
ezdxf Documentation
Release 1.3.2

Manfred Moitzi

Jul 19, 2024

CONTENTS

1 Included Extensions 3

2 Website 5

3 Documentation 7

4 Knowledge Graph 9

5 Release Notes 11

6 Changelog 13

7 Source Code & Feedback 15

8 Questions and Answers 17

9 Contents 19
9.1 Introduction . 19

9.1.1 What is ezdxf . 19
9.1.2 What ezdxf can’t do . 19
9.1.3 Supported Python Versions . 19
9.1.4 Supported Operating Systems . 20
9.1.5 Supported DXF Versions . 20
9.1.6 Embedded DXF Information of 3rd Party Applications . 20
9.1.7 License . 20

9.2 Setup & Dependencies . 20
9.2.1 Basic Installation . 21
9.2.2 Installation with Extras . 21
9.2.3 PySide6 Issue . 21
9.2.4 Binary Wheels . 21
9.2.5 Disable C-Extensions . 22
9.2.6 Installation from GitHub . 22
9.2.7 Build and Install from Source . 22
9.2.8 Install Optional Packages . 26
9.2.9 Run the Tests . 26
9.2.10 Build Documentation . 26
9.2.11 Python from Source . 26

9.3 Usage for Beginners . 27
9.3.1 Loading DXF Files . 27
9.3.2 Layouts and Blocks . 28
9.3.3 Query DXF Entities . 28

i

9.3.4 Examine DXF Entities . 29
9.3.5 Create a New DXF File . 29
9.3.6 Create New DXF Entities . 30
9.3.7 Saving DXF Files . 30
9.3.8 Create New Blocks . 31
9.3.9 Create Block References . 31
9.3.10 Create New Layers . 31
9.3.11 Delete Entities . 32
9.3.12 Further Information . 32

9.4 Basic Concepts . 32
9.4.1 What is DXF? . 32
9.4.2 DXF Entities and Objects . 34
9.4.3 AutoCAD Color Index (ACI) . 36
9.4.4 True Color . 37
9.4.5 Transparency . 39
9.4.6 Layers . 39
9.4.7 Linetypes . 41
9.4.8 Lineweights . 43
9.4.9 Coordinate Systems . 45
9.4.10 Object Coordinate System (OCS) . 46
9.4.11 DXF Units . 48
9.4.12 Modelspace . 52
9.4.13 Paperspace . 52
9.4.14 Blocks . 52
9.4.15 Layout Extents and Limits . 53
9.4.16 Font Resources . 56

9.5 Tasks . 56
9.5.1 Add Data . 56
9.5.2 Query Data . 68
9.5.3 Modify Data . 81
9.5.4 Delete Data . 86
9.5.5 Explode Entities . 89

9.6 External References (XREF) . 90
9.6.1 DXF Files as Attached XREFs . 90
9.6.2 XREF Structures . 91
9.6.3 Supported Entities . 91
9.6.4 Importing Data and Resources . 91
9.6.5 High Level Functions . 92
9.6.6 Conflict Policy . 95
9.6.7 Low Level Loading Interface . 95

9.7 Add-ons . 97
9.7.1 Drawing / Export Add-on . 97
9.7.2 Geo Interface . 122
9.7.3 Importer . 128
9.7.4 dxf2code . 132
9.7.5 iterdxf . 134
9.7.6 ODA File Converter Support . 137
9.7.7 R12 Export . 140
9.7.8 r12writer . 142
9.7.9 text2path . 148
9.7.10 MTextExplode . 151
9.7.11 HPGL/2 Converter Add-on . 153
9.7.12 PyCSG . 160
9.7.13 Plot Style Files (CTB/STB) . 167

ii

9.7.14 Showcase Forms . 176
9.7.15 Bin-Packing Add-on . 183
9.7.16 MeshExchange . 190
9.7.17 OpenSCAD . 193
9.7.18 TablePainter . 198
9.7.19 MTextSurrogate for DXF R12 . 205
9.7.20 ASTM-D6673-10 Exporter . 206

9.8 Reference . 207
9.8.1 DXF Document . 207
9.8.2 DXF Structures . 227
9.8.3 Colors . 437
9.8.4 Enums . 440
9.8.5 Math . 446
9.8.6 Construction . 512
9.8.7 Custom Data . 551
9.8.8 Fonts . 556
9.8.9 Tools . 563
9.8.10 Global Options . 623
9.8.11 For Developers . 629

9.9 Launcher . 758
9.9.1 System . 759
9.9.2 Audit . 759
9.9.3 Draw . 760
9.9.4 View . 762
9.9.5 Browse . 763
9.9.6 Browse-ACIS . 766
9.9.7 Strip . 767
9.9.8 Config . 767
9.9.9 Info . 768
9.9.10 Show Version & Configuration . 770
9.9.11 HPGL/2 Viewer/Converter . 770

9.10 Tutorials . 772
9.10.1 Tutorial for Getting Data from DXF Files . 772
9.10.2 Tutorial for Creating DXF Drawings . 776
9.10.3 Tutorial for Common Graphical Attributes . 777
9.10.4 Tutorial for Layers . 781
9.10.5 Tutorial for Creating Linetype Pattern . 784
9.10.6 Tutorial for Creating Complex Linetype Pattern . 785
9.10.7 Tutorial for Simple DXF Entities . 787
9.10.8 Tutorial for Entity Selection . 789
9.10.9 Tutorial for Blocks . 797
9.10.10 Tutorial for LWPolyline . 800
9.10.11 Tutorial for Text . 803
9.10.12 Tutorial for MText and MTextEditor . 806
9.10.13 Tutorial for Spline . 820
9.10.14 Tutorial for Polyface . 828
9.10.15 Tutorial for Mesh . 830
9.10.16 Tutorial for Hatch . 833
9.10.17 Tutorial for Hatch Pattern Definition . 842
9.10.18 Tutorial for Image and ImageDef . 846
9.10.19 Tutorial for Underlay and UnderlayDefinition . 847
9.10.20 Tutorial for MultiLeader . 848
9.10.21 Tutorial for Viewports in Paperspace . 868
9.10.22 Tutorial for OCS/UCS Usage . 873

iii

9.10.23 Tutorial for UCS Based Transformations . 887
9.10.24 Tutorial for Linear Dimensions . 898
9.10.25 Tutorial for Radius Dimensions . 918
9.10.26 Tutorial for Diameter Dimensions . 925
9.10.27 Tutorial for Angular Dimensions . 932
9.10.28 Tutorial for Arc Dimensions . 947
9.10.29 Tutorial for Ordinate Dimensions . 953
9.10.30 Tutorial for the Geo Add-on . 957
9.10.31 Storing Custom Data in DXF Files . 963
9.10.32 Tutorial for External References . 973
9.10.33 Tutorial for Image Export . 983

9.11 Howto . 996
9.11.1 General Document . 996
9.11.2 DXF Viewer . 1001
9.11.3 DXF Content . 1003
9.11.4 Fonts . 1008
9.11.5 Drawing Add-on . 1009

9.12 FAQ . 1021
9.12.1 What is the Relationship between ezdxf, dxfwrite and dxfgrabber? 1021
9.12.2 Imported ezdxf package has no content. (readfile, new) . 1021
9.12.3 How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE? 1021
9.12.4 Are OLE/OLE2 entities supported? . 1022
9.12.5 Rendering SHX fonts . 1022
9.12.6 Drawing Add-on . 1022
9.12.7 Is the AutoCAD command XYZ available? . 1022

9.13 Glossary . 1022
9.14 Knowledge Graph . 1023
9.15 Indices and tables . 1024

Python Module Index 1025

Index 1027

iv

ezdxf Documentation, Release 1.3.2

Welcome! This is the documentation for ezdxf release 1.3.2, last updated Jul 19, 2024.
• ezdxf is a Python package to create new DXF documents and read/modify/write existing DXF documents
• MIT-License
• the intended audience are programmers
• requires at least Python 3.9
• OS independent
• tested with CPython and pypy3
• has type annotations and passes mypy --ignore-missing-imports -p ezdxf successful
• additional required packages for the core package without add-ons: typing_extensions, pyparsing, numpy, fontTools
• read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018
• additional read-only support for DXF versions R13/R14 (upgraded to R2000)
• additional read-only support for older DXF versions than R12 (upgraded to R12)
• read/write support for ASCII DXF and Binary DXF
• retains third-party DXF content
• optional C-extensions for CPython are included in the binary wheels, available on PyPI for Windows, Linux and
macOS

CONTENTS 1

https://pypi.org/project/typing-extensions/
https://pypi.org/project/pyparsing/
https://pypi.org/project/numpy/
https://pypi.org/project/fonttools
https://pypi.org/project/ezdxf/

ezdxf Documentation, Release 1.3.2

2 CONTENTS

CHAPTER

ONE

INCLUDED EXTENSIONS

Additional packages required for these add-ons are not automatically installed during the basic setup, for more information
about the setup & dependencies visit the documentation.

• drawing add-on to visualise and convert DXF files to images which can be saved as PNG, PDF or SVG files
• r12writer add-on to write basic DXF entities direct and fast into a DXF R12 file or stream
• iterdxf add-on to iterate over DXF entities from the modelspace of huge DXF files (> 5GB) which do not fit
into memory

• importer add-on to import entities, blocks and table entries from another DXF document
• dxf2code add-on to generate Python code for DXF structures loaded from DXF documents as starting point for
parametric DXF entity creation

• acadctb add-on to read/write Plot Style Files (CTB/STB)
• pycsg add-on for Constructive Solid Geometry (CSG) modeling technique
• MTextExplode add-on for exploding MTEXT entities into single-line TEXT entities
• text2path add-on to convert text into outline paths
• geo add-on to support the __geo_interface__
• meshex add-on for exchanging meshes with other tools as STL, OFF or OBJ files
• openscad add-on, an interface to OpenSCAD
• odafc add-on, an interface to the ODA File Converter to read and write DWG files
• hpgl2 add-on for converting HPGL/2 plot files to DXF, SVG and PDF

3

https://ezdxf.mozman.at/docs/setup.html
https://gist.github.com/sgillies/2217756
https://openscad.org
https://www.opendesign.com/guestfiles/oda_file_converter
https://en.wikipedia.org/wiki/HP-GL

ezdxf Documentation, Release 1.3.2

4 Chapter 1. Included Extensions

CHAPTER

TWO

WEBSITE

https://ezdxf.mozman.at/

5

https://ezdxf.mozman.at/

ezdxf Documentation, Release 1.3.2

6 Chapter 2. Website

CHAPTER

THREE

DOCUMENTATION

Documentation of development version at https://ezdxf.mozman.at/docs
Documentation of latest release at http://ezdxf.readthedocs.io/

7

https://ezdxf.mozman.at/docs
http://ezdxf.readthedocs.io/

ezdxf Documentation, Release 1.3.2

8 Chapter 3. Documentation

CHAPTER

FOUR

KNOWLEDGE GRAPH

The Knowledge Graph contains additional information beyond the documentation and is managed by logseq. The source
data is included in the repository in the folder ezdxf/notes. There is also a HTML export on the website which gets
regular updates.

9

https://logseq.com/
https://ezdxf.mozman.at/notes/#/page/ezdxf

ezdxf Documentation, Release 1.3.2

10 Chapter 4. Knowledge Graph

CHAPTER

FIVE

RELEASE NOTES

The release notes are included in the Knowledge Graph.

11

https://ezdxf.mozman.at/notes/#/page/release%20notes

ezdxf Documentation, Release 1.3.2

12 Chapter 5. Release Notes

CHAPTER

SIX

CHANGELOG

The changelog is included in the Knowledge Graph.

13

https://ezdxf.mozman.at/notes/#/page/changelog

ezdxf Documentation, Release 1.3.2

14 Chapter 6. Changelog

CHAPTER

SEVEN

SOURCE CODE & FEEDBACK

Source Code: http://github.com/mozman/ezdxf.git
Issue Tracker: http://github.com/mozman/ezdxf/issues
Forum: https://github.com/mozman/ezdxf/discussions

15

http://github.com/mozman/ezdxf.git
http://github.com/mozman/ezdxf/issues
https://github.com/mozman/ezdxf/discussions

ezdxf Documentation, Release 1.3.2

16 Chapter 7. Source Code & Feedback

CHAPTER

EIGHT

QUESTIONS AND ANSWERS

Please post questions at the forum or stack overflow to make answers available to other users as well.

17

https://github.com/mozman/ezdxf/discussions
https://stackoverflow.com/

ezdxf Documentation, Release 1.3.2

18 Chapter 8. Questions and Answers

CHAPTER

NINE

CONTENTS

9.1 Introduction

9.1.1 What is ezdxf

Ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, ezdxf allows developers
to read and modify existing DXF documents or create new DXF documents.
The main objective in the development of ezdxf was to hide complex DXF details from the programmer but still sup-
port most capabilities of the DXF format. Nevertheless, a basic understanding of the DXF format is required, also to
understand which tasks and goals are possible to accomplish by using the DXF format.
Not all DXF features are supported yet, but additional features will be added in the future gradually.
Ezdxf is also a replacement for the outdated dxfwrite and dxfgrabber packages but with different APIs, for more infor-
mation see also: What is the Relationship between ezdxf, dxfwrite and dxfgrabber?

9.1.2 What ezdxf can’t do

• ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking for an
appropriate application, try the free ODAFileConverter from the Open Design Alliance, which converts between
different DXF version and also between the DXF and the DWG file format.

• ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to other CAD formats such as DWG
• ezdxf is not a CAD kernel and does not provide high level functionality for construction work, it is just an interface
to the DXF file format. If you are looking for a CAD kernel with Python scripting support, look at FreeCAD.

9.1.3 Supported Python Versions

Ezdxf requires at least Python 3.9 (determined by numpy) and will be tested with the latest stable CPython version and
the latest stable release of pypy3 during development.
Ezdxf is written in pure Python with optional Cython implementations of some low level math classes and requires pypars-
ing, numpy, fontTools and typing_extensions as additional library beside the Python Standard Library. Pytest is required
to run the unit and integration tests. Data to run the stress and audit test can not be provided, because I don’t have the
rights for publishing these DXF files.

19

http://www.python.org
http://usa.autodesk.com/
https://pypi.org/project/dxfwrite/
https://pypi.org/project/dxfgrabber/
https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/
http://www.python.org
https://www.freecadweb.org/

ezdxf Documentation, Release 1.3.2

9.1.4 Supported Operating Systems

Ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter (>=3.9).

9.1.5 Supported DXF Versions

Version AutoCAD Release
AC1009 AutoCAD R12
AC1012 AutoCAD R13 -> R2000
AC1014 AutoCAD R14 -> R2000
AC1015 AutoCAD R2000
AC1018 AutoCAD R2004
AC1021 AutoCAD R2007
AC1024 AutoCAD R2010
AC1027 AutoCAD R2013
AC1032 AutoCAD R2018

Ezdxf also reads older DXF versions but saves it as DXF R12.

9.1.6 Embedded DXF Information of 3rd Party Applications

The DXF format allows third-party applications to embed application-specific information. Ezdxf manages DXF data
in a structure-preserving form, but for the price of large memory requirement. Because of this, processing of DXF
information of third-party applications is possible and will retained on rewriting.

9.1.7 License

Ezdxf is licensed under the very liberal MIT-License.

9.2 Setup & Dependencies

The primary goal is to keep the dependencies of the core package as small as possible. The add-ons are not part of the
core package and can therefore use as many packages as needed. The only requirement for these packages is an easy way
to install them onWindows, Linux and macOS, preferably as:

pip3 install ezdxf

The packages pyparsing, numpy, fontTools and typing_extensions are the hard dependency and will be installed automat-
ically by pip3!
The minimal required Python version is determined by the latest release version of numpy.

20 Chapter 9. Contents

http://opensource.org/licenses/mit-license.php
https://pypi.org/project/pyparsing/
https://pypi.org/project/numpy/
https://pypi.org/project/fonttools/
https://pypi.org/project/typing_extensions/
https://pypi.org/project/numpy/

ezdxf Documentation, Release 1.3.2

9.2.1 Basic Installation

The most common case is the installation by pip3 including the optional C-extensions from PyPI as binary wheels:

pip3 install ezdxf

9.2.2 Installation with Extras

To use all features of the drawing add-on, add the [draw] tag:

pip3 install ezdxf[draw]

Tag Additional Installed Packages
[draw] Matplotlib, PySide6, PyMuPDF, Pillow
[dev] [draw] + setuptools, wheel, Cython, pytest (full development setup)

If PySide6 is not available on your system, use PyQt5 by this options:

Tag Additional Installed Packages
[draw5] Matplotlib, PyQt5, PyMuPDF, Pillow
[dev5] [draw5] + setuptools, wheel, Cython, pytest (full development setup)

9.2.3 PySide6 Issue

Maybe PySide6 won’t launch on Debian based distributions and shows this error message:

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was␣
↪→found.
...

This may fix the issue:

sudo apt-get install libxcb-cursor0

9.2.4 Binary Wheels

Ezdxf includes some C-extensions, which will be deployed automatically at each release to PyPI as binary wheels to PyPI:
• Windows: only amd64 packages
• Linux: manylinux and musllinux packages for x86_64 & aarch64
• macOS: x86_64, arm64 and universal packages

The wheels are created by the continuous integration (CI) service provided by GitHub and the build container cibuildwheel
provided by PyPA the Python Packaging Authority. The workflows are kept short and simple, so my future me will
understand what’s going on and they are maybe also helpful for other developers which do not touch CI services every
day.
The C-extensions are disabled for pypy3, because the JIT compiled code of pypy is much faster than the compiled C-
extensions.

9.2. Setup & Dependencies 21

https://pypi.org/project/ezdxf
https://matplotlib.org
https://pypi.org/project/PySide6/
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/Pillow/
https://pypi.org/project/PySide6/
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/Pillow/
https://pypi.org/project/PySide6/
https://pypi.org/project/ezdxf
https://github.com
https://github.com/pypa/cibuildwheel
https://www.pypa.io/en/latest/
https://github.com/mozman/ezdxf/tree/master/.github/workflows
https://www.pypy.org

ezdxf Documentation, Release 1.3.2

9.2.5 Disable C-Extensions

It is possible to disable the C-Extensions by setting the environment variable EZDXF_DISABLE_C_EXT to 1 or true:

set EZDXF_DISABLE_C_EXT=1

or on Linux:

export EZDXF_DISABLE_C_EXT=1

This is has to be done before anything from ezdxf is imported! If you are working in an interactive environment, you
have to restart the interpreter.

9.2.6 Installation from GitHub

Install the latest development version by pip3 from GitHub:

pip3 install git+https://github.com/mozman/ezdxf.git@master

9.2.7 Build and Install from Source

This is only required if you want the compiled C-extensions, the ezdxf installation by pip from the source code package
works without the C-extension but is slower. There are binary wheels available on PyPi which included the compiled
C-extensions.

Windows

Make a build directory and a virtual environment:

mkdir build
cd build
py -m venv .venv
.venv/Scripts/activate.bat

A working C++ compiler setup is required to compile the C-extensions from source code. Windows users need the build
tools from Microsoft: https://visualstudio.microsoft.com/de/downloads/
Download and install the required Visual Studio Installer of the community edition and choose the option: Visual Studio
Build Tools 20..

Install required packages to build and install ezdxf with C-extensions:

pip3 install setuptools wheel cython

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install .

Check if the installation was successful:

22 Chapter 9. Contents

https://github.com
https://pypi.org/project/ezdxf
https://visualstudio.microsoft.com/de/downloads/
https://github.com

ezdxf Documentation, Release 1.3.2

python3 -m ezdxf -V

The ezdxf command should runwithout a preceding python3 -m, but calling the launcher through the interpreter guarantees
to call the version which was installed in the venv if there exist a global installation of ezdxf like in my development
environment.
The output should look like this:

ezdxf 0.17.2b4 from D:\Source\build\.venv\lib\site-packages\ezdxf
Python version: 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64␣
↪→bit (AMD64)]
using C-extensions: yes
using Matplotlib: no

To install optional packages go to section: Install Optional Packages
To run the included tests go to section: Run the Tests

WSL & Ubuntu

I use sometimes the Windows Subsystem for Linux (WSL) with Ubuntu 20.04 LTS for some tests (how to install WSL).
By doing as fresh install onWSL & Ubuntu, I encountered an additional requirement, the build-essential package adds the
required C++ support and the python3.10-dev package the required headers, change 3.10 to the Python version you are
using:

sudo apt install build-essential python3.10-dev

The system Python 3 interpreter has the version 3.8 (in 2021), but I will show in a later section how to install an additional
newer Python version from the source code:

cd ~
mkdir build
cd build
python3 -m venv .venv
source .venv/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

pip3 install cython wheel

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install .

Check if the installation was successful:

python3 -m ezdxf -V

The output should look like this:

9.2. Setup & Dependencies 23

https://docs.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com
https://docs.microsoft.com/en-us/windows/wsl/install
https://github.com

ezdxf Documentation, Release 1.3.2

ezdxf 0.17.2b4 from /home/mozman/src/.venv/lib/python3.8/site-packages/ezdxf
Python version: 3.8.10 (default, Nov 26 2021, 20:14:08)
[GCC 9.3.0]
using C-extensions: yes
using Matplotlib: no

To install optional packages go to section: Install Optional Packages
To run the included tests go to section: Run the Tests

Raspberry Pi OS

Testing platform is a Raspberry Pi 400 and the OS is the Raspberry Pi OS which runs on 64bit hardware but is a 32bit
OS. The system Python 3 interpreter comes in version 3.7 (in 2021), but I will show in a later section how to install an
additional newer Python version from the source code.
Install the build requirements, Matplotlib and the PyQt5 bindings from the distribution repository:

sudo apt install python3-pip python3-matplotlib python3-pyqt5

Installing Matplotlib and the PyQt5 bindings by pip from piwheels in the venv worked, but the packages showed errors at
import, seems to be an packaging error in the required numpy package. PySide6 is the preferred Qt binding but wasn’t
available on Raspberry Pi OS at the time of writing this - PyQt5 is supported as fallback.
Create the venv with access to the system site-packages for using Matplotlib and the Qt bindings from the system instal-
lation:

cd ~
mkdir build
cd build
python3 -m venv --system-site-packages .venv
source .venv/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

pip3 install cython wheel

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install .

Check if the installation was successful:

python3 -m ezdxf -V

The output should look like this:

ezdxf 0.17.2b4 from /home/pi/src/.venv/lib/python3.7/site-packages/ezdxf
Python version: 3.7.3 (default, Jan 22 2021, 20:04:44)
[GCC 8.3.0]
using C-extensions: yes
using Matplotlib: yes

24 Chapter 9. Contents

https://www.raspberrypi.com
https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org
https://pypi.org/project/numpy/
https://pypi.org/project/PySide6/
https://www.raspberrypi.com
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://github.com

ezdxf Documentation, Release 1.3.2

To run the included tests go to section: Run the Tests

Manjaro on Raspberry Pi

Because the (very well working) Raspberry Pi OS is only a 32bit OS, I searched for a 64bit alternative like Ubuntu,
which just switched to version 21.10 and always freezes at the installation process! So I tried Manjaro as rolling release,
which I used prior in a virtual machine and wasn’t really happy, because there is always something to update. Anyway the
distribution looks really nice and has Python 3.9.9 installed.
Install build requirements and optional packages by the system packager pacman:

sudo pacman -S python-pip python-matplotlib python-pyqt5

Create and activate the venv:

cd ~
mkdir build
cd build
python3 -m venv --system-site-packages .venv
source .venv/bin/activate

The rest is the same procedure as for the Raspberry Pi OS:

pip3 install cython wheel
git clone https://github.com/mozman/ezdxf.git
cd ezdxf
pip3 install .
python3 -m ezdxf -V

To run the included tests go to section: Run the Tests

Ubuntu Server 21.10 on Raspberry Pi

I gave the Ubuntu Server 21.10 a chance after the desktop version failed to install by a nasty bug and it worked well. The
distribution comes with Python 3.9.4 and after installing some requirements:

sudo apt install build-essential python3-pip python3.9-venv

The remaining process is like onWSL & Ubuntu except for the newer Python version. Installing Matplotlib by pip works
as expected and is maybe useful even on a headless server OS to create SVG and PNG from DXF files. PySide6 is not
available by pip and the installation of PyQt5 starts from the source code package which I stopped because this already
didn’t finished on Manjaro, but the installation of the PyQt5 bindings by apt works:

sudo apt install python3-pyqt5

Use the --system-site-packages option for creating the venv to get access to the PyQt5 package.

9.2. Setup & Dependencies 25

https://www.raspberrypi.com
https://ubuntu.com
https://www.manjaro.org
https://ubuntu.com
https://matplotlib.org
https://pypi.org/project/PySide6/
https://pypi.org/project/PyQt5/
https://www.manjaro.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/

ezdxf Documentation, Release 1.3.2

9.2.8 Install Optional Packages

Install the optional dependencies by pip only for Windows and WSL & Ubuntu, for Raspberry Pi OS and Manjaro on
Raspberry Pi install these packages by the system packager:

pip3 install matplotlib PySide6

9.2.9 Run the Tests

This is the same procedure for all systems, assuming you are still in the build directory build/ezdxf and ezdxf is now
installed in the venv.
Install the test dependencies and run the tests:

pip3 install pytest
python3 -m pytest tests integration_tests

9.2.10 Build Documentation

Assuming you are still in the build directory build/ezdxf of the previous section.
Install Sphinx:

pip3 install Sphinx sphinx-rtd-theme

Build the HTML documentation:

cd docs
make html

The output is located in build/ezdxf/docs/build/html.

9.2.11 Python from Source

Debian based systems have often very outdated software installed and sometimes there is no easy way to install a newer
Python version. This is a brief summery how I installed Python 3.9.9 on the Raspberry Pi OS, for more information go
to the source of the recipe: Real Python
Install build requirements:

sudo apt-get update
sudo apt-get upgrade

sudo apt-get install -y make build-essential libssl-dev zlib1g-dev \
libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \
libncurses5-dev libncursesw5-dev xz-utils tk-dev

Make a build directory:

cd ~
mkdir build
cd build

Download and unpack the source code from Python.org, replace 3.9.9 by your desired version:

26 Chapter 9. Contents

https://www.raspberrypi.com
https://realpython.com/installing-python/#how-to-build-python-from-source-code
https://www.python.org

ezdxf Documentation, Release 1.3.2

wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz
tar -xvzf Python-3.9.9.tgz
cd Python-3.9.9/

Configure the build process, use a prefix to the directory where the interpreter should be installed:

./configure --prefix=/opt/python3.9.9 --enable-optimizations

Build & install the Python interpreter. The -j option simply tells make to split the building into parallel steps to speed up
the compilation, my Raspberry Pi 400 has 4 cores so 4 seems to be a good choice:

make -j 4
sudo make install

The building time was ~25min and the new Python 3.9.9 interpreter is now installed as /opt/python3.9.9/bin/python3.
At the time there were no system packages for Matplotlib and PyQt5 for this new Python version available, so there is no
benefit of using the option --system-site-packages for building the venv:

cd ~/build
/opt/python3.9.9/bin/python3 -m venv py39
source py39/bin/activate

I have not tried to build Matplotlib and PyQt5 by myself and the installation by pip from piwheels did not work, in this
case the drawing add-on will not work.
Proceed with the ezdxf installation from source as shown for the Raspberry Pi OS.

9.3 Usage for Beginners

This section shows the intended usage of the ezdxf package. This is just a brief overview for new ezdxf users, follow the
provided links for more detailed information.
First import the package:

import ezdxf

9.3.1 Loading DXF Files

ezdxf supports loading ASCII and binary DXF documents from a file:

doc = ezdxf.readfile(filename)

or from a zip-file:

doc = ezdxf.readzip(zipfilename[, filename])

Which loads the DXF document filename from the zip-file zipfilename or the first DXF file in the zip-file if filename is
absent.
It is also possible to read a DXF document from a stream by the ezdxf.read() function, but this is a more advanced
feature, because this requires detection of the file encoding in advance.
This works well with DXF documents from trusted sources like AutoCAD or BricsCAD. For loading DXF documents
with minor or major flaws use the ezdxf.recover module.

9.3. Usage for Beginners 27

https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org

ezdxf Documentation, Release 1.3.2

See also:
Documentation for ezdxf.readfile(), ezdxf.readzip() and ezdxf.read(), for more information about
file management go to the Document Management section. For loading DXF documents with structural errors look at the
ezdxf.recover module.

9.3.2 Layouts and Blocks

Layouts are containers for DXF entities like LINE or CIRCLE. The most important layout is the modelspace labeled as
“Model” in CAD applications which represents the “world” work space. Paperspace layouts represents plottable sheets
which contains often the framing and the tile block of a drawing and VIEWPORT entities as scaled and clipped “windows”
into the modelspace.
The modelspace is always present and can not be deleted. The active paperspace is also always present in a new DXF
document but can be deleted, in that case another paperspace layout gets the new active paperspace, but you can not delete
the last paperspace layout.
Getting the modelspace of a DXF document:

msp = doc.modelspace()

Getting a paperspace layout by the name as shown in the tab of a CAD application:

psp = doc.paperspace("Layout1")

A block is just another kind of entity space, which can be inserted multiple times into other layouts and blocks by the
INSERT entity also called block references, this is a very powerful and an important concept of the DXF format.
Getting a block layout by the block name:

blk = doc.blocks.get("NAME")

All these layouts have factory functions to create graphical DXF entities for their entity space, for more information about
creating entities see section: Create new DXF Entities

9.3.3 Query DXF Entities

As said in the Layouts and Blocks section, all graphical DXF entities are stored in layouts, all these layouts can be iterated
and do support the index operator e.g. layout[-1] returns the last entity.
The main difference between iteration and index access is, that iteration filters destroyed entities, but the index operator
returns also destroyed entities until these entities are purged by layout.purge(), more about this topic in section:
Delete Entities.
There are two advanced query methods: query() and groupby().
Get all lines of layer "MyLayer":

lines = msp.query('LINE[layer=="MyLayer"]')

This returns an EntityQuery container, which also provides the same query() and groupby() methods.
Get all lines categorized by a DXF attribute like color:

all_lines_by_color = msp.query("LINE").groupby("color")
lines_with_color_1 = all_lines_by_color.get(1, [])

28 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The groupby() method returns a regular Python dict with colors as key and a regular Python list of entities as
values (not an EntityQuery container).
See also:
For more information go to the Tutorial for Getting Data from DXF Files

9.3.4 Examine DXF Entities

Each DXF entity has a dxf namespace attribute, which stores the named DXF attributes, some entity attributes and
assets are only available from Python properties or methods outside the dxf namespace like the vertices of the LW-
POLYLINE entity. More information about the DXF attributes of each entity can found in the documentation of the
ezdxf.entities module.
Get some basic DXF attributes:

layer = entity.dxf.layer # default is "0"
color = entity.dxf.color # default is 256 = BYLAYER

Most DXF attributes have a default value, which will be returned if the DXF attribute is not present, for DXF attributes
without a default value you can check if the attribute really exist:

entity.dxf.hasattr("true_color")

or use the get() method and provide a default value:

entity.dxf.get("true_color", 0)

See also:
• Common graphical DXF attributes

• Helper class ezdxf.gfxattribs.GfxAttribs for building DXF attribute dictionaries.

9.3.5 Create a New DXF File

Create new document for the latest supported DXF version:

doc = ezdxf.new()

Create a new DXF document for a specific DXF version, e.g. for DXF R12:

doc = ezdxf.new("R12")

The ezdxf.new() function can create some standard resources, such as linetypes and text styles, by setting the argu-
ment setup to True:

doc = ezdxf.new(setup=True)

See also:
• Tutorial for Creating DXF Drawings

• Documentation for ezdxf.new(), for more information about file management go to theDocument Management
section.

9.3. Usage for Beginners 29

ezdxf Documentation, Release 1.3.2

9.3.6 Create New DXF Entities

The factory methods for creating new graphical DXF entities are located in the BaseLayout class and these factory
methods are available for all entity containers:

• Modelspace

• Paperspace

• BlockLayout

The usage is simple:

msp = doc.modelspace()
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer"})

A few important/required DXF attributes are explicit method arguments, most additional DXF attributes are gives as a
regular Python dict object by the keyword only argument dxfattribs. The supported DXF attributes can be found
in the documentation of the ezdxf.entities module.

Warning: Do not instantiate DXF entities by yourself and add them to layouts, always use the provided factory
methods to create new graphical entities, this is the intended way to use ezdxf.

See also:
• Thematic Index of Layout Factory Methods

• Tutorial for Creating DXF Drawings

• Tutorial for Simple DXF Entities

• Tutorial for LWPolyline

• Tutorial for Text

• Tutorial for MText and MTextEditor

• Tutorial for Hatch

9.3.7 Saving DXF Files

Save the DXF document with a new name:

doc.saveas("new_name.dxf")

or with the same name as loaded:

doc.save()

See also:
Documentation for ezdxf.document.Drawing.save() and ezdxf.document.Drawing.saveas(), for
more information about file management go to the Document Management section.

30 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.3.8 Create New Blocks

The block definitions of a DXF document are managed by the BlocksSection object:

my_block = doc.blocks.new("MyBlock")

See also:
Tutorial for Blocks

9.3.9 Create Block References

A block reference is just another DXF entity called INSERT. The Insert entity is created by the factory method:
add_blockref():

msp.add_blockref("MyBlock", (0, 0))

See also:
See Tutorial for Blocks for more advanced features like using Attrib entities.

9.3.10 Create New Layers

A layer is not an entity container, a layer is just another DXF attribute stored in the entity and the entity can inherit
some properties from this Layer object. Layer objects are stored in the layer table which is available as attribute doc.
layers.
You can create your own layers:

my_layer = doc.layers.add("MyLayer")

The layer object also controls the visibility of entities which references this layer, the on/off state of the layer is unfortu-
nately stored as positive or negative color value which make the raw DXF attribute of layers useless, to change the color
of a layer use the property Layer.color

my_layer.color = 1

To change the state of a layer use the provided methods of the Layer object, like on(), off(), freeze() or
thaw():

my_layer.off()

See also:
Layers

9.3. Usage for Beginners 31

ezdxf Documentation, Release 1.3.2

9.3.11 Delete Entities

The safest way to delete entities is to delete the entity from the layout containing that entity:

line = msp.add_line((0, 0), (1, 0))
msp.delete_entity(line)

This removes the entity immediately from the layout and destroys the entity. The property is_alive returns False
for a destroyed entity and all Python attributes are deleted, so line.dxf.color will raise an AttributeError
exception, because line does not have a dxf attribute anymore.
Ezdxf also supports manually destruction of entities by calling the method destroy():

line.destroy()

Manually destroyed entities are not removed immediately from entities containers likeModelspace orEntityQuery,
but iterating such a container will filter destroyed entities automatically, so a for e in msp: ... loop will never
yield destroyed entities. The index operator and the len() function do not filter deleted entities, to avoid getting deleted
entities call the purge() method of the container manually to remove deleted entities.

9.3.12 Further Information

• Basic Concepts: what is the meaning or purpose of …
• Tasks: how to accomplish certain tasks
• Reference

9.4 Basic Concepts

The Basic Concepts section teach the intended meaning of DXF attributes and structures without teaching the application
of this information or the specific implementation by ezdxf, if you are looking for more information about the ezdxf
internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section and for the
solution of specific problems go to the Howto section.

9.4.1 What is DXF?

The common assumption is also the cite of Wikipedia:
AutoCAD DXF (Drawing eXchange Format) is a CAD data file format developed by Autodesk for enabling
data interoperability between AutoCAD and other applications.
DXF was originally introduced in December 1982 as part of AutoCAD 1.0, and was intended to provide an
exact representation of the data in the AutoCAD native file format, DWG (Drawing). For many years Au-
todesk did not publish specifications making correct imports of DXF files difficult. Autodesk now publishes
the DXF specifications online.

The more precise cite from the DXF reference itself:
TheDXF™format is a tagged data representation of all the information contained in anAutoCAD®drawing
file. Tagged data means that each data element in the file is preceded by an integer number that is called a
group code. A group code’s value indicates what type of data element follows. This value also indicates the
meaning of a data element for a given object (or record) type. Virtually all user-specified information in a
drawing file can be represented in DXF format.

32 Chapter 9. Contents

https://en.wikipedia.org/wiki/AutoCAD_DXF
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 1.3.2

No mention of interoperability between AutoCAD and other applications.
In reality the DXF format was designed to ensure AutoCAD cross-platform compatibility in the early days when different
hardware platforms with different binary data formats were used. The name DXF (Drawing eXchange Format) may
suggest an universal exchange format, but it is not. It is based on the infrastructure installed by Autodesk products (fonts)
and the implementation details of AutoCAD (MTEXT) or on licensed third party technologies (embedded ACIS entities).
For more information about the AutoCAD history see the document: The Autodesk File - Bits of History, Words of
Experience by John Walker, founder of Autodesk, Inc. and co-author of AutoCAD.

DXF Reference Quality

The DXF reference is by far no specification nor a standard like the W3C standard for SVG or the ISO standard for PDF.
The reference describes many but not all DXF entities and some basic concepts like the tag structure or the arbitrary axis
algorithm. But the existing documentation (reference) is incomplete and partly misleading or wrong. Also missing from
the reference are some important parts like the complex relationship between the entities to create higher order structures
like block definitions, layouts (model space & paper space) or dynamic blocks to name a few.

Reliable CAD Applications

Because of the suboptimal quality of the DXF reference not all DXF viewers, creators or processors are of equal quality.
I consider a CAD application as a reliable CAD application when the application creates valid DXF documents in the
meaning and interpretation of Autodesk and a reliable DXF viewer when the result matches in most parts the result of
the free Trueview viewer provided by Autodesk.
These are some applications which do fit the criteria of a reliable CAD application:

• AutoCAD and Trueview
• CAD applications based on the OpenDesignAlliance (ODA) SDK, see also ODA on wikipedia, even Autodesk is
a corporate member, see their blog post from 22 Sep 2020 at adsknews but only to use the ODA IFC tools and not
to improve the DWG/DXF compatibility

• BricsCAD (ODA based)
• GstarCAD (ODA based)
• ZWCAD (ODA based)

Unfortunately, I cannot recommend any open source applications because everyone I know has serious shortcomings, at
least as a DXF viewer, and I don’t trust them as a DXF creator either. To be clear, not even ezdxf (which is not a CAD
application) is a reliable library in this sense - it just keeps getting better, but is far from reliable.

Hint: Please do not submit bug reports based on the use of LibreCAD or QCAD, these applications are in no way
reliable regarding the DXF format and I will not waste my time on them.

9.4. Basic Concepts 33

https://www.fourmilab.ch/autofile/
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://www.w3.org/Graphics/SVG/
https://en.wikipedia.org/wiki/PDF
https://www.autodesk.com/
https://www.autodesk.com/viewers
https://www.autodesk.com/
https://www.autodesk.com/products/autocad/overview
https://www.autodesk.com/viewers
https://www.opendesign.com/
https://en.wikipedia.org/wiki/Open_Design_Alliance
https://www.autodesk.com/
https://adsknews.autodesk.com/news/open-design-alliance-membership
https://adsknews.autodesk.com/
https://www.bricsys.com/en-intl/
https://www.gstarcad.net/
https://www.zwsoft.com/product/zwcad
https://librecad.org/
https://qcad.org/en/

ezdxf Documentation, Release 1.3.2

9.4.2 DXF Entities and Objects

DXF entities are objects that make up the design data stored in a DXF file.

Graphical Entities

Graphical entities are visible objects stored in blocks, modelspace- or paperspace layouts. They represent the various
shapes, lines, and other elements that make up a 2D or 3D design.
Some common types of DXF entities include:

• LINE and POLYLINE: These are the basic building blocks of a DXF file. They represent straight and curved lines.
• CIRCLE and ARC: These entities represent circles and portions of circles, respectively.
• TEXT and MTEXT: DXF files can also contain text entities, which can be used to label parts of the design or
provide other information.

• HATCH: DXF files can also include hatch patterns, which are used to fill in areas with a specific pattern or texture.
• DIMENSION: DXF files can also contain dimension entities, which provide precise measurements of the various
elements in a design.

• INSERT: A block is a group of entities that can be inserted into a design multiple times by the INSERT entity,
making it a useful way to reuse elements of a design.

These entities are defined using specific codes and values in the DXF file format, and they can be created and manipulated
by ezdxf.

Objects

DXF objects are non-graphical entities and have no visual representation, they store administrative data, paperspace layout
definitions, style definitions for multiple entity types, custom data and objects. The OBJECTS section in DXF files serves
as a container for these non-graphical objects.
Some common DXF types of DXF objects include:

• DICTIONARY: A dictionary object consists of a series of name-value pairs, where the name is a string that iden-
tifies a specific object within the dictionary, and the value is a reference to that object. The objects themselves can
be any type of DXF entity or custom object defined in the DXF file.

• XRECORD entities are used to store custom application data in a DXF file.
• the LAYOUT entity is a DXF entity that represents a single paper space layout in a DXF file. Paper space is the
area in a CAD drawing that represents the sheet of paper or other physical media on which the design will be plotted
or printed.

• MATERIAL, MLINESTYLE, MLEADERSTYLE definitions stored in certain DICTIONARY objects.
• A GROUP entity contains a list of handles that refer to other DXF entities in the drawing. The entities in the group
can be of any type, including entities from the model space or paper space layouts.

34 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

TagStorage

The ezdxf package supports many but not all entity types, all these unsupported types are stored as TagStorage in-
stances to preserve their data when exporting the edited DXF content by ezdxf.

Access Entity Attributes

All DXF attributes are stored in the entity namespace attribute dxf.

print(entity.dxf.layer)

Some attributes are mandatory others are optional in most cases a reasonable values will be returned as default value if
the attribute is missing.
See also:
Tutorial for Getting Data from DXF Files

Where to Look for Entities

The DXF document has an entity database where all entities which have a handle are stored in a (key, value) storage. The
query() method is often the easiest way to request data:

for text in doc.entitydb.query("TEXT"):
print(text.dxf.text)

See also:
• ezdxf.query module
• ezdxf.entitydb module

Graphical entities are stored in blocks, the modelspace or paperspace layouts.
• The doc.modelspace() function returns the Modelspace instance
• The doc.paperspace() returns a Paperspace instance
• The doc.blocks attribute provides access to the BlocksSection

The query() method of the Drawing class which represents the DXF document, runs the query on all layouts and
block definitions.
Non-graphical entities are stored in the OBJECTS section:

• The doc.objects attribute provides access to the ObjectsSection.
Resource definitions like Layer, Linetype or Textstyle are stored in resource tables:

• doc.layers: the LayerTable
• doc.linetypes: the LinetypeTable
• doc.styles: the TextstyleTable
• doc.dimstyles: the DimStyleTable

Important: A layer assignment is just an attribute of a DXF entity, it’s not an entity container!

See also:

9.4. Basic Concepts 35

ezdxf Documentation, Release 1.3.2

• Basic concept of the Modelspace

• Basic concept of Paperspace layouts
• Basic concept of Blocks
• Tutorial for Getting Data from DXF Files

How to Create Entities

The recommended way to create new DXF entities is to use the factory methods of layouts and blocks to create entities
and add them to the entity space automatically.
See also:

• Thematic Index of Layout Factory Methods

• Reference of the BaseLayout class
• Tutorial for Simple DXF Entities

9.4.3 AutoCAD Color Index (ACI)

The color attribute represents an ACI (AutoCAD Color Index). AutoCAD and many other CAD application provides a
default color table, but pen table would be the more correct term. Each ACI entry defines the color value, the line weight
and some other attributes to use for the pen. This pen table can be edited by the user or loaded from an CTB or STB file.
Ezdxf provides functions to create (new()) or modify (ezdxf.acadctb.load()) plot styles files.
DXF R12 and prior do not preserve the layout of a drawing very well, because of the lack of a standard color table and
missing DXF structures to define these color tables in the DXF file. If a CAD user redefines an ACI color entry in a CAD
application and does not provide this CTB or STB file, you can not know what color or lineweight was used intentionally.
This got better in later DXF versions by supporting additional DXF attributes like lineweight and true_color
which can define these attributes by distinct values.

36 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

See also:
• Plot Style Files (CTB/STB)

• ezdxf.colors

• Tutorial for Common Graphical Attributes

• Autodesk Knowledge Network: About Setting the Color of Objects
• BricsCAD Help Center: Entity Color

9.4.4 True Color

The support for true color was added to the DXF file format in revision R2004. The true color value has three components
red, green and blue in the range from 0 to 255 and is stored as a 24-bit value in the DXF namespace as true_color
attribute and looks like this 0xRRGGBB as hex value. For a more easy usage all graphical entities support the rgb
property to get and set the true color as (r, g, b) tuples where the components must be in the range from 0 to 255.

import ezdxf

doc = ezdxf.new()
msp = doc.modelspace()
line = msp.add_line((0, 0), (10, 0))
line.rgb = (255, 128, 32)

The true color value has higher precedence than the AutoCAD Color Index (ACI) value, if the attributes color and the
true_color are present the entity will be rendered with the true color value.
The true color value has the advantage that it defines the color absolutely and unambiguously, no unexpected overwriting
is possible. The representation of the color is fixed and only depends on the calibration of the output medium:

9.4. Basic Concepts 37

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-14BC039D-238D-4D9E-921B-F4015F96CB54-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitycolor/V22/EN_US?id=165079136935

ezdxf Documentation, Release 1.3.2

See also:
• ezdxf.colors

• Tutorial for Common Graphical Attributes

• Autodesk Knowledge Network: About Setting the Color of Objects
• BricsCAD Help Center: Entity Color

38 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-14BC039D-238D-4D9E-921B-F4015F96CB54-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitycolor/V22/EN_US?id=165079136935

ezdxf Documentation, Release 1.3.2

9.4.5 Transparency

The support for transparency was added to the DXF file format in revision R2004. The raw transparency value stored as 32
bit value in the DXF namespace as transparency attribute, has a range from 0 to 255 where 0 is fully transparent and
255 if opaque and has the top byte set to 0x02. For a more easy usage all graphical entities support the transparency
property to get and set the transparency as float value in the range frem 0.0 to 1.0 where 0.0 is opaque and 1.0 is fully
transparent. The transparency value can be set explicit in the entity, by layer or by block.

import ezdxf

doc = ezdxf.new()
msp = doc.modelspace()
line = msp.add_line((0, 0), (10, 0))
line.transparency = 0.5

See also:
• ezdxf.colors

• Tutorial for Common Graphical Attributes

• Autodesk Knowledge Network: About Making Objects Transparent
• BricsCAD Help Center: Entity Transparency

9.4.6 Layers

Every object has a layer as one of its properties. You may be familiar with layers - independent drawing spaces that stack
on top of each other to create an overall image - from using drawing programs. Most CAD programs use layers as the
primary organizing principle for all the objects that you draw. You use layers to organize objects into logical groups of
things that belong together; for example, walls, furniture, and text notes usually belong on three separate layers, for a
couple of reasons:

• Layers give you a way to turn groups of objects on and off - both on the screen and on the plot.
• Layers provide the most efficient way of controlling object color and linetype

Create a layer table entry Layer by Drawing.layers.add(), assign the layer properties such as color and linetype.
Then assign those layers to other DXF entities by setting the DXF attribute layer to the layer name as string.
The DXF format do not require a layer table entry for a layer. A layer without a layer table entry has the default linetype
'Continuous', a default color of 7 and a lineweight of -3 which represents the default lineweight of 0.25mm in most
circumstances.

Layer Properties

The advantage of assigning properties to a layer is that entities can inherit this properties from the layer by using the string
'BYLAYER' as linetype string, 256 as color or -1 as lineweight, all these values are the default values for new entities.
DXF version R2004 and later also support inheriting true_color and transparency attributes from a layer.

