{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE NegativeLiterals #-}
#include "MachDeps.h"
module Basement.Bits
( BitOps(..)
, FiniteBitsOps(..)
, Bits
, toBits
, allOne
) where
import Basement.Compat.Base
import Basement.Compat.Natural
import Basement.Numerical.Additive
import Basement.Numerical.Subtractive
import Basement.Numerical.Multiplicative
import Basement.Types.OffsetSize
import Basement.Types.Word128 (Word128)
import qualified Basement.Types.Word128 as Word128
import Basement.Types.Word256 (Word256)
import qualified Basement.Types.Word256 as Word256
import Basement.IntegralConv (wordToInt)
import Basement.Nat
import qualified Prelude
import qualified Data.Bits as OldBits
import Data.Maybe (fromMaybe)
import Data.Proxy
import GHC.Base hiding ((.))
import GHC.Prim
import GHC.Types
import GHC.Word
import GHC.Int
import Basement.Compat.Primitive
#if WORD_SIZE_IN_BITS < 64
import GHC.IntWord64
#endif
class FiniteBitsOps bits where
numberOfBits :: bits -> CountOf Bool
rotateL :: bits -> CountOf Bool -> bits
rotateR :: bits -> CountOf Bool -> bits
popCount :: bits -> CountOf Bool
bitFlip :: bits -> bits
countLeadingZeros :: bits -> CountOf Bool
default countLeadingZeros :: BitOps bits => bits -> CountOf Bool
countLeadingZeros n :: bits
n = CountOf Bool -> CountOf Bool -> CountOf Bool
loop CountOf Bool
stop CountOf Bool
forall a. Additive a => a
azero
where
stop :: CountOf Bool
stop = bits -> CountOf Bool
forall bits. FiniteBitsOps bits => bits -> CountOf Bool
numberOfBits bits
n
loop :: CountOf Bool -> CountOf Bool -> CountOf Bool
loop idx :: CountOf Bool
idx count :: CountOf Bool
count
| CountOf Bool
idx CountOf Bool -> CountOf Bool -> Bool
forall a. Eq a => a -> a -> Bool
== CountOf Bool
forall a. Additive a => a
azero = CountOf Bool
count
| bits -> Offset Bool -> Bool
forall bits. BitOps bits => bits -> Offset Bool -> Bool
isBitSet bits
n (CountOf Bool -> Offset Bool
forall a. CountOf a -> Offset a
sizeAsOffset CountOf Bool
idx) = CountOf Bool
count
| Bool
otherwise = CountOf Bool -> CountOf Bool -> CountOf Bool
loop (CountOf Bool -> Maybe (CountOf Bool) -> CountOf Bool
forall a. a -> Maybe a -> a
fromMaybe CountOf Bool
forall a. Additive a => a
azero (CountOf Bool
idx CountOf Bool -> CountOf Bool -> Difference (CountOf Bool)
forall a. Subtractive a => a -> a -> Difference a
- 1)) (CountOf Bool
count CountOf Bool -> CountOf Bool -> CountOf Bool
forall a. Additive a => a -> a -> a
+ 1)
countTrailingZeros :: bits -> CountOf Bool
default countTrailingZeros :: BitOps bits => bits -> CountOf Bool
countTrailingZeros n :: bits
n = CountOf Bool -> CountOf Bool
loop CountOf Bool
forall a. Additive a => a
azero
where
stop :: CountOf Bool
stop = bits -> CountOf Bool
forall bits. FiniteBitsOps bits => bits -> CountOf Bool
numberOfBits bits
n
loop :: CountOf Bool -> CountOf Bool
loop count :: CountOf Bool
count
| CountOf Bool
count CountOf Bool -> CountOf Bool -> Bool
forall a. Eq a => a -> a -> Bool
== CountOf Bool
stop = CountOf Bool
count
| bits -> Offset Bool -> Bool
forall bits. BitOps bits => bits -> Offset Bool -> Bool
isBitSet bits
n (CountOf Bool -> Offset Bool
forall a. CountOf a -> Offset a
sizeAsOffset CountOf Bool
count) = CountOf Bool
count
| Bool
otherwise = CountOf Bool -> CountOf Bool
loop (CountOf Bool
count CountOf Bool -> CountOf Bool -> CountOf Bool
forall a. Additive a => a -> a -> a
+ 1)
class BitOps bits where
(.&.) :: bits -> bits -> bits
(.|.) :: bits -> bits -> bits
(.^.) :: bits -> bits -> bits
(.<<.) :: bits -> CountOf Bool -> bits
(.>>.) :: bits -> CountOf Bool -> bits
bit :: Offset Bool -> bits
default bit :: Integral bits => Offset Bool -> bits
bit n :: Offset Bool
n = 1 bits -> CountOf Bool -> bits
forall bits. BitOps bits => bits -> CountOf Bool -> bits
.<<. (Offset Bool -> CountOf Bool
forall a. Offset a -> CountOf a
offsetAsSize Offset Bool
n)
isBitSet :: bits -> Offset Bool -> Bool
default isBitSet :: (Integral bits, Eq bits) => bits -> Offset Bool -> Bool
isBitSet x :: bits
x n :: Offset Bool
n = bits
x bits -> bits -> bits
forall bits. BitOps bits => bits -> bits -> bits
.&. (Offset Bool -> bits
forall bits. BitOps bits => Offset Bool -> bits
bit Offset Bool
n) bits -> bits -> Bool
forall a. Eq a => a -> a -> Bool
/= 0
setBit :: bits -> Offset Bool -> bits
default setBit :: Integral bits => bits -> Offset Bool -> bits
setBit x :: bits
x n :: Offset Bool
n = bits
x bits -> bits -> bits
forall bits. BitOps bits => bits -> bits -> bits
.|. (Offset Bool -> bits
forall bits. BitOps bits => Offset Bool -> bits
bit Offset Bool
n)
clearBit :: bits -> Offset Bool -> bits
default clearBit :: FiniteBitsOps bits => bits -> Offset Bool -> bits
clearBit x :: bits
x n :: Offset Bool
n = bits
x bits -> bits -> bits
forall bits. BitOps bits => bits -> bits -> bits
.&. (bits -> bits
forall bits. FiniteBitsOps bits => bits -> bits
bitFlip (Offset Bool -> bits
forall bits. BitOps bits => Offset Bool -> bits
bit Offset Bool
n))
infixl 8 .<<., .>>., `rotateL`, `rotateR`
infixl 7 .&.
