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Chapter 1

Introduction

1.1 Introduction to the toric package

This manual describes the toric package for working with toric varieties in GAP. Toric varieties

can be dealt with more easily than general varieties since often times questions about a toric variety

can be reformulated in terms of combinatorial geometry. Some coding theory commands related to

toric varieties are contained in the error-correcting codesGUAVA package (for example, the command

ToricCode). We refer to theGUAVAmanual [JFM] and the expository paper [JV02] for more details.

The toric package also contains several commands unrelated to toric varieties (mostly for list

manipulations). These will not be described in this documention but they are brie�y documented in

the lib/util.gd �le.

toric is implemented in theGAP language, and runs on any system supportingGAP4.3 and above.

The toric package is loaded with the command

gap> LoadPackage( "toric" );

Please send bug reports, suggestions and other comments about toric to

support@gap-system.org.

1.2 Introduction to constructing toric varieties

Rather than sketch the theory of toric varieties, we refer to [JV02] and [Ful93] for details. However,

we brie�y describe some terminology and notation.

1.2.1 Generalities

Let F denote a �eld and R= F [x1; :::;xn] be a ring in n variables. A BINOMIAL EQUATION in R is one

of the form

x
k1
1 :::xknn = x

`1
1 :::x`n

n ;

where ki � 0; ` j � 0 are integers. A binomial variety is a subvariety of af�ne n-space An
F de�ned

by a �nite set of binomial equations (such a variety need not be normal). A typical �toric variety�

is binomial, though they will be introduced via an a priori independent construction. The basic idea

of the construction is to replace each such binomial equation as above by a relation in a semigroup

contained in a lattice and replace R by the �group algebra� of this semigroup. By the way, a toric

variety is always normal (see for example, [Ful93], page 29).

4
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1.2.2 Basic combinatorial geometry constructions

LetQ denote the �eld of rational numbers and Z denote the set of integers. Let n> 1 denote an integer.

Let V = Qn having basis f1 = (1;0; :::;0), ..., fn = (0; :::;0;1). Let L0 = Zn � V be the standard

lattice in V . We identify V and L0
ZQ. We use h ; i to denote the (standard) inner product on V . Let

L�0 = Hom(L0;Z) = fv 2V j hv;wi 2 Z; 8w 2 L0g

denote the DUAL LATTICE, so (�xing the standard basis e�1,...,e
�

n dual to the f1,..., fn) L
�

0 may be iden-

ti�ed with Zn.

A CONE in V is a set s of the form

s = fa1v1+ :::+amvm j ai � 0g �V;

where v1; :::;vm 2 V is a given collection of vectors, called (semigroup) GENERATORS of s . A RA-

TIONAL CONE is one where v1; :::;vm 2 L0. A STRONGLY CONVEX cone is one which contains no

lines through the origin.

By abuse of terminology, from now on a CONE of L0 is a strongly convex rational cone.

A FACE of a cone s is either s itself or a subset of the form H\s , where H is a codimension one

subspace of V which intersects the cone non-trivially and such that the cone is contained in exactly

one of the two half-spaces determined by H. A RAY (or edge) of a cone is a one-dimensional face.

Typically, cones are represented in toric by the list of vectors de�ning their rays. The DIMENSION of

a cone is the dimension of the vector space it spans. The toric package can test if a given vector is in

a given cone (see InsideCone).

If s is a cone then the DUAL CONE is de�ned by

s� = fw 2 L�0
Q j hv;wi � 0; 8v 2 sg:

The toric package can test if a vector is in the dual of a given cone (see InDualCone).

Associate to the dual cone s� is the semigroup

Ss = s�\L�0 = fw 2 L�0 j hv;wi � 0; 8v 2 sg:

Though L�0 has $n$ generators as a lattice, typically Ss will have more than n generators as a

semigroup. The toric package can compute a minimal list of semigroup generators of Ss (see

DualSemigroupGenerators).

