse grid preconditioner).

To solve the following Poisson problem on domain {2 with boundary T in L?() :
—Au = f inQ
u = g onl
where f and g are two given functions of L2(2) and of Hz (I"),
Lets introduce (m)izl,__7 N, @ regular partition of the unity of €2, g-e-d:

NP
meC(Q): m>0and Y =1
i=1
Denote €2; the sub domain which is the support of 7; function and also denote I'; the boundary of €2;.

The parallel Schwarz method is:

Let £ = 0 the iterator and a initial guest u” respecting the boundary condition (i.e. “?1“ = g).

Vi=1.,N,:
~Auf = f inQ
ut = wu® onI;\T
uf = g onDl;NT
NP
u = "l (3.30)
=1

After discretization with the Lagrange finite element method, with a compatible mesh 7},; of €2;, i. e., the exist a global
mesh 7, such that 7}, is include in 7j,.

Let us denote:

* V},; the finite element space corresponding to domain €2;,
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e Ny, is the set of the degree of freedom Uf,

- N th is the set of the degree of freedom of V},; on the boundary I'; of €2;,
e oF(vy,) is the value the degree of freedom F,

* Vons = {vn € Vi 1 Vk € ./V',E’, Jf(vh) =0},

¢ The conditional expression a ? b : ¢ is defined like in :¢c‘C* of C++ language by

if a is true then return b
a?’h:c=
else return ¢

Note: We never use finite element space associated to the full domain €2 because it is too expensive.

We have to defined to operator to build the previous algorithm:
We denote “iﬁ the restriction of Uﬁ on V},;, so the discrete problem on €; of problem (3.30) is find ufli € Vp, such
that:

V'Uhi € Vi : Vvhi : Vuhf = / fvhia Vk € N{; : Uf(uhf) = (k € F) ? gf : Uf(uhfi)

where g¥ is the value of g associated to the degree of freedom k € N, ,SZ

In FreeFEM, it can be written has with U is the vector corresponding to ufm‘ and the vector U1 is the vector corre-

sponding to uf” is the solution of:

real[int] Ul (Ui.n);
real[int] b = onG .x U;
b =onG ? b : Bi ;

Ul = Ai"-1+b;

where onG[i] = (¢ € I'; \ I')?1 : 0, and Bi the right of side of the problem, are defined by

// Fespace
fespace Whi (Thi, P2);

// Problem
varf vPb (U, V)
= 1int3d(Thi) (
grad (U) '+grad (V)

+

int3d(Thi) (
FxV

U=q)
on (10, U=G)

+ + =
o
5
iy

7
varf vPbon (U, V) = on (10, U=1) + on(l, U=0);

matrix Ai = vPb (Whi, Whi, solver=sparsesolver);
real[int] onG = vPbon (0, Whi);
real[int] Bi=vPb (0, Whi);

where the FreeFEM label of I' is 1 and the label of I'; \ T is 10.
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To build the transfer/update part corresponding to (3.30) equation on process i, let us call njpart the number the
neighborhood of domain of €; (i.e: 7; is none 0 of £2;), we store in an array jpart of size njpart all this neigh-
borhood.

Let us introduce two array of matrix, Smj [ j] to defined the vector to send from ¢ to j a neighborhood process, and
the matrix r M j[j] to after to reduce owith neighborhood j domain.

So the tranfert and update part compute v; = m;u; + » m;u; and can be write the FreeFEM function Update:

JEJ;

func bool Update (reallint] &ui, real[int] &vi) {

int n = jpart.n;

for (int j = 0; J < njpart; ++3) Usend[J][] = sMj[Jj]~*ui;

mpiRequest [int] rg(n«x2);

for (int j = 0; Jj < n; ++3j) Irecv(processor (jpart[j], comm,rglj]l), Ri[jII[]);
for (int j = 0; Jj < n; ++j) Isend(processor (jpart[j], comm, rgl[j+nl]l), Si[j]II[]);

for (int j = 0; J < n*2; ++3j) int k = mpiWaitAny(rq);

// apply the unity local partition

vi = Piixui; //set to pi_i u_ 1

for (int j = 0; j < njpart; ++3j) vi += rMj[jl+Vrecv[jlIl]; //add pi_j u_j
return true;

where the buffer are defined by:

InitU(njpart, Whij, Thij, aThij, Usend) //defined the send buffer
InitU(njpart, Whij, Thij, aThij, Vrecv) //defined the revc buffer

with the following macro definition:

macro InitU(n, Vh, Th, aTh, U) Vhl[int] U(n); for (int j = 0; j < n; ++3){Th = aTh[j]l;_
<U[3] = 0;1}

First GMRES algorithm: you can easily accelerate the fixed point algorithm by using a parallel GMRES algorithm
after the introduction the following affine .4; operator sub domain £2,.

func real[int] DJO (real[int]s& U) {
real[int] V(U.n), b = onG .x U;
b = onG ? b : Bi ;
V = Ai"-1+b;
Update (V, U);
v —-= U;
return V;

Where the parallel MPIGMRES or MPICG algorithm is just a simple way to solve in parallel the following A;x; =
bi,1 = 1,.., N, by just changing the dot product by reduce the local dot product of all process with the following MPI
code:

template<class R> R ReduceSuml (R s, MPI_Comm »*comm) {
Rr = 0;
MPI_Allreduce(&s, &r, 1, MPI_TYPE<R>::TYPE(), MPI_SUM, =*comm ) ;
return r;

This is done in MP IGC dynamics library tool.

Second GMRES algorithm: Use scharwz algorithm as a preconditioner of basic GMRES method to solving the parallel
problem.
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func real[int] DJ (real[int]& U){ //the original problem
++kiter;
real[int] V(U.n);
V = Ai+U;
V =onGi ? 0.: V; //remove boundary term
return V;

func real[int] PDJ (reallint]s& U){ //the preconditioner
real[int] V(U.n);
real[int] b = onG ? 0. : U;
V = Ai"-1+b;
Update (V, U);
return U;

Third GMRES algorithm: Add a coarse solver to the previous algorithm

First build a coarse grid on processor 0, and the

matrix AC, Rci, Pcij;
if (mpiRank (comm) == 0)
AC = vPbC(VhC, VhC, solver=sparsesolver); //the coarse problem

Pci = interpolate (Whi, VhC); //the projection on coarse grid
Rci = Pci'«Pii; //the restriction on Process 1 grid with the partition pi_1i

func bool CoarseSolve (real[int]& V, reallint]& U, mpiComm& comm) {
// solving the coarse problem
real[int] Uc(Rci.n), Bc (Uc.n);
Uc = Rcix*U;
mpiReduce (Uc, Bc, processor (0, comm), mpiSUM) ;
if (mpiRank (comm) == 0)
Uc = AC"-1xBc;
broadcast (processor (0, comm), Uc);
V = Pcix*Uc;

The New preconditionner

func real[int] PDJC (real[int]& U) {
// Idea: F. Natafr.
// 0 ~ (I CIlA) (I-C2A) => I ~ — CIlAC2A +CIlA +C2A
// New Prec P= Cl+C2 - ClAC2 = Cl(I- A C2) +C2
// ( Cl(I- A C2) +C2 ) Uo
// V = — C2xUo
V2R

real[int] V(U.n);

CoarseSolve (V, U, comm);

vV = -V; //-C2*Uo

U += AixV; //U = (I-A C2) Uo

real[int] b = onG ? 0. : U;

U = Ai"-1%b; //Cl1( I -A C2) Uo

V=1U-V;

Update (V, U);

return U;
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The code of the 4 algorithms:

real epss = le—6;
int rgmres = 0;
if (gmres == 1) {

rgmres = MPIAffineGMRES (DJO, ul[], veps=epss, nbiter=300,
comm=comm, dimKrylov=100, wverbosity=ipart?0: 50);
real[int] b = onG .x ul];
b =onG ? b : Bi ;
v[] = Ai"-1+Db;
Update (v[], ull);
}
else if (gmres == 2)
rgmres = MPILinearGMRES (DJ, precon=PDJ, ul[], Bi, veps=epss,
nbiter=300, comm=comm, dimKrylov=100, wverbosity=ipart?0: 50);
else if (gmres == 3)
rgmres = MPILinearGMRES (DJ, precon=PDJC, ul[], Bi, veps=epss,
nbiter=300, comm=comm, dimKrylov=100, wverbosity=ipart?0: 50);
else //algo Shwarz for demo
for (int iter = 0; iter < 10; ++iter)

We have all ingredient to solve in parallel if we have et the partitions of the unity. To build this partition we do:

The initial step on process 1 to build a coarse mesh, 7;,* of the full domain, and build the partition 7 function constant
equal to ¢ on each sub domain O;,¢ = 1, .., Nj, of the grid with the met i s graph partitioner [KARYPIS1995] and on
each process i in 1.., N, do

1. Broadcast from process 1, the mesh 7, (call Thii in FreeFEM script), and 7 function,
2. remark that the characteristic function I, of domain O;, is defined by (7 = 4)?1 : 0,

3. Let us call I1% (resp. I1},) the L? on Pj the space of the constant finite element function per element on 75"
(resp. V¥ the space of the affine continuous finite element per element on 75,") and build in parallel the 7; and
Q;, such that O; C Q; where O; = supp((I13,112)™10,), and m is a the overlaps size on the coarse mesh
(generally one), (this is done in function AddLayers (Thii, suppii[],nlayer,phii[]); We choose
a function w} = (II3113)™ I, so the partition of the unity is simply defined by

*
K3

N,
E:jilﬁ;

The set J; of neighborhood of the domain €2;, and the local version on V},; can be defined the array
jpart and njpart with:

T
T, —

1 |Vhi pii = piistar;

> |Vhil[int] pij(npij); //local partition of 1 = pii + sum_3j pij[7]
3 |int[int] Jjpart (npart);

4 |int nijpart = 0;

5 |Vhi sumphi = piistar;

¢ |for (int i = 0; i < npart; ++1i)

7 if (i != ipart) {

8 if (int3d(Thi) (pijstar,j) > 0){
9 pijlnjpart] = pijstar;

10 sumphi[] += pijlnjpart][];
1 jpart [njpart++] = 1i;

(continues on next page)
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(continued from previous page)

4 |piil[] = piil] ./ sumphil[];
5 |for (int j = 0; j < njpart; ++3)
6 |Pij[31101 = pi3[31[]1 ./ sumphil];

17 | jpart.resize (njpart);

4. We call T,;; the sub mesh part of 7j,; where 7; are none zero. And thanks to the function t runc to build this
array,

1 |for(int Jjp = 0; Jjp < njpart; ++jp)
aThij[jp] = trunc(Thi, pijljpl] > le-10, label=10);

S

5. At this step we have all on the coarse mesh, so we can build the fine final mesh by splitting all meshes: Thi,
Thij[3j], Thij[j] with FreeFEM trunc mesh function which do restriction and slipping.

6. The construction of the send/recv matrices sMj and freefem: ‘rMj: can done with this code:

1 |mesh3 Thij = Thi;

2> | fespace Whij(Thij, Pk);

3 |matrix Pii; Whi wpii = pii; Pii = wpiil[]l; //Diagonal matrix corresponding,
X pi_1i

4 |matrix[int] sMj(njpart), rMj(njpart); //M send/recive case

5 |for (int Jjp = 0; Jp < njpart; ++jp){

6 int j = jpart[jpl;

7 Thij = aThij[Jjpl; //change mesh to change Whij, Whij
8 matrix I = interpolate(Whij, Whi); //Whij <- Whi

9 sMj[jpl = IxPii; //Whi -> s Whij

10 rMj[Jjp]l = interpolate (Whij, Whi, t=1); //Whij —> Whi

To buil a not too bad application, all variables come from parameters value with the following code

include "getARGV.idp"
verbosity = getARGV ("-vv", 0)
int vdebug = getARGV ("-d", 1)
int ksplit = getARGV("-k", 10
int nloc = getARGV("-n", 25);
string sff = getARGV("-p, ", "");

int gmres = getARGV ("-gmres", 3);

bool dplot = getARGV ("-dp", 0);

int nC = getARGV("-N", max(nloc/10, 4));

’

)i

And small include to make graphic in parallel of distribute solution of vector u on mesh 7}, with the following interface:

include "MPIplot.idp"

func bool plotMPIall (mesh &Th, real[int] &u, string cm) {
PLOTMPIALL (mesh, Pk, Th, u, {cmm=cm, nbiso=20, f£fill=1, dim=3, wvalue=1});
return 1;

Note: The cram=cm, ... inthe macro argument is a way to quote macro argument so the argument is cmm=cm,
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3.6.2 Parallel sparse solvers

Parallel sparse solvers use several processors to solve linear systems of equation. Like sequential, parallel linear
solvers can be direct or iterative. In FreeFEM both are available.

Using parallel sparse solvers in FreeFEM

We recall that the solver parameters are defined in the following commands: solve, problem, set (setting
parameter of a matrix) and in the construction of the matrix corresponding to a bilinear form. In these commands, the
parameter solver must be set to sparsesolver for parallel sparse solver. We have added specify parameters to
these command lines for parallel sparse solvers. These are:

e lparams : vector of integer parameters (1 is for the C++ type 1long)
* dparams : vector of real parameters

* sparams : string parameters

* datafilename : name of the file which contains solver parameters

The following four parameters are only for direct solvers and are vectors. These parameters allow the user to preprocess
the matrix (see the section on sparse direct solver for more information).

e permr : row permutation (integer vector)

e permc : column permutation or inverse row permutation (integer vector)
* scaler : row scaling (real vector)

* scalec : column scaling (real vector)

There are two possibilities to control solver parameters. The first method defines parameters with lparams,
dparams and sparams in . edp file.

The second one reads the solver parameters from a data file. The name of this file is specified by datafilename.
If lparams, dparams, sparams or datafilename is not provided by the user, the solver’s default values are
used.

To use parallel solver in FreeFEM, we need to load the dynamic library corresponding to this solver. For example to
use MUMPS solver as parallel solver in FreeFEM, write in the . edp file load "MUMPS_FreeFem".

If the libraries are not loaded, the default sparse solver will be loaded (default sparse solver is UMFPACK). The Table
3.2 gives this new value for the different libraries.

Table 3.2: Default sparse solver for real and complex arithmetics when we load a parallel sparse solver library

Libraries Default sparse solver
real complex

MUMPS_FreeFem mumps mumps
real_SuperLU_DIST_FreeFem SuperLU_DIST | previous solver
complex_SuperLU_DIST_FreeFem | previous solver | SuperLU_DIST
real_pastix_FreeFem PaStiX previous solver
complex_pastix_FreeFem previous solver | PaStiX
hips_FreeFem hips previous solver
hypre_FreeFem hypre previous solver
parms_FreeFem parms previous solver

We also add functions (see Table 3.3) with no parameter to change the default sparse solver in the . edp file. To use
these functions, we need to load the library corresponding to the solver. An example of using different parallel sparse
solvers for the same problem is given in Direct solvers example.
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Table 3.3: Functions that allow to change the default sparse solver for real and complex arithmetics and the result of
these functions

Function default sparse solver

real complex
defaulttoMUMPS() mumps mumps
realdefaulttoSuperLUdist() SuperLU_DIST | previous solver
complexdefaulttoSuperLUdist() | previous solver | SuperLU_DIST
realdefaultopastix() pastix previous solver
complexdefaulttopastix() previous solver | pastix
defaulttohips() hips previous solver
defaulttohypre() hypre previous solver
defaulttoparms() parms previous solver

Tip: Test direct solvers

load "MUMPS_FreeFem"

//default solver: real—-> MUMPS, complex —> MUMPS
load "real_SuperLU_DIST_FreeFem"

//default solver: real-> SuperLU DIST,

complex -> MUMPS load "real pastix FreeFem"
//default solver: real—-> pastix, complex —> MUMPS

// Solving with pastix
{
matrix A =
[y, 2, 2, 1, 11,
, 12, 0, 10, 101,
, 0, 1, 0, 271,
, 10, 0, 22, 0.1,
, 10, 2, 0., 2211;

oD

[
[
[
[

real[int] xx = [1, 32, 45, 7, 2], x(5), b(5), di(5);
b = Axxx;
cout << "b =" << b << endl; cout << "xx =" << xx << endl;

set (A, solver=sparsesolver, datafilename="ffpastix_ iparm dparm.txt");
cout << "solve" << endl;
x = A"-1+b;

cout << "b =" << b << endl;
cout << "x =" << endl;
cout << x << endl;
di = xx - x;
if (mpirank == 0) {
cout << "x-xx =" << endl;
cout << "Linf =" << di.linfty << ", L2 =" << di.1l2 << endl;

// Solving with SuperLU_DIST
realdefaulttoSuperLUdist () ;
//default solver: real-> SuperLU_DIST, complex —> MUMPS
{
matrix A =
rry, 2, 2, 1, 11,

(continues on next page)
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(continued from previous page)

= RN

~

real[int]

b =
cout <<
cout <<

set (A,

cout <<
x = A"-
cout <<
cout <<

12, 0
0, 1,
10, 0
10, 2

~

~

~

XX =

AxxXX;

"Ho="
"y ="

solver=
"solve
1xb;
"H ="
Wy =1

, 10, 101,
0, 21,
, 22, 0.1,
, 0., 22115
[1, 32, 45, 7, 2], x(5), b(5)
<< b << endl;
<< xxX << endl;
sparsesolver, datafilename="ff

" << endl;

<< b << endl;

, di(5);

superlu_dist_fileparam.txt");

<< endl;
cout <<
di = X;
if (mpirank
cout <<
cout <<

X << endl;
XX -
== 0){

"x—-xx ="
"Linf ="

<< endl;
<< di.linfty << ",

—_n

L2 << di.l2 << endl;

// Solving with MUMPS
defaulttoMUMPS () ;
//default solver:
{

real-> MUMPS, complex —> MUMPS
matrix A =

(rL,
’ 121
4 OI
4 10'
’ lol

PN N

[
[
[
[

real[int] xx = [1, 32, 45,

b =

AxxXX;

cout <<
cout <<

—_n

"

Myese ="

<< b << endl;
<< xxX << endl;

datafilename="ffmumps_fileparam.txt");
<< endl;

set (A, solver=sparsesolver,

cout << "solving solution"

A"-1xb;

cout << "b << b << endl;

cout << "x =" << endl;

cout << x << endl;

di = xx - x;

if (mpirank
cout <<
cout <<

X =

—_n

== 0){

"X—-XX
"Linf ="

_n

<< endl;

<< di.linfty << ", L2" << di.l2 << endl;

Sparse direct solver

In this section, we present the sparse direct solvers interfaced with FreeFEM.
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MUMPS solver

MU Itifrontal Massively Parallel Solver (MUMPS) is an open-source library.

This package solves linear system of the form A x = b where A is a square sparse matrix with a direct method. The
square matrix considered in MUMPS can be either unsymmetric, symmetric positive definite or general symmetric.

The method implemented in MUMPS is a direct method based on a multifrontal approach. It constructs a direct
factorization A = LU, A = L' D L depending of the symmetry of the matrix A.

MUMPS uses the following libraries :
¢ BLAS,
e BLACS,
* ScalLAPACK.

Warning: MUMPS does not solve linear system with a rectangular matrix.

MUMPS parameters:

There are four input parameters in MUMPS. Two integers SYM and PAR, a vector of integer of size 40 INCTL and a
vector of real of size 15 CNTL.

The first parameter gives the type of the matrix: 0 for unsymmetric matrix, 1 for symmetric positive matrix and 2 for
general symmetric.

The second parameter defined if the host processor work during the factorization and solves steps : PAR=1 host
processor working and PAR=0 host processor not working.

The parameter INCTL and CNTL is the control parameter of MUMPS. The vectors ICNTL and CNTL in MUMPS
becomes with index 1 like vector in Fort ran. For more details see the MUMPS user’s guide.

We describe now some elements of the main parameters of ICNTL for MUMPS.

¢ Input matrix parameter The input matrix is controlled by parameters ICNTL (5) and ICNTL (18).
The matrix format (resp. matrix pattern and matrix entries) are controlled by INCTL (5) (resp.
INCTL (18)).

The different values of ICNTL (5) are O for assembled format and 1 for element format. In the current
release of FreeFEM, we consider that FE matrix or matrix is storage in assembled format. Therefore,
INCTL (5) is treated as O value.

The main option for ICNTL (18): INCLTL (18) =0 centrally on the host processor, ICNTL (18) =3 dis-
tributed the input matrix pattern and the entries (recommended option for distributed matrix by developer
of MUMPS). For other values of ICNTL (18) see the MUMPS user’s guide. These values can be used
also in FreeFEM.

The default option implemented in FreeFEM are ICNTL (5) =0 and ICNTL (18) =0.

* Preprocessing parameter The preprocessed matrix A, that will be effectively factored is defined by

A,=PD,AQ.D.P
where P is the permutation matrix, Q). is the column permutation, D,. and D, are diagonal matrix
for respectively row and column scaling.

The ordering strategy to obtain P is controlled by parameter ICNTL (7). The permutation of zero
free diagonal (). is controlled by parameter ICNTL (6) . The row and column scaling is controlled
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by parameter ICNTL (18) . These option are connected and also strongly related with ICNTL (12)
(see the MUMPS user’s guide for more details).

The parameters permr, scaler, and scalec in FreeFEM allow to give permutation matrix(P),
row scaling (D,.) and column scaling (D.) of the user respectively.

Calling MUMPS in FreeFEM

To call MUMPS in FreeFEM, we need to load the dynamic library MUMPS_freefem.dylib (MacOSX),
MUMPS_ freefem. so (Unix) or MUMPS_ freefem.d1l1l (Windows).

This is done in typing 1oad "MUMPS_FreeFem" in the . edp file. We give now the two methods to give the option
of MUMPS solver in FreeFEM.

* Solver parameters is defined in .edp file: In this method, we need to give the parameters 1params and dparams.
These parameters are defined for MUMPS by :

— lparams[0] = SYM, lparams[l] = PAR,
-Vi=1,..40, lparams [i+1] = ICNTL (1)
- Vi=1,...,15, dparams [1—-1] = CNTL (i)

* Reading solver parameters on a file:

The structure of data file for MUMPS in FreeFEM is : first line parameter SYM and second line
parameter PAR and in the following line the different value of vectors ICNTL and CNTL. An example
of this parameter file is given in f fmumpsfileparam.txt.