infixl 6 .^.
infixl 5 .|.
newtype Bits (n :: Nat) = Bits { Bits n -> Natural
bitsToNatural :: Natural }
deriving (Int -> Bits n -> ShowS
[Bits n] -> ShowS
Bits n -> String
(Int -> Bits n -> ShowS)
-> (Bits n -> String) -> ([Bits n] -> ShowS) -> Show (Bits n)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall (n :: Nat). Int -> Bits n -> ShowS
forall (n :: Nat). [Bits n] -> ShowS
forall (n :: Nat). Bits n -> String
showList :: [Bits n] -> ShowS
$cshowList :: forall (n :: Nat). [Bits n] -> ShowS
show :: Bits n -> String
$cshow :: forall (n :: Nat). Bits n -> String
showsPrec :: Int -> Bits n -> ShowS
$cshowsPrec :: forall (n :: Nat). Int -> Bits n -> ShowS
Show, Bits n -> Bits n -> Bool
(Bits n -> Bits n -> Bool)
-> (Bits n -> Bits n -> Bool) -> Eq (Bits n)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall (n :: Nat). Bits n -> Bits n -> Bool
/= :: Bits n -> Bits n -> Bool
$c/= :: forall (n :: Nat). Bits n -> Bits n -> Bool
== :: Bits n -> Bits n -> Bool
$c== :: forall (n :: Nat). Bits n -> Bits n -> Bool
Eq, Eq (Bits n)
Eq (Bits n) =>
(Bits n -> Bits n -> Ordering)
-> (Bits n -> Bits n -> Bool)
-> (Bits n -> Bits n -> Bool)
-> (Bits n -> Bits n -> Bool)
-> (Bits n -> Bits n -> Bool)
-> (Bits n -> Bits n -> Bits n)
-> (Bits n -> Bits n -> Bits n)
-> Ord (Bits n)
Bits n -> Bits n -> Bool
Bits n -> Bits n -> Ordering
Bits n -> Bits n -> Bits n
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall (n :: Nat). Eq (Bits n)
forall (n :: Nat). Bits n -> Bits n -> Bool
forall (n :: Nat). Bits n -> Bits n -> Ordering
forall (n :: Nat). Bits n -> Bits n -> Bits n
min :: Bits n -> Bits n -> Bits n
$cmin :: forall (n :: Nat). Bits n -> Bits n -> Bits n
max :: Bits n -> Bits n -> Bits n
$cmax :: forall (n :: Nat). Bits n -> Bits n -> Bits n
>= :: Bits n -> Bits n -> Bool
$c>= :: forall (n :: Nat). Bits n -> Bits n -> Bool
> :: Bits n -> Bits n -> Bool
$c> :: forall (n :: Nat). Bits n -> Bits n -> Bool
<= :: Bits n -> Bits n -> Bool
$c<= :: forall (n :: Nat). Bits n -> Bits n -> Bool
< :: Bits n -> Bits n -> Bool
$c< :: forall (n :: Nat). Bits n -> Bits n -> Bool
compare :: Bits n -> Bits n -> Ordering
$ccompare :: forall (n :: Nat). Bits n -> Bits n -> Ordering
$cp1Ord :: forall (n :: Nat). Eq (Bits n)
Ord, Typeable)
type SizeValid n = (KnownNat n, 1 <= n)
lift :: Int -> Natural
lift :: Int -> Natural
lift = Int -> Natural
forall a b. (Integral a, Num b) => a -> b
Prelude.fromIntegral
{-# INLINABLE lift #-}
toBits :: SizeValid n => Natural -> Bits n
toBits :: Natural -> Bits n
toBits nat :: Natural
nat = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits Natural
nat Bits n -> Bits n -> Bits n
forall bits. BitOps bits => bits -> bits -> bits
.&. Bits n
forall (n :: Nat). SizeValid n => Bits n
allOne
allOne :: forall n . SizeValid n => Bits n
allOne :: Bits n
allOne = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (2 Natural -> Integer -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
Prelude.^ Integer
n Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
Prelude.- Natural
forall a. Multiplicative a => a
midentity)
where
n :: Integer
n = Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)
instance SizeValid n => Enum (Bits n) where
toEnum :: Int -> Bits n
toEnum i :: Int
i | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< 0 Bool -> Bool -> Bool
&& Int -> Natural
lift Int
i Natural -> Natural -> Bool
forall a. Ord a => a -> a -> Bool
> Bits n -> Natural
forall (n :: Nat). Bits n -> Natural
bitsToNatural Bits n
maxi = String -> Bits n
forall a. HasCallStack => String -> a
error "Bits n not within bound"
| Bool
otherwise = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Int -> Natural
lift Int
i)
where maxi :: Bits n
maxi = Bits n
forall (n :: Nat). SizeValid n => Bits n
allOne :: Bits n
fromEnum :: Bits n -> Int
fromEnum (Bits n :: Natural
n) = Natural -> Int
forall a. Enum a => a -> Int
fromEnum Natural
n
instance SizeValid n => Bounded (Bits n) where
minBound :: Bits n
minBound = Bits n
forall a. Additive a => a
azero
maxBound :: Bits n
maxBound = Bits n
forall (n :: Nat). SizeValid n => Bits n
allOne
instance SizeValid n => Additive (Bits n) where
azero :: Bits n
azero = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits 0
+ :: Bits n -> Bits n -> Bits n
(+) (Bits a :: Natural
a) (Bits b :: Natural
b) = Natural -> Bits n
forall (n :: Nat). SizeValid n => Natural -> Bits n
toBits (Natural
a Natural -> Natural -> Natural