9.4. Basic Concepts 39

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-E6EB9CA5-B039-4262-BE17-1AD3E7230EF7-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_transparency/V22/EN_US?id=165079137340

ezdxf Documentation, Release 1.3.2

Layer Status

The layer status is important for the visibility and the ability to select and edit DXF entities on that layer in CAD applica-
tions. Ezdxf does not care about the visual representation and works at the level of entity spaces and the entity database
and therefore all the layer states documented below are ignored by ezdxf. This means if you iterate an entity space like
the modelspace or the entity database you will get all entities from that entity space regardless the layer status.

• ON: the layer is visible, entities on that layer are visible, selectable and editable
• OFF: the layer is not visible, entities on that layer are not visible, not selectable and not editable
• FROZEN: the layer is not visible, entities on that layer are not visible, not selectable and not editable, very similar
to the OFF status but layers can be frozen individually in VIEWPORTS and freezing layers may speed up some
commands in CAD applications like ZOOM, PAN or REGEN.

• LOCKED: the layer is visible, entities on that layer are visible but not selectable and not editable

Deleting Layers

Deleting a layer is not as simple as it might seem, especially if you are used to use a CAD application like AutoCAD. There
is no directory of locations where layers can be used and references to layers can occur even in third-party data. Deleting
the layer table entry removes only the default attributes of that layer and does not delete any layer references automatically.
And because a layer can exist without a layer table entry, the layer exist as long as at least one layer reference to the layer
exist.

Renaming Layers

Renaming a layer is also problematic because the DXF format stores the layer references in most cases as text strings, so
renaming the layer table entry just creates a new layer and all entities which still have a reference to the old layer now
inherit their attributes from an undefined layer table entry with default settings.

Viewport Overrides

Most of the layer properties can be overriden for each Viewport entity individually and this overrides are stored in
layer table entry referenced by the handle of the VIEWPORT entity. In contrast the frozen status of layers is store in the
VIEWPORT entity.
See also:

• Tutorial for Layers

• Tutorial for Viewports in Paperspace

• Autodesk Knowledge Network: About Layers
• BricsCAD Help Center: Working with Layers

40 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-6B3E3B5D-3AE2-4162-A5FE-CFE42AB0743B-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_workingwithlayers/V22/EN_US?id=165079137441

ezdxf Documentation, Release 1.3.2

9.4.7 Linetypes

The linetype defines the rendering pattern of linear graphical entities like LINE, ARC, CIRCLE and so on. The
linetype of an entity can be specified by the DXF attribute linetype, this can be an explicit named linetype or the
entity can inherit its linetype from the assigned layer by setting linetype to 'BYLAYER', which is also the default
value. CONTINUOUS is the default linetype for layers with an unspecified linetype.
Ezdxf creates several standard linetypes, if the argument setup is True when calling new(), this simple linetypes are
supported by all DXF versions:

doc = ezdxf.new('R2007', setup=True)

9.4. Basic Concepts 41

ezdxf Documentation, Release 1.3.2

42 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

In DXF R13 Autodesk introduced complex linetypes which can contain text or shapes.
See also:

• Tutorial for Common Graphical Attributes

• Tutorial for Creating Linetype Pattern

• Autodesk Knowledge Network: About Linetypes
• BricsCAD Help Center: Entity Linetype

Linetype Scaling

Global linetype scaling can be changed by setting the header variable doc.header['$LTSCALE'] = 2, which
stretches the line pattern by factor 2.
The linetype scaling for a single entity can be set by the DXF attribute ltscale, which is supported since DXF R2000.

9.4.8 Lineweights

The lineweight attribute represents the lineweight as integer value in millimeters * 100, e.g. 0.25mm = 25, indepen-
dently from the unit system used in the DXF document. The lineweight attribute is supported by DXF R2000 and
newer.
Only certain values are valid, they are stored in ezdxf.lldxf.const.VALID_DXF_LINEWEIGHTS: 0, 5, 9, 13,
15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211.
Values < 0 have a special meaning and can be imported as constants from ezdxf.lldxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT_DEFAULT

The validator function: ezdxf.lldxf.validator.is_valid_lineweight() returns True for valid
lineweight values otherwise False.
Sample script which shows all valid lineweights: valid_lineweights.dxf
You have to enable the option to show lineweights in your CAD application or viewer to see the effect on screen, which
is disabled by default, the same has to be done in the page setup options for plotting lineweights.
Setting the HEADER variable $LWDISPLAY to 1, activates support for displaying lineweights on screen:

activate on screen lineweight display
doc.header["$LWDISPLAY"] = 1

9.4. Basic Concepts 43

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-20B4D4B3-1220-426A-847B-5BBE36EC6FDF-htm.html#GUID-20B4D4B3-1220-426A-847B-5BBE36EC6FDF__SECTION_C298CAFE7CDF42A1AF937862BDA04F1C
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitylinetype/V22/EN_US?id=165079137037
https://raw.githubusercontent.com/mozman/ezdxf/master/examples_dxf/valid_lineweights.dxf

ezdxf Documentation, Release 1.3.2

44 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The lineweight value can be overridden by CTB or STB files.
See also:

• Autodesk Knowledge Network: About Lineweights
• BricsCAD Help Center: Entity Lineweight

9.4.9 Coordinate Systems

AutoLISP Reference to Coordinate Systems provided by Autodesk.
To brush up you knowledge about vectors, watch the YouTube tutorials of 3Blue1Brown about Linear Algebra.

WCS

World coordinate system - the reference coordinate system. All other coordinate systems are defined relative to the WCS,
which never changes. Values measured relative to the WCS are stable across changes to other coordinate systems.

UCS

User coordinate system - the working coordinate system defined by the user to make drawing tasks easier. All points
passed to AutoCAD commands, including those returned from AutoLISP routines and external functions, are points in
the current UCS. As far as I know, all coordinates stored in DXF files are always WCS or OCS never UCS.
User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a converter class UCS
to translate coordinates from UCS into WCS and vice versa, but always remember: store only WCS or OCS coordinates
in DXF files, because there is no method to determine which UCS was active or used to create UCS coordinates.
See also:

• Table entry UCS
• ezdxf.math.UCS - converter between WCS and UCS

OCS

Object coordinate system are coordinates relative to the object itself. The main goal of OCS is to place 2D elements in
3D space and the OCS is defined by the extrusion vector of the entity. As long the extrusion vector is (0, 0, 1) (the WCS
z-axis) the OCS is coincident to the WCS, which means the OCS coordinates are equal to the WCS coordinates, most of
the time this is true for 2D entities.
OCS entities: ARC, CIRCLE, TEXT, LWPOLYLINE, HATCH, SOLID, TRACE, INSERT, IMAGE
Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the domain of the
user/application. These lines convert the center of a 3D circle from OCS to WCS:

ocs = circle.ocs()
wcs_center = ocs.to_wcs(circle.dxf.center)

See also:
• Object Coordinate System (OCS) - deeper insights into OCS
• ezdxf.math.OCS - converter between WCS and OCS

9.4. Basic Concepts 45

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-4B33ACD3-F6DD-4CB5-8C55-D6D0D7130905-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_lineweight/V22/EN_US?id=165079137239
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0F0B833D-78ED-4491-9918-9481793ED10B
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

ezdxf Documentation, Release 1.3.2

DCS

Display coordinate system - the coordinate system into which objects are transformed before they are displayed. The
origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its z-axis is the viewing direction.
In other words, a viewport is always a plan view of its DCS. These coordinates can be used to determine where something
will be displayed to the AutoCAD user. Ezdxf does not use or support DCS in any way.

9.4.10 Object Coordinate System (OCS)

• DXF Reference for OCS provided by Autodesk.
The points associated with each entity are expressed in terms of the entity’s own object coordinate system (OCS). The
OCS was referred to as ECS in previous releases of AutoCAD.
With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D vector describing
the z-axis of the OCS (often referenced as extrusion vector), and the elevation value, which is the distance of the entity
xy-plane to the WCS/OCS origin.
For a given z-axis (extrusion) direction, there are an infinite number of coordinate systems, defined by translating the
origin in 3D space and by rotating the x- and y-axis around the z-axis. However, for the same z-axis direction, there is
only one OCS. It has the following properties:

• Its origin coincides with the WCS origin.
• The orientation of the x- and y-axis within the xy-plane are calculated in an arbitrary but consistent manner. Au-
toCAD performs this calculation using the arbitrary axis algorithm (see below).

• Because of the Arbitrary Axis Algorithm the OCS can only represent a right-handed coordinate system!
The following entities do not lie in a particular plane. All points are expressed in world coordinates. Of these entities,
only lines and points can be extruded. Their extrusion direction can differ from the world z-axis.

• Line

• Point

• 3DFace

• Polyline (3D)
• Vertex (3D)
• Polymesh

• Polyface

• Viewport

These entities are planar in nature. All points are expressed in object coordinates. All of these entities can be extruded.
Their extrusion direction can differ from the world z-axis.

• Circle

• Arc

• Solid

• Trace

• Text

• Attrib

• Attdef

46 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D99F1509-E4E4-47A3-8691-92EA07DC88F5

ezdxf Documentation, Release 1.3.2

• Shape

• Insert

• Polyline (2D)
• Vertex (2D)
• LWPolyline

• Hatch

• Image

Some of a Dimension’s points are expressed in WCS and some in OCS.

Elevation

Elevation group code 38:
Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each of the entity’s
defining points.

Arbitrary Axis Algorithm

• DXF Reference for Arbitrary Axis Algorithm provided by Autodesk.
The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent generation of object
coordinate systems for all entities that use object coordinates.
Given a unit-length vector to be used as the z-axis of a coordinate system, the arbitrary axis algorithm generates a corre-
sponding x-axis for the coordinate system. The y-axis follows by application of the right-hand rule.
We are looking for the arbitrary x- and y-axis to go with the normal Az (the arbitrary z-axis). They will be called Ax and
Ay (using Vec3):

Az = Vec3(entity.dxf.extrusion).normalize() # normal (extrusion) vector
if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.):

Ax = Vec3(0, 1, 0).cross(Az).normalize() # the cross-product operator
else:

Ax = Vec3(0, 0, 1).cross(Az).normalize() # the cross-product operator
Ay = Az.cross(Ax).normalize()

WCS to OCS

def wcs_to_ocs(point):
px, py, pz = Vec3(point) # point in WCS
x = px * Ax.x + py * Ax.y + pz * Ax.z
y = px * Ay.x + py * Ay.y + pz * Ay.z
z = px * Az.x + py * Az.y + pz * Az.z
return Vec3(x, y, z)

9.4. Basic Concepts 47

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E19E5B42-0CC7-4EBA-B29F-5E1D595149EE

ezdxf Documentation, Release 1.3.2

OCS to WCS

Wx = wcs_to_ocs((1, 0, 0))
Wy = wcs_to_ocs((0, 1, 0))
Wz = wcs_to_ocs((0, 0, 1))

def ocs_to_wcs(point):
px, py, pz = Vec3(point) # point in OCS
x = px * Wx.x + py * Wx.y + pz * Wx.z
y = px * Wy.x + py * Wy.y + pz * Wy.z
z = px * Wz.x + py * Wz.y + pz * Wz.z
return Vec3(x, y, z)

9.4.11 DXF Units

The DXF reference has no explicit information how to handle units in DXF, any information in this section is based
on experiments with BricsCAD and may differ in other CAD applications, BricsCAD tries to be as compatible with
AutoCAD as possible. Therefore, this information should also apply to AutoCAD.
Please open an issue on github if you have any corrections or additional information about this topic.

Length Units

Any length or coordinate value in DXF is unitless in the first place, there is no unit information attached to the value. The
unit information comes from the context where a DXF entity is used. The document/modelspace get the unit information
from the header variable $INSUNITS, paperspace and block layouts get their unit information from the attribute units.
The modelspace object has also a units property, but this value do not represent the modelspace units, this value is
always set to 0 “unitless”.
Get and set document/modelspace units as enum by the Drawing property units:

import ezdxf
from ezdxf import units

doc = ezdxf.new()
Set centimeter as document/modelspace units
doc.units = units.CM
which is a shortcut (including validation) for
doc.header['$INSUNITS'] = units.CM

Block Units

As said each block definition can have independent units, but there is no implicit unit conversion applied, not in CAD
applications and not in ezdxf.
When inserting a block reference (INSERT) into the modelspace or another block layout with different units, the scal-
ing factor between these units must be applied explicit as DXF attributes (xscale, …) of the Insert entity, e.g.
modelspace in meters and block in centimeters, x-, y- and z-scaling has to be 0.01:

doc.units = units.M
my_block = doc.blocks.new('MYBLOCK')
my_block.units = units.CM
block_ref = msp.add_block_ref('MYBLOCK')

(continues on next page)

48 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://github.com/mozman/ezdxf/issues

ezdxf Documentation, Release 1.3.2

(continued from previous page)
Set uniform scaling for x-, y- and z-axis
block_ref.set_scale(0.01)

Use helper function conversion_factor() to calculate the scaling factor between units:

factor = units.conversion_factor(doc.units, my_block.units)
factor = 100 for 1m is 100cm
scaling factor = 1 / factor
block_ref.set_scale(1.0/factor)

Hint: It is never a good idea to use different measurement system in one project, ask the NASA about their Mars Climate
Orbiter from 1999. The same applies for units of the same measurement system, just use one unit like meters or inches.

Angle Units

Angles are always in degrees (360 deg = full circle) in counter-clockwise orientation, unless stated explicit otherwise.

Display Format

How values are shown in the CAD GUI is controlled by the header variables $LUNITS and $AUNITS, but this has no
meaning for values stored in DXF files.

$INSUNITS

The most important setting is the header variable $INSUNITS, this variable defines the drawing units for the modelspace
and therefore for the DXF document if no further settings are applied.
The modelspace LAYOUT entity has a property units as any layout like object, but it seem to have no meaning for the
modelspace, BricsCAD set this property always to 0, which means unitless.
The most common units are 6 for meters and 1 for inches.

doc.header['$INSUNITS'] = 6

9.4. Basic Concepts 49

ezdxf Documentation, Release 1.3.2

0 Unitless
1 Inches, units.IN
2 Feet, units.FT
3 Miles, units.MI
4 Millimeters, units.MM
5 Centimeters, units.CM
6 Meters, units.M
7 Kilometers, units.KM
8 Microinches
9 Mils
10 Yards, units.YD
11 Angstroms
12 Nanometers
13 Microns
14 Decimeters, units.DM
15 Decameters
16 Hectometers
17 Gigameters
18 Astronomical units
19 Light years
20 Parsecs
21 US Survey Feet
22 US Survey Inch
23 US Survey Yard
24 US Survey Mile

See also enumeration ezdxf.enums.InsertUnits.

$MEASUREMENT

The header variable $MEASUREMENT controls whether the current drawing uses imperial or metric hatch pattern and
linetype files:
This setting is independent from $INSUNITS, it is possible to set the drawing units to inch and use metric linetypes and
hatch pattern.
In BricsCAD the base scaling of linetypes and hatch pattern is defined by the $MEASUREMENT value, the value of
$INSUNITS is ignored.

doc.header['$MEASUREMENT'] = 1

0 English
1 Metric

See also enumeration ezdxf.enums.Measurement

50 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

$LUNITS

The header variable $LUNITS defines how CAD applications display linear values in the GUI and has no meaning for
ezdxf:

doc.header['$LUNITS'] = 2

1 Scientific
2 Decimal (default)
3 Engineering
4 Architectural
5 Fractional

See also enumeration ezdxf.enums.LengthUnits

$AUNITS

The header variable $AUNITS defines how CAD applications display angular values in the GUI and has no meaning for
ezdxf, DXF angles are always stored as degrees in counter-clockwise orientation, unless stated explicit otherwise:

doc.header['$AUNITS'] = 0

0 Decimal degrees
1 Degrees/minutes/seconds
2 Grad
3 Radians

See also enumeration ezdxf.enums.AngularUnits

Helper Tools

ezdxf.units.conversion_factor(source_units: InsertUnits, target_units: InsertUnits)→ float
Returns the conversion factor to represent source_units in target_units.
E.g. millimeter in centimeter conversion_factor(MM, CM) returns 0.1, because 1 mm = 0.1 cm

ezdxf.units.unit_name(enum: int)→ str
Returns the name of the unit enum.

ezdxf.units.angle_unit_name(enum: int)→ str
Returns the name of the angle unit enum.

9.4. Basic Concepts 51

ezdxf Documentation, Release 1.3.2

9.4.12 Modelspace

The modelspace contains the “real” world representation of the drawing subjects in real world units and is displayed in
the tab called “Model” in CAD applications. The modelspace is always present and can’t be deleted.
The modelspace object is acquired by the method modelspace() of the Drawing class and new entities should be
added to the modelspace by factory methods: Thematic Index of Layout Factory Methods.
This is a common idiom for creating a new document and acquiring the modelspace:

import ezdxf

doc = ezdxf.new()
msp = doc.modelspace()

The modelspace can have one or more rectangular areas called modelspace viewports. The modelspace viewports can be
used for displaying different views of the modelspace from different locations of the modelspace or viewing directions. It
is important to know that modelspace viewports (VPort) are not the same as paperspace viewport entities (Viewport).
See also:

• Reference of class Modelspace
• Thematic Index of Layout Factory Methods

• Example for usage of modelspace viewports: tiled_window_setup.py

9.4.13 Paperspace

A paperspace layout is where the modelspace drawing content is assembled and organized for 2D output, such as printing
on a sheet of paper, or as a digital document, such as a PDF file.
Each DXF document can have one or more paperspace layouts but the DXF version R12 supports only one paperspace
layout and it is not recommended to rely on paperspace layouts in DXF version R12.
Graphical entities can be added to the paperspace by factory methods: Thematic Index of Layout Factory Methods. Views
or “windows” to the modelspace are added as Viewport entities, each viewport displays a region of the modelspace and
can have an individual scaling factor, rotation angle, clipping path, view direction or overridden layer attributes.
See also:

• Reference of class Paperspace
• Thematic Index of Layout Factory Methods

• Example for usage of paperspace viewports: viewports_in_paperspace.py

9.4.14 Blocks

Blocks are collections of DXF entities which can be placed multiple times as block references in different layouts and
other block definitions. The block reference (Insert) can be rotated, scaled, placed in 3D space by OCS and arranged
in a grid like manner, each Insert entity can have individual attributes (Attrib) attached.

52 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/tiled_window_setup.py
https://github.com/mozman/ezdxf/blob/master/examples/viewports_in_paperspace.py

ezdxf Documentation, Release 1.3.2

Block Attributes

A block attribute (Attrib) is a text annotation attached to a block reference with an associated tag. Attributes are often
used to add information to block references which can be evaluated and exported by CAD applications.

Extended Block Features

Autodesk added many new features to BLOCKS (dynamic blocks, constraints) as undocumented DXF entities, many of
these features are not fully supported by other CAD application and ezdxf also has no support or these features beyond
the preservation of these undocumented DXF entities.
See also:

• Blocks Section
• Tutorial for Blocks

9.4.15 Layout Extents and Limits

The extents and limits of an layout represents borders which can be referenced by the ZOOM command or read from
some header variables from the HeaderSection, if the creator application maintains these values – ezdxf does this
not automatically.

Extents

The extents of an layout are determined by the maximum extents of all DXF entities that are in this layout. The command:

ZOOM extents

sets the current viewport to the extents of the currently selected layout.
A paperspace layout in an arbitrary zoom state:

9.4. Basic Concepts 53

ezdxf Documentation, Release 1.3.2

The same layout after the ZOOM extents command:

54 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Limits

Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking or entering
point locations. The default limits for paperspace layouts is defined by the paper size.
The layout from above after the ZOOM all command:

See also:
The AutoCAD online reference for the ZOOM and the LIMITS command.

Read Stored Values

The extents of the modelspace (the tab called “Model”) are stored in the header variable $EXTMIN and $EXTMAX. The
default values of $EXTMIN is (+1e20, +1e20, +1e20) and $EXTMAX is (-1e20, -1e20, -1e20), which do not describe
real borders. These values are copies of the extents attributes of the Layout object as Layout.dxf.extmin and
Layout.dxf.extmax.
The limits of the modelspace are stored in the header variables $LIMMIN and $LIMMAX and have default values of
(0, 0) and (420, 297), the default paper size of ezdxf in drawing units. These are copies of the Layout attributes
Layout.dxf.extmin and Layout.dxf.extmax.
The extents and the limits of the actual paperspace layout, which is the last activated paperspace layout tab, are stored in
the header variable $PEXTMIN, $PEXTMAX, $PLIMMIN and $PLIMMAX.
Each paperspace layout has its own values stored in the Layout attributes Layout.dxf.extmin, Layout.dxf.
extmax, Layout.dxf.limmin and Layout.dxf.limmax.

9.4. Basic Concepts 55

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-66E7DB72-B2A7-4166-9970-9E19CC06F739-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html?us_oa=akn-us&us_si=e9cbb4f4-03c5-4af9-aa76-b58263233f35&us_st=LIMITS%20(Command)

ezdxf Documentation, Release 1.3.2

Setting Extents and Limits

Since v0.16 ezdxf it is sufficient to define the attributes for extents and limits (Layout.dxf.extmax, Layout.dxf.
limmin and Layout.dxf.limmax) of Layout object. The header variables are synchronized when the document
is saved.
The extents of a layout are not calculated automatically by ezdxf, as this can take a long time for large documents and
correct values are not required to create a valid DXF document.
See also:
How to: Calculate Extents for the Modelspace

9.4.16 Font Resources

DXF relies on the infrastructure installed by AutoCAD like the included SHX files or True Type fonts. There is no simple
way to store additional information about a used fonts beside the plain file system name like "arial.ttf". The CAD
application or viewer which opens the DXF file has to have access to the specified fonts used in your DXF document or
it has to use an appropriate replacement font, which is not that easy in the age of unicode. Later DXF versions can store
font family names in the XDATA of the STYLE entity but not all CAD application use this information.

9.5 Tasks

These topics provide brief overviews of how to complete specific tasks, but they’re not comprehensive tutorials. For a
deeper understanding, explore the beginner’s guide, explanations of basic concepts, in-depth tutorials, the reference guide,
example code, and even the source code itself.

9.5.1 Add Data

Add DXF Entities

Layout Factory Methods

Recommended way to create DXF entities.
For all supported entities exist at least one factory method in the ezdxf.layouts.BaseLayout class. All factory
methods have the prefix: add_...

import ezdxf

doc = ezdxf.new()
msp = doc.modelspace()
msp.add_line((0, 0, 0), (3, 0, 0), dxfattribs={"color": 2})

56 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Thematic Index of Layout Factory Methods

DXF Primitives

• add_3dface()

• add_arc()

• add_circle()

• add_ellipse()

• add_hatch()

• add_helix()

• add_image()

• add_leader()

• add_line()

• add_lwpolyline()

• add_mesh()

• add_mline()

• add_mpolygon()

• add_multileader_mtext()

• add_multileader_block()

• add_point()

• add_polyface()

• add_polyline2d()

• add_polyline3d()

• add_polymesh()

• add_ray()

• add_shape()

• add_solid()

• add_trace()

• add_wipeout()

• add_xline()

9.5. Tasks 57

ezdxf Documentation, Release 1.3.2

Text Entities

• add_attdef()

• add_mtext_dynamic_auto_height_columns()

• add_mtext_dynamic_manual_height_columns()

• add_mtext_static_columns()

• add_mtext()

• add_text()

Spline Entity

• add_cad_spline_control_frame()

• add_open_spline()

• add_rational_spline()

• add_spline_control_frame()

• add_spline()

Block References and Underlays

• add_arrow_blockref()

• add_auto_blockref()

• add_blockref()

• add_underlay()

Viewport Entity

Only available in paper space layouts.
• add_viewport()

Dimension Entities

Linear Dimension
• add_aligned_dim()

• add_linear_dim()

• add_multi_point_linear_dim()

Radius and Diameter Dimension
• add_diameter_dim_2p()

• add_diameter_dim()

• add_radius_dim_2p()

58 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• add_radius_dim_cra()

• add_radius_dim()

Angular Dimension
• add_angular_dim_2l()

• add_angular_dim_3p()

• add_angular_dim_arc()

• add_angular_dim_cra()

Arc Dimension
• add_arc_dim_3p()

• add_arc_dim_arc()

• add_arc_dim_cra()

Ordinate Dimension
• add_ordinate_dim()

• add_ordinate_x_dim()

• add_ordinate_y_dim()

Miscellaneous

• add_entity()

• add_foreign_entity()

• add_arrow()

ACIS Entities

The creation of the required ACIS data has do be done by an external library!
• add_3dsolid()

• add_body()

• add_extruded_surface()

• add_lofted_surface()

• add_region()

• add_revolved_surface()

• add_surface()

• add_swept_surface()

See also:
Layout base class: BaseLayout

9.5. Tasks 59

ezdxf Documentation, Release 1.3.2

Factory Functions

Alternative way to create DXF entities for advanced ezdxf users.
The ezdxf.entities.factory module provides the new() function to create new DXF entities by their DXF
name and a dictionary of DXF attributes. This will bypass the validity checks in the factory methods of the BaseLayout
class.
This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the
entity to a layout (and document) by the layout method add_entity().

import ezdxf
from ezdxf.entities import factory

doc = ezdxf.new()
msp = doc.modelspace()
line = factory.new(

"LINE",
dxfattribs={

"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,

},
)
msp.add_entity(line)

Direct Object Instantiation

For advanced developers with knowledge about the internal design of ezdxf.
Import the entity classes from sub-packageezdxf.entities and instantiate them. This will bypass the validity checks
in the factory methods of the BaseLayout class and maybe additional required setup procedures for some entities -
study the source code!.

Warning: A refactoring of the internal ezdxf structures will break your code.

This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the
entity to a layout (and document) by the layout method add_entity().

import ezdxf
from ezdxf.entities import Line

doc = ezdxf.new()
msp = doc.modelspace()
line = Line.new(

dxfattribs={
"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,

}
)
msp.add_entity(line)

60 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Add Layouts And Blocks

Layouts are containers for DXF entities like LINE or CIRCLE. There exist three layouts types:
• Modelspace

• Paperspace

• Blocks

Modelspace

The Modelspace is unique. It is not possible to create another one.

Paperspace Layout

All DXF versions can have multiple paperspace layouts expect DXF R12.
Add a new paperspace layout to a DXF document:

doc.layouts.new("MyLayout")

The layout name is the name shown on the tab in CAD applications and has to be unique, otherwise a DXFValueError
will be raised.
It is possible to add multiple paperspace layouts to all DXF versions, but ezdxf exports for DXF R12 only the active
paperspace layout. Any paperspace layout can be set as the active paperspace layout by the method: ezdxf.layouts.
Layouts.set_active_layout().

• ezdxf.layouts.Layouts.new()

Block Definition

Add a new block definition to a DXF document:

doc.blocks.new("MyLayout")

The block name has to be unique, otherwise a DXFValueError will be raised.
Add an anonymous block definition:

my_block = doc.blocks.new_anonymous_block()
store the block name, so you can create block references to this block
block_name = my_block.name

Anonymous blocks are used internally and do not show up in the insert dialog for block references in CAD applications.
• ezdxf.sections.blocks.BlocksSection.new()

• ezdxf.sections.blocks.BlocksSection.new_anonymous_block()

See also:
Tasks:

• Get Layouts And Blocks

• Delete Layouts and Blocks

9.5. Tasks 61

ezdxf Documentation, Release 1.3.2

• Add DXF Entities

• Copy or Move DXF Entities

• Delete DXF Entities

• Add Block References

Tutorials:
• Tutorial for Getting Data from DXF Files

• Tutorial for Blocks

• Tutorial for Creating DXF Drawings

• Tutorial for Viewports in Paperspace

Basics:
• Layout Types

• Modelspace

• Paperspace

• Blocks

Classes:
• ezdxf.layouts.BaseLayout - parent of all layouts
• ezdxf.layouts.Layout - parent of modelspace & paperspace
• ezdxf.layouts.Modelspace

• ezdxf.layouts.Paperspace

• ezdxf.layouts.BlockLayout

• ezdxf.layouts.Layouts - layout manager (Drawing.layouts attribute)
• ezdxf.sections.blocks.BlocksSection - blocks manager (Drawing.blocks attribute)

Add Block References

Blocks are collections of DXF entities which can be placed multiple times as block references in different layouts and
other block definitions. A block reference is represented by the INSERT entity.

Add Block Reference

Add a block reference to the modelspace for a block definition “BlockName”:

my_block_ref = msp.add_blockref('BlockName', location, dxfattribs={
'xscale': 1.0,
'yscale': 1.0,
'zscale': 1.0,
'rotation': angle,

})

Non-uniform scaling is supported by CAD applications. The rotations angle is in degrees (circle=360 degrees).
• ezdxf.layouts.BaseLayout.add_blockref()

62 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Add Block Attribute

To avoid confusion, it’s important to distinguish block attributes (ATTRIB entities) from DXF attributes. Block attributes
are text annotations linked to a block reference. They have their own location and can be attached to any block reference,
even without a corresponding attribute definition (ATTDEF) in the block layout.
Add a block attribute to my_block_ref:

my_attribute = my_block_ref.add_attrib("MY_TAG", "VALUE_STR")
my_attribute.set_placement(location)

• “MY_TAG”: a unique identifier or label for the attribute, unique in the context of the block reference
• “VALUE_STR”: the text content displayed by the attribute

Block attributes are a subtype of the TEXT entity. This means they inherit placement and editing functionalities from the
TEXT class.

• ezdxf.entities.Insert.add_attrib()

• ezdxf.entities.Text.set_placement()

Add Block Attribute from Template

Block definitions can include pre-defined templates for attributes usingATTDEF entities. Theadd_auto_attribs()
method simplifies adding these attributes to block references. It takes a dictionary argument where:

• Keys: the attribute tags (e.g. “MY_TAG”).
• Values: the content for each attribute (e.g. “VALUE_STR”).

Theadd_auto_attribs()method automatically attaches attributes (ATTRIB entities) to the block reference. These
attributes inherit relevant DXF properties (layer, color, text style, etc.) from the corresponding ATTDEF entities within
the block definition.
The method also ensures that the relative position of each attribute within the block reference mirrors the position of its
corresponding ATTDEF entity relative to the block origin:

my_block_ref.add_auto_attrib({"MY_TAG": "VALUE_STR"})

• ezdxf.entities.Insert.add_auto_attribs()

See also:
Tasks:

• Add DXF Entities

• Copy or Move DXF Entities

• Delete DXF Entities

Tutorials:
• Tutorial for Blocks

• Tutorial for Getting Data from DXF Files

• Tutorial for Creating DXF Drawings

Basics:
• Modelspace

9.5. Tasks 63

ezdxf Documentation, Release 1.3.2

• Paperspace

• Blocks

Classes:
• ezdxf.layouts.BlockLayout

• ezdxf.entities.BlockRecord

• ezdxf.entities.Block

• ezdxf.entities.Insert

• ezdxf.entities.Attrib

• ezdxf.entities.AttDef

• ezdxf.entities.Text

Add Resource Table Entries

All resources require a unique name in their category (names are case-insensitive).

Layer

A layer in a DXF document is a category that controls visual properties (like color and linetype) for associated entities.
It acts like a grouping tag, not a container.
Add a new layer to a DXF document:

doc.layers.add("MY_NEW_LAYER", color=1, linetype="DASHED")

DXF entities reference layers, but layers themselves don’t directly contain entities. Instead, each entity has a dxf.layer
attribute that specifies the layer by name it belongs to.

• ezdxf.sections.table.LayerTable.add()

Linetype

The linetype defines the rendering pattern of linear graphical entities like LINE, ARC, CIRCLE and so on.
Add a new linetype to a DXF document:

doc.linetypes.add("DOTTED", pattern=[0.2, 0.0, -0.2])

• ezdxf.sections.table.LinetypeTable.add()

64 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Text Style

The text style defines the rendering font for text based entities like TEXT, ATTRIB and MTEXT.
Add a new text style to a DXF document:

doc.styles.add("ARIAL", font="arial.ttf")

• ezdxf.sections.table.TextstyleTable.add()

Dimension Style

The dimension style defines the initial properties for the DIMENSION entity.
Add a new dimension style to a DXF document:

doc.dimstyles.add("EZDXF")

• ezdxf.sections.table.DimStyleTable.add()

AppID

The XDATA section of DXF entities is grouped by AppIDs and these ids require an entry in the AppIDTable otherwise
the DXF file in invalid (for AutoCAD):

doc.appids.add("EZDXF")

• ezdxf.sections.table.AppIDTable.add()

See also:
Tutorials:

• Tutorial for Layers

• Tutorial for Creating Linetype Pattern

• Tutorial for Text

• Tutorial for MText and MTextEditor

• Tutorial for Common Graphical Attributes

Basics:
• Layers

• Linetypes

• Lineweights

• AutoCAD Color Index (ACI)

• True Color

• Font Resources

Classes:
• ezdxf.entities.Layer

• ezdxf.entities.Linetype

9.5. Tasks 65

ezdxf Documentation, Release 1.3.2

• ezdxf.entities.Textstyle

• ezdxf.entities.DimStyle

• ezdxf.entities.Appid

• ezdxf.fonts.fonts

Add Custom and Extended Data

DXF supports storing custom data through various mechanisms.

Header Variables

Custom data can be stored in the HEADER section of a DXF file. Integer values are stored in variables named $USERI1
to $USERI5, while floating-point values are stored in variables named $USERR1 to $USERR5.
Example:

doc.header["$USERI1"] = 17

XDATA Section

The XDATA section is a container for extended data associated with an entity. It’s essentially a way to store additional
information beyond the standard DXF properties for that particular entity. The XDATA section is divided into sub-
sections, each associated with an AppID.
It’s important that the AppID is registered in the AppID table:

doc.appids.add("YOUR_ID")

• ezdxf.sections.table.AppIDTable.add()

Example:

point = msp.add_point((10, 10))
point.set_xdata("YOUR_ID", (1040, 3.1415))

• ezdxf.entities.DXFEntity.set_xdata()

Extension Dictionaries

Each DXF entity can have an extension dictionary to attach custom data. The extension dictionary is a Dictionary
entity which stores references to other DXF entities in a key/value storage, mostly Dictionary and XRecord entities.
Example:

point = msp.add_point((10, 10))
xdict = point.new_extension_dict()

• ezdxf.entities.DXFEntity.new_extension_dict()

66 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Custom Data as XRECORD

The XRECORD is used to store arbitrary data. It is composed of DXF group codes ranging from 1 through 369. This
object is similar in concept to XDATA but is not limited by size or order.
Example:

point = msp.add_point((10, 10))
xdict = point.new_extension_dict()
xrecord = xdict.add_xrecord("MyData")
xrecord.extend([(1, "MyText"), (40, 3.1415)])

• ezdxf.entities.xdict.ExtensionDict.add_xrecord()

• ezdxf.entities.xdict.ExtensionDict.add_dictionary()

• ezdxf.entities.xdict.ExtensionDict.add_dictionary_var()

See also:
Tasks:

• Get Extended Data from DXF Entities

• Modify Extended Data

• Delete Extended Data

Tutorials:
• Storing Custom Data in DXF Files

Basics:
• Extended Data

• Extension Dictionary

• DXF Tags

Classes:
• ezdxf.entities.xdata.XData

• ezdxf.entities.xdict.ExtensionDict

• ezdxf.entities.XRecord

• ezdxf.entities.Dictionary

• ezdxf.entities.DictionaryVar

Helper-Classes:
• ezdxf.entities.xdata.XDataUserList

• ezdxf.entities.xdata.XDataUserDict

• ezdxf.urecord.UserRecord

• ezdxf.urecord.BinaryRecord

9.5. Tasks 67

ezdxf Documentation, Release 1.3.2

9.5.2 Query Data

Query Entities

DXF entities can be selected from layouts or arbitrary entity-sequences based on their DXF type and attributes. Create
new queries be the new() function or by the query() methods implemented by all layouts.
See also:

• Tutorial: Tutorial for Getting Data from DXF Files

• Reference: ezdxf.query module

Entity Query String

The query string is the combination of two queries, first the required entity query and second the optional attribute query,
enclosed in square brackets, append 'i' after the closing square bracket to ignore case for strings.

Query Result

The EntityQuery class is the return type of all query()methods. EntityQuery contains all DXF entities of the
source collection, which matches one name of the entity query AND the whole attribute query. If a DXF entity does not
have or support a required attribute, the corresponding attribute search term is False.
Select all LINE and CIRCLE entities with layer == “construction”:

result = msp.query('LINE CIRCLE[layer=="construction"]')

This result is always empty, because the LINE entity has no text attribute:

result = msp.query('LINE[text ? ".*"]')

Select all entities except those with layer == “construction” and color < 7:

result = msp.query('*[!(layer=="construction" & color<7)]')

Ignore case, selects all entities with layer == “construction”, “Construction”, “ConStruction” …:

result = msp.query('*[layer=="construction"]i')

Extended EntityQuery Features

The EntityQuery container supports the full Sequence protocol:

result = msp.query(...)
first = result[0]
last = result[-1]

Slices return a new EntityQuery container:

sequence = result[1:-2]

68 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The __getitem__() function accepts also a DXF attribute name and returns all entities which support this attribute,
this is the base for supporting queries by relational operators. More on that later.
The __setitem__() method assigns a DXF attribute to all supported entities in the EntityQuery container:

result = msp.query(...)
result["layer"] = "MyLayer"

Entities which do not support an attribute are silently ignored:

result = msp.query(...)
result["center"] = (0, 0) # set center only of CIRCLE and ARC entities

The __delitem__() method discards DXF attributes from all entities in the EntityQuery container:

result = msp.query(...)
reset the layer attribute from all entities in container result to the
default layer "0"
del result["layer"]

Descriptors for DXF Attributes

For some basic DXF attributes exist descriptors in the EntityQuery class:
• layer: layer name as string
• color: AutoCAD Color Index (ACI), see ezdxf.colors
• linetype: linetype as string
• ltscale: linetype scaling factor as float value
• lineweight: Lineweights

• invisible: 0 if visible 1 if invisible, 0 is the default value
• true_color: true color as int value, see ezdxf.colors, has no default value
• transparency: transparency as int value, see ezdxf.colors, has no default value

A descriptor simplifies the attribute access through the EntityQuery container and has auto-completion support from
IDEs:

result = msp.query(...)
set attribute of all entities in result
result.layer = "MyLayer"
delete attribute from all entities in result
del result.layer
and for selector usage, see following section
assert len(result.layer == "MyLayer") == 1

9.5. Tasks 69

ezdxf Documentation, Release 1.3.2

Relational Selection Operators

The attribute selection by __getitem__() allows further selections by relational operators:

msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer})
lines = msp.query("LINE")
select all entities on layer "MyLayer"
entities = lines["layer"] == "MyLayer"
assert len(entities) == 1

or select all entities except the entities on layer "MyLayer"
entities = lines["layer"] != "MyLayer"

These operators work only with real DXF attributes, for instance the rgb attribute of graphical entities is not a real DXF
attribute either the vertices of the LWPOLYLINE entity.
The selection by relational operators is case insensitive by default, because all names of DXF table entries are handled
case insensitive. But if required the selection mode can be set to case sensitive:

lines = msp.query("LINE")
use case sensitive selection: "MyLayer" != "MYLAYER"
lines.ignore_case = False
entities = lines["layer"] == "MYLAYER"
assert len(entities) == 0

the result container has the default setting:
assert entities.ignore_case is True

Supported selection operators are:
• == equal “value”
• != not equal “value”
• < lower than “value”
• <= lower or equal than “value”
• > greater than “value”
• >= greater or equal than “value”

The relational operators <, >, <= and >= are not supported for vector-based attributes such as center or insert and raise a
TypeError.

Note: These operators are selection operators and not logic operators, therefore the logic operators and, or and not are
not applicable. Themethods union(), intersection(), difference() and symmetric_difference()
can be used to combine selection. See section Query Set Operators and Build Custom Filters.

70 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Regular Expression Selection

The EntityQuery.match() method returns all entities where the selected DXF attribute matches the given regular
expression. This methods work only on string based attributes, raises TypeError otherwise.
From here on I use only descriptors for attribute selection if possible.

msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Lay1"})
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Lay2"})
lines = msp.query("LINE")

select all entities at layers starting with "Lay",
selection is also case insensitive by default:
assert len(lines.layer.match("^Lay.*")) == 2

Build Custom Filters

The method EntityQuery.filter can be used to build operators for none-DXF attributes or for complex logic
expressions.
Find all MTEXT entities in modelspace containing “SearchText”. All MText entities have a text attribute, no need for
a safety check:

mtext = msp.query("MTEXT").filter(lambda e: "SearchText" in e.text)

This filter checks the non-DXF attribute rgb. The filter has to check if the rgb attributes exist to avoid exceptions,
because not all entities in modelspace may have the rgb attribute e.g. the DXFTagStorage entities which preserve
unknown DXF entities:

result = msp.query().filter(
lambda e: hasattr(e, "rgb") and e.rgb == (0, 0, 0)

)

Build 1-pass logic filters for complex queries, which would require otherwise multiple passes:

result = msp.query().filter(lambda e: e.dxf.color < 7 and e.dxf.layer == "0")

Combine filters for more complex operations. The first filter passes only valid entities and the second filter does the actual
check:

def validator(entity):
return True # if entity is valid and has all required attributes

def check(entity):
return True # if entity passes the attribute checks

result = msp.query().filter(validator).filter(check)

9.5. Tasks 71

ezdxf Documentation, Release 1.3.2

Query Set Operators

The | operator or EntityQuery.union() returns a new EntityQuery with all entities from both queries. All
entities are unique - no duplicates. This operator acts like the logical or operator.

entities = msp.query()
select all entities with color < 2 or color > 7
result = (entities.color < 2) | (entities.color > 7)

The & operator or EntityQuery.intersection() returns a new EntityQuery with entities common to self
and other. This operator acts like the logical and operator.

entities = msp.query()
select all entities with color > 1 and color < 7
result = (entities.color > 1) & (entities.color < 7)

The - operator or EntityQuery.difference() returns a new EntityQuery with all entities from self that are
not in other.

entities = msp.query()
select all entities with color > 1 and not layer == "MyLayer"
result = (entities.color > 1) - (entities.layer != "MyLayer")

The ^ operator or EntityQuery.symmetric_difference() returns a new EntityQuery with entities in
either self or other but not both.

entities = msp.query()
select all entities with color > 1 or layer == "MyLayer", exclusive
entities with color > 1 and layer == "MyLayer"
result = (entities.color > 1) ^ (entities.layer == "MyLayer")

Groupby Function

See also:
Tutorial: Retrieve entities by groupby() function

ezdxf.groupby.groupby(entities: Iterable[DXFEntity], dxfattrib: str = '', key: KeyFunc | None = None)→
dict[Hashable, list[DXFEntity]]

Groups a sequence of DXF entities by a DXF attribute like 'layer', returns a dict with dxfattrib values as key
and a list of entities matching this dxfattrib. A key function can be used to combine some DXF attributes (e.g. layer
and color) and should return a hashable data type like a tuple of strings, integers or floats, key function example:

def group_key(entity: DXFEntity):
return entity.dxf.layer, entity.dxf.color

For not suitable DXF entities return None to exclude this entity, in this case it’s not required, because groupby()
catches DXFAttributeError exceptions to exclude entities, which do not provide layer and/or color attributes,
automatically.
Result dict for dxfattrib = 'layer' may look like this:

{
'0': [... list of entities],
'ExampleLayer1': [...],

(continues on next page)

72 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
'ExampleLayer2': [...],
...

}

Result dict for key = group_key, which returns a (layer, color) tuple, may look like this:

{
('0', 1): [... list of entities],
('0', 3): [...],
('0', 7): [...],
('ExampleLayer1', 1): [...],
('ExampleLayer1', 2): [...],
('ExampleLayer1', 5): [...],
('ExampleLayer2', 7): [...],
...

}

All entity containers (modelspace, paperspace layouts and blocks) and the EntityQuery object have a dedicated
groupby() method.

Parameters
• entities – sequence of DXF entities to group by a DXF attribute or a key function
• dxfattrib – grouping DXF attribute like 'layer'
• key – key function, which accepts aDXFEntity as argument and returns a hashable grouping
key or None to ignore this entity

Selection Tools

The ezdxf.select module provides entity selection capabilities, allowing users to select entities based on various
shapes such as windows, points, circles, polygons, and fences.
The selection functions bbox_inside() and bbox_outside() work similarly to the inside and outside selection
tools in CAD applications but the selection is based on the bounding box of the DXF entities rather than their actual
geometry.
The bbox_overlap() function works similarly to crossing selection in CAD applications. Entities that are outside
the selection shape but whose bounding box overlapps the selection shape are included in the selection. This is not the
case with crossing selection in CAD applications.
The selection functions accept any iterable of DXF entities as input and return an ezdxf.query.EntityQuery
container, that provides further selection tools based on entity type and DXF attributes.

Usage

Select all entities from the modelspace inside a window defined by two opposite vertices:

import ezdxf
from ezdxf import select

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()

Define a window for selection

(continues on next page)

9.5. Tasks 73

ezdxf Documentation, Release 1.3.2

(continued from previous page)
window = select.Window((0, 0), (10, 10))

Select entities inside the window from modelspace
selected_entities = select.bbox_inside(window, msp)

Iterate over selected entities
for entity in selected_entities:

print(entity)

See also:
• Tutorial for Entity Selection

Selection Functions

The following selection functions are implemented:
• bbox_inside()

• bbox_outside()

• bbox_overlap()

• bbox_chained()

• bbox_crosses_fence()

• point_in_bbox()

ezdxf.select.bbox_inside(shape: SelectionShape, entities: Iterable[DXFEntity], *, cache: Cache | None =
None)→ EntityQuery

Selects entities whose bounding box lies withing the selection shape.
Parameters

• shape – seclection shape
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance

ezdxf.select.bbox_outside(shape: SelectionShape, entities: Iterable[DXFEntity], *, cache: Cache | None =
None)→ EntityQuery

Selects entities whose bounding box is completely outside the selection shape.
Parameters

• shape – seclection shape
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance

ezdxf.select.bbox_overlap(shape: SelectionShape, entities: Iterable[DXFEntity], *, cache: Cache | None =
None)→ EntityQuery

Selects entities whose bounding box overlaps the selection shape.
Parameters

• shape – seclection shape
• entities – iterable of DXFEntities

74 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• cache – optional ezdxf.bbox.Cache instance
ezdxf.select.bbox_chained(start: DXFEntity, entities: Iterable[DXFEntity], *, cache: Cache | None = None)

→ EntityQuery

Selects elements that are directly or indirectly connected to each other by overlapping bounding boxes. The selection
begins at the specified starting element.
Warning: the current implementation has a complexity of O(n²).

Parameters
• start – first entity of selection
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance

ezdxf.select.bbox_crosses_fence(vertices: Iterable[UVec], entities: Iterable[DXFEntity], *, cache: Cache
| None = None)→ EntityQuery

Selects entities whose bounding box intersects an open polyline.
All entities are projected on the xy-plane.
A single point can not be selected by a fence polyline by definition.

Parameters
• vertices – vertices of the selection polyline
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance

ezdxf.select.point_in_bbox(location: UVec, entities: Iterable[DXFEntity], *, cache: Cache | None = None)
→ EntityQuery

Selects entities where the selection point lies within the bounding box. All entities are projected on the xy-plane.
Parameters

• point – selection point
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance

Selection Shapes

The following selection shapes are implemented:
• Window

• Circle

• Polygon

class ezdxf.select.Window(p1: UVec, p2: UVec)
This selection shape tests entities against a rectangular and axis-aligned 2D window. All entities are projected on
the xy-plane.

Parameters
• p1 – first corner of the window
• p2 – second corner of the window

9.5. Tasks 75

ezdxf Documentation, Release 1.3.2

class ezdxf.select.Circle(center: UVec, radius: float)
This selection shape tests entities against a circle. All entities are projected on the xy-plane.

Parameters
• center – center of the circle
• radius – radius of the circle

class ezdxf.select.Polygon(vertices: Iterable[UVec])
This selection shape tests entities against an arbitrary closed polygon. All entities are projected on the xy-plane.
Complex concave polygons may not work as expected.