1 |0 /+ SYM :: 0 for non symmetric matrix, 1 for symmetric definite positive,,
—matrix and 2 general symmetric matrix#*/

2 |1 /% PAR :: 0 host not working during factorization and solves steps, 1,
—host working during factorization and solves stepsx*/

3 |-1 /* ICNTL (1) :: output stream for error message #*/

4 |=1 /# ICNTL(2) :: output for diagnostic printing, statics and warning_
—message */

s |-1 /# ICNTL(3) :: for global information */

6 |0 /% ICNTL(4) :: Level of printing for error, warning and diagnostic,
—message */

7 0 /+ ICNTL(5) :: matrix format : 0 assembled format, 1 elemental format._
k)

s |7 /* ICNTL(6) :: control option for permuting and/or scaling the matrix,
—1in analysis phase */

9 |3 /# ICNTL(7) :: pivot order strategy : AMD, AMF, metis, pord scotchx/

0o |77 /% ICNTL(8) :: Row and Column scaling strategy =/

1 1 /+ ICNTL(9) :: 0 solve Ax = b, 1 solve the transposed system A"t x = b_
—: parameter 1is not considered in the current release of FreeFEMx/

2 |0 /» ICNTL(10) :: number of steps of iterative refinement =*/

3 |0 /+ ICNTL(11) :: statics related to linear system depending on ICNTL(9)_
—*/

4 |1 /#+ ICNTL(12) :: constrained ordering strategy for general symmetric,
—matrix */

5 |0 /» ICNTL(13) :: method to control splitting of the root frontal matrix,_
—*/

16 |20 /+ ICNTL(14) :: percentage increase 1in the estimated working space,,
— (default 20\%) *x/

17 0 /% ICNTL(15) :: not used in this release of MUMPS x*/

18 |0 /* ICNTL(16) :: not used in this release of MUMPS x/

19 |0 /% ICNTL(17) :: not used in this release of MUMPS x*/

0 |3 /+ ICNTL(18) :: method for given : matrix pattern and matrix entries
k)

(continues on next page)
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0 /% ICNTL(19)
0 /% ICNTL(20)

—parameter will be set to 0 for FreeFEM */

0 /% ICNTL(21)

—considered in the current release of FreeFEM x/

0 /#+ ICNTL(22)
0 /+ ICNTL(23)

—MUMPS can allocate per working processor #*/

0 /* ICNTL (24)
0 /+ ICNTL(25)
0 /% ICNTL(26)

— (ICNTL (19) not zero). : parameter 1is not considered in the current,
wrelease of FreeFEM */

-8 /% ICNTL(27)
< of MUMPS)

—during the solution phase : parameter 1is not considered in the current,
—release of FreeFEM x/

/% ICNTL (28)
/% ICNTL(29)
/% ICNTL (30)
/% ICNTL(31)
/% ICNTL (32)
/% ICNTL (33)
/% ICNTL (34)
/% ICNTL (35)
/% ICNTL (36)
/% ICNTL (37)
/+ ICNTL (38)
/% ICNTL (39)
/% ICNTL (40)
0.01 /% CNTL(1)
le-8 /# CNTL(2)
-1 /% CNTL(3)
-1 /% CNTL (4)
.0 /% CNTL (5)
/% CNTL (6)
/% CNTL(7)
/% CNTL (8)
/% CNTL (9)
/% CNTL (10)
/% CNTL (11)
/% CNTL (12)
/% CNTL (13)
/% CNTL (14)
/% CNTL (15)

e NeloNeoNoNoNoNoNoNoNe N ol

O O OO O O O oo oo

:: not used in this release of MUMPS */

method to return the Schur complement matrix x/
right hand side form ( 0 dense form, 1 sparse form) :_,

0, 1 kept distributed solution : parameter 1is not,

controls the in-core/out-of-core (00C) facility x/
maximum size of the working memory in Megabyte than

control the detection of null pivot x/
control the computation of a null space basis #*/
This parameter is only significant with Schur option,,

(Experimental parameter subject to change in next release_
control the blocking factor for multiple righthand side_

not used in this release of MUMPS#*/
not used in this release of MUMPS#*/
not used in this release of MUMPSx*/
not used in this release of MUMPS#*/
not used in this release of MUMPS#*/
not used in this release of MUMPSx*/
not used in this release of MUMPS#*/
not used in this release of MUMPS#*/
not used in this release of MUMPSx*/
not used in this release of MUMPS#*/
not used in this release of MUMPS#*/
:: not used in this release of MUMPSx/
:: not used in this release of MUMPS*/
relative threshold for numerical pivoting #*/
stopping criteria for iterative refinement x/
threshold for null pivot detection #*/
determine the threshold for partial pivoting */
fixation for null pivots =*/
not used in this release of MUMPS */
not used in this release of MUMPS */
not used in this release of MUMPS #*/

not used in this release of MUMPS x*/
not used in this release of MUMPS */
not used in this release of MUMPS x/
not used in this release of MUMPS x/
not used in this release of MUMPS */
not used in this release of MUMPS x/

If no solver parameter is given, we used default option of MUMPS solver.

Tip: MUMPS example

A simple example of calling MUMPS in FreeFEM with this two methods is given in the Test solver MUMPS example.
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SuperLU distributed solver

The package SuperLU_DIST solves linear systems using LU factorization. It is a free scientific library

This library provides functions to handle square or rectangular matrix in real and complex arithmetics. The method
implemented in SuperLU_DIST is a supernodal method. New release of this package includes a parallel symbolic
factorization. This scientific library is written in C and MPI for communications.

SuperLU_DIST parameters:

We describe now some parameters of SuperLU_DIST. The SuperLU_DIST library use a 2D-logical process group.
This process grid is specified by nprow (process row) and npcol (process column) such that IV, = nprow npcol
where NV, is the number of all process allocated for SuperLU_DIST.

The input matrix parameters is controlled by “matrix="in sparams for internal parameter or in the third line of
parameters file. The different value are

* matrix=assembled global matrix are available on all process
* matrix=distributedglobal The global matrix is distributed among all the process
* matrix=distributed The input matrix is distributed (not yet implemented)

The option arguments of SuperLU_DIST are described in the section Users-callable routine of the SuperLLU users’
guide.

The parameter Fact and TRANS are specified in FreeFEM interfaces to SuperLU_DIST during the different steps.
For this reason, the value given by the user for this option is not considered.

The factorization LU is calculated in SuperLU_DIST on the matrix A,.
A,=P.P.D.AD.P!
where P, and P, is the row and column permutation matrix respectively, D, and D, are diagonal matrix for respec-

tively row and column scaling.

The option argument RowPerm (resp. ColPerm) control the row (resp. column) permutation matrix. D, and D, is
controlled by the parameter DiagScale.

The parameter permr, permc, scaler, and scalec in FreeFEM is provided to give row permutation, column
permutation, row scaling and column scaling of the user respectively.

The other parameters for LU factorization are ParSymFact and ReplaceTinyPivot. The parallel symbolic
factorization works only on a power of two processes and need the ParMet is ordering. The default option argument
of SuperLU_DIST are given in the file ffsuperlu_dist_fileparam.txt.

Calling SuperLU_DIST in FreeFEM

To call SuperLU_DIST in FreeFEM, we need to load the library dynamic correspond to inter-
face. This done by the following line load "real_superlu _DIST_FreeFem" (resp. load
"complex_superlu_DIST_FreeFem") for real (resp. complex) arithmetics in the file . edp.

Solver parameters is defined in .edp file:

To call SuperLU_DIST with internal parameter, we used the parameters sparams. The value of parameters of
SuperLU_DIST in sparams are defined by :

* nprow=1,
* npcol=1,
* matrix= distributedgloba,

* Fact= DOFACT,
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* Equil=NO,

* ParSymbFact=NO,

e ColPerm= MMD_AT_PLUS_A,
* RowPerm= LargeDiag,
* DiagPivotThresh=1.0,
e TterRefine=DOUBLE,

¢ Trans=NOTRANS,

* ReplaceTinyPivot=NO,
e SolveInitialized=NO,
* PrintStat=NO,

* DiagScale=NOEQUIL

This value correspond to the parameter in the file ffsuperlu_dist_fileparam.txt. If one parameter is not
specified by the user, we take the default value of SuperLU_DIST.

Reading solver parameters on a file: The structure of data file for SuperLU_DIST in FreeFEM is given in the file
ffsuperlu_dist_fileparam.txt (default value of the FreeFEM interface).

1 /+ nprow : integer value #*/

1 /% npcol : integer value */

distributedglobal /# matrix input : assembled, distributedglobal, distributed =/
DOFACT /* Fact : DOFACT, SamePattern, SamePattern SameRowPerm, FACTORED */

NO /* Equil : NO, YES %/

NO /+ ParSymbFact : NO, YES #*/

MMD_AT_PLUS_A /+ ColPerm : NATURAL, MMD AT PLUS A, MMD ATA, METIS AT PLUS_A, PARMETIS,
< MY_PERMC */

LargeDiag /#* RowPerm : NOROWPERM, LargeDiag, MY _PERMR x/

1.0 /+ DiagPivotThresh : real value #*/

DOUBLE /#* IterRefine : NOREFINE, SINGLE, DOUBLE, EXTRA */

NOTRANS /* Trans : NOTRANS, TRANS, CONJx*/

NO /#+ ReplaceTinyPivot : NO, YESx/

NO /# SolveInitialized : NO, YESx/

NO /* RefinelInitialized : NO, YESx/

NO /+ PrintStat : NO, YESx*/

NOEQUIL /x DiagScale : NOEQUIL, ROW, COL, BOTHx*/

If no solver parameter is given, we used default option of SuperLU_DIST solver.

Tip: A simple example of calling SuperLU_DIST in FreeFEM with this two methods is given in the Solver su-
perLU_DIST example.

PaStiX solver

PaStiX (Parallel Sparse matrix package) is a free scientific library under CECILL-C license. This package solves
sparse linear system with a direct and block ILU(k) iterative methods. his solver can be applied to a real or complex
matrix with a symmetric pattern.

PaStiX parameters:
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The input mat r i x parameter of FreeFEM depend on PaStiX interface. matrix = assembled for non distributed
matrix. It is the same parameter for SuperLU_DIST.

There are four parameters in PaStiX : iparm, dparm, permand invp. These parameters are respectively the integer
parameters (vector of size 64), real parameters (vector of size 64), permutation matrix and inverse permutation matrix
respectively. iparm and dparm vectors are described in PaStiX RefCard.

The parameters permr and permc in FreeFEM are provided to give permutation matrix and inverse permutation
matrix of the user respectively.

Solver parameters defined in .edp file:

To call PaStiX in FreeFEM in this case, we need to specify the parameters 1params and dparams. These parame-
ters are defined by :

Vi=0,..,63, lparams [i] = iparm[i].
Vi=0,... ,63,dparams[i] = dparm[i].
Reading solver parameters on a file:

The structure of data file for PaStiX parameters in FreeFEM is: first line structure parameters of the matrix and in the
following line the value of vectors iparm and dparm in this order.

assembled /# matrix input :: assembled, distributed global and distributed x/
iparm([0]
iparm[1]

iparm[63]
dparm[0]
dparm[1]

dparm[63]

An example of this file parameter is given in £ fpastix_iparm_dparm.txt with a description of these parame-
ters. This file is obtained with the example file iparm.txt and dparm. txt including in the PaStiX package.

If no solver parameter is given, we use the default option of PaStiX solver.

Tip: A simple example of calling PaStiX in FreeFEM with this two methods is given in the Solver PaStiX example.

In Table 3.4, we recall the different matrix considering in the different direct solvers.

Table 3.4: Type of matrix used by the different direct sparse solver

direct solver square matrix rectangular matrix

sym | sym pattern | unsym | sym sym pattern | unsym
SuperLU_DIST | yes yes yes yes yes yes
MUMPS yes yes yes no no no
Pastix yes yes no no no no

Parallel sparse iterative solver

Concerning iterative solvers, we have chosen pARMS, HIPS and Hypre.

Each software implements a different type of parallel preconditioner.
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So, pARMS implements algebraic domain decomposition preconditioner type such as additive Schwartz [CAI1989]
and interface method; while HIPS implement hierarchical incomplete factorization and finally HYPRE implements
multilevel preconditioner are AMG(Algebraic MultiGrid) and parallel approximated inverse.

To use one of these programs in FreeFEM, you have to install it independently of FreeFEM. It is also necessary
to install the MPI communication library which is essential for communication between the processors and, in some
cases, software partitioning graphs like METIS or Scotch.

All this preconditioners are used with Krylov subspace methods accelerators.

Krylov subspace methods are iterative methods which consist in finding a solution z of linear system Ax = b inside
the affine space xg + K, by imposing that b — Az L,,, where K, is Krylov subspace of dimension m defined by
K, = {ro, Arg, A%rq, ..., A" 1ry} and L,, is another subspace of dimension m which depends on type of Krylov
subspace. For example in GMRES, L,,, = AK,,.

We realized an interface which is easy to use, so that the call of these different softwares in FreeFEM is done in the
same way. You just have to load the solver and then specify the parameters to apply to the specific solvers. In the rest
of this chapter, when we talk about Krylov subspace methods we mean one among GMRES, CG and BICGSTAB.

PARMS solver

PARMS (parallel Algebraic Multilevel Solver) is a software developed by Youssef Saad and al at University of Min-
nesota.

This software is specialized in the resolution of large sparse non symmetric linear systems of equation. Solvers
developed in pARMS are of type “Krylov’s subspace”.

It consists of variants of GMRES like FGMRES (Flexible GMRES), DGMRES (Deflated GMRES) [SAAD2003] and
BICGSTAB. pARMS also implements parallel preconditioner like RAS (Restricted Additive Schwarz) [CAI1989] and
Schur Complement type preconditioner.

All these parallel preconditioners are based on the principle of domain decomposition. Thus, the matrix A is partitioned
into sub matrices A;( = 1, ..., p) where p represents the number of partitions one needs. The union of A; forms the
original matrix. The solution of the overall system is obtained by solving the local systems on A; (see [SMITH1996]).
Therefore, a distinction is made between iterations on A and the local iterations on A;.

To solve the local problem on A; there are several preconditioners as ilut (Incomplete LU with threshold), iluk
(Incomplete LU with level of fill in) and ARMS (Algebraic Recursive Multilevel Solver).

Tip: Default parameters

load "parms_FreeFem" //Tell FreeFem that you will use pARMS

// Mesh
border C(t=0, 2xpi) {x=cos(t); y=sin(t); label=1;}
mesh Th = buildmesh (C(50));

// Fespace
fespace Vh(Th, P2); Vh u, v;

// Function
func f= x»*y;

// Problem
problem Poisson (u, v, solver=sparsesolver)
= 1int2d(Th) (
dx (u) »dx (v)

(continues on next page)
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(continued from previous page)

+ dy (u) xdy (v) )
+ int2d (Th) (

- fxv
)

+ on(l, u=0) ;

// Solve

real cpu = clock();

Poisson;

cout << " CPU time = " << clock()-cpu << endl;

// Plot
plot (u);

In line 1, the pARMS dynamic library is loaded with interface FreeFEM. After this, in line 15 we specify that the
bilinear form will be solved by the last sparse linear solver load in memory which, in this case, is pARMS.

The parameters used in pARMS in this case are the default one since the user does not have to provide any parameter.

Note: In order to see the plot of a parallel script, run the command FreeFem++-mpi —-glut ffglut script.
edp

Here are some default parameters:
* solver=FGMRES,
* Krylov dimension=30,
* Maximum of Krylov=1000,
* Tolerance for convergence=1le-08 (see book [SAAD2003] to understand all this parameters),
* preconditionner=Restricted Additif Schwarz [CAI1989],
e Inner Krylov dimension=5,
* Maximum of inner Krylov dimension=5,
* Inner preconditionner=ILUK.

To specify the parameters to apply to the solver, the user can either give an integer vector for integer parameters and
real vectors for real parameters or provide a file which contains those parameters.

Tip: User specifies parameters inside two vectors

Lets us consider Navier-Stokes example. In this example we solve linear systems coming from discretization of
Navier-Stokes equations with pARMS. Parameters of solver is specified by user.

load "parms_FreeFem"

// Parameters
real nu = 1.;
int[int] iparm(16);
real[int] dparm(6);

for (int ii = 0; ii < 16; ii++)
iparm[ii] = -1;
for (int ii = 0; ii < 6; ii++)

(continues on next page)
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(continued from previous page)

dparm[ii] = -1.0; iparm[0]=0;
// Mesh
mesh Th = square (10, 10);
int[int] wall = [1, 3];

int inlet = 4;

// Fespace
fespace Vh(Th, [P2, P2, P1l]);

// Function
func uc = 1.;

// Problem
varf Stokes ([u, v, pl, [ush, vsh, psh], solver=sparsesolver)
= int2d (Th) (
nux* (
dx (u) »dx (ush)
+ dy (u) »dy (ush)
+ dx (v) »dx (vsh)
+ dy (v) xdy (vsh)
)
- pxpshx*(1.e-6)
- p* (dx(ush) + dy(vsh))
- (dx(u) + dy(v))+*psh
)
+ on(wall, wall, u=0., v=0.)
+ on(inlet, u=uc, v=0) ;

matrix AA = Stokes(Vh, Vh);

set (AA, solver=sparsesolver, lparams=iparm, dparams=dparm); //set pARMS as linear_
—solver

real[int] bb = Stokes (0, Vh);

real[int] sol (AA.n);

sol = AA"-1 * bb;

We need two vectors to specify the parameters of the linear solver. In line 5-6 of the example, we have declared these
vectors(int [int] iparm(16); real[int] dparm(6) ;). Inline 7-10 we have initialized these vectors by
negative values.

We do this because all parameters values in pARMS are positive and if you do not change the negative values of one
entry of this vector, the default value will be set.

In Table 3.7 and Table 3.8, we have the meaning of different entries of these vectors.

We run this example on a cluster paradent of Grid5000 and report results in Table 3.5.

Table 3.5: Convergence and time for solving linear system

n = 471281 nnz = 13 x 108 Te = 571.29
np add(iluk) shur(iluk)
nit time nit time
4 230 637.57 21 557.8
240 364.12 22 302.25
16 247 212.07 24 167.5
32 261 111.16 25 81.5
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Table 3.6: Legend of Table 3.5

n matrix size

nnz number of non null entries inside matrix
nit number of iteration for convergence

time | Time for convergence

Te Time for constructing finite element matrix
np number of processor

In this example, we fix the matrix size (in term of finite element, we fix the mesh) and increase the number of processors
used to solve the linear system. We saw that, when the number of processors increases, the time for solving the linear
equation decreases, even if the number of iteration increases. This proves that, using pARMS as solver of linear
systems coming from discretization of partial differential equation in FreeFEM can decrease drastically the total time
of simulation.

Table 3.7: Meaning of 1params corresponding variables

Entries of iparm Significations of each entries

iparm[0] Krylov subspace methods
Different values for this parameters are specify on Table
3.9

iparm[1] Preconditionner

Different preconditionners for this parameters are spec-
ify on Table 3.10

iparm[2] Krylov subspace dimension in outer iteration: default
value 30

iparm[3] Maximum of iterations in outer iteration: default value
1000

iparm[4] Number of level in arms when used

iparm[5] Krylov subspace dimension in inner iteration: default
value 3

iparm[6] Maximum of iterations in inner iteration: default value
3

iparm[7] Symmetric(=1 for symmetric) or unsymmetric matrix:
default value O(unsymmetric matrix)

iparm[8] Overlap size between different subdomain: default
value O(no overlap)

iparm[9] Scale the input matrix or not: Default value 1 (Matrix

should be scaled)
[10] Block size in arms when used: default value 20
[11] 1fil0 (ilut, iluk, and arms) : default value 20
[12] Ifil for Schur complement const : default value 20
iparm[13] Ifil for Schur complement const : default value 20
[14]
[15]
[16]

iparm Multicoloring or not in ILU when used : default value 1
iparm Inner iteration : default value 0
iparm Print message when solving: default 0 (no message

print)
* 0: no message is print,
* 1: Convergence informations like number of iter-
ation and residual,
» 2: Timing for a different step like preconditioner,
* 3 : Print all informations
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Table 3.8: Significations of dparams corresponding variables

Entries of dparm | Significations of each entries

dparm[0] precision for outer iteration : default value 1e-08

dparm[1] precision for inner iteration: default value le-2

dparm[2] tolerance used for diagonal domain: : default value 0.1
dparm[3] drop tolerance droptolO (ilut, iluk, and arms) : default value le-2
dparm[4] droptol for Schur complement const: default value le-2
dparm[5] droptol for Schur complement const: default value 1e-2

Table 3.9: Krylov Solvers in pARMS

Values of iparm[0] | Krylov subspace methods
0 FGMRES (Flexible GMRES)
1 DGMRES (Deflated GMRES)
2 BICGSTAB

Table 3.10: Preconditionners in pARMS

Values of iparm[1] | Preconditionners type

additive Schwartz preconditioner with ilu0 as local preconditioner
additive Schwartz preconditioner with iluk as local preconditioner
additive Schwartz preconditioner with ilut as local preconditioner
additive Schwartz preconditioner with arms as local preconditioner

Left Schur complement preconditioner with ilu0 as local preconditioner
Left Schur complement preconditioner with ilut as local preconditioner
Left Schur complement preconditioner with iluk as local preconditioner
Left Schur complement preconditioner with arms as local preconditioner
Right Schur complement preconditioner with ilu0 as local preconditioner
Right Schur complement preconditioner with ilut as local preconditioner
Right Schur complement preconditioner with iluk as local preconditioner
Right Schur complement preconditioner with arms as local preconditioner
sch_gilu0, Schur complement preconditioner with global ilu0
SchurSymmetric GS preconditioner

RN N W —=O

=)

(=)

—_
—_

—_
[\

—
w

Interfacing with HIPS

HIPS (Hierarchical Iterative Parallel Solver) is a scientific library that provides an efficient parallel iterative solver
for very large sparse linear systems. HIPS is available as free software under the CeCILL-C licence.

HIPS implements two solver classes which are the iteratives class (GMRES, PCG) and the Direct class. Concerning
preconditionners, HIPS implements a type of multilevel ILU. For further informations on those preconditionners see
the HIPS documentation.