forall a. Additive a => a -> a -> a
+ Natural
b)
scale :: n -> Bits n -> Bits n
scale n :: n
n (Bits a :: Natural
a) = Natural -> Bits n
forall (n :: Nat). SizeValid n => Natural -> Bits n
toBits (n -> Natural -> Natural
forall a n. (Additive a, IsNatural n) => n -> a -> a
scale n
n Natural
a)
instance SizeValid n => Subtractive (Bits n) where
type Difference (Bits n) = Bits n
(-) (Bits a :: Natural
a) (Bits b :: Natural
b) = Bits n -> (Natural -> Bits n) -> Maybe Natural -> Bits n
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Bits n
forall a. Additive a => a
azero Natural -> Bits n
forall (n :: Nat). SizeValid n => Natural -> Bits n
toBits (Natural
a Natural -> Natural -> Difference Natural
forall a. Subtractive a => a -> a -> Difference a
- Natural
b)
instance SizeValid n => Multiplicative (Bits n) where
midentity :: Bits n
midentity = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits 1
* :: Bits n -> Bits n -> Bits n
(*) (Bits a :: Natural
a) (Bits b :: Natural
b) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
Prelude.* Natural
b)
instance SizeValid n => IDivisible (Bits n) where
div :: Bits n -> Bits n -> Bits n
div (Bits a :: Natural
a) (Bits b :: Natural
b) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`Prelude.div` Natural
b)
mod :: Bits n -> Bits n -> Bits n
mod (Bits a :: Natural
a) (Bits b :: Natural
b) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`Prelude.mod` Natural
b)
divMod :: Bits n -> Bits n -> (Bits n, Bits n)
divMod (Bits a :: Natural
a) (Bits b :: Natural
b) = let (q :: Natural
q, r :: Natural
r) = Natural -> Natural -> (Natural, Natural)
forall a. Integral a => a -> a -> (a, a)
Prelude.divMod Natural
a Natural
b in (Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits Natural
q, Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits Natural
r)
instance SizeValid n => BitOps (Bits n) where
.&. :: Bits n -> Bits n -> Bits n
(.&.) (Bits a :: Natural
a) (Bits b :: Natural
b) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
OldBits..&. Natural
b)
.|. :: Bits n -> Bits n -> Bits n
(.|.) (Bits a :: Natural
a) (Bits b :: Natural
b) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
OldBits..|. Natural
b)
.^. :: Bits n -> Bits n -> Bits n
(.^.) (Bits a :: Natural
a) (Bits b :: Natural
b) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
`OldBits.xor` Natural
b)
.<<. :: Bits n -> CountOf Bool -> Bits n
(.<<.) (Bits a :: Natural
a) (CountOf w :: Int
w) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Bits n -> CountOf Bool -> Bits n
(.>>.) (Bits a :: Natural
a) (CountOf w :: Int
w) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural
a Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
bit :: Offset Bool -> Bits n
bit (Offset w :: Int
w) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Int -> Natural
forall a. Bits a => Int -> a
OldBits.bit Int
w)
isBitSet :: Bits n -> Offset Bool -> Bool
isBitSet (Bits a :: Natural
a) (Offset w :: Int
w) = Natural -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
OldBits.testBit Natural
a Int
w
setBit :: Bits n -> Offset Bool -> Bits n
setBit (Bits a :: Natural
a) (Offset w :: Int
w) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
OldBits.setBit Natural
a Int
w)
clearBit :: Bits n -> Offset Bool -> Bits n
clearBit (Bits a :: Natural
a) (Offset w :: Int
w) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
OldBits.clearBit Natural
a Int
w)
instance (SizeValid n, NatWithinBound (CountOf Bool) n) => FiniteBitsOps (Bits n) where
bitFlip :: Bits n -> Bits n
bitFlip (Bits a :: Natural
a) = Natural -> Bits n
forall (n :: Nat). Natural -> Bits n
Bits (Natural -> Natural
forall a. Bits a => a -> a
OldBits.complement Natural
a)
numberOfBits :: Bits n -> CountOf Bool
numberOfBits _ = Proxy n -> CountOf Bool
forall (n :: Nat) ty (proxy :: Nat -> *).
(KnownNat n, NatWithinBound (CountOf ty) n) =>
proxy n -> CountOf ty
natValCountOf (Proxy n
forall k (t :: k). Proxy t
Proxy @n)
rotateL :: Bits n -> CountOf Bool -> Bits n
rotateL a :: Bits n
a i :: CountOf Bool
i = (Bits n
a Bits n -> CountOf Bool -> Bits n
forall bits. BitOps bits => bits -> CountOf Bool -> bits
.<<. CountOf Bool
i) Bits n -> Bits n -> Bits n
forall bits. BitOps bits => bits -> bits -> bits
.|. (Bits n
a Bits n -> CountOf Bool -> Bits n
forall bits. BitOps bits => bits -> CountOf Bool -> bits
.>>. CountOf Bool
d)
where
n :: CountOf Bool
n = Proxy n -> CountOf Bool
forall (n :: Nat) ty (proxy :: Nat -> *).