A fan is a collection of cones which ��t together� well. A FAN in L0 is a set D= fsg of rational
strongly convex cones in V = L0
Q such that

� if s 2 D and t � s is a face of s then t 2 D,

� if s1;s2 2 D then the intersection s1\s2 is a face of both s1 and s2 (and hence belongs to D).

In particular, the face of a cone in a fan is a cone is the fan.

IfV is the (set-theoretic) union of the cones in D then we call the fan COMPLETE. We shall assume

that all fans are �nite. A fan is determined by its list of maximal cones.

Notation: A fan D is represented in toric as a set of maximal cones. For example, if D is the fan

with maximal cones s1 = Q+ � f1 +Q+ � (� f1 + f2), s2 = Q+ � (� f1 + f2)+Q+ � (� f1� f2), s3 =
Q+ �(� f1� f2)+Q+ � f1, then D is represented by [[[1;0]; [�1;1]]; [[�1;1]; [�1;�1]]; [[�1;�1]; [1;0]]].

The toric package can compute all cones in a fan of a given dimension (see ConesOfFan). More-

over, toric can compute the set of all normal vectors to the faces (i.e., hyperplanes) of a cone (see

Faces).

The STAR of a cone s in a fan D is the set Ds of cones in D containing s as a face. The toric

package can compute stars (see ToricStar).
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1.2.3 Basic af�ne toric variety constructions

Let

Rs = F [Ss ]

denote the �group algebra� of this semigroup. It is a �nitely generated commutative F-algebra. It is in

fact integrally closed ([Ful93], page 29). We may interprete Rs as a subring of R = F [x1; :::;xn]
as follows: First, identify each e�i with the variable xi. If Ss is generated as a semigroup by

vectors of the form `1e
�

1 + :::+ `ne
�

n, where `i is an integer, then its image in R is generated by

monomials of the form x
`1
1 : : :x`n

n . The toric package can compute these generating monomials (see

EmbeddingAffineToricVariety). See Lemma 2.14 in [JV02] for more details. This embedding

can also be used to resolve singularities - see section 5 of [JV02] for more details.

Let

Us = Spec Rs :

This de�nes an AFFINE TORIC VARIETY (associated to s ). It is known that the coordinate ring

Rs of the af�ne toric variety Us has the form Rs = F [x1; :::;xn]=J, where J is an ideal. The toric

package can compute generators of this ideal by using the DualSemigroupGenerators and the

EmbeddingAffineToricVariety commands.

Roughly speaking, the toric variety X(D) associated to the fan D is given by a collection of

af�ne pieces $U_{\sigma_1},U_{\sigma_2},\dots,U_{\sigma_d}$ which �glue� together (where

D= fsig). The af�ne pieces are given by the zero sets of polynomial equations in some af�ne spaces

and the gluings are given by maps fi; j :Usi
!Us j

which are de�ned by ratios of polynomials on open

subsets of the $U_{\sigma_i}$. The toric package does not compute these gluings or work directly

with these (non-af�ne) varieties X(D).
A cone s � V is said to be NONSINGULAR if it is generated by part of a basis for the lattice L0.

A fan D of cones is said to be NONSINGULAR if all its cones are nonsingular. It is known that Us is

nonsingular if and only if s is nonsingular (Proposition 2.1 in [Ful93]).

EXAMPLE: In three dimensions, consider the cones se1;e2;e3;i; j generated by (e1 � 1;e2 � 1;e3 � 1)
and the standard basis vectors fi; f j, where ei = �1 and 1 � i 6= j � 3. There are 8 cones per octant,

for a total of 64 cones. Let D denote the fan in V = Q3 determined by these maximal cones. The toric

variety X(D) is nonsingular.

1.2.4 Riemann-Roch spaces and related constructions

Although the toric package does not work directly with the toric varieties X(D), it can com-

pute objects associated with it. For example, it can compute the Euler characteristic (see

EulerCharacteristic), Betti numbers (see BettiNumberToric), and the number of GF(q)-rational

points (see CardinalityOfToricVariety) of X(D), provided D is nonsingular.