Tip: Laplacian 3D solved with HIPS

Let us consider the 3D Laplacian example inside FreeFEM package where after discretization we want to solve the
linear equation with HIPS.

The following example is a Laplacian 3D using Hips as linear solver. We first load Hips solver at line 2. From line 7
to 18 we specify the parameters for the Hips solver and in line 82 we set these parameters in the linear solver.
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In Table 3.11 results of running on Cluster Paradent of Grid5000 are reported. We can see in this running example the
efficiency of parallelism.

load "msh3"
load "hips_FreeFem" //load Hips library

// Parameters

int nn = 10;

real zmin = 0, zmax = 1;

int[int] iparm(14);

real[int] dparm(6);

for (int iii = 0; iii < 14; iii++)
iparm([iii] = -1;

for (int iii = 0; iii < 6; iii++)

dparm[iii] = -1;
iparm[0] = 0; //use iterative solver
iparm([1l] = 1; //PCG as Krylov method
iparm(4] = 0; //Matrix are symmetric
iparm[5] = 1; //Pattern are also symmetric
iparm([9] = 1; //Scale matrix
dparm[0] = 1le-13; //Tolerance to convergence
dparm[l] = 5e-4; //Threshold in ILUT
dparm[2] = 5e-4; //Threshold for Schur preconditionner

// Functions

func ue = 2+x*x + 3xyry + 4xzZxzZ + Sxxxy + 6xxXxz + 1;
func uex = 4xx + 5xy + 6xz;

func uey = 6xy + 5xx;

func uez = 8xz + 6xx;

func £ = -18.;

// Mesh

mesh Th2 = square(nn, nn);

int[int] rup = [0,2], rdown=[0, 1];

int[int] rmid=(1, 1, 2, 1, 3, 1, 4, 11;

mesh3 Th=buildlayers(Th2, nn, zbound=[zmin, zmax], reffacemid=rmid,
reffaceup = rup, reffacelow = rdown);

// Fespace
fespace Vh2 (Th2, P2);
Vh2 ux, uz, p2;

fespace Vh(Th, P2);

Vh uhe = ue;

cout << "uhe min =" << uhe[].min << ", max =" << uhe[].max << endl;
Vh u, v;

Vh F;

// Macro
macro Grad3(u) [dx(u), dy(u), dz(u)l //

// Problem
varf va (u, v)
= 1int3d(Th) (
Grad3 (v) ' % Grad3(u)

(continues on next page)

3.6. Parallelization 273




60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

FreeFEM Documentation, Release 4.2.1

(continued from previous page)

+ int2d(Th, 2) (
u*v
)
- 1int3d(Th) (
fxv
)
- int2d(Th, 2) (
uexv + (uexx*N.x + uey*N.y + uezxN.z)xv
)

+ on(l, u=ue);

varf 1 (unused, v) = int3d(Th) (f*v);

real cpu=clock();
matrix Aa = va(Vh, Vh);

F[] = va(0, Vh);
if (mpirank == 0) {
cout << "Size of A =" << Aa.n << endl;
cout << "Non zero coefficients =" << Aa.nbcoef << endl;
cout << "CPU TIME FOR FORMING MATRIX =" << clock()-cpu << endl;

set (Aa, solver=sparsesolver, dparams=dparm, lparams=iparm); //Set hips as linear,
—solver

// Solve
ul] = Aa"-1+F[];
// Plot
plot (u);
Table 3.11: Legend of this table are give in Table 3.6
n=4x10° nnz = 118 x 10° Te = 221.34
np nit time
8 190 120.34
16 189 61.08
32 186 31.70
64 183 23.44
Tip:

Table 3.12: Significations of 1params corresponding to HIPS interface
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Entries of | Significations of each entries
iparm
iparm[0] Strategy use for solving (Iterative=0 or Hybrid=1 or Direct=2).
Defaults values are : Iterative
iparm[1] Krylov methods.
If iparm[0]=0, give type of Krylov methods: 0 for GMRES, 1 for PCG
iparm[2] Maximum of iterations in outer iteration: default value 1000
iparm[3] Krylov subspace dimension in outer iteration: default value 40
iparm[4] Symmetric(=0 for symmetric) and 1 for unsymmetricmatrix:
default value 1 (unsymmetric matrix)
iparm[5] Pattern of matrix are symmetric or not: default value 0
iparm[6] Partition type of input matrix: default value O
iparm[7] Number of level that use the HIPS locally consistentfill-in:
Default value 2
iparm[8] Numbering in indices array will start at 0 or 1: Default value 0
iparm[9] Scale matrix. Default value 1
iparm[10] Reordering use inside subdomains for reducingfill-in:
Only use for iterative. Default value 1
iparm[11] Number of unknowns per node in the matrix non-zeropattern graph:
Default value 1
iparm[12] This value is used to set the number of time the
normalization is applied to the matrix: Default 2.
iparm[13] Level of informations printed during solving: Default 5.
iparm[14] HIPS_DOMSIZE Subdomain size

Table 3.13: Significations of dparams corresponding to HIPS interface

dparm[0]| HIPS_PREC: Relative residual norm: Default=1e-9

dparm[1]| HIPS_DROPTOLO: Numerical threshold in ILUT for interior domain
(important : set 0.0 in HYBRID: Default=0.005)

dparm[2]| HIPS_DROPTOLI : Numerical threshold in ILUT for Schur preconditioner:
Default=0.005

dparm[3]| HIPS_DROPTOLE : Numerical threshold for coupling between the interior
level and Schur: Default 0.005

dparm[4]] HIPS_AMALG : Numerical threshold for coupling between the interior level
and Schur: Default=0.005

dparm[5]] HIPS_DROPSCHUR : Numerical threshold for coupling between the interior
level and Schur: Default=0.005

Interfacing with HYPRE

Hypre (High Level Preconditioner) is a suite of parallel preconditioner developed at Lawrence Livermore National
Lab.

There are two main classes of preconditioners developed in HYPRE: AMG (Algebraic MultiGrid) and Parasails (Par-
allel Sparse Approximate Inverse).

Now, suppose we want to solve Ax = b.

At the heart of AMG there is a series of progressively coarser (smaller) representations of the matrix A. Given an
approximation Z to the solution x, consider solving the residual equation Ae = r to find the error e, where r = b— AZ.
A fundamental principle of AMG is that it is an algebraically smooth error. To reduce the algebraically smooth errors
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further, they need to be represented by a smaller defect equation (coarse grid residual equation) A.e. = r., which is
cheaper to solve. After solving this coarse equation, the solution is then interpolated in fine grid represented here by
matrix A. The quality of AMG depends on the choice of coarsening and interpolating operators.

The sparse approximate inverse approximates the inverse of a matrix A by a sparse matrix M. A technical idea to
construct matrix M is to minimize the Frobenuis norm of the residual matrix [ — M A. For more details on this
preconditioner technics see [CHOW1997].

HYPRE implement three Krylov subspace solvers: GMRES, PCG and BiCGStab.

Tip: Laplacian 3D solved with HYPRE

Let us consider again the 3D Laplacian example inside FreeFEM package where after discretization we want to solve
the linear equation with Hypre. The following example is a Laplacian 3D using Hypre as linear solver. This is the
same example as Hips one, so we just show here the lines where we set some Hypre parameters.

We first load the Hypre solver at line 2. From line 6 to 18 we specifies the parameters to set to Hypre solver and in
line 22 we set parameters to Hypre solver.

It should be noted that the meaning of the entries of these vectors is different from those of Hips. In the case of
HYPRE, the meaning of differents entries of vectors iparm and dparm are given in Table 3.14 to Table 3.18.

In Table 3.19 the results of running on Cluster Paradent of Grid5000 are reported. We can see in this running example
the efficiency of parallelism, in particular when AMG are use as preconditioner.

load "msh3"
load "hipre_FreeFem" //Load Hipre librairy

// Parameters

int nn = 10;
int[int] iparm(20);
real[int] dparm(6);
for (int iii = 0; iii < 20; iii++)

iparm[iii] = -1;
for (int iii = 0; 1iii < 6; iii++)
dparm[iii] = -1;
iparm[0] = 2; //PCG as krylov method
iparm([1] 0; //AMG as preconditionner 2: if ParaSails
iparm([7] = 7; //Interpolation
iparm([9] = 6; //AMG Coarsen type
iparm[10] = 1; //Measure type
iparm[l6] = 2; //Additive schwarz as smoother
dparm[0] = 1le-13; //Tolerance to convergence
dparm[1l] = 5e-4; //Threshold
dparm[2] = 5e-4; //Truncation factor

set (Aa, solver=sparsesolver, dparams=dparm, lparams=iparm);

Table 3.14: Definitions of common entries of iparms and dparms vectors for every preconditioner in HYPRE
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iparms [0] | Solver identification:
0: BiCGStab, 1: GMRES, 2: PCG. Default=1

iparms([1] | Preconditioner identification:
0: BOOMER AMG, 1: PILUT, 2: Parasails, 3: Schwartz Default=0

iparms [2] | Maximum of iteration: Default=1000

iparms[3] | Krylov subspace dim: Default= 40

iparms [4] | Solver print info level: Default=2

iparms[5] | Solverlog: Default=1

iparms[6] | Solver stopping criteria only for BICGStab : Default=1
(0]

dparms Tolerance for convergence: Default=math:/.0e-11

Table 3.15: Definitions of other entries of iparms and dparms if preconditioner is BOOMER AMG

iparmAMG interpolation type: Default=6

iparmSpéifies the use of GSMG - geometrically smooth coarsening and
interpolation: Default=1

iparmAMG coarsen type: Default=6

iparmPetifids whether local or global measures are used: Default=1

iparmAMGiycle type: Default=1

iparmAMGISmoother type: Default=1

iparm@AMG Inumber of levels for smoothers: Default=3

iparmAMG number of sweeps for smoothers: Default=2

iparmMaxbrhum number of multigrid levels: Default=25

iparmPefiads which variant of the Schwartz method isused:

0: hybrid multiplicative Schwartz method (no overlap across processor boundaries)
1: hybrid additive Schwartz method (no overlap across processor boundaries)

2: additive Schwartz method

3: hybrid multiplicative Schwartz method (with overlap across processor boundaries)
Default=1

iparm8izedf the system of PDEs: Default=1

iparm®peddp for the Schwarz method: Default=1

iparmdypodf domain used for the Schwarz method

0: each point is a domain

1: each node is a domain (only of interest in “systems” AMG)
2: each domain is generated by agglomeration (default)

dparmAMG strength threshold: Default=0.25

dparmdfunkation factor for the interpolation: Default=1e-2

dparm8é¢ h parameter to modify the definition of strength for
diagonal dominant portions of the matrix: Default=0.9

dparmdefihes a smoothing parameter for the additive Schwartz method. Default=1

Table 3.16: Definitions of other entries of iparms and dparms if preconditioner is PILUT
iparms[7] | Row size in Parallel ILUT: Default=1000
iparms [8] | Set maximum number of iterations: Default=30
dparms [1] | Drop tolerance in Parallel ILUT: Default=1e-5

Table 3.17: Definitions of other entries of iparms and dparms if preconditioner is ParaSails
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iparmsNumhber of levels in Parallel Sparse Approximate inverse: Default=1

iparmsSydmetric parameter for the ParaSails preconditioner:

0: nonsymmetric and/or indefinite problem, and nonsymmetric preconditioner

1: SPD problem, and SPD (factored) preconditioner

2: nonsymmetric, definite problem, and SPD (factored) preconditioner

Default=0

dparmdHiltdrs parameters. The filter parameter is used to drop small nonzeros in the preconditioner,
to reduce the cost of applying the preconditioner: Default=0.1

dparmsIi¢shold parameter: Default=0.1

Table 3.18: Definitions of other entries of iparms and dparms if preconditionner is Schwartz

iparnmBéfides which variant of the Schwartz method isused:

0: hybrid multiplicative Schwartz method (no overlap across processor boundaries)
1: hybrid additive Schwartz method (no overlap across processor boundaries)

2: additive Schwartz method

3: hybrid multiplicative Schwartz method (with overlap across processor boundaries)
Default=1

ipaym@yélap for the Schwartz method: Default=1

ipanmEypelof domain used for the Schwartz method

0: each point is a domain

1: each node is a domain (only of interest in “systems” AMG)

2: each domain is generated by agglomeration (default)

Table 3.19: Convergence and time for solving linear system

n=4x10% | nnz =13 x 10° Te =571.29
np AMG
nit time
8 6 1491.83
16 5 708.49
32 4 296.22
64 4 145.64

Conclusion

With the different runs presented here, we wanted to illustrate the gain in time when we increase the number of
processors used for the simulations. We saw that in every case the time for the construction of the finite element
matrix is constant. This is normal because until now this phase is sequential in FreeFEM. In contrast, phases for
solving the linear system are parallel. We saw on several examples presented here that when we increase the number
of processors, in general we decrease the time used for solving the linear systems. But this is not true in every case.
In several case, when we increase the number of processors the time to convergence also increases. There are two
main reasons for this. First, the increase of processors can lead to the increase of volume of exchanged data across
processors consequently increasing the time for solving the linear systems.

Furthermore, in decomposition domain type preconditioners, the number of processors generally corresponds to the
number of sub domains. In subdomain methods, generally when we increase the number of subdomains we decrease
convergence quality of the preconditioner. This can increase the time used for solving linear equations.

To end this, we should note that good use of the preconditioners interfaced in FreeFEM is empiric, because it is
difficult to know what is a good preconditioner for some type of problems. Although, the efficiency of preconditioners
sometimes depends on how its parameters are set. For this reason we advise the user to pay attention to the meaning
of the parameters in the user guide of the iterative solvers interfaced in FreeFEM.
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Domain decomposition

In the previous section, we saw that the phases to construct a matrix are sequential. One strategy to construct the
matrix in parallel is to divide geometrically the domain into subdomains. In every subdomain we construct a local
submatrix and after that we assemble every submatrix to form the global matrix.

We can use this technique to solve PDE directly in domain 2. In this case, in every subdomains you have to define
artificial boundary conditions to form consistent equations in every subdomains. After this, you solve equation in
every subdomains and define a strategy to obtain the global solution.

In terms of parallel programming for FreeFEM, with MPI, this means that the user must be able to divide processors
avaible for computation into subgroups of processors and also must be able to realize different type of communications
in FreeFEM script. Here is a wrapper of some MPI functions.

Communicators and groups

Groups
mpiGroup grpe (mpiGroup gp, KN_<long>): Create MPI_Group from existing group gp by given vector.
Communicators

Communicators is an abstract MPI object which allows MPI user to communicate across group of processors. Com-
municators can be Intra-communicators(involves a single group) or Inter-communicators (involves two groups). When
we not specify type of communicator it will be Intra-communicators

mpiComm cc(mpiComm comm, mpiGroup gp): Creates a new communicator.
comm communicator(handle), gp group which is a subset of the group of comm (handle). Return new communicator
mpiComm cc(mpiGroup gp): Same as previous constructor but default comm here is MPI__ COMM_WORLD.

mpiComm cc(mpiComm comm, int color, int key): Creates new communicators based on colors and key. This
constructor is based on MPI_Comm_split routine of MPI.

mpiComm cc(MPIrank p, int key): Same constructor than the last one.

Here colors and comm is defined in MP I rank. This constructor is based on MPI_Comm_split routine of MPI.

Tip: Split communicator

mpiComm comm (mpiCommWorld, 0, O0);

int color = mpiRank (comm) %2;

mpiComm ccc (processor (color, comm), 0);
mpiComm gpp (comm, 0, 0);

mpiComm cp (ccc, color, O0);

mpiComm cc(mpiComm comm, int high): Creates an intracommunicator from an intercommunicator. comm inter-
communicator, high.

Used to order the groups within comm (logical) when creating the new communicator. This constructor is based on
MPI_Intercomm_merge routine of MPI.

mpiComm cc(MPIrank p1, MPIrank p2, int tag): This constructor creates an intercommuncator from two intra-
communicators. p1 defined local (intra)communicator and rank in 1ocal_ comm of leader (often 0) while p2 defined
remote communicator and rank in peer_comm of remote leader (often 0). tag Message tag to use in constructing
intercommunicator. This constructor is based on MPI_Intercomm_ create.
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Tip: Merge

mpiComm comm, ccC;
int color = mpiRank (comm) $2;

int rk = mpiRank (comm) ;

int size = mpiSize (comm);

cout << "Color wvalues: " << color << endl;
mpiComm ccc (processor ((rk<size/2), comm), rk);

mpiComm cp (cc, color, 0);
int rleader;

if (rk == 0){ rleader = size/2; }

else if (rk == size/2){ rleader = 0; }

else{ rleader = 3; }

mpiComm ggp (processor (0, ccc), processor(rleader, comm), 12345);
int aaa = mpiSize(ccc);

cout << "Number of processor: " << aaa << endl;

Process

In FreeFEM we wrap MPI process by function call processor which create internal FreeFEM object call
MPIrank. This mean that do not use MPIrank in FreeFEM script.

processor (int rk): Keep process rank inside object MPI rank. Rank is inside MPI__COMM_WORLD.

processor (int rk, mpiComm cc) and processor (mpiComm cc, int rk) process rank inside com-
municator cc.

processor (int rk, mpiComm cc) and processor (mpiComm cc, int rk) process rank inside com-
municator cc.

processorblock (int rk): This function is exactlly the same than processor (int rk) butis use in case
of blocking communication.

processorblock (int rk, mpiComm cc): This function is exactly the same as processor (int rk,
mpiComm cc) butuses a synchronization point.

Points to Points communicators

In FreeFEM you can call MPI points to points communications functions.

Send (processor (int rk, mpiComm cc), Data D) : Blocking send of Data D to processor of rank
rk inside communicator cc. Note that Data D can be: int, real, complex, int[int], real[int],
complex[int], Mesh, Mesh3, Matrix.

Recv (processor (int rk, mpiComm cc), Data D): Receive Data D from process of rank rk in com-
municator cc.

Note that Data D can be: int, real, complex, int [int], real[int], complex[int], Mesh, Mesh3,
Matrix and should be the same type than corresponding send.

Isend(processor (int rk, mpiComm cc), Data D) : Non blocking send of Data D to processor of
rank rk inside communicator cc.

Note that Data D can be: int, real, complex, int[int], real[int], complex[int], mesh, mesh3,
matrix.
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Recv (processor (int rk, mpiComm cc), Data D): Receive corresponding to send.

Global operations

In FreeFEM you can call MPI global communication functions.

broadcast (processor (int rk, mpiComm cc), Data D): Process rk Broadcast Data D to all pro-
cess inside communicator cc. Note that Data D can be: int, real, complex, int [int], real[int],
complex[int], Mesh,Mesh3, Matrix.

broadcast (processor (int rk), Data D): Process rk Broadcast Data D to all process inside
MPI_COMM_WORLD. Note that Data D can be: int, real, complex, int[int], reall[int],
complex[int],Mesh, Mesh3, Matrix.

mpiAlltoall (Data a, Data b): Sends data a from all to all processes. Receive buffer is Data b. This
is done inside communicator MPI_COMM_WORLD.

mpiAlltoall (Data a, Data b, mpiComm cc): Sends data a from all to all processes. Receive buffer
is Data b. This is done inside communicator cc.

mpiGather (Data a, Data b, processor (mpiComm, int rk): Gathers together values Data a
from a group of processes. Process of rank rk get data on communicator rk. This function is like MPI_Gather.

mpiAllgather (Data a, Data b): Gathers Data a from all processes and distribute it to all in Data b.
This is done inside communicator MPI_ COMM_WORLD. This function is like MPI_Allgather.

mpiAllgather (Data a, Data b, mpiComm cc): Gathers Data a from all processes and distribute it to
all in Data b. This is done inside communicator cc. This function is like MPTI_Allgather.

mpiScatter (Data a,Data b,processor (int rk, mpiComm cc)): Sends Data a from one process
whith rank rk to all other processes in group represented by communicator mpiComm cc.

mpiReduce (Data a, Data b, processor (int rk, mpiComm cc), MPI_Op op) Reduces values
Data a on all processes to a single value Data b on process of rank rk and communicator cc.

Operation use in reduce is: MPI_Op op which can be: mpiMAX, mpiMIN, mpiSUM, mpiPROD, mpiLAND,
mpiLOR, mpiLXOR, mpiBAND, mpiBXOR, mpiMAXLOC, mpiMINLOC.

Note that, for all global operations, only int [int] and real [int] are data type take in account in FreeFEM.
HPDDM solvers

Real valued problems (diffusion, heat, elasticity and Stokes) and complex valued problems (Maxwell and Helmholtz)
are given in both 2D and 3D. We detail here the 3D elasticity problem and the 3D time-dependent heat problem.