(KnownNat n, NatWithinBound (CountOf ty) n) =>
proxy n -> CountOf ty
natValCountOf (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
d :: CountOf Bool
d = CountOf Bool -> Maybe (CountOf Bool) -> CountOf Bool
forall a. a -> Maybe a -> a
fromMaybe (CountOf Bool -> Maybe (CountOf Bool) -> CountOf Bool
forall a. a -> Maybe a -> a
fromMaybe (String -> CountOf Bool
forall a. HasCallStack => String -> a
error "impossible") (CountOf Bool
i CountOf Bool -> CountOf Bool -> Difference (CountOf Bool)
forall a. Subtractive a => a -> a -> Difference a
- CountOf Bool
n)) (CountOf Bool
n CountOf Bool -> CountOf Bool -> Difference (CountOf Bool)
forall a. Subtractive a => a -> a -> Difference a
- CountOf Bool
i)
rotateR :: Bits n -> CountOf Bool -> Bits n
rotateR a :: Bits n
a i :: CountOf Bool
i = (Bits n
a Bits n -> CountOf Bool -> Bits n
forall bits. BitOps bits => bits -> CountOf Bool -> bits
.>>. CountOf Bool
i) Bits n -> Bits n -> Bits n
forall bits. BitOps bits => bits -> bits -> bits
.|. (Bits n
a Bits n -> CountOf Bool -> Bits n
forall bits. BitOps bits => bits -> CountOf Bool -> bits
.<<. CountOf Bool
d)
where
n :: CountOf Bool
n = Proxy n -> CountOf Bool
forall (n :: Nat) ty (proxy :: Nat -> *).
(KnownNat n, NatWithinBound (CountOf ty) n) =>
proxy n -> CountOf ty
natValCountOf (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
d :: CountOf Bool
d = CountOf Bool -> Maybe (CountOf Bool) -> CountOf Bool
forall a. a -> Maybe a -> a
fromMaybe (CountOf Bool -> Maybe (CountOf Bool) -> CountOf Bool
forall a. a -> Maybe a -> a
fromMaybe (String -> CountOf Bool
forall a. HasCallStack => String -> a
error "impossible") (CountOf Bool
i CountOf Bool -> CountOf Bool -> Difference (CountOf Bool)
forall a. Subtractive a => a -> a -> Difference a
- CountOf Bool
n)) (CountOf Bool
n CountOf Bool -> CountOf Bool -> Difference (CountOf Bool)
forall a. Subtractive a => a -> a -> Difference a
- CountOf Bool
i)
popCount :: Bits n -> CountOf Bool
popCount (Bits n :: Natural
n) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Natural -> Int
forall a. Bits a => a -> Int
OldBits.popCount Natural
n)
instance FiniteBitsOps Bool where
numberOfBits :: Bool -> CountOf Bool
numberOfBits _ = 1
rotateL :: Bool -> CountOf Bool -> Bool
rotateL x :: Bool
x _ = Bool
x
rotateR :: Bool -> CountOf Bool -> Bool
rotateR x :: Bool
x _ = Bool
x
popCount :: Bool -> CountOf Bool
popCount True = 1
popCount False = 0
bitFlip :: Bool -> Bool
bitFlip = Bool -> Bool
not
countLeadingZeros :: Bool -> CountOf Bool
countLeadingZeros True = 0
countLeadingZeros False = 1
countTrailingZeros :: Bool -> CountOf Bool
countTrailingZeros True = 0
countTrailingZeros False = 1
instance BitOps Bool where
.&. :: Bool -> Bool -> Bool
(.&.) = Bool -> Bool -> Bool
(&&)
.|. :: Bool -> Bool -> Bool
(.|.) = Bool -> Bool -> Bool
(||)
.^. :: Bool -> Bool -> Bool
(.^.) = Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
(/=)
x :: Bool
x .<<. :: Bool -> CountOf Bool -> Bool
.<<. 0 = Bool
x
_ .<<. _ = Bool
False
x :: Bool
x .>>. :: Bool -> CountOf Bool -> Bool
.>>. 0 = Bool
x
_ .>>. _ = Bool
False
bit :: Offset Bool -> Bool
bit 0 = Bool
True
bit _ = Bool
False
isBitSet :: Bool -> Offset Bool -> Bool
isBitSet x :: Bool
x 0 = Bool
x
isBitSet _ _ = Bool
False
setBit :: Bool -> Offset Bool -> Bool
setBit _ 0 = Bool
True
setBit _ _ = Bool
False
clearBit :: Bool -> Offset Bool -> Bool
clearBit _ 0 = Bool
False
clearBit x :: Bool
x _ = Bool
x
instance FiniteBitsOps Word8 where
numberOfBits :: Word8 -> CountOf Bool
numberOfBits _ = 8
rotateL :: Word8 -> CountOf Bool -> Word8
rotateL w :: Word8
w (CountOf i :: Int
i) = Word8
w Word8 -> Int -> Word8
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Word8 -> CountOf Bool -> Word8
rotateR w :: Word8
w (CountOf i :: Int
i) = Word8
w Word8 -> Int -> Word8
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Word8 -> Word8
bitFlip = Word8 -> Word8
forall a. Bits a => a -> a
OldBits.complement
popCount :: Word8 -> CountOf Bool
popCount (W8# x# :: Word#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt8# (Word# -> Word#
word8ToWord# Word#
x#)))
countLeadingZeros :: Word8 -> CountOf Bool
countLeadingZeros (W8# w :: Word#
w) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz8# (Word# -> Word#
word8ToWord# Word#
w))))
countTrailingZeros :: Word8 -> CountOf Bool
countTrailingZeros (W8# w :: Word#
w) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz8# (Word# -> Word#
word8ToWord# Word#
w))))
instance BitOps Word8 where
.&. :: Word8 -> Word8 -> Word8
(.&.) a :: Word8
a b :: Word8
b = (Word8
a Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
OldBits..&. Word8
b)
.|. :: Word8 -> Word8 -> Word8
(.|.) a :: Word8
a b :: Word8
b = (Word8
a Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
OldBits..|. Word8
b)
.^. :: Word8 -> Word8 -> Word8
