Z3
Public Member Functions
RatNumRef Class Reference
+ Inheritance diagram for RatNumRef:

Public Member Functions

def numerator (self)
 
def denominator (self)
 
def numerator_as_long (self)
 
def denominator_as_long (self)
 
def is_int (self)
 
def is_real (self)
 
def is_int_value (self)
 
def as_long (self)
 
def as_decimal (self, prec)
 
def as_string (self)
 
def as_fraction (self)
 
- Public Member Functions inherited from ArithRef
def sort (self)
 
def is_int (self)
 
def is_real (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def as_ast (self)
 
def get_id (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Rational values.

Definition at line 2629 of file z3py.py.

Member Function Documentation

§ as_decimal()

def as_decimal (   self,
  prec 
)
Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.

>>> v = RealVal("1/5")
>>> v.as_decimal(3)
'0.2'
>>> v = RealVal("1/3")
>>> v.as_decimal(3)
'0.333?'

Definition at line 2695 of file z3py.py.

2695  def as_decimal(self, prec):
2696  """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
2697 
2698  >>> v = RealVal("1/5")
2699  >>> v.as_decimal(3)
2700  '0.2'
2701  >>> v = RealVal("1/3")
2702  >>> v.as_decimal(3)
2703  '0.333?'
2704  """
2705  return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
2706 
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places...

§ as_fraction()

def as_fraction (   self)
Return a Z3 rational as a Python Fraction object.

>>> v = RealVal("1/5")
>>> v.as_fraction()
Fraction(1, 5)

Definition at line 2716 of file z3py.py.

2716  def as_fraction(self):
2717  """Return a Z3 rational as a Python Fraction object.
2718 
2719  >>> v = RealVal("1/5")
2720  >>> v.as_fraction()
2721  Fraction(1, 5)
2722  """
2723  return Fraction(self.numerator_as_long(), self.denominator_as_long())
2724 

§ as_long()

def as_long (   self)

Definition at line 2691 of file z3py.py.

2691  def as_long(self):
2692  _z3_assert(self.is_int(), "Expected integer fraction")
2693  return self.numerator_as_long()
2694 

§ as_string()

def as_string (   self)
Return a Z3 rational numeral as a Python string.

>>> v = Q(3,6)
>>> v.as_string()
'1/2'

Definition at line 2707 of file z3py.py.

Referenced by FiniteDomainNumRef.as_long().

2707  def as_string(self):
2708  """Return a Z3 rational numeral as a Python string.
2709 
2710  >>> v = Q(3,6)
2711  >>> v.as_string()
2712  '1/2'
2713  """
2714  return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
2715 
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a string of a numeric constant term.

§ denominator()

def denominator (   self)
Return the denominator of a Z3 rational numeral.

>>> is_rational_value(Q(3,5))
True
>>> n = Q(3,5)
>>> n.denominator()
5

Definition at line 2647 of file z3py.py.

2647  def denominator(self):
2648  """ Return the denominator of a Z3 rational numeral.
2649 
2650  >>> is_rational_value(Q(3,5))
2651  True
2652  >>> n = Q(3,5)
2653  >>> n.denominator()
2654  5
2655  """
2656  return IntNumRef(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
2657 
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

§ denominator_as_long()

def denominator_as_long (   self)
Return the denominator as a Python long.

>>> v = RealVal("1/3")
>>> v
1/3
>>> v.denominator_as_long()
3

Definition at line 2671 of file z3py.py.

2671  def denominator_as_long(self):
2672  """ Return the denominator as a Python long.
2673 
2674  >>> v = RealVal("1/3")
2675  >>> v
2676  1/3
2677  >>> v.denominator_as_long()
2678  3
2679  """
2680  return self.denominator().as_long()
2681 

§ is_int()

def is_int (   self)

Definition at line 2682 of file z3py.py.

2682  def is_int(self):
2683  return False
2684 
def is_int(a)
Definition: z3py.py:2352

§ is_int_value()

def is_int_value (   self)

Definition at line 2688 of file z3py.py.

2688  def is_int_value(self):
2689  return self.denominator().is_int() and self.denominator_as_long() == 1
2690 
def is_int_value(a)
Definition: z3py.py:2394
def is_int(a)
Definition: z3py.py:2352

§ is_real()

def is_real (   self)

Definition at line 2685 of file z3py.py.

2685  def is_real(self):
2686  return True
2687 
def is_real(a)
Definition: z3py.py:2370

§ numerator()

def numerator (   self)
Return the numerator of a Z3 rational numeral.

>>> is_rational_value(RealVal("3/5"))
True
>>> n = RealVal("3/5")
>>> n.numerator()
3
>>> is_rational_value(Q(3,5))
True
>>> Q(3,5).numerator()
3

Definition at line 2632 of file z3py.py.

2632  def numerator(self):
2633  """ Return the numerator of a Z3 rational numeral.
2634 
2635  >>> is_rational_value(RealVal("3/5"))
2636  True
2637  >>> n = RealVal("3/5")
2638  >>> n.numerator()
2639  3
2640  >>> is_rational_value(Q(3,5))
2641  True
2642  >>> Q(3,5).numerator()
2643  3
2644  """
2645  return IntNumRef(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
2646 
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

§ numerator_as_long()

def numerator_as_long (   self)
Return the numerator as a Python long.

>>> v = RealVal(10000000000)
>>> v
10000000000
>>> v + 1
10000000000 + 1
>>> v.numerator_as_long() + 1 == 10000000001
True

Definition at line 2658 of file z3py.py.

2658  def numerator_as_long(self):
2659  """ Return the numerator as a Python long.
2660 
2661  >>> v = RealVal(10000000000)
2662  >>> v
2663  10000000000
2664  >>> v + 1
2665  10000000000 + 1
2666  >>> v.numerator_as_long() + 1 == 10000000001
2667  True
2668  """
2669  return self.numerator().as_long()
2670