Tip: Elasticity 3D

A three dimensional elasticity problem is defined. The solver is a domain decomposition method. Domain decompo-
sition methods are a natural framework for parallel computers. The scripts run on multicores computers (from 2 to
tens of thousands of cores). Recall that like in any MPI code the number of MPI processes, mpisize, is given in the
command line via the option —np. We focus on the script Elasticity3D.edp but the other scripts have the same
structure. The command line to run the example on four processes with £ fglut visualization is: ff-mpirun —-np
4 Elasticity3D.edp —-glut ffglut

load "hpddm" //load HPDDM plugin
macro partitioner ()metis//metis, scotch, or parmetis
macro dimension()3//2D or 3D

(continues on next page)
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(continued from previous page)

macro vectorialfe()P1l//
include "macro_ddm.idp" //additional DDM functions

// Macro
macro def (i) [i, i#B, i#C] //vector field definition
macro init (i) (i, i, 1] //vector field initialization

real Sqgrt = sqrt(2.0);

macro epsilon(u) [dx(u), dy(u#B), dz (u#C),
(dz (u#B) + dy(u#C)) / Sqrt,
(dz (u) + dx(u#C)) / Sqgrt,
(dy (u) + dx(u#B)) / Sqrt] //

macro div(u) (dx(u) + dy(u#B) + dz (u#c)) //

// Parameters

real £ = -9000.0;

real strain = 100.0;

real Young = 2.0ell; // steel
real poisson = 0.35;

func Pk = [vectorialfe, vectorialfe, vectorialfe];

string deflation = getARGV("-deflation", "geneo"); //coarse space construction
int overlap = getARGV ("-overlap", 1); //geometric overlap between subdomains
int fakelInterface = getARGV("-interface", 10); //interface between subdomains
int s = getARGV("-split", 1); //refinement factor

int p = getARGV ("-hpddm_master_p", 1);

mpiComm comm;
bool excluded = splitComm (mpiCommWorld, p, comm, topology = getARGV ("-hpddm master

—topology", 0), exclude = (usedARGV ("-hpddm_master_exclude") != -1));
// Display
if (verbosity > 0 && mpirank == 0) {
cout << " ——— " << mpirank << "/" << mpisize;
cout << " - Elasticity3D.edp - input parameters: refinement factor = " << g << " -
— overlap = " << overlap << endl;
}
// Mesh
int[int] LL = [2, 3, 2, 1, 2, 2];

meshN ThBorder, Th = cube(l, 1, 1, [x, vy, z]);
fespace Wh(Th, Pk); //local finite element space

int [int] arrayIntersection; //ranks of neighboring subdomains
int[int] [int] restrictionIntersection(0); //local-to-neighbors renumbering
real[int] D; //partition of unity
{

meshN ThGlobal = cube (10xgetARGV ("-global", 5), getARGV("-global", 5), getARGV("-
—~global", 5), [10xx, y, z], label=LL); //global mesh

build(Th, ThBorder, ThGlobal, fakeInterface, s, overlap, D, arraylIntersection,
—restrictionIntersection, Wh, Pk, comm, excluded, 3)

}

// Problem
real tmp = 1.0 + poisson;
real mu = Young / (2.0 * tmp);

(continues on next page)
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real lambda = Young % poisson / (tmp » (1.0 - 2.0 % poisson));
real[int] rhs; //local right-hand side
matrix<real> Mat; //local operator
{ //local weak form
meshN ThAugmented = Th + ThBorder;
varf vPb (def (u), def(v))
intN (ThAugmented) (
lambda * div(u) * div(v)
+ 2.0 * mu * (epsilon(u)' = epsilon(v))

+

intN (ThAugmented) (
f « vC

+ on(l, u=0.0, uB=0.0, uC=0.0)

fespace WhAugmented (ThAugmented, Pk);
Mat = vPb (WhAugmented, WhAugmented, tgv=-1);
real[int] rhsFull = vPb (0, WhAugmented, tgv=-1);
matrix R = interpolate (Wh, WhAugmented);
renumbering (Mat, R, rhsFull, rhs);

}

ThBorder = cube(l, 1, 1, [x, y, z]);

dschwarz A(Mat, arrayIntersection, restrictionlIntersection, scaling = D);

set (A, sparams = "-hpddm_schwarz_method ras —-hpddm_schwarz_coarse_correction balanced
——hpddm_variant right -hpddm_verbosity 1 —-hpddm_geneo_nu 10");

matrix<real> Opt; //local operator with optimized boundary conditions
dpair ret;
{
int solver = getOption("schwarz_method");
if (solver == || solver == || solver == 4){ //optimized Schwarz methods
fespace Ph(Th, PO);
real kZero = getARGV("-kZero", 10.0);

Ph transmission = 2 * kZero = mu * (2 * mu + lambda) / (lambda + 3 * mu);
varf vOptimized (def (u), def(v))
= intN(Th) (
lambda * div(u) * div(v)
+ 2.0 » mu * (epsilon(u)' * epsilon(v))
)
+ intN1 (Th, fakelInterface) (

transmission * (def(u)' * def(v))

+ o~

on(l, u=0.0, uB=0.0, uC=0.0)

Opt = vOptimized (Wh, Wh, tgv=-1);
}
if (mpisize > 1 && isSetOption("schwarz_coarse_correction")){ //two-level Schwarz,
—methods
if (excluded)
attachCoarseOperator (mpiCommWorld, A);
else {
varf vPbNoPen (def (u), def(v))
= intN(Th) (
lambda + div (u) = div(v)

(continues on next page)
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+ 2.0 » mu * (epsilon(u)' * epsilon(v))
)
+ on(l, u=0.0, uB=0.0, uC=0.0)
7
matrix<real> noPen = vPbNoPen (Wh, Wh, solver=CG);
if (deflation == "geneo") //standard GenEO, no need for RHS -> deduced_
—from LHS (Neumann matrix)
attachCoarseOperator (mpiCommWorld, A, A=noPen, ret=ret);
else if (deflation == "dtn") {
varf vMass (def(u), def(v)) = intN1l(Th, fakelInterface) (u = v);
matrix<real> massMatrix = vMass (Wh, Wh, solver=CG);
attachCoarseOperator (mpiCommWorld, A, A=noPen, B=massMatrix,
—pattern=0pt, ret=ret);
}
else if(deflation == "geneo-2") //GenEO-2 for optimized Schwarz methods,
—need for RHS (LHS is still Neumann matrix)
attachCoarseOperator (mpiCommWorld, A, A=noPen, B=0Opt, pattern=Opt,
—ret=ret);

}

// Solve
Wh<real> def (u); //local solution

if (Opt.n > 0) //optimized Schwarz methods

DDM (A, ul], rhs, excluded=excluded, ret=ret, O0=0pt);
else

ul] = A"~-1 * rhs;

// Error

real[int] err(u[].n);

err = A *« ull; //global matrix-vector product
err —= rhs;

// Plot

plotMPI (Th, ul], "Global solution", Pk, def, real, 3, 1)

plotMPI (Th, err, "Global residual", Pk, def, real, 3, 1)

real alpha = 2000.0;

meshN ThMoved = movemesh3 (Th, transfo = [x + alpha=*u, y + alphaxuB, z + alpha*uC]);
u[] = mpirank;

plotMPI (ThMoved, ul[], "Global moved solution", Pk, def, real, 3, 1)

The macro build is of particular interest since it handles the data distribution among the mpisize MPI processes
with the following steps:

* The initial mesh ThG1lobal is partitioned by process 0 into mpisize submeshes

¢ The partition is broadcasted to every process i for 0 < i <mpisize. From then on, all tasks are parallel.

* Each process creates the local submesh Th (if the refinement factor s defined via the option —split is larger than 1, each

The number of extra layers added to the initial partition is monitored by the option overlap.
» Connectivity structures are created
* D is the diagonal of the local partition of unity (see Distributed vectors in HPDDM)

* arrayIntersection is the list of neighbors of the current subdomain
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e For jin arrayIntersection, restrictionIntersection(]] is the list of the degrees of freedom
that belong to the intersection of the current subdomain with its neighbor J.

Then, the variational formulation vPb of a three dimensional elasticity problem is used to assemble a local matrix
Mat. This matrix along with D, arrayIntersection and restrictionIntersection are arguments for
the constructor of the distributed matrix A. This is enough to solve the problem with a one-level additive Schwarz
method which can be either ASM or RAS.

For some problems it is interesting to use optimized interface conditions. When there are many subdomains, it is
usually profitable to add a second level to the solver. Options are set in the sequel of the script:

set (A, sparams="-hpddm_schwarz_method ras -hpddm_schwarz_coarse_correction balanced -
—hpddm_variant right -hpddm_verbosity 1 —-hpddm_geneo_nu 10");

In the above line, the first option selects the one-level preconditioner ras (possible choices are ras, oras, soras,
asm, osm or none), the second option selects the correction formula for the second level here balanced (possible
options are deflated, additive or balanced), the third option selects right preconditioning, the fourth one is
verbosity level of HPDDM (different from the one of FreeFEM), the fifth one prints all possible options of HPPDM
and the last one specifies the number of coarse degrees of freedom per subdomain of the GENEO coarse space. All
other options of HPDDM library can be selected via the FreeFEM function set.

In the last part of the script, the global linear system is solved by the domain decomposition method defined above.

// Solve
Wh<real> def (u); //local solution

if (Opt.n > 0) //optimized Schwarz methods

DDM (A, ul[l]l, rhs, excluded=excluded, ret=ret, 0=0pt);
else

ul[] = A”-1 * rhs;

Time dependent problem

Tip: Heat 3D

A three dimensional heat problem

E—Auzl, u(0,-) :=0in Q.

is discretized by an implicit Euler scheme. At each time step n, we shall seek u"(x, y, z) satisfying for all w € H*(Q):
u® — unfl o )
/ 7w+Vu”Vw:/w, u :=0in Q.
Q ot Q

so that at each time step a linear system:
(M +dt « K)u™] = M xu" [+ 6t* F

is solved by a domain decomposition method where M is the mass matrix and K is the rigidity matrix. In order to
save computational efforts, the domain decomposition method preconditioner is built only once and then reused for
all subsequent solves with matrix A := M + dt *+ K. The distributed matrix vector product with matrix M is made
through the call to the function dmv using the partition of unity associated to matrix A.
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Ioad "hpddm" //load HPDDM plugin

macro partitioner ()metis//metis, scotch, or parmeti
macro dimension()3//2D or 3D

include "macro_ddm.idp" //additional DDM functions

// Macro

macro def(i)i //scalar field definition

macro init (i)i //scalar field initialization

macro grad(u) [dx(u), dy(u), dz(u)] //three-dimensi

// Parameters
func Pk = P2; //finite element space

string deflation = getARGV("-deflation", "geneo");
int overlap = getARGV ("-overlap", 1); //geometric o
int fakeInterface = getARGV("-interface", 10); //in
int s = getARGV ("-split", 1); //refinement factor
real dt = getARGV("-dt", 0.01); //time step

int iMax = getARGV("-iMax", 10); //number of iterat

mpiComm comm;
int p = getARGV ("-hpddm_master_p", 1);

S

onal gradient

//coarse space construction
verlap between subdomains
terface between subdomains

ions

bool excluded = splitComm (mpiCommWorld, p, comm, topology = getARGV ("-hpddm master

—topology", 0), exclude = (usedARGV ("-hpddm_master
// Display
if (verbosity > 0 && mpirank == 0) {
cout << " ——— " << mpirank << "/" << mpisize;
cout << " - Heat3D.edp - input parameters: refi
—overlap = " << overlap << endl;
}
// Mesh

int[int] LL = [1, 2, 1, 1, 1, 1]1;
meshN ThBorder, Th = cube(l, 1, 1, [x, y, z]);
fespace Wh(Th, Pk); //local finite element space
int [int] arrayIntersection; //ranks of neighboring
int [int] [int] restrictionIntersection(0); //local-t
real[int] D; //partition of unity
{
meshN ThGlobal = cube (getARGV("-global", 10), g
—~global", 10), [x, y, z], label=LL); //global mesh
build(Th, ThBorder, ThGlobal, fakelInterface, s,
—restrictionIntersection, Wh, Pk, comm, excluded)

}

// Problem
real[int] rhs; // local right-hand side
matrix<real> Mat; //local operator
matrix<real> M; //local mass matrix
{ //local weak form
meshN ThAugmented = Th + ThBorder;
varf vPb (u, v)
= intN(ThAugmented) (
u o+ v
+ dt * (grad(u)' = grad(v))

_exclude") '= -1));

"

nement factor = " << s << -

subdomains
o-neighbors renumbering

etARGV ("-global", 10), getARGV("-

overlap, D, arrayIntersection,

(continues on next page)

286

Chapter 3. Documentation




54
55
56
57
58
59
60
61
62
63
64
65

66

68
69
70
71
72
73
74
75
76
77
78

79

90
91

92

93
9%
95
9
97
98
99
100
101
102
103

104

105
106
107

108

FreeFEM Documentation, Release 4.2.1

(continued from previous page)

+ intN (ThAugmented) (
dt « v
)
+ on(l, u=0.0)
7
fespace WhAugmented (ThAugmented, Pk);
Mat = vPb (WhAugmented, WhAugmented, tgv=-1);
real[int] rhsFull = vPb (0, WhAugmented, tgv=-1);
matrix R = interpolate (Wh, WhAugmented) ;
varf vPbM (u, v) = intN(ThAugmented) (u * v);
M = vPbM(WhAugmented, WhAugmented);
renumbering (M, R, rhsFull, rhs);
renumbering (Mat, R, rhsFull, rhs);
}
ThBorder = cube(l, 1, 1, [x, vy, z]);

dschwarz A(Mat, arrayIntersection, restrictionIntersection, scaling=D);

matrix<real> Opt; //local operator with optimized boundary conditions
dpair ret;
{
int solver = getOption("schwarz_method");
if (solver == 1 || solver == || solver == 4){ //optimized Schwarz methods
fespace Ph(Th, PO);
real kZero = getARGV ("-kZero", 10.0);
Ph transmission = kZero;
varf vOptimized (u, v)
intN (Th) (
u x v
+ dt x (grad(u)' x grad(v))

+ intN1 (Th, fakelInterface) (
transmission * (u = Vv)

)

+ on(l, u=0.0)

~

Opt = vOptimized(Wh, Wh, tgv=-1);
}
if (mpisize > 1 && isSetOption("schwarz coarse_correction")){ //two-level Schwarz,
—methods
if (excluded)
attachCoarseOperator (mpiCommWorld, A);

else {
varf vPbNoPen (u, v)
= intN (Th) (
u * v

+ dt * (grad(u)' x grad(v))

)

+ on(l, u=0.0)

’
matrix<real> noPen = vPbNoPen (Wh, Wh, solver=CG);
if (deflation == "geneo") //standard GenEO, no need for RHS -> deduced_

— from LHS (Neumann matrix)

attachCoarseOperator (mpiCommWorld, A, A=noPen, ret = ret);
else if (deflation == "dtn") {

varf vMass (def(u), def(v)) = intN1l(Th, fakelInterface) (u = v);

matrix<real> massMatrix = vMass (Wh, Wh, solver=CG);

(continues on next page)
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attachCoarseOperator (mpiCommWorld, A, A=noPen, B=massMatrix,
—pattern=0pt, ret=ret);
}
else if (deflation == "geneo-2") //GenEO-2 for optimized Schwarz methods,
—need for RHS (LHS is still Neumann matrix)
attachCoarseOperator (mpiCommWorld, A, A=noPen, B=Opt, pattern=0Opt,
—ret=ret);

}

// Solve

set (A, sparams="-hpddm_ reuse_preconditioner=1");
Wh<real> def (u) = init (0.0); //local solution
for (int 1 = 0; 1 < iMax; ++1){

real[int] newRhs (rhs.n);
dmv (A, M, ul[], newRhs); //newRhs = M % ul]
newRhs += rhs;

if (Opt.n > 0) //optimized Schwarz methods

DDM(A, ul[], newRhs, excluded=excluded, ret=ret, 0=0Opt);
else

ul[] = A”-1 % newRhs;

plotMPI (Th, ul], "Global solution", Pk, def, real, 3, 0)

Distributed vectors in HPDDM

We give here some hints on the way vectors are distributed among np processes when using FreeFEM interfaced with
HPDDM. The set of degrees of freedom A is decomposed into np overlapping sets (N;)1<i<np-

A MPI-process is in charge of each subset. Let n := #A\ be the number of degrees of freedom of the global finite
element space. Let R; denote the restriction operator from R™ onto R#Ni. We have also defined local diagonal
matrices D; € R#Ni x R#Ni 5o that we have a partition of unity at the algebraic level:

np
U=> R/D;R;U VUER". (3.31)

i=1

A global vector U € R" is actually not stored. Rather, it is stored in a distributed way. Each process i, 1 < ¢ < N,
stores the local vector U; := R;U € R#Ni,

It is important to ensure that the result of all linear algebra operators applied to this representation are coherent.

As an example, consider the scalar product of two distributed vectors U, V € R”™. Using the partition of unity (3.31),
we have:

np np
(U,V)=|U,Y RI'DiR;V| =) (RU,D;R;V)
i=1 i=1

= i (Ui, DiVi) -
i=1
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Thus, the formula for the scalar product is:

np
(U, V) =Y (RiU,D;R;V).
=1

Local scalar products are performed concurrently. Thus, the implementation is parallel except for the sum which
corresponds to a MPI_Reduce call across the np MPI processes.

Note also that the implementation relies on the knowledge of a partition of unity so that the FreeFEM syntax is
dscalprod (D, u, v).

A axpy procedure y <— oz + y for x,y € R™ and o € R is easily implemented concurrently for distributed vectors
in the form:

yi oz +y ,V1<i<np.

The matrix vector product is more involved and details are given in the SIAM book An Introduction to Domain
Decomposition Methods: algorithms, theory and parallel implementation and even more details are given in P. Jolivet’s
PhD manuscrit.

3.7 Plugins

3.7.1 gsl

The interface with gs1 spline is available in FreeFEM, the seven kind of spline are
0. gslinterpcspline: default type of spline
1. gslinterpakima

gslinterpsteffen

gslinterplinear

gslinterppolynomial

A I

gslinterpcsplineperiodic
6. gslinterpakimaperiodic

A brief wing example given all the syntax:

load "gsl1"

// Parameters
int n = 10;
real[int, int] dspline(2,n+l); //data points to define the spline

for(int i = 0; i <= n; ++i){ //set data points
real xx = square(real(i)/n);
real yy = sin(xx*pix2);
dspline (0, 1) = xx;
dspline(l, i) = yy;

}

// GSL splines

gslspline splinel (gslinterpcspline, dspline); //define the splinel
gslspline splinell (dspline); //define the splinell

gslspline spline2(gslinterpsteffen, dspline); //define the splineZ

(continues on next page)
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gslspline spline3(gslinterpcspline, dspline(0, :), dspline(l, :));
gslspline spline33 (dspline (0, :), dspline(l, :)); //define the spline3
splinel = spline2; //copy spline2 in splinel

real
real
cout
real
cout
real
cout

t=1.;

sl = splinel(t); //evaluate the function splinel at t

<< "splinel(t) = " << sl << endl;

dsl = splinel.d(t); //evaluate the derivative of function splinel at t
<< "splinel.d(t) = " << dsl << endl;

ddsl = splinel.dd(t); //evaluate the second derivative of function splinel at t
<< "splinel.dd(t) = " << ddsl << endl;

This can be usefull to build function from data value.

The list of all gs 1 functions and the FreeFEM equivalent is available in the Language references (same names without

-

3.7.2 ffrandom

Plugin to linux random functions.

The range of the random generator is from 0 to (23!) — 1.

load

"ffrandom"

srandomdev () ; //set a true random seed
//warning: under window this command

//change the seed by randinit (random())) so all
//FreeFEM random function are changed

int maxrang = 2731 - 1;

cout

cout
cout
cout

<< " max range " << maxrang << endl;

<< random() << endl;
<< random() << endl;
<< random () << endl;

srandom (10) ;

cout
cout
cout

<< random () << endl;
<< random() << endl;
<< random() << endl;

3.7.3 mmap / semaphore

The idea is just try to use Interprocess communication using POSIX Shared Memory in Linux.

We build a small library 1ibf f-mmap-semaphore.c and 1ibff-mmap-semaphore.h to easily interface.

mmap - allocate memory, or map files or devices into memory
semaphore - allow processes and threads to synchronize their actions

A semaphore is an integer whose value is never allowed to fall below zero. Two operations can be performed on
semaphores: increment the semaphore value by one (sem_post); and decrement the semaphore value by one
(sem_wait).
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If the value of a semaphore is currently zero, then a sem_wait operation will block until the value becomes
greater than zero.

The functions of library

First the semaphore interface to make synchronization:

typedef struct FF_P_sem »ff_Psem; the pointer to data structure
ff_Psem ffsem_malloc (); malloc an empty data structure

void ffsem del (ff_Psem sem); clean and free the pointer

void ffsem_destroy (ff_Psem sem); clean, close the data structure

void ffsem_initO (ff_Psem sem); make a correct empty of the data structure

void ffsem_ init (ff_Psem sem,const char xnmm, int crea); create or use a new
semaphore

long ffsem_post (ff_Psem sem); nlocked, the value of the semaphore is incremented, and all
threads which are waiting on the semaphore are awakened

long ffsem wait (ff_Psem sem); the semaphore referenced by sem is locked. When calling
sem_wait (), if the semaphore’s value is zero, the calling thread will block until the lock is acquired or
until the call is interrupted by a signal.

Alternatively, the sem_trywait () function will fail if the semaphore is already locked, rather than blocking
on the semaphore

long ffsem_trywait (ff_Psem p);

Secondly, the mmap functions:

typedef struct FF_P_mmap *ff_Pmmap; the pointer to data structure
ff_Psem ffmmap_malloc (); malloc an empty data structure

void ffmmap_del (ff_Pmmap p); clean and free the pointer

void ffmmap_destroy (ff_Pmmap p); clean, close the data structure

void ffmmap_init0 (ff_Pmmap p); make a correct empty of the data structure

long ffmmap_msync (ff_Pmmap p, long off, long 1ln); call writes modified whole pages
back to the filesystem and updates the file modification time. Only those pages containing addr and len-1
succeeding locations will be examined.

void ffmmap_init (ff_Pmmap p, const char *nmm, long len); allocate memory, or map
files or devices into memory.

long ffmmap_read(ff_Pmmap p, void xt, size_t n, size_t off); read n bytes from
the mmap at memory of £ in pointer t.

long ffmmap_write (ff_Pmmap p, void *t, size_t n, size_t off); write n bytes to the
mmap at memory of f in pointer t.

The FreeFEM corresponding functions:

Pmmap sharedata (filename, 1024); new type to store the mmap informations of name store in string
filename with 1024 is the size the sharedata zone and file.

Psemaphore smff ("ff-slave", creat); new type to store the semaphore of name ff-slave
where creat is a boolean to create or use a existing semaphore.
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* Wait (sem) the semaphore referenced by sem is locked. When calling Wait (sem), if the semaphore’s
value is zero, the calling thread will block until the lock is acquired or until the call is interrupted by a signal.
Alternatively, the t rywait (sem) function will fail if the semaphore is already locked, rather than blocking
on the semaphore.

e Post (sem) the semaphore referenced by sem is unlocked, the value of the semaphore is incremented, and all
threads which are waiting on the semaphore are awakened.

* Read (sharedata ,offset, data); read the variable data from the place offset in sharedata
mmap.

e Write (sharedata, offset, data); write the variable data at the place offset in sharedata
mmap.