(.^.) a :: Word8
a b :: Word8
b = (Word8
a Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
`OldBits.xor` Word8
b)
.<<. :: Word8 -> CountOf Bool -> Word8
(.<<.) a :: Word8
a (CountOf w :: Int
w) = (Word8
a Word8 -> Int -> Word8
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Word8 -> CountOf Bool -> Word8
(.>>.) a :: Word8
a (CountOf w :: Int
w) = (Word8
a Word8 -> Int -> Word8
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
instance FiniteBitsOps Word16 where
numberOfBits :: Word16 -> CountOf Bool
numberOfBits _ = 16
rotateL :: Word16 -> CountOf Bool -> Word16
rotateL w :: Word16
w (CountOf i :: Int
i) = Word16
w Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Word16 -> CountOf Bool -> Word16
rotateR w :: Word16
w (CountOf i :: Int
i) = Word16
w Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Word16 -> Word16
bitFlip = Word16 -> Word16
forall a. Bits a => a -> a
OldBits.complement
popCount :: Word16 -> CountOf Bool
popCount (W16# x# :: Word#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt16# (Word# -> Word#
word16ToWord# Word#
x#)))
countLeadingZeros :: Word16 -> CountOf Bool
countLeadingZeros (W16# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz16# (Word# -> Word#
word16ToWord# Word#
w#)))
countTrailingZeros :: Word16 -> CountOf Bool
countTrailingZeros (W16# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz16# (Word# -> Word#
word16ToWord# Word#
w#)))
instance BitOps Word16 where
.&. :: Word16 -> Word16 -> Word16
(.&.) a :: Word16
a b :: Word16
b = (Word16
a Word16 -> Word16 -> Word16
forall a. Bits a => a -> a -> a
OldBits..&. Word16
b)
.|. :: Word16 -> Word16 -> Word16
(.|.) a :: Word16
a b :: Word16
b = (Word16
a Word16 -> Word16 -> Word16
forall a. Bits a => a -> a -> a
OldBits..|. Word16
b)
.^. :: Word16 -> Word16 -> Word16
(.^.) a :: Word16
a b :: Word16
b = (Word16
a Word16 -> Word16 -> Word16
forall a. Bits a => a -> a -> a
`OldBits.xor` Word16
b)
.<<. :: Word16 -> CountOf Bool -> Word16
(.<<.) a :: Word16
a (CountOf w :: Int
w) = (Word16
a Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Word16 -> CountOf Bool -> Word16
(.>>.) a :: Word16
a (CountOf w :: Int
w) = (Word16
a Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
instance FiniteBitsOps Word32 where
numberOfBits :: Word32 -> CountOf Bool
numberOfBits _ = 32
rotateL :: Word32 -> CountOf Bool -> Word32
rotateL w :: Word32
w (CountOf i :: Int
i) = Word32
w Word32 -> Int -> Word32
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Word32 -> CountOf Bool -> Word32
rotateR w :: Word32
w (CountOf i :: Int
i) = Word32
w Word32 -> Int -> Word32
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Word32 -> Word32
bitFlip = Word32 -> Word32
forall a. Bits a => a -> a
OldBits.complement
popCount :: Word32 -> CountOf Bool
popCount (W32# x# :: Word#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt32# (Word# -> Word#
word32ToWord# Word#
x#)))
countLeadingZeros :: Word32 -> CountOf Bool
countLeadingZeros (W32# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz32# (Word# -> Word#
word32ToWord# Word#
w#)))
countTrailingZeros :: Word32 -> CountOf Bool
countTrailingZeros (W32# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz32# (Word# -> Word#
word32ToWord# Word#
w#)))
instance BitOps Word32 where
.&. :: Word32 -> Word32 -> Word32
(.&.) a :: Word32
a b :: Word32
b = (Word32
a Word32 -> Word32 -> Word32
forall a. Bits a => a -> a -> a
OldBits..&. Word32
b)
.|. :: Word32 -> Word32 -> Word32
(.|.) a :: Word32
a b :: Word32
b = (Word32
a Word32 -> Word32 -> Word32
forall a. Bits a => a -> a -> a
OldBits..|. Word32
b)
.^. :: Word32 -> Word32 -> Word32
(.^.) a :: Word32
a b :: Word32
b = (Word32
a Word32 -> Word32 -> Word32
forall a. Bits a => a -> a -> a
`OldBits.xor` Word32
b)
.<<. :: Word32 -> CountOf Bool -> Word32
(.<<.) a :: Word32
a (CountOf w :: Int
w) = (Word32
a Word32 -> Int -> Word32
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Word32 -> CountOf Bool -> Word32
(.>>.) a :: Word32
a (CountOf w :: Int
w) = (Word32
a Word32 -> Int -> Word32
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
#if WORD_SIZE_IN_BITS == 64
instance FiniteBitsOps Word where
numberOfBits :: Word -> CountOf Bool
numberOfBits _ = 64
rotateL :: Word -> CountOf Bool -> Word
rotateL w :: Word
w (CountOf i :: Int
i) = Word
w Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Word -> CountOf Bool -> Word
rotateR w :: Word
w (CountOf i :: Int
i) = Word
w Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Word -> Word
bitFlip = Word -> Word
forall a. Bits a => a -> a
OldBits.complement
popCount :: Word -> CountOf Bool
popCount (W# x# :: Word#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt64# Word#
x#))
countLeadingZeros :: Word -> CountOf Bool
countLeadingZeros (W# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz64# Word#