Planar Search Index

Added in version 1.4.
class ezdxf.select.PlanarSearchIndex(entities: Iterable[DXFEntity], cache: Cache | None = None,

max_node_size=5)

Spatial Search Index for DXF Entities
This class implements a spatial search index for DXF entities based on their bounding boxes except for POINT
and LINE. It operates strictly within the two-dimensional (2D) space of the xy-plane. The index is built once and
cannot be extended afterward.
The index can be used to pre-select DXF entities from a certain area to reduce the search space for other selection
tools of this module.
Functionality

• The index relies on the bounding boxes of DXF entities, and only the corner vertices of these bounding boxes
are indexed except for POINT and LINE.

• It can only find DXF entities that have at least one bounding box vertex located within the search area. Entities
whose bounding boxes overlap the search area but have no vertices inside it will not be found (e.g., a circle
whose center point is inside the search area but none of its bounding box vertices will not be included).

• The detection behavior can be customized by overriding the detection_points() method.
Recommendations
Since this index is intended to be used in conjunction with other selection tools within thismodule, it’s recommended
to maintain a bounding box cache to avoid the computational cost of recalculating them frequently. This class
creates a new bounding box cache if none is specified. This cache can be accessed through the public attribute
cache.
detection_point_in_circle(center: UVec, radius: float)→ Sequence[DXFEntity]

Returns all DXF entities that have at least one detection point located around center with a max. distance of
radius.

detection_point_in_rect(p1: UVec, p2: UVec)→ Sequence[DXFEntity]
Returns all DXF entities that have at least one detection point located inside or at the border of the rectangle
defined by the two given corner points.

detection_points(entity: DXFEntity)→ Sequence[Vec2]
Returns the detection points for a given DXF entity.
The detection points must be 2D points projected onto the xy-plane (ignore z-axis). This implementation
returns the corner vertices of the entity bounding box.

76 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Override this method to return more sophisticated detection points (e.g., the vertices of LWPOLYLINE and
POLYLINE or equally spaced raster points for block references).

Get DXF Entity Type

The dxftype() method returns the entity type as defined by the DXF reference as an uppercase string.

e = msp.add_line((0, 0), (1, 0))
assert e.dxftype() == "LINE"

See also:
• DXF Reference for DXF R2018

Get DXF Attributes From Entities

All DXF attributes of an entity are grouped in the namespace attribute dxf:

e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer

The dxf namespace attribute has a get() method, which can return a default value if the attribute doesn’t exist:

e.dxf.get('color', 9)

The attribute has to be supported by the DXF type otherwise a DXFAttributeError will be raised. You can check
if an DXF attribute is supported by the method dxf.is_supported():

line = msp.add_line((0, 0), (1, 0))
assert line.dxf.is_supported("text") is False

Optional DXF Attributs

Many DXF attributes are optional, you can check if an attribute exists by the hasattrib() method:

assert line.dxf.hasattrib("linetype") is False

Default Values

Some DXF attributes have default values and this default value will be returned if the DXF attribute doesn’t exist:

assert line.dxf.linetype == "BYLAYER"

See also:
Tasks:

• Common graphical DXF attributes

• Modify DXF Attributes of Entities

• Delete DXF Attributes from Entities

Tutorials:

9.5. Tasks 77

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 1.3.2

• Tutorial for Common Graphical Attributes

• Tutorial for Getting Data from DXF Files

Get Content From DXF Entities

TEXT Entity

The content of the TEXT entity is stored in a single DXF attribute Text.dxf.text and has an empty string as default
value:

for text in msp.query("TEXT"):
print(text.dxf.text)

The plain_text() method returns the content of the TEXT entity without formatting codes.
See also:
Classes

• ezdxf.entities.Text

Tutorials
• Tutorial for Text

MTEXT Entity

The content of the MTEXT entity is stored in multiple DXF attributes. The content can be accessed by the read/write
property text and the DXF attribute MText.dxf.text and has an empty string as default value:

for mtext in msp.query("MTEXT"):
print(mtext.text)
is the same as:
print(mtext.dxf.text)

Important: The line ending character \n will be replaced automatically by the MTEXT line ending \P.

The plain_text() method returns the content of the MTEXT entity without inline formatting codes.
See also:
Classes

• ezdxf.entities.MText

• ezdxf.tools.text.MTextEditor

Tutorials
• Tutorial for MText and MTextEditor

78 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MLEADER Entity

The content of MLEADER entities is stored in the MultiLeader.context object. The MLEADER contains text
content if the context.mtext attribute is not None and block content if the context.block attribute is not
None

See also:
Classes

• ezdxf.entities.MultiLeader

• ezdxf.entities.MLeaderContext

• ezdxf.entities.MTextData

• ezdxf.entities.BlockData

• ezdxf.entities.AttribData

Tutorials
• Tutorial for MultiLeader

Text Content

for mleader in msp.query("MLEADER MULTILEADER"):
mtext = mleader.context.mtext
if mtext:

print(mtext.insert) # insert location
print(mtext.default_content) # text content

The text content supports the same formatting features as the MTEXT entity.

Block Content

The INSERT (block reference) attributes are stored in MultiLeader.context.block as BlockData.

for mleader in msp.query("MLEADER MULTILEADER"):
block = mleader.context.block
if block:

print(block.insert) # insert location

The ATTRIB attributes are stored outside the context object in MultiLeader.block_attribs as AttribData.

for mleader in msp.query("MLEADER MULTILEADER"):
for attrib in mleader.block_attribs:

print(attrib.text) # text content of the ATTRIB entity

9.5. Tasks 79

ezdxf Documentation, Release 1.3.2

DIMENSION Entity

TODO

ACAD_TABLE Entity

TODO

INSERT Entity - Block References

TODO

Get Attribute Content

TODO

Get Virtual Entities

TODO

Get Extended Data from DXF Entities

TODO
See also:
Tasks:

• Add Custom and Extended Data

• Modify Extended Data

• Delete Extended Data

Tutorials:
• Storing Custom Data in DXF Files

Basics:
• Extended Data

• Extension Dictionary

• DXF Tags

Classes:
• ezdxf.entities.xdata.XData

• ezdxf.entities.xdict.ExtensionDict

• ezdxf.entities.XRecord

• ezdxf.entities.Dictionary

• ezdxf.entities.DictionaryVar

80 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Helper-Classes:
• ezdxf.entities.xdata.XDataUserList

• ezdxf.entities.xdata.XDataUserDict

• ezdxf.urecord.UserRecord

• ezdxf.urecord.BinaryRecord

Get Layouts And Blocks

TODO

Modelspace

TODO

Paperspace Layouts

TODO

Block Layouts

TODO

9.5.3 Modify Data

Modify DXF Attributes of Entities

All DXF attributes of an entity are grouped in the namespace attribute dxf. You can modify/set a DXF attribute by
assignment:

e.dxf.layer = "MyLayer"
e.dxf.color = 9

… or by the set() method:

e.dxf.set('color', 9)

The attribute has to be supported by the DXF type otherwise a DXFAttributeError will be raised. You can check
if an DXF attribute is supported by the method dxf.is_supported():

line = msp.add_line((0, 0), (1, 0))
assert line.dxf.is_supported("text") is False

See also:
Tasks

• Common graphical DXF attributes

• Get DXF Attributes From Entities

9.5. Tasks 81

ezdxf Documentation, Release 1.3.2

• Delete DXF Attributes from Entities

Tutorials:
• Tutorial for Common Graphical Attributes

Modify Resource Table Entries

TODO

Layer

TODO

Linetype

TODO

Text Style

TODO

Dimension Style

TODO

Modify Geometry of DXF Entities

TODO

LINE

TODO

CIRCLE

TODO

82 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ARC

TODO

ELLIPSE

TODO

SPLINE

TODO

LWPOLYLINE

TODO

POLYLINE

TODO

MESH

TODO

HATCH

TODO

DIMENSION

Delete the existing DIMENSION and create a new one.

MLEADER

Delete the existing MLEADER and create a new one.

9.5. Tasks 83

ezdxf Documentation, Release 1.3.2

ACAD_TABLE

Not supported.

Transform Entities and Layouts

TODO

Transform DXF Entities

TODO

Transform Layouts

TODO

Copy or Move DXF Entities

TODO

Duplicate DXF Entities

TODO

Move DXF Entities between Layouts

TODO

Modify Block References

TODO

Modify Block attributes

TODO

Clip Block References

TODO

84 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Modify Entity Content

TODO

TEXT Entity

TODO

MTEXT Entity

TODO

DIMENSION Entity

Delete the existing DIMENSION and create a new one.

MLEADER Entity

Delete the existing MLEADER and create a new one.

ACAD_TABLE Entity

Not supported.

Modify Header Variables

TODO

Modify Extended Data

TODO
See also:
Tasks:

• Add Custom and Extended Data

• Get Extended Data from DXF Entities

• Delete Extended Data

Tutorials:
• Storing Custom Data in DXF Files

Basics:
• Extended Data

• Extension Dictionary

• DXF Tags

9.5. Tasks 85

ezdxf Documentation, Release 1.3.2

Classes:
• ezdxf.entities.xdata.XData

• ezdxf.entities.xdict.ExtensionDict

• ezdxf.entities.XRecord

• ezdxf.entities.Dictionary

• ezdxf.entities.DictionaryVar

Helper-Classes:
• ezdxf.entities.xdata.XDataUserList

• ezdxf.entities.xdata.XDataUserDict

• ezdxf.urecord.UserRecord

• ezdxf.urecord.BinaryRecord

9.5.4 Delete Data

Delete DXF Attributes from Entities

All DXF attributes of an entity are grouped in the namespace attribute dxf. You can delete a DXF attribute by the del
operator:

line = msp.add_line((0, 0), (1, 0))
line.dxf.layer = "MyLayer"
del line.dxf.layer

assert line.dxf.layer == "0" # the default layer for all entities

The del operator raises an DXFAttributeError if the attribute doesn’t exist or isn’t supported. The discard()
method ignores these errors:

line.dxf.discard('text') # doesn't raise an exception

See also:
Tasks

• Common graphical DXF attributes

• Get DXF Attributes From Entities

• Modify DXF Attributes of Entities

Tutorials:
• Tutorial for Common Graphical Attributes

86 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Delete DXF Entities

TODO

Delete Entities from Layouts

TODO

Delete Block Reference Attributes

TODO

Delete Resource Table Entries

TODO

Layer

TODO

Linetype

TODO

Text Style

TODO

Dimension Style

TODO

Delete Layouts and Blocks

TODO

Modelspace

This is not possible.

9.5. Tasks 87

ezdxf Documentation, Release 1.3.2

Paperspace Layouts

TODO

Block Definitions

TODO

Delete Extended Data

TODO
See also:
Tasks:

• Add Custom and Extended Data

• Get Extended Data from DXF Entities

• Modify Extended Data

Tutorials:
• Storing Custom Data in DXF Files

Basics:
• Extended Data

• Extension Dictionary

• DXF Tags

Classes:
• ezdxf.entities.xdata.XData

• ezdxf.entities.xdict.ExtensionDict

• ezdxf.entities.XRecord

• ezdxf.entities.Dictionary

• ezdxf.entities.DictionaryVar

Helper-Classes:
• ezdxf.entities.xdata.XDataUserList

• ezdxf.entities.xdata.XDataUserDict

• ezdxf.urecord.UserRecord

• ezdxf.urecord.BinaryRecord

88 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.5.5 Explode Entities

Explode DXF Entities

TODO

POINT

TODO

POLYLINE & LWPOLYLINE

TODO

MESH

TODO

INSERT (Block References)

Explode Block References

DIMENSION

TODO

MLEADER

TODO

MLINE

TODO

ACAD_TABLE

TODO

9.5. Tasks 89

ezdxf Documentation, Release 1.3.2

Proxy Graphic

TODO

Explode Block References

TODO

Flatten DXF Entities

TODO

9.6 External References (XREF)

Added in version 1.1.
Attached XREFs are links to the modelspace of a specified drawing file. Changes made to the referenced drawing are
automatically reflected in the current drawing when it’s opened or if the XREF is reloaded.
XREFs can be nested within other XREFs: that is, you can attach an XREF that contains another XREF. You can attach
as many copies of an XREF as you want, and each copy can have a different position, scale, and rotation.
You can also overlay an XREF on your drawing. Unlike an attached XREF, an overlaid XREF is not included when the
drawing is itself attached or overlaid as an XREF to another drawing.

9.6.1 DXF Files as Attached XREFs

Important: AutoCAD can only display DWG files as attached XREFs but ezdxf can only create DXF files. Conse-
quently, any DXF file attached as an XREF to a DXF document must be converted to DWG in order to be viewed in
AutoCAD. Fortunately, other CAD applications are more cooperative, BricsCAD has no problem displaying DXF files
as XREFs, although it is not possible to attach a DXF file as an XREF in the BricsCAD application itself.

The ezdxf.xref module provides an interface for working with XREFs.
• attach() - attach a DXF/DWG file as XREF
• detach() - detach a BLOCK definition as XREF
• embed() - embed an XREF as a BLOCK definition
• dxf_info() - scans a DXF file for basic settings and properties

For loading the content of DWG files is a loading function required, which loads the DWG file as Drawing document.
The odafc add-on module provides such a function: readfile()
See also:

• Tutorial for External References

90 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.6.2 XREF Structures

AnXREF is a normal block definition located in the BLOCKS sectionwith special flags set and a filename to the referenced
DXF/DWG file and without any content, the block content is the modelspace of the referenced file. An XREF can be
referenced (inserted) by one or multiple INSERT entities.
Find block definitions in the BLOCKS section:

for block_layout in doc.blocks:
block = block_layout.block # the BLOCK entity
if block.is_xref:

handle_xref(block_layout)
elif block.is_xref_overlay:

handle_xref_overlay(block_layout)

Find XREF references in modelspace:

for insert in msp.query("INSERT"):
if insert.is_xref:

handle_xref_reference(insert)
... or get the XREF definition
block_layout = insert.block()
if block_layout is not None:

handle_xref_definition(block_layout)

Use the helper function define() to create your own XREF definition, the attach() creates this definition auto-
matically and raises an exception if the block already exists.

9.6.3 Supported Entities

The current implementation supports only copyable and transformable DXF entities, these are all basic entity types as
LINE, CIRCLE, … and block references and their associated required table entries and objects from the OBJECTS
section.
Unsupported is the ACAD_TABLE entity and preserved unknown entities wrapped in a DXFTagStorage class like
proxy entities and objects. Support for these entities may be added in a later version of ezdxf. Unsupported entities are
ignored and do not raise exceptions.
Most document features stored in the HEADER and OBJECTS sections are not supported by this module like GROUPS,
LAYER_FILTER, GEODATA, SUN.
Added in version 1.3.0: Support for ACIS based entities was added.

9.6.4 Importing Data and Resources

The ezdxf.xref module replaces the Importer add-on.
The basic functionality of the ezdxf.xref module is loading data from external files including their required resources,
which is an often requested feature by users for importing data from other DXF files into the current document.
TheImporter add-onwas very limited and removedmany resources, where theezdxf.xref module tries to preserve
as much information as possible.

• load_modelspace() - loads the modelspace content from another DXF document
• load_paperspace() - loads a paperspace layout from another DXF document
• write_block() - writes entities into the modelspace of a new DXF document

9.6. External References (XREF) 91

ezdxf Documentation, Release 1.3.2

• Loader - low level loading interface

9.6.5 High Level Functions

ezdxf.xref.attach(doc: Drawing, *, block_name: str, filename: str, insert: UVec = (0, 0, 0), scale: float = 1.0,
rotation: float = 0.0, overlay=False)→ Insert

Attach the file filename to the host document as external reference (XREF) and creates a default block reference for
the XREF in the modelspace of the document. The function raises an XrefDefinitionError exception if the
block definition already exist, but an XREF can be inserted multiple times by adding additional block references:

msp.add_blockref(block_name, insert=another_location)

Important: If the XREF has different drawing units than the host document, the scale factor between these units
must be applied as a uniform scale factor to the block reference! Unfortunately the XREF drawing units can only
be detected by scanning the HEADER section of a document by the function dxf_info() and is therefore not
done automatically by this function. Advice: always use the same units for all drawings of a project!

Parameters
• doc – host DXF document
• block_name – name of the XREF definition block
• filename – file name of the XREF
• insert – location of the default block reference
• scale – uniform scaling factor
• rotation – rotation angle in degrees
• overlay – creates an XREF overlay if True and an XREF attachment otherwise

Returns
default block reference for the XREF

Return type
Insert

Raises
XrefDefinitionError – block with same name exist

Added in version 1.1.
ezdxf.xref.define(doc: Drawing, block_name: str, filename: str, overlay=False)→ None

Add an external reference (xref) definition to a document.
XREF attachment types:

• attached: the XREF that’s inserted into this drawing is also present in a document to which this document is
inserted as an XREF.

• overlay: the XREF that’s inserted into this document is not present in a document to which this document is
inserted as an XREF.

Parameters
• doc – host document

92 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• block_name – name of the xref block
• filename – external reference filename
• overlay – creates an XREF overlay if True and an XREF attachment otherwise

Raises
XrefDefinitionError – block with same name exist

Added in version 1.1.
ezdxf.xref.detach(block: BlockLayout, *, xref_filename: str | PathLike, overlay=False)→ Drawing

Write the content of block into the modelspace of a new DXF document and convert block to an external reference
(XREF). The new DXF document has to be written by the caller: xref_doc.saveas(xref_filename).
This way it is possible to convert the DXF document to DWG by the odafc add-on if necessary:

xref_doc = xref.detach(my_block, "my_block.dwg")
odafc.export_dwg(xref_doc, "my_block.dwg")

It’s recommended to clean up the entity database of the host document afterwards:

doc.entitydb.purge()

The function does not create any block references. These references should already exist and do not need to be
changed since references to blocks and XREFs are the same.

Parameters
• block – block definition to detach
• xref_filename – name of the external referenced file
• overlay – creates an XREF overlay if True and an XREF attachment otherwise

Added in version 1.1.
ezdxf.xref.dxf_info(filename: str | PathLike)→ DXFInfo

Scans the HEADER section of a DXF document and returns a DXFInfo object, which contains information about
the DXF version, text encoding, drawing units and insertion base point.

Raises
IOError – not a DXF file or a generic IO error

ezdxf.xref.embed(xref: BlockLayout, *, load_fn: Callable[[str], Drawing] | None = None, search_paths:
Iterable[Path | str] = tuple(), conflict_policy=ConflictPolicy.XREF_PREFIX)→ None

Loads the modelspace of the XREF as content into a block layout.
The loader function loads the XREF as Drawing object, by default the function ezdxf.readfile() is used to
load DXF files. To load DWG files use the readfile() function from the ezdxf.addons.odafc add-on.
The ezdxf.recover.readfile() function is very robust for reading DXF files with errors.
If the XREF path isn’t absolute the XREF is searched in the folder of the host DXF document and in the search_path
folders.

Parameters
• xref – BlockLayout of the XREF document
• load_fn – function to load the content of the XREF as Drawing object
• search_paths – list of folders to search for XREFS, default is the folder of the host doc-
ument or the current directory if no filepath is set

9.6. External References (XREF) 93

ezdxf Documentation, Release 1.3.2

• conflict_policy – how to resolve name conflicts
Raises

• XrefDefinitionError – argument xref is not a XREF definition
• FileNotFoundError – XREF file not found
• DXFVersionError – cannot load a XREF with a newer DXF version than the host docu-
ment, try the odafc add-on to downgrade the XREF document or upgrade the host document

Added in version 1.1.
ezdxf.xref.load_modelspace(sdoc: Drawing, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None =

None, conflict_policy=ConflictPolicy.KEEP)→ None
Loads the modelspace content of the source document into the modelspace of the target document. The filter
function filter_fn gets every source entity as input and returns True to load the entity or False otherwise.

Parameters
• sdoc – source document
• tdoc – target document
• filter_fn – optional function to filter entities from the source modelspace
• conflict_policy – how to resolve name conflicts

Added in version 1.1.
ezdxf.xref.load_paperspace(psp: Paperspace, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None

= None, conflict_policy=ConflictPolicy.KEEP)→ None
Loads the paperspace layout psp into the target document. The filter function filter_fn gets every source entity as
input and returns True to load the entity or False otherwise.

Parameters
• psp – paperspace layout to load
• tdoc – target document
• filter_fn – optional function to filter entities from the source paperspace layout
• conflict_policy – how to resolve name conflicts

Added in version 1.1.
ezdxf.xref.write_block(entities: Sequence[DXFEntity], *, origin: UVec = (0, 0, 0))→ Drawing

Write entities into the modelspace of a new DXF document.
This function is called “write_block” because the new DXF document can be used as an external referenced block.
This function is similar to the WBLOCK command in CAD applications.
Virtual entities are not supported, because each entity needs a real database- and owner handle.

Parameters
• entities – DXF entities to write
• origin – block origin, defines the point in the modelspace which will be inserted at the insert
location of the block reference

Raises
EntityError – virtual entities are not supported

Added in version 1.1.

94 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.6.6 Conflict Policy

class ezdxf.xref.ConflictPolicy(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

These conflict policies define how to handle resource name conflicts.
Added in version 1.1.
KEEP

Keeps the existing resource name of the target document and ignore the resource from the source document.
XREF_PREFIX

This policy handles the resource import like CAD applications by always renaming the loaded resources to
<xref>0<name>, where xref is the name of source document, the 0 part is a number to create a unique
resource name and <name> is the name of the resource itself.

NUM_PREFIX

This policy renames the loaded resources to 0<name> only if the resource <name> already exists. The 0
prefix is a number to create a unique resource name and <name> is the name of the resource itself.

9.6.7 Low Level Loading Interface

The Loader class is the basic building block for loading entities and resources. The class manages a list of loading
commands which is executed at once by calling the Loader.execute() method. It is important to execute the
commands at once to get a consistent renaming of resources when using resource name prefixes otherwise the loaded
resources would get a new unique name at each loading process even when the resources are loaded from the same
document.
class ezdxf.xref.Loader(sdoc: Drawing, tdoc: Drawing, conflict_policy=ConflictPolicy.KEEP)

Load entities and resources from the source DXF document sdoc into the target DXF document.
Parameters

• sdoc – source DXF document
• tdoc – target DXF document
• conflict_policy – ConflictPolicy

load_modelspace(target_layout: BaseLayout | None = None, filter_fn: Callable[[DXFEntity], bool] | None
= None)→ None

Loads the content of the modelspace of the source document into a layout of the target document, the mod-
elspace of the target document is the default target layout. The filter function filter_fn is used to skip source
entities, the function should return False for entities to ignore and True otherwise.

Parameters
• target_layout – target layout can be any layout: modelspace, paperspace layout or
block layout.

• filter_fn – function to filter source entities
load_paperspace_layout(psp: Paperspace, filter_fn: Callable[[DXFEntity], bool] | None = None)→

None
Loads a paperspace layout as a new paperspace layout into the target document. If a paperspace layout with
same name already exists the layout will be renamed to “<layout name> (2)” or “<layout name> (3)” and so
on. The filter function filter_fn is used to skip source entities, the function should return False for entities
to ignore and True otherwise.

9.6. External References (XREF) 95

ezdxf Documentation, Release 1.3.2

The content of the modelspace which may be displayed through a VIEWPORT entity will not be loaded!
Parameters

• psp – the source paperspace layout
• filter_fn – function to filter source entities

load_paperspace_layout_into(psp: Paperspace, target_layout: BaseLayout, filter_fn:
Callable[[DXFEntity], bool] | None = None)→ None

Loads the content of a paperspace layout into an existing layout of the target document. The filter function
filter_fn is used to skip source entities, the function should return False for entities to ignore and True
otherwise.
The content of the modelspace which may be displayed through a VIEWPORT entity will not be loaded!

Parameters
• psp – the source paperspace layout
• target_layout – target layout can be any layout: modelspace, paperspace layout or
block layout.

• filter_fn – function to filter source entities
load_block_layout(block_layout: BlockLayout)→ None

Loads a block layout (block definition) as a new block layout into the target document. If a block layout with
the same name exists the conflict policy will be applied. This method cannot load modelspace or paperspace
layouts.

Parameters
block_layout – the source block layout

load_block_layout_into(block_layout: BlockLayout, target_layout: BaseLayout)→ None
Loads the content of a block layout (block definition) into an existing layout of the target document. This
method cannot load the content of modelspace or paperspace layouts.

Parameters
• block_layout – the source block layout
• target_layout – target layout can be any layout: modelspace, paperspace layout or
block layout.

load_layers(names: Sequence[str])→ None
Loads the layers defined by the argument names into the target document. In the case of a name conflict the
conflict policy will be applied.

load_linetypes(names: Sequence[str])→ None
Loads the linetypes defined by the argument names into the target document. In the case of a name conflict
the conflict policy will be applied.

load_text_styles(names: Sequence[str])→ None
Loads the TEXT styles defined by the argument names into the target document. In the case of a name conflict
the conflict policy will be applied.

load_dim_styles(names: Sequence[str])→ None
Loads the DIMENSION styles defined by the argument names into the target document. In the case of a
name conflict the conflict policy will be applied.

96 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

load_mline_styles(names: Sequence[str])→ None
Loads the MLINE styles defined by the argument names into the target document. In the case of a name
conflict the conflict policy will be applied.

load_mleader_styles(names: Sequence[str])→ None
Loads the MULTILEADER styles defined by the argument names into the target document. In the case of a
name conflict the conflict policy will be applied.

load_materials(names: Sequence[str])→ None
Loads the MATERIALS defined by the argument names into the target document. In the case of a name
conflict the conflict policy will be applied.

execute(xref_prefix: str = '')→ None
Execute all loading commands. The xref_prefix string is used as XREF name when the conflict policy
ConflictPolicy.XREF_PREFIX is applied.

9.7 Add-ons

9.7.1 Drawing / Export Add-on

This add-on provides the functionality to render a DXF document to produce a rasterized or vector-graphic image which
can be saved to a file or viewed interactively depending on the backend being used.
The module provides two example scripts in the folder examples/addons/drawing which can be run to save
rendered images to files or view an interactive visualisation.

$./draw_cad.py --supported_formats
will list the file formats supported by the matplotlib backend.
Many formats are supported including vector graphics formats
such as pdf and svg

$./draw_cad.py <my_file.dxf> --out image.png

draw a layout other than the model space
$./draw_cad.py <my_file.dxf> --layout Layout1 --out image.png

opens a GUI application to view CAD files
$./cad_viewer.py

See also:
How-to section for the FAQ about the Drawing Add-on.

Design

The implementation of the drawing add-on is divided into a frontend and multiple backends. The frontend handles the
translation of DXF features and properties into simplified structures, which are then processed by the backends.

9.7. Add-ons 97

ezdxf Documentation, Release 1.3.2

Common Limitations to all Backends

• rich text formatting of the MTEXT entity is close to AutoCAD but not pixel perfect
• relative size of POINT entities cannot be replicated exactly
• rendering of ACIS entities is not supported
• no 3D rendering engine, therefore:

– 3D entities are projected into the xy-plane and 3D text is not supported
– only top view rendering of the modelspace
– VIEWPORTS are always rendered as top view
– no VISUALSTYLE support

• only basic support for:
– infinite lines (rendered as lines with a finite length)
– OLE2FRAME entities (rendered as rectangles)
– vertical text (will render as horizontal text)
– rendering of additional MTEXT columns may be incorrect

MatplotlibBackend

class ezdxf.addons.drawing.matplotlib.MatplotlibBackend(ax, *, adjust_figure=True,
font=FontProperties(),
use_text_cache=True)

Backend which uses the Matplotlib package for image export.
Parameters

• ax – drawing canvas as matplotlib.pyplot.Axes object
• adjust_figure – automatically adjust the size of the parent matplotlib.pyplot.
Figure to display all content

The MatplotlibBackend is used by the Draw command of the ezdxf launcher.
Example for the usage of the Matplotlib backend:

import sys
import matplotlib.pyplot as plt
from ezdxf import recover
from ezdxf.addons.drawing import RenderContext, Frontend
from ezdxf.addons.drawing.matplotlib import MatplotlibBackend

Safe loading procedure (requires ezdxf v0.14):
try:

doc, auditor = recover.readfile('your.dxf')
except IOError:

print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file.')
sys.exit(2)

(continues on next page)

98 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
The auditor.errors attribute stores severe errors,
which may raise exceptions when rendering.
if not auditor.has_errors:

fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
ctx = RenderContext(doc)
out = MatplotlibBackend(ax)
Frontend(ctx, out).draw_layout(doc.modelspace(), finalize=True)
fig.savefig('your.png', dpi=300)

Simplified render workflow but with less control:

from ezdxf import recover
from ezdxf.addons.drawing import matplotlib

Exception handling left out for compactness:
doc, auditor = recover.readfile('your.dxf')
if not auditor.has_errors:

matplotlib.qsave(doc.modelspace(), 'your.png')

ezdxf.addons.drawing.matplotlib.qsave(layout: Layout, filename: str | PathLike, *, bg: str | None =
None, fg: str | None = None, dpi: int = 300, backend: str =
'agg', config: Configuration | None = None, filter_func:
Callable[[DXFGraphic], bool] | None = None, size_inches:
tuple[float, float] | None = None)→ None

Quick and simplified render export by matplotlib.
Parameters

• layout – modelspace or paperspace layout to export
• filename – export filename, file extension determines the format e.g. “image.png” to save
in PNG format.

• bg – override default background color in hex format #RRGGBB or #RRGGBBAA,
e.g. use bg=”#FFFFFF00” to get a transparent background and a black foreground color
(ACI=7), because a white background #FFFFFF gets a black foreground color or vice versa
bg=”#00000000” for a transparent (black) background and a white foreground color.

• fg – override default foreground color in hex format #RRGGBB or #RRGGBBAA, requires
also bg argument. There is no explicit foreground color in DXF defined (also not a background
color), but the ACI color 7 has already a variable color value, black on a light background and
white on a dark background, this argument overrides this (ACI=7) default color value.

• dpi – image resolution (dots per inches).
• size_inches – paper size in inch as (width, height) tuple, which also defines the size in
pixels = (width * dpi) x (height * dpi). If width or height is 0.0 the value is calculated by the
aspect ratio of the drawing.

• backend – the matplotlib rendering backend to use (agg, cairo, svg etc) (see documentation
for matplotlib.use() for a complete list of backends)

• config – drawing parameters
• filter_func – filter function which takes a DXFGraphic object as input and returns True
if the entity should be drawn or False if the entity should be ignored

9.7. Add-ons 99

https://matplotlib.org/3.1.1/api/matplotlib_configuration_api.html?highlight=matplotlib%20use#matplotlib.use

ezdxf Documentation, Release 1.3.2

PyQtBackend

class ezdxf.addons.drawing.pyqt.PyQtBackend(scene=None)

Backend which uses the PySide6 package to implement an interactive viewer. The PyQt5 package can be used
as fallback if the PySide6 package is not available.

Parameters
scene – drawing canvas of type QtWidgets.QGraphicsScene, if None a new canvas will
be created

The PyQtBackend is used by the View command of the ezdxf launcher.
See also:
The qtviewer.py module implements the core of a simple DXF viewer and the cad_viewer.py example is a skeleton to
show how to launch the CADViewer class.

Recorder

Added in version 1.1.
This is a special backend which records the output of the Frontend class in compact numpy arrays and these recordings
and can be played by a Player instance on one or more backends. The recorded numpy arrays support measurement of
bounding boxes and transformations which is for some backends a requirement to place the DXF content on size limited
pages.
class ezdxf.addons.drawing.recorder.Recorder

Records the output of the Frontend class.
The class implements the BackendInterface but does not record enter_entity(), exit_entity()
and clear() events.
player()→ Player

Returns a Player instance with the original recordings! Make a copy of this player to protect the original
recordings from being modified:

safe_player = recorder.player().copy()

class ezdxf.addons.drawing.recorder.Player

Plays the recordings of the Recorder backend on another backend.
bbox()→ BoundingBox2d

Returns the bounding box of all records as BoundingBox2d.
copy()→ Self

Returns a copy of the player with non-shared recordings.
crop_rect(p1: UVec, p2: UVec, distance: float)→ None

Crop recorded shapes inplace by a rectangle defined by two points.
The argument distance defines the approximation precision for paths which have to be approximated as poly-
lines for cropping but only paths which are really get cropped are approximated, paths that are fully inside
the crop box will not be approximated.

Parameters
• p1 – first corner of the clipping rectangle
• p2 – second corner of the clipping rectangle

100 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/qtviewer.py
https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/cad_viewer.py

ezdxf Documentation, Release 1.3.2

• distance – maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

recordings()→ Iterator[tuple[DataRecord, BackendProperties]]
Yields all recordings as (DataRecord, BackendProperties) tuples.

replay(backend: BackendInterface, override: Callable[[BackendProperties], Override] | None = None)→
None

Replay the recording on another backend that implements the BackendInterface. The optional override
function can be used to override the properties and state of data records, it gets the BackendProperties
as input and must return an Override instance.

transform(m: Matrix44)→ None
Transforms the recordings inplace by a transformation matrix m of type Matrix44.

class ezdxf.addons.drawing.recorder.Override(properties: BackendProperties, is_visible: bool =
True)

Represents the override state for a data record.
properties

original or modified BackendProperties
Type

ezdxf.addons.drawing.properties.BackendProperties
is_visible

override visibility e.g. switch layers on/off
Type

bool

Layout

Added in version 1.1.
The Layout class builds the page layout and the matrix to transform the DXF content to page coordinates according to
the layout Settings. The DXF coordinate transformation is required for PDF and HPGL/2 which expects the output
coordinates in the first quadrant and SVG which has an inverted y-axis.
The Layout class uses following classes and enums for configuration:

• Page - page definition
• Margins - page margins definition
• Settings - configuration settings
• Units - enum for page units

class ezdxf.addons.drawing.layout.Page(width: float, height: float, units: Units = Units.mm, margins:
Margins = (0, 0, 0, 0), max_width: float = 0.0, max_height:
float = 0.0)

Page definition class
width

page width, 0 for auto-detect
Type

float

9.7. Add-ons 101

ezdxf Documentation, Release 1.3.2

height

page height, 0 for auto-detect
Type

float
units

page units as enum Units

Type
ezdxf.addons.drawing.layout.Units

margins

page margins in page units
Type

ezdxf.addons.drawing.layout.Margins

max_width

limit width for auto-detection, 0 for unlimited
Type

float
max_height

limit height for auto-detection, 0 for unlimited
Type

float
property is_landscape: bool

Returns True if the page has landscape orientation.
property is_portrait: bool

Returns True if the page has portrait orientation. (square is portrait)
classmethod from_dxf_layout(layout: DXFLayout)→ Self

Returns the Page based on the DXF attributes stored in the LAYOUT entity. The modelspace layout often
doesn’t have usable page settings!

Parameters
layout – any paperspace layout or the modelspace layout

get_margin_rect(top_origin=True)→ tuple[Vec2, Vec2]
Returns the bottom-left and the top-right corner of the page margins in mm. The origin (0, 0) is the top-left
corner of the page if top_origin is True or in the bottom-left corner otherwise.

to_landscape()→ None
Converts the page to landscape orientation.

to_portrait()→ None
Converts the page to portrait orientation.

class ezdxf.addons.drawing.layout.Margins(top: float, right: float, bottom: float, left: float)
Page margins definition class
top

Type
float

102 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

left

Type
float

bottom

Type
float

right

Type
float

classmethod all(margin: float)→ Self
Returns a page margins definition class with four equal margins.

classmethod all2(top_bottom: float, left_right: float)→ Self
Returns a page margins definition class with equal top-bottom and left-right margins.

scale(factor: float)→ Self

class ezdxf.addons.drawing.layout.PageAlignment(value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

Page alignment of content as enum.
TOP_LEFT

TOP_CENTER

TOP_RIGHT

MIDDLE_LEFT

MIDDLE_CENTER

MIDDLE_RIGHT

BOTTOM_LEFT

BOTTOM_CENTER

BOTTOM_RIGHT

class ezdxf.addons.drawing.layout.Settings(content_rotation: int = 0, fit_page: bool = True, scale:
float = 1.0, page_alignment: PageAlignment =
PageAlignment.MIDDLE_CENTER, crop_at_margins:
bool = False, max_stroke_width: float = 0.001,
min_stroke_width: float = 0.05, fixed_stroke_width:
float = 0.15, output_coordinate_space: float =
1000000)

The Layout settings.
content_rotation

Rotate content about 0, 90, 180 or 270 degrees
Type

int

9.7. Add-ons 103

ezdxf Documentation, Release 1.3.2

fit_page

Scale content to fit the page.
Type

bool
page_alignment

Supported by backends that use the Page class to define the size of the output media, default alignment is
PageAlignment.MIDDLE_CENTER

Type
ezdxf.addons.drawing.layout.PageAlignment

crop_at_margins

crops the content at the page margins if True, when supported by the backend, default is False
Type

bool
scale

Factor to scale the DXF units of model- or paperspace, to represent 1mm in the rendered output drawing.
Only uniform scaling is supported.
e.g. scale 1:100 and DXF units are meters, 1m = 1000mm corresponds 10mm in the output drawing = 10 /
1000 = 0.01;
e.g. scale 1:1; DXF units are mm = 1 / 1 = 1.0 the default value
The value is ignored if the page size is defined and the content fits the page and the value is also used to
determine missing page sizes (width or height).

Type
float

max_stroke_width

Used for LineweightPolicy.RELATIVE policy, max_stroke_width is defined as percentage of
the content extents, e.g. 0.001 is 0.1% of max(page-width, page-height)

Type
float

min_stroke_width

Used for LineweightPolicy.RELATIVE policy, min_stroke_width is defined as percentage of
max_stroke_width, e.g. 0.05 is 5% of max_stroke_width

Type
float

fixed_stroke_width

Used for LineweightPolicy.RELATIVE_FIXED policy, fixed_stroke_width is defined as
percentage of max_stroke_width, e.g. 0.15 is 15% of max_stroke_width

Type
float

output_coordinate_space

expert feature to map the DXF coordinates to the output coordinate system [0, output_coordinate_space]
Type

float

104 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

class ezdxf.addons.drawing.layout.Units(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

Page units as enum.
inch

25.4 mm
px

1/96 inch
pt

1/72 inch
mm

cm

SVGBackend

Added in version 1.1.
Usage:

from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, svg

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
backend = svg.SVGBackend()
Frontend(RenderContext(doc), backend).draw_layout(msp)

with open("your.pdf", "wt") as fp:
fp.write(backend.get_string(layout.Page(0, 0))

PyMuPdfBackend

Added in version 1.1.
class ezdxf.addons.drawing.pymupdf.PyMuPdfBackend

This backend uses the PyMuPdf package to create PDF, PNG, PPM and PBM output. This backend support
content cropping at page margins.
PyMuPDF is licensed under the AGPL. Sorry, but it’s the best package for the job I’ve found so far.
Install package:

pip install pymupdf

get_pdf_bytes(page: Page, *, settings: Settings = layout.Settings(), render_box: BoundingBox2d | None =
None)→ bytes

Returns the PDF document as bytes.
Parameters

• page – page definition, see Page
• settings – layout settings, see Settings

9.7. Add-ons 105

https://pypi.org/project/PyMuPDF/
https://www.gnu.org/licenses/agpl-3.0.html

ezdxf Documentation, Release 1.3.2

• render_box – set explicit region to render, default is content bounding box
get_pixmap_bytes(page: Page, *, fmt='png', settings: Settings = layout.Settings(), dpi: int = 96,

alpha=False, render_box: BoundingBox2d | None = None)→ bytes
Returns a pixel image as bytes, supported image formats:

png Portable Network Graphics
ppm Portable Pixmap (no alpha channel)
pbm Portable Bitmap (no alpha channel)

Parameters
• page – page definition, see Page
• fmt – image format
• settings – layout settings, see Settings
• dpi – output resolution in dots per inch
• alpha – add alpha channel (transparency)
• render_box – set explicit region to render, default is content bounding box

Usage:

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, pymupdf

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
backend = pymupdf.PyMuPdfBackend()
Frontend(RenderContext(doc), backend).draw_layout(msp)

with open("your.pdf", "wb") as fp:
fp.write(backend.get_pdf_bytes(layout.Page(0, 0))

Load the output of the PyMuPdfBackend into the Image class of the Pillow package for further processing or to
output additional image formats:

import io
from PIL import Image

... # see above

the ppm format is faster to process than png
fp = io.BytesIO(backend.get_pixmap_bytes(layout.Page(0, 0), fmt="ppm", dpi=300))
image = Image.open(fp, formats=["ppm"])

106 Chapter 9. Contents

https://pypi.org/project/Pillow/

ezdxf Documentation, Release 1.3.2

PlotterBackend

Added in version 1.1.
class ezdxf.addons.drawing.hpgl2.PlotterBackend

The PlotterBackend creates HPGL/2 plot files for output on raster plotters. This backend does not need any
additional packages. This backend support content cropping at page margins.
The plot files are tested by the plot file viewer ViewCompanion Standard but not on real hardware - please use with
care and give feedback.
get_bytes(page: Page, *, settings: Settings = layout.Settings(), render_box: BoundingBox2d | None = None,

curves=True, decimal_places: int = 1, base=64)→ bytes
Returns the HPGL/2 data as bytes.

Parameters
• page – page definition, see Page
• settings – layout settings, see Settings
• render_box – set explicit region to render, default is content bounding box
• curves – use Bèzier curves for HPGL/2 output
• decimal_places – HPGL/2 output precision, less decimal places creates smaller files
but for the price of imprecise curves (text)

• base – base for polyline encoding, 32 for 7 bit encoding or 64 for 8 bit encoding
compatible(page: Page, settings: Settings = layout.Settings())→ bytes

Returns the HPGL/2 data as 7-bit encoded bytes curves as approximated polylines and coordinates are
rounded to integer values. Has often the smallest file size and should be compatible to all output devices
but has a low quality text rendering.

low_quality(page: Page, settings: Settings = layout.Settings())→ bytes
Returns the HPGL/2 data as 8-bit encoded bytes, curves as Bézier curves and coordinates are rounded to
integer values. Has a smaller file size than normal quality and the output device must support 8-bit encoding
and Bèzier curves.

normal_quality(page: Page, settings: Settings = layout.Settings())→ bytes
Returns the HPGL/2 data as 8-bit encoded bytes, curves as Bézier curves and coordinates are floats rounded to
one decimal place. Has a smaller file size than high quality and the output device must support 8-bit encoding,
Bèzier curves and fractional coordinates.

high_quality(page: Page, settings: Settings = layout.Settings())→ bytes
Returns the HPGL/2 data as 8-bit encoded bytes and all curves as Bézier curves and coordinates are floats
rounded to two decimal places. Has the largest file size and the output device must support 8-bit encoding,
Bèzier curves and fractional coordinates.

Usage:

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, hpgl2

doc = ezdxf.readfile("your.dxf")
psp = doc.paperspace("Layout1")
backend = hpgl2.PlotterBackend()
Frontend(RenderContext(doc), backend).draw_layout(psp)

(continues on next page)

9.7. Add-ons 107

http://www.softwarecompanions.com/

ezdxf Documentation, Release 1.3.2

(continued from previous page)
page = layout.Page.from_dxf_layout(psp)

with open("your.plt", "wb") as fp:
fp.write(backend.normal_quality(page)

You can check the output by the HPGL/2 viewer:

ezdxf hpgl your.plt

DXFBackend

Added in version 1.1.
class ezdxf.addons.drawing.dxf.DXFBackend(layout: BaseLayout, color_mode: ColorMode =

ColorMode.RGB)

The DXFBackend creates simple DXF files of POINT, LINE, LWPOLYLINE and HATCH entities. This back-
end does ot need any additional packages.

Parameters
• layout – a DXF BaseLayout
• color_mode – see ColorMode

class ezdxf.addons.drawing.dxf.ColorMode(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

This enum is used to define the color output mode of the DXFBackend.
ACI

the color is set as AutoCAD Color Index (ACI) and assigned by layer
RGB

the color is set as RGB true color value
Render a paperspace layout into modelspace:

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, dxf

doc = ezdxf.readfile("your.dxf")
layout1 = doc.paperspace("Layout1")
output_doc = ezdxf.new()
output_msp = output_doc.modelspace()

backend = dxf.DXFBackend(output_msp)
Frontend(RenderContext(doc), backend).draw_layout(layout1)

output_doc.saveas("layout1_in_modelspace.dxf")

108 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

GeoJSONBackend

Added in version 1.3.0.
class ezdxf.addons.drawing.json.GeoJSONBackend(properties_maker: Callable[[str, float, str],

Dict[str, Any]] = properties_maker,
transform_func: Callable[[Vec2], Tuple[float,
float]] = no_transform)

Creates a JSON-like output according the GeoJSON scheme. GeoJSON uses a geographic coordinate reference
system, World Geodetic System 1984 EPSG:4326, and units of decimal degrees.

• Latitude: -90 to +90 (South/North)
• Longitude: -180 to +180 (East/West)

So most DXF files will produce invalid coordinates and it is the job of the package-user to provide a function
to transfrom the input coordinates to EPSG:4326! The Recorder and Player classes can help to detect the
extents of the DXF content.
Default implementation:
no_transform(location: Vec2)→ tuple[float, float]

Dummy transformation function. Does not apply any transformations and just returns the input coordinates.
Factory function to make a transform function from WGS84 World Mercator EPSG:3395 coordinates to WGS84
(GPS) EPSG:4326.
make_world_mercator_to_gps_function(tol: float = 1e-6)→ Callable[[Vec2], Tuple[float, float]]

Returns a function to transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordi-
nates x, y in meters into WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS.

Parameters
tol – accuracy for latitude calculation

The GeoJSON format supports only straight lines so curved shapes are flattened to polylines and polygons.
The properties are handled as a foreign member feature and is therefore not defined in the GeoJSON specs. It is
possible to provide a custom function to create these property objects.
Default implementation:
properties_maker(color: str, stroke_width: float, layer: str)→ dict[str, Any]

Returns the property dict:

{
"color": color,
"stroke-width": stroke_width,
"layer": layer,

}

Returning an empty dict prevents properties in the GeoJSON output and also avoids wraping entities into
“Feature” objects.

Parameters
properties_maker – function to create a properties dict.

Class Methods
get_json_data()→ dict[str, Any]

Returns the result as a JSON-like data structure according the GeoJSON specs.

9.7. Add-ons 109

https://geojson.org/
https://epsg.io/4326
https://epsg.io/3395
https://epsg.io/4326
https://epsg.io/3395
https://epsg.io/4326

ezdxf Documentation, Release 1.3.2

get_string(*, indent: int | str = 2)→ str
Returns the result as a JSON string.

Added in version 1.3.0.

CustomJSONBackend

Added in version 1.3.0.
class ezdxf.addons.drawing.json.CustomJSONBackend(orient_paths=False)

Creates a JSON-like output with a custom JSON scheme. This scheme supports curved shapes by a SVG-path
like structure and coordinates are not limited in any way. This backend can be used to send geometries from a
web-backend to a frontend.
The JSON scheme is documented in the source code:
https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/json.py

Parameters
orient_paths – orient exterior and hole paths on demand, exterior paths have counter-
clockwise orientation and holes have clockwise orientation.

Class Methods
get_json_data()→ list[dict[str, Any]]

Returns the result as a JSON-like data structure.
get_string(*, indent: int | str = 2)→ str

Returns the result as a JSON string.
Added in version 1.3.0.