The full example:

The FFMaster. c file:

#include "libff-mmap-semaphore.h"

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

ff_Psem sem_ff, sem_c; //the semaphore for mutex

int main(int argc, const char *x argv)

{

int debug = 0;

ff_Pmmap shd;

double cff, rff;

long status;

int i;

if (argc > 1) debug = atoi(argv([1l]);
ff_mmap_sem_verb = debug;

sem_ff = ffsem malloc();
sem_c = ffsem_malloc();
shd = ffmmap_malloc();

ffsem_init (sem_ff, "ff-slavel", 1);
ffsem_init (sem_c, "ff-masterl", 1);
ffmmap_init (shd, "shared-data", 1024);

status = 1;
ffmmap_write (shd, &status, sizeof (status), 8);
ffmmap_msync (shd, 0, 32);

char f££[10247];

sprintf (ff, "FreeFem++ FFSlave.edp —-nw -ns -v %d&", debug);
system(ff); //lauch FF++ in batch no graphics

if (debug) printf("cc: before wait\n");

if (debug) printf("cc: before wait 0 ff\n");
ffsem_wait (sem_£ff);

for (i = 0; i < 10; ++1i){
printf (" iter : %d \n", 1);
cff = 10+i;
ffmmap_write (shd, &cff, sizeof(cff), 0);
ffsem_post (sem_c);

(continues on next page)
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if (debug) printf (" cc:
ffsem_wait (sem_ff);

ffmmap_read(shd, &rff, sizeof(rff), 16);
printf (" iter = %d rff= %f\n", i, rff);
}
status = 0; //end

ffmmap_write (shd, &status, sizeof (status),
ffsem_post (sem_c) ;

printf ("End Master \n");

ffsem_wait (sem_£ff);

ffsem_del (sem_ff);

ffsem_del (sem_c);

ffmmap_del (shd) ;

return 0O;

before wait 2\n");

’

8);

The FFSlave. edp file:

load "ff-mmap-semaphore"
Psemaphore smff ("ff-slavel"”, 0);
Psemaphore smc ("ff-masterl", 0);
Pmmap sharedata ("shared-data", 1024);
if (verbosity < 4) wverbosity = O;

// Mesh
mesh Th =
int [int]

square (10, 10);
Lab = [1, 2, 3, 41;
// Fespace
fespace Vh(Th, P1);

Vh u, v;

// Macro
macro grad(u)

[dx(u), dy(uw)]l //
int status = 1;
cout << " FF status = "

real cff, rff;

<< status << endl;

// Problem
problem Pb (u, V)
= int2d(Th) (
grad(u) 'xgrad (v)

— int2d (Th) (
cffxv

+ on (Lab, u=0)

if (verbosity > 9)
Post (smff); //unlock master end init

while (1) {

cout << " FF: before FF post\n";

(continues on next page)
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if (verbosity > 9) cout << " FF: before FF wait \n";
Wait (smc); //wait from cint write ok

Read (sharedata, 0, cff);

Read (sharedata, 8, status);

cout << " After wait .. FF " << cff << " " << status << endl;
if (status <= 0) break;

// Solve

Pb;

rff = int2d(Th) (u*u);

cout << " %% FF " << cff << " " << rff << endl;

// Write

Write (sharedata, 16, rff);
Post (smff); //unlock cc

Post (smff); //wait from cint
cout << " End FreeFEM " << endl;

To test this example of coupling C program and FreeFEM script:

cc —-c¢ libff-mmap-semaphore.c

cc FFMaster.c -o FFMaster libff-mmap-semaphore.o —-g —-pthread
ff-c++ —auto ff-mmap-semaphore.cpp

./FFMaster

The output:

len 1024 size O

len 1024 size 1024

FF status = 1

iter : O

After wait FF 10 1
*% FF 10 0.161797

iter = 0 rff= 0.161797
iter : 1

After wait FF 11 1
*x FF 11 0.195774

iter = 1 rff= 0.195774
iter : 2

After wait FF 12 1
% FF 12 0.232987

iter = 2 rff= 0.232987
iter : 3

After wait FF 13 1
*% FF 13 0.273436

iter = 3 rff= 0.273436
iter : 4

After wait FF 14 1
% FF 14 0.317121

iter = 4 rff= 0.317121
iter : 5

After wait FF 15 1
% FF 15 0.364042

iter = 5 rff= 0.364042

(continues on next page)
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iter : 6

After wait .. FF 16 1

*% FF 16 0.414199

iter = 6 rff= 0.414199
iter : 7

After wait .. FF 17 1

*% FF 17 0.467592

iter = 7 rff= 0.467592

iter : 8

After wait .. FF 18 1
*x FF 18 0.524221

iter = 8 rff= 0.524221
iter : 9

After wait .. FF 19 1

*x FF 19 0.584086

iter = 9 rff= 0.584086
End Master

After wait .. FF 19 0

3.8 Developers

3.8.1 File formats

Mesh file data structure

The mesh data structure, output of a mesh generation algorithm, refers to the geometric data structure and in some
case to another mesh data structure.

In this case, the fields are

MeshVersionFormatted 0

Dimension [DIM] (int)

Vertices

[Number of vertices] (int)

X_1 (double) Y 1 (double) (Z_1 (double)) Ref_ 1 (int)
X_nv (double) Y_nv (double) (Z_nv(double)) Ref_nv (int)
Edges

[Number of edges] (int)

Vertexl 1 (int) Vertex2_ 1 (int) Ref_1 (int)

Vertexl_ne (int) Vertex2_ne (int) Ref_ne (int)
Triangles

[Number of triangles] (int)

Vertexl 1 (int) Vertex2_ 1 (int) Vertex3_1(int) Ref_1 (int)

Vertexl_nt (int) Vertex2_nt (int) Vertex3_nt (int) Ref_nt (int)

Quadrilaterals

(continues on next page)
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[Number of Quadrilaterals] (int)
Vertexl_1 (int) Vertex2_1(int) Vertex3_1(int) Vertex4_ 1 (int) Ref_1 (int)

Vertexl_ng(int) Vertex2_ng(int) Vertex3_ng(int) Vertex4_ng(int) Ref_ng(int)

Geometry
[File name of geometric support] (charx)

VertexOnGeometricVertex
[Number of vertex on geometric vertex] (int)
Vertex_1 (int) VertexGeometry_1 (int)
Vertex_nvg (int) VertexGeometry_nvg (int)
EdgeOnGeometricEdge
[Number of geometric edge] (int)
Edge_1 (int) EdgeGeometry_1 (int)
Edge_neg(int) EdgeGeometry_neg (int)
CrackedEdges
[Number of cracked edges] (int)

Edgel_1(int) Edge2_1 (int)

Edgel_nce (int) Edge2_nce (int)

When the current mesh refers to a previous mesh, we have in addition

MeshSupportOfVertices
[File name of mesh support] (charx)

VertexOnSupportVertex
[Number of vertex on support vertex] (int)
Vertex_1 (int) VertexSupport_1 (int)

Vertex_nvsv (int) VertexSupport_nvsv (int)

VertexOnSupportEdge
[Number of vertex on support edge] (int)
Vertex_1 (int) EdgeSupport_1(int) USupport_1 (double)

Vertex_nvse (int) EdgeSupport_nvse (int) USupport_nvse (double)

VertexOnSupportTriangle
[Number of vertex on support triangle] (int)
Vertex_1(int) TriangleSupport_1 (int) USupport_1 (double) VSupport_1 (double)

Vertex_nvst (int) TriangleSupport_nvst (int) USupport_nvst (double) VSupport_
—nvst (double)

VertexOnSupportQuadrilaterals
[Number of vertex on support quadrilaterals]
Vertex_1 (int) TriangleSupport_1 (int) USupport_1 (double) VSupport_1 (double)

Vertex_nvsqg(int) TriangleSupport_nvsqg(int) USupport_nvsqg(double) VSupport_
—nvsqg (double)
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* nv means the number of vertices

* ne means the number of edges

* nt means the number of triangles

* ng means the number of quadrilaterals

* nvg means the number of vertex on geometric vertex
* neg means the number of edges on geometric edge

* nce means the number of cracked edges

bb file type to Store Solutions

The file is formatted such that:

2 [Number of solutions] (int) [Number of vertices] (int) 2
U_1_1(double) ... U_ns_1 (double)

U_l_nv(double) ... U_ns_nv (double)

¢ ns means the number of solutions
¢ nv means the number of vertices
e U_1_ 7 is the solution component i at the vertex j on the associated mesh.

BB file type to store solutions

The file is formatted such that:

2 [Number of solutions] (int) [Type 1] (int) ... [Type ns] (int)
—vertices] (int) 2

U_1_1_1(double) ... U_(type_k)_1_1 (double)
U_1_1_1(double) ... U_(type_k)_nbv_1 (double)
U_1_1_ns(double) ... U_(type_k)_1_ns(double)
U_1_nbv_ns(double) ... U_(type_k)_nbv_ns (double)

[Number of |,

¢ ns means the number of solutions

* type_k mean the type of solution k:

1: the solution is scalar (1 value per vertex)

2: the solution is vectorial (2 values per vertex)

3: the solution is a 2 X 2 symmetric matrix (3 values per vertex)

4: the solution is a 2 x 2 matrix (4 values per vertex)

e nbv means the number of vertices

e U_1i_j_k is the value of the component i of the solution k at vertex j on the associated mesh

3.8. Developers
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Metric file

A metric file can be of two types, isotropic or anisotropic.

The isotropic file is such that

[Number of vertices] (int) 1
h_0 (double)

h_nv (double)

¢ nv is the number of vertices
e h_1i is the wanted mesh size near the vertex i on associated mesh.
The metric is M; = h; >T where I is the identity matrix.

The anisotropic file is such that

[Number of vertices] (int) 3
all_0 (double) a2l1_0 (double) a22_0 (double)

all_nv(double) a2l _nv (double) a22_nv (double)

¢ nv is the number of vertices

a11, Q12,0
a12i a2
vicinity of the vertex i such that A in direction u € R? is equal to |u|/v/u - M; u, where - is the dot product in
R?, and | - | is the classical norm.

e all_i, a2l1_4i and a22_1 represent metric M; = ( > which define the wanted size in a

List of AM_FMT, AMDBA Meshes

The mesh is only composed of triangles and can be defined with the help of the following two integers and four arrays:
* nbt the number of triangles
* nbv the number of vertices
e nu(l:3, 1l:nbt) aninteger array giving the three vertex numbers counterclockwise for each triangle
e c(1:2, 1:nbv) areal array giving tje two coordinates of each vertex
e refs (1:nbv) an integer array giving the reference numbers of the vertices
* reft (1:nbt) aninteger array giving the reference numbers of the triangles
AM_FMT Files

In Fortran the am_ fmt files are read as follows:

open (1, file='xxx.am_ fmt', form='formatted',6 status='old')
read (1, *) nbv, nbt

read (1, *) ((nu(i, 3), i=1, 3), j=1, nbt)

read (1, *) ((c(i, 3J), i=1, 2), 3=1, nbv)

read (1, *) ( reft(i), 1i=1, nbt)

read (1, *) ( refs (i), 1i=1, nbv)

close (1)

AM Files

In Fortran the am files are read as follows:
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open (1, file='xxx.am', form='unformatted', status='old'")
read (1, *) nbv, nbt
(1

read ) ((nu(i, 3J), i=1, 3), J=1, nbt),
& ((c(i, 3), i=1, 2), j=1, nbv),

& (reft(i), i=1, nbt),

& (refs(i), i=1, nbv)

close (1)

AMDBA Files

In Fortran the amdba files are read as follows:

open (1, file='xxx.amdba', form='formatted',K status='old')
read (1, *) nbv, nbt

read (1, *) (k, (c(i, k), i=1, 2), refs(k), j=1, nbv)

read (1, ») (k, (nu(i, k), i=1, 3), reft(k), j=1, nbt)
close (1

msh Files

First, we add the notions of boundary edges
* nbbe the number of boundary edge
* nube (1:2, 1l:nbbe) an integer array giving the two vertex numbers of boundary edges
* refbe (1:nbbe) an integer array giving the reference numbers of boundary edges

In Fortran the msh files are read as follows:

open (1, file='xxx.msh', form='formatted',6 status='old'")
read (1, *) nbv, nbt, nbbe

read (1, =) ((c(i, k), i=1, 2), refs(k), j=1, nbv)

read (1, ) ((nu(i, k), i=1, 3), reft(k), j=1, nbt)

read (1, *) ((ne(i, k), i=1, 2), refbe(k), j=1, nbbe)
close (1)

ftq Files

In Fortran the ftq files are read as follows:

open (1, file="xxx.ftqg', form="formatted', status="old")
read (1, *) nbv,nbe,nbt, nbg

read (1, ) (k(j)/ (nu(ilj)li:llk(j))Ireft(j)lj:llnbe)

read (1,*) ((c(i,k),i=1,2),refs(k),j=1,nbv)

close (1)

where if k (j) = 3 when the element j is a triangle and k (j) = 4 when the the element j is a quadrilateral.

sol and solb files

With the keyword savesol, we can store a scalar functions, a scalar finite element functions, a vector fields, a vector
finite element fields, a symmetric tensor and a symmetric finite element tensor.

Such format is used in medit.

Extension file .sol

The first two lines of the file are :

* MeshVersionFormatted 0
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* Dimension [DIM] (int)

The following fields begin with one of the following keyword: SolAtVertices, SolAtEdges,
SolAtTriangles, SolAtQuadrilaterals, SolAtTetrahedra, SolAtPentahedra,
SolAtHexahedra.

In each field, we give then in the next line the number of elements in the solutions (SolAtVertices: number of
vertices, SolAtTriangles: number of triangles, ...). In other lines, we give the number of solutions, the type of
solution (1: scalar, 2: vector, 3: symmetric tensor). And finally, we give the values of the solutions on the elements.

The file must be ended with the keyword End.

The real element of symmetric tensor :

ST3d STBd ST3d

T Ty Tz 2d 2d
sTé = [ sT30 STH STH | ST = ( e g;ﬁ) (3.32)
ST STZd ST e T

stored in the extension . so1 are respectively ST5¢, ST%, ST;’;, ST, ST;’;,

ST3% and ST24, ST24 ST;;

X yx

An example of field with the keyword SolAtTetrahedra:

SolAtTetrahedra

[Number of tetrahedra] (int)

[Number of solutions] (int) [Type of solution 1] (int) ... [Type of soution nt] (int)
U_1 1 1(double) ... U_nrs_1 1 (double)

U_1_ns_1(double) ... U_(nrs_k)_ns_1 (double)

U_1 1 nt(double) ... U_nrs_1 nt (double)

U_1 ns_nt(double) ... U_(nrs_k)_ns_nt (double)

* ns is the number of solutions
* typesol_k, type of the solution number k
— typesol_k = 1 the solution k is scalar
— typesol_k = 2 the solution k is vectorial
— typesol_k = 3 the solution k is a symmetric tensor or symmetric matrix
e nrs_k is the number of real to describe solution k
— nrs_k = 1 if the solution k is scalar
— nrs_k = dimif the solution k is vectorial (dim is the dimension of the solution)
— nrs_k = dim« (dim+1) /2 if the solution k is a symmetric tensor or symmetric matrix

e U_i_Jj_"kis areal equal to the value of the component i of the solution k at tetrahedron 7 on the associated
mesh

The format . solb is the same as format . sol but in binary (read/write is faster, storage is less).

A real scalar functions f1, a vector fields ® = [®1, 2, ®3] and a symmetric tensor ST3? (3.32) at the vertices of the
three dimensional mesh Th3 is stored in the file £1PhiTh3.sol using:

savesol ("£1PhiST3dTh3.sol", Th3, f1, [Phi(l), Phi(2), Phi(3)], VV3, order=1l);
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where VV3 = [ST3d, T3 ST3d, §T3d GT3d

Tx) yx Yy zZx) 2y

ST34).
For a two dimensional mesh Th, A real scalar functions f2, a vector fields ¥ = [¥1, U2] and a symmetric tensor
ST?? (3.32) at triangles is stored in the file f2PsiST2dTh3.solb using :

savesol ("f2PsiST2dTh3.solb", Th, f2, [Psi(l), Psi(2)], VV2, order=0);

where VV2 = [ST2d, ST, ST2d]

x> yx

The arguments of savesol functions are the name of a file, a mesh and solutions. These arguments must be given in
this order.

The parameters of this keyword are :

* order =0is the solution is given at the center of gravity of elements. 1 is the solution is given at the vertices
of elements.

In the file, solutions are stored in this order : scalar solutions, vector solutions and finally symmetric tensor solutions.

3.8.2 Adding a new finite element
Some notations

For a function f taking value in RN, N = 1,2, - - -, we define the finite element approximation IT, f of f.

Let us denote the number of the degrees of freedom of the finite element by NbDoF. Then the i-th base w (i =
0,---, NbDoF — 1) of the finite element space has the j-th component (.ufj(- forj=0,---,N -1

The operator 11}, is called the interpolator of the finite element.
We have the identity wi* = I,wX.
Formally, the interpolator 11 is constructed by the following formula:

kPi—1

Unf =) ok, (Pp)wi (3.33)

k=0
where P, is a set of npPi points,

In the formula (3.33), the list pg, ji, %% depend just on the type of finite element (not on the element), but the coefficient
oy, can be depending on the element.

Tip: Classical scalar Lagrange finite element

With the classical scalar Lagrange finite element, we have kPi = npPi = NbOfNode and
* P, is the point of the nodal points.
* the o, = 1, because we take the value of the function at the point P.
* pr =k, jx = k because we have one node per function.

* ji = 0 because N = 1.

Tip: The Raviart-Thomas finite element

RT0, = {v € H(div)/NK € Tr, vix(z,y) =|38 +xly} (3.34)
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The degrees of freedom are the flux through an edge e of the mesh, where the flux of the function f : R? — R? is
fe f.ne, ne is the unit normal of edge e (this implies a orientation of all the edges of the mesh, for example we can use
the global numbering of the edge vertices and we just go to small to large number).

To compute this flux, we use a quadrature formula with one point, the middle point of the edge. Consider a triangle T’

with three vertices (a, b, c).
Let denote the vertices numbers by 4, 4y, 4., and define the three edge vectors €°, e!, e? by sgn (i, — i.)(b — c),
sgn(ic — iq)(c — a), sgn(iq, — ip)(a — b).
The three basis functions are:

Wi = sgn(ip — zc)( _a), K _ sgn(i. — za)( _p), wh = sgn(iq — ip) (5 —0),

2|7

where |T'| is the area of the triangle T'.
So we have N = 2, kPi = 6;npPi = 3; and:

. By = {3, e, Bpn)

s ap=—€9,a; =€, ap = —el a3 = el,ay = —e3, a5 = e? (effectively, the vector (—eJ*, e") is orthogonal
to the edge €™ = (e, €5*) with a length equal to the side of the edge or equal to fem 1).
° ik = {0,0, 1a 1) 27 2}’

* pr =1{0,0,1,1,2,2}, 5, = {0,1,0,1,0,1,0,1}.

Which class to add?

Add file FE_ADD. cpp in directory FreeFem-sources/src/femlib for example first to initialize :

#include "error.hpp"
#include "rgraph.hpp"
using namespace std;
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "AddNewFE.h"

namespace Fem2D { ... }

Then add a class which derive for public TypeOfFE like:

class TypeOfFE_RTortho : public TypeOfFE { public:
static int Datal]; //some numbers
TypeOfFE_RTortho () :

TypeOfFE (
0+3+0, //nb degree of freedom on element
2, //dimension N of vectorial FE (1 if scalar FE)
Data, //the array data
1, //nb of subdivision for plotting
1, //nb of sub finite element (generaly 1)
6, //number kPi of coef to build the interpolator
3, //number npPi of integration point to build interpolator
0 //an array to store the coef \alpha k to build interpolator

//here this array 1s no constant so we have
//to rebuilt for each element

(continues on next page)
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(continued from previous page)

const R2 Pt[] = {R2(0.5, 0.5), R2(0.0, 0.5), R2(0.5, 0.0) };
// the set of Point in hat({K}
for (int p = 0, kk = 0; p < 3; pt++){

P_Pi _hlp] = Pt[p];

for (int j = 0; J < 2; J++)

pij_alphalkk++] = IPJ(p, p, J);
}
} //definition of i_k, p_k, j_k in interpolator

void FB(const bool xwatdd, const Mesh &Th, const Triangle &K,
const R2 &PHat, RNMK_ &val) const;

void Pi_h_alpha (const baseFElement &K, KN_<double> &v) const;

where the array data is formed with the concatenation of five array of size NoDoF and one array of size N.

This array is:

int TypeOfFE_RTortho::Datal[] = {
//for each df 0, 1, 3:
, 4, 5, //the support of the node of the df
, 0, 0, //the number of the df on the node
, 1, 2, //the node of the df
0, 0, //the df come from which FE (generally 0)
1, 2, //which are the df on sub FE

4 ’

O O O O W

4
0, 0
}; //for each component j=0, N-1 it give the sub FE associated

4

where the support is a number 0, 1, 2 for vertex support, 3, 4, 5 for edge support, and finally 6 for element support.

The function to defined the function wiK , this function return the value of all the basics function or this derivatives
in array val, computed at point Phat on the reference triangle corresponding to point R2 P=K (Phat) ; on the
current triangle K.

The index 4, j, k of the array val(i, j, k) correspond to:
* { is the basic function number on finite element ¢ € [0, NoF'[|
* j is the value of component j € [0, N|
* k is the type of computed value f(P),dz(f)(P),dy(f)(P),... i € [0,last_operatortype|.