w#))
countTrailingZeros :: Word -> CountOf Bool
countTrailingZeros (W# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz64# Word#
w#))
#else
instance FiniteBitsOps Word where
numberOfBits _ = 32
rotateL w (CountOf i) = w `OldBits.rotateL` i
rotateR w (CountOf i) = w `OldBits.rotateR` i
bitFlip = OldBits.complement
popCount (W# x#) = CountOf $ wordToInt (W# (popCnt32# x#))
countLeadingZeros (W# w#) = CountOf $ wordToInt (W# (clz32# w#))
countTrailingZeros (W# w#) = CountOf $ wordToInt (W# (ctz32# w#))
#endif
instance BitOps Word where
.&. :: Word -> Word -> Word
(.&.) a :: Word
a b :: Word
b = (Word
a Word -> Word -> Word
forall a. Bits a => a -> a -> a
OldBits..&. Word
b)
.|. :: Word -> Word -> Word
(.|.) a :: Word
a b :: Word
b = (Word
a Word -> Word -> Word
forall a. Bits a => a -> a -> a
OldBits..|. Word
b)
.^. :: Word -> Word -> Word
(.^.) a :: Word
a b :: Word
b = (Word
a Word -> Word -> Word
forall a. Bits a => a -> a -> a
`OldBits.xor` Word
b)
.<<. :: Word -> CountOf Bool -> Word
(.<<.) a :: Word
a (CountOf w :: Int
w) = (Word
a Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Word -> CountOf Bool -> Word
(.>>.) a :: Word
a (CountOf w :: Int
w) = (Word
a Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
#if WORD_SIZE_IN_BITS == 64
instance FiniteBitsOps Word64 where
numberOfBits :: Word64 -> CountOf Bool
numberOfBits _ = 64
rotateL :: Word64 -> CountOf Bool -> Word64
rotateL w :: Word64
w (CountOf i :: Int
i) = Word64
w Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Word64 -> CountOf Bool -> Word64
rotateR w :: Word64
w (CountOf i :: Int
i) = Word64
w Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Word64 -> Word64
bitFlip = Word64 -> Word64
forall a. Bits a => a -> a
OldBits.complement
popCount :: Word64 -> CountOf Bool
popCount (W64# x# :: Word#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt64# Word#
x#))
countLeadingZeros :: Word64 -> CountOf Bool
countLeadingZeros (W64# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz64# Word#
w#))
countTrailingZeros :: Word64 -> CountOf Bool
countTrailingZeros (W64# w# :: Word#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz64# Word#
w#))
instance BitOps Word64 where
.&. :: Word64 -> Word64 -> Word64
(.&.) a :: Word64
a b :: Word64
b = (Word64
a Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
OldBits..&. Word64
b)
.|. :: Word64 -> Word64 -> Word64
(.|.) a :: Word64
a b :: Word64
b = (Word64
a Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
OldBits..|. Word64
b)
.^. :: Word64 -> Word64 -> Word64
(.^.) a :: Word64
a b :: Word64
b = (Word64
a Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
`OldBits.xor` Word64
b)
.<<. :: Word64 -> CountOf Bool -> Word64
(.<<.) a :: Word64
a (CountOf w :: Int
w) = (Word64
a Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Word64 -> CountOf Bool -> Word64
(.>>.) a :: Word64
a (CountOf w :: Int
w) = (Word64
a Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
#else
instance FiniteBitsOps Word64 where
numberOfBits _ = 64
rotateL w (CountOf i) = w `OldBits.rotateL` i
rotateR w (CountOf i) = w `OldBits.rotateR` i
bitFlip = OldBits.complement
popCount (W64# x#) = CountOf $ wordToInt (W# (popCnt64# x#))
countLeadingZeros (W64# w#) = CountOf $ wordToInt (W# (clz64# w#))
countTrailingZeros (W64# w#) = CountOf $ wordToInt (W# (ctz64# w#))
instance BitOps Word64 where
(.&.) a b = (a OldBits..&. b)
(.|.) a b = (a OldBits..|. b)
(.^.) a b = (a `OldBits.xor` b)
(.<<.) a (CountOf w) = (a `OldBits.shiftL` w)
(.>>.) a (CountOf w) = (a `OldBits.shiftR` w)
#endif
instance FiniteBitsOps Word128 where
numberOfBits :: Word128 -> CountOf Bool
numberOfBits _ = 128
rotateL :: Word128 -> CountOf Bool -> Word128
rotateL w :: Word128
w (CountOf n :: Int
n) = Word128 -> Int -> Word128
Word128.rotateL Word128
w Int
n
rotateR :: Word128 -> CountOf Bool -> Word128
rotateR w :: Word128
w (CountOf n :: Int
n) = Word128 -> Int -> Word128
Word128.rotateR Word128
w Int
n
bitFlip :: Word128 -> Word128
bitFlip = Word128 -> Word128
Word128.complement
popCount :: Word128 -> CountOf Bool
popCount = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool)
-> (Word128 -> Int) -> Word128 -> CountOf Bool
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Word128 -> Int
Word128.popCount
instance BitOps Word128 where
.&. :: Word128 -> Word128 -> Word128
(.&.) = Word128 -> Word128 -> Word128
Word128.bitwiseAnd
.|. :: Word128 -> Word128 -> Word128
(.|.) = Word128 -> Word128 -> Word128
Word128.bitwiseOr
.^. :: Word128 -> Word128 -> Word128
(.^.) = Word128 -> Word128 -> Word128
Word128.bitwiseXor
.<<. :: Word128 -> CountOf Bool -> Word128
(.<<.) w :: Word128
w (CountOf n :: Int
n) = Word128 -> Int -> Word128
Word128.shiftL Word128
w Int
n
.>>. :: Word128 -> CountOf Bool -> Word128
(.>>.) w :: Word128
w (CountOf n :: Int