For an algebraic variety X the group of WEIL DIVISORS on X is the abelian group Div(X) gener-
ated (additively) by the irreducible subvarieties of X of codimension 1. For a toric variety X(D) with
dense open torus T , a Weil divisor D is T-INVARIANT if D = T �D. The group of T -invariant Weil

divisors is denoted TDiv(X). This is �nitely generated by an explicitly given �nite set of divisors

fD1; :::;Drg which correspond naturally to certain cones in D (see [Ful93] for details). In particular,

we may represent such a divisor D in TDiv(X) by an k-tuple (d1; :::;dk) of integers.
Let D denote a fan in V = Qn with rays (or edges) ti, 1 � i � k, and let vi denote the �rst lattice

point on ti. Associated to the T-invariant Weil divisor D= d1D1+ :::+dkDk, is the POLYTOPE

PD = fx= (x1; :::;xn) j hx;vii � �di; 81� i� kg:
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The toric package can compute PD (see DivisorPolytope), as well as the set of all lattice points con-

tained in this polytope (see DivisorPolytopeLatticePoints). Also associated to the T -invariant

Weil divisor D= d1D1+ :::+dkDk, is the Riemann-Roch space, L(D). This is a space of functions on
X(D) whose zeros and poles are �controlled� by D (for a more precise de�nition, see [Ful93]). The

toric package can compute a basis for L(D) (see RiemannRochBasis), provided D is complete and

nonsingular.



Chapter 2

Cones and semigroups

2.1 Cones

This section introduces the toric commands which deal with cones and related combinatorial-

geometric objects. Recall, a CONE is a strongly convex polyhedral cone ([Ful93], page 4).

2.1.1 InsideCone

. InsideCone(v, L) (function)

This command returns `true` if the vector v belongs to the interior of the (strongly convex poly-

hedral) cone generated by the vectors in L .

This procedure does not check if L generates a strongly convex polyhedral cone.
Example

gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];; v:=[0,0,1];;

gap> InsideCone(v,L);

false

gap> L:=[[1,0],[3,4]];;

gap> v:=[1,-7]; InsideCone(v,L);

[ 1, -7 ]

false

gap> v:=[4,-3]; InsideCone(v,L);

[ 4, -3 ]

false

gap> v:=[4,-4]; InsideCone(v,L);

[ 4, -4 ]

false

gap> v:=[4,1]; InsideCone(v,L);

[ 4, 1 ]

true

2.1.2 InDualCone

. InDualCone(v, L) (function)

This command returns `true` if v belongs to the dual of the cone generated by the vectors in L .

8
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Example
gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];; v:=[0,0,1];;

gap> InDualCone(v,L);

true

gap> L:=[[1,0],[3,4]];

[ [ 1, 0 ], [ 3, 4 ] ]

gap> v:=[1,-7]; InDualCone(v,L);

[ 1, -7 ]

false

gap> v:=[4,-3]; InDualCone(v,L);

[ 4, -3 ]

true

gap> v:=[4,-4]; InDualCone(v,L);

[ 4, -4 ]

false

gap> v:=[4,1]; InDualCone(v,L);

[ 4, 1 ]

true

2.1.3 PolytopeLatticePoints

. PolytopeLatticePoints(A, Perps) (function)

Input: Perps= [v1; :::;vk] is the list of �inward normal" vectors perpendicular to the walls of a

polytope P in the vector space L�0
Q,

A= [a1; :::;ak] is a k-tuple of integers, where ai denotes the amount the i-th �wall" (de�ned by the

normal vi) is shifted from the origin (each ai is assumed non-negative).

For example, the polytope P with faces [x=0, x=a, y=0, y=b] has Perps=
[[1;0]; [�1;0]; [0;1]; [0;�1]] and A= [0;a;0;b].
Output: the list of points in P\L�0.