Note: For optimization, this value is computed only if whatd [k] is true, and the numbering is defined with

I |enum operatortype {
2 |op_id = 0,

3 |op_dx = 1, op_dy = 2,
4 |op_dxx = 3,op_dyy = 4,
5 |op_dyx = 5,o0p_dxy = 5
¢ |op_dz = 6,
7 |op_dzz = 7

8 |op_dzx = 8, op_dxz = 8§,

9 |op_dzy = 9

O

1 |const int last_operatortype = 10;
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The shape function:

void TypeOfFE_RTortho::FB(const bool *whatd,

const R2 &PHat,RNMK_ &val)

R2 P (K
R2 A(K[O]),
R 10 = 1
R 11 = P.x,
assert (val.N ()
assert (val.M()
val = 0;

R a=1./(2«K.area);

R a0 K.EdgeOrientation (0)
R al K.EdgeOrientation (1)
R a2 = K.EdgeOrientation(2)

(PHat));
B(K[1]),
- P.x-P.y;
12 = P.y;
>= 3);
== 2);

C(K[Z2]

if (whatd[op_id]l){ //value
assert (val.K() > op_id)
RN_ fO0(val('.', 0,0));
RN_ fl(val('.', 1,0));
f1[0] = (P.x — A.x)=*a0;
£f0[0]

h
=
—

Il

(P.x — B.x)=*al;

(P.x — C.x)=*a2;

h

o

N
Il

if (whatd[op_dx]){ //value
assert (val.K() > op_dx)
val(0,1,op_dx) = a0;
val(l,1l,op_dx) = al;
val(2,1,op_dx) = a2;

}

if (whatd[op_dy]) {
assert (val.K() > op_dy)
val(0,0,op_dy) = —-a0;
val(l,0,op_dy) = —-al;
val(2,0,0p_dy) = —-a2;

}

for (int i = op_dy;

if (whatd[op_dx])
assert (op_dy) ;

i < last_operatortype;

const Mesh &Th, const Triangle & K,

const

)i

* a;
* ay
* a,‘

of the function

’

//value first component
//value second component

-(P.y — A.y)*a0;

= —(P.y — B.y)=*al;

-(P.y — C.y)*a2;

of the dx of function

7

’

i++)

The function to defined the coefficient oy :

void TypeOfFE_RT::Pi_h_alpha (const baseFElement &K, KN_<double>

{
const Triangle &T(K.T);

&v) const

for (int 1 = 0, k = 0; 1 < 3; i++){
R2 E(T.Edge(i));
R signe = T.EdgeOrientation (i) ;

(continues on next page)
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(continued from previous page)

v[ik++] = signexE.y;
—-signexE.x;

<
o~
T
+
Il

Now , we just need to add a new key work in FreeFEM.
Two way, with static or dynamic link so at the end of the file, we add:

With dynamic link it is very simple (see section Dynamical link), just add before the end of FEM2d namespace:

static TypeOfFE_RTortho The_TypeOfFE_RTortho;
static AddNewFE ("RTO0Ortho", The_TypeOfFE_RTortho);
} //FEM2d namespace

Try with . /load.link command in examples++-load/ and see BernardiRaugel.cpp or Morley.cpp new
finite element examples.

Otherwise with static link (for expert only), add

//let the 2 globals variables

static TypeOfFE_RTortho The_TypeOfFE_RTortho;

//the name in freefem

static ListOfTFE typefemRTOrtho ("RTO0Ortho", &The_TypeOfFE_RTortho);

//1link with FreeFEM do not work with static library .a
//so add a extern name to call in init_static FE

// (see end of FESpace.cpp)

void init_FE_ADD () { };

//end

} //FEM2d namespace

To inforce in loading of this new finite element, we have to add the two new lines close to the end of files src/
femlib/FESpace. cpp like:

//correct problem of static library link with new make file
void init_static_FE ()
{ //list of other FE file.o

extern void init_FE_P2h () ;

init_FE_P2h() ;

extern void init_FE_ADD(); //new line 1

init_FE_ADD(); //new line 2

and now you have to change the makefile.

First, create a file FE_ADD. cpp contening all this code, like in file src/femlib/Element_P2h.cpp, after
modify the Makefile.am by adding the name of your file to the variable EXTRA_DIST like:

# Makefile using Automake + Autoconf

# This is not compiled as a separate library because its
# interconnections with other libraries have not been solved.

EXTRA_DIST=BamgFreeFem.cpp BamgFreeFem.hpp CGNL.hpp CheckPtr.cpp \
ConjuguedGradrientNL.cpp DOperator.hpp Drawing.cpp Element_P2h.cpp \

(continues on next page)
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(continued from previous page)

Element_P3.cpp Element_RT.cpp fem3.hpp fem.cpp fem.hpp FESpace.cpp
FESpace.hpp FESpace-v0.cpp FQuadTree.cpp FQuadTree.hpp gibbs.cpp
glutdraw.cpp gmres.hpp MatriceCreuse.hpp MatriceCreuse_tpl.hpp
MeshPoint.hpp mortar.cpp mshptg.cpp QuadratureFormular.cpp
QuadratureFormular.hpp RefCounter.hpp RNM.hpp RNM_opc.hpp RNM_op.hpp
RNM_tpl.hpp FE_ADD.cpp

s s

and do in the FreeFEM root directory

autoreconf
./reconfigure
make

For codewarrior compilation add the file in the project an remove the flag in panal PPC linker FreeFm++ Setting
Dead-strip Static Initializition Code Flag.

3.8.3 Dynamical link
Now, it’s possible to add built-in functionnalites in FreeFEM under the three environnents Linux, Windows and
MacOS X 10.3 or newer.
It is agood idea to first try the example 1oad . edp in directory example++-load.
You will need to install a compi ler (generally g++/gcc compiler) to compile your function.
* Windows Install the cygwin environnent or the mingw one
* MacOs Install the developer tools Xcode on the apple DVD
* Linux/Unix Install the correct compiler (gcc for instance)

Now, assume that you are in a shell window (a cygwin window under Windows) in the directory example++-load.

Note: In the sub directory include, they are all the FreeFEM include file to make the link with FreeFEM.

Note: If you try to load dynamically a file with command 1oad "xxx" - Under Unix (Linux or MacOs), the file
xxx.so will be loaded so it must be either in the search directory of routine d1open (see the environment variable
SLD_LIBRARY_PATH) or in the current directory, and the suffix " . so" or the prefix " . /" is automatically added.

* Under Windows, the file xxx.dll will be loaded so it must be in the loadLibary search directory which includes
the directory of the application,

Compilation of your module:

The script £ f—-c++ compiles and makes the link with FreeFEM, but be careful, the script has no way to known if
you try to compile for a pure Windows environment or for a cygwin environment so to build the load module under
cygwin you must add the —cygwin parameter.

A first example myfunction.cpp

The following defines a new function call my funct ion with no parameter, but using the x, y current value.
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#include <iostream>
#include <cfloat>

using namespace std;
#include "error.hpp"
#include "AFunction.hpp"
#include "rgraph.hpp"
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "MeshPoint.hpp"

using namespace Fem2D;
double myfunction (Stack stack) {
//to get FreeFEM data
MeshPoint &mp = xMeshPointStack(stack); //the struct to get x, y, normal, value
double x = mp.P.x; //get the current x value
double vy = mp.P.y; //get the current y value
//cout << "x = " << x << " y=" << y << endl;
return sin(x)*cos(y);

Now the Problem is to build the link with FreeFEM, to do that we need two classes, one to call the function
myfunction.

All FreeFEM evaluable expression must be a C++ struct/class which derivate from E_FO0. By default this

expression does not depend of the mesh position, but if they derivate from E_F Omps the expression depends of the
mesh position, and for more details see [HECHT2002].

//A class build the link with FreeFEM
//generaly this class are already in AFunction.hpp
//but unfortunatly, I have no simple function with no parameter
//in FreeFEM depending of the mesh
template<class R>
class OneOperatorOs : public OneOperator ({
//the class to define and evaluate a new function
//It must devive from E_F0 if it is mesh independent
//or from E_FOmps 1if it is mesh dependent
class E_FO_F :public E_FOmps {
public:
typedef R (xfunc) (Stack stack);
func f; //the pointeur to the fnction myfunction
E_FO_F (func ff) : f£(ff) {}
//the operator evaluation in FreeFEM
AnyType operator () (Stack stack) const {return SetAny<R> (f (stack));}
}i
typedef R (xfunc) (Stack);
func £;
public:
//the function which build the FreeFEM byte code
E_FO0 »code (const basicAC_FO0 &) const { return new E_FO_F(f); }
//the constructor to say ff is a function without parameter
//and returning a R
OneOperatorOs (func ff) : OneOperator (map_typel[typeid(R) .name()]), £ (ff) {}

}i

To finish we must add this new function in FreeFEM table, to do that include :
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void init () {
Global.Add ("myfunction", " (", new OneOperatorOs<double> (myfunction));

}
LOADFUNC (init) ;

It will be called automatically at load module time.

To compile and link, use the £f—c++ script :

ff-c++ myfunction.cpp
gt+t —c¢ —g —-Iinclude myfunction.cpp
g++ —-bundle -undefined dynamic_lookup -g myfunction.o -o ./myfunction.dylib

To try the simple example under Linux or MacOS, do FreeFem++-nw load.edp

The output must be:

—— FreeFem++ v *.*xx**x*x (date ***x %% *%* *%*xx, x*x:*xx:%*x (UTC+0x00))
Load: 1lg_fem lg_mesh lg_mesh3 eigenvalue

1 : // Example of dynamic function load

2 /) —————————

3 // S1d$

4

5 load "myfunction"

6 // dumptable (cout) ;

7 mesh Th=square(5,5);

8 fespace Vh (Th,P1);

9 : Vh uh= myfunction(); // warning do not forget ()

10 : cout << uh[].min << " " << uh[].max << endl;

11 : cout << " test io ( " << endl;

12 : testiol();

13 : cout << " ) end test io .. " << endl; sizestack + 1024 =1416 ( 392

—— Square mesh : nb vertices =36 , nb triangles = 50 , nb boundary edges 20

0 0.841471
test io (

test cout 3.14159

test cout 512

test cerr 3.14159

test cerr 512

) end test 1o
times: compile 0.012854s, execution 0.000313s, mpirank:0
CodeAlloc : nb ptr 2715, size :371104 mpirank: O
Ok: Normal End

Under Windows, launch FreeFEM with the mouse (or ctrl O) on the example.

Example: Discrete Fast Fourier Transform

This will add FFT to FreeFEM, taken from FFTW. To download and install under download/include just go in
download/fftw and try make.

The 1D dfft (fast discret fourier transform) for a simple array f of size n is defined by the following formula:

n—1
AEE5(f, ) = 3 fe il
7=0
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The 2D DFFT for an array of size N = n x m is:

m—1n—1

dfft(f,m, &) pan = Z Z fi+nj6€27ri(kj/n+lj'/m)
§'=0 j=0

Note: The value n is given by size(f)/m, and the numbering is row-major order.

So the classical discrete DFFT is f = dfft(f, —1)/\/n and the reverse dFFT f = dfft(f,1)//n

Note: The 2D Laplace operator is

m—1n—1
Fay) =1VN YN fipnectmiteitui)
3/=0 j=0
and we have
Jretnt = f(k/n,1/m)
So

Afu = —(2m)2((R)% + (1)) fua

where k = kifk <n/2else k =k —nandl =1ifl <m/2elsel =1 —m.

And to have a real function we need all modes to be symmetric around zero, so n and m must be odd.

Compile to build a new library

ff-c++ dfft.cpp ../download/install/lib/libfftw3.a -I../download/install/include
export MACOSX_DEPLOYMENT_TARGET=10.3

g++ —c -Iinclude -I../download/install/include dfft.cpp

g++ -bundle -undefined dynamic_lookup dfft.o -o ./dfft.dylib ../download/install/lib/
—~libfftw3.a

To test, try FFT example.

Load Module for Dervieux P0-P1 Finite Volume Method
The associed edp file is examples++-load/convect_dervieux.edp.
See mat_dervieux.cpp.

More on Adding a new finite element

First read the Adding a new finite element section, we add two new finite elements examples in the directory
examples++-load.
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The Bernardi-Raugel Element

The Bernardi-Raugel finite element is meant to solve the Navier Stokes equations in u, p formulation; the velocity
space PY’ is minimal to prove the inf-sup condition with piecewise constant pressure by triangle.

The finite element space V}, is
Vi, ={ue H' (V)% VK €T, ux € Py
where
PYr = span{/\f(ek}i:1,2,3,k:1,2 U {/\f(/\ﬁﬂfiz}i:l@ﬁ

with notation 4 = 1,5 = 2 and where )\f( are the barycentric coordinates of the triangle K, (ej)r=1,2 the canonical
basis of R? and nf the outer normal of triangle K opposite to vertex k.

See BernardiRaugel.cpp.

A way to check the finite element

load "BernardiRaugel"

// Macro

//a macro the compute numerical derivative

macro DD (f, hx, hy) ( (f(xl+hx, yl+hy) - f(x1-hx, yl-hy))/ (2% (hx+hy)) ) //
// Mesh

mesh Th = square(l, 1, [10x(x+y/3), 10x(y-x/3)1);

// Parameters
real x1 = 0.7, yl = 0.9, h = le-7;
int itl = Th(xl, yl).nuTriangle;

// Fespace

fespace Vh(Th, P2BR);
Vh [al, a2], [bl, b2], [cl, c2];

for (int i = 0; i1 < Vh.ndofK; ++i)
cout << 1 << " " << Vh(0,i) << endl;

for (int i = 0; i1 < Vh.ndofK; ++i)

all[] = 0;

int j = Vh(itl, 1);

allll3j] = 1;

plot ([al, a2], wait=1);

[bl, b2] = [al, a2]; //do the interpolation

cl[] = all]l - bl[];

cout << " ————————— "< i << "M << cl[]l.max << " " << cl[].min << endl;

cout << " a = " << al[] <<endl;

cout << " b = " << bl[] <<endl;

assert(cl[].max < le-9 && cl[].min > -1e-9); //check if the interpolation 1is,

—correct

// check the derivative and numerical derivative
cout << " dx(al) (x1, yl) = " << dx(al) (x1, yl) << " == " << DD(al, h, 0) << endl;

(continues on next page)
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(continued from previous page)

assert ( abs(dx(al) (x1, yl) - DD(al, h, 0) ) < le-5);
assert ( abs(dx(a2) (x1, yl) - DD(a2, h, 0) ) < le-5);
assert ( abs(dy(al) (x1, yl) - DD(al, 0, h) ) < le-5);
assert ( abs(dy(a2) (x1, yl) - DD(a2, 0, h) ) < le-5);

A real example using this finite element, just a small modification of the Navier-Stokes P2-P1 example, just the
begenning is change to

load "BernardiRaugel"

real s0O = clock();

mesh Th = square (10, 10);
fespace Vh2 (Th, P2BR);
fespace Vh(Th, PO);

Vh2 [ul, u2], [upl, up2];
vh2 [v1, v2];

And the plot instruction is also changed because the pressure is constant, and we cannot plot isovalues of peacewise
constant functions.

The Morley Element

See the example bilapMorley.edp.

3.9 ffddm

In the acronym ffddm, £ f stands for FreeFEM and ddm for domain decomposition methods. The idea behind ffddm
is to simplify the use of parallel solvers in FreeFEM: distributed direct methods and domain decomposition methods.

Parallelism is an important issue because, since about 2004, the clock speed of cores stagnates at 2-3 GHz. The increase
in performance is almost entirely due to the increase in the number of cores per processor. All major processor vendors
are producing multicore chips and now every machine is a parallel machine. Waiting for the next generation machine
does not guarantee anymore a better performance of a software. To keep doubling performance parallelism must
double. It implies a huge effort in algorithmic development.

Thanks to ffddm, FreeFEM users have access to high-level functionalities for specifying and solving their finite
element problems in parallel. The first task handled by ffddm is the data distribution among the processors. This
is done via an overlapping domain decomposition and a related distributed linear algebra. Then, solving a linear
system is possible either via an interface to the parallel MUMPS solver or by using domain decomposition methods
as preconditioners to the GMRES Krylov method. The ffddm framework makes it easy to use scalable Schwarz
methods enhanced by a coarse space correction built either from a coarse mesh or a GenEO (Generalized Eigenvalue
in the Overlap) coarse space, see also the book An Introduction to Domain Decomposition Methods: algorithms,
theory, and parallel implementation. State-of-the-art three level methods are also implemented in £ fddm.

The ffddm framework is entirely written in the FreeFEM language and the ‘idp’ scripts can be found here
(‘ffddm*.idp’ files). It makes it also a very good tool for learning and prototyping domain decomposition methods
without compromising efficiency.

ffddm can also act as a wrapper for the HPDDM library. HPDDM is an efficient implementation of various domain
decomposition methods and a variety of Krylov subspace algorithms, with advanced block and recycling methods
for solving sequences of linear systems with multiple right-hand sides: GMRES and Block GMRES, CG, Block CG,
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and Breakdown-Free Block CG, GCRO-DR and Block GCRO-DR. For more details on how to use HPDDM within
f£ddm, see the ffddm documentation.

Getting Started

macro dimension 2// EOM // 2D or 3D
include "ffddm.idp"
mesh Th = square(50,50); // global mesh

// Step 1: Decompose the mesh
ffddmbuildDmesh( P , Th , mpiCommWorld )
// Step 2: Define your finite element
macro def(u) u // EOM
macro init(u) u // EOM
ffddmbuildDfespace( P , P , real , def , init , P2 )
// Step 3: Define your problem
macro grad(u) [dx(u), dy(u)] // EOM
macro Varf (varfName, meshName, VhName)
varf varfName (u,v) = int2d(meshName) (grad(u) '+ grad(v)) + int2d(meshName) (1*v)
+ on(l, u = 0); // EOM
ffddmsetupOperator( P , P , Varf )
PVhi ui, bi;
ffddmbuildrhs( P , Varf , bi[] )
// Step 4: Define the one level DD preconditioner
ffddmsetupPrecond( P , Varf )
// Step 5: Define the two-level GenEO Coarse Space
ffddmgeneosetup( P , Varf )
// Step 6: Solve the linear system with GMRES
PVhi x0i = 0;
ui[] = PfGMRES (x0i[],
ffddmplot (P, ui, "u")
Pwritesummary

bi(], 1.e-6, 200, "right");

This example solves a Laplace problem in 2D in parallel with a two-level GenEO domain decomposition method. To
try this example, just copy and paste the script above in a file ‘test.edp’ and run it on 2 cores with

ff-mpirun -np 2 test.edp —-glut ffglut

3.9.1 Domain Decomposition (DD)
When the size of a three dimensional problem is large (whatever it means), it is necessary to distribute data among

several processors especially for solving linear systems. A natural way is to do it via domain decomposition.

Mesh Decomposition

The starting point is a collection of N sub-meshes (Th;)Y ; that together form a global mesh
Th = Ui:lThi .
These meshes may be overlapping or not. This decomposition induces a natural decomposition of the global finite

element space Vh on Th into N local finite element spaces (V h;)Y ; each of them defined on T'h;.

Note By global, we mean that the corresponding structure can be refered to in the code (most often only) by its local
values. In computer science term, it corresponds to a distributed data where each piece of data is stored by a MPI
process.
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Distributed Linear Algebra

The domain decomposition induces a natural decomposition of the set of the global degrees of freedom (d.o.f.) N of
the finite element space V' h into the N subsets of d.o.f.’s (N;)Y; each associated with the local finite element space
V' h;. We have thus

N =UN N,

but with duplications of some of the d.o.f.’s.

Associated with this decomposition of the set of d.o.f.’s N, a distributed vector is a collection of local vectors
(Vi)1<i<n so that the values on the duplicated d.o.f.’s are the same.

Note: In mathematical terms, it can be described as follows for a real valued problem. Let R; be the restriction
operator from R#N to R#Ni, where #N; denotes the number of elements of N;. A collection of local vectors
(Vi)i<icn € TN R#Ni is a distributed vector iff there exists a global vector V. € R#N such that for all subset
1 <17 < N, we have:

V,=R; V.

We will also say that the collection of local vectors (V;)1<i<x is consistent. For a complex valued problem, simply
replace R with C.

Partition of Unity Matrices (POUM)

Let (D;)1<i<n be square diagonal matrices of size #\/; which form a partition of unity in the sense that:

N
Id =Y Rl D; R; in RFN>*#N
i=1
For instance if a degree of freedom is shared by k subdomains defining the corresponding entry of the diagonal matrix
D to be 1/k yields partition of unity matrices. The matrices R; and D; are the heart of distributed linear algebra.

Distributed scalar product

For two global vectors U and V of size #A/, the formula for the scalar product VI’ U = (U, V) in terms of their
distributed vector counterparts is:

N N N
(U, V) = (U,ZRiTDiRiV> => (RU,D:RV)=> (U;,D;V;).

i=1 i=1 i=1

Local scalar products are performed concurrently. Thus, the implementation is parallel except for the sum which corre-
sponds to a MPI_Reduce call across the N MPI processes. Note also that the implementation relies on the knowledge
of a partition of unity so that the FreeFEM syntax is dscalprod (Di, u, v) or equivalently pr#scalprod (u, v)
where pr is a user defined prefix that refers to the domain decomposition and thus implicitely also to the partition of
unity.

Update

From a collection of local vectors (Ui)lgig N, it is possible ensure consistency of the duplicated data and thus creating
a distributed vector (V;)1<;<n by calling the function pr#update (Ui, TRUE) where pr is a user defined prefix
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that refers to the domain decomposition. This function performs the following operation for all 1 < ¢ < N:

N
Vi« R Y R{D;U;

Jj=1

Note: The implementation corresponds to

N
V;:=R;Y RID;U;=D;U;+ Y R;R] D;U;,
j=1 JEO(4)
where O(i) is the set of neighbors of subdomain ¢. Therefore, the matrix vector product is computed in three steps:

- concurrent computing of D;U; for all 1 < j < N; - neighbor to neighbor MPI-communications (R; Rf) ;-
concurrent sum of neighbor contributions.

Distributed Matrix and Vector resulting from a variational formulation

The discretization of a variational formulation on the global mesh T'h yields a global matrix A and a global right
hand side RHS. Thanks to the sparsity of finite element matrices for partial differential equations and thanks to the
overlap between subdomains, the knowledge of the local matrix RiARiT on each subdomain 1 < 7 < N is sufficient
to perform the matrix-vector product A x U for any global vector U. Once the problem has been set up by a call
to ffddmsetupOperator (myprefix, myFEprefix, myVarf),the matrix-vector product is performed by
calling the function pr#A (Ui) where pr is a user defined prefix that refers to the problem at hand which itself
implicitly refers to the triplet (domain decomposition, finite element, variational formulation). See more on problem
defintion in this documentation and more on distributed linear algebra in chapter 8 of “An Introduction to Domain
Decomposition Methods: algorithms, theory and parallel implementation” SIAM 2015.