n) = Word128 -> Int -> Word128
Word128.shiftR Word128
w Int
n
instance FiniteBitsOps Word256 where
numberOfBits :: Word256 -> CountOf Bool
numberOfBits _ = 256
rotateL :: Word256 -> CountOf Bool -> Word256
rotateL w :: Word256
w (CountOf n :: Int
n) = Word256 -> Int -> Word256
Word256.rotateL Word256
w Int
n
rotateR :: Word256 -> CountOf Bool -> Word256
rotateR w :: Word256
w (CountOf n :: Int
n) = Word256 -> Int -> Word256
Word256.rotateR Word256
w Int
n
bitFlip :: Word256 -> Word256
bitFlip = Word256 -> Word256
Word256.complement
popCount :: Word256 -> CountOf Bool
popCount = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool)
-> (Word256 -> Int) -> Word256 -> CountOf Bool
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Word256 -> Int
Word256.popCount
instance BitOps Word256 where
.&. :: Word256 -> Word256 -> Word256
(.&.) = Word256 -> Word256 -> Word256
Word256.bitwiseAnd
.|. :: Word256 -> Word256 -> Word256
(.|.) = Word256 -> Word256 -> Word256
Word256.bitwiseOr
.^. :: Word256 -> Word256 -> Word256
(.^.) = Word256 -> Word256 -> Word256
Word256.bitwiseXor
.<<. :: Word256 -> CountOf Bool -> Word256
(.<<.) w :: Word256
w (CountOf n :: Int
n) = Word256 -> Int -> Word256
Word256.shiftL Word256
w Int
n
.>>. :: Word256 -> CountOf Bool -> Word256
(.>>.) w :: Word256
w (CountOf n :: Int
n) = Word256 -> Int -> Word256
Word256.shiftR Word256
w Int
n
instance FiniteBitsOps Int8 where
numberOfBits :: Int8 -> CountOf Bool
numberOfBits _ = 8
rotateL :: Int8 -> CountOf Bool -> Int8
rotateL w :: Int8
w (CountOf i :: Int
i) = Int8
w Int8 -> Int -> Int8
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Int8 -> CountOf Bool -> Int8
rotateR w :: Int8
w (CountOf i :: Int
i) = Int8
w Int8 -> Int -> Int8
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Int8 -> Int8
bitFlip = Int8 -> Int8
forall a. Bits a => a -> a
OldBits.complement
popCount :: Int8 -> CountOf Bool
popCount (I8# x# :: Int#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt8# (Int# -> Word#
int2Word# (Int# -> Int#
int8ToInt# Int#
x#))))
countLeadingZeros :: Int8 -> CountOf Bool
countLeadingZeros (I8# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz8# (Int# -> Word#
int2Word# (Int# -> Int#
int8ToInt# Int#
w#))))
countTrailingZeros :: Int8 -> CountOf Bool
countTrailingZeros (I8# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz8# (Int# -> Word#
int2Word# (Int# -> Int#
int8ToInt# Int#
w#))))
instance BitOps Int8 where
.&. :: Int8 -> Int8 -> Int8
(.&.) a :: Int8
a b :: Int8
b = (Int8
a Int8 -> Int8 -> Int8
forall a. Bits a => a -> a -> a
OldBits..&. Int8
b)
.|. :: Int8 -> Int8 -> Int8
(.|.) a :: Int8
a b :: Int8
b = (Int8
a Int8 -> Int8 -> Int8
forall a. Bits a => a -> a -> a
OldBits..|. Int8
b)
.^. :: Int8 -> Int8 -> Int8
(.^.) a :: Int8
a b :: Int8
b = (Int8
a Int8 -> Int8 -> Int8
forall a. Bits a => a -> a -> a
`OldBits.xor` Int8
b)
.<<. :: Int8 -> CountOf Bool -> Int8
(.<<.) a :: Int8
a (CountOf w :: Int
w) = (Int8
a Int8 -> Int -> Int8
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Int8 -> CountOf Bool -> Int8
(.>>.) a :: Int8
a (CountOf w :: Int
w) = (Int8
a Int8 -> Int -> Int8
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
instance FiniteBitsOps Int16 where
numberOfBits :: Int16 -> CountOf Bool
numberOfBits _ = 16
rotateL :: Int16 -> CountOf Bool -> Int16
rotateL w :: Int16
w (CountOf i :: Int
i) = Int16
w Int16 -> Int -> Int16
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Int16 -> CountOf Bool -> Int16
rotateR w :: Int16
w (CountOf i :: Int
i) = Int16
w Int16 -> Int -> Int16
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Int16 -> Int16
bitFlip = Int16 -> Int16
forall a. Bits a => a -> a
OldBits.complement
popCount :: Int16 -> CountOf Bool
popCount (I16# x# :: Int#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt16# (Int# -> Word#
int2Word# (Int# -> Int#
int16ToInt# Int#
x#))))
countLeadingZeros :: Int16 -> CountOf Bool
countLeadingZeros (I16# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz16# (Int# -> Word#
int2Word# (Int# -> Int#
int16ToInt# Int#
w#))))
countTrailingZeros :: Int16 -> CountOf Bool
countTrailingZeros (I16# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz16# (Int# -> Word#
int2Word# (Int# -> Int#
int16ToInt# Int#
w#))))
instance BitOps Int16 where
.&. :: Int16 -> Int16 -> Int16
(.&.) a :: Int16
a b :: Int16
b = (Int16
a Int16 -> Int16 -> Int16
forall a. Bits a => a -> a -> a
OldBits..&. Int16
b)
.|. :: Int16 -> Int16 -> Int16
(.|.) a :: Int16
a b :: Int16
b = (Int16
a Int16 -> Int16 -> Int16
forall a. Bits a => a -> a -> a
OldBits..|. Int16
b)
.^. :: Int16 -> Int16 -> Int16
(.^.) a :: Int16
a b :: Int16
b = (Int16
a Int16 -> Int16 -> Int16
forall a. Bits a => a -> a -> a
`OldBits.xor` Int16
b)
.<<. :: Int16 -> CountOf Bool -> Int16
(.<<.) a :: Int16
a (CountOf w :: Int