Configuration

Additional options for the drawing add-on can be passed by the config argument of the Frontend constructor
__init__(). Not every option will be supported by all backends.
Usage:

my_config = Configuration(lineweight_scaling=2)

110 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/json.py

ezdxf Documentation, Release 1.3.2

class ezdxf.addons.drawing.config.Configuration(pdsize: int | None = None, pdmode: int | None
= None, measurement: Measurement | None =
None, show_defpoints: bool = False,
proxy_graphic_policy: ProxyGraphicPolicy =
ProxyGraphicPolicy.SHOW, line_policy:
LinePolicy = LinePolicy.ACCURATE,
hatch_policy: HatchPolicy =
HatchPolicy.NORMAL, infinite_line_length:
float = 20, lineweight_scaling: float = 1.0,
min_lineweight: float | None = None,
min_dash_length: float = 0.1,
max_flattening_distance: float = 0.01,
circle_approximation_count: int = 128,
hatching_timeout: float = 30.0,
min_hatch_line_distance: float = 0.0001,
color_policy: ColorPolicy =
ColorPolicy.COLOR, custom_fg_color: str =
'#000000', background_policy:
BackgroundPolicy =
BackgroundPolicy.DEFAULT ,
custom_bg_color: str = '#ffffff',
lineweight_policy: LineweightPolicy =
LineweightPolicy.ABSOLUTE, text_policy:
TextPolicy = TextPolicy.FILLING,
image_policy: ImagePolicy =
ImagePolicy.DISPLAY)

Configuration options for the drawing add-on.
pdsize

the size to draw POINT entities (in drawing units) set to None to use the $PDSIZE value from the dxf
document header

0 5% of draw area height
<0 Specifies a percentage of the viewport size
>0 Specifies an absolute size
None use the $PDMODE value from the dxf document header

Type
int | None

pdmode

point styling mode (see POINT documentation)
see Point class documentation

Type
int | None

measurement

whether to use metric or imperial units as enum ezdxf.enums.Measurement

9.7. Add-ons 111

ezdxf Documentation, Release 1.3.2

0 use imperial units (in, ft, yd, …)
1 use metric units (ISO meters)
None use the $MEASUREMENT value from the dxf document header

Type
ezdxf.enums.Measurement | None

show_defpoints

whether to show or filter out POINT entities on the defpoints layer
Type

bool
proxy_graphic_policy

the action to take when a proxy graphic is encountered
Type

ezdxf.addons.drawing.config.ProxyGraphicPolicy

line_policy

the method to use when drawing styled lines (eg dashed, dotted etc)
Type

ezdxf.addons.drawing.config.LinePolicy

hatch_policy

the method to use when drawing HATCH entities
Type

ezdxf.addons.drawing.config.HatchPolicy

infinite_line_length

the length to use when drawing infinite lines
Type

float
lineweight_scaling

multiplies every lineweight by this factor; set this factor to 0.0 for a constant minimum line width defined by
the min_lineweight setting for all lineweights; the correct DXF lineweight often looks too thick in SVG,
so setting a factor < 1 can improve the visual appearance

Type
float

min_lineweight

the minimum line width in 1/300 inch; set to None for let the backend choose.
Type

float | None
min_dash_length

the minimum length for a dash when drawing a styled line (default value is arbitrary)
Type

float

112 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

max_flattening_distance

Max flattening distance in drawing units see Path.flattening documentation. The backend implementation
should calculate an appropriate value, like 1 screen- or paper pixel on the output medium, but converted into
drawing units. Sets Path() approximation accuracy

Type
float

circle_approximation_count

Approximate a full circle by n segments, arcs have proportional less segments. Only used for approximation
of arcs in banded polylines.

Type
int

hatching_timeout

hatching timeout for a single entity, very dense hatching patterns can cause a very long execution time, the
default timeout for a single entity is 30 seconds.

Type
float

min_hatch_line_distance

minimum hatch line distance to render, narrower pattern lines are rendered as solid filling
Type

float
color_policy

Type
ezdxf.addons.drawing.config.ColorPolicy

custom_fg_color

Used for ColorPolicy.custom policy, custom foreground color as “#RRGGBBAA” color string
(RGB+alpha)

Type
str

background_policy

Type
ezdxf.addons.drawing.config.BackgroundPolicy

custom_bg_color

Used for BackgroundPolicy.custom policy, custom background color as “#RRGGBBAA” color
string (RGB+alpha)

Type
str

lineweight_policy

Type
ezdxf.addons.drawing.config.LineweightPolicy

text_policy

Type
ezdxf.addons.drawing.config.TextPolicy

9.7. Add-ons 113

ezdxf Documentation, Release 1.3.2

image_policy

the method for drawing IMAGE entities
Type

ezdxf.addons.drawing.config.ImagePolicy

with_changes()

Returns a new frozen Configuration object with modified values.

BackgroundPolicy

class ezdxf.addons.drawing.config.BackgroundPolicy(value, names=_not_given, *values,
module=None, qualname=None,
type=None, start=1, boundary=None)

This enum is used to define the background color.
DEFAULT

as resolved by the Frontend class
WHITE

white background
BLACK

black background
PAPERSPACE

default paperspace background
MODELSPACE

default modelspace background
OFF

fully transparent background
CUSTOM

custom background color by Configuration.custom_bg_color

ColorPolicy

class ezdxf.addons.drawing.config.ColorPolicy(value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

This enum is used to define how to determine the line/fill color.
COLOR

as resolved by the Frontend class
COLOR_SWAP_BW

as resolved by the Frontend class but swaps black and white
COLOR_NEGATIVE

invert all colors
MONOCHROME

maps all colors to gray scale in range [0%, 100%]

114 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MONOCHROME_DARK_BG

maps all colors to gray scale in range [30%, 100%], brightens colors for dark backgrounds
MONOCHROME_LIGHT_BG

maps all colors to gray scale in range [0%, 70%], darkens colors for light backgrounds
BLACK

maps all colors to black
WHITE

maps all colors to white
CUSTOM

maps all colors to custom color Configuration.custom_fg_color

HatchPolicy

class ezdxf.addons.drawing.config.HatchPolicy(value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

The action to take when a HATCH entity is encountered
NORMAL

render pattern and solid fillings
IGNORE

do not show HATCH entities at all
SHOW_OUTLINE

show only the outline of HATCH entities
SHOW_SOLID

show HATCH entities as solid filling regardless of the pattern

ImagePolicy

class ezdxf.addons.drawing.config.ImagePolicy(value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

This enum is used to define the image rendering.
DISPLAY

display images as they would appear in a regular CAD application
RECT

display images as rectangles
MISSING

images are always rendered as-if they are missing (rectangle + path text)
PROXY

images are rendered using their proxy representations (rectangle)
IGNORE

ignore images entirely

9.7. Add-ons 115

ezdxf Documentation, Release 1.3.2

LinePolicy

class ezdxf.addons.drawing.config.LinePolicy(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

This enum is used to define how to render linetypes.

Note: Text and shapes in linetypes are not supported.

SOLID

draw all lines as solid regardless of the linetype style
ACCURATE

render styled lines as accurately as possible
APPROXIMATE

ignored since v0.18.1 - uses always ACCURATE by default

LineweightPolicy

class ezdxf.addons.drawing.config.LineweightPolicy(value, names=_not_given, *values,
module=None, qualname=None,
type=None, start=1, boundary=None)

This enum is used to define how to determine the lineweight.
ABSOLUTE

in mm as resolved by the Frontend class
RELATIVE

lineweight is relative to page size
RELATIVE_FIXED

fixed lineweight relative to page size for all strokes

ProxyGraphicPolicy

class ezdxf.addons.drawing.config.ProxyGraphicPolicy(value, names=_not_given, *values,
module=None, qualname=None,
type=None, start=1, boundary=None)

The action to take when an entity with a proxy graphic is encountered

Note: To get proxy graphics support proxy graphics have to be loaded: Set the global option ezdxf.options.
load_proxy_graphics to True, which is the default value.
This can not prevent drawing proxy graphic inside of blocks, because this is beyond the domain of the drawing
add-on!

IGNORE

do not display proxy graphics (skip_entity will be called instead)

116 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

SHOW

if the entity cannot be rendered directly (e.g. if not implemented) but a proxy is present: display the proxy
PREFER

display proxy graphics even for entities where direct rendering is available

TextPolicy

class ezdxf.addons.drawing.config.TextPolicy(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

This enum is used to define the text rendering.
FILLING

text is rendered as solid filling (default)
OUTLINE

text is rendered as outline paths
REPLACE_RECT

replace text by a rectangle
REPLACE_FILL

replace text by a filled rectangle
IGNORE

ignore text entirely

Properties

class ezdxf.addons.drawing.properties.Properties

An implementation agnostic representation of DXF entity properties like color and linetype. These properties
represent the actual values after resolving all DXF specific rules like “by layer”, “by block” and so on.
color

The actual color value of the DXF entity as “#RRGGBB” or “#RRGGBBAA” string. An alpha value of “00”
is opaque and “ff” is fully transparent.

rgb

RGB values extract from the color value as tuple of integers.
luminance

Perceived luminance calculated from the color value as float in the range [0.0, 1.0].
linetype_name

The actual linetype name as string like “CONTINUOUS”
linetype_pattern

The simplified DXF linetype pattern as tuple of floats, all line elements and gaps are values greater than 0.0
and 0.0 represents a point. Line or point elements do always alternate with gap elements: line-gap-line-gap-
point-gap and the pattern always ends with a gap. The continuous line is an empty tuple.

linetype_scale

The scaling factor as float to apply to the linetype_pattern.

9.7. Add-ons 117

ezdxf Documentation, Release 1.3.2

lineweight

The absolute lineweight to render in mm as float.
is_visible

Visibility flag as bool.
layer

The actual layer name the entity resides on as UPPERCASE string.
font

The FontFace used for text rendering or None.
filling

The actual Filling properties of the entity or None.
units

The actual drawing units as InsertUnits enum.

LayerProperties

class ezdxf.addons.drawing.properties.LayerProperties

Actual layer properties, inherits from class Properties.
is_visible

Modified meaning: whether entities belonging to this layer should be drawn
layer

Modified meaning: stores real layer name (mixed case)

LayoutProperties

class ezdxf.addons.drawing.properties.LayoutProperties

Actual layout properties.
name

Layout name as string
units

Layout units as InsertUnits enum.
property LayoutProperties.background_color: str

Returns the default layout background color.
property LayoutProperties.default_color: str

Returns the default layout foreground color.
property LayoutProperties.has_dark_background: bool

Returns True if the actual background-color is “dark”.
LayoutProperties.set_colors(bg: str, fg: str | None = None)→ None

Setup default layout colors.
Required color format “#RRGGBB” or including alpha transparency “#RRGGBBAA”.

118 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

RenderContext

class ezdxf.addons.drawing.properties.RenderContext(doc: Drawing | None = None, *, ctb: str
| CTB = '', export_mode: bool = False)

The render context for the given DXF document. The RenderContext resolves the properties of DXF entities
from the context they reside in to actual values like RGB colors, transparency, linewidth and so on.
A given ctb file (plot style file) overrides the default properties for all layouts, which means the plot style table stored
in the layout is always ignored.

Parameters
• doc – DXF document
• ctb – path to a plot style table or a ColorDependentPlotStyles instance
• export_mode – Whether to render the document as it would look when exported (plotted)
by a CAD application to a file such as pdf, or whether to render the document as it would
appear inside a CAD application.

resolve_aci_color(aci: int, resolved_layer: str)→ str
Resolve the aci color as hex color string: “#RRGGBB”

resolve_all(entity: DXFGraphic)→ Properties
Resolve all properties of entity.

resolve_color(entity: DXFGraphic, *, resolved_layer: str | None = None)→ str
Resolve the rgb-color of entity as hex color string: “#RRGGBB” or “#RRGGBBAA”.

resolve_filling(entity: DXFGraphic)→ Filling | None
Resolve filling properties (SOLID, GRADIENT, PATTERN) of entity.

resolve_font(entity: DXFGraphic)→ FontFace | None
Resolve the text style of entity to a font name. Returns None for the default font.

resolve_layer(entity: DXFGraphic)→ str
Resolve the layer of entity, this is only relevant for entities inside of block references.

resolve_layer_properties(layer: Layer)→ LayerProperties
Resolve layer properties.

resolve_linetype(entity: DXFGraphic, *, resolved_layer: str | None = None)→ tuple[str,
Sequence[float]]

Resolve the linetype of entity. Returns a tuple of the linetype name as upper-case string and the simplified
linetype pattern as tuple of floats.

resolve_lineweight(entity: DXFGraphic, *, resolved_layer: str | None = None)→ float
Resolve the lineweight of entity in mm.
DXF stores the lineweight in mm times 100 (e.g. 0.13mm = 13). The smallest line weight is 0 and the biggest
line weight is 211. The DXF/DWG format is limited to a fixed value table, see: ezdxf.lldxf.const.
VALID_DXF_LINEWEIGHTS

CAD applications draw lineweight 0mm as an undefined small value, to prevent backends to draw nothing for
lineweight 0mm the smallest return value is 0.01mm.

resolve_units()→ InsertUnits

9.7. Add-ons 119

ezdxf Documentation, Release 1.3.2

resolve_visible(entity: DXFGraphic, *, resolved_layer: str | None = None)→ bool
Resolve the visibility state of entity. Returns True if entity is visible.

set_current_layout(layout: Layout, ctb: str | CTB = '')

Set the current layout and update layout specific properties.
Parameters

• layout – modelspace or a paperspace layout
• ctb – path to a plot style table or a ColorDependentPlotStyles instance

set_layer_properties_override(func: Callable[[Sequence[LayerProperties]], None] | None =
None)

The function func is called with the current layer properties as argument after resetting them, so the function
can override the layer properties.

The RenderContext class can be used isolated from the drawing add-on to resolve DXF properties.

Frontend

class ezdxf.addons.drawing.frontend.Frontend(ctx: RenderContext, out: BackendInterface, config:
Configuration = Configuration.defaults(),
bbox_cache: ezdxf.bbox.Cache = None)

Drawing frontend for 2D backends, responsible for decomposing entities into graphic primitives and resolving entity
properties.
By passing the bounding box cache of the modelspace entities can speed up paperspace rendering, because the
frontend can filter entities which are not visible in the VIEWPORT. Even passing in an empty cache can speed up
rendering time when multiple viewports need to be processed.

Parameters
• ctx – the properties relevant to rendering derived from a DXF document
• out – the 2D backend to draw to
• config – settings to configure the drawing frontend and backend
• bbox_cache – bounding box cache of the modelspace entities or an empty cache which will
be filled dynamically when rendering multiple viewports or None to disable bounding box
caching at all

log_message(message: str)
Log given message - override to alter behavior.

skip_entity(entity: DXFEntity, msg: str)→ None
Called for skipped entities - override to alter behavior.

override_properties(entity: DXFGraphic, properties: Properties)→ None
This method can change the resolved properties of an DXF entity.
The method has access to the DXF entity attributes, the current render context and the resolved properties.
It is recommended to modify only the resolved properties in this method, because the DXF entities are not
copies - except for virtual entities.
Changed in version 1.3.0: This method is the first function in the stack of new property over-
ride functions. It is possible to push additional override functions onto this stack, see also
push_property_override_function().

120 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

push_property_override_function(override_fn: Callable[[DXFGraphic, Properties], None])→
None

The override function can change the resolved properties of an DXF entity.
The override function has access to the DXF entity attributes and the resolved properties. It is recommended
to modify only the resolved properties in this function, because the DXF entities are not copies - except for
virtual entities.
The override functions are called after resolving the DXF attributes of an entity and before the Frontend.
draw_entity() method in the order from first to last.
Added in version 1.3.0.

pop_property_override_function()→ None
Remove the last function from the property override stack.
Does not raise an exception if the override stack is empty.
Added in version 1.3.0.

draw_layout(layout: Layout, finalize: bool = True, *, filter_func: Callable[[DXFGraphic], bool] | None =
None, layout_properties: LayoutProperties | None = None)→ None

Draw all entities of the given layout.
Draws the entities of the layout in the default or redefined redraw-order and calls the finalize() method
of the backend if requested. The default redraw order is the ascending handle order not the order the entities
are stored in the layout.
The method skips invisible entities and entities for which the given filter function returns False.

Parameters
• layout – layout to draw of type Layout
• finalize – True if the finalize()method of the backend should be called automat-
ically

• filter_func – function to filter DXf entities, the function should return False if a
given entity should be ignored

• layout_properties – override the default layout properties

BackendInterface

class ezdxf.addons.drawing.backend.BackendInterface

Public interface definition for 2D rendering backends.
For more information read the source code: backend.py

Backend

class ezdxf.addons.drawing.backend.Backend

Abstract base class for concrete backend implementations and implements some default features.
For more information read the source code: backend.py

9.7. Add-ons 121

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/backend.py
https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/backend.py

ezdxf Documentation, Release 1.3.2

Details

The rendering is performed in two stages. The frontend traverses the DXF document structure, converting each encoun-
tered entity into primitive drawing commands. These commands are fed to a backend which implements the interface:
Backend.
Although the resulting images will not be pixel-perfect with AutoCAD (which was taken as the ground truth when devel-
oping this add-on) great care has been taken to achieve similar behavior in some areas:

• The algorithm for determining color should match AutoCAD. However, the color palette is not stored in the DXF
file, so the chosen colors may be different to what is expected. The RenderContext class supports passing a
plot style table (CTB-file) as custom color palette but uses the same palette as AutoCAD by default.

• Text rendering is quite accurate, text positioning, alignment and word wrapping are very faithful. Differences may
occur if a different font from what was used by the CAD application but even in that case, for supported backends,
measurements are taken of the font being used to match text as closely as possible.

• Visibility determination (based on which layers are visible) should match AutoCAD
See also:

• draw_cad.py for a simple use of this module
• cad_viewer.py for an advanced use of this module
• Notes on Rendering DXF Content for additional behaviours documented during the development of this add-on.

9.7.2 Geo Interface

Intended Usage

The intended usage of the ezdxf.addons.geo module is as tool to work with geospatial data in conjunction with
dedicated geospatial applications and libraries and the module can not and should not replicate their functionality.
The only reimplemented feature is the most commonWSG84 EPSG:3395World Mercator projection, for everything else
use the dedicated packages like:

• pyproj - Cartographic projections and coordinate transformations library.
• Shapely - Manipulation and analysis of geometric objects in the Cartesian plane.
• PyShp - The Python Shapefile Library (PyShp) reads and writes ESRI Shapefiles in pure Python.
• GeoJSON - GeoJSON interface for Python.
• GDAL - Tools for programming and manipulating the GDAL Geospatial Data Abstraction Library.
• Fiona - Fiona is GDAL’s neat and nimble vector API for Python programmers.
• QGIS - A free and open source geographic information system.
• and many more …

This module provides support for the __geo_interface__: https://gist.github.com/sgillies/2217756
Which is also supported by Shapely, for supported types see the GeoJSON Standard and examples in Appendix-A.
See also:
Tutorial for the Geo Add-on for loading GPX data into DXF files with an existing geo location reference and exporting
DXF entities as GeoJSON data.

122 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/draw_cad.py
https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/cad_viewer.py
https://pypi.org/project/pyproj/
https://pypi.org/project/Shapely/
https://pypi.org/project/pyshp/
https://pypi.org/project/geojson/
https://pypi.org/project/gdal/
https://pypi.org/project/fiona/
https://www.qgis.org/en/site/
https://gist.github.com/sgillies/2217756
https://pypi.org/project/Shapely/
https://pypi.org/project/geojson/
https://tools.ietf.org/html/rfc7946#appendix-A

ezdxf Documentation, Release 1.3.2

Proxy From Mapping

TheGeoProxy represents a __geo_interface__mapping, create a new proxy byGeoProxy.parse() from an
external __geo_interface__mapping. GeoProxy.to_dxf_entities() returns new DXF entities from this
mapping. Returns “Point” as Point entity, “LineString” as LWPolyline entity and “Polygon” as Hatch entity or as
separatedLWPolyline entities (or both) and new in v0.16.6 asMPolygon. Supports “MultiPoint”, “MultiLineString”,
“MultiPolygon”, “GeometryCollection”, “Feature” and “FeatureCollection”. Add new DXF entities to a layout by the
Layout.add_entity() method.

Proxy From DXF Entity

The proxy() function or the constructor GeoProxy.from_dxf_entities() creates a new GeoProxy object
from a single DXF entity or from an iterable of DXF entities, entities without a corresponding representation will be
approximated.
Supported DXF entities are:

• POINT as “Point”
• LINE as “LineString”
• LWPOLYLINE as “LineString” if open and “Polygon” if closed
• POLYLINE as “LineString” if open and “Polygon” if closed, supports only 2D and 3D polylines, POLYMESH and
POLYFACE are not supported

• SOLID, TRACE, 3DFACE as “Polygon”
• CIRCLE, ARC, ELLIPSE and SPLINE by approximation as “LineString” if open and “Polygon” if closed
• HATCH and MPOLYGON as “Polygon”, holes are supported

Warning: This module does no extensive validity checks for “Polygon” objects and because DXF has different
requirements for HATCH boundary paths than the GeoJSON Standard, it is possible to create invalid “Polygon”
objects. It is recommended to check critical objects by a sophisticated geometry library like Shapely.

Module Functions

ezdxf.addons.geo.proxy(entity: DXFGraphic | Iterable[DXFGraphic], distance: float =
MAX_FLATTENING_DISTANCE, force_line_string: bool = False)→ GeoProxy

Returns a GeoProxy object.
Parameters

• entity – a single DXF entity or iterable of DXF entities
• distance – maximum flattening distance for curve approximations
• force_line_string – by default this function returns Polygon objects for closed
geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument
force_line_string to True, this entities will be returned as LineString objects.

ezdxf.addons.geo.dxf_entities(geo_mapping: MutableMapping[str, Any],
polygon=PolygonConversion.HATCH, dxfattribs=None, *, post_process:
Callable[[DXFGraphic, MutableMapping[str, Any]], None] | None =
None)→ Iterator[DXFGraphic]

9.7. Add-ons 123

https://pypi.org/project/geojson/
https://pypi.org/project/Shapely/

ezdxf Documentation, Release 1.3.2

Returns __geo_interface__ mappings as DXF entities.
The enum polygon determines the method to convert polygons, use PolygonConversion.HATCH
for Hatch entity, PolygonConversion.POLYLINE for LWPolyline or PolygonConversion.
HATCH_AND_POLYLINE for both. Option PolygonConversion.POLYLINE returns for the exterior path
and each hole a separated LWPolyline entity. The Hatch entity supports holes, but has no explicit borderline.
Yields Hatch always before LWPolyline entities.
PolygonConversion.MPOLYGON support was added in v0.16.6, which is like a Hatch entity with additional
borderlines, but the MPOLYGON entity is not a core DXF entity and DXF viewers, applications and libraries my
not support this entity. The DXF attribute color defines the borderline color and fill_color the color of the solid
filling.
The returned DXF entities can be added to a layout by the Layout.add_entity() method.

Parameters
• geo_mapping – __geo__interface__ mapping as dict or a Python object with a
__geo__interface__ property

• polygon – see PolygonConversion
• dxfattribs – dict with additional DXF attributes
• post_process – post process function of type PostProcessFunc that get the
created DXF entity and the geo mapping as input, see reference implementation as-
sign_layers()

ezdxf.addons.geo.gfilter(entities: Iterable[DXFGraphic])→ Iterator[DXFGraphic]
Filter DXF entities from iterable entities, which are incompatible to the __geo_reference__ interface.

GeoProxy Class

class ezdxf.addons.geo.GeoProxy(geo_mapping: MutableMapping[str, Any], places: int = 6)
Stores the __geo_interface__ mapping in a parsed and compiled form.
Stores coordinates as Vec3 objects and represents “Polygon” always as tuple (exterior, holes) even without holes.
The GeoJSON specification recommends 6 decimal places for latitude and longitude which equates to roughly
10cm of precision. You may need slightly more for certain applications, 9 decimal places would be sufficient for
professional survey-grade GPS coordinates.

Parameters
• geo_mapping – parsed and compiled __geo_interface__ mapping
• places – decimal places to round for __geo_interface__ export

__geo_interface__

Returns the __geo_interface__ compatible mapping as dict.
geotype

Property returns the top level entity type or None.
classmethod parse(geo_mapping: MutableMapping[str, Any])→ Self

Parse and compile a __geo_interface__ mapping as dict or a Python object with a
__geo_interface__ property, does some basic syntax checks, converts all coordinates into Vec3 ob-
jects, represents “Polygon” always as tuple (exterior, holes) even without holes.

124 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

classmethod from_dxf_entities(entity: DXFGraphic | Iterable[DXFGraphic], distance: float =
MAX_FLATTENING_DISTANCE, force_line_string: bool = False)
→ GeoProxy

Constructor from a single DXF entity or an iterable of DXF entities.
Parameters

• entity – DXF entity or entities
• distance – maximum flattening distance for curve approximations
• force_line_string – by default this function returns Polygon objects for closed
geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument
force_line_string to True, this entities will be returned as LineString objects.

to_dxf_entities(polygon=PolygonConversion.HATCH, dxfattribs=None, *, post_process:
Callable[[DXFGraphic, MutableMapping[str, Any]], None] | None = None)→
Iterator[DXFGraphic]

Returns stored __geo_interface__ mappings as DXF entities.
The polygon argument determines the method to convert polygons, use 1 for Hatch entity, 2 for LWPoly-
line or 3 for both. Option 2 returns for the exterior path and each hole a separated LWPolyline entity.
The Hatch entity supports holes, but has no explicit borderline.
Yields Hatch always before LWPolyline entities.
MPolygon support was added in v0.16.6, which is like a Hatch entity with additional borderlines, but the
MPOLYGON entity is not a core DXF entity and DXF viewers, applications and libraries my not support
this entity. The DXF attribute color defines the borderline color and fill_color the color of the solid filling.
The returned DXF entities can be added to a layout by the Layout.add_entity() method.

Parameters
• polygon – see PolygonConversion
• dxfattribs – dict with additional DXF attributes
• post_process – post process function of type PostProcesFunc that get the cre-
ated DXF entity and the geo mapping as input, see reference implementation as-
sign_layers()

copy()→ GeoProxy
Returns a deep copy.

__iter__()→ Iterator[MutableMapping[str, Any]]
Iterate over all geometry entities.
Yields only “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString” and “MultiPolygon” objects,
returns the content of “GeometryCollection”, “FeatureCollection” and “Feature” as geometry objects (“Point”,
…).

wcs_to_crs(crs: Matrix44)→ None
Transform all coordinates recursive from WCS coordinates into Coordinate Reference System (CRS) by
transformation matrix crs inplace.
The CRS is defined by the GeoData entity, get the GeoData entity from the modelspace by method
get_geodata(). The CRS transformation matrix can be acquired form the GeoData object by
get_crs_transformation() method:

9.7. Add-ons 125

ezdxf Documentation, Release 1.3.2

doc = ezdxf.readfile('file.dxf')
msp = doc.modelspace()
geodata = msp.get_geodata()
if geodata:

matrix, axis_ordering = geodata.get_crs_transformation()

If axis_ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON (see
chapter 3.1.1).

Parameters
crs – transformation matrix of type Matrix44

crs_to_wcs(crs: Matrix44)→ None
Transform all coordinates recursive from CRS into WCS coordinates by transformation matrix crs inplace,
see also GeoProxy.wcs_to_crs().

Parameters
crs – transformation matrix of type Matrix44

globe_to_map(func: Callable[[Vec3], Vec3] | None = None)→ None
Transform all coordinates recursive from globe representation in longitude and latitude in decimal degrees
into 2D map representation in meters.
Default is WGS84 EPSG:4326 (GPS) to WGS84 EPSG:3395 World Mercator function
wgs84_4326_to_3395().
Use the pyproj package to write a custom projection function as needed.

Parameters
func – custom transformation function, which takes one Vec3 object as argument and returns
the result as a Vec3 object.

map_to_globe(func: Callable[[Vec3], Vec3] | None = None)→ None
Transform all coordinates recursive from 2D map representation in meters into globe representation as lon-
gitude and latitude in decimal degrees.
Default is WGS84 EPSG:3395 World Mercator to WGS84 EPSG:4326 GPS function
wgs84_3395_to_4326().
Use the pyproj package to write a custom projection function as needed.

Parameters
func – custom transformation function, which takes one Vec3 object as argument and returns
the result as a Vec3 object.

apply(func: Callable[[Vec3], Vec3])→ None
Apply the transformation function func recursive to all coordinates.

Parameters
func – transformation function as Callable[[Vec3], Vec3]

filter(func: Callable[[GeoProxy], bool])→ None
Removes all mappings for which func() returns False. The function only has to handle Point, LineString
and Polygon entities, other entities like MultiPolygon are divided into separate entities also any collection.

126 Chapter 9. Contents

https://epsg.io/4326
https://epsg.io/3395
https://pypi.org/project/pyproj/
https://epsg.io/3395
https://epsg.io/4326
https://pypi.org/project/pyproj/

ezdxf Documentation, Release 1.3.2

Helper Functions

ezdxf.addons.geo.wgs84_4326_to_3395(location: Vec3)→ Vec3

Transform WGS84 EPSG:4326 location given as latitude and longitude in decimal degrees as used by GPS into
World Mercator cartesian 2D coordinates in meters EPSG:3395.

Parameters
location – Vec3 object, x-attribute represents the longitude value (East-West) in decimal de-
grees and the y-attribute represents the latitude value (North-South) in decimal degrees.

ezdxf.addons.geo.wgs84_3395_to_4326(location: Vec3, tol: float = 1e-6)→ Vec3

Transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordinates x, y in meters into
WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS.

Parameters
• location – Vec3 object, z-axis is ignored
• tol – accuracy for latitude calculation

ezdxf.addons.geo.dms2dd(d: float, m: float = 0, s: float = 0)→ float
Convert degree, minutes, seconds into decimal degrees.

ezdxf.addons.geo.dd2dms(dd: float)→ tuple[float, float, float]
Convert decimal degrees into degree, minutes, seconds.

ezdxf.addons.geo.assign_layers(entity: DXFGraphic, mapping: MutableMapping[str, Any])→ None
Reference implementation for a post_process() function.
See also:
dxf_entities()

def assign_layers(entity: DXFGraphic, mapping: GeoMapping) -> None:
properties = mapping.get("properties)
if properties is None:

return
layer = properties.get("layer")
if layer:

entity.dxf.layer = layer

Types

class ezdxf.addons.geo.PolygonConversion(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

Polygon conversion types as IntEnum.
HATCH

POLYLINE

HATCH_AND_POLYLINE

MPOLYGON

ezdxf.addons.geo.GeoMapping

alias of MutableMapping[str, Any]

9.7. Add-ons 127

https://epsg.io/4326
https://epsg.io/3395
https://epsg.io/3395
https://epsg.io/4326

ezdxf Documentation, Release 1.3.2

ezdxf.addons.geo.PostProcessFunc

alias of Callable[[DXFGraphic, MutableMapping[str, Any]], None]

9.7.3 Importer

This add-on is meant to import graphical entities from another DXF drawing and their required table entries like LAYER,
LTYPE or STYLE.
Because of complex extensibility of the DXF format and the lack of sufficient documentation, I decided to remove most
of the possible source drawing dependencies from imported entities, therefore imported entities may not look the same as
the original entities in the source drawing, but at least the geometry should be the same and the DXF file does not break.
Removed data which could contain source drawing dependencies: Extension Dictionaries, AppData and XDATA.

Warning: DON’T EXPECT PERFECT RESULTS!

The Importer supports following data import:
• entities which are really safe to import: LINE, POINT, CIRCLE, ARC, TEXT, SOLID, TRACE, 3DFACE,
SHAPE, POLYLINE, ATTRIB, ATTDEF, INSERT, ELLIPSE, MTEXT, LWPOLYLINE, SPLINE, HATCH,
MESH, XLINE, RAY, DIMENSION, LEADER, VIEWPORT

• table and table entry import is restricted to LAYER, LTYPE, STYLE, DIMSTYLE
• import of BLOCK definitions is supported
• import of paper space layouts is supported

Import of DXF objects from the OBJECTS section is not supported.
DIMSTYLE override for entities DIMENSION and LEADER is not supported.
Example:

import ezdxf
from ezdxf.addons import Importer

sdoc = ezdxf.readfile('original.dxf')
tdoc = ezdxf.new()

importer = Importer(sdoc, tdoc)

import all entities from source modelspace into modelspace of the target drawing
importer.import_modelspace()

import all paperspace layouts from source drawing
importer.import_paperspace_layouts()

import all CIRCLE and LINE entities from source modelspace into an arbitrary target␣
↪→layout.
create target layout
tblock = tdoc.blocks.new('SOURCE_ENTS')
query source entities
ents = sdoc.modelspace().query('CIRCLE LINE')
import source entities into target block
importer.import_entities(ents, tblock)

(continues on next page)

128 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
This is ALWAYS the last & required step, without finalizing the target drawing is␣
↪→maybe invalid!
This step imports all additional required table entries and block definitions.
importer.finalize()

tdoc.saveas('imported.dxf')

class ezdxf.addons.importer.Importer(source: Drawing, target: Drawing)
The Importer class is central element for importing data from other DXF documents.

Parameters
• source – source Drawing
• target – target Drawing

source

source DXF document
target

target DXF document
used_layers

Set of used layer names as string, AutoCAD accepts layer names without a LAYER table entry.
used_linetypes

Set of used linetype names as string, these linetypes require a TABLE entry or AutoCAD will crash.
used_styles

Set of used text style names, these text styles require a TABLE entry or AutoCAD will crash.
used_dimstyles

Set of used dimension style names, these dimension styles require a TABLE entry or AutoCAD will crash.
finalize()→ None

Finalize the import by importing required table entries and BLOCK definitions, without finalization the target
document is maybe invalid for AutoCAD. Call the finalize()method as last step of the import process.

import_block(block_name: str, rename=True)→ str
Import one BLOCK definition from source document.
If the BLOCK already exist the BLOCKwill be renamed if argument rename is True, otherwise the existing
BLOCK in the target document will be used instead of the BLOCK in the source document. Required name
resolving for imported block references (INSERT), will be done in the Importer.finalize()method.
To replace an existing BLOCK in the target document, just delete it before importing data: target.
blocks.delete_block(block_name, safe=False)

Parameters
• block_name – name of BLOCK to import
• rename – renameBLOCK if a BLOCKwith the same name already exist in target document

Returns: (renamed) BLOCK name
Raises

ValueError – BLOCK in source document not found (defined)

9.7. Add-ons 129

ezdxf Documentation, Release 1.3.2

import_blocks(block_names: Iterable[str], rename=False)→ None
Import all BLOCK definitions from source document.
If a BLOCK already exist the BLOCK will be renamed if argument rename is True, otherwise the existing
BLOCK in the target document will be used instead of the BLOCK from the source document. Required
name resolving for imported BLOCK references (INSERT), will be done in the Importer.finalize()
method.

Parameters
• block_names – names of BLOCK definitions to import
• rename – renameBLOCK if a BLOCKwith the same name already exist in target document

Raises
ValueError – BLOCK in source document not found (defined)

import_entities(entities: Iterable[DXFEntity], target_layout: BaseLayout | None = None)→ None
Import all entities into target_layout or the modelspace of the target document, if target_layout is None.

Parameters
• entities – Iterable of DXF entities
• target_layout – any layout (modelspace, paperspace or block) from the target docu-
ment

Raises
DXFStructureError – target_layout is not a layout of target document

import_entity(entity: DXFEntity, target_layout: BaseLayout | None = None)→ None
Imports a single DXF entity into target_layout or the modelspace of the target document, if target_layout is
None.

Parameters
• entity – DXF entity to import
• target_layout – any layout (modelspace, paperspace or block) from the target docu-
ment

Raises
DXFStructureError – target_layout is not a layout of target document

import_modelspace(target_layout: BaseLayout | None = None)→ None
Import all entities from source modelspace into target_layout or the modelspace of the target document, if
target_layout is None.

Parameters
target_layout – any layout (modelspace, paperspace or block) from the target document

Raises
DXFStructureError – target_layout is not a layout of target document

import_paperspace_layout(name: str)→ Layout

Import paperspace layout name into the target document.
Recreates the source paperspace layout in the target document, renames the target paperspace if a paperspace
with same name already exist and imports all entities from the source paperspace into the target paperspace.

Parameters
name – source paper space name as string

Returns: new created target paperspace Layout

130 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Raises
• KeyError – source paperspace does not exist
• DXFTypeError – invalid modelspace import

import_paperspace_layouts()→ None
Import all paperspace layouts and their content into the target document. Target layouts will be renamed if a
layout with the same name already exist. Layouts will be imported in original tab order.

import_shape_files(fonts: set[str])→ None
Import shape file table entries from the source document into the target document. Shape file entries are
stored in the styles table but without a name.

import_table(name: str, entries: str | Iterable[str] = '*', replace=False)→ None
Import specific table entries from the source document into the target document.

Parameters
• name – valid table names are “layers”, “linetypes” and “styles”
• entries – Iterable of table names as strings, or a single table name or “*” for all table
entries

• replace – True to replace the already existing table entry else ignore existing entries
Raises

TypeError – unsupported table type
import_tables(table_names: str | Iterable[str] = '*', replace=False)→ None

Import DXF tables from the source document into the target document.
Parameters

• table_names – iterable of tables names as strings, or a single table name as string or “*”
for all supported tables

• replace – True to replace already existing table entries else ignore existing entries
Raises

TypeError – unsupported table type
recreate_source_layout(name: str)→ Layout

Recreate source paperspace layout name in the target document. The layout will be renamed if name already
exist in the target document. Returns target modelspace for layout name “Model”.

Parameters
name – layout name as string

Raises
KeyError – if source layout name not exist

9.7. Add-ons 131

ezdxf Documentation, Release 1.3.2

9.7.4 dxf2code

Translate DXF entities and structures into Python source code.
Short example:

import ezdxf
from ezdxf.addons.dxf2code import entities_to_code, block_to_code

doc = ezdxf.readfile('original.dxf')
msp = doc.modelspace()
source = entities_to_code(msp)

create source code for a block definition
block_source = block_to_code(doc.blocks['MyBlock'])

merge source code objects
source.merge(block_source)

with open('source.py', mode='wt') as f:
f.write(source.import_str())
f.write('\n\n')
f.write(source.code_str())
f.write('\n')

ezdxf.addons.dxf2code.entities_to_code(entities: Iterable[DXFEntity], layout: str = 'layout', ignore:
Iterable[str] | None = None)→ Code

Translates DXF entities into Python source code to recreate this entities by ezdxf.
Parameters

• entities – iterable of DXFEntity
• layout – variable name of the layout (model space or block) as string
• ignore – iterable of entities types to ignore as strings like ['IMAGE', 'DIMENSION']

Returns
Code

ezdxf.addons.dxf2code.block_to_code(block: BlockLayout, drawing: str = 'doc', ignore: Iterable[str] |
None = None)→ Code

Translates a BLOCK into Python source code to recreate the BLOCK by ezdxf.
Parameters

• block – block definition layout
• drawing – variable name of the drawing as string
• ignore – iterable of entities types to ignore as strings like [‘IMAGE’, ‘DIMENSION’]

Returns
Code

ezdxf.addons.dxf2code.table_entries_to_code(entities: Iterable[DXFEntity], drawing='doc')→
Code

ezdxf.addons.dxf2code.black(code: str, line_length=88, fast: bool = True)→ str
Returns the source code as a single string formatted by Black
Requires the installed Black formatter:

132 Chapter 9. Contents

https://pypi.org/project/black/
https://pypi.org/project/black/

ezdxf Documentation, Release 1.3.2

pip3 install black

Parameters
• code – source code
• line_length – max. source code line length
• fast – True for fast mode, False to check that the reformatted code is valid

Raises
ImportError – Black is not available

class ezdxf.addons.dxf2code.Code

Source code container.
code

Source code line storage, store lines without line ending \\n
imports

source code line storage for global imports, store lines without line ending \\n
layers

Layers used by the generated source code, AutoCAD accepts layer names without a LAYER table entry.
linetypes

Linetypes used by the generated source code, these linetypes require a TABLE entry or AutoCAD will crash.
styles

Text styles used by the generated source code, these text styles require a TABLE entry or AutoCAD will
crash.

dimstyles

Dimension styles used by the generated source code, these dimension styles require a TABLE entry or Auto-
CAD will crash.

blocks

Blocks used by the generated source code, these blocks require a BLOCK definition in the BLOCKS section
or AutoCAD will crash.

code_str(indent: int = 0)→ str
Returns the source code as a single string.

Parameters
indent – source code indentation count by spaces

black_code_str(line_length=88)→ str
Returns the source code as a single string formatted by Black

Parameters
line_length – max. source code line length

Raises
ImportError – Black is not available

import_str(indent: int = 0)→ str
Returns required imports as a single string.

Parameters
indent – source code indentation count by spaces

9.7. Add-ons 133

https://pypi.org/project/black/

ezdxf Documentation, Release 1.3.2

merge(code: Code, indent: int = 0)→ None
Add another Code object.

add_import(statement: str)→ None
Add import statement, identical import statements are merged together.

add_line(code: str, indent: int = 0)→ None
Add a single source code line without line ending \n.

add_lines(code: Iterable[str], indent: int = 0)→ None
Add multiple source code lines without line ending \n.

9.7.5 iterdxf

This add-on allows iterating over entities of the modelspace of really big (> 5GB) DXF files which do not fit into memory
by only loading one entity at the time. Only ASCII DXF files are supported.
The entities are regular DXFGraphic objects with access to all supported DXF attributes, this entities can be written to
new DXF files created by the IterDXF.export() method. The new add_foreign_entity() method allows
also to add this entities to new regular ezdxf drawings (except for the INSERT entity), but resources like linetype and
style are removed, only layer will be preserved but only with default attributes like color 7 and linetype CONTINUOUS.
The following example shows how to split a big DXF files into several separated DXF files which contains only LINE,
TEXT or POLYLINE entities.

from ezdxf.addons import iterdxf

doc = iterdxf.opendxf('big.dxf')
line_exporter = doc.export('line.dxf')
text_exporter = doc.export('text.dxf')
polyline_exporter = doc.export('polyline.dxf')
try:

for entity in doc.modelspace():
if entity.dxftype() == 'LINE':

line_exporter.write(entity)
elif entity.dxftype() == 'TEXT':

text_exporter.write(entity)
elif entity.dxftype() == 'POLYLINE':

polyline_exporter.write(entity)
finally:

line_exporter.close()
text_exporter.close()
polyline_exporter.close()
doc.close()

Supported DXF types:
3DFACE, ARC, ATTDEF, ATTRIB, CIRCLE, DIMENSION, ELLIPSE, HATCH, HELIX, IMAGE, INSERT,
LEADER, LINE, LWPOLYLINE, MESH, MLEADER, MLINE, MTEXT, POINT, POLYLINE, RAY, SHAPE,
SOLID, SPLINE, TEXT, TRACE, VERTEX, WIPEOUT, XLINE
Transfer simple entities to another DXF document, this works for some supported entities, except for entities with strong
dependencies to the original document like INSERT look at add_foreign_entity() for all supported types:

newdoc = ezdxf.new()
msp = newdoc.modelspace()
line is an entity from a big source file

(continues on next page)

134 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
msp.add_foreign_entity(line)
and so on ...
msp.add_foreign_entity(lwpolyline)
msp.add_foreign_entity(mesh)
msp.add_foreign_entity(polyface)

Transfer MESH and POLYFACE (dxftype for POLYFACE and POLYMESH is POLYLINE!) entities into a new DXF
document by the MeshTransformer class:

from ezdxf.render import MeshTransformer

mesh is MESH from a big source file
t = MeshTransformer.from_mesh(mesh)
create a new MESH entity from MeshTransformer
t.render(msp)

polyface is POLYFACE from a big source file
t = MeshTransformer.from_polyface(polyface)
create a new POLYMESH entity from MeshTransformer
t.render_polyface(msp)

Another way to import entities from a big source file into new DXF documents is to split the big file into smaller parts
and use the Importer add-on for a more safe entity import.
ezdxf.addons.iterdxf.opendxf(filename: Path | str, errors: str = 'surrogateescape')→ IterDXF

Open DXF file for iterating, be sure to open valid DXF files, no DXF structure checks will be applied.
Use this function to split up big DXF files as shown in the example above.

Parameters
• filename – DXF filename of a seekable DXF file.
• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• DXFStructureError – invalid or incomplete DXF file
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

ezdxf.addons.iterdxf.modelspace(filename: Path | str, types: Iterable[str] | None = None, errors: str =
'surrogateescape')→ Iterable[DXFGraphic]

Iterate over all modelspace entities as DXFGraphic objects of a seekable file.
Use this function to iterate “quick” over modelspace entities of a DXF file, filtering DXF types may speed up things
if many entity types will be skipped.

Parameters
• filename – filename of a seekable DXF file
• types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns
all supported types.

• errors – specify decoding error handler

9.7. Add-ons 135

ezdxf Documentation, Release 1.3.2

– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• DXFStructureError – invalid or incomplete DXF file
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

ezdxf.addons.iterdxf.single_pass_modelspace(stream: BinaryIO, types: Iterable[str] | None = None,
errors: str = 'surrogateescape')→
Iterable[DXFGraphic]

Iterate over all modelspace entities as DXFGraphic objects in a single pass.
Use this function to ‘quick’ iterate over modelspace entities of a not seekable binary DXF stream, filtering DXF
types may speed up things if many entity types will be skipped.

Parameters
• stream – (not seekable) binary DXF stream
• types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns
all supported types.

• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• DXFStructureError – Invalid or incomplete DXF file
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

class ezdxf.addons.iterdxf.IterDXF

export(name: Path | str)→ IterDXFWriter
Returns a companion object to export parts from the source DXF file into another DXF file, the new file
will have the same HEADER, CLASSES, TABLES, BLOCKS and OBJECTS sections, which guarantees all
necessary dependencies are present in the new file.

Parameters
name – filename, no special requirements

modelspace(types: Iterable[str] | None = None)→ Iterable[DXFGraphic]
Returns an iterator for all supportedDXF entities in themodelspace. These entities are regularDXFGraphic
objects but without a valid document assigned. It is not possible to add these entities to other ezdxf documents.
It is only possible to recreate the objects by factory functions base on attributes of the source entity. For
MESH, POLYMESH and POLYFACE it is possible to use the MeshTransformer class to render (recre-
ate) this objects as new entities in another document.

Parameters
types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns
all supported types.

136 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

close()

Safe closing source DXF file.
class ezdxf.addons.iterdxf.IterDXFWriter

write(entity: DXFGraphic)

Write a DXF entity from the source DXF file to the export file.
Don’t write entities from different documents than the source DXF file, dependencies and resources will not
match, maybe it will work once, but not in a reliable way for different DXF documents.

close()

Safe closing of exported DXF file. Copying of OBJECTS section happens only at closing the file, without
closing the new DXF file is invalid.

9.7.6 ODA File Converter Support

Use an installed ODA File Converter for converting between different versions of .dwg, .dxb and .dxf.

Warning: Execution of an external application is a big security issue! Especially when the path to the executable
can be altered.
To avoid this problem delete the ezdxf.addons.odafc.py module.

Install ODA File Converter

The ODA File Converter has to be installed by the user, the application is available for Windows XP, Windows 7 or later,
Mac OS X, and Linux in 32/64-bit RPM and DEB format.

AppImage Support

The option “unix_exec_path” defines an executable for Linux and macOS, this executable overrides the default command
ODAFileConverter. Assign an absolute path to the executable to that key and if the executable is not found the
add-on falls back to the ODAFileConverter command.
The option “unix_exec_path” also adds support for AppImages provided by the Open Design Alliance. Download the
AppImage file and store it in a folder of your choice (e.g. ~/Apps) and make the file executable:

chmod a+x ~/Apps/ODAFileConverter_QT5_lnxX64_8.3dll_23.9.AppImage

Add the absolute path as config option “unix_exec_path” to the “odafc-addon” section:

[odafc-addon]
win_exec_path = "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe"
unix_exec_path = "/home/<your user name>/Apps/ODAFileConverter_QT5_lnxX64_8.3dll_23.9.
↪→AppImage"

This overrides the default command ODAFileConverter and if the executable is not found the add-on falls back to
the ODAFileConverter command.
See also:
For more information about config files see section: Global Options Object

9.7. Add-ons 137

https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/guestfiles/oda_file_converter

ezdxf Documentation, Release 1.3.2

Suppressed GUI

On Windows the GUI of the ODA File Converter is suppressed, on Linux you may have to install the xvfb package to
prevent this, for macOS is no solution known.