Example
gap> Perps:=[[1,0],[-1,0],[0,1],[0,-1]];

[ [ 1, 0 ], [ -1, 0 ], [ 0, 1 ], [ 0, -1 ] ]

gap> A:=[0,4,0,3];

[ 0, 4, 0, 3 ]

gap> PolytopeLatticePoints(A,Perps);

[ [ 0, 0 ], [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 1, 0 ], [ 1, 1 ], [ 1, 2 ],

[ 1, 3 ], [ 2, 0 ], [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 3, 0 ], [ 3, 1 ],

[ 3, 2 ], [ 3, 3 ], [ 4, 0 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ] ]

gap> Length(last);

20

2.1.4 Faces

. Faces(Rays) (function)

Input: Rays is a list of rays for the fan D

Output: All the normals to the faces (hyperplanes of the cone).
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Example
gap> Cones1:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;

gap> Faces(Cones1[1]);

[ [ 1/2, 1 ], [ 2, 1 ] ]

gap> Faces(Cones1[2]);

[ [ -2, -1 ], [ -1, 1 ] ]

gap> Cones2:=[[[ 2,0,0],[0,2,0],[0,0,2]], [[2,0,0], [0,2,0], [2,-2,1],[1,2,-2]]];;

gap> Faces(Cones2[1]);

[ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 0 ] ]

gap> Faces(Cones2[2]);

[ [ 1/3, 5/6, 1 ], [ 1/2, 0, -1 ], [ 2, 0, 1 ] ]

2.1.5 ConesOfFan

. ConesOfFan(Delta, k) (function)

Input: Delta is the fan of cones,

k is the dimension of the cones desired.

Output: The k -dimensional cones in the fan.

2.1.6 NumberOfConesOfFan

. NumberOfConesOfFan(Delta, k) (function)

Input: Delta is the fan of cones in V = Qn,

k is the dimension of the cones counted.

Output: The number of k -dimensional cones in the fan.

Idea: The fan Delta is represented as a set of maximal cones. For each maximal cone, look at the

k -dimensional faces obtained by taking n choose k subsets of the rays describing the cone. Certain of

these k -subsets yield the desired cones.
Example

gap> Delta0:=[ [ [2,0,0],[0,2,0],[0,0,2] ], [ [2,0,0],[0,2,0],[2,-2,1],[1,2,-2] ] ];;

gap> NumberOfConesOfFan(Delta0,2);

6

gap> ConesOfFan(Delta0,2);

[ [ [ 0, 0, 2 ], [ 0, 2, 0 ] ], [ [ 0, 0, 2 ], [ 2, 0, 0 ] ],

[ [ 0, 2, 0 ], [ 1, 2, -2 ] ], [ [ 0, 2, 0 ], [ 2, -2, 1 ] ],

[ [ 0, 2, 0 ], [ 2, 0, 0 ] ], [ [ 1, 2, -2 ], [ 2, -2, 1 ] ] ]

gap> ConesOfFan(Delta0,1);

[ [ [ 0, 0, 2 ] ], [ [ 0, 2, 0 ] ], [ [ 1, 2, -2 ] ],

[ [ 2, -2, 1 ] ], [ [ 2, 0, 0 ] ] ]

gap> NumberOfConesOfFan(Delta0,1);

5

2.1.7 ToricStar

. ToricStar(sigma, Delta) (function)
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Input: sigma is a cone in the fan, represented by its set of maximal (i.e., highest dimensional)

cones.

Delta is the fan of cones in V = Qn.

Output: The star of the cone sigma in Delta , i.e., the cones t which have sigma as a face.

Example
gap> MaxCones:=[ [ [2,0,0],[0,2,0],[0,0,2] ],

> [ [2,0,0],[0,2,0],[2,-2,1],[1,2,-2] ] ];;

gap> #this is the set of maximal cones in the fan Delta

gap> ToricStar([[1,0]],MaxCones);

[ ]

gap> ToricStar([[2,0,0],[0,2,0]],MaxCones);

[ [ [ 0, 2, 0 ], [ 2, 0, 0 ] ], [ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 2 ] ],

[ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 2, -2, 1 ], [ 1, 2, -2 ] ] ]

gap> MaxCones:=[ [ [2,0,0],[0,2,0],[0,0,2] ], [ [2,0,0],[0,2,0],[1,1,-2] ] ];;

gap> ToricStar([[2,0,0],[0,2,0]],MaxCones);

[ [ [ 0, 2, 0 ], [ 2, 0, 0 ] ], [ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 2 ] ],

[ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 1, 1, -2 ] ] ]

gap> ToricStar([[1,0]],MaxCones);

[ ]

2.2 Semigroups

2.2.1 DualSemigroupGenerators

. DualSemigroupGenerators(L) (function)

Input: L is a list of integral n-vectors generating a cone s .