w) = (Int16
a Int16 -> Int -> Int16
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Int16 -> CountOf Bool -> Int16
(.>>.) a :: Int16
a (CountOf w :: Int
w) = (Int16
a Int16 -> Int -> Int16
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
instance FiniteBitsOps Int32 where
numberOfBits :: Int32 -> CountOf Bool
numberOfBits _ = 32
rotateL :: Int32 -> CountOf Bool -> Int32
rotateL w :: Int32
w (CountOf i :: Int
i) = Int32
w Int32 -> Int -> Int32
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Int32 -> CountOf Bool -> Int32
rotateR w :: Int32
w (CountOf i :: Int
i) = Int32
w Int32 -> Int -> Int32
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Int32 -> Int32
bitFlip = Int32 -> Int32
forall a. Bits a => a -> a
OldBits.complement
popCount :: Int32 -> CountOf Bool
popCount (I32# x# :: Int#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt32# (Int# -> Word#
int2Word# (Int# -> Int#
int32ToInt# Int#
x#))))
countLeadingZeros :: Int32 -> CountOf Bool
countLeadingZeros (I32# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz32# (Int# -> Word#
int2Word# (Int# -> Int#
int32ToInt# Int#
w#))))
countTrailingZeros :: Int32 -> CountOf Bool
countTrailingZeros (I32# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz32# (Int# -> Word#
int2Word# (Int# -> Int#
int32ToInt# Int#
w#))))
instance BitOps Int32 where
.&. :: Int32 -> Int32 -> Int32
(.&.) a :: Int32
a b :: Int32
b = (Int32
a Int32 -> Int32 -> Int32
forall a. Bits a => a -> a -> a
OldBits..&. Int32
b)
.|. :: Int32 -> Int32 -> Int32
(.|.) a :: Int32
a b :: Int32
b = (Int32
a Int32 -> Int32 -> Int32
forall a. Bits a => a -> a -> a
OldBits..|. Int32
b)
.^. :: Int32 -> Int32 -> Int32
(.^.) a :: Int32
a b :: Int32
b = (Int32
a Int32 -> Int32 -> Int32
forall a. Bits a => a -> a -> a
`OldBits.xor` Int32
b)
.<<. :: Int32 -> CountOf Bool -> Int32
(.<<.) a :: Int32
a (CountOf w :: Int
w) = (Int32
a Int32 -> Int -> Int32
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Int32 -> CountOf Bool -> Int32
(.>>.) a :: Int32
a (CountOf w :: Int
w) = (Int32
a Int32 -> Int -> Int32
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
#if WORD_SIZE_IN_BITS == 64
instance FiniteBitsOps Int64 where
numberOfBits :: Int64 -> CountOf Bool
numberOfBits _ = 64
rotateL :: Int64 -> CountOf Bool -> Int64
rotateL w :: Int64
w (CountOf i :: Int
i) = Int64
w Int64 -> Int -> Int64
forall a. Bits a => a -> Int -> a
`OldBits.rotateL` Int
i
rotateR :: Int64 -> CountOf Bool -> Int64
rotateR w :: Int64
w (CountOf i :: Int
i) = Int64
w Int64 -> Int -> Int64
forall a. Bits a => a -> Int -> a
`OldBits.rotateR` Int
i
bitFlip :: Int64 -> Int64
bitFlip = Int64 -> Int64
forall a. Bits a => a -> a
OldBits.complement
popCount :: Int64 -> CountOf Bool
popCount (I64# x# :: Int#
x#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
popCnt64# (Int# -> Word#
int2Word# Int#
x#)))
countLeadingZeros :: Int64 -> CountOf Bool
countLeadingZeros (I64# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
clz64# (Int# -> Word#
int2Word# Int#
w#)))
countTrailingZeros :: Int64 -> CountOf Bool
countTrailingZeros (I64# w# :: Int#
w#) = Int -> CountOf Bool
forall ty. Int -> CountOf ty
CountOf (Int -> CountOf Bool) -> Int -> CountOf Bool
forall a b. (a -> b) -> a -> b
$ Word -> Int
wordToInt (Word# -> Word
W# (Word# -> Word#
ctz64# (Int# -> Word#
int2Word# Int#
w#)))
instance BitOps Int64 where
.&. :: Int64 -> Int64 -> Int64
(.&.) a :: Int64
a b :: Int64
b = (Int64
a Int64 -> Int64 -> Int64
forall a. Bits a => a -> a -> a
OldBits..&. Int64
b)
.|. :: Int64 -> Int64 -> Int64
(.|.) a :: Int64
a b :: Int64
b = (Int64
a Int64 -> Int64 -> Int64
forall a. Bits a => a -> a -> a
OldBits..|. Int64
b)
.^. :: Int64 -> Int64 -> Int64
(.^.) a :: Int64
a b :: Int64
b = (Int64
a Int64 -> Int64 -> Int64
forall a. Bits a => a -> a -> a
`OldBits.xor` Int64
b)
.<<. :: Int64 -> CountOf Bool -> Int64
(.<<.) a :: Int64
a (CountOf w :: Int
w) = (Int64
a Int64 -> Int -> Int64
forall a. Bits a => a -> Int -> a
`OldBits.shiftL` Int
w)
.>>. :: Int64 -> CountOf Bool -> Int64
(.>>.) a :: Int64
a (CountOf w :: Int
w) = (Int64
a Int64 -> Int -> Int64
forall a. Bits a => a -> Int -> a
`OldBits.shiftR` Int
w)
#else
instance FiniteBitsOps Int64 where
numberOfBits _ = 64
rotateL w (CountOf i) = w `OldBits.rotateL` i
rotateR w (CountOf i) = w `OldBits.rotateR` i
bitFlip = OldBits.complement
popCount (I64# x#) = CountOf $ wordToInt (W# (popCnt64# (int64ToWord64# x#)))
countLeadingZeros (I64# w#) = CountOf $ wordToInt (W# (clz64# (int64ToWord64# w#)))
countTrailingZeros (I64# w#) = CountOf $ wordToInt (W# (ctz64# (int64ToWord64# w#)))
instance BitOps Int64 where
(.&.) a b = (a OldBits..&. b)
(.|.) a b = (a OldBits..|. b)
(.^.) a b = (a `OldBits.xor` b)
(.<<.) a (CountOf w) = (a `OldBits.shiftL` w)
(.>>.) a (CountOf w) = (a `OldBits.shiftR` w)
#endif