Supported DXF and DWG Versions

ODA File Converter version strings, you can use any of this strings to specify a version, 'R..' and 'AC....' strings
will be automatically mapped to 'ACAD....' strings:

ODAFC ezdxf Version
ACAD9 not supported AC1004
ACAD10 not supported AC1006
ACAD12 R12 AC1009
ACAD13 R13 AC1012
ACAD14 R14 AC1014
ACAD2000 R2000 AC1015
ACAD2004 R2004 AC1018
ACAD2007 R2007 AC1021
ACAD2010 R2010 AC1024
ACAD2013 R2013 AC1027
ACAD2018 R2018 AC1032

Config

OnWindows the path to the ODAFileConverter.exe executable is stored in the config file (see ezdxf.options)
in the “odafc-addon” section as key “win_exec_path”, the default entry is:

[odafc-addon]
win_exec_path = "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe"
unix_exec_path =

On Linux and macOS the ODAFileConverter command is located by the shutil.which() function but can be
overridden since version 1.0 by the key “linux_exec_path”.

Usage

from ezdxf.addons import odafc

Load a DWG file
doc = odafc.readfile('my.dwg')

Use loaded document like any other ezdxf document
print(f'Document loaded as DXF version: {doc.dxfversion}.')
msp = doc.modelspace()
...

Export document as DWG file for AutoCAD R2018
odafc.export_dwg(doc, 'my_R2018.dwg', version='R2018')

138 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.addons.odafc.win_exec_path

Path to installed ODA File Converter executable on Windows systems, default is "C:\Program Files\ODA\
ODAFileConverter\ODAFileConverter.exe".

ezdxf.addons.odafc.unix_exec_path

Absolute path to a Linux or macOS executable if set, otherwise an empty string and the default command
ODAFileConverter is used.

ezdxf.addons.odafc.is_installed()→ bool
Returns True if the ODAFileConverter is installed.

ezdxf.addons.odafc.readfile(filename: str | PathLike, version: str | None = None, *, audit: bool = False)
→ Drawing | None

Uses an installed ODA File Converter to convert a DWG/DXB/DXF file into a temporary DXF file and load this
file by ezdxf.

Parameters
• filename – file to load by ODA File Converter
• version – load file as specific DXF version, by default the same version as the source file or
if not detectable the latest by ezdxf supported version.

• audit – audit source file before loading
Raises

• FileNotFoundError – source file not found
• odafc.UnknownODAFCError – conversion failed for unknown reasons
• odafc.UnsupportedVersion – invalid DWG version specified
• odafc.UnsupportedFileFormat – unsupported file extension
• odafc.ODAFCNotInstalledError – ODA File Converter not installed

ezdxf.addons.odafc.export_dwg(doc: Drawing, filename: str | PathLike, version: str | None = None, *,
audit: bool = False, replace: bool = False)→ None

Uses an installed ODA File Converter to export the DXF document doc as a DWG file.
A temporary DXF file will be created and converted to DWG by the ODA File Converter. If version is not specified
the DXF version of the source document is used.

Parameters
• doc – ezdxf DXF document as Drawing object
• filename – output DWG filename, the extension will be set to “.dwg”
• version – DWG version to export, by default the same version as the source document.
• audit – audit source file by ODA File Converter at exporting
• replace – replace existing DWG file if True

Raises
• FileExistsError – target file already exists, and argument replace is False
• FileNotFoundError – parent directory of target file does not exist
• odafc.UnknownODAFCError – exporting DWG failed for unknown reasons
• odafc.ODAFCNotInstalledError – ODA File Converter not installed

9.7. Add-ons 139

https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/guestfiles/oda_file_converter

ezdxf Documentation, Release 1.3.2

ezdxf.addons.odafc.convert(source: str | PathLike, dest: str | PathLike = '', *, version='R2018', audit=True,
replace=False)

Convert source file to dest file.
The file extension defines the target format e.g. convert("test.dxf", "Test.dwg") converts the source
file to a DWG file. If dest is an empty string the conversion depends on the source file format and is DXF to DWG
or DWG to DXF. To convert DXF to DXF an explicit destination filename is required: convert("r12.dxf",
"r2013.dxf", version="R2013")

Parameters
• source – source file
• dest – destination file, an empty string uses the source filename with the extension of the
target format e.g. “test.dxf” -> “test.dwg”

• version – output DXF/DWG version e.g. “ACAD2018”, “R2018”, “AC1032”
• audit – audit files
• replace – replace existing destination file

Raises
• FileNotFoundError – source file or destination folder does not exist
• FileExistsError – destination file already exists and argument replace is False
• odafc.UnsupportedVersion – invalid DXF version specified
• odafc.UnsupportedFileFormat – unsupported file extension
• odafc.UnknownODAFCError – conversion failed for unknown reasons
• odafc.ODAFCNotInstalledError – ODA File Converter not installed

9.7.7 R12 Export

Added in version 1.1.
Thismodule exports anyDXF file as a simple DXFR12 file. Many complex entities will be converted into DXF primitives.
This exporter is intended for creating a simple file format as an input format for other software such as laser cutters. In
order to get a file that can be edited well in a CAD application, the results of the ODA file converter are much better.

Usage

import ezdxf
from ezdxf.addons import r12export

doc = ezdxf.readfile("any.dxf")
r12export.saveas(doc, "r12.dxf")

140 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Converted Entity Types

LWPOLYLINE translated to POLYLINE
MESH translated to POLYLINE (PolyfaceMesh)
SPLINE flattened to POLYLINE
ELLIPSE flattened to POLYLINE
MTEXT exploded into DXF primitives
LEADER exploded into DXF primitives
MLEADER exploded into DXF primitives
MULTILEADER exploded into DXF primitives
MLINE exploded into DXF primitives
HATCH exploded into DXF primitives
MPOLYGON exploded into DXF primitives
ACAD_TABLE export of pre-rendered BLOCK content

For proxy- or unknown entities the available proxy graphic will be exported as DXF primitives.

Limitations

• Explosion of MTEXT into DXF primitives is not perfect
• Pattern rendering for complex HATCH entities has issues
• Solid fill rendering for complex HATCH entities has issues

ODA File Converter

The advantage of the r12export module is that the ODA file converter isn’t needed, but the ODA file converter will
produce a much better result:

from ezdxf.addons import odafc

odafc.convert("any.dxf", "r12.dxf", version="R12")

Functions

write Write a DXF document as DXF version R12 to a text
stream.

saveas Write a DXF document as DXF version R12 to a file.
convert Export and reload DXF document as DXF version R12.

ezdxf.addons.r12export.write(doc: Drawing, stream: TextIO, *, max_sagitta: float = MAX_SAGITTA)→
None

Write a DXF document as DXF version R12 to a text stream. The max_sagitta argument determines the accuracy
of the curve flatting for SPLINE and ELLIPSE entities.

Parameters
• doc – DXF document to export
• stream – output stream, use doc.encoding as encoding

9.7. Add-ons 141

ezdxf Documentation, Release 1.3.2

• max_sagitta – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.

ezdxf.addons.r12export.saveas(doc: Drawing, filepath: str | PathLike, *, max_sagitta: float =
MAX_SAGITTA)→ None

Write a DXF document as DXF version R12 to a file. The max_sagitta argument determines the accuracy of the
curve flatting for SPLINE and ELLIPSE entities.

Parameters
• doc – DXF document to export
• filepath – output filename
• max_sagitta – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.

ezdxf.addons.r12export.convert(doc: Drawing, *, max_sagitta: float = MAX_SAGITTA)→ Drawing

Export and reload DXF document as DXF version R12.
Writes theDXF document into a temporary file at the file-system and reloads this file by theezdxf.readfile()
function.

9.7.8 r12writer

The fast file/stream writer creates simple DXF R12 drawings with just an ENTITIES section. The HEADER, TABLES
and BLOCKS sections are not present except FIXED-TABLES are written. Only LINE, CIRCLE, ARC, TEXT, POINT,
SOLID, 3DFACE and POLYLINE entities are supported. FIXED-TABLES is a predefined TABLES section, which will
be written, if the init argument fixed_tables of R12FastStreamWriter is True.
The R12FastStreamWriter writes the DXF entities as strings direct to the stream without creating an in-memory
drawing and therefore the processing is very fast.
Because of the lack of a BLOCKS section, BLOCK/INSERT can not be used. Layers can be used, but this layers have a
default setting color =7 (black/white) and linetype ='Continuous'. If writing the FIXED-TABLES, some predefined
text styles and line types are available, else text style is always 'STANDARD' and line type is always 'ByLayer'.
If using FIXED-TABLES, following predefined line types are available:

• CONTINUOUS
• CENTER ____ _ ____ _ ____ _ ____ _ ____ _ ____

• CENTERX2 ________ __ ________ __ ________

• CENTER2 ____ _ ____ _ ____ _ ____ _ ____

• DASHED __ __ __ __ __ __ __ __ __ __ __ __ __ _

• DASHEDX2 ____ ____ ____ ____ ____ ____

• DASHED2 _ _ _ _ _ _ _ _ _ _ _ _ _ _

• PHANTOM ______ __ __ ______ __ __ ______

• PHANTOMX2 ____________ ____ ____ ____________

• PHANTOM2 ___ _ _ ___ _ _ ___ _ _ ___ _ _ ___

• DASHDOT __ . __ . __ . __ . __ . __ . __ . __

• DASHDOTX2 ____ . ____ . ____ . ____

• DASHDOT2 _ . _ . _ . _ . _ . _ . _ . _

142 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• DOT

• DOTX2

• DOT2

• DIVIDE __ . . __ . . __ . . __ . . __ . . __

• DIVIDEX2 ____ . . ____ . . ____ . . ____

• DIVIDE2 _ . _ . _ . _ . _ . _ . _ . _

If using FIXED-TABLES, following predefined text styles are available:
• OpenSans
• OpenSansCondensed-Light

Tutorial

A simple example with different DXF entities:

from random import random
from ezdxf.addons import r12writer

with r12writer("quick_and_dirty_dxf_r12.dxf") as dxf:
dxf.add_line((0, 0), (17, 23))
dxf.add_circle((0, 0), radius=2)
dxf.add_arc((0, 0), radius=3, start=0, end=175)
dxf.add_solid([(0, 0), (1, 0), (0, 1), (1, 1)])
dxf.add_point((1.5, 1.5))

2d polyline, new in v0.12
dxf.add_polyline_2d([(5, 5), (7, 3), (7, 6)])

2d polyline with bulge value, new in v0.12
dxf.add_polyline_2d([(5, 5), (7, 3, 0.5), (7, 6)], format='xyb')

3d polyline only, changed in v0.12
dxf.add_polyline([(4, 3, 2), (8, 5, 0), (2, 4, 9)])

dxf.add_text("test the text entity", align="MIDDLE_CENTER")

A simple example of writing really many entities in a short time:

from random import random
from ezdxf.addons import r12writer

MAX_X_COORD = 1000.0
MAX_Y_COORD = 1000.0
CIRCLE_COUNT = 1000000

with r12writer("many_circles.dxf") as dxf:
for i in range(CIRCLE_COUNT):

dxf.add_circle((MAX_X_COORD*random(), MAX_Y_COORD*random()), radius=2)

Show all available line types:

9.7. Add-ons 143

ezdxf Documentation, Release 1.3.2

import ezdxf

LINETYPES = [
'CONTINUOUS', 'CENTER', 'CENTERX2', 'CENTER2',
'DASHED', 'DASHEDX2', 'DASHED2', 'PHANTOM', 'PHANTOMX2',
'PHANTOM2', 'DASHDOT', 'DASHDOTX2', 'DASHDOT2', 'DOT',
'DOTX2', 'DOT2', 'DIVIDE', 'DIVIDEX2', 'DIVIDE2',

]

with r12writer('r12_linetypes.dxf', fixed_tables=True) as dxf:
for n, ltype in enumerate(LINETYPES):

dxf.add_line((0, n), (10, n), linetype=ltype)
dxf.add_text(ltype, (0, n+0.1), height=0.25, style='OpenSansCondensed-Light')

Reference

ezdxf.addons.r12writer.r12writer(stream: TextIO | BinaryIO | str, fixed_tables=False, fmt='asc')→
R12FastStreamWriter

Context manager for writing DXF entities to a stream/file. stream can be any file like object with a write()
method or just a string for writing DXF entities to the file system. If fixed_tables is True, a standard TABLES
section is written in front of the ENTITIES section and some predefined text styles and line types can be used.
Set argument fmt to “asc” to write ASCII DXF file (default) or “bin” to write Binary DXF files. ASCII DXF require
a TextIO stream and Binary DXF require a BinaryIO stream.

class ezdxf.addons.r12writer.R12FastStreamWriter(stream: TextIO, fixed_tables=False)
Fast stream writer to create simple DXF R12 drawings.

Parameters
• stream – a file like object with a write() method.
• fixed_tables – if fixed_tables is True, a standard TABLES section is written in front of
the ENTITIES section and some predefined text styles and line types can be used.

close()→ None
Writes the DXF tail. Call is not necessary when using the context manager r12writer().

add_line(start: Sequence[float], end: Sequence[float], layer: str = '0', color: int | None = None, linetype: str |
None = None)→ None

Add a LINE entity from start to end.
Parameters

• start – start vertex as (x, y[, z]) tuple
• end – end vertex as as (x, y[, z]) tuple
• layer – layer name as string, without a layer definition the assigned color = 7 (black/white)
and line type is 'Continuous'.

• color – color as AutoCAD Color Index (ACI) in the range from 0 to 256, 0 is ByBlock and
256 is ByLayer, default is ByLayer which is always color = 7 (black/white) without a layer
definition.

• linetype – line type as string, if FIXED-TABLES are written some predefined line types
are available, else line type is always ByLayer, which is always 'Continuous' without a
LAYERS table.

144 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_circle(center: Sequence[float], radius: float, layer: str = '0', color: int | None = None, linetype: str |
None = None)→ None

Add a CIRCLE entity.
Parameters

• center – circle center point as (x, y) tuple
• radius – circle radius as float
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_arc(center: Sequence[float], radius: float, start: float = 0, end: float = 360, layer: str = '0', color: int |
None = None, linetype: str | None = None)→ None

Add an ARC entity. The arc goes counter-clockwise from start angle to end angle.
Parameters

• center – arc center point as (x, y) tuple
• radius – arc radius as float
• start – arc start angle in degrees as float
• end – arc end angle in degrees as float
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_point(location: Sequence[float], layer: str = '0', color: int | None = None, linetype: str | None = None)→
None

Add a POINT entity.
Parameters

• location – point location as (x, y [,z]) tuple
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_3dface(vertices: Iterable[Sequence[float]], invisible: int = 0, layer: str = '0', color: int | None = None,
linetype: str | None = None)→ None

Add a 3DFACE entity. 3DFACE is a spatial area with 3 or 4 vertices, all vertices have to be in the same
plane.

Parameters
• vertices – iterable of 3 or 4 (x, y, z) vertices.
• invisible – bit coded flag to define the invisible edges,
1. edge = 1
2. edge = 2
3. edge = 4

9.7. Add-ons 145

ezdxf Documentation, Release 1.3.2

4. edge = 8
Add edge values to set multiple edges invisible, 1. edge + 3. edge = 1 + 4 = 5, all edges = 15

• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_solid(vertices: Iterable[Sequence[float]], layer: str = '0', color: int | None = None, linetype: str | None =
None)→ None

Add a SOLID entity. SOLID is a solid filled area with 3 or 4 edges and SOLID is a 2D entity.
Parameters

• vertices – iterable of 3 or 4 (x, y[, z]) tuples, z-axis will be ignored.
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_polyline_2d(points: Iterable[Sequence], format: str = 'xy', closed: bool = False, start_width: float = 0,
end_width: float = 0, layer: str = '0', color: int | None = None, linetype: str | None =
None)→ None

Add a 2D POLYLINE entity with start width, end width and bulge value support.
Format codes:

x x-coordinate
y y-coordinate
s start width
e end width
b bulge value
v (x, y) tuple (z-axis is ignored)

Parameters
• points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple, value order according
to the format string, unset values default to 0

• format – format: format string, default is 'xy'
• closed – True creates a closed polyline
• start_width – default start width, default is 0
• end_width – default end width, default is 0
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_polyline(vertices: Iterable[Sequence[float]], closed: bool = False, layer: str = '0', color: int | None =
None, linetype: str | None = None)→ None

Add a 3D POLYLINE entity.
Parameters

146 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• vertices – iterable of (x, y[, z]) tuples, z-axis is 0 by default
• closed – True creates a closed polyline
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_polyface(vertices: Iterable[Sequence[float]], faces: Iterable[Sequence[int]], layer: str = '0', color: int |
None = None, linetype: str | None = None)→ None

Add a POLYFACE entity. The POLYFACE entity supports only faces of maximum 4 vertices, more indices
will be ignored. A simple square would be:

v0 = (0, 0, 0)
v1 = (1, 0, 0)
v2 = (1, 1, 0)
v3 = (0, 1, 0)
dxf.add_polyface(vertices=[v0, v1, v2, v3], faces=[(0, 1, 2, 3)])

All 3D form functions of the ezdxf.render.forms module return MeshBuilder objects, which
provide the required vertex and face lists.
See sphere example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py

Parameters
• vertices – iterable of (x, y, z) tuples
• faces – iterable of 3 or 4 vertex indices, indices have to be 0-based
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_polymesh(vertices: Iterable[Sequence[float]], size: tuple[int, int], closed=(False, False), layer: str = '0',
color: int | None = None, linetype: str | None = None)→ None

Add a POLYMESH entity. A POLYMESH is a mesh of m rows and n columns, each mesh vertex has its
own x-, y- and z coordinates. The mesh can be closed in m- and/or n-direction. The vertices have to be in
column order: (m0, n0), (m0, n1), (m0, n2), (m1, n0), (m1, n1), (m1, n2), …
See example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py

Parameters
• vertices – iterable of (x, y, z) tuples, in column order
• size – mesh dimension as (m, n)-tuple, requirement: len(vertices) == m*n

• closed – (m_closed, n_closed) tuple, for closed mesh in m and/or n direction
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()

add_text(text: str, insert: Sequence[float] = (0, 0), height: float = 1.0, width: float = 1.0, align: str = 'LEFT',
rotation: float = 0.0, oblique: float = 0.0, style: str = 'STANDARD', layer: str = '0', color: int | None
= None)→ None

Add a one line TEXT entity.

9.7. Add-ons 147

https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py
https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py

ezdxf Documentation, Release 1.3.2

Parameters
• text – the text as string
• insert – insert location as (x, y) tuple
• height – text height in drawing units
• width – text width as factor
• align – text alignment, see table below
• rotation – text rotation in degrees as float
• oblique – oblique in degrees as float, vertical = 0 (default)
• style – text style name as string, if FIXED-TABLES are written some predefined text
styles are available, else text style is always 'STANDARD'.

• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()

Vert/Horiz Left Center Right
Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

The special alignments ALIGNED and FIT are not available.

9.7.9 text2path

Tools to convert text strings and text based DXF entities into outer- and inner linear paths as Path objects. At the moment
only the TEXT and the ATTRIB entity can be converted into paths and hatches.
Added in version 1.1: Text rendering is done by the fontTools package, which is a hard dependency of ezdxf. Support
for stroke fonts, these are the basic vector fonts included in CAD applications, like .shx, .shp or .lff fonts was added but
these fonts cannot be rendered as HATCH entities.
The required font files are not included with ezdxf as they are copyrighted or, in the case of the LibreCAD font format,
licensed under the “GPL v2 and later”. Set the paths to such stroke fonts in the config file, see option ezdxf.options.
support_dirs:

[core]
support_dirs =

"C:\Program Files\Bricsys\BricsCAD V23 en_US\Fonts",
~/shx_fonts,
~/shp_fonts,
~/lff_fonts,

Don’t expect a 100% match compared to CAD applications but the results with fontTools are better than the previous
Matplotlib renderings.

148 Chapter 9. Contents

https://pypi.org/project/fonttools/

ezdxf Documentation, Release 1.3.2

Text Alignments

The text alignments are enums of type ezdxf.enums.TextEntityAlignment

Vertical Left Center Right
Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

The vertical middle alignments (MIDDLE_XXX), center the text vertically in the middle of the uppercase letter “X” (cap
height).
Special alignments, where the horizontal alignment is always in the center of the text:

• ALIGNED: text is scaled to match the given length, scales x- and y-direction by the same factor.
• FIT: text is scaled to match the given length, but scales only in x-direction.
• MIDDLE: insertion point is the center of the total height (cap height + descender height) without scaling, the length
argument is ignored.

Font Face Definition

A font face is defined by the Matplotlib compatible FontFace object by font-family, font-style,
font-stretch and font-weight.
See also:

• Font Anatomy

• Font Properties

String Functions

ezdxf.addons.text2path.make_path_from_str(s: str, font: FontFace, size: float = 1.0,
align=TextEntityAlignment.LEFT , length: float = 0, m:
Matrix44 = None)→ Path

Convert a single line string s into a Multi-Path object. The text size is the height of the uppercase letter “X” (cap
height). The paths are aligned about the insertion point at (0, 0). BASELINE means the bottom of the letter “X”.

Parameters
• s – text to convert
• font – font face definition as FontFace object
• size – text size (cap height) in drawing units
• align – alignment as ezdxf.enums.TextEntityAlignment, default is LEFT
• length – target length for the ALIGNED and FIT alignments
• m – transformation Matrix44

9.7. Add-ons 149

ezdxf Documentation, Release 1.3.2

ezdxf.addons.text2path.make_paths_from_str(s: str, font: FontFace, size: float = 1.0,
align=TextEntityAlignment.LEFT , length: float = 0,
m: Matrix44 = None)→ list[Path]

Convert a single line string s into a list of Path objects. All paths are returned as a list of Single-Path objects. The
text size is the height of the uppercase letter “X” (cap height). The paths are aligned about the insertion point at (0,
0). BASELINE means the bottom of the letter “X”.

Parameters
• s – text to convert
• font – font face definition as FontFace object
• size – text size (cap height) in drawing units
• align – alignment as ezdxf.enums.TextEntityAlignment, default is LEFT
• length – target length for the ALIGNED and FIT alignments
• m – transformation Matrix44

ezdxf.addons.text2path.make_hatches_from_str(s: str, font: FontFace, size: float = 1.0,
align=TextEntityAlignment.LEFT , length: float =
0, dxfattribs=None, m: Matrix44 = None)→
list[Hatch]

Convert a single line string s into a list of virtual Hatch entities. The text size is the height of the uppercase letter
“X” (cap height). The paths are aligned about the insertion point at (0, 0). The HATCH entities are aligned to this
insertion point. BASELINE means the bottom of the letter “X”.

Important: Returns an empty list for .shx, .shp and .lff fonts a.k.a. stroke fonts.

Parameters
• s – text to convert
• font – font face definition as FontFace object
• size – text size (cap height) in drawing units
• align – alignment as ezdxf.enums.TextEntityAlignment, default is LEFT
• length – target length for the ALIGNED and FIT alignments
• dxfattribs – additional DXF attributes
• m – transformation Matrix44

Entity Functions

class ezdxf.addons.text2path.Kind(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

The Kind enum defines the DXF types to create as bit flags, e.g. 1+2 to get HATCHES as filling and SPLINES
and POLYLINES as outline:

150 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Int Enum Description
1 HATCHES Hatch entities as filling
2 SPLINES Spline and 3D Polyline entities as outline
4 LWPOLYLINES LWPolyline entities as approximated (flattened) outline

ezdxf.addons.text2path.virtual_entities(entity: Text | Attrib, kind: int = Kind.HATCHES)→
EntityQuery

Convert the text content of DXF entities TEXT and ATTRIB into virtual SPLINE and 3D POLYLINE entities or
approximated LWPOLYLINE entities as outlines, or as HATCH entities as fillings.
Returns the virtual DXF entities as an EntityQuery object.

Parameters
• entity – TEXT or ATTRIB entity
• kind – kind of entities to create as bit flags, see enum Kind

ezdxf.addons.text2path.explode(entity: Text | Attrib, kind: int = Kind.HATCHES, target=None)→
EntityQuery

Explode the text entity into virtual entities, see virtual_entities(). The source entity will be destroyed.
The target layout is given by the target argument, if target is None, the target layout is the source layout of the text
entity.
Returns the created DXF entities as an EntityQuery object.

Parameters
• entity – TEXT or ATTRIB entity to explode
• kind – kind of entities to create as bit flags, see enum Kind

• target – target layout for new created DXF entities, None for the same layout as the source
entity.

ezdxf.addons.text2path.make_path_from_entity(entity: Text | Attrib)→ Path
Convert text content from DXF entities TEXT and ATTRIB into a Multi-Path object. The paths are located at the
location of the source entity.

ezdxf.addons.text2path.make_paths_from_entity(entity: Text | Attrib)→ list[Path]
Convert text content from DXF entities TEXT and ATTRIB into a list of Path objects. All paths are returned as
a list of Single-Path objects. The paths are located at the location of the source entity.

9.7.10 MTextExplode

This tool is meant to explode MTEXT entities into single line TEXT entities by replicating the MTEXT layout as close
as possible. This tool requires the optional Matplotlib package to create usable results, nonetheless it also works without
Matplotlib, but then uses a mono-spaced replacement font for text size measuring which leads to very inaccurate results.
The supported MTEXT features are:

• changing text color
• text strokes: underline, overline and strike through
• changing text size, width and oblique
• changing font faces

9.7. Add-ons 151

ezdxf Documentation, Release 1.3.2

• stacked text (fractions)
• multi-column support
• background color
• text frame

The tool requires an initialized DXF document io implement all these features by creating additional text styles. When
exploding multiple MTEXT entities, they can share this new text styles. Call the MTextExplode.finalize()
method just once after all MTEXT entities are processed to create the required text styles, or use MTextExplode as
context manager by using the with statement, see examples below.
There are also many limitations:

• A 100% accurate result cannot be achieved.
• Character tracking is not supported.
• Tabulator stops have only limited support for LEFT and JUSTIFIED aligned paragraphs to support numbered and
bullet lists. An excessive use of tabs will lead to incorrect results.

• The DISTRIBUTED alignment will be replaced by the JUSTIFIED alignment.
• Text flow is always “left to right”.
• The line spacing mostly corresponds to the “EXACT” style, except for stacked text (fractions), which corresponds
more to the “AT LEAST” style, but not precisely. This behavior maybe will improve in the future.

• FIELDS are not evaluated by ezdxf.
class ezdxf.addons.MTextExplode(layout, doc=None, spacing_factor=1.0)

The MTextExplode class is a tool to disassemble MTEXT entities into single line TEXT entities and additional
LINE entities if required to emulate strokes.
The layout argument defines the target layout for “exploded” parts of the MTEXT entity. Use argument doc if
the target layout has no DXF document assigned like virtual layouts. The spacing_factor argument is an advanced
tuning parameter to scale the size of space chars.
explode(mtext: MText, destroy=True)

Explode mtext and destroy the source entity if argument destroy is True.
finalize()

Create required text styles. This method is called automatically if the class is used as context manager. This
method does not work with virtual layouts if no document was assigned at initialization!

Example to explode all MTEXT entities in the DXF file “mtext.dxf”:

import ezdxf
from ezdxf.addons import MTextExplode

doc = ezdxf.readfile("mtext.dxf")
msp = doc.modelspace()
with MTextExplode(msp) as xpl:

for mtext in msp.query("MTEXT"):
xpl.explode(mtext)

doc.saveas("xpl_mtext.dxf")

Explode all MTEXT entities into the block “EXPLODE”:

152 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

import ezdxf
from ezdxf.addons import MTextExplode

doc = ezdxf.readfile("mtext.dxf")
msp = doc.modelspace()
blk = doc.blocks.new("EXPLODE")
with MTextExplode(blk) as xpl:

for mtext in msp.query("MTEXT"):
xpl.explode(mtext)

msp.add_block_ref("EXPLODE", (0, 0))
doc.saveas("xpl_into_block.dxf")

9.7.11 HPGL/2 Converter Add-on

Added in version 1.1.
The hpgl2 add-on provides tools to process and convert HPGL/2 plot files.

What are HPGL/2 Plot Files?

The Hewlett-Packard Graphics Language (HPGL) is a vector graphics language originally developed by Hewlett-Packard
in the 1970s. HPGL is widely used for controlling pen plotters and other output devices, and it has become a de facto
standard for communicating between computers and output devices in the field of computer-aided design (CAD) and
drafting.
HPGL is a command-driven language that consists of a series of commands that control the movement of the plotter pen,
the selection of pens and other output parameters, and the drawing of geometric shapes such as lines, arcs, circles, and
text. The language is interpreted by the plotter or other output device and translated into physical pen movements on the
drawing surface.
HPGL has evolved over the years, and various extensions have been added to support more complex graphics operations
and to improve compatibility with other graphics languages. Despite the development of newer graphics languages and file
formats, HPGL remains a widely used format for vector-based graphics, particularly in the engineering and architectural
fields.

The Goal of This Add-on

An HPGL/2 plot file contains all of the data generated by a CAD application that has been sent to a plotter to print an
engineering drawing. In the past, the only way to access this data was to view it on a plotter or an specialized application,
which could be expensive and impractical for many people. However, this module provides functions and classes to
convert HPGL/2 plot files into modern vector graphic formats such as PDF and SVG and of course DXF, allowing the
data to be viewed and processed using a wide range of software tools.

Important: The Python module PyMuPDF is required for the PDF export: https://pypi.org/project/PyMuPDF/

The Plotter class in the hpgl2 add-on supports only the most commonly used commands of HPGL/2. This is because
many CAD applications use only a small subset of HPGL/2 to create their output, typically consisting of polylines and
filled polygons. For more information on the supported commands, please refer to the documentation for the Plotter
class.
To use the HPGL2 add-on, the entry point is the ezdxf.addons.hpgl2.api module. This module contains the
public interface of the add-on and should be imported in the following way:

9.7. Add-ons 153

https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/SVG
https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.3.2

from ezdxf.addons.hpgl2 import api as hpgl2

with open("hpgl2.plt", "rb") as fp:
data = fp.read()

doc = hpgl2.to_dxf(data, color_mode=hpgl2.ColorMode.ACI)
doc.saveas("hpgl2_as.dxf")

High Level Functions

to_dxf Exports the HPGL/2 commands of the byte stream b as a
DXF document.

to_svg Exports the HPGL/2 commands of the byte stream b as
SVG string.

to_pdf Exports the HPGL/2 commands of the byte stream b as
PDF data.

to_pixmap Exports the HPGL/2 commands of the byte stream b as
pixel image.

ezdxf.addons.hpgl2.api.to_dxf(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, color_mode=ColorMode.RGB, merge_control: MergeControl =
MergeControl.AUTO)→ Drawing

Exports the HPGL/2 commands of the byte stream b as a DXF document.
The page content is created at the origin of the modelspace and 1 drawing unit is 1 plot unit (1 plu = 0.025mm)
unless scaling values are provided.
The content of HPGL files is intended to be plotted on white paper, therefore a white filling will be added as
background in color mode RGB.
All entities are assigned to a layer according to the pen number with the name scheme PEN_<###>. In order to be
able to process the file better, it is also possible to assign the ACI color by layer by setting the argument color_mode
to ColorMode.ACI, but then the RGB color is lost because the RGB color has always the higher priority over
the ACI.
The first paperspace layout “Layout1” of the DXF document is set up to print the entire modelspace on one sheet,
the size of the page is the size of the original plot file in millimeters.
HPGL/2’s merge control works at the pixel level and cannot be replicated by DXF, but to prevent fillings from
obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also MergeControl enum.

Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• color_mode – the color mode controls how color values are assigned to DXF entities, see
ColorMode

• merge_control – how to order filled polygons, see MergeControl
Returns: DXF document as instance of class Drawing

154 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.addons.hpgl2.api.to_svg(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, merge_control=MergeControl.AUTO)→ str

Exports the HPGL/2 commands of the byte stream b as SVG string.
The plot units are mapped 1:1 to viewBox units and the size of image is the size of the original plot file in
millimeters.
HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to prevent fillings
from obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also MergeControl enum.

Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• merge_control – how to order filled polygons, see MergeControl

Returns: SVG content as str
ezdxf.addons.hpgl2.api.to_pdf(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =

False, merge_control=MergeControl.AUTO)→ bytes
Exports the HPGL/2 commands of the byte stream b as PDF data.
The plot units (1 plu = 0.025mm) are converted to PDF units (1/72 inch) so the image has the size of the original
plot file.
HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to prevent fillings
from obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also MergeControl enum.
Python module PyMuPDF is required: https://pypi.org/project/PyMuPDF/

Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• merge_control – how to order filled polygons, see MergeControl

Returns: PDF content as bytes
ezdxf.addons.hpgl2.api.to_pixmap(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =

False, merge_control=MergeControl.AUTO, fmt: str = 'png', dpi: int =
96)→ bytes

Exports the HPGL/2 commands of the byte stream b as pixel image.
Supported image formats:

png Portable Network Graphics
ppm Portable Pixmap
pbm Portable Bitmap

9.7. Add-ons 155

https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.3.2

The plot units (1 plu = 0.025mm) are converted to dot per inch (dpi) so the image has the size of the original plot
file.
HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to prevent fillings
from obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also MergeControl enum.
Python module PyMuPDF is required: https://pypi.org/project/PyMuPDF/

Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• merge_control – how to order filled polygons, see MergeControl
• fmt – image format
• dpi – output resolution in dots per inch

Returns: image content as bytes
class ezdxf.addons.hpgl2.api.ColorMode

The color mode controls how color values are assigned to DXF entities
ACI

Use the pen number as AutoCAD Color Index (ACI) for DXF entities, ignores the RGB color values
RGB

Use the pen number as AutoCAD Color Index (ACI) but also set the RGB color for DXF entities, RGB color
values have always higher priority than the ACI when displaying DXF content.

class ezdxf.addons.hpgl2.api.MergeControl

Merge control enumeration.
NONE

export filled polygons in print order
LUMINANCE

sort filled polygons by luminance
AUTO

guess best order of filled polygons

The Low Level Functions and Classes

ezdxf.addons.hpgl2.api.hpgl2_commands(s: bytes)→ list[Command]
Low level plot file parser, extracts the HPGL/2 from the byte stream b.

Important: This parser expects the “Enter HPGL/2 mode” escape sequence to recognize HPGL/2 commands.
The sequence looks like this: [ESC]%1B, multiple variants of this sequence are supported.

156 Chapter 9. Contents

https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.3.2

The HPGL/2 commands are often mixed with the Printer Command Language (PCL) and/or the Raster Transfer Lan-
guage (RTL) commands in a single plot file.
Some plot files that contain pure HPGL/2 code do not contain the escape sequence “Enter HPGL/2 mode”, without this
sequence the HPGL/2 parser cannot recognize the beginning of the HPGL/2 code. Add the ENTER_HPGL2_MODE
sequence in front of the bytes stream to switch on the HPGL/2 manually, regardless of whether the file is an HPGL/2 plot
file or not, so be careful:

commands = hpgl2_commands(hpgl2.ENTER_HPGL2_MODE + data)

class ezdxf.addons.hpgl2.api.Interpreter(plotter: Plotter)
The Interpreter is the frontend for the Plotter class. The run() methods interprets the low level HPGL
commands from the hpgl2_commands() parser and sends the commands to the virtual plotter device, which
sends his output to a low level Backend class.
Most CAD application send a very restricted subset of commands to plotters, mostly just polylines and filled poly-
gons. Implementing the whole HPGL/2 command set is not worth the effort - unless reality proofs otherwise.
Not implemented commands:

• the whole character group - text is send as filled polygons or polylines
• configuration group: IN, DF, RO, IW - the plotter is initialized by creating a new plotter and page rotation is
handled by the add-on itself

• polygon group: EA, ER, EW, FA, RR, WG, the rectangle and wedge commands
• line and fill attributes group: LA, RF, SM, SV, TR, UL, WU, linetypes and hatch patterns are decomposed
into simple lines by CAD applications

Parameters
plotter – virtual Plotter device

errors

List of error messages occurred during the interpretation of the HPGL/2 commands.
not_implemented_commands

List of all unsupported/ignored commands from the input stream.
run(commands: list[Command])→ None

Interprets the low level HPGL commands from the hpgl2_commands() parser and sends the commands
to the virtual plotter device.

disable_commands(commands: Iterable[str])→ None
Disable commands manually, like the scaling command [“SC”, “IP”, “IR”]. This is a feature for experts,
because disabling commands which changes the pen location may distort or destroy the plotter output.

class ezdxf.addons.hpgl2.api.Plotter(backend: Backend)

The Plotter class represents a virtual plotter device.
The HPGL/2 commands send by the Interpreter are processed into simple polylines and filled polygons and
send to low level Backend.
HPGL/2 uses a units system called “Plot Units”:

• 1 plot unit (plu) = 0.025mm
• 40 plu = 1 mm
• 1016 plu = 1 inch

9.7. Add-ons 157

https://en.wikipedia.org/wiki/Printer_Command_Language
https://en.wikipedia.org/wiki/Hewlett-Packard_Raster_Transfer_Language

ezdxf Documentation, Release 1.3.2

The Plotter device does not support font rendering and page rotation (RO). The scaling commands IP, RP, SC are
supported.

Recorder

class ezdxf.addons.hpgl2.api.Recorder

The Recorder class records the output of the Plotter class.
All input coordinates are page coordinates:

• 1 plot unit (plu) = 0.025mm
• 40 plu = 1 mm
• 1016 plu = 1 inch

player()→ Player
Returns a Player instance with the original recordings. Make a copy of this player to protect the original
recordings from being modified:

safe_player = recorder.player().copy()

draw_polyline(properties: Properties, points: Sequence[Vec2])→ None
Draws a polyline from a sequence points. The input coordinates are page coordinates in plot units. The points
sequence can contain 0 or more points!

Parameters
• properties – display Properties for the polyline
• points – sequence of ezdxf.math.Vec2 instances

draw_paths(properties: Properties, paths: Sequence[Path], filled: bool)→ None
Draws filled or outline paths from the sequence of paths. The input coordinates are page coordinates in plot
units. The paths sequence can contain 0 or more single Path instances. Draws outline paths if Proper-
ties.FillType is NONE and filled paths otherwise.

Parameters
• properties – display Properties for the filled polygon
• paths – sequence of single ezdxf.path.Path instances
• filled – draw filled paths if True otherwise outline paths

Player

class ezdxf.addons.hpgl2.api.Player(records: list[DataRecord], properties: dict[int, Properties])
This class replays the recordings of the Recorder class on another backend. The class can modify the recorded
output.
copy()→ Self

Returns a new Player instance with a copy of recordings.
recordings()→ Iterator[tuple[RecordType, Properties, Any]]

Yields all recordings as (RecordType, Properties, Data) tuples.
The content of the Data field is determined by the enum RecordType:
• RecordType.POLYLINE returns a NumpyPoints2d instance

158 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• RecordType.FILLED_POLYGON returns a tuple of NumpyPath2d instances
replay(backend: Backend)→ None

Replay the recording on another backend.
bbox()→ BoundingBox2d

Returns the bounding box of all recorded polylines and polygons as BoundingBox2d.
transform(m: Matrix44)→ None

Transforms the recordings by a transformation matrix m of type Matrix44.
sort_filled_paths()→ None

Sort filled paths by descending luminance (from light to dark).
This also changes the plot order in the way that all filled paths are plotted before polylines and outline paths.

Properties

class ezdxf.addons.hpgl2.properties.Properties

Consolidated display properties.
pen_index

pen index as int
pen_color

pen color as RGB tuple
pen_width

pen width in millimeters (float)
fill_type

FillType of filled polygons
fill_method

FillMethod of filled polygons
fill_hatch_line_angle

fill hatch line angle in degrees
fill_hatch_line_spacing

fill hatch line distance in plotter units
fill_shading_density

fill shading density in percent from 0 to 100.
resolve_pen_color()→ RGB

Returns the final RGB pen color.
resolve_fill_color()→ RGB

Returns the final RGB fill color.
class ezdxf.addons.hpgl2.properties.FillType(value, names=_not_given, *values, module=None,

qualname=None, type=None, start=1,
boundary=None)

Fill type enumeration.
NONE

9.7. Add-ons 159

ezdxf Documentation, Release 1.3.2

SOLID

HATCHING

CROSS_HATCHING

SHADING

class ezdxf.addons.hpgl2.properties.FillMethod(value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

Fill method enumeration.
EVEN_ODD

NONE_ZERO_WINDING

Exceptions

class ezdxf.addons.hpgl2.api.Hpgl2Error

Base exception for the hpgl2 add-on.
class ezdxf.addons.hpgl2.api.Hpgl2DataNotFound

No HPGL/2 data was found, maybe the “Enter HPGL/2 mode” escape sequence is missing.
class ezdxf.addons.hpgl2.api.EmptyDrawing

The HPGL/2 commands do not produce any content.

9.7.12 PyCSG

Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersection to
combine 3D solids. This library implements CSG operations on meshes elegantly and concisely using BSP trees, and is
meant to serve as an easily understandable implementation of the algorithm. All edge cases involving overlapping coplanar
polygons in both solids are correctly handled.
Example for usage:

import ezdxf
from ezdxf.render.forms import cube, cylinder_2p
from ezdxf.addons.pycsg import CSG

create new DXF document
doc = ezdxf.new()
msp = doc.modelspace()

create same geometric primitives as MeshTransformer() objects
cube1 = cube()
cylinder1 = cylinder_2p(count=32, base_center=(0, -1, 0), top_center=(0, 1, 0),␣
↪→radius=.25)

build solid union
union = CSG(cube1) + CSG(cylinder1)
convert to mesh and render mesh to modelspace
union.mesh().render_mesh(msp, dxfattribs={'color': 1})

(continues on next page)

160 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
build solid difference
difference = CSG(cube1) - CSG(cylinder1)
convert to mesh, translate mesh and render mesh to modelspace
difference.mesh().translate(1.5).render_mesh(msp, dxfattribs={'color': 3})

build solid intersection
intersection = CSG(cube1) * CSG(cylinder1)
convert to mesh, translate mesh and render mesh to modelspace
intersection.mesh().translate(2.75).render_mesh(msp, dxfattribs={'color': 5})

doc.saveas('csg.dxf')

This CSG kernel supports only meshes as MeshBuilder objects, which can be created from and converted to DXF
Mesh entities.
This CSG kernel is not compatible with ACIS objects like Solid3d, Body, Surface or Region.

Note: This is a pure Python implementation, don’t expect great performance and the implementation is based on an
unbalanced BSP tree, so in the case of RecursionError, increase the recursion limit:

import sys

actual_limit = sys.getrecursionlimit()
default is 1000, increasing too much may cause a seg fault
sys.setrecursionlimit(10000)

... # do the CSG stuff

sys.setrecursionlimit(actual_limit)

9.7. Add-ons 161

https://en.wikipedia.org/wiki/Binary_space_partitioning

ezdxf Documentation, Release 1.3.2

CSG works also with spheres, but with really bad runtime behavior and most likely RecursionError exceptions, and
use quadrilaterals as body faces to reduce face count by setting argument quads to True.

import ezdxf

from ezdxf.render.forms import sphere, cube
from ezdxf.addons.pycsg import CSG

doc = ezdxf.new()
doc.set_modelspace_vport(6, center=(5, 0))
msp = doc.modelspace()

cube1 = cube().translate(-.5, -.5, -.5)
sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True)

union = (CSG(cube1) + CSG(sphere1)).mesh()
union.render_mesh(msp, dxfattribs={'color': 1})

subtract = (CSG(cube1) - CSG(sphere1)).mesh().translate(2.5)
subtract.render_mesh(msp, dxfattribs={'color': 3})

intersection = (CSG(cube1) * CSG(sphere1)).mesh().translate(4)
intersection.render_mesh(msp, dxfattribs={'color': 5})

162 Chapter 9. Contents

https://en.wikipedia.org/wiki/Quadrilateral

ezdxf Documentation, Release 1.3.2

Hard Core CSG - Menger Sponge Level 3 vs Sphere
Required runtime on an old Xeon E5-1620 Workstation @ 3.60GHz (2020), with default recursion limit of 1000 on
Windows 10:

• CPython 3.8.1 64bit: ~60 seconds,
• PyPy [PyPy 7.2.0] 32bit: ~6 seconds, and using __slots__ reduced runtime below 5 seconds, yes - PyPy is
worth a look for long running scripts!

Updated runtime in 2024 on an i7-12700K @ 3.60GHz (peak ~5GHz), Windows 11:
• CPython 3.11.6 64bit: ~3.4 seconds
• PyPy 3.9.18 [PyPy 7.3.13] 64bit: ~1.5 seconds

from ezdxf.render.forms import sphere
from ezdxf.addons import MengerSponge
from ezdxf.addons.pycsg import CSG

doc = ezdxf.new()

(continues on next page)

9.7. Add-ons 163

ezdxf Documentation, Release 1.3.2

(continued from previous page)
doc.layers.new('sponge', dxfattribs={'color': 5})
doc.layers.new('sphere', dxfattribs={'color': 6})

doc.set_modelspace_vport(6, center=(5, 0))
msp = doc.modelspace()

sponge1 = MengerSponge(level=3).mesh()
sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True).translate(.25, .25, 1)

subtract = (CSG(sponge1, meshid=1) - CSG(sphere1, meshid=2))
get mesh result by id
subtract.mesh(1).render_mesh(msp, dxfattribs={'layer': 'sponge'})
subtract.mesh(2).render_mesh(msp, dxfattribs={'layer': 'sphere'})

164 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

CSG Class

class ezdxf.addons.pycsg.CSG(mesh: MeshBuilder, meshid: int = 0)

Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersec-
tion to combine 3D solids. This class implements CSG operations on meshes.
New 3D solids are created from MeshBuilder objects and results can be exported as MeshTransformer
objects to ezdxf by method mesh().

Parameters
• mesh – ezdxf.render.MeshBuilder or inherited object

9.7. Add-ons 165

ezdxf Documentation, Release 1.3.2

• meshid – individual mesh ID to separate result meshes, 0 is default
mesh(meshid: int = 0)→MeshTransformer

Returns a ezdxf.render.MeshTransformer object.
Parameters

meshid – individual mesh ID, 0 is default
union(other: CSG)→ CSG

Return a new CSG solid representing space in either this solid or in the solid other. Neither this solid nor the
solid other are modified:

A.union(B)

+-------+ +-------+
| | | |
| A | | |
| +--+----+ = | +----+
+----+--+ | +----+ |

| B | | |
| | | |
+-------+ +-------+

__add__()

union = A + B

subtract(other: CSG)→ CSG
Return a new CSG solid representing space in this solid but not in the solid other. Neither this solid nor the
solid other are modified:

A.subtract(B)

+-------+ +-------+
| | | |
| A | | |
| +--+----+ = | +--+
+----+--+ | +----+

| B |
| |
+-------+

__sub__()

difference = A - B

intersect(other: CSG)→ CSG
Return a new CSG solid representing space both this solid and in the solid other. Neither this solid nor the
solid other are modified:

A.intersect(B)

+-------+
| |
| A |
| +--+----+ = +--+
+----+--+ | +--+

(continues on next page)

166 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
| B |
| |
+-------+

__mul__()

intersection = A * B

inverse()→ CSG
Return a new CSG solid with solid and empty space switched. This solid is not modified.

License

• Original implementation csg.js, Copyright (c) 2011 Evan Wallace (http://madebyevan.com/), under the MIT li-
cense.

• Python port pycsg, Copyright (c) 2012 Tim Knip (http://www.floorplanner.com), under the MIT license.
• Additions by Alex Pletzer (Pennsylvania State University)
• Integration as ezdxf add-on, Copyright (c) 2020, Manfred Moitzi, MIT License.