Distributed Linear Solvers

In many cases, we are interested in the solution of the problem in terms of the vector of d.o.f.’s X that satisfies:
AX =RHS.

f £ddm offers two parallel solvers: direct factorization and Schwarz domain decomposition methods.

Distributed Direct Solvers

In order to benefit from the sparsity of the matrix arising from a finite element discretization of a partial differential
equation, a variant of Gauss elimination, the frontal method, that automatically avoids a large number of operations
involving zero terms was developed. A frontal solver builds a LU or Cholesky decomposition of a sparse matrix given
as the assembly of element matrices by eliminating equations only on a subset of elements at a time. This subset is
called the front and it is essentially the transition region between the part of the system already finished and the part
not touched yet. These methods are basically sequential since the unknowns are processed the one after another or one
front after another. In order to benefit from multicore processors, a multifrontal solver is an improvement of the frontal
solver that uses several independent fronts at the same time. The fronts can be worked on by different processors, which
enables parallel computing. £ fddm provides an interface to the parallel sparse direct solver MUMPS.

Schwarz methods

We consider the solve of the equation A X = RHS by a flexible GMRES method preconditioned by domain decom-
position methods.
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Restricted Additive Schwarz (RAS)

The RAS preconditioner reads:

N
Mphg=> RID;(R;AR])'R;.
j=1

Let A; denote the local matrix (R; A RT). The application of the operator Mg}, g to a distributed right hand side
(RHS;)¥, consists in computing:

N
R; > R D;A;' RHS; = D; A;'RHS; + >  (R;R])D; A;' RHS;.
Jj=1 JEO(>3)

This task is performed by first solving concurrently on all subdomains a linear system for Y; forall 1 < j < N:
A;Y; = RHS;.

Each local vector Y ; is weighted by the partition of unity matrix D;. Then data transfers between neighboring sub-
domains implement the R; RjT D; Y ; formula. The contribution from neighboring subdomains are summed locally.
This pattern is very similar to that of the update procedure.

Optimized Restricted Additive Schwarz (ORAS)

The ORAS preconditioner may be seen as a variant of the RAS preconditioner. It reads:

N
Mghe = ZRij B; 'R,
j=1

where B; are local matrices of size #N; x #Nj for 1 < j < N. This variant is very useful when dealing with
wave propagation phenomena such as Helmholtz problems in acoustics or Maxwell system in the frequency domain
for electromagnetism. Defining B; as the discretization of the physical equation with impedance conditions on the
boundary of the subdomain has been proved to be a good choice.

Two level methods

The RAS and ORAS methods are called a one-level method in the sense that sub-domains only interact with their direct
neighbors. For some problems such as Darcy problems or static elasticity problems and when the number of subdo-
mains is large, such one-level methods may suffer from a slow convergence. The fix is to add to the preconditioner an
auxiliary coarse problem that couples all subdomains at each iteration and is inexpensive to calculate.

In mathematical terms, we first choose a full rank rectangular matrix Z € R#NXNC where NC' < #N denotes the
dimension of the coarse space spanned by the columns of Z. We also pick a coarse matrix Ac € RVo*No A generic
one-level method preconditioner M, ! is enriched by a solve on the coarse space. The simplest correction formula is
additive:

Myt = Z A ZT + Mt

Other correction formulas are given in documentation.

We consider two ways to build Z and thus the coarse space and the coarse problem A¢, see below Coarse Mesh and
GenEO
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Coarse Mesh

A first possibility is to discretize the problem on a coarse mesh, following the same principle as multi-grid methods.
For 3-D problems, a coarsening of the mesh size by a factor 2, reduces by a factor 23 = 8 the size of the coarse
problem which is then easier to solve by a direct method. Then, Z is the interpolation matrix from the coarse finite
element space to the fine one.

GenEO

For highly heterogeneous or anisotropic problems, two level methods based on coarse meshes might fail and a more
sophisticated construction must be used. A provable robust coarse space called GenEO is built by first solving the
following local generalized eigenvalue problem in parallel for each subdomain 1 < i < N, where AN denotes the
local matrix resulting from the variational formulation:

D;A:D; Vig = Nig ANV

The eigenvectors selected to enter the coarse space correspond to eigenvalues A; , > 7, where the threshold parameter
7 is user-defined. The precise formulas are given in this documentation. From a mathematical point of view, it has been
proved that for a symmetric positive definite matrix A, the spectrum of the preconditioned by the two-level method

with a GenEO coarse space lies in the interval | ko).

1+/€1’7"

Note A heuristic that justifies this construction is as follows. We first introduce the Additive Schwarz method (ASM)
which can be seen as a symmetrized variant of the RAS preconditioner:

N
-1 . T g-1
Mydy =Y RIA'R;.
j=1
It can be proved that the lower bound for the eigenvalue of M ;& ,, A is close to zero (which is bad for convergence)
whereas the upper bound depends only on the number of neigbors of a subdomain (which is good for convergence).
Second, we also introduce the following preconditioner M ]\_”1\,:

Mgy = Y D;(A})~'D;.
1<j<N

We have a very good lower bound for the preconditioned operator M JG}V A that does not depend on the number of
subdomains but only on the maximum multiplicity of intersections k; (which is good for convergence). But the upper
bound for this preconditioner is very large (which is bad for convergence).

Now, if we compare formulas for M ]\_,]1\, and M;é > We may suspect that vectors 'V, for which D; (AI;IC‘J)‘1 D; V.
and A; L'V, have very different values are responsible for the slow convergence and should contribute to the coarse
space. This is a way to interpret the above generalized eigenvalue problem which controls the lower bound of the
two-level preconditioned system.

3.9.2 ffddm documentation

Minimal example

macro dimension 3// EOM // 2D or 3D

include "ffddm.idp"

(continues on next page)
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(continued from previous page)

int[int] 1L = [2,2, 1,2, 2,21;
mesh3 ThGlobal = cube (10, 10, 10, [x, y, z], label = LL); // global mesh
macro grad(u) [dx(u), dy(u), dz(u)]// EOM // three—-dimensional gradient

macro Varf (varfName, meshName, VhName)

varf varfName (u,v) = int3d(meshName) (grad(u)'* grad(v)) + int3d(meshName) (v) +_
—on(l, u=1.0);
// EOM

// Domain decomposition
ffddmbuildDmesh( Lap , ThGlobal , mpiCommWorld )

macro def(i)i// EOM // scalar field definition
macro init (i)i// EOM // scalar field initialization
ffddmbuildDfespace( Lap , Lap , real , def , init , P1 )

ffddmsetupOperator ( Lap ,Lap , Varf )

real[int] rhsi(0);
ffddmbuildrhs( Lap , Varf , rhsi )

LapVhi def (ui);

//Direct solve
ui[] = Lapdirectsolve(rhsi);

Lapwritesummary

ffddmplot (Lap,ui, "u");

Overlapping mesh decomposition

ffddmbuildDmesh (pr, Th, comm)

decomposes the mesh Th into overlapping submeshes. The mesh will be distributed over the mpi ranks of communica-
tor comm. This will create and expose variables whose names will be prefixed by pr, see below (# is the concatenation
operator). The way the initial mesh Th is partitioned depends on the value of ffddmpartitioner.

The size of the overlap between subdomains (its width in terms of number of mesh elements) is given by ffddmoverlap.
The level of refinement of the resulting submeshes with respect to the input mesh Th is given by ffddmsplit.

If ffddmexclude # 0, the first ffddmpCS mpi ranks of comm will be excluded from the spatial domain decomposition,
in order to dedicate them later to the coarse problem (for two-level preconditioners).

The label of the new border of the submeshes (the interface between the subdomains) is given by ffddminterfacelabel.
defines:

e int pr#npart number of subdomains for this decomposition; should be equal to mpiSize(comm) - ffddmex-
clude * [fddmpCS

* meshN[int] pr#aTh array (size pr#npart) of local meshes of the subdomains. In the standard parallel
case, only the local mesh for this mpi rank pr#aTh [mpiRank (pr#commddm) ] is defined (unless this mpi
rank is excluded from the spatial domain decomposition, i.e. prmesh#excluded = 1, see below). In the
sequential case, all local meshes are defined.
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e meshN pr#Thi the local mesh of the subdomain for this mpi rank, 1. €.
pr#aTh[mpiRank (pr#commddm) ] in the parallel case - int pr#numberIntersection the
number of neighbors for this mpi rank

e int[int] pr#arrayIntersection the list of neighbor ranks in pr#commddm for this mpi rank
e int pr#pCs equal to ffddmpCS
* int pr#exclude equal to ffddmexclude

e int pr#excluded true if ffddmexclude is true (# 0) and mpiRank(comm) < pr#pCS. In this case, this mpi
rank will be excluded from the spatial domain decomposition and will only work on the coarse problem.

* mpiComm pr#commddm mpi communicator for ranks participating in the spatial domain decomposition
(ranks O to pr#npart-1 in comm if pr#exclude is false, ranks pr#pCS to pr#pCS+pr#npart-1 other-
wise)

e mpiComm pr#commCS mpicommunicator for ranks participating in the assembly and resolution of the coarse
problem for two-level preconditioners (ranks O to pr#pCS - 1 in comm)

* mpiComm pr#commself self mpi communicator (this mpi rank only), used for factorizing local matrices
Remark for sequential use (see -seqddm):

e meshN[int] pr#aTh array (size pr#npart) of local meshes of the subdomains

Local finite element spaces

ffddmbuildDfespace (pr, prmesh, scalar,def, init, Pk)

builds the local finite element spaces and associated distributed operators on top of the mesh decomposition prmesh.
This will create and expose variables whose names will be prefixed by pr, see below. It is assumed that ffddmbuild-
Dmesh has already been called with prefix prmesh in order to build the mesh decomposition.

The local finite element spaces of type Pk (where PKk is the type of finite element: P1, [P2,P2,P1], ...) are defined on
the local meshes of the subdomains based on the mesh decomposition previously created with prefix prmesh.

scalar determines the type of data for this finite element: real or complex.

Two macros, def and init, are needed: def specifies how to define a finite element function in the finite element
space Pk, and init specifies how to interpolate a scalar function onto the (possibly multiple) components of Pk. Two
examples are given below:

For scalar P2 finite elements and complex-valued problems:

macro def (u) u// EOM
macro init (u) u// EOM
ffddmbuildDfespace (myFEprefix, mymeshprefix, complex, def,init, P2)

For vectorial [P2,P2,P1] finite elements and real-valued problems:

macro def (u) [u, u#B, u#Cl// EOM
macro init (u) [u, u, ul// EOM
ffddmbuildDfespace (myFEprefix, mymeshprefix, real,def, init, [P2,P2,P1])

In practice, this builds the necessary distributed operators associated to the finite element space: the local partition
of unity functions (D;);—1.. n (see pr#Dk and pr#Dih below) as well as the function pr#update (see below)
which synchronizes local vectors (u;);=1,... v between neighboring subdomains, performing the equivalent of u; =

Ri(zj.vzl RTuj) or u; = RZ-(Z;V:1 RY Djuy) in a distributed parallel environment.

pri#scalprod (see below) performs the parallel scalar product for vectors defined on this finite element.
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defines:

pr#prmesh macro, saves the parent prefix prmesh of the mesh decomposition

pr#K macro, saves the type of data scalar for this finite element space (real or complex)

func pr#fPk saves the type of finite element Pk, e.g. PI, [P2,P2,P1], ...

fespace pr#Vhi the local finite element space for this mpi rank, defined on the local mesh prmesh#Thi
int pr#Ndofglobal the total number of degrees of freedom n for this finite element discretization

pr#mdef macro, saves the macro def giving the definition of a finite element function in the finite element
space Pk

pr#minit macro, saves the macro init specifying how to interpolate a scalar function onto the (possibly
multiple) components of a finite element function of Pk. This is used to create the local partition of unity
function in pr#Vhi, by interpolating the local P1 partition of unity function onto the components of pr#Vvhi.
For non Lagrange finite element spaces (e.g. RT0, Edge03d, . ..), see [fddmbuildDfespaceEdge.

pr#K[int] [int] pr#Dk array (size prmesh#npart) of local partition of unity vectors in the subdo-
mains, equivalent to (D;);=1,.. . In the standard parallel case, only the local partition of unity vector for this
mpi rank pr#Dk [mpiRank (prmesh#commddm) ] is defined (unless this mpi rank is excluded from the spa-
tial domain decomposition, i. e. prmesh#excluded = 1). In the sequential case, all local partition of unity
vectors are defined.

matrix<pr#K>[int] pr#Dih array (size prmesh#npart) similar to pr#Dk but in matrix form, al-
lowing for easier matrix-matrix multiplications. pr#Dih[i] is a diagonal matrix, with the diagonal equal to
pr#Dk[i].

fespace pr#Vhglob the global finite element space defined on the global mesh prmesh#Thglob. De-
fined only if -noGlob is not used.

matrix<pr#K>[int] pr#Rih array (size prmesh#npart) of restriction matrices from the global finite
element space to the local finite element spaces on the local submeshes of the subdomains. In the standard par-
allel case, only the restriction matrix for this mpi rank pr#Rih [mpiRank (prmesh#commddm) ] is defined
(unless this mpi rank is excluded from the spatial domain decomposition, i. e. prmesh#excluded = 1). In
the sequential case, all restriction matrices are defined. The restriction matrices pr#Rih are defined only if
-noGlob is not used.

func int pr#update (scalar[int] ui, bool scale) The function pr#update synchronizes
the local vector ui between subdomains by exchanging the values of ui shared with neighboring subdomains
(in the overlap region) using point-to-point MPI communications. If scale is true, ui is multiplied by the local
partition of unity beforehand. This is equivalent to u; = RZ-(Zj.V:l RTu;) when scale is false and u; =

Ri(Z;\;l RT Dju;) when scale is true.
func scalar pr#scalprod(scalar([int] ai, scalar[int] bi) The function

pri#scalprod computes the global scalar product of two vectors whose local restriction to the subdo-
main of this mpi rank are ai and bi. The result is computed as Z;\le (Djaj,b;).

Define the problem to solve

ffddmsetupOperator (pr, prfe, Varf)

builds the distributed operator associated to the variational problem given by Varf, on top of the distributed finite
element space prfe. This will create and expose variables whose names will be prefixed by pr, see below. It is
assumed that ffddmbuildDfespace has already been called with prefix prfe in order to define the distributed finite
element space.
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In practice, this builds the so-called local ‘Dirichlet’ matrices A; = R; ARY, the restrictions of the global operator A
to the subdomains (see pr#aRdbelow). The matrices correspond to the discretization of the bilinear form given by the
macro Varf, which represents the abstract variational form of the problem. These matrices are then used to implement
the action of the global operator A on a local vector (the parallel matrix-vector product with A), see pr#2 below.

At this point, we already have the necessary data to be able to solve the problem with a parallel direct solver (MUMPS),
which is the purpose of the function pr#directsolve (see below). See [fddmbuildrhs for building the right-hand
side.

The macro Varf is required to have three parameters: the name of the variational form, the mesh, and the finite element
space. The variational form given in this ‘abstract’ format will then be used by ffddm to assemble the discrete operators
by setting the appropriate mesh and finite element space as parameters. An example is given below:

macro myVarf (varfName, meshName, VhName)
varf varfName (u,v) = int3d(meshName) (grad(u)''x grad(v)) + on(l, u = 1.0);
// EOM

ffddmsetupOperator (myprefix, myFEprefix, myVarf)

Remark In this simple example, the third parameter ViName is not used. However, for more complex cases such as
non-linear or time dependent problems where the problem depends on a solution computed at a previous step, it is
useful to know for which discrete finite element space the variational form is being used. See for example TODO

defines:
* priprfe macro, saves the parent prefix prfe of the finite element space
* int pr#verbosity the level of verbosity for this problem, initialized with the value of ffddmverbosity

* pr#writesummary macro, prints a summary of timings for this problem, such as the time spent to assemble
local matrices or solve the linear system.

* matrix<prfe#K> pr#Aglobal the global matrix A corresponding to the discretization of the variational
form given by the macro Varf on the global finite element space prfe#Vhglob. Defined only in the sequential
case.

e matrix<prfe#K>[int] pr#aRd array (size prfe#prmesh#npart) of so-called local ‘Dirichlet’ ma-
trices in the subdomains; these are the restrictions of the global operator to the subdomains, equivalent to
A; = R;ART with A the global matrix corresponding to the discretization of the variational form given by the
macro Varf on the global finite element space. In the standard parallel case, only the local matrix for this mpi
rank pr#aRd [mpiRank (prmesh#commddm) ] is defined (unless this mpi rank is excluded from the spatial
domain decomposition, i. e. prmeshf#excluded = 1). In the sequential case, all local matrices are defined.

e func prfe#K[int] pr#A(prfe#K[int] &ui) The function pr#A computes the parallel matrix-
vector product, i.e. the action of the global operator A on the local vector u;. The computation is equiv-
alent to Ri(Z;.V:l RTDjAju;) and is performed in parallel using local matrices pr#aRd and the function
prfe#update. In the sequential case, the global matrix pr#Aglobal is used instead.

e func prfe#K[int] pr#directsolve (prfe#K[int]& rhsi) The function pr#directsolve
allows to solve the linear system Az = b in parallel using the parallel direct solver MUMPS. The matrix is given
to MUMPS in distributed form through the local matrices pr#aRd. The input rhsi is given as a distributed vector
(rhsi is the restriction of the global right-hand side b to the subdomain of this mpi rank, see ffddmbuildrhs) and
the returned vector is local as well.

ffddmbuildrhs (pr,Varfrhs, rhs)

builds the right-hand side associated to the variational form given by Varfrhs for the problem corresponding to prefix
pr. The resulting right-hand side vector rhs corresponds to the discretization of the abstract linear form given by the
macro Varfrhs (see ffddmsetupOperator for more details on how to define the abstract variational form as a macro).
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The input vector rhs is resized and contains the resulting local right-hand side R;b, the restriction of the global right-
hand side b to the subdomain of this mpi rank. In the sequential case, the global right-hand side vector b is assembled
instead.

An example is given below:

macro myVarfrhs (varfName, meshName, VhName)
varf varfName (u,v) = intN (meshName) (v) + on(l, u = 1.0);
// EOM

real[int] rhsi(0);
ffddmbuildrhs (myprefix, myVarfrhs, rhsi)

One level preconditioners

ffddmsetupPrecond (pr,VarfPrec)

builds the one level preconditioner for problem pr. This will create and expose variables whose names will be prefixed
by pr, see below. It is assumed that ffddmsetupOperator has already been called with prefix pr in order to define the
problem to solve.

In practice, this builds and performs the factorization of the local matrices used in the one level preconditioner. The
local matrices depend on the choice of ffddmprecond and VarfPrec, see pr#aRbelow.

defines:

Lt}

* string pr#prec equal to ffddmprecond. Sets the type of one level preconditioner M ! to be used: “asm
(Additive Schwarz), “ras” (Restricted Additive Schwarz), “oras” (Optimized Restricted Additive Schwarz), “so-
ras” (Symmetric Optimized Restricted Additive Schwarz) or “none” (no preconditioner).

* matrix<pr#prfe#K>[int] pr#aR array (size prfe#prmeshi#npart) of local matrices used for the
one level preconditioner. Each mpi rank of the spatial domain decomposition performs the LU (or LDL™)
factorization of the local matrix corresponding to its subdomain using the direct solver MUMPS.

— If VarfPrec is not a previously defined macro (just put null for example), the matrices pr#aR are set
to be equal to the so-called local ‘Dirichlet’ matrices pr#aRd (see ffddmsetupOperator). This is for
the classical ASM preconditioner M, * = M A_SlM = Zf\il RTA; 'R, or classical RAS preconditioner
M - Mg, Als = vazl RiTDiA;IRi (it is assumed that ffddmprecond is equal to “asm” or “ras”).

— If VarfPrec is a macro, it is assumed that VarfPrec defines an abstract bilinear form (see ffddmsetupOp-
erator for more details on how to define the abstract variational form as a macro).

w If ffddmprecond is equal to “asm” or “ras”, the matrices pr#aR will be assembled as local ‘Dirichlet’
matrices in the same manner as pr#aRd, but using the bilinear form defined by VarfPrec instead.
This defines the ASM preconditioner as M, ' = M g, = Zf\il RiT(Afrec)_lRi and the RAS pre-
conditioner as M; ' = Mgk = SN RTD;(AP) "' R;, where AP — R; AP RT

w If ffddmprecond is equal to “oras” or “soras”, the matrices pr#aR will correspond to the discretization
of the variational form VarfPrec in the subdomains €,. In particular, various boundary conditions can
be imposed at the interface between subdomains (corresponding to mesh boundary of label ffddminter-
Jacelabel set by the parent call to ffddmbuildDmesh), such as Optimized Robin boundary conditions.
We note the ORAS preconditioner as M; ' = Mg\g = Zf\il RiTDl-(BZP“”C)_lRi and the SORAS
preconditioner as M; ' = Mggp g = Zi\il RZTDI-(BE“"C)_lDiRi.

e func pr#prfe#K[int] pr#PRECI (pr#prfe#K[int] &ui) The function pr#PREC1 computes
the parallel application of the one level preconditioner M, ! ie. the action of M ! on the local vector u;.
In the sequential case, it computes the action of M, ! on a global vector. The action of the inverse of local
matrices pr#aRd is computed by forward-backward substitution using their LU (or LDLT) decomposition.
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e func pr#prfe#K[int] pr#PREC (pr#prfe#K[int] &ui) The function pr#PREC corresponds to
the action of the preconditioner M ~! for problem pr. It coincides with the one level preconditioner pr#PREC1
after the call to ffddmsetupPrecond. If a second level is subsequently added (see the next section about 7o level
preconditioners), it will then coincide with the two level preconditioner My ! (see pr#PREC21level).

e func pr#prfe#K[int] pr#fGMRES (pr#prfe#K[int]& x0i, pr#prfe#K[int]é& bi,
real eps, int nbiter, string sprec) The function pr#fGMRES allows to solve the linear
system Ax = b in parallel using the flexible GMRES method preconditioned by M ~!. The action of the
global operator A is given by pr#A, the action of the preconditioner M ~! is given by pr#PREC and the scalar
products are computed by pr#scalprod. More details are given in the section Solving the linear system.

Two level preconditioners

The main ingredient of a two level preconditioner is the so-called ‘coarse space’ matrix Z.
Z is a rectangular matrix of size n X n., where usually n, < n.