Output: the generators of Ss ,

Idea: letM be the maximum of the absolute values of the coordinates of the L [i]'s, for each vector

v in [1::M]n, test if v is in the dual cone s�. If so, add v to list of possible generators. Once this for

loop is �nished, one can check this list for redundant generators. The trick is to simply omit those

elements which are of the form d1 + d2, where d1 and d2 are �small" elements in the integral dual

cone.

This program is not very ef�cient and should not be used in �large exam-

ples� involving semigroups with �many� generators. For example, if you take

L:=[[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]]; then DualSemigroupGenerators(L);

can exhaust GAP's memory allocation.

Example
gap> L:=[[1,0],[3,4]];; DualSemigroupGenerators([[1,0],[3,4]]);

[ [ 0, 0 ], [ 0, 1 ], [ 1, 0 ], [ 2, -1 ], [ 3, -2 ], [ 4, -3 ] ]

gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];;

gap> DualSemigroupGenerators(L);

[ [ 0, 0, 0 ], [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, -1, 0 ], [ 1, 0, -1 ] ]



Chapter 3

Af�ne toric varieties

This chapter concerns toric commands which deal with the coordinate rings of af�ne toric varieties

Us .

3.1 Ideals de�ning af�ne toric varieties

3.1.1 EmbeddingAf�neToricVariety

. EmbeddingAffineToricVariety(L) (function)

Input: L is a list generating a cone (as in DualSemigroupGenerators).

Output: the toroidal embedding of X = Spec(I), where I is the ideal of the af�ne toric variety (given

as a list of multinomials).

Example
gap> phi:=EmbeddingAffineToricVariety([[1,0],[3,4]]);

[ x_2, x_1, x_1^2/x_4, x_1^3/x_4^2, x_1^4/x_4^3 ]

gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];;

gap> phi:=EmbeddingAffineToricVariety(L);

[ x_3, x_2, x_1/x_5, x_1/x_6 ]

12
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Toric varieties X(D)

This chapter concerns toric commands which deal with certain objects associated to the (non-af�ne)

toric varieties X(D).

4.1 Riemann-Roch spaces

Let D denote a complete nonsingular fan.

4.1.1 DivisorPolytope

. DivisorPolytope(D, Rays) (function)

Input: Rays is the list of smallest integer vectors in the rays for the fan D which determine the

Weil divisors of X(D).
D is the list of coef�cients for the a Weil divisor.

Output: the linear expressions in the af�ne coordinates of the space of the cone which must be positive

for a point to be in the desired polytope.

Example
gap> DivisorPolytope([6,6,0],[[2,-1],[-1,2],[-1,-1]]);

[ 2*x_1-x_2+6, -x_1+2*x_2+6, -x_1-x_2 ]

See also Example 6.13 in [JV02].

4.1.2 DivisorPolytopeLatticePoints

. DivisorPolytopeLatticePoints(D, Delta, Rays) (function)

Input: Delta is the fan

Rays is the ordered list of rays for Delta

D is the list of coef�cients for a Weil divisor.

Output: the list of points in PD \ L�0 which parameterize the elements in the Riemann-Roch space

L(D), where PD is the polytope associated to the divisor D (see DivisorPolytope).