9.7.13 Plot Style Files (CTB/STB)

CTB and STB files store plot styles used by AutoCAD and BricsCAD for printing and plotting.
If the plot style table is attached to a Paperspace or the Modelspace, a change of a plot style affects any object that
uses that plot style. CTB files contain color dependent plot style tables, STB files contain named plot style tables.
See also:

• Using plot style tables in AutoCAD
• AutoCAD Plot Style Table Editor
• BricsCAD Plot Style Table Editor
• AUTODESK KNOWLEDGE NETWORK: How to install CTB files in AutoCAD

ezdxf.addons.acadctb.load(filename: str | PathLike)→ ColorDependentPlotStyles | NamedPlotStyles

Load the CTB or STB file filename from file system.
ezdxf.addons.acadctb.new_ctb()→ ColorDependentPlotStyles

Create a new CTB file.
ezdxf.addons.acadctb.new_stb()→ NamedPlotStyles

Create a new STB file.

9.7. Add-ons 167

https://github.com/evanw/csg.js
http://madebyevan.com/
https://github.com/timknip/pycsg
http://www.floorplanner.com
https://knowledge.autodesk.com/support/autocad-lt/learn-explore/caas/sfdcarticles/sfdcarticles/Use-plot-style-tables.html
https://knowledge.autodesk.com/support/autocad-lt/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-LT/files/GUID-56184373-FC19-49A0-9E67-181C4F5C19B7-htm.html
https://help.bricsys.com/hc/en-us/articles/360006617933-The-Plot-Style-Table-editor
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/sfdcarticles/sfdcarticles/How-to-insert-a-CTB-or-STB-file-from-another-end-user-in-your-DWG-file.html

ezdxf Documentation, Release 1.3.2

ColorDependentPlotStyles

Color dependent plot style table (CTB file), table entries are PlotStyle objects.
class ezdxf.addons.acadctb.ColorDependentPlotStyles

description

Custom description of plot style file.
scale_factor

Specifies the factor by which to scale non-ISO linetypes and fill patterns.
apply_factor

Specifies whether or not you want to apply the scale_factor.
custom_lineweight_display_units

Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in
millimeters.

lineweights

Lineweights table as array.array
__getitem__(aci: int)→ PlotStyle

Returns PlotStyle for AutoCAD Color Index (ACI) aci.
__iter__()

Iterable of all plot styles.
new_style(aci: int, data: dict | None = None)→ PlotStyle

Set aci to new attributes defined by data dict.
Parameters

• aci – AutoCAD Color Index (ACI)

• data – dict of PlotStyle attributes: description, color, physical_pen_number,
virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight,
end_style, join_style, fill_style

get_lineweight(aci: int)
Returns the assigned lineweight for PlotStyle aci in millimeter.

get_lineweight_index(lineweight: float)→ int
Get index of lineweight in the lineweight table or append lineweight to lineweight table.

get_table_lineweight(index: int)→ float
Returns lineweight in millimeters of lineweight table entry index.

Parameters
index – lineweight table index = PlotStyle.lineweight

Returns
lineweight in mm or 0.0 for use entity lineweight

set_table_lineweight(index: int, lineweight: float)→ int
Argument index is the lineweight table index, not the AutoCAD Color Index (ACI).

Parameters
• index – lineweight table index = PlotStyle.lineweight

168 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• lineweight – in millimeters
save()

Save CTB file as filename to the file system.
write(stream: BinaryIO)→ None

Compress and write CTB file to binary stream.

NamedPlotStyles

Named plot style table (STB file), table entries are PlotStyle objects.
class ezdxf.addons.acadctb.NamedPlotStyles

description

Custom description of plot style file.
scale_factor

Specifies the factor by which to scale non-ISO linetypes and fill patterns.
apply_factor

Specifies whether or not you want to apply the scale_factor.
custom_lineweight_display_units

Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in
millimeters.

lineweights

Lineweights table as array.array
__getitem__(name: str)→ PlotStyle

Returns PlotStyle by name.
__delitem__(name: str)→ None

Delete plot style name. Plot style 'Normal' is not deletable.
__iter__()→ Iterable[str]

Iterable of all plot style names.
new_style(name: str, data: dict | None = None, localized_name: str | None = None)→ PlotStyle

Create new class:PlotStyle name by attribute dict data, replaces existing class:PlotStyle objects.
Parameters

• name – plot style name
• localized_name – name shown in plot style editor, uses name if None
• data – dict of PlotStyle attributes: description, color, physical_pen_number,
virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight,
end_style, join_style, fill_style

get_lineweight(name: str)
Returns the assigned lineweight for PlotStyle name in millimeter.

get_lineweight_index(lineweight: float)→ int
Get index of lineweight in the lineweight table or append lineweight to lineweight table.

9.7. Add-ons 169

ezdxf Documentation, Release 1.3.2

get_table_lineweight(index: int)→ float
Returns lineweight in millimeters of lineweight table entry index.

Parameters
index – lineweight table index = PlotStyle.lineweight

Returns
lineweight in mm or 0.0 for use entity lineweight

set_table_lineweight(index: int, lineweight: float)→ int
Argument index is the lineweight table index, not the AutoCAD Color Index (ACI).

Parameters
• index – lineweight table index = PlotStyle.lineweight
• lineweight – in millimeters

save()

Save STB file as filename to the file system.
write()

Compress and write STB file to binary stream.

PlotStyle

class ezdxf.addons.acadctb.PlotStyle

index

Table index (0-based). (int)
aci

AutoCAD Color Index (ACI) in range from 1 to 255. Has no meaning for named plot styles. (int)
description

Custom description of plot style. (str)
physical_pen_number

Specifies physical plotter pen, valid range from 1 to 32 or AUTOMATIC. (int)
virtual_pen_number

Only used by non-pen plotters and only if they are configured for virtual pens. valid range from 1 to 255 or
AUTOMATIC. (int)

screen

Specifies the color intensity of the plot on the paper, valid range is from 0 to 100. (int)
If you select 100 the drawing will plotted with its full color intensity. In order for screening to work, the
dithering option must be active.

linetype

Overrides the entity linetype, default value is OBJECT_LINETYPE. (bool)
adaptive_linetype

True if a complete linetype pattern is more important than a correct linetype scaling, default is True. (bool)
linepattern_size

Line pattern size, default = 0.5. (float)

170 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

lineweight

Overrides the entity lineWEIGHT, default value is OBJECT_LINEWEIGHT. This is an index into the
UserStyles.lineweights table. (int)

end_style

Line end cap style, see table below, default is END_STYLE_OBJECT (int)
join_style

Line join style, see table below, default is JOIN_STYLE_OBJECT (int)
fill_style

Line fill style, see table below, default is FILL_STYLE_OBJECT (int)
dithering

Depending on the capabilities of your plotter, dithering approximates the colors with dot patterns. When
this option is False, the colors are mapped to the nearest color, resulting in a smaller range of colors when
plotting.
Dithering is available only whether you select the object’s color or assign a plot style color.

grayscale

Plot colors in grayscale. (bool)

Default Line Weights

[mm]
0 0.00
1 0.05
2 0.09
3 0.10
4 0.13
5 0.15
6 0.18
7 0.20
8 0.25
9 0.30
10 0.35
11 0.40
12 0.45
13 0.50
14 0.53
15 0.60
16 0.65
17 0.70
18 0.80
19 0.90
20 1.00
21 1.06
22 1.20
23 1.40
24 1.58
25 2.00
26 2.11

9.7. Add-ons 171

ezdxf Documentation, Release 1.3.2

Predefined Values

ezdxf.addons.acadctb.AUTOMATIC

ezdxf.addons.acadctb.OBJECT_LINEWEIGHT

ezdxf.addons.acadctb.OBJECT_LINETYPE

ezdxf.addons.acadctb.OBJECT_COLOR

ezdxf.addons.acadctb.OBJECT_COLOR2

Line End Style

END_STYLE_BUTT 0
END_STYLE_SQUARE 1
END_STYLE_ROUND 2
END_STYLE_DIAMOND 3
END_STYLE_OBJECT 4

Line Join Style

JOIN_STYLE_MITER 0
JOIN_STYLE_BEVEL 1
JOIN_STYLE_ROUND 2
JOIN_STYLE_DIAMOND 3
JOIN_STYLE_OBJECT 5

172 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Fill Style

FILL_STYLE_SOLID 64
FILL_STYLE_CHECKERBOARD 65
FILL_STYLE_CROSSHATCH 66
FILL_STYLE_DIAMONDS 67
FILL_STYLE_HORIZONTAL_BARS 68
FILL_STYLE_SLANT_LEFT 69
FILL_STYLE_SLANT_RIGHT 70
FILL_STYLE_SQUARE_DOTS 71
FILL_STYLE_VERICAL_BARS 72
FILL_STYLE_OBJECT 73

9.7. Add-ons 173

ezdxf Documentation, Release 1.3.2

Linetypes

174 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Linetype name Value
Solid 0
Dashed 1
Dotted 2
Dash Dot 3
Short Dash 4
Medium Dash 5
Long Dash 6
Short Dash x2 7
Medium Dash x2 8
Long Dash x2 9
Medium Lang Dash 10
Medium Dash Short Dash Short Dash 11
Long Dash Short Dash 12
Long Dash Dot Dot 13
Long Dash Dot 14
Medium Dash Dot Short Dash Dot 15
Sparse Dot 16
ISO Dash 17
ISO Dash Space 18
ISO Long Dash Dot 19
ISO Long Dash Double Dot 20
ISO Long Dash Triple Dot 21

continues on next page

9.7. Add-ons 175

ezdxf Documentation, Release 1.3.2

Table 1 – continued from previous page
Linetype name Value
ISO Dot 22
ISO Long Dash Short Dash 23
ISO Long Dash Double Short Dash 24
ISO Dash Dot 25
ISO Double Dash Dot 26
ISO Dash Double Dot 27
ISO Double Dash Double Dot 28
ISO Dash Triple Dot 29
ISO Double Dash Triple Dot 30
Use entity linetype 31

9.7.14 Showcase Forms

MengerSponge

Build a 3D Menger sponge.
class ezdxf.addons.MengerSponge(location: UVec = (0.0, 0.0, 0.0), length: float = 1.0, level: int = 1,

kind: int = 0)

Parameters
• location – location of lower left corner as (x, y, z) tuple
• length – side length
• level – subdivide level
• kind – type of menger sponge

0 Original Menger Sponge
1 Variant XOX
2 Variant OXO
3 Jerusalem Cube

render(layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 | None = None,
ucs: UCS | None = None)→ None

Renders the menger sponge into layout, set merge to True for rendering the whole menger sponge into one
MESH entity, setmerge to False for rendering the individual cubes of the menger sponge as MESH entities.

Parameters
• layout – DXF target layout
• merge – True for one MESH entity, False for individual MESH entities per cube
• dxfattribs – DXF attributes for the MESH entities
• matrix – apply transformation matrix at rendering
• ucs – apply UCS transformation at rendering

cubes()→ Iterator[MeshTransformer]
Yields all cubes of the menger sponge as individual MeshTransformer objects.

176 Chapter 9. Contents

https://en.wikipedia.org/wiki/Menger_sponge

ezdxf Documentation, Release 1.3.2

mesh()→MeshTransformer
Returns geometry as one MeshTransformer object.

Menger Sponge kind=0:

Menger Sponge kind=1:

9.7. Add-ons 177

ezdxf Documentation, Release 1.3.2

Menger Sponge kind=2:

178 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Jerusalem Cube kind=3:

9.7. Add-ons 179

ezdxf Documentation, Release 1.3.2

180 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

SierpinskyPyramid

Build a 3D Sierpinsky Pyramid.
class ezdxf.addons.SierpinskyPyramid(location: UVec = (0.0, 0.0, 0.0), length: float = 1.0, level: int =

1, sides: int = 4)

Parameters
• location – location of base center as (x, y, z) tuple
• length – side length
• level – subdivide level
• sides – sides of base geometry

render(layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 | None = None,
ucs: UCS | None = None)→ None

Renders the sierpinsky pyramid into layout, set merge to True for rendering the whole sierpinsky pyramid
into one MESH entity, set merge to False for individual pyramids as MESH entities.

Parameters
• layout – DXF target layout
• merge – True for one MESH entity, False for individual MESH entities per pyramid
• dxfattribs – DXF attributes for the MESH entities
• matrix – apply transformation matrix at rendering
• ucs – apply UCS at rendering

pyramids()→ Iterable[MeshTransformer]
Yields all pyramids of the sierpinsky pyramid as individual MeshTransformer objects.

mesh()→MeshTransformer
Returns geometry as one MeshTransformer object.

Sierpinsky Pyramid with triangle base:

9.7. Add-ons 181

https://en.wikipedia.org/wiki/Sierpinski_triangle

ezdxf Documentation, Release 1.3.2

Sierpinsky Pyramid with square base:

182 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.7.15 Bin-Packing Add-on

This add-on is based on the 3D bin packingmodule py3dbp hosted on PyPI. Both sources of this package areMIT licensed
like ezdxf itself.

The Bin Packing Problem

Quote from the Wikipedia article:
The bin packing problem is an optimization problem, in which items of different sizes must be packed into
a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of
bins used.

9.7. Add-ons 183

https://github.com/enzoruiz/3dbinpacking
https://pypi.org/project/py3dbp/
https://en.wikipedia.org/wiki/Bin_packing_problem

ezdxf Documentation, Release 1.3.2

Example

This code replicates the example used by the py3dbp package:

from typing import List
import ezdxf
from ezdxf import colors
from ezdxf.addons import binpacking as bp

SMALL_ENVELOPE = ("small-envelope", 11.5, 6.125, 0.25, 10)
LARGE_ENVELOPE = ("large-envelope", 15.0, 12.0, 0.75, 15)
SMALL_BOX = ("small-box", 8.625, 5.375, 1.625, 70.0)
MEDIUM_BOX = ("medium-box", 11.0, 8.5, 5.5, 70.0)
MEDIUM_BOX2 = ("medium-box-2", 13.625, 11.875, 3.375, 70.0)
LARGE_BOX = ("large-box", 12.0, 12.0, 5.5, 70.0)
LARGE_BOX2 = ("large-box-2", 23.6875, 11.75, 3.0, 70.0)

ALL_BINS = [
SMALL_ENVELOPE,
LARGE_ENVELOPE,
SMALL_BOX,
MEDIUM_BOX,
MEDIUM_BOX2,
LARGE_BOX,
LARGE_BOX2,

]

def build_packer():
packer = bp.Packer()
packer.add_item("50g [powder 1]", 3.9370, 1.9685, 1.9685, 1)
packer.add_item("50g [powder 2]", 3.9370, 1.9685, 1.9685, 2)
packer.add_item("50g [powder 3]", 3.9370, 1.9685, 1.9685, 3)
packer.add_item("250g [powder 4]", 7.8740, 3.9370, 1.9685, 4)
packer.add_item("250g [powder 5]", 7.8740, 3.9370, 1.9685, 5)
packer.add_item("250g [powder 6]", 7.8740, 3.9370, 1.9685, 6)
packer.add_item("250g [powder 7]", 7.8740, 3.9370, 1.9685, 7)
packer.add_item("250g [powder 8]", 7.8740, 3.9370, 1.9685, 8)
packer.add_item("250g [powder 9]", 7.8740, 3.9370, 1.9685, 9)
return packer

def make_doc():
doc = ezdxf.new()
doc.layers.add("FRAME", color=colors.YELLOW)
doc.layers.add("ITEMS")
doc.layers.add("TEXT")
return doc

def main(filename):
bins: List[bp.Bin] = []
for box in ALL_BINS:

packer = build_packer()
packer.add_bin(*box)
packer.pack(bp.PickStrategy.BIGGER_FIRST)
bins.extend(packer.bins)

doc = make_doc()

(continues on next page)

184 Chapter 9. Contents

https://github.com/enzoruiz/3dbinpacking

ezdxf Documentation, Release 1.3.2

(continued from previous page)
bp.export_dxf(doc.modelspace(), bins, offset=(0, 20, 0))
doc.saveas(filename)

if __name__ == "__main__":
main("py3dbp_example.dxf")

See also:
• example1 script
• example2 script

Packer Classes

class ezdxf.addons.binpacking.AbstractPacker

bins

List of containers to fill.
items

List of items to pack into the bins.
property is_packed: bool

Returns True if packer is packed, each packer can only be used once.
property unfitted_items: list[Item]

Returns the unfitted items.

9.7. Add-ons 185

https://github.com/mozman/ezdxf/blob/master/examples/addons/binpacking.py
https://github.com/mozman/ezdxf/blob/master/examples/addons/binpacking2.py

ezdxf Documentation, Release 1.3.2

__str__()→ str
Return str(self).

append_bin(box: Bin)→ None
Append a container.

append_item(item: Item)→ None
Append a item.

get_fill_ratio()→ float
Return the fill ratio of all bins.

get_capacity()→ float
Returns the maximum fill volume of all bins.

get_total_weight()→ float
Returns the total weight of all fitted items in all bins.

get_total_volume()→ float
Returns the total volume of all fitted items in all bins.

pack(pick=PickStrategy.BIGGER_FIRST)→ None
Pack items into bins. Distributes all items across all bins.

Packer

class ezdxf.addons.binpacking.Packer

3D Packer inherited from AbstractPacker.
add_bin(name: str, width: float, height: float, depth: float, max_weight: float = UNLIMITED_WEIGHT)→

Box

Add a 3D Box container.
add_item(payload, width: float, height: float, depth: float, weight: float = 0.0)→ Item

Add a 3D Item to pack.

FlatPacker

class ezdxf.addons.binpacking.FlatPacker

2D Packer inherited from AbstractPacker. All containers and items used by this packer must have a depth
of 1.
add_bin(name: str, width: float, height: float, max_weight: float = UNLIMITED_WEIGHT)→ Envelope

Add a 2D Envelope container.
add_item(payload, width: float, height: float, weight: float = 0.0)→ Item

Add a 2D FlatItem to pack.

186 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Bin Classes

class ezdxf.addons.binpacking.Bin(name, width: float, height: float, depth: float, max_weight: float =
UNLIMITED_WEIGHT)

name

Name of then container as string.
width

height

depth

max_weight

property is_empty: bool

__str__()→ str
Return str(self).

copy()

Returns a copy.
reset()

Reset the container to empty state.
put_item(item: Item, pivot: tuple[float, float, float])→ bool

get_capacity()→ float
Returns the maximum fill volume of the bin.

get_total_weight()→ float
Returns the total weight of all fitted items.

get_total_volume()→ float
Returns the total volume of all fitted items.

get_fill_ratio()→ float
Return the fill ratio.

Box Class

class ezdxf.addons.binpacking.Box(name, width: float, height: float, depth: float, max_weight: float =
UNLIMITED_WEIGHT)

3D container inherited from Bin.

9.7. Add-ons 187

ezdxf Documentation, Release 1.3.2

Envelope Class

class ezdxf.addons.binpacking.Envelope(name, width: float, height: float, max_weight: float =
UNLIMITED_WEIGHT)

2D container inherited from Bin.

Item Class

class ezdxf.addons.binpacking.Item(payload, width: float, height: float, depth: float, weight: float =
0.0)

3D container item.
payload

Arbitrary Python object.
width

height

depth

weight

property bbox: AbstractBoundingBox

property rotation_type: RotationType

property position: tuple[float, float, float]

Returns the position of then lower left corner of the item in the container, the lower left corner is the origin
(0, 0, 0).

copy()

Returns a copy, all copies have a reference to the same payload object.
__str__()

Return str(self).
get_volume()→ float

Returns the volume of the item.
get_dimension()→ tuple[float, float, float]

Returns the item dimension according the rotation_type.
get_transformation()→ Matrix44

Returns the transformation matrix to transform the source entity located with the minimum extension corner
of its bounding box in (0, 0, 0) to the final location including the required rotation.

188 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

FlatItem Class

class ezdxf.addons.binpacking.FlatItem(payload, width: float, height: float, weight: float = 0.0)
2D container item, inherited from Item. Has a default depth of 1.0.

Functions

ezdxf.addons.binpacking.shuffle_pack(packer: AbstractPacker, attempts: int)→ AbstractPacker
Random shuffle packing. Returns a new packer with the best packing result, the input packer is unchanged.

Enums

RotationType

class ezdxf.addons.binpacking.RotationType(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

Rotation type of an item:
• W = width
• H = height
• D = depth

WHD

HWD

HDW

DHW

DWH

WDH

PickStrategy

class ezdxf.addons.binpacking.PickStrategy(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

Order of how to pick items for placement.
BIGGER_FIRST

SMALLER_FIRST

SHUFFLE

9.7. Add-ons 189

ezdxf Documentation, Release 1.3.2

Credits

• py3dbp package by Enzo Ruiz Pelaez
• bp3d by gedex - github repository on which py3dbp is based, written in Go
• Optimizing three-dimensional bin packing through simulation (PDF)

9.7.16 MeshExchange

The ezdxf.addons.meshex module provides functions to exchange meshes with other tools in the following file
formats:

• STL: import/export, supports only triangles as faces
• OFF: import/export, supports ngons as faces and is more compact than STL
• OBJ: import/export, supports ngons as faces and can contain multiple meshes in one file
• PLY: export only, supports ngons as faces
• OpenSCAD: export as polyhedron, supports ngons as faces
• IFC4: export only, supports ngons as faces

The source or target object is always a MeshBuilder instance and therefore the supported features are also limited by
this class. Only vertices and faces are exchanged, colors, textures and explicit face- and vertex normals are lost.

Note: This add-on is not a replacement for a proper file format interface for this data formats! It’s just a simple way to
exchange meshes with other tools like OpenSCAD or MeshLab.

Warning: The meshes created by the ezdxf.addons.pycsg add-on are usually not suitable for export because
they often violate the vertex-to-vertex rule: A vertex of a face cannot lie on the edge of another face. This was one
of the reasons to create this addon to get an interface to OpenSCAD.

Example for a simple STL to DXF converter:

import sys
import ezdxf
from ezdxf.addons import meshex

try:
mesh = meshex.stl_readfile("your.stl")

except (meshex.ParsingError, IOError) as e:
print(str(e))
sys.exit(1)

doc = ezdxf.new()
mesh.render_mesh(doc.modelspace())
doc.saveas("your.dxf")

See also:
Example script meshex_export.py at github.

190 Chapter 9. Contents

https://github.com/enzoruiz/3dbinpacking
https://github.com/gedex/bp3d
https://github.com/enzoruiz/3dbinpacking
https://github.com/enzoruiz/3dbinpacking/blob/master/erick_dube_507-034.pdf
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)
https://openscad.org/index.html
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://openscad.org/index.html
https://www.meshlab.net
https://openscad.org/index.html
https://github.com/mozman/ezdxf/blob/master/examples/addons/meshex_export.py

ezdxf Documentation, Release 1.3.2

Import

ezdxf.addons.meshex.stl_readfile(filename: str | PathLike)→MeshTransformer
Read ascii or binary STL file content as ezdxf.render.MeshTransformer instance.

Raises
ParsingError – vertex parsing error or invalid/corrupt data

ezdxf.addons.meshex.stl_loads(content: str)→MeshTransformer
Load a mesh from an ascii STL content string as ezdxf.render.MeshTransformer instance.

Raises
ParsingError – vertex parsing error

ezdxf.addons.meshex.stl_loadb(buffer: bytes)→MeshTransformer
Load a mesh from a binary STL data ezdxf.render.MeshTransformer instance.

Raises
ParsingError – invalid/corrupt data or not a binary STL file

ezdxf.addons.meshex.off_readfile(filename: str | PathLike)→MeshTransformer
Read OFF file content as ezdxf.render.MeshTransformer instance.

Raises
ParsingError – vertex or face parsing error

ezdxf.addons.meshex.off_loads(content: str)→MeshTransformer
Load a mesh from a OFF content string as ezdxf.render.MeshTransformer instance.

Raises
ParsingError – vertex or face parsing error

ezdxf.addons.meshex.obj_readfile(filename: str | PathLike)→ list[MeshTransformer]
Read OBJ file content as list of ezdxf.render.MeshTransformer instances.

Raises
ParsingError – vertex or face parsing error

ezdxf.addons.meshex.obj_loads(content: str)→ list[MeshTransformer]
Load one or more meshes from an OBJ content string as list of ezdxf.render.MeshTransformer in-
stances.

Raises
ParsingError – vertex parsing error

Export

ezdxf.addons.meshex.stl_dumps(mesh: MeshBuilder)→ str
Returns the STL data as string for the given mesh. This function triangulates the meshes automatically because the
STL format supports only triangles as faces.
This function does not check if the mesh obey the STL format rules:

• The direction of the face normal is outward.
• The face vertices are listed in counter-clockwise order when looking at the object from the outside (right-hand
rule).

• Each triangle must share two vertices with each of its adjacent triangles.

9.7. Add-ons 191

https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
http://www.fabbers.com/tech/STL_Format

ezdxf Documentation, Release 1.3.2

• The object represented must be located in the all-positive octant (non-negative and nonzero).
ezdxf.addons.meshex.stl_dumpb(mesh: MeshBuilder)→ bytes

Returns the STL binary data as bytes for the given mesh.
For more information see function: stl_dumps()

ezdxf.addons.meshex.off_dumps(mesh: MeshBuilder)→ str
Returns the OFF data as string for the given mesh. The OFF format supports ngons as faces.

ezdxf.addons.meshex.obj_dumps(mesh: MeshBuilder)→ str
Returns the OBJ data as string for the given mesh. The OBJ format supports ngons as faces.

ezdxf.addons.meshex.ply_dumpb(mesh: MeshBuilder)→ bytes
Returns the PLY binary data as bytes for the given mesh. The PLY format supports ngons as faces.

ezdxf.addons.meshex.scad_dumps(mesh: MeshBuilder)→ str
Returns the OpenSCAD polyhedron definition as string for the given mesh. OpenSCAD supports ngons as faces.

Important: OpenSCAD requires the face normals pointing inwards, the method flip_normals() of the
MeshBuilder class can flip the normals inplace.

ezdxf.addons.meshex.ifc4_dumps(mesh: MeshBuilder, entity_type=IfcEntityType.POLYGON_FACE_SET ,
*, layer: str = 'MeshExport', color: tuple[float, float, float] = (1.0, 1.0,
1.0))→ str

Returns the IFC4 string for the given mesh. The caller is responsible for checking if the mesh is a closed or open
surface (e.g. mesh.diagnose().euler_characteristic == 2) and using the appropriate entity type.

Parameters
• mesh – MeshBuilder
• entity_type – IfcEntityType
• layer – layer name as string
• color – entity color as RGB tuple, values in the range [0,1]

Warning: IFC4 is a very complex data format and this is a minimal effort exporter, so the exported data may
not be importable by all CAD applications.
The exported IFC4 data can be imported by the following applications:

• BricsCAD
• FreeCAD (IfcOpenShell)
• Allplan
• Tekla BIMsight

ezdxf.addons.meshex.export_ifcZIP(filename: str | PathLike, mesh: MeshBuilder,
entity_type=IfcEntityType.POLYGON_FACE_SET , *, layer: str =
'MeshExport', color: tuple[float, float, float] = (1.0, 1.0, 1.0))

Export the givenmesh as zip-compressed IFC4 file. The filename suffix should be .ifcZIP. For more information
see function ifc4_dumps().

Parameters

192 Chapter 9. Contents

https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)
https://openscad.org/index.html
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron
https://openscad.org/index.html
https://openscad.org/index.html
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://en.wikipedia.org/wiki/Industry_Foundation_Classes

ezdxf Documentation, Release 1.3.2

• filename – zip filename, the data file has the same name with suffix .ifc
• mesh – MeshBuilder
• entity_type – IfcEntityType
• layer – layer name as string
• color – entity color as RGB tuple, values in the range [0,1]

Raises
IOError – IO error when opening the zip-file for writing

class ezdxf.addons.meshex.IfcEntityType(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

POLYGON_FACE_SET

“SurfaceModel” representation usable for open or closed surfaces.
CLOSED_SHELL

“Brep” representation usable for closed surfaces.
OPEN_SHELL

“SurfaceModel” representation usable for open surfaces.

9.7.17 OpenSCAD

Interface to the OpenSCAD application to apply boolean operations to MeshBuilder objects. For more information
about boolean operations read the documentation of OpenSCAD. The OpenSCAD application is not bundled with ezdxf,
you need to install the application yourself.
On Windows the path to the openscad.exe executable is stored in the config file (see ezdxf.options) in the
“openscad-addon” section as key “win_exec_path”, the default entry is:

[openscad-addon]
win_exec_path = "C:\Program Files\OpenSCAD\openscad.exe"

On Linux and macOS the openscad command is located by the shutil.which() function.
Example:

import ezdxf
from ezdxf.render import forms
from ezdxf.addons import MengerSponge, openscad

doc = ezdxf.new()
msp = doc.modelspace()

1. create the meshes:
sponge = MengerSponge(level=3).mesh()
sponge.flip_normals() # important for OpenSCAD
sphere = forms.sphere(

count=32, stacks=16, radius=0.5, quads=True
).translate(0.25, 0.25, 1)
sphere.flip_normals() # important for OpenSCAD

2. create the script:
script = openscad.boolean_operation(openscad.DIFFERENCE, sponge, sphere)

(continues on next page)

9.7. Add-ons 193

https://openscad.org
https://openscad.org
https://openscad.org

ezdxf Documentation, Release 1.3.2

(continued from previous page)
3. execute the script by OpenSCAD:
result = openscad.run(script)

4. render the MESH entity:
result.render_mesh(msp)

doc.set_modelspace_vport(6, center=(5, 0))
doc.saveas("OpenSCAD.dxf")

194 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Functions

ezdxf.addons.openscad.run(script: str, exec_path: str | None = None)→MeshTransformer
Executes the given script by OpenSCAD and returns the result mesh as MeshTransformer.

Parameters
• script – the OpenSCAD script as string
• exec_path – path to the executable as string or None to use the default installation path

ezdxf.addons.openscad.boolean_operation(op: Operation, mesh1: MeshBuilder, mesh2: MeshBuilder)
→ str

Returns an OpenSCAD script to apply the given boolean operation to the given meshes.
The supported operations are:

• UNION
• DIFFERENCE
• INTERSECTION

ezdxf.addons.openscad.is_installed()→ bool
Returns True if OpenSCAD is installed. On Windows only the default install path ‘C:\Program
Files\OpenSCAD\openscad.exe’ is checked.

Script Class

class ezdxf.addons.openscad.Script

Helper class to build OpenSCAD scripts. This is a very simple string building class and does no checks at all! If
you need more advanced features to build OpenSCAD scripts look at the packages solidpython2 and openpyscad.
add(data: str)→ None

Add a string.
add_mirror(v: UVec)→ None

Add a mirror() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#mirror

Parameters
v – the normal vector of a plane intersecting the origin through which to mirror the object

add_multmatrix(m: Matrix44)→ None
Add a transformation matrix of type Matrix44 as multmatrix() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#multmatrix

add_polyhedron(mesh: MeshBuilder)→ None
Add mesh as polyhedron() command.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron

add_polygon(path: Iterable[UVec], holes: Sequence[Iterable[UVec]] | None = None)→ None
Add a polygon() command. This is a 2D command, all z-axis values of the input vertices are ignored and
all paths and holes are closed automatically.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#
polygon

9.7. Add-ons 195

https://openscad.org
https://pypi.org/project/solidpython2/
https://pypi.org/project/openpyscad/
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#mirror
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#multmatrix
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#polygon
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#polygon

ezdxf Documentation, Release 1.3.2

Parameters
• path – exterior path
• holes – a sequence of one or more holes as vertices, or None for no holes

add_resize(nx: float, ny: float, nz: float, auto: bool | tuple[bool, bool, bool] | None = None)→ None
Add a resize() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#resize

Parameters
• nx – new size in x-axis
• ny – new size in y-axis
• nz – new size in z-axis
• auto – If the auto argument is set to True, the operation auto-scales any 0-dimensions to
match. Set the auto argument as a 3-tuple of bool values to auto-scale individual axis.

add_rotate(ax: float, ay: float, az: float)→ None
Add a rotation() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate

Parameters
• ax – rotation about the x-axis in degrees
• ay – rotation about the y-axis in degrees
• az – rotation about the z-axis in degrees

add_rotate_about_axis(a: float, v: UVec)→ None
Add a rotation() operation about the given axis v.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate

Parameters
• a – rotation angle about axis v in degrees
• v – rotation axis as ezdxf.math.UVec object

add_scale(sx: float, sy: float, sz: float)→ None
Add a scale() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#scale

Parameters
• sx – scaling factor for the x-axis
• sy – scaling factor for the y-axis
• sz – scaling factor for the z-axis

add_translate(v: UVec)→ None
Add a translate() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#translate

Parameters
v – translation vector

196 Chapter 9. Contents

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#resize
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#scale
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#translate

ezdxf Documentation, Release 1.3.2

get_string()→ str
Returns the OpenSCAD build script.

Boolean Operation Constants

ezdxf.addons.openscad.UNION

ezdxf.addons.openscad.DIFFERENCE

ezdxf.addons.openscad.INTERSECTION

openpyscad

This add-on is not a complete wrapper around OpenSCAD, if you need such a tool look at the openpyscad or solidpython2
packages at PyPI.
Not sure if the openpyscad package is still maintained, the last commit at github is more than a year old and did not pass
the CI process! (state June 2022)
This code snippet shows how to get the MeshTransformer object from the basic openpyscad example:

from ezdxf.addons import openscad
import openpyscad as ops

c1 = ops.Cube([10, 20, 10])
c2 = ops.Cube([20, 10, 10])

dump OpenSCAD script as string:
script = (c1 + c2).dumps()

execute script and load the result as MeshTransformer instance:
mesh = openscad.run(script)

Create an openpyscad Polyhedron object from an ezdxf MeshBuilder object:

from ezdxf.render import forms
import openpyscad as ops

create an ezdxf MeshBuilder() object
sphere = forms.sphere()
sphere.flip_normals() # required for OpenSCAD

create an openpyscad Polyhedron() object
polyhedron = ops.Polyhedron(

points=[list(p) for p in sphere.vertices], # convert Vec3 objects to lists!
faces=[list(f) for f in sphere.faces], # convert face tuples to face lists!

)

create the OpenSCAD script:
script = polyhedron.dumps()

The type conversion is needed to get valid OpenSCAD code from openpyscad!

9.7. Add-ons 197

https://openscad.org
https://pypi.org/project/openpyscad/
https://pypi.org/project/solidpython2/
https://pypi.org/project/openpyscad/
https://github.com/taxpon/openpyscad
https://pypi.org/project/openpyscad/
https://pypi.org/project/openpyscad/
https://openscad.org
https://pypi.org/project/openpyscad/

ezdxf Documentation, Release 1.3.2

solidpython2

The solidpython2 package seems to be better maintained than the openpyscad package, but this is just an opinion based
on newer commits at github (link) for the solidpython2 package.
Same example for solidpython2:

from ezdxf.addons import openscad
from solid2 import cube, scad_render

c1 = cube([10, 20, 10])
c2 = cube([20, 10, 10])

dump OpenSCAD script as string:
script = scad_render(c1 + c2)

execute script and load the result as MeshTransformer instance:
mesh = openscad.run(script)

Create a solidpython2 polyhedron object from an ezdxf MeshBuilder object:

from ezdxf.render import forms
from solid2 import polyhedron, scad_render

create an ezdxf MeshBuilder() object
sphere = forms.sphere()
sphere.flip_normals() # required for OpenSCAD

create a solidpython2 polyhedron() object
ph = polyhedron(

points=[v.xyz for v in sphere.vertices], # convert Vec3 objects to tuples!
faces=sphere.faces, # types are compatible

)

create the OpenSCAD script:
script = scad_render(ph)

9.7.18 TablePainter

This is an add-on for drawing tables build from DXF primitives.
This add-on was created for portingdxfwrite projects toezdxf andwas not officially documented forezdxf versions
prior the 1.0 release. For the 1.0 version of ezdxf, this class was added as an officially documented add-on because full
support for the ACAD_TABLE entity is very unlikely due to the enormous complexity for both the entity itself, and for
the required infrastructure and also the lack of a usable documentation to implement all that features.

Important: This add-on is not related to the ACAD_TABLE entity at all and and does not create ACAD_TABLE
entities!

The table cells can contain multi-line text or BLOCK references. You can create your own cell types by extending the
CustomCell class. The cells are addressed by zero-based row and column indices. A table cell can span over multiple
columns and/or rows.
A TextCell can contain multi-line text with an arbitrary rotation angle or letters stacked from top to bottom. The
MTextSurrogate add-on is used to create multi-line text compatible to DXF version R12.

198 Chapter 9. Contents

https://pypi.org/project/solidpython2/
https://pypi.org/project/openpyscad/
https://github.com/jeff-dh/SolidPython
https://pypi.org/project/solidpython2/
https://pypi.org/project/solidpython2/
https://pypi.org/project/solidpython2/

ezdxf Documentation, Release 1.3.2

A BlockCell contains block references (INSERT entities), if the block definition contains attribute definitions as
ATTDEF entities, these attributes can be added automatically to the block reference as ATTRIB entities.

Note: The DXF format does not support clipping boxes ot paths, therefore the render method of any cell can render
beyond the borders of the cell!

Tutorial

Set up a new DXF document:

import ezdxf
from ezdxf.enums import MTextEntityAlignment
from ezdxf.addons import TablePainter

doc = ezdxf.new("R2000") # required for lineweight support
doc.header["$LWDISPLAY"] = 1 # show lineweights
doc.styles.add("HEAD", font="OpenSans-ExtraBold.ttf")
doc.styles.add("CELL", font="OpenSans-Regular.ttf")

Create a new TablePainter object with four rows and four columns, the insert location is the default render location
but can be overriden in the render() method:

table = TablePainter(
insert=(0, 0), nrows=4, ncols=4, cell_width=6.0, cell_height=2.0

)

Create a new CellStyle object for the table-header called “head”:

table.new_cell_style(
"head",
text_style="HEAD",
text_color=ezdxf.colors.BLUE,
char_height=0.7,
bg_color=ezdxf.colors.LIGHT_GRAY,
align=MTextEntityAlignment.MIDDLE_CENTER,

)

Redefine the default CellStyle for the content cells:

reset default cell style
default_style = table.get_cell_style("default")
default_style.text_style = "CELL"
default_style.char_height = 0.5
default_style.align = MTextEntityAlignment.BOTTOM_LEFT

Set the table-header content:

for col in range(4):
table.text_cell(0, col, f"Head[{col}]", style="head")

Set the cell content:

for row in range(1, 4):
for col in range(4):

(continues on next page)

9.7. Add-ons 199

ezdxf Documentation, Release 1.3.2

(continued from previous page)
cell style is "default"
table.text_cell(row, col, f"Cell[{row}, {col}]")

Add a red frame around the table-header:

new cell style is required
red_frame = table.new_cell_style("red-frame")
red_borderline = table.new_border_style(color=ezdxf.colors.RED, lineweight=35)
set the red borderline style for all cell borders
red_frame.set_border_style(red_borderline)
create the frame object
table.frame(0, 0, 4, style="red-frame")

Render the table into the modelspace and export the DXF file:

render the table, shifting the left-bottom of the table to the origin:
table.render(doc.modelspace(), insert=(0, table.table_height))

th = table.table_height
tw = table.table_width
doc.set_modelspace_vport(height=th * 1.5, center=(tw/2, th/2))
doc.saveas("table_tutorial.dxf")

See also:
• Example script: table_painter_addon.py

TablePainter

class ezdxf.addons.tablepainter.TablePainter(insert: UVec, nrows: int, ncols: int,
cell_width=DEFAULT_CELL_WIDTH,
cell_height=DEFAULT_CELL_HEIGHT ,
default_grid=True)

The TablePainter class renders tables build from DXF primitives.
The TablePainter instance contains all the data cells.

Parameters
• insert – insert location as or UVec

200 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/table_painter_addon.py

ezdxf Documentation, Release 1.3.2

• nrows – row count
• ncols – column count
• cell_width – default cell width in drawing units
• cell_height – default cell height in drawing units
• default_grid – draw a grid of solid lines if True, otherwise draw only explicit defined
borders, the default grid has a priority of 50.

bg_layer_name: str

background layer name, layer for the background SOLID entities, default is “TABLEBACKGROUND”
fg_layer_name: str

foreground layer name, layer for the cell content, default is “TABLECONTENT”
grid_layer_name: str

table grid layer name, layer for the cell border lines, default is “TABLEGRID”
property table_width: float

Returns the total table width.
property table_height: float

Returns the total table height.
set_col_width(index: int, value: float)

Set column width in drawing units of the given column index.
Parameters

• index – zero based column index
• value – new column width in drawing units

set_row_height(index: int, value: float)
Set row height in drawing units of the given row index.

Parameters
• index – zero based row index
• value – new row height in drawing units

text_cell(row: int, col: int, text: str, span: tuple[int, int] = (1, 1), style='default')→ TextCell

Factory method to create a new text cell at location (row, col), with text as content, the text can be a line breaks
'\n'. The final cell can spread over several cells defined by the argument span.

block_cell(row: int, col: int, blockdef: BlockLayout, span: tuple[int, int] = (1, 1), attribs=None,
style='default')→ BlockCell

Factory method to Create a new block cell at position (row, col).
Content is a block reference inserted by an INSERT entity, attributes will be added if the block definition
contains ATTDEF. Assignments are defined by attribs-key to attdef-tag association.
Example: attribs = {‘num’: 1} if an ATTDEF with tag==’num’ in the block definition exists, an attrib with
text=str(1) will be created and added to the insert entity.
The cell spans over ‘span’ cells and has the cell style with the name ‘style’.

set_cell(row: int, col: int, cell: T)→ T
Insert a cell at position (row, col).

9.7. Add-ons 201

ezdxf Documentation, Release 1.3.2

get_cell(row: int, col: int)→ Cell
Get cell at location (row, col).

new_cell_style(name: str, **kwargs)→ CellStyle

Factory method to create a new CellStyle object, overwrites an already existing cell style.
Parameters

• name – style name as string
• kwargs – see attributes of class CellStyle

get_cell_style(name: str)→ CellStyle
Get cell style by name.

static new_border_style(color: int = const.BYLAYER, status=True, priority: int = 100, linetype: str =
'BYLAYER', lineweight: int = const.LINEWEIGHT_BYLAYER)→
BorderStyle

Factory method to create a new border style.
Parameters

• status – True for visible, False for invisible
• color – AutoCAD Color Index (ACI)

• linetype – linetype name, default is “BYLAYER”
• lineweight – lineweight as int, default is by layer
• priority – drawing priority, higher priorities cover lower priorities

frame(row: int, col: int, width: int = 1, height: int = 1, style='default')→ Frame
Creates a frame around the give cell area, starting at (row, col) and covering width columns and height rows.
The style argument is the name of a CellStyle.

render(layout: GenericLayoutType, insert: UVec | None = None)
Render table to layout.

Cell

class ezdxf.addons.tablepainter.Cell

Abstract base class for table cells.

TextCell

class ezdxf.addons.tablepainter.TextCell

Implements a cell type containing a multi-line text. Uses the MTextSurrogate add-on to render the multi-line
text, therefore the content of these cells is compatible to DXF R12.

Important: Use the factory method TablePainter.text_cell() to instantiate text cells.

202 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

BlockCell

class ezdxf.addons.tablepainter.BlockCell(table: TablePainter, blockdef: BlockLayout,
style='default', attribs=None, span: tuple[int, int] = (1,
1))

Implements a cell type containing a block reference.
Parameters

• table – table object
• blockdef – ezdxf.layouts.BlockLayout instance
• attribs – BLOCK attributes as (tag, value) dictionary
• style – cell style name as string
• span – tuple(rows, cols) area of cells to cover

Implements a cell type containing a block reference.

Important: Use the factory method TablePainter.block_cell() to instantiate block cells.

CustomCell

class ezdxf.addons.tablepainter.CustomCell

Base class to implement custom cells. Overwrite the render() method to render the cell. The custom cell type
has to be instantiated by the user and added to the table by the TablePainter.set_cell() method.
render(layout: GenericLayoutType, coords: Sequence[float], layer: str)

Renders the cell content into the given layout.
The render space is defined by the argument coords which is a tuple of 4 float values in the order: left, right,
top, bottom. These values are layout coordinates in drawing units. The DXF format does not support clipping
boxes, therefore the render method can render beyond these borders!

CellStyle

class ezdxf.addons.tablepainter.CellStyle(data: dict[str, Any] | None = None)

Cell style object.

Important: Always instantiate new styles by the factory method: TablePainter.new_cell_style()

text_style: str

Textstyle name as string, ignored by BlockCell
char_height: float

text height in drawing units, ignored by BlockCell
line_spacing: float

line spacing in percent, distance of line base points = char_height * line_spacing, ignored by
BlockCell

9.7. Add-ons 203

ezdxf Documentation, Release 1.3.2

scale_x: float

text stretching factor (width factor) or block reference x-scaling factor
scale_y: float

block reference y-scaling factor, ignored by TextCell
text_color: int

AutoCAD Color Index (ACI) for text, ignored by BlockCell
rotation: float

text or block rotation in degrees
stacked: bool

Stacks letters of TextCell instances from top to bottom without rotating the characters if True, ignored
by BlockCell

align: MTextEntityAlignment

text and block alignment, see ezdxf.enums.MTextEntityAlignment
margin_x: float

left and right cell margin in drawing units
margin_y: float

top and bottom cell margin in drawing units
bg_color: int

cell background color as AutoCAD Color Index (ACI), ignored by BlockCell
left: BorderStyle

left cell border style
top: BorderStyle

top cell border style
right: BorderStyle

right cell border style
bottom: BorderStyle

bottom cell border style
set_border_status(left=True, right=True, top=True, bottom=True)

Set status of all cell borders at once.
set_border_style(style: BorderStyle, left=True, right=True, top=True, bottom=True)

Set border styles of all cell borders at once.
static get_default_border_style()→ BorderStyle

204 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

BorderStyle

class ezdxf.addons.tablepainter.BorderStyle(status: bool = DEFAULT_BORDER_STATUS, color:
int = DEFAULT_BORDER_COLOR, linetype: str =
DEFAULT_BORDER_LINETYPE,
lineweight=const.LINEWEIGHT_BYLAYER, priority:
int = DEFAULT_BORDER_PRIORITY)

Border style class.

Important: Always instantiate new border styles by the factory method: TablePainter.
new_border_style()

status: bool

border status, True for visible, False for hidden
color: int

AutoCAD Color Index (ACI)

linetype: str

linetype name as string, default is “BYLAYER”
lineweight: int

lineweight as int, default is by layer
priority: int

drawing priority, higher values cover lower values

9.7.19 MTextSurrogate for DXF R12

class ezdxf.addons.MTextSurrogate(text: str, insert: UVec, line_spacing: float = 1.5,
align=MTextEntityAlignment.TOP_LEFT , char_height: float = 1.0,
style='STANDARD', oblique: float = 0.0, rotation: float = 0.0,
width_factor: float = 1.0, mirror=Mirror.NONE, layer='0', color:
int = const.BYLAYER)

MTEXT surrogate for DXF R12 build up by TEXT Entities. This add-on was added to simplify the transition from
dxfwrite to ezdxf.
The rich-text formatting capabilities for the regular MTEXT entity are not supported, if these features are re-
quired use the regular MTEXT entity and the MTextExplode add-on to explode the MTEXT entity into DXF
primitives.

Important: The align-point is always the insert-point, there is no need for a second align-point because the
horizontal alignments FIT, ALIGN, BASELINE_MIDDLE are not supported.