Z is used to build the ‘coarse space operator’ E = ZT AZ, a square matrix of size n, x n.. We can then define the
‘coarse space correction operator’ Q = ZE1ZT = Z(ZT AZ)=1ZT, which can then be used to enrich the one level
preconditioner through a correction formula. The simplest one is the additive coarse correction: M, ' = M; ! + Q.
See pr#corr below for all other available correction formulas.

There are multiple ways to define a relevant coarse space Z for different classes of problems. ffddmgeneosetup defines
a coarse space correction operator by building the GenEO coarse space, while ffddmcoarsemeshsetup builds the coarse
space using a coarse mesh.

After a call to either [fddmgeneosetup or ffddmcoarsemeshsetup, the following variables and functions are set up:
* int pr#ncoarsespace the size of the coarse space n..

* string pr#corr initialized with the value of ffddmcorrection. Specifies the type of coarse correction for-
mula to use for the two level preconditioner. The possible values are:

"AD" : Additive, M~'=M;"= M +Q
"BNN": Balancing Neumann-Neumann, M~ = M; "' = (I — QA)M; (I — AQ) + Q
"ADEF1" : Adapted Deflation Variant 1, M=t =Mt = M{HI - AQ) +Q
"ADEF2" : Adapted Deflation Variant 2, M=t =M= (I-QAM;* +Q
"RBNNI1" : Reduced Balancing Variant 1, M~ = M; "' = (I — QA)M; (I — AQ)
"RBNN2":  Reduced Balancing Variant2, ~M~' = M, = (I — QA)M;*

"none" : no coarse correction, M~'=M;"= Mt

* Note that AD, ADEFI and RBNN2 only require one application of (), while BNN, ADEF2 and RBNN1 require
two. The default coarse correction is ADEF I, which is cheaper and generally as robust as BNN or ADEF?2.

e func pr#prfe#K[int] pr#Q(pr#prfe#K[int] &ui) The function pr#Q computes the parallel ap-
plication of the coarse correction operator @, i.e. the action of Q = ZE~'ZT on the local vector u;. In the
sequential case, it computes the action of () on a global vector. The implementation differs depending on the
method used to build the coarse space (with GenEO or using a coarse mesh), but the idea is the same: the ac-
tion of the transpose of the distributed operator Z on the distributed vector u; is computed in parallel, with the
contribution of all subdomains being gathered in a vector of size n. in the mpi process of rank 0. The action of
the inverse of the coarse space operator E is then computed by forward-backward substitution using its LU (or
LDL™) decomposition previously computed by the first pr#pr fe#prmesh#pCS ranks of the mpi communi-
cator. The result is then sent back to all subdomains to perform the last application of Z and obtain the resulting
local vector in each subdomain.

e func pr#prfe#K[int] pr#PREC2level (pr#prfe#K[int] &ui) The function
pr#PREC2level computes the parallel application of the two level preconditioner M, 1 ie. the ac-
tion of M, 1 on the local vector u;. In the sequential case, it computes the action of My 1 on a global vector.
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The two level preconditioner depends on the choice of the coarse correction formula which is determined by
pr#corr, see above.

Building the GenEO coarse space

ffddmgeneosetup (pr, Varf)

This builds the GenEO coarse space for problem pr. This will create and expose variables whose names will be
prefixed by pr, see below. It is assumed that ffddmsetupPrecond has already been called for prefix pr in order to
define the one level preconditioner for problem pr. The GenEO coarse space is Z = (RiTDiV; k)’;}c’;;N, where V; i,
are eigenvectors corresponding to eigenvalues \; j of the following local generalized eigenvalue problem in subdomain
1

D;A;iDiVi . = N\i k ANUV .,

where AN is the local Neumann matrix of subdomain i (with Neumann boundary conditions at the subdomain
interface).

In practice, this builds and factorizes the local Neumann matrices AN corresponding to the abstract bilinear form
given by the macro Varf (see ffddmsetupOperator for more details on how to define the abstract variational form
as a macro). In the GenEO method, the abstract bilinear form Varf is assumed to be the same as the one used to
define the problem pr through the previous call to ffddmsetupOperator. The local generalized eigenvalue problem is
then solved in each subdomain to find the eigenvectors V; ;. corresponding to the largest eigenvalues \; ;. (see pr#72
below). The number of computed eigenvectors v is given by ffddmnu. The eigenvectors selected to enter Z correspond
to eigenvalues \; j larger than 7, where the threshold parameter 7 is given by ffddmtau. If [fddmtau = 0, all ffddmnu
eigenvectors are selected. Finally, the coarse space operator £ = ZT AZ is assembled and factorized (see pr#E
below).

defines:

* pr#prfe#K[int] [int] pr#Z array of local eigenvectors Z; ;, = D,V ; obtained by solving the local
generalized eigenvalue problem above in the subdomain of this mpi rank using Arpack. The number of computed
eigenvectors v is given by ffddmnu. The eigenvectors selected to enter Z correspond to eigenvalues A; j, larger
than 7, where the threshold parameter 7 is given by ffddmtau. If ffddmtau = 0, all ffddmnu eigenvectors are
selected.

* matrix<pr#prfe#K> pr#E the coarse space operator £ = Z1 AZ. The matrix pr#E is assembled in
parallel and is factorized by the parallel direct solver MUMPS using the first pr#prfe#prmesh#pCS ranks
of the mpi communicator, with mpi rank O as the master process. The number of mpi processes dedicated to
the coarse problem is set by the underlying mesh decomposition of problem pr, which also specifies if these
mpi ranks are excluded from the spatial decomposition or not. These parameters are set by ffddmpCS and
Jfddmexclude when calling ffddmbuildDmesh (see ffddmbuildDmesh for more details).

Building the coarse space from a coarse mesh

ffddmcoarsemeshsetup (pr, Thc, VarfEprec, VarfAprec)

builds the coarse space for problem pr from a coarse problem which corresponds to the discretization of a variational
form on a coarser mesh The of (2. This will create and expose variables whose names will be prefixed by pr, see
below. It is assumed that ffddmsetupPrecond has already been called for prefix pr in order to define the one level
preconditioner for problem pr. The abstract variational form for the coarse problem can differ from the original
problem pr and is given by macro VarfEprec (see ffddmsetupOperator for more details on how to define the abstract
variational form as a macro). For example, absorption can be added in the preconditioner for wave propagation
problems, see examples for Helmholtz and Maxwell equations in the Examples section.
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The coarse space Z corresponds to the interpolation operator from the coarse finite element space to the original finite
element space of the problem. Thus, the coarse space operator E = Z7 AP 7 corresponds to the matrix of the
problem given by VarfEprec discretized on the coarse mesh The and is assembled as such.

Similarly, VarfAprec specifies the global operator involved in multiplicative coarse correction formulas. For example,
M, iDEFl =M, LI — AMcQ) + Q (where Q = ZE~1ZT). AAPe defaults to A if VarfAprec is not a valid macro
(you can put null for example).

defines:
* meshN pr#ThCoarse the coarse mesh The

* fespace pr#VhCoarse the coarse finite element space of type pr#prfe#£Pk defined on the coarse mesh
pr#ThCoarse

» matrix<pr#prfe#k> pr#AglobEprec the global matrix AAP™ corresponding to the discretization of
the variational form given by the macro VarfAprec on the global finite element space pr#prfe#vhglob.
Defined only in the sequential case. pr#AglobEprec is equal to pr#Aglobal if VarfAprec is not a valid
macro.

* matrix<pr#prfe#K> pr#aRdEprec the local ‘Dirichlet’ matrix corresponding to VarfAprec; it is the
local restriction of the global operator AAP¢ o the subdomain, equivalent to A" = R; AAPec RT with AApree
the global matrix corresponding to the discretization of the variational form given by the macro VarfAprec on
the global finite element space. Defined only if this mpi rank is not excluded from the spatial domain decomposi-
tion, i. e. prmesh#excluded =0. pr#aRdEprecisequal to pr#aRd [mpiRank (prmesh#commddm) ]
if VarfAprec is not a valid macro.

e func pr#prfe#K[int] pr#AEprec (pr#prfe#K[int] &ui) The function pr#AEprec computes
the parallel matrix-vector product, i.e. the action of the global operator AP on the local vector u;.
The computation is equivalent to Ri(zyzl R?DjA?preCuj) and is performed in parallel using local ma-
trices pr#aRdEprec and the function pr#prfe#update. In the sequential case, the global matrix
pr#AglobEprec is used instead.

* matrix<pr#prfe#K> pr#zZCM the interpolation operator Z from the coarse finite element space
pr#VhCoarse to the global finite element space pr#prfe#Vhglob. Defined only in the sequential case.

* matrix<pr#prfe#K> pr#ZCMi the local interpolation operator Z; from the coarse finite element space
pr#VhCoarse to the local finite element space pr#prfe#Vhi. Defined only if this mpi rank is not excluded
from the spatial domain decomposition, i. e. prmeshf#excluded = 0. pr#ZCMi is used for the parallel
application of Z and Z7.

* matrix<pr#prfe#K> pr#ECM the coarse space operator £/ = Z7 AFP 7 The matrix pr#ECM is assem-
bled by discretizing the variational form given by VarfEprec on the coarse mesh and factorized by the parallel
direct solver MUMPS using the first pr#prfe#prmesh#pCS ranks of the mpi communicator, with mpi rank
0 as the master process. The number of mpi processes dedicated to the coarse problem is set by the underly-
ing mesh decomposition of problem pr, which also specifies if these mpi ranks are excluded from the spatial
decomposition or not. These parameters are set by ffddmpCS and ffddmexclude when calling [fddmbuildDmesh
(see ffddmbuildDmesh for more details).

Solving the linear system

func pr#prfe#K[int] pr#£fGMRES (pr#prfe#K[int]& x0i, pr#prfe#K[int]& bi, real eps, int
—itmax, string sp)

solves the linear system for problem pr using the flexible GMRES algorithm with preconditioner M ~! (corresponding
to pr#PREC). Returns the local vector corresponding to the restriction of the solution to pr#prfe#vhi. x0i and bi
are local distributed vectors corresponding respectively to the initial guess and the right-hand side (see ffddmbuildrhs).
eps is the stopping criterion in terms of the relative decrease in residual norm. If eps < 0, the residual norm itself is
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used instead. itmax sets the maximum number of iterations. sp selects between the "1left" or "right" precon-
ditioning variants: left preconditioned GMRES solves M~ Az = M ~!b, while right preconditioned GMRES solves
AM~ty = bfory, withx = M~1y.

Using HPDDM within ffddm
ffddm allows you to use HPDDM to solve your problem, effectively replacing the ffddm implementation of all
parallel linear algebra computations. ffddm can then be viewed as a finite element interface for HPDDM.

You can use HPDDM features unavailable in ffddm such as advanced Krylov subspace methods implementing block
and recycling techniques.

To switch to HPDDM, simply define the macro pr#withhpddm before using ffddmsetupOperator. You can then
pass HPDDM options with command-line arguments or directly to the underlying HPDDM operator pr#hpddmOP:

macro PBwithhpddm ()1l // EOM
ffddmsetupOperator ( PB , FE , Varf )
set (PBhpddmOP, sparams="-hpddm_krylov_method gcrodr");

You can also choose to replace only the Krylov solver, by defining the macro pr#withhpddmkrylov before using
JfddmsetupOperator. Doing so, a call to pr#£GMRES will call the HPDDM Krylov solver, with ffddm providing the
operator and preconditioner through pr#A and pr#PREC.

An example can be found in Helmholtz-2d-HPDDM-BGMRES.edp, see the Examples section.

Advanced use

Local finite element spaces for non Lagrange finite elements

For Lagrange finite elements, the partition of unity (D;);=1,... n (see pr#Dk and pr#Dih) is built by interpolating
the local P1 partition of unity function onto the components of the Pk finite element space pr#Vvhi. For non Lagrange
finite element spaces, such as Raviart—-Thomas or Nédélec edge elements, the definition of the degrees of freedom can
be more involved, and interpolating the P1 partition of unity functions directly is inappropriate. The idea is then to use
a “pseudo” finite element Pkpart derived from Pk which is suitable for interpolating the P1 partition of unity, in the
sense that it will produce a partition of unity for Pk.

For example, for first-order Nédélec edge elements (Edge03d), whose degrees of freedom are the circulations along
the edges, we define the “pseudo” finite element Edge03ds0 which can be seen as a scalar Lagrange counterpart: the
numbering of the degrees of freedom is the same, but they correspond to the value at the edge midpoints.

For Lagrange finite elements, the distributed finite element spaces are built using ffddmbuildDfespace. Here you must
use ffddmbuildDfespaceEdge, which builds the distributed finite element space using a “pseudo” finite element to
build the partition of unity:

ffddmbuildDfespaceEdge (pr, prmesh, scalar,def, init, Pk, defpart, initpart, Pkpart)

where macros defpart and initpart specify how to define and interpolate a function in the ‘pseudo’ finite element
space Pkpart, similar to def and init for Pk.

An example with first-order Nédélec edge elements (Edge03d + Edge03ds0) for Maxwell equations can be found in
Maxwell-3d-simple.edp, see the Examples section.
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Inexact coarse solves for two level methods

We have seen in the Two level preconditioners section that two level methods produce a ‘coarse space operator’ E that
needs to be inverted at each iteration. By default the coarse space operator matrix is factorized by the direct solver
MUMPS. This can become a bottleneck and hinder scalability for large problems, where E' can become too large to be
factorized efficiently. To remedy this, we can instead opt to use an iterative method to solve the coarse problem at each
iteration. Moreover, in order to retain robustness, a DD preconditioner can be used to solve the inner coarse problem
more efficiently.

Coarse mesh and inexact coarse solve

When the coarse problem comes from a coarse mesh discretization, a natural way to do inexact coarse solve is to
use a one level domain decomposition method on the coarse problem, with the same subdomain partitioning for the
coarse and fine meshes. This means that each processor is associated to one spatial subdomain and hosts the two local
(nested) coarse and fine submeshes corresponding to this subdomain, as well as the corresponding local matrices for
the two discretizations. This natural choice offers interesting benefits:

¢ We naturally recover a load-balanced parallel implementation, provided that the initial partitioning is balanced.
* The communication pattern between neighboring subdomains is the same for the coarse and fine discretizations.

+ The assembly and the application of the interpolation operator Z (and Z*') between the fine and the coarse
spaces can be computed locally in each subdomain and require no communication.

In ffddm, the first step is to build the two nested mesh decompositions using ffddmbuildDmeshNested:

ffddmbuildDmeshNested (pr, Thc, s, comm)

decomposes the coarse mesh The into overlapping submeshes and creates the fine decomposition by locally refining
submeshes by a factor of s, i.e. splitting each mesh element into s¢ elements, s > 1. This will create and expose
variables corresponding to both decompositions, prefixed by pr for the fine mesh and by pr#Coarse for the coarse
mesh (see [fddmbuildDmesh). It also sets the integer variable pr#binexactCsS to 1, which specifies that any two
level method defined on mesh prefix pr will use inexact coarse solves.

The distributed finite element spaces, operators and preconditioners can then be defined for both decompositions. Here
is an example where the coarse problem is solved using a one level method:

ffddmbuildDmeshNested (M, Thc, 3, mpiCommWorld)

ffddmbuildDfespace (FE, M, real, def, init, Pk)
ffddmbuildDfespace (FECoarse, MCoarse, real, def, init, Pk)

// coarse operator (Varf of E):

ffddmsetupOperator (PBCoarse, FECoarse, VarfEprec)
// one level preconditioner for the coarse problem:
ffddmsetupPrecond (PBCoarse, VarfPrecC)

// operator for the fine problem:
ffddmsetupOperator (PB, FE, Varf)

// one level preconditioner for the fine problem:
ffddmsetupPrecond (PB, VarfPrec)

// add the second level:
ffddmcoarsemeshsetup (PB, Thc, VarfEprec, null)

[...]
u[] = PBEGMRES (x0, rhs, l.e-6, 200, "right");
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Remarks:

Note that the different prefixes need to match: prefixes for the coarse decomposition have to be those of the fine
decomposition, appended with Coarse.

The operator and preconditioner for the coarse problem have to be defined before those of the fine prob-
lem, because the pr#Q function is actually defined by ffddmsetupPrecond and involves a call to
pr#CoarsefGMRES (which is defined by ffddmsetupPrecond for the coarse problem) for the iterative
solution of the coarse problem if pr#prfe#prmesh#binexactCs # 0.

In this case, f fddmcoarsemeshsetup does not use The or VarfEprec and only builds the local interpolation
matrices between fine and coarse local finite element spaces pr#prfe#Vhi and pr#prfe#CoarseVhi to
be able to apply Z and Z7.

The GMRES tolerance for the inner solution of the coarse problem is set by ffddminexactCStol and is equal to
0.1 by default.

In practice, these methods can give good results for wave propagation problems, where the addition of artificial ab-
sorption in the preconditioner helps with the convergence of the one level method for the inner solution of the coarse
problem. You can find an example for Maxwell equations in Maxwell_Cobracavity.edp, see the Examples section.
More details can be found here and in

M. Bonazzoli, V. Dolean, I. G. Graham, E. A. Spence, P.-H. Tournier. Domain decomposition precon-
ditioning for the high-frequency time-harmonic Maxwell equations with absorption. Mathematics of
Computation, 2019. DOI: https://doi.org/10.1090/mcom/3447

3.9.3 Parameters

Command-line arguments

—ffddm_verbosity N, the level of verbosity of ffddm, see ffddmverbosity (default 3).
—-segddm N use ffddm in sequential mode, with N the number of subdomains.

-noGlob if present, do not define any global quantity (such as saving the global mesh for plotting or building
the global restriction matrices). Cannot be used in sequential mode or with plotting.

—-ffddm_partitioner N specifies how to partition the initial domain, see ffddmpartitioner (default 1,
metis).

—-ffddm_overlap N specifies the width of the overlap region between subdomains, see ffddmoverlap (default
1).

—-ffddm_master_p N, number of master processes for the coarse problem (for two level preconditioners),
see ffddmpCS (default 1).

—-ffddm_master_exclude 0|1 exclude master processes from the domain decomposition, see ffddmex-
clude (default 0).

—ffddm_split N, level of refinement of the local submeshes with respect to the initial global mesh, see
[ffddmsplit (default 1).

—-ffddm_schwarz_method S, specifies the type of one level preconditioner M L. “asm” (Additive
Schwarz), “ras” (Restricted Additive Schwarz), “oras” (Optimized Restricted Additive Schwarz), “soras” (Sym-
metric Optimized Restricted Additive Schwarz) or “none” (no preconditioner), see ffddmprecond (default “ras”).

—-ffddm_geneo_nu N, number of local eigenvectors to compute in each subdomain when solving the local
generalized eigenvalue problem for the GenEO method, see ffddmnu (default 20).
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e —ffddm_geneo_threshold R, threshold parameter for selecting local eigenvectors when solving the lo-

cal generalized eigenvalue problems for the GenEO method, see ffddmtau (default 0.5). If the command-line
parameter -ffddm_geneo_nu N is used, then ffddmtau is initialized to 0.

e —ffddm_schwarz_coarse_correction S, specifies the coarse correction formula to use for the two

level preconditioner: “AD” (Additive), “BNN" (Balancing Neumann-Neumann), “ADEF1” (Adapted Deflation
Variant 1), “ADEF2” (Adapted Deflation Variant 2), “RBNN1" (Reduced Balancing Variant 1), “RBNN2”
(Reduced Balancing Variant 2) or “none” (no coarse correction), see ffddmcorrection (default “ADEF1”).

e —ffddm_inexactCS_tol R, specifies the GMRES tolerance for the inner solution of the coarse problem

when using a two level method with approximate coarse solves, see ffddminexactCStol (default 0.1).

Global parameters

ffddmverbosity initialized by command-line argument -ffddm_verbosity N, specifies the level of ver-
bosity of ffddm (default 3).

ffddmpartitioner initialized by command-line argument -ffddm_partitioner N, specifies how to partition
the initial domain:

— N=0: user-defined partition through the definition of a macro, see ffddmbuildDmesh
— N=1: use the automatic graph partitioner metis (default)
— N=2: use the automatic graph partitioner scotch

ffddmoverlap initialized by command-line argument -ffddm_overlap N, specifies the number of layers of
mesh elements in the overlap region between subdomains N >= 1 (default 1). Remark The actual width of
the overlap region between subdomains is 2N, since each subdomain is extended by N layers of elements in a
symmetric way.

ffddminterfacelabel the label of the new border of the subdomain meshes (the interface between the
subdomains) (default 10). Used for imposing problem-dependent boundary conditions at the interface between
subdomains for the preconditioner, for example optimized Robin boundary conditions (see ORAS).

ff£ddmpCSs initialized by command-line argument -ffddm_master_p N, number of mpi processes used for the
assembly and resolution of the coarse problem for two level preconditioners (default 1).

ffddmexclude initialized by command-line argument -ffddm_master_exclude, 0 or 1 (default 0). If true,
mpi ranks participating in the assembly and resolution of the coarse problem for two level preconditioners will
be excluded from the spatial domain decomposition and will only work on the coarse problem.

ffddmsplit initialized by command-line argument ffddm_split N, level of refinement of the local submeshes
with respect to the initial global mesh (default 1). This is useful for large problems, where we want to avoid
working with a very large global mesh. The idea is to start from a coarser global mesh, and generate finer local
meshes in parallel during the mesh decomposition step in order to reach the desired level of refinement for the
subdomains. For example, calling ffddmbuildDmesh with ffddmsplit = 3 will generate local submeshes where
each mesh element of the initial mesh is split into 3¢ elements.

ffddmprecond initialized by command-line argument -ffddm_schwarz_method S, specifies the type of one
level preconditioner M, ! to build when calling ffddmsetupPrecond: “asm” (Additive Schwarz), “ras” (Re-
stricted Additive Schwarz), “oras” (Optimized Restricted Additive Schwarz), “soras” (Symmetric Optimized Re-
stricted Additive Schwarz) or “none” (no preconditioner). Default is “ras”. See ffddmsetupPrecond for more
details.

ffddmnu initialized by command-line argument -ffddm_geneo_nu N, number of local eigenvectors to com-
pute in each subdomain when solving the local generalized <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>