Example
gap> Div:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;

gap> Delta0:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;

13
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gap> P_Div:=DivisorPolytopeLatticePoints(Div,Delta0,Rays);

[ [ -6, -6 ], [ -5, -5 ], [ -5, -4 ], [ -4, -5 ], [ -4, -4 ], [ -4, -3 ],

[ -4, -2 ], [ -3, -4 ], [ -3, -3 ], [ -3, -2 ], [ -3, -1 ], [ -3, 0 ],

[ -2, -4 ], [ -2, -3 ], [ -2, -2 ], [ -2, -1 ], [ -2, 0 ], [ -2, 1 ],

[ -2, 2 ], [ -1, -3 ], [ -1, -2 ], [ -1, -1 ], [ -1, 0 ], [ -1, 1 ],

[ 0, -3 ], [ 0, -2 ], [ 0, -1 ], [ 0, 0 ], [ 1, -2 ], [ 1, -1 ], [ 2, -2 ] ]

4.1.3 RiemannRochBasis

. RiemannRochBasis(D, Delta, Rays) (function)

Input: Delta is a complete and nonsingular fan

D is the list of coef�cients for the Weil divisor

Rays is a list of rays for the fan used to describe the Weil divisors.

Output: A basis (a list of monomials) for the Riemann-Roch space of the divisor represented by D .

For details on how the Weil divisors can be expressed in terms of the rays of the fan, please see

section 3.3 in [Ful93]. This procedure does not check if the fan is complete and nonsingular.
Example

gap> Div:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;

gap> Delta0:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;

gap> RiemannRochBasis(Div,Delta0,Rays);

[ 1/(x_1^6*x_2^6), 1/(x_1^5*x_2^5), 1/(x_1^5*x_2^4), 1/(x_1^4*x_2^5),

1/(x_1^4*x_2^4), 1/(x_1^4*x_2^3), 1/(x_1^4*x_2^2), 1/(x_1^3*x_2^4),

1/(x_1^3*x_2^3), 1/(x_1^3*x_2^2), 1/(x_1^3*x_2), 1/x_1^3, 1/(x_1^2*x_2^4),

1/(x_1^2*x_2^3), 1/(x_1^2*x_2^2), 1/(x_1^2*x_2), 1/x_1^2, x_2/x_1^2,

x_2^2/x_1^2, 1/(x_1*x_2^3), 1/(x_1*x_2^2), 1/(x_1*x_2), 1/x_1, x_2/x_1,

1/x_2^3, 1/x_2^2, 1/x_2, 1, x_1/x_2^2, x_1/x_2, x_1^2/x_2^2 ]

4.2 Topological invariants

Throughout this section, X(D) must be non-singular.

4.2.1 EulerCharacteristic

. EulerCharacteristic(Delta) (function)

Input: Delta is a nonsingular fan of cones, represented by its list of maximal cones.

Output: the Euler characteristic of the toric variety X(D), where D is a fan determined by Delta .

Example
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;

gap> EulerCharacteristic(Cones);

3

Note: X(D) must be non-singular here.
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4.2.2 BettiNumberToric

. BettiNumberToric(Delta, k) (function)

Input: Delta represents a nonsingular fan D (represented by maximal cones),

k is an integer.

Output: the k -th Betti number of the toric variety X(D).
The BettiNumberToric procedure does not check if Delta is nonsingular. It is possible that this

procedure outputs nonsense when Delta is not represented by maximal cones or is nonsingular.
Example

gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;

gap> BettiNumberToric(Cones,1);

0

gap> BettiNumberToric(Cones,2);

1

gap> Cones:=[[[2,-1],[-1,1]],[[-1,1],[-1,0]],[[-1,0],[2,-1]]];;

gap> BettiNumberToric(Cones,1);

0

gap> BettiNumberToric(Cones,2);

1

Not to be confused with the Betti number of a polycyclically presented torsion free group, already

available in GAP.

4.3 Points over a �nite �eld

4.3.1 CardinalityOfToricVariety

. CardinalityOfToricVariety(Cones, q) (function)

Input: Cones is the list of maximal cones of a fan D, q is a prime power.

Output: The size of the set of GF(q)-rational points of the toric variety X(D).
Note: X(D) must be non-singular here.

Example
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;

gap> CardinalityOfToricVariety(Cones,3);

13

gap> CardinalityOfToricVariety(Cones,4);

21

gap> CardinalityOfToricVariety(Cones,5);

31

gap> CardinalityOfToricVariety(Cones,7);

57
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