Parameters
• text – content as string
• insert – insert location in drawing units
• line_spacing – line spacing in percent of height, 1.5 = 150% = 1+1/2 lines
• align – text alignment as MTextEntityAlignment enum

9.7. Add-ons 205

ezdxf Documentation, Release 1.3.2

• char_height – text height in drawing units
• style – Textstyle name as string
• oblique – oblique angle in degrees, where 0 is vertical
• rotation – text rotation angle in degrees
• width_factor – text width factor as float
• mirror – MTextSurrogate.MIRROR_X to mirror the text horizontal or
MTextSurrogate.MIRROR_Y to mirror the text vertical

• layer – layer name as string
• color – AutoCAD Color Index (ACI)

render(layout: GenericLayoutType)→ None
Render the multi-line content as separated TEXT entities into the given layout instance.

9.7.20 ASTM-D6673-10 Exporter

This add-on creates special DXF files for use by Gerber Technology applications which have a low quality DXF parser
and cannot parse/ignore BLOCKS which do not contain data according the ASTM-D6673-10 standard. The function
export_file() exports DXF R12 and only DXF R12 files which do not contain the default “$MODEL_SPACE”
and “$PAPER_SPACE” layout block definitions, have an emptyHEADER section and no TABLES section. These special
requirements of the Gerber Technology parser are annoying, but correspond to the DXF R12 standard.
Autodesk applications maybe complain about invalid BLOCK names such as “Shape 0_M”, which in my opinion are
valid, maybe spaces were not allowed in the original R12 version, but this is just a minor issue and is more a problem of
the picky Autodesk DXF parser, which is otherwise very forgiving for DXF R12 files.

import ezdxf
from ezdxf.addons import gerber_D6673

doc = ezdxf.new("R12") # the export function rejects other DXF versions
msp = doc.modelspace()

Create your content according the ASTM-D6673-10 standard
Do not use any linetypes or text styles, the TABLES section will not be exported.
The ASTM-D6673-10 standard supports only 7-bit ASCII characters.

gerber_D6673.export_file(doc, "gerber_file.dxf")

ezdxf.addons.gerber_D6673.export_file(doc: Drawing, filename: str | PathLike)→ None
Exports the specified DXF R12 document, which should contain content conforming to the ASTM-D6673-10
standard, in a special way so that Gerber Technology applications can parse it by their low-quality DXF parser.

ezdxf.addons.gerber_D6673.export_stream(doc: Drawing, stream: TextIO)→ None
Exports the specified DXF R12 document into a stream object.

206 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.8 Reference

The DXF Reference is online available at Autodesk.
Quoted from the original DXF 12 Reference which is not available on the web:

Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes significantly as
new features are added to AutoCAD, we do not document its format and do not recommend that you attempt
to write programs to read it directly. To assist in interchanging drawings between AutoCAD and other
programs, a Drawing Interchange file format (DXF) has been defined. All implementations of AutoCAD
accept this format and are able to convert it to and from their internal drawing file representation.

9.8.1 DXF Document

Document Management

Create New Drawings

ezdxf.new(dxfversion='AC1027', setup=False, units=6)→ Drawing
Create a new Drawing from scratch, dxfversion can be either “AC1009” the official DXF version name or “R12”
the AutoCAD release name.
new() can create drawings for following DXF versions:

Version AutoCAD Release
AC1009 AutoCAD R12
AC1015 AutoCAD R2000
AC1018 AutoCAD R2004
AC1021 AutoCAD R2007
AC1024 AutoCAD R2010
AC1027 AutoCAD R2013
AC1032 AutoCAD R2018

The units argument defines th document and modelspace units. The header variable $MEASUREMENT will be set
according to the given units, 0 for inch, feet, miles, … and 1 for metric units. For more information go to module
ezdxf.units

Parameters
• dxfversion – DXF version specifier as string, default is “AC1027” respectively “R2013”
• setup – setup default styles, False for no setup, True to setup everything or a list of topics
as strings, e.g. [“linetypes”, “styles”] to setup only some topics:

Topic Description
linetypes setup line types
styles setup text styles
dimstyles setup default ezdxf dimension styles
visualstyles setup 25 standard visual styles

• units – document and modelspace units, default is 6 for meters

9.8. Reference 207

http://docs.autodesk.com/ACD/2014/ENU/index.html?url=files/GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3.htm,topicNumber=d30e652301
http://usa.autodesk.com/

ezdxf Documentation, Release 1.3.2

Open Drawings

Open DXF drawings from file system or text stream, byte stream usage is not supported.
DXF files prior to R2007 requires file encoding defined by header variable $DWGCODEPAGE, DXF R2007 and later
requires an UTF-8 encoding.
ezdxf supports reading of files for following DXF versions:

Version Release Encoding Remarks
< AC1009 $DWGCODEPAGE pre AutoCAD R12 upgraded to AC1009
AC1009 R12 $DWGCODEPAGE AutoCAD R12
AC1012 R13 $DWGCODEPAGE AutoCAD R13 upgraded to AC1015
AC1014 R14 $DWGCODEPAGE AutoCAD R14 upgraded to AC1015
AC1015 R2000 $DWGCODEPAGE AutoCAD R2000
AC1018 R2004 $DWGCODEPAGE AutoCAD R2004
AC1021 R2007 UTF-8 AutoCAD R2007
AC1024 R2010 UTF-8 AutoCAD R2010
AC1027 R2013 UTF-8 AutoCAD R2013
AC1032 R2018 UTF-8 AutoCAD R2018

ezdxf.readfile(filename: str | PathLike, encoding: str | None = None, errors: str = 'surrogateescape')→ Drawing
Read the DXF document filename from the file-system.
This is the preferred method to load existing ASCII or Binary DXF files, the required text encoding will be detected
automatically and decoding errors will be ignored.
Override encoding detection by setting argument encoding to the estimated encoding. (use Python encoding names
like in the open() function).
If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover.readfile() function to load this corrupt DXF document.

Parameters
• filename – filename of the ASCII- or Binary DXF document
• encoding – use None for auto detect (default), or set a specific encoding like “utf-8”, ar-
gument is ignored for Binary DXF files

• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• IOError – not a DXF file or file does not exist
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

ezdxf.read(stream: TextIO)→ Drawing
Read a DXF document from a text-stream. Open stream in text mode (mode='rt') and set correct text encoding,
the stream requires at least a readline() method.

208 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Since DXF version R2007 (AC1021) file encoding is always “utf-8”, use the helper function
dxf_stream_info() to detect the required text encoding for prior DXF versions. To preserve possi-
ble binary data in use errors='surrogateescape' as error handler for the import stream.
If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover.read() function to load this corrupt DXF document.

Parameters
stream – input text stream opened with correct encoding

Raises
DXFStructureError – for invalid or corrupted DXF structures

ezdxf.readzip(zipfile: str | PathLike, filename: str | None = None, errors: str = 'surrogateescape')→ Drawing
Load a DXF document specified by filename from a zip archive, or if filename is None the first DXF document in
the zip archive.

Parameters
• zipfile – name of the zip archive
• filename – filename of DXF file, or None to load the first DXF document from the zip
archive.

• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• IOError – not a DXF file or file does not exist or if filename is None - no DXF file found
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

ezdxf.decode_base64(data: bytes, errors: str = 'surrogateescape')→ Drawing
Load a DXF document from base64 encoded binary data, like uploaded data to web applications.

Parameters
• data – DXF document base64 encoded binary data
• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

Hint: This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with
minor or major flaws look at the ezdxf.recover module.

9.8. Reference 209

ezdxf Documentation, Release 1.3.2

Save Drawings

Save the DXF document to the file system by Drawing methods save() or saveas(). Write the DXF document
to a text stream with write(), the text stream requires at least a write() method. Get required output encoding for
text streams by property Drawing.output_encoding

Drawing Settings

The HeaderSection stores meta data like modelspace extensions, user name or saving time and current application
settings, like actual layer, text style or dimension style settings. These settings are not necessary to process DXF data and
therefore many of this settings are not maintained by ezdxf automatically.

Header variables set at new

$ACADVER DXF version
$TDCREATE date/time at creating the drawing
$FINGERPRINTGUID every drawing gets a GUID

Header variables updated at saving

$TDUPDATE actual date/time at saving
$HANDSEED next available handle as hex string
$DWGCODEPAGE encoding setting
$VERSIONGUID every saved version gets a new GUID

See also:
• Howto: Set/Get Header Variables

• Howto: Set DXF Drawing Units

Ezdxf Metadata

Store internal metadata like ezdxf version and creation time for a new created document as metadata in the DXF file.
Only standard DXF features are used to store meta data and this meta data is preserved by Autodesk products, BricsCAD
and of course ezdxf. Other 3rd party DXF libraries may remove this meta data.
For DXF R12 the meta data is stored as XDATA by AppID EZDXF in the model space BLOCK entity in the BLOCKS
section.
For DXF R2000+ the meta data is stored in the “root” DICTIONARY in the OBJECTS section as a DICTIONARY
object by the key EZDXF_META.
The MetaData object has a dict-like interface and can also store custom metadata:

metadata = doc.ezdxf_metadata()

set data
metadata["MY_CUSTOM_META_DATA"] = "a string with max. length of 254"

(continues on next page)

210 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

get data, raises a KeyError() if key not exist
value = metadata["MY_CUSTOM_META_DATA"]

get data, returns an empty string if key not exist
value = metadata.get("MY_CUSTOM_META_DATA")

delete entry, raises a KeyError() if key not exist
del metadata["MY_CUSTOM_META_DATA"]

discard entry, does not raise a KeyError() if key not exist
metadata.discard("MY_CUSTOM_META_DATA")

Keys and values are limited to strings with a max. length of 254 characters and line ending \n will be replaced by \P.
Keys used by ezdxf:

• WRITTEN_BY_EZDXF: ezdxf version and UTC time in ISO format
• CREATED_BY_EZDXF: ezdxf version and UTC time in ISO format

Example of the ezdxf marker string: 0.16.4b1 @ 2021-06-12T07:35:34.898808+00:00

class ezdxf.document.MetaData

abstract MetaData.__contains__(key: str)→ bool
Returns key in self.

abstract MetaData.__getitem__(key: str)→ str
Returns the value for self[key].

Raises
KeyError – key does not exist

MetaData.get(key: str, default: str = '')→ str
Returns the value for key. Returns default if key not exist.

abstract MetaData.__setitem__(key: str, value: str)→ None
Set self[key] to value.

abstract MetaData.__delitem__(key: str)→ None
Delete self[key].

Raises
KeyError – key does not exist

MetaData.discard(key: str)→ None
Remove key, does not raise an exception if key not exist.

9.8. Reference 211

ezdxf Documentation, Release 1.3.2

Export/Load JSON Encoded Tags

Tag format of DXF documents:

0
SECTION
2
HEADER
9
$ACADVER
1
AC1027
...
9
$LIMMIN
10
0.0
20
0.0
9
$LIMMAX
10
420.0
20
297.0
9
$ORTHOMODE
70
0
9
$REGENMODE
70
1
...
0
EOF

The compact format is a list of [group-code, value] pairs where each pair is a DXF tag. The group-code has to
be an integer and the value has to be a string, integer, float or list of floats for vertices.

[
[0, "SECTION"],
[2, "HEADER"],
[9, "$ACADVER"],
[1, "AC1027"],
...
[9, "$LIMMIN"],
[10, [0.0,0.0]],
[9, "$LIMMAX"],
[10, [420.0,297.0]],
[9, "$ORTHOMODE"],
[70, 0],
[9, "$REGENMODE"],
[70, 1]
...
[0, "EOF"]
]

212 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The verbose format (compact is False) is a list of [group-code, value] pairs where each pair is a 1:1 represen-
tation of a DXF tag. The group-code has to be an integer and the value has to be a string.

[
[0, "SECTION"],
[2, "HEADER"],
[9, "$ACADVER"],
[1, "AC1027"],
...
[9, "$LIMMIN"],
[10, "0.0"],
[20, "0.0"],
[9, "$LIMMAX"],
[10, "420.0"],
[20, "297.0"],
[9, "$ORTHOMODE"],
[70, "0"],
[9, "$REGENMODE"],
[70, "1"],

...
[0, "EOF"]
]

ezdxf.document.export_json_tags(doc: Drawing, compact=True)→ str
Export a DXF document as JSON formatted tags.
The compact format is a list of [group-code, value] pairs where each pair is a DXF tag. The group-code
has to be an integer and the value has to be a string, integer, float or list of floats for vertices.
The verbose format (compact is False) is a list of [group-code, value] pairs where each pair is a 1:1
representation of a DXF tag. The group-code has to be an integer and the value has to be a string.

ezdxf.document.load_json_tags(data: Sequence[Any])→ Drawing
Load DXF document from JSON formatted tags.
The expected JSON format is a list of [group-code, value] pairs where each pair is a DXF tag. The compact and
the verbose format is supported.

Parameters
data – JSON data structure as a sequence of [group-code, value] pairs

Drawing Class

The Drawing class is the central management structure of a DXF document.

Access Layouts

• Drawing.modelspace()

• Drawing.paperspace()

9.8. Reference 213

ezdxf Documentation, Release 1.3.2

Access Resources

• Application ID Table: Drawing.appids
• Block Definition Table: Drawing.blocks
• Dimension Style Table: Drawing.dimstyles
• Layer Table: Drawing.layers
• Linetype Table: Drawing.linetypes
• MLeader Style Table: Drawing.mleader_styles
• MLine Style Table: Drawing.mline_styles
• Material Table: Drawing.materials
• Text Style Table: Drawing.styles
• UCS Table: Drawing.ucs
• VPort Table: Drawing.viewports
• View Table: Drawing.views
• Classes Section: Drawing.classes
• Object Section: Drawing.objects
• Entity Database: Drawing.entitydb
• Entity Groups: Drawing.groups
• Header Variables: Drawing.header

Drawing Class

class ezdxf.document.Drawing

The Drawing class is the central management structure of a DXF document.
dxfversion

Actual DXF version like 'AC1009', set by ezdxf.new() or ezdxf.readfile().
For supported DXF versions see Document Management

acad_release

The AutoCAD release name like 'R12' or 'R2000' for actual dxfversion.
encoding

Text encoding ofDrawing, the default encoding for new drawings is'cp1252'. Starting with DXFR2007
(AC1021), DXF files are written as UTF-8 encoded text files, regardless of the attribute encoding. The
text encoding can be changed to encodings listed below.
see also: DXF File Encoding

214 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

supported encodings
'cp874' Thai
'cp932' Japanese
'gbk' UnifiedChinese
'cp949' Korean
'cp950' TradChinese
'cp1250' CentralEurope
'cp1251' Cyrillic
'cp1252' WesternEurope
'cp1253' Greek
'cp1254' Turkish
'cp1255' Hebrew
'cp1256' Arabic
'cp1257' Baltic
'cp1258' Vietnam

output_encoding

Returns required output encoding for saving to filesystem or encoding to binary data.
filename

Drawing filename, if loaded by ezdxf.readfile() else None.
rootdict

Reference to the root dictionary of the OBJECTS section.
header

Reference to the HeaderSection, get/set drawing settings as header variables.
entities

Reference to the EntitySection of the drawing, where all graphical entities are stored, but only from
modelspace and the active paperspace layout. Just for your information: Entities of other paperspace layouts
are stored as BlockLayout in the BlocksSection.

objects

Reference to the objects section, see also ObjectsSection.
blocks

Reference to the blocks section, see also BlocksSection.
tables

Reference to the tables section, see also TablesSection.
classes

Reference to the classes section, see also ClassesSection.
layouts

Reference to the layout manager, see also Layouts.
groups

Collection of all groups, see also GroupCollection.
requires DXF R13 or later

9.8. Reference 215

ezdxf Documentation, Release 1.3.2

layers

Shortcut for Drawing.tables.layers
Reference to the layers table, where you can create, get and remove layers, see also Table and Layer

styles

Shortcut for Drawing.tables.styles
Reference to the styles table, see also Textstyle.

dimstyles

Shortcut for Drawing.tables.dimstyles
Reference to the dimstyles table, see also DimStyle.

linetypes

Shortcut for Drawing.tables.linetypes
Reference to the linetypes table, see also Linetype.

views

Shortcut for Drawing.tables.views
Reference to the views table, see also View.

viewports

Shortcut for Drawing.tables.viewports
Reference to the viewports table, see also VPort.

ucs

Shortcut for Drawing.tables.ucs
Reference to the ucs table, see also UCSTableEntry.

appids

Shortcut for Drawing.tables.appids
Reference to the appids table, see also AppID.

materials

MaterialCollection of all Material objects.
mline_styles

MLineStyleCollection of all MLineStyle objects.
mleader_styles

MLeaderStyleCollection of all MLeaderStyle objects.
units

Get and set the document/modelspace base units as enum, for more information read this: DXF Units. Re-
quires DXF R2000 or newer.

get_abs_filepath = <function Drawing.get_abs_filepath>

save(encoding: str | None = None, fmt: str = 'asc')→ None
Write drawing to file-system by using the filename attribute as filename. Override file encoding by argu-
ment encoding, handle with care, but this option allows you to create DXF files for applications that handle
file encoding different from AutoCAD.

Parameters

216 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• encoding – override default encoding as Python encoding string like 'utf-8'
• fmt – 'asc' for ASCII DXF (default) or 'bin' for Binary DXF

saveas(filename: PathLike | str, encoding: str | None = None, fmt: str = 'asc')→ None
Set Drawing attribute filename to filename and write drawing to the file system. Override file encoding
by argument encoding, handle with care, but this option allows you to create DXF files for applications that
handles file encoding different than AutoCAD.

Parameters
• filename – file name as string
• encoding – override default encoding as Python encoding string like 'utf-8'
• fmt – 'asc' for ASCII DXF (default) or 'bin' for Binary DXF

write(stream: TextIO | BinaryIO, fmt: str = 'asc')→ None
Write drawing as ASCII DXF to a text stream or as Binary DXF to a binary stream. For DXF
R2004 (AC1018) and prior open stream with drawing encoding and mode='wt'. For DXF R2007
(AC1021) and later use encoding='utf-8', or better use the later added Drawing property out-
put_encoding which returns the correct encoding automatically. The correct and required error handler
is errors='dxfreplace'!
If writing to a StringIO stream, use Drawing.encode() to encode the result string from StringIO.
get_value():

binary = doc.encode(stream.get_value())

Parameters
• stream – output text stream or binary stream
• fmt – “asc” for ASCII DXF (default) or “bin” for binary DXF

encode_base64()→ bytes
Returns DXF document as base64 encoded binary data.

encode(s: str)→ bytes
Encode string s with correct encoding and error handler.

query(query: str = '*')→ EntityQuery
Entity query over all layouts and blocks, excluding the OBJECTS section and the resource tables of the
TABLES section.

Parameters
query – query string

See also:
Entity Query String and Retrieve entities by query language

groupby(dxfattrib='', key=None)→ dict
Groups DXF entities of all layouts and blocks (excluding the OBJECTS section) by a DXF attribute or a key
function.

Parameters
• dxfattrib – grouping DXF attribute like “layer”
• key – key function, which accepts a DXFEntity as argument and returns a hashable group-
ing key or None to ignore this entity.

9.8. Reference 217

ezdxf Documentation, Release 1.3.2

See also:
groupby() documentation

modelspace()→Modelspace
Returns the modelspace layout, displayed as “Model” tab in CAD applications, defined by block record named
“*Model_Space”.

paperspace(name: str = '')→ Paperspace
Returns paperspace layout name or the active paperspace if no name is given.

Parameters
name – paperspace name or empty string for the active paperspace

Raises
KeyError – if the modelspace was acquired or layout name does not exist

layout(name: str = '')→ Layout

Returns paperspace layout name or the first layout in tab-order if no name is given.
Parameters

name – paperspace name or empty string for the first paperspace in tab-order
Raises

KeyError – layout name does not exist
active_layout()→ Paperspace

Returns the active paperspace layout, defined by block record name “*Paper_Space”.
layout_names()→ Iterable[str]

Returns all layout names in arbitrary order.
layout_names_in_taborder()→ Iterable[str]

Returns all layout names in tab-order, “Model” is always the first name.
new_layout(name, dxfattribs=None)→ Paperspace

Create a new paperspace layout name. Returns a Paperspace object. DXF R12 (AC1009) supports only
one paperspace layout, only the active paperspace layout is saved, other layouts are dismissed.

Parameters
• name – unique layout name
• dxfattribs – additional DXF attributes for the DXFLayout entity

Raises
DXFValueError – paperspace layout name already exist

page_setup(name: str = 'Layout1', fmt: str = 'ISO A3', landscape=True)→ Paperspace
Creates a new paperspace layout if name does not exist or reset the existing layout. This method requires
DXF R2000 or newer. The paper format name fmt defines one of the following paper sizes, measures in
landscape orientation:

218 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Name Units Width Height
ISO A0 mm 1189 841
ISO A1 mm 841 594
ISO A2 mm 594 420
ISO A3 mm 420 297
ISO A4 mm 297 210
ANSI A inch 11 8.5
ANSI B inch 17 11
ANSI C inch 22 17
ANSI D inch 34 22
ANSI E inch 44 34
ARCH C inch 24 18
ARCH D inch 36 24
ARCH E inch 48 36
ARCH E1 inch 42 30
Letter inch 11 8.5
Legal inch 14 8.5

The layout uses the associated units of the paper format as drawing units, has no margins or offset defined
and the scale of the paperspace layout is 1:1.

Parameters
• name – paperspace layout name
• fmt – paper format
• landscape – True for landscape orientation, False for portrait orientation

delete_layout(name: str)→ None
Delete paper space layout name and all entities owned by this layout. Available only for DXF R2000 or later,
DXF R12 supports only one paperspace, and it can’t be deleted.

add_image_def(filename: str, size_in_pixel: tuple[int, int], name=None)
Add an image definition to the objects section.
Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (x, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.
Absolute image paths works best for AutoCAD but not perfect, you have to update external references man-
ually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also have
to use: set_raster_variables().

Parameters
• filename – image file name (absolute path works best for AutoCAD)
• size_in_pixel – image size in pixel as (x, y) tuple
• name – image name for internal use, None for using filename as name (best for AutoCAD)

See also:
Tutorial for Image and ImageDef

9.8. Reference 219

ezdxf Documentation, Release 1.3.2

set_raster_variables(frame: int = 0, quality: int = 1, units: str = 'm')
Set raster variables.

Parameters
• frame – 0 = do not show image frame; 1 = show image frame
• quality – 0 = draft; 1 = high
• units – units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm Millimeter
cm Centimeter
m Meter (ezdxf default)
km Kilometer
in Inch
ft Foot
yd Yard
mi Mile

set_wipeout_variables(frame=0)
Set wipeout variables.

Parameters
frame – 0 = do not show image frame; 1 = show image frame

add_underlay_def(filename: str, fmt: str = 'ext', name: str | None = None)
Add an UnderlayDef entity to the drawing (OBJECTS section). The filename is the underlay file name
as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to create an
underlay reference.

Parameters
• filename – underlay file name
• fmt – file format as string “pdf”|”dwf”|”dgn” or “ext” for getting file format from filename
extension

• name – pdf format = page number to display; dgn format = “default”; dwf: ????
See also:
Tutorial for Underlay and UnderlayDefinition

add_xref_def(filename: str, name: str, flags: int = BLK_XREF | BLK_EXTERNAL)
Add an external reference (xref) definition to the blocks section.

Parameters
• filename – external reference filename
• name – name of the xref block
• flags – block flags

layouts_and_blocks()→ Iterator[GenericLayoutType]
Iterate over all layouts (modelspace and paperspace) and all block definitions.

chain_layouts_and_blocks()→ Iterator[DXFEntity]
Chain entity spaces of all layouts and blocks. Yields an iterator for all entities in all layouts and blocks.

220 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

reset_fingerprint_guid()

Reset fingerprint GUID.
reset_version_guid()

Reset version GUID.
set_modelspace_vport(height, center=(0, 0), *, dxfattribs=None)→ VPort

Set initial view/zoom location for the modelspace, this replaces the current “*Active” viewport configuration
(VPort) and reset the coordinate system to theWCS.

Parameters
• height – modelspace area to view
• center – modelspace location to view in the center of the CAD application window.
• dxfattribs – additional DXF attributes for the VPORT entity

audit()→ Auditor
Checks document integrity and fixes all fixable problems, not fixable problems are stored in Auditor.
errors.
If you are messing around with internal structures, call this method before saving to be sure to export valid
DXF documents, but be aware this is a long-running task.

validate(print_report=True)→ bool
Simple way to run an audit process. Fixes all fixable problems, return False if not fixable errors occurs.
Prints a report of resolved and unrecoverable errors, if requested.

Parameters
print_report – print report to stdout

Returns: False if unrecoverable errors exist
ezdxf_metadata()→ MetaData

Returns the ezdxf ezdxf.document.MetaData object, which manages ezdxf and custom metadata in
DXF files. For more information see: Ezdxf Metadata.

Recover

This module provides functions to “recover” ASCII DXF documents with structural flaws, which prevents the regular
ezdxf.read() and ezdxf.readfile() functions to load the document.
The read() and readfile() functions will repair as much flaws as possible and run the required audit process
automatically afterwards and return the result of this audit process:

import sys
import ezdxf
from ezdxf import recover

try:
doc, auditor = recover.readfile("messy.dxf")

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file.')
sys.exit(2)

(continues on next page)

9.8. Reference 221

ezdxf Documentation, Release 1.3.2

(continued from previous page)
DXF file can still have unrecoverable errors, but this is maybe just
a problem when saving the recovered DXF file.
if auditor.has_errors:

auditor.print_error_report()

The loading functions also decode DXF-Unicode encoding automatically e.g. “\U+00FC” -> “ü”. All these efforts cost
some time, loading the DXF document with ezdxf.read() or ezdxf.readfile() is faster.

Warning: This module will load DXF files which have decoding errors, most likely binary data stored in XRECORD
entities, these errors are logged as unrecoverable AuditError.DECODE_ERRORS in the Auditor.errors
attribute, but no DXFStructureError exception will be raised, because for many use cases this errors can be
ignored.
Writing such files back with ezdxf may create invalid DXF files, or at least some information will be lost - handle
with care!
To avoid this problem use recover.readfile(filename, errors='strict') which raises an Uni-
codeDecodeError exception for such binary data. Catch the exception and handle this DXF files as unrecover-
able.

Loading Scenarios

1. It will work

Mostly DXF files from AutoCAD or BricsCAD (e.g. for In-house solutions):

try:
doc = ezdxf.readfile(name)

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)

2. DXF file with minor flaws

DXF files have only minor flaws, like undefined resources:

try:
doc = ezdxf.readfile(name)

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)

auditor = doc.audit()
if auditor.has_errors:

auditor.print_error_report()

222 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

3. Try Hard

From trusted and untrusted sources but with good hopes, the worst case works like a cache miss, you pay for the first try
and pay the extra fee for the recover mode:

try: # Fast path:
doc = ezdxf.readfile(name)

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

Catch all DXF errors:
except ezdxf.DXFError:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile(name)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:

print(f'Found unrecoverable errors in DXF file: {name}.')
auditor.print_error_report()

4. Just use the slow recover module

Untrusted sources and expecting many invalid or corrupted DXF files, you always pay an extra fee for the recover mode:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile(name)

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:

print(f'Found unrecoverable errors in DXF file: {name}.')
auditor.print_error_report()

5. Unrecoverable Decoding Errors

If files contain binary data which can not be decoded by the document encoding, it is maybe the best to ignore these files,
this works in normal and recover mode:

try:
doc, auditor = recover.readfile(name, errors='strict')

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

(continues on next page)

9.8. Reference 223

ezdxf Documentation, Release 1.3.2

(continued from previous page)
except ezdxf.DXFStructureError:

print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)

except UnicodeDecodeError:
print(f'Decoding error in DXF file: {name}.')
sys.exit(3)

6. Ignore/Locate Decoding Errors

Sometimes ignoring decoding errors can recover DXF files or at least you can detect where the decoding errors occur:

try:
doc, auditor = recover.readfile(name, errors='ignore')

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)

if auditor.has_errors:
auditor.print_report()

The error messages with code AuditError.DECODING_ERROR shows the approximate line number of the decoding
error: “Fixed unicode decoding error near line: xxx.”

Hint: This functions can handle only ASCII DXF files!

ezdxf.recover.readfile(filename: str | Path, errors: str = 'surrogateescape')→ tuple[Drawing, Auditor]
Read a DXF document from file system similar to ezdxf.readfile(), but this function will repair as many
flaws as possible, runs the required audit process automatically the DXF document and the Auditor.

Parameters
• filename – file-system name of the DXF document to load
• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

ezdxf.recover.read(stream: BinaryIO, errors: str = 'surrogateescape')→ tuple[Drawing, Auditor]
Read a DXF document from a binary-stream similar to ezdxf.read(), but this function will detect the text
encoding automatically and repair as many flaws as possible, runs the required audit process afterwards and returns
the DXF document and the Auditor.

Parameters
• stream – data stream to load in binary read mode

224 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

ezdxf.recover.explore(filename: str | Path, errors: str = 'ignore')→ tuple[Drawing, Auditor]
Read a DXF document from file system similar to readfile(), but this function will use a special tag loader,
which tries to recover the tag stream if invalid tags occur. This function is intended to load corrupted DXF files
and should only be used to explore such files, data loss is very likely.

Parameters
• filename – file-system name of the DXF document to load
• errors – specify decoding error handler
– ”surrogateescape” to preserve possible binary data (default)
– ”ignore” to use the replacement char U+FFFD “�” for invalid data
– ”strict” to raise an UnicodeDecodeError exception for invalid data

Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs

r12strict

Added in version 1.1.
Due to ACAD release 14 the resource names, such as layer-, linetype, text style-, dimstyle- and block names, were limited
to 31 characters in length and all names were uppercase.
Names can include the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign "$", underscore "_",
hyphen "-" and the asterix "*" as first character for special names like anonymous blocks. Most applications do not
care about that and work fine with longer names and any characters used in names for some exceptions, but of course
Autodesk applications are very picky about that.
The function make_acad_compatible()makes DXF R12 drawings to 100% compatible to Autodesk products and
does everything at once, but the different processing steps can be called manually.

Important: This module can only process DXF R12 file and will throw a DXFVersionError otherwise. For ex-
porting any DXF document as DXF R12 use the ezdxf.addons.r12export add-on.

9.8. Reference 225

ezdxf Documentation, Release 1.3.2

Usage

import ezdxf
from ezdxf import r12strict

doc = ezdxf.readfile("r12sloppy.dxf")
r12strict.make_acad_compatible(doc)
doc.saveas("r12strict.dxf")

Functions

make_acad_compatible Apply all DXF R12 requirements, so Autodesk products
will load the document.

translate_names Translate table and block names into strict DXF R12
names.

clean Removes all features that are not supported for DXF R12
by Autodesk products.

ezdxf.r12strict.make_acad_compatible(doc: Drawing)→ None
Apply all DXF R12 requirements, so Autodesk products will load the document.

ezdxf.r12strict.translate_names(doc: Drawing)→ None
Translate table and block names into strict DXF R12 names.
ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names can include
the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($), underscore (_), hyphen (-) and
the asterix (*) as first character for special names like anonymous blocks.
Most applications do not care about that and work fine with longer names and any characters used in names for
some exceptions, but of course Autodesk applications are very picky about that.

Note: This is a destructive process and modifies the internals of the DXF document.

ezdxf.r12strict.clean(doc: Drawing)→ None
Removes all features that are not supported for DXF R12 by Autodesk products.

class ezdxf.r12strict.R12NameTranslator

Translate table and block names into strict DXF R12 names.
ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names can include
the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($), underscore (_), hyphen (-) and
the asterix (*) as first character for special names like anonymous blocks.
reset()→ None

translate(name: str)→ str

226 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.8.2 DXF Structures

Sections

Header Section

The drawing settings are stored in the HEADER section, which is accessible by the header attribute of the Drawing
object. See the online documentation from Autodesk for available header variables.
See also:
DXF Internals: HEADER Section

class ezdxf.sections.header.HeaderSection

custom_vars

Stores the custom drawing properties in a CustomVars object.
__len__()→ int

Returns count of header variables.
__contains__(key)→ bool

Returns True if header variable key exist.
varnames()→ KeysView

Returns an iterable of all header variable names.
get(key: str, default: Any = None)→ Any

Returns value of header variable key if exist, else the default value.
__getitem__(key: str)→ Any

Get header variable key by index operator like: drawing.header['$ACADVER']
__setitem__(key: str, value: Any)→ None

Set header variable key to value by index operator like: drawing.header['$ANGDIR'] = 1

__delitem__(key: str)→ None
Delete header variable key by index operator like: del drawing.header['$ANGDIR']

reset_wcs()

Reset the current UCS settings to theWCS.
class ezdxf.sections.header.CustomVars

The CustomVars class stores custom properties in the DXF header as $CUSTOMPROPERTYTAG and $CUS-
TOMPROPERTY values. Custom properties require DXF R2004 or later, ezdxf can create custom properties for
older DXF versions as well, but AutoCAD will not show that properties.
properties

A list of custom header properties, stored as string tuples (tag, value). Multiple occurrence of the same
custom tag is allowed, but not well supported by the interface. This is a standard Python list and it’s safe to
modify this list as long as you just use tuples of strings.

__len__()→ int
Count of custom properties.

__iter__()→ Iterator[tuple[str, str]]
Iterate over all custom properties as (tag, value) tuples.

9.8. Reference 227

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 1.3.2

clear()→ None
Remove all custom properties.

get(tag: str, default: str | None = None)
Returns the value of the first custom property tag.

has_tag(tag: str)→ bool
Returns True if custom property tag exist.

append(tag: str, value: str)→ None
Add custom property as (tag, value) tuple.

replace(tag: str, value: str)→ None
Replaces the value of the first custom property tag by a new value.
Raises DXFValueError if tag does not exist.

remove(tag: str, all: bool = False)→ None
Removes the first occurrence of custom property tag, removes all occurrences if all is True.
Raises :class:`DXFValueError if tag does not exist.

Classes Section

The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in Lay-
out objects. As usual package user there is no need to bother about CLASSES.
See also:
DXF Internals: CLASSES Section

class ezdxf.sections.classes.ClassesSection

classes

Storage of all DXFClass objects, they are not stored in the entities database, because CLASS instances do
not have a handle attribute.

register()

add_class(name: str)
Register a known class by name.

get(name: str)→ DXFClass
Returns the first class matching name.
Storage key is the (name, cpp_class_name) tuple, because there are some classes with the same
name but different cpp_class_names.

add_required_classes(dxfversion: str)→ None
Add all required CLASS definitions for the specified DXF version.

update_instance_counters()→ None
Update CLASS instance counter for all registered classes, requires DXF R2004+.

class ezdxf.entities.DXFClass

Information about application-defined classes.
dxf.name

Class DXF record name.

228 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.cpp_class_name

C++ class name. Used to bind with software that defines object class behavior.
dxf.app_name

Application name. Posted in Alert box when a class definition listed in this section is not currently loaded.
dxf.flags

Proxy capabilities flag

0 No operations allowed (0)
1 Erase allowed (0x1)
2 Transform allowed (0x2)
4 Color change allowed (0x4)
8 Layer change allowed (0x8)
16 Linetype change allowed (0x10)
32 Linetype scale change allowed (0x20)
64 Visibility change allowed (0x40)
128 Cloning allowed (0x80)
256 Lineweight change allowed (0x100)
512 Plot Style Name change allowed (0x200)
895 All operations except cloning allowed (0x37F)
1023 All operations allowed (0x3FF)
1024 Disables proxy warning dialog (0x400)
32768 R13 format proxy (0x8000)

dxf.instance_count

Instance count for a custom class.
dxf.was_a_proxy

Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise.
dxf.is_an_entity

Set to 1 if class was derived from the DXFGraphic class and can reside in layouts. If 0, instances may
appear only in the OBJECTS section.

key

Unique name as (name, cpp_class_name) tuple.

Tables Section

The TABLES section is the home of all TABLE objects of a DXF document.
See also:
DXF Internals: TABLES Section

class ezdxf.sections.tables.TablesSection

layers

LayerTable maintaining the Layer objects
linetypes

LinetypeTable maintaining the Linetype objects

9.8. Reference 229

ezdxf Documentation, Release 1.3.2

styles

TextstyleTable maintaining the Textstyle objects
dimstyles

DimStyleTable maintaining the DimStyle objects
appids

AppIDTable maintaining the AppID objects
ucs

UCSTable maintaining the UCSTable objects
views

ViewTable maintaining the View objects
viewports

ViewportTable maintaining the VPort objects
block_records

BlockRecordTable maintaining the BlockRecord objects

Blocks Section

The BLOCKS section is the home all block definitions (BlockLayout) of a DXF document.

Warning: Blocks are an essential building block of the DXF format. Most blocks are referenced are by name, and
renaming or deleting a block is not as easy as it seems, since there is no overall index where all block references appear,
and such block references can also reside in custom data or even custom entities, therefore renaming or deleting block
definitions can damage a DXF file!

See also:
DXF Internals: BLOCKS Section and Block Management Structures

class ezdxf.sections.blocks.BlocksSection

__iter__()→ Iterator[BlockLayout]
Iterable of all BlockLayout objects.

__contains__(name: str)→ bool
Returns True if BlockLayout name exist.

__getitem__(name: str)→ BlockLayout
Returns BlockLayout name, raises DXFKeyError if name not exist.

__delitem__(name: str)→ None
Deletes BlockLayout name and all of its content, raises DXFKeyError if name not exist.

get(name: str, default=None)→ BlockLayout
Returns BlockLayout name, returns default if name not exist.

new(name: str, base_point: UVec = NULLVEC, dxfattribs=None)→ BlockLayout
Create and add a new BlockLayout, name is the BLOCK name, base_point is the insertion point of the
BLOCK.

230 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

new_anonymous_block(type_char: str = 'U', base_point: UVec = NULLVEC)→ BlockLayout
Create and add a new anonymous BlockLayout, type_char is the BLOCK type, base_point is the insertion
point of the BLOCK.

type_char Anonymous Block Type
'U' '*U###' anonymous BLOCK
'E' '*E###' anonymous non-uniformly scaled BLOCK
'X' '*X###' anonymous HATCH graphic
'D' '*D###' anonymous DIMENSION graphic
'A' '*A###' anonymous GROUP
'T' '*T###' anonymous block for ACAD_TABLE content

rename_block(old_name: str, new_name: str)→ None
Rename BlockLayout old_name to new_name

Warning: This is a low-level tool and does not rename the block references, so all block references to
old_name are pointing to a non-existing block definition!

delete_block(name: str, safe: bool = True)→ None
Delete block. Checks if the block is still referenced if safe is True.

Parameters
• name – block name (case insensitive)
• safe – check if the block is still referenced or a special block without explicit references

Raises
• DXFKeyError – if block not exists
• DXFBlockInUseError – if block is still referenced, and safe is True

delete_all_blocks()→ None
Delete all blocks without references except modelspace- or paperspace layout blocks, special arrow- and
anonymous blocks (DIMENSION, ACAD_TABLE).

Warning: There could exist references to blocks which are not documented in the DXF reference,
hidden in extended data sections or application defined data, which could invalidate a DXF document if
these blocks will be deleted.

Entities Section

The ENTITIES section is the home of all entities of the Modelspace and the active Paperspace layout. This is a
real section in the DXF file but in ezdxf the EntitySection is just a linked entity space of these two layouts.
See also:
DXF Internals: ENTITIES Section

class ezdxf.sections.entities.EntitySection

9.8. Reference 231

ezdxf Documentation, Release 1.3.2

__iter__()→ Iterator[DXFEntity]
Returns an iterator for all entities of the modelspace and the active paperspace.

__len__()→ int
Returns the count of all entities in the modelspace and the active paperspace.

Objects Section

The OBJECTS section is the home of all none graphical objects of a DXF document. The OBJECTS section is accessible
by the Drawing.objects attribute.
Convenience methods of the Drawing object to create essential structures in the OBJECTS section:

• IMAGEDEF: add_image_def()
• UNDERLAYDEF: add_underlay_def()
• RASTERVARIABLES: set_raster_variables()
• WIPEOUTVARIABLES: set_wipeout_variables()

See also:
DXF Internals: OBJECTS Section

class ezdxf.sections.objects.ObjectsSection

rootdict

Returns the root DICTIONARY, or as AutoCAD calls it: the named DICTIONARY.
__len__()→ int

Returns the count of all DXF objects in the OBJECTS section.
__iter__()→ Iterator[DXFObject]

Returns an iterator of all DXF objects in the OBJECTS section.
__getitem__(index)→ DXFObject

Get entity at index.
The underlying data structure for storing DXF objects is organized like a standard Python list, therefore index
can be any valid list indexing or slicing term, like a single index objects[-1] to get the last entity, or an
index slice objects[:10] to get the first 10 or fewer objects as list[DXFObject].

__contains__(entity)
Returns True if entity stored in OBJECTS section.

Parameters
entity – DXFObject or handle as hex string

query(query: str = '*')→ EntityQuery
Get all DXF objects matching the Entity Query String.

add_dictionary(owner: str = '0', hard_owned: bool = True)→ Dictionary
Add new Dictionary object.

Parameters
• owner – handle to owner as hex string.
• hard_owned – True to treat entries as hard owned.

232 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_dictionary_with_default(owner='0', default='0', hard_owned: bool = True)→
DictionaryWithDefault

Add new DictionaryWithDefault object.
Parameters

• owner – handle to owner as hex string.
• default – handle to default entry.
• hard_owned – True to treat entries as hard owned.

add_dictionary_var(owner: str = '0', value: str = '')→ DictionaryVar

Add a new DictionaryVar object.
Parameters

• owner – handle to owner as hex string.
• value – value as string

add_geodata(owner: str = '0', dxfattribs=None)→ GeoData
Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OBJECTS
section and NOT in the layout entity space, and it is linked to the layout by an extension dictionary located in
BLOCK_RECORD of the layout.
The GEODATA entity requires DXF version R2010+. The DXF Reference does not document if other
layouts than model space supports geo referencing, so getting/setting geo data may only make sense for the
model space layout, but it is also available in paper space layouts.

Parameters
• owner – handle to owner as hex string
• dxfattribs – DXF attributes for GeoData entity

add_image_def(filename: str, size_in_pixel: tuple[int, int], name: str | None = None)→ ImageDef
Add an image definition to the objects section.
Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (x, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.
Absolute image paths works best for AutoCAD but not really good, you have to update external references
manually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also
have to use: set_raster_variables().

Parameters
• filename – image file name (absolute path works best for AutoCAD)
• size_in_pixel – image size in pixel as (x, y) tuple
• name – image name for internal use, None for using filename as name (best for AutoCAD)

add_placeholder(owner: str = '0')→ Placeholder
Add a new Placeholder object.

Parameters
owner – handle to owner as hex string.

9.8. Reference 233

ezdxf Documentation, Release 1.3.2

add_underlay_def(filename: str, fmt: str = 'pdf', name: str | None = None)→ UnderlayDefinition
Add an UnderlayDefinition entity to the drawing (OBJECTS section). filename is the underlay file
name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to
create an underlay reference.

Parameters
• filename – underlay file name
• fmt – file format as string 'pdf'|'dwf'|'dgn'
• name – pdf format = page number to display; dgn format = 'default'; dwf: ????

add_xrecord(owner: str = '0')→ XRecord
Add a new XRecord object.

Parameters
owner – handle to owner as hex string.

set_raster_variables(frame: int = 0, quality: int = 1, units: str = 'm')→ None
Set raster variables.

Parameters
• frame – 0 = do not show image frame; 1 = show image frame
• quality – 0 = draft; 1 = high
• units – units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm Millimeter
cm Centimeter
m Meter (ezdxf default)
km Kilometer
in Inch
ft Foot
yd Yard
mi Mile
none None

(internal API), public interface set_raster_variables()
set_wipeout_variables(frame: int = 0)→ None

Set wipeout variables.
Parameters

frame – 0 = do not show image frame; 1 = show image frame
(internal API)

234 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Tables

Table Classes

Generic Table Class

class ezdxf.sections.table.Table

Generic collection of table entries. Table entry names are case insensitive: “Test” == “TEST”.
static key(name: str)→ str

Unified table entry key.
has_entry(name: str)→ bool

Returns True if a table entry name exist.
__contains__(name: str)→ bool

Returns True if a table entry name exist.
__len__()→ int

Count of table entries.
__iter__()→ Iterator[T]

Iterable of all table entries.
new(name: str, dxfattribs=None)→ T

Create a new table entry name.
Parameters

• name – name of table entry
• dxfattribs – additional DXF attributes for table entry

get(name: str)→ T
Returns table entry name.

Parameters
name – name of table entry, case-insensitive

Raises
DXFTableEntryError – table entry does not exist

remove(name: str)→ None
Removes table entry name.

Parameters
name – name of table entry, case-insensitive

Raises
DXFTableEntryError – table entry does not exist

duplicate_entry(name: str, new_name: str)→ T
Returns a new table entry new_name as copy of name, replaces entry new_name if already exist.

Parameters
• name – name of table entry, case-insensitive
• new_name – name of duplicated table entry

9.8. Reference 235

ezdxf Documentation, Release 1.3.2

Raises
DXFTableEntryError – table entry does not exist

Layer Table

class ezdxf.sections.table.LayerTable

Subclass of Table.
Collection of Layer objects.
add(name: str, *, color: int = const.BYLAYER, true_color: int | None = None, linetype: str = 'Continuous',

lineweight: int = const.LINEWEIGHT_BYLAYER, plot: bool = True, transparency: float | None = None,
dxfattribs=None)→ Layer
Add a new Layer.

Parameters
• name (str) – layer name
• color (int) – AutoCAD Color Index (ACI) value, default is BYLAYER
• true_color (int) – true color value, use ezdxf.rgb2int() to create int values
from RGB values

• linetype (str) – line type name, default is “Continuous”
• lineweight (int) – line weight, default is BYLAYER
• plot (bool) – plot layer as bool, default is True
• transparency – transparency value in the range [0, 1], where 1 is 100% transparent and
0 is opaque

• dxfattribs (dict) – additional DXF attributes

Linetype Table

class ezdxf.sections.table.LinetypeTable

Subclass of Table.
Collection of Linetype objects.
add(name: str, pattern: Sequence[float] | str, *, description: str = '', length: float = 0.0, dxfattribs=None)→

Linetype
Add a new line type entry. The simple line type pattern is a list of floats [total_pattern_length,
elem1, elem2, ...] where an element > 0 is a line, an element < 0 is a gap and an element == 0.0
is a dot. The definition for complex line types are strings, like: 'A,.5,-.2,["GAS",STANDARD,S=.
1,U=0.0,X=-0.1,Y=-.05],-.25' similar to the line type definitions stored in the line definition .lin
files, formore information see the tutorial about complex line types. Be aware that not manyCAD applications
and DXF viewers support complex linetypes.
See also:

• Tutorial for simple line types
• Tutorial for complex line types

Parameters

236 Chapter 9. Contents

https://ezdxf.mozman.at/docs/tutorials/linetypes.html
https://ezdxf.mozman.at/docs/tutorials/linetypes.html#tutorial-for-complex-linetypes

ezdxf Documentation, Release 1.3.2

• name (str) – line type name
• pattern – line type pattern as list of floats or as a string
• description (str) – line type description, optional
• length (float) – total pattern length, only for complex line types required
• dxfattribs (dict) – additional DXF attributes

Style Table

class ezdxf.sections.table.TextstyleTable

Subclass of Table.
Collection of Textstyle objects.
add(name: str, *, font: str, dxfattribs=None)→ Textstyle

Add a new text style entry for TTF fonts. The entry must not yet exist, otherwise an DXFTableEntryEr-
ror exception will be raised.
Finding the TTF font files is the task of the DXF viewer and each viewer is different (hint: support files).

Parameters
• name (str) – text style name
• font (str) – TTF font file name like “Arial.ttf”, the real font file name from the file system
is required and only the Windows filesystem is case-insensitive.

• dxfattribs (dict) – additional DXF attributes
add_shx(shx_file_name: str, *, dxfattribs=None)→ Textstyle

Add a new shape font (SHX file) entry. These are special text style entries and have no name. The entry must
not yet exist, otherwise an DXFTableEntryError exception will be raised.
Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is different (hint:
support files).

Parameters
• shx_file_name (str) – shape file name like “gdt.shx”
• dxfattribs (dict) – additional DXF attributes

get_shx(shx_file_name: str)→ Textstyle
Get existing entry for a shape file (SHX file), or create a new entry.
Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is different (hint:
support files).

Parameters
shx_file_name (str) – shape file name like “gdt.shx”

find_shx(shx_file_name: str)→ Textstyle | None
Find the shape file (SHX file) text style table entry, by a case-insensitive search.
A shape file table entry has no name, so you have to search by the font attribute.

Parameters
shx_file_name (str) – shape file name like “gdt.shx”

9.8. Reference 237

ezdxf Documentation, Release 1.3.2

discard_shx(shx_file_name: str)→ None
Discard the shape file (SHX file) text style table entry. Does not raise an exception if the entry does not exist.

Parameters
shx_file_name (str) – shape file name like “gdt.shx”

DimStyle Table

class ezdxf.sections.table.DimStyleTable

Subclass of Table.
Collection of DimStyle objects.
add(name: str, *, dxfattribs=None)→ DimStyle

Add a new dimension style table entry.
Parameters

• name (str) – dimension style name
• dxfattribs (dict) – DXF attributes

AppID Table

class ezdxf.sections.table.AppIDTable

Subclass of Table.
Collection of AppID objects.
add(name: str, *, dxfattribs=None)→ AppID

Add a new appid table entry.
Parameters

• name (str) – appid name
• dxfattribs (dict) – DXF attributes

UCS Table

class ezdxf.sections.table.UCSTable

Subclass of Table.
Collection of UCSTableEntry objects.
add(name: str, *, dxfattribs=None)→ UCSTableEntry

Add a new UCS table entry.
Parameters

• name (str) – UCS name
• dxfattribs (dict) – DXF attributes

238 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

View Table

class ezdxf.sections.table.ViewTable

Subclass of Table.
Collection of View objects.
add(name: str, *, dxfattribs=None)→ View

Add a new view table entry.
Parameters

• name (str) – view name
• dxfattribs (dict) – DXF attributes

Viewport Table

class ezdxf.sections.table.ViewportTable

The viewport table stores the modelspace viewport configurations. A viewport configuration is a tiled view of
multiple viewports or just one viewport. In contrast to other tables the viewport table can have multiple entries
with the same name, because all viewport entries of a multi-viewport configuration are having the same name - the
viewport configuration name.
The name of the actual displayed viewport configuration is “*ACTIVE”.
Duplication of table entries is not supported: duplicate_entry() raises NotImplementedError
add(name: str, *, dxfattribs=None)→ VPort

Add a newmodelspace viewport entry. A modelspace viewport configuration can consist of multiple viewport
entries with the same name.

Parameters
• name (str) – viewport name, multiple entries possible
• dxfattribs (dict) – additional DXF attributes

get_config(self, name: str)→ List[VPort]
Returns a list of VPort objects, for the multi-viewport configuration name.

delete_config(name: str)→ None
Delete all VPort objects of the multi-viewport configuration name.

Block Record Table

class ezdxf.sections.table.BlockRecordTable

Subclass of Table.
Collection of BlockRecord objects.
add(name: str, *, dxfattribs=None)→ BlockRecord

Add a new block record table entry.
Parameters

• name (str) – block record name
• dxfattribs (dict) – DXF attributes

9.8. Reference 239

ezdxf Documentation, Release 1.3.2

Layer

LAYER (DXF Reference) definition, defines attribute values for entities on this layer for their attributes set to BYLAYER.

Important: A layer assignment is just an attribute of a DXF entity, it’s not an entity container, the entities are stored in
layouts and blocks and the assigned layer is not important for that.
Deleting a layer entry does not delete the entities which reference this layer!

Subclass of ezdxf.entities.DXFEntity
DXF type 'LAYER'
Factory function Drawing.layers.new()

See also:
Basic concepts of Layers and Tutorial for Layers

class ezdxf.entities.Layer

dxf.handle

DXF handle (feature for experts)
dxf.owner

Handle to owner (LayerTable).
dxf.name

Layer name, case insensitive and can not contain any of this characters: <>/\":;?*|=` (str)
dxf.flags

Layer flags (bit-coded values, feature for experts)

1 Layer is frozen; otherwise layer is thawed; use is_frozen(), freeze() and thaw()
2 Layer is frozen by default in new viewports
4 Layer is locked; use is_locked(), lock(), unlock()
16 If set, table entry is externally dependent on an xref
32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is for the benefit of AutoCAD commands. It can be ignored by most programs
that read DXF files and need not be set by programs that write DXF files)

dxf.color

Layer color, but use property Layer.color to get/set color value, because color is negative for layer status
off (int)

dxf.true_color

Layer true color value as int, use property Layer.rgb to set/get true color value as (r, g, b) tuple.
(requires DXF R2004)

dxf.linetype

Name of line type (str)

240 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D94802B0-8BE8-4AC9-8054-17197688AFDB

ezdxf Documentation, Release 1.3.2

dxf.plot

Plot flag (int). Whether entities belonging to this layer should be drawn when the document is exported
(plotted) to pdf. Does not affect visibility inside the CAD application itself.

1 plot layer (default value)
0 don’t plot layer

dxf.lineweight

Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line weight is 200,
values outside this range prevents AutoCAD from loading the file.
ezdxf.lldxf.const.LINEWEIGHT_DEFAULT for using global default line weight.
(requires DXF R13)

dxf.plotstyle_handle

Handle to plot style name?
(requires DXF R13)

dxf.material_handle

Handle to default Material.
(requires DXF R13)

rgb

Get/set DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute dxf.true_color
is not set.

layer.rgb = (30, 40, 50)
r, g, b = layer.rgb

This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level
attribute dxf.true_color.

color

Get/set layer color, preferred method for getting the layer color, because dxf.color is negative for layer
status off.

description

Get/set layer description as string
transparency

Get/set layer transparency as float value in the range from 0 to 1. 0 for no transparency (opaque) and 1 for
100% transparency.

is_frozen()→ bool
Returns True if layer is frozen.

freeze()→ None
Freeze layer.

thaw()→ None
Thaw layer.

is_locked()→ bool
Returns True if layer is locked.

9.8. Reference 241

ezdxf Documentation, Release 1.3.2

lock()→ None
Lock layer, entities on this layer are not editable - just important in CAD applications.

unlock()→ None
Unlock layer, entities on this layer are editable - just important in CAD applications.

is_off()→ bool
Returns True if layer is off.

is_on()→ bool
Returns True if layer is on.

on()→ None
Switch layer on (visible).

off()→ None
Switch layer off (invisible).

get_color()→ int
Use property Layer.color instead.

set_color(value: int)→ None
Use property Layer.color instead.

rename(name: str)→ None
Rename layer and all known (documented) references to this layer.

Warning: The DXF format is not consistent in storing layer references, the layers are mostly referenced
by their case-insensitive name, some later introduced entities do reference layers by handle, which is the
safer way in the context of renaming layers.
There is no complete overview of where layer references are stored, third-party entities are black-boxes
with unknown content and layer names could be stored in the extended data section of any DXF entity or
in XRECORD entities. Which means that in some rare cases references to the old layer name can persist,
at least this does not invalidate the DXF document.

Parameters
name – new layer name

Raises
• ValueError – name contains invalid characters: <>/":;?*|=`
• ValueError – layer name already exist
• ValueError – renaming of layers '0' and 'DEFPOINTS' not possible

get_vp_overrides()→ LayerOverrides

Returns the LayerOverrides object for this layer.

242 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

LayerOverrides

class ezdxf.entities.LayerOverrides

This object stores the layer attribute overridden in Viewport entities, where each Viewport can have individual
layer attribute overrides.
Layer attributes which can be overridden:

• ACI color
• true color (rgb)
• linetype
• lineweight
• transparency

Get the override object for a certain layer by the Layer.get_vp_overrides() method.
It is important to write changes back by calling commit(), otherwise the changes are lost.

Important: The implementation of this feature as DXF structures is not documented by the DXF reference, so
if you encounter problems or errors, ALWAYS provide the DXF files, otherwise it is not possible to help.

has_overrides(vp_handle: str | None = None)→ bool
Returns True if attribute overrides exist for the given Viewport handle. Returns True if any attribute
overrides exist if the given handle is None.

commit()→ None
Write Viewport overrides back into the Layer entity. Without a commit() all changes are lost!

get_color(vp_handle: str)→ int
Returns the AutoCAD Color Index (ACI) override or the original layer value if no override exist.

set_color(vp_handle: str, value: int)→ None
Override the AutoCAD Color Index (ACI).

Raises
ValueError – invalid color value

get_rgb(vp_handle: str)→ RGB | None
Returns the RGB override or the original layer value if no override exist. Returns None if no true color value
is set.

set_rgb(vp_handle: str, value: RGB | None)
Set the RGB override as (red, gree, blue) tuple or None to remove the true color setting.

Raises
ValueError – invalid RGB value

get_transparency(vp_handle: str)→ float
Returns the transparency override or the original layer value if no override exist. Returns 0.0 for opaque and
1.0 for fully transparent.

set_transparency(vp_handle: str, value: float)→ None
Set the transparency override. A transparency of 0.0 is opaque and 1.0 is fully transparent.

Raises
ValueError – invalid transparency value

9.8. Reference 243

ezdxf Documentation, Release 1.3.2

get_linetype(vp_handle: str)→ str
Returns the linetype override or the original layer value if no override exist.

set_linetype(vp_handle: str, value: str)→ None
Set the linetype override.

Raises
ValueError – linetype without a LTYPE table entry

get_lineweight(vp_handle: str)→ int
Returns the lineweight override or the original layer value if no override exist.

set_lineweight(vp_handle: str, value: int)→ None
Set the lineweight override.

Raises
ValueError – invalid lineweight value

discard(vp_handle: str | None = None)→ None
Discard all attribute overrides for the given Viewport handle or for all Viewport entities if the handle is
None.

Style

Important: DXF is not a layout preserving data format like PDF. It is more similar to the MS Word format. Many
applications can open MS Word documents, but the displayed or printed document does not look perfect like the result
of MS Word.
The final rendering of DXF files is highly dependent on the interpretation of DXF entities by the rendering engine, and the
DXF reference does not provide any guidelines for rendering entities. The biggest visual differences of CAD applications
are the text renderings, therefore the only way to get the exact same result is to use the same CAD application.
The DXF format does not and can not embed TTF fonts like the PDF format!

The Textstyle entity defines a text style (DXFReference), and can be used by the entities: Text, Attrib, Attdef,
MText, Dimension, Leader and MultiLeader.
Example to create a new text style “Arial” and to apply this text style:

doc.styles.add("Arial", font="Arial.ttf")
msp = doc.modelspace()
msp.add_text("my text", dxfattribs={"style": "Arial"})

The settings stored in the Textstyle entity are the default text style values used by CAD applications if the text settings
are not stored in the text entity itself. But not all setting are substituted by the default value. The height or width
attribute must be stored in the text entities itself in order to influence the appearance of the text. It is recommended that
you do not rely on the default settings in the Textstyle entity, set all attributes in the text entity itself if supported.

244 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EF68AF7C-13EF-45A1-8175-ED6CE66C8FC9

ezdxf Documentation, Release 1.3.2

Font Settings

Just a few settings are available exclusive by the Textstyle entity:
The most important setting is the font attribute, this attribute defines the rendering font as raw TTF file name, e.g.
“Arial.ttf” or “OpenSansCondensed-Light.ttf”, this file name is often not the name displayed in GUI application and you
have to digg down into the fonts folder e.g. (“C:\Windows\Fonts”) to get the real file name for the TTF font. Do not
include the path!

AutoCAD supports beyond the legacy SHX fonts only TTF fonts. The SHX font format is not documented and only
available in some CAD applications. The ezdxf drawing add-on replaces the SHX fonts by TTF fonts, which look
similar to the SHX fonts, unfortunately the license of these fonts is unclear, therefore they can not be packaged with
ezdxf. They are installed automatically if you use an Autodesk product like TrueView, or search the internet at you own
risk for these TTF fonts.
The extended font data can provide extra information for the font, it is stored in the XDATA section, not well documented
and not widely supported.

Important: The DXF format does not and can not embed TTF fonts like the PDF format!
You need to make sure that the CAD application is properly configured to have access to the system fonts. The DXF
format has no setting where the CAD application should search for fonts, and does not guarantee that the text rendering

9.8. Reference 245

https://www.autodesk.com/products/dwg/viewers

ezdxf Documentation, Release 1.3.2

on other computers or operating systems looks the same as on your current system on which you created the DXF.

The second exclusive setting is the vertical text flag in Textstyle.flags. The vertical text style is enabled for all
entities using the text style. Vertical text works only for SHX fonts and is not supported for TTF fonts (in AutoCAD) and
is works only for the single line entities Text and Attrib. Most CAD applications beside AutoCAD and BricsCAD
do not support vertical text rendering and even AutoCAD and BricsCAD have problems with vertical text rendering in
some circumstances. Using the vertical text feature is not recommended.

Subclass of ezdxf.entities.DXFEntity
DXF type 'STYLE'
Factory function Drawing.styles.new()

See also:
Tutorial for Text and DXF internals for DIMSTYLE Table.
class ezdxf.entities.Textstyle

property is_backward: bool

Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.
property is_upside_down: bool

Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.
property is_vertical_stacked: bool

Get/set style flag VERTICAL_STACKED, for vertical stacked text.
property is_shape_file: bool

True if entry describes a shape.
dxf.handle

DXF handle (feature for experts).
dxf.owner

Handle to owner (TextstyleTable).
dxf.name

Style name (str)
dxf.flags

Style flags (feature for experts).

1 If set, this entry describes a shape
4 Vertical text
16 If set, table entry is externally dependent on an xref
32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)commands. It can be ignored by most
programs that read DXF files and need not be set by programs that write DXF files)

dxf.height

Fixed height in drawing units as float value, 0 for not fixed.

246 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.width

Width factor as float value, default value is 1.
dxf.oblique

Oblique (slanting) angle in degrees as float value, default value is 0 for no slanting.
dxf.generation_flags

Text generations flags as int value.

2 text is backward (mirrored along the x-axis)
4 text is upside down (mirrored about the base line)

dxf.last_height

Last height used in drawing units as float value.
dxf.font

Raw font file name as string without leading path, e.g. “Arial.ttf” for TTF fonts or the SHX font name like
“TXT” or “TXT.SHX”.

dxf.bigfont

Big font name as string, blank if none. No documentation how to use this feature, maybe just a legacy artifact.
property has_extended_font_data: bool

Returns True if extended font data is present.
get_extended_font_data()→ tuple[str, bool, bool]

Returns extended font data as tuple (font-family, italic-flag, bold-flag).
The extended font data is optional and not reliable! Returns (“”, False, False) if extended font data is not
present.

set_extended_font_data(family: str = '', *, italic=False, bold=False)→ None
Set extended font data, the font-family name family is not validated by ezdxf. Overwrites existing data.

discard_extended_font_data()

Discard extended font data.
make_font(cap_height: float | None = None, width_factor: float | None = None)→ fonts.AbstractFont

Returns a font abstraction AbstractFont for this text style. Returns a font for a cap height of 1, if the
text style has auto height (Textstyle.dxf.height is 0) and the given cap_height is None or 0. Uses
the Textstyle.dxf.width attribute if the given width_factor is None or 0, the default value is 1. The
attribute Textstyle.dxf.big_font is ignored.

Linetype

Defines a linetype (DXF Reference).

Subclass of ezdxf.entities.DXFEntity
DXF type 'LTYPE'
Factory function Drawing.linetypes.new()

See also:
Tutorial for Creating Linetype Pattern

9.8. Reference 247

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC

ezdxf Documentation, Release 1.3.2

DXF Internals: LTYPE Table

class ezdxf.entities.Linetype

dxf.name

Linetype name (str).
dxf.owner

Handle to owner (Table).
dxf.description

Linetype description (str).
dxf.length

Total pattern length in drawing units (float).
dxf.items

Number of linetype elements (int).

DimStyle

248 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DIMSTYLE (DXF Reference) defines the appearance of Dimension entities. Each of this dimension variables starting
with "dim..." can be overridden for any Dimension entity individually.

Subclass of ezdxf.entities.DXFEntity
DXF type 'DIMSTYLE'
Factory function Drawing.dimstyles.new()

class ezdxf.entities.DimStyle

dxf.owner

Handle to owner (Table).
dxf.name

Dimension style name.
dxf.flags

Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref
32 If both this bit and bit 16 are set, the externally dependent XREF has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)

dxf.dimpost

Prefix/suffix for primary units dimension values.

9.8. Reference 249

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F2FAD36F-0CE3-4943-9DAD-A9BCD2AE81DA

ezdxf Documentation, Release 1.3.2

dxf.dimapost

Prefix/suffix for alternate units dimensions.
dxf.dimblk

Block type to use for both arrowheads as name string.
dxf.dimblk1

Block type to use for first arrowhead as name string.
dxf.dimblk2

Block type to use for second arrowhead as name string.
dxf.dimscale

Global dimension feature scale factor. (default=1)
dxf.dimasz

Dimension line and arrowhead size. (default=0.25)
dxf.dimexo

Distance from origin points to extension lines. (default imperial=0.0625, default metric=0.625)
dxf.dimdli

Incremental spacing between baseline dimensions. (default imperial=0.38, default metric=3.75)
dxf.dimexe

Extension line distance beyond dimension line. (default imperial=0.28, default metric=2.25)
dxf.dimrnd

Rounding value for decimal dimensions. (default=0)
Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to 0.25, all distances
round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer.

dxf.dimdle

Dimension line extension beyond extension lines. (default=0)
dxf.dimtp

Upper tolerance value for tolerance dimensions. (default=0)
dxf.dimtm

Lower tolerance value for tolerance dimensions. (default=0)
dxf.dimtxt

Size of dimension text. (default imperial=0.28, default metric=2.5)
dxf.dimcen

Controls placement of center marks or centerlines. (default imperial=0.09, default metric=2.5)
dxf.dimtsz

Controls size of dimension line tick marks drawn instead of arrowheads. (default=0)
dxf.dimaltf

Alternate units dimension scale factor. (default=25.4)
dxf.dimlfac

Scale factor for linear dimension values. (default=1)
dxf.dimtvp

Vertical position of text above or below dimension line if dimtad is 0. (default=0)

250 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.dimtfac

Scale factor for fractional or tolerance text size. (default=1)
dxf.dimgap

Gap size between dimension line and dimension text. (default imperial=0.09, default metric=0.625)
dxf.dimaltrnd

Rounding value for alternate dimension units. (default=0)
dxf.dimtol

Toggles creation of appended tolerance dimensions. (default imperial=1, default metric=0)
dxf.dimlim

Toggles creation of limits-style dimension text. (default=0)
dxf.dimtih

Orientation of text inside extension lines. (default imperial=1, default metric=0)
dxf.dimtoh

Orientation of text outside extension lines. (default imperial=1, default metric=0)
dxf.dimse1

Toggles suppression of first extension line. (default=0)
dxf.dimse2

Toggles suppression of second extension line. (default=0)
dxf.dimtad

Sets vertical text placement relative to dimension line. (default imperial=0, default metric=1)

0 center
1 above
2 outside, handled like above by ezdxf
3 JIS, handled like above by ezdxf
4 below

dxf.dimzin

Zero suppression for primary units dimensions. (default imperial=0, default metric=8)
Values 0-3 affect feet-and-inch dimensions only.

0 Suppresses zero feet and precisely zero inches
1 Includes zero feet and precisely zero inches
2 Includes zero feet and suppresses zero inches
3 Includes zero inches and suppresses zero feet
4 Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)
8 Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)
12 Suppresses both leading and trailing zeros (for example, 0.5000 becomes .5)

dxf.dimazin

Controls zero suppression for angular dimensions. (default=0)

9.8. Reference 251

ezdxf Documentation, Release 1.3.2

0 Displays all leading and trailing zeros
1 Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)
2 Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)
3 Suppresses leading and trailing zeros (for example, 0.5000 becomes .5)

dxf.dimalt

Enables or disables alternate units dimensioning. (default=0)
dxf.dimaltd

Controls decimal places for alternate units dimensions. (default imperial=2, default metric=3)
dxf.dimtofl

Toggles forced dimension line creation. (default imperial=0, default metric=1)
dxf.dimsah

Toggles appearance of arrowhead blocks. (default=0)
dxf.dimtix

Toggles forced placement of text between extension lines. (default=0)
dxf.dimsoxd

Suppresses dimension lines outside extension lines. (default=0)
dxf.dimclrd

Dimension line, arrowhead, and leader line color. (default=0)
dxf.dimclre

Dimension extension line color. (default=0)
dxf.dimclrt

Dimension text color. (default=0)
dxf.dimadec

Controls the number of decimal places for angular dimensions.
dxf.dimunit

Obsolete, now use DIMLUNIT AND DIMFRAC
dxf.dimdec

Decimal places for dimension values. (default imperial=4, default metric=2)
dxf.dimtdec

Decimal places for primary units tolerance values. (default imperial=4, default metric=2)
dxf.dimaltu

Units format for alternate units dimensions. (default=2)
dxf.dimalttd

Decimal places for alternate units tolerance values. (default imperial=4, default metric=2)
dxf.dimaunit

Unit format for angular dimension values. (default=0)
dxf.dimfrac

Controls the fraction format used for architectural and fractional dimensions. (default=0)

252 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.dimlunit

Specifies units for all nonangular dimensions. (default=2)
dxf.dimdsep

Specifies a single character to use as a decimal separator. (default imperial = “.”, default metric = “,”) This is
an integer value, use ord(".") to write value.

dxf.dimtmove

Controls the format of dimension text when it is moved. (default=0)

0 Moves the dimension line with dimension text
1 Adds a leader when dimension text is moved
2 Allows text to be moved freely without a leader

dxf.dimjust

Horizontal justification of dimension text. (default=0)

0 Center of dimension line
1 Left side of the dimension line, near first extension line
2 Right side of the dimension line, near second extension line
3 Over first extension line
4 Over second extension line

dxf.dimsd1

Toggles suppression of first dimension line. (default=0)
dxf.dimsd2

Toggles suppression of second dimension line. (default=0)
dxf.dimtolj

Vertical justification for dimension tolerance text. (default=1)

0 Align with bottom line of dimension text
1 Align vertical centered to dimension text
2 Align with top line of dimension text

dxf.dimtzin

Zero suppression for tolerances values, see DimStyle.dxf.dimzin
dxf.dimaltz

Zero suppression for alternate units dimension values. (default=0)
dxf.dimalttz

Zero suppression for alternate units tolerance values. (default=0)
dxf.dimfit

Obsolete, now use DIMATFIT and DIMTMOVE
dxf.dimupt

Controls user placement of dimension line and text. (default=0)

9.8. Reference 253

ezdxf Documentation, Release 1.3.2

dxf.dimatfit

Controls placement of text and arrowheads when there is insufficient space between the extension lines. (de-
fault=3)

dxf.dimtxsty

Text style used for dimension text by name.
dxf.dimtxsty_handle

Text style used for dimension text by handle of STYLE entry. (use DimStyle.dxf.dimtxsty to get/set
text style by name)

dxf.dimldrblk

Specify arrowhead used for leaders by name.
dxf.dimldrblk_handle

Specify arrowhead used for leaders by handle of referenced block. (use DimStyle.dxf.dimldrblk to
get/set arrowhead by name)

dxf.dimblk_handle

Block type to use for both arrowheads, handle of referenced block. (use DimStyle.dxf.dimblk to
get/set arrowheads by name)

dxf.dimblk1_handle

Block type to use for first arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk1 to
get/set arrowhead by name)

dxf.dimblk2_handle

Block type to use for second arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk2 to
get/set arrowhead by name)

dxf.dimlwd

Lineweight value for dimension lines. (default=-2, BYBLOCK)
dxf.dimlwe

Lineweight value for extension lines. (default=-2, BYBLOCK)
dxf.dimltype

Specifies the linetype used for the dimension line as linetype name, requires DXF R2007+
dxf.dimltype_handle

Specifies the linetype used for the dimension line as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltype to get/set linetype by name)

dxf.dimltex1

Specifies the linetype used for the extension line 1 as linetype name, requires DXF R2007+
dxf.dimlex1_handle

Specifies the linetype used for the extension line 1 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex1 to get/set linetype by name)

dxf.dimltex2

Specifies the linetype used for the extension line 2 as linetype name, requires DXF R2007+
dxf.dimlex2_handle

Specifies the linetype used for the extension line 2 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex2 to get/set linetype by name)

254 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.dimfxlon

Extension line has fixed length if set to 1, requires DXF R2007+
dxf.dimfxl

Length of extension line below dimension line if fixed (DimStyle.dxf.dimtfxlon== 1), DimStyle.
dxf.dimexen defines the length above the dimension line, requires DXF R2007+

dxf.dimtfill

Text fill 0=off; 1=background color; 2=custom color (see DimStyle.dxf.dimtfillclr), requires
DXF R2007+

dxf.dimtfillclr

Text fill custom color as color index (1-255), requires DXF R2007+
dxf.dimarcsym

Display arc symbol, supported only by ArcDimension:

0 arc symbol preceding the measurement text
1 arc symbol above the measurement text
2 disable arc symbol

copy_to_header(doc: Drawing)
Copy all dimension style variables to HEADER section of doc.

set_arrows(blk: str = '', blk1: str = '', blk2: str = '', ldrblk: str = '')→ None
Set arrows by block names or AutoCAD standard arrow names, set DIMTSZ to 0 which disables tick.

Parameters
• blk – block/arrow name for both arrows, if DIMSAH is 0
• blk1 – block/arrow name for first arrow, if DIMSAH is 1
• blk2 – block/arrow name for second arrow, if DIMSAH is 1
• ldrblk – block/arrow name for leader

set_tick(size: float = 1)→ None
Set tick size, which also disables arrows, a tick is just an oblique stroke as marker.

Parameters
size – arrow size in drawing units

set_text_align(halign: str | None = None, valign: str | None = None, vshift: float | None = None)→ None
Set measurement text alignment, halign defines the horizontal alignment (requires DXF R2000+), valign
defines the vertical alignment, above1 and above2means above extension line 1 or 2 and aligned with extension
line.

Parameters
• halign – “left”, “right”, “center”, “above1”, “above2”, requires DXF R2000+
• valign – “above”, “center”, “below”
• vshift – vertical text shift, if valign is “center”; >0 shift upward, <0 shift downwards

set_text_format(prefix: str = '', postfix: str = '', rnd: float | None = None, dec: int | None = None, sep: str |
None = None, leading_zeros: bool = True, trailing_zeros: bool = True)

Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.

9.8. Reference 255

ezdxf Documentation, Release 1.3.2

Parameters
• prefix – Dimension text prefix text as string
• postfix – Dimension text postfix text as string
• rnd – Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

• dec – Sets the number of decimal places displayed for the primary units of a dimension,
requires DXF R2000+

• sep – “.” or “,” as decimal separator, requires DXF R2000+
• leading_zeros – Suppress leading zeros for decimal dimensions if False
• trailing_zeros – Suppress trailing zeros for decimal dimensions if False

set_dimline_format(color: int | None = None, linetype: str | None = None, lineweight: int | None = None,
extension: float | None = None, disable1: bool | None = None, disable2: bool | None
= None)

Set dimension line properties
Parameters

• color – color index
• linetype – linetype as string, requires DXF R2007+
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm, requires DXF R2000+
• extension – extension length
• disable1 – True to suppress first part of dimension line, requires DXF R2000+
• disable2 – True to suppress second part of dimension line, requires DXF R2000+

set_extline_format(color: int | None = None, lineweight: int | None = None, extension: float | None =
None, offset: float | None = None, fixed_length: float | None = None)

Set common extension line attributes.
Parameters

• color – color index
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm
• extension – extension length above dimension line
• offset – offset from measurement point
• fixed_length – set fixed length extension line, length below the dimension line

set_extline1(linetype: str | None = None, disable=False)
Set extension line 1 attributes.

Parameters
• linetype – linetype for extension line 1, requires DXF R2007+
• disable – disable extension line 1 if True

set_extline2(linetype: str | None = None, disable=False)
Set extension line 2 attributes.

Parameters

256 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• linetype – linetype for extension line 2, requires DXF R2007+
• disable – disable extension line 2 if True

set_tolerance(upper: float, lower: float | None = None, hfactor: float = 1.0, align: MTextLineAlignment |
None = None, dec: int | None = None, leading_zeros: bool | None = None, trailing_zeros:
bool | None = None)→ None

Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and
trailing zero suppression.

Parameters
• upper – upper tolerance value
• lower – lower tolerance value, if None same as upper
• hfactor – tolerance text height factor in relation to the dimension text height
• align – tolerance text alignment enum ezdxf.enums.MTextLineAlignment re-
quires DXF R2000+

• dec – Sets the number of decimal places displayed, requires DXF R2000+
• leading_zeros – suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

• trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+

set_limits(upper: float, lower: float, hfactor: float = 1.0, dec: int | None = None, leading_zeros: bool | None
= None, trailing_zeros: bool | None = None)→ None

Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading
and trailing zero suppression.

Parameters
• upper – upper limit value added to measurement value
• lower – lower limit value subtracted from measurement value
• hfactor – limit text height factor in relation to the dimension text height
• dec – Sets the number of decimal places displayed, requires DXF R2000+
• leading_zeros – suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

• trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+

VPort

The viewport table (DXF Reference) stores the modelspace viewport configurations. So this entries just modelspace
viewports, not paperspace viewports, for paperspace viewports see the Viewport entity.

Subclass of ezdxf.entities.DXFEntity
DXF type 'VPORT'
Factory function Drawing.viewports.new()

9.8. Reference 257

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8CE7CC87-27BD-4490-89DA-C21F516415A9

ezdxf Documentation, Release 1.3.2

See also:
DXF Internals: VPORT Configuration Table

class ezdxf.entities.VPort

Subclass of DXFEntity
Defines a viewport configurations for the modelspace.
dxf.owner

Handle to owner (ViewportTable).
dxf.name

Viewport name
dxf.flags

Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref
32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)

dxf.lower_left

Lower-left corner of viewport
dxf.upper_right

Upper-right corner of viewport
dxf.center

View center point (in DCS)
dxf.snap_base

Snap base point (in DCS)
dxf.snap_spacing

Snap spacing X and Y
dxf.grid_spacing

Grid spacing X and Y
dxf.direction_point

View direction from target point (inWCS)
dxf.target_point

View target point (inWCS)
dxf.height

View height
dxf.aspect_ratio

dxf.lens_length

Lens focal length in mm
dxf.front_clipping

Front clipping plane (offset from target point)

258 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.back_clipping

Back clipping plane (offset from target point)
dxf.snap_rotation

Snap rotation angle in degrees
dxf.view_twist

View twist angle in degrees
dxf.status

dxf.view_mode

dxf.circle_zoom

dxf.fast_zoom

dxf.ucs_icon

• bit 0: 0=hide, 1=show
• bit 1: 0=display in lower left corner, 1=display at origin

dxf.snap_on

dxf.grid_on

dxf.snap_style

dxf.snap_isopair

reset_wcs()→ None
Reset coordinate system to theWCS.

View

The View table (DXF Reference) stores named views of the model or paperspace layouts. This stored views makes parts
of the drawing or some view points of the model in a CAD applications more accessible. This views have no influence
to the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the
convenience of CAD application users.

Subclass of ezdxf.entities.DXFEntity
DXF type 'VIEW'
Factory function Drawing.views.new()

See also:
DXF Internals: VIEW Table

class ezdxf.entities.View

dxf.owner

Handle to owner (Table).
dxf.name

Name of view.

9.8. Reference 259

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C

ezdxf Documentation, Release 1.3.2

dxf.flags

Standard flag values (bit-coded values):

1 If set, this is a paper space view
16 If set, table entry is externally dependent on an xref
32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)

dxf.height

View height (in DCS)
dxf.width

View width (in DCS)
dxf.center_point

View center point (in DCS)
dxf.direction_point

View direction from target (in WCS)
dxf.target_point

Target point (in WCS)
dxf.lens_length

Lens length
dxf.front_clipping

Front clipping plane (offset from target point)
dxf.back_clipping

Back clipping plane (offset from target point)
dxf.view_twist

Twist angle in degrees.
dxf.view_mode

View mode (see VIEWMODE system variable)
dxf.render_mode

0 2D Optimized (classic 2D)
1 Wireframe
2 Hidden line
3 Flat shaded
4 Gouraud shaded
5 Flat shaded with wireframe
6 Gouraud shaded with wireframe

dxf.ucs

1 if there is a UCS associated to this view; 0 otherwise
dxf.ucs_origin

UCS origin as (x, y, z) tuple (appears only if ucs is set to 1)

260 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.ucs_xaxis

UCS x-axis as (x, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_yaxis

UCS y-axis as (x, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_ortho_type

Orthographic type of UCS (appears only if ucs is set to 1)

0 UCS is not orthographic
1 Top
2 Bottom
3 Front
4 Back
5 Left
6 Right

dxf.elevation

UCS elevation
dxf.ucs_handle

Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed (appears only if ucs
is set to 1)

dxf.base_ucs_handle

Handle of UCSTable of base UCS if UCS is orthographic. If not present and ucs_ortho_type is
non-zero, then base UCS is taken to be WORLD (appears only if ucs is set to 1)

dxf.camera_plottable

1 if the camera is plottable
dxf.background_handle

Handle to background object (optional)
dxf.live_selection_handle

Handle to live section object (optional)
dxf.visual_style_handle

Handle to visual style object (optional)
dxf.sun_handle

Sun hard ownership handle.

AppID

Defines an APPID (DXF Reference). These table entries maintain a set of names for all registered applications.

Subclass of ezdxf.entities.DXFEntity
DXF type 'APPID'
Factory function Drawing.appids.new()

class ezdxf.entities.AppID

9.8. Reference 261

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6E3140E9-E560-4C77-904E-480382F0553E

ezdxf Documentation, Release 1.3.2

dxf.owner

Handle to owner (Table).
dxf.name

User-supplied (or application-supplied) application name (for extended data).
dxf.flags

Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref
32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)

UCS

Defines an named or unnamed user coordinate system (DXF Reference) for usage in CAD applications. This UCS table
entry does not interact with ezdxf in any way, to do coordinate transformations by ezdxf use the ezdxf.math.UCS
class.

Subclass of ezdxf.entities.DXFEntity
DXF type 'UCS'
Factory function Drawing.ucs.new()

See also:
UCS and OCS

class ezdxf.entities.UCSTableEntry

dxf.owner

Handle to owner (Table).
dxf.name

UCS name (str).
dxf.flags

Standard flags (bit-coded values):

16 If set, table entry is externally dependent on an xref
32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)

dxf.origin

Origin as (x, y, z) tuple
dxf.xaxis

X-axis direction as (x, y, z) tuple
dxf.yaxis

Y-axis direction as (x, y, z) tuple

262 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1906E8A7-3393-4BF9-BD27-F9AE4352FB8B

ezdxf Documentation, Release 1.3.2

ucs()→ UCS
Returns an ezdxf.math.UCS object for this UCS table entry.

BlockRecord

BLOCK_RECORD (DXF Reference) is the core management structure for BlockLayout and Layout. This is an
internal DXF structure managed by ezdxf, package users don’t have to care about it.

Subclass of ezdxf.entities.DXFEntity
DXF type 'BLOCK_RECORD'
Factory function Drawing.block_records.new()

class ezdxf.entities.BlockRecord

dxf.owner

Handle to owner (Table).
dxf.name

Name of associated BLOCK.
dxf.layout

Handle to associated DXFLayout, if paperspace layout or modelspace else “0”
dxf.explode

1 for BLOCK references can be exploded else 0
dxf.scale

1 for BLOCK references can be scaled else 0
dxf.units

BLOCK insert units

9.8. Reference 263

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A1FD1934-7EF5-4D35-A4B0-F8AE54A9A20A

ezdxf Documentation, Release 1.3.2

0 Unitless
1 Inches
2 Feet
3 Miles
4 Millimeters
5 Centimeters
6 Meters
7 Kilometers
8 Microinches
9 Mils
10 Yards
11 Angstroms
12 Nanometers
13 Microns
14 Decimeters
15 Decameters
16 Hectometers
17 Gigameters
18 Astronomical units
19 Light years
20 Parsecs
21 US Survey Feet
22 US Survey Inch
23 US Survey Yard
24 US Survey Mile

property is_active_paperspace: bool

True if is “active” paperspace layout.
property is_any_paperspace: bool

True if is any kind of paperspace layout.
property is_any_layout: bool

True if is any kind of modelspace or paperspace layout.
property is_block_layout: bool

True if not any kind of modelspace or paperspace layout, just a regular block definition.
property is_modelspace: bool

True if is the modelspace layout.
property is_xref: bool

True if represents an XREF (external reference) or XREF_OVERLAY.

264 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Internal Structure

Do not change this structures, this is just an information for experienced developers!
The BLOCK_RECORD is the owner of all the entities in a layout and stores them in an EntitySpace object
(BlockRecord.entity_space). For each layout exist a BLOCK definition in the BLOCKS section, a reference
to the Block entity is stored in BlockRecord.block.
Modelspace and Paperspace layouts require an additional DXFLayout object in the OBJECTS section.
See also:
More information about Block Management Structures and Layout Management Structures.

Blocks

A block definition (BlockLayout) is a collection of DXF entities, which can be placed multiply times at different
layouts or other blocks as references to the block definition. Block layouts are located in the BLOCKS sections and are
accessible by the blocks attribute of the Drawing class.
See also:
Tutorial for Blocks and DXF Internals: Block Management Structures

Block

BLOCK (DXF Reference) entity is embedded into the BlockLayout object. The BLOCK entity is accessible by the
BlockLayout.block attribute.

Subclass of ezdxf.entities.DXFEntity
DXF type 'BLOCK'
Factory function Drawing.blocks.new() (returns a BlockLayout)

See also:
Tutorial for Blocks and DXF Internals: Block Management Structures

class ezdxf.entities.Block

dxf.handle

BLOCK handle as plain hex string. (feature for experts)
dxf.owner

Handle to owner as plain hex string. (feature for experts)
dxf.layer

Layer name as string; default value is '0'
dxf.name

BLOCK name as string. (case insensitive)
dxf.base_point

BLOCK base point as (x, y, z) tuple, default value is (0, 0, 0)

Insertion location referenced by the Insert entity to place the block reference and also the center of rotation
and scaling.

9.8. Reference 265

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-66D32572-005A-4E23-8B8B-8726E8C14302

ezdxf Documentation, Release 1.3.2

dxf.flags

BLOCK flags (bit-coded)

1 Anonymous block generated by hatching, associative dimensioning, other internal operations, or an
application

2 Block has non-constant attribute definitions (this bit is not set if the block has any attribute definitions
that are constant, or has no attribute definitions at all)

4 Block is an external reference (xref)
8 Block is an xref overlay
16 Block is externally dependent
32 This is a resolved external reference, or dependent of an external reference (ignored on input)
64 This definition is a referenced external reference (ignored on input)

dxf.xref_path

File system path as string, if this block defines an external reference (XREF).
is_layout_block

Returns True if this is a Modelspace or Paperspace block definition.
is_anonymous

Returns True if this is an anonymous block generated by hatching, associative dimensioning, other internal
operations, or an application.

is_xref

Returns True if bock is an external referenced file.
is_xref_overlay

Returns True if bock is an external referenced overlay file.

EndBlk

ENDBLK entity is embedded into the BlockLayout object. The ENDBLK entity is accessible by the
BlockLayout.endblk attribute.

Subclass of ezdxf.entities.DXFEntity
DXF type 'ENDBLK'

class ezdxf.entities.EndBlk

dxf.handle

BLOCK handle as plain hex string. (feature for experts)
dxf.owner

Handle to owner as plain hex string. (feature for experts)
dxf.layer

Layer name as string; should always be the same as Block.dxf.layer

266 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Insert

The INSERT entity (DXF Reference) represents a block reference with optional attached attributes as (Attrib) entities.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'INSERT'
Factory function ezdxf.layouts.BaseLayout.add_blockref()
Inherited DXF attributes Common graphical DXF attributes

See also:
Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Insert

dxf.name

BLOCK name (str)
dxf.insert

Insertion location of the BLOCK base point as (2D/3D Point in OCS)
dxf.xscale

Scale factor for x direction (float)
dxf.yscale

Scale factor for y direction (float)
Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.zscale

Scale factor for z direction (float)
Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.rotation

Rotation angle in degrees (float)
dxf.row_count

Count of repeated insertions in row direction, MINSERT entity if > 1 (int)
dxf.row_spacing

Distance between two insert points (MINSERT) in row direction (float)
dxf.column_count

Count of repeated insertions in column direction, MINSERT entity if > 1 (int)
dxf.column_spacing

Distance between two insert points (MINSERT) in column direction (float)
attribs

A list of all attached Attrib entities.

9.8. Reference 267

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-28FA4CFB-9D5E-4880-9F11-36C97578252F

ezdxf Documentation, Release 1.3.2

has_scaling

Returns True if scaling is applied to any axis.
has_uniform_scaling

Returns True if the scale factor is uniform for x-, y- and z-axis, ignoring reflections e.g. (1, 1, -1) is uniform
scaling.

mcount

Returns the multi-insert count, MINSERT (multi-insert) processing is required if mcount > 1.
set_scale(factor: float)

Set a uniform scale factor.
block()→ BlockLayout | None

Returns the associated BlockLayout.
place(insert: UVec | None = None, scale: tuple[float, float, float] | None = None, rotation: float | None =

None)→ Insert
Set the location, scaling and rotation attributes. Arguments which are None will be ignored.

Parameters
• insert – insert location as (x, y [,z]) tuple
• scale – (x-scale, y-scale, z-scale) tuple
• rotation – rotation angle in degrees

grid(size: tuple[int, int] = (1, 1), spacing: tuple[float, float] = (1, 1))→ Insert
Place block reference in a grid layout, grid size defines the row- and column count, spacing defines the distance
between two block references.

Parameters
• size – grid size as (row_count, column_count) tuple
• spacing – distance between placing as (row_spacing, column_spacing) tuple

has_attrib(tag: str, search_const: bool = False)→ bool
Returns True if the INSERT entity has an attached ATTRIB entity with the given tag. Some applications do
not attach constant ATTRIB entities, set search_const to True, to check for an associated AttDef entity
with constant content.

Parameters
• tag – tag name fo the ATTRIB entity
• search_const – search also const ATTDEF entities

get_attrib(tag: str, search_const: bool = False)→ Attrib | AttDef | None
Get an attached Attrib entity with the given tag, returns None if not found. Some applications do not
attach constant ATTRIB entities, set search_const to True, to get at least the associated AttDef entity.

Parameters
• tag – tag name of the ATTRIB entity
• search_const – search also const ATTDEF entities

get_attrib_text(tag: str, default: str = '', search_const: bool = False)→ str
Get content text of an attached Attrib entity with the given tag, returns the default value if not found.
Some applications do not attach constant ATTRIB entities, set search_const to True, to get content text of
the associated AttDef entity.

268 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Parameters
• tag – tag name of the ATTRIB entity
• default – default value if ATTRIB tag is absent
• search_const – search also const ATTDEF entities

add_attrib(tag: str, text: str, insert: UVec = (0, 0), dxfattribs=None)→ Attrib
Attach an Attrib entity to the block reference.
Example for appending an attribute to an INSERT entity:

e.add_attrib('EXAMPLETAG', 'example text').set_placement(
(3, 7), align=TextEntityAlignment.MIDDLE_CENTER

)

Parameters
• tag – tag name of the ATTRIB entity
• text – content text as string
• insert – insert location as (x, y[, z]) tuple in OCS

• dxfattribs – additional DXF attributes for the ATTRIB entity

add_auto_attribs(values: dict[str, str])→ Insert
Attach for each Attdef entity, defined in the block definition, automatically an Attrib entity to the block
reference and set tag/value DXF attributes of the ATTRIB entities by the key/value pairs (both as
strings) of the values dict. TheATTRIB entities are placed relative to the insert location of the block reference,
which is identical to the block base point.
This method avoids the wrapper block of the add_auto_blockref()method, but the visual results may
not match the results of CAD applications, especially for non-uniform scaling. If the visual result is very
important to you, use the add_auto_blockref() method.

Parameters
values – Attrib tag values as tag/value pairs

delete_attrib(tag: str, ignore=False)→ None
Delete an attached Attrib entity from INSERT. Raises an DXFKeyError exception, if no ATTRIB for
the given tag exist if ignore is False.

Parameters
• tag – tag name of the ATTRIB entity
• ignore – False for raising DXFKeyError if ATTRIB tag does not exist.

Raises
DXFKeyError – no ATTRIB for the given tag exist

delete_all_attribs()→ None
Delete all Attrib entities attached to the INSERT entity.

transform(m: Matrix44)→ Insert
Transform INSERT entity by transformation matrix m inplace.
Unlike the transformation matrix m, the INSERT entity can not represent a non-orthogonal target coordinate
system and an InsertTransformationError will be raised in that case.

9.8. Reference 269

ezdxf Documentation, Release 1.3.2

translate(dx: float, dy: float, dz: float)→ Insert
Optimized INSERT translation about dx in x-axis, dy in y-axis and dz in z-axis.

virtual_entities(*, skipped_entity_callback: Callable[[DXFGraphic, str], None] | None = None,
redraw_order=False)→ Iterator[DXFGraphic]

Yields the transformed referenced block content as virtual entities.
This method is meant to examine the block reference entities at the target location without exploding the
block reference. These entities are not stored in the entity database, have no handle and are not assigned to
any layout. It is possible to convert these entities into regular drawing entities by adding the entities to the
entities database and a layout of the same DXF document as the block reference:

doc.entitydb.add(entity)
msp = doc.modelspace()
msp.add_entity(entity)

Warning: Non-uniform scale factors may return incorrect results for some entities (TEXT, MTEXT,
ATTRIB).

This method does not resolve the MINSERT attributes, only the sub-entities of the first INSERT will be
returned. To resolve MINSERT entities check if multi insert processing is required, that’s the case if the
property Insert.mcount > 1, use the Insert.multi_insert() method to resolve the MINSERT
entity into multiple INSERT entities.
This method does not apply the clipping path created by the XCLIP command. The method returns all entities
and ignores the clipping path polygon and no entity is clipped.
The skipped_entity_callback() will be called for all entities which are not processed, signature:
skipped_entity_callback(entity: DXFEntity, reason: str), entity is the origi-
nal (untransformed) DXF entity of the block definition, the reason string is an explanation why the entity was
skipped.

Parameters
• skipped_entity_callback – called whenever the transformation of an entity is not
supported and so was skipped

• redraw_order – yield entities in ascending redraw order if True
multi_insert()→ Iterator[Insert]

Yields a virtual INSERT entity for each grid element of a MINSERT entity (multi-insert).
explode(target_layout: BaseLayout | None = None, *, redraw_order=False)→ EntityQuery

Explodes the block reference entities into the target layout, if target layout is None, the layout of the block
reference will be used. This method destroys the source block reference entity.
Transforms the block entities into the requiredWCS location by applying the block reference attributes insert,
extrusion, rotation and the scale factors xscale, yscale and zscale.
Attached ATTRIB entities are converted to TEXT entities, this is the behavior of the BURST command of
the AutoCAD Express Tools.

Warning: Non-uniform scale factors may lead to incorrect results some entities (TEXT, MTEXT,
ATTRIB).

Parameters

270 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• target_layout – target layout for exploded entities, None for same layout as source
entity.

• redraw_order – create entities in ascending redraw order if True
Returns

EntityQuery container referencing all exploded DXF entities.

ucs()

Returns the block reference coordinate system as ezdxf.math.UCS object.
matrix44()→ Matrix44

Returns a transformation matrix to transform the block entities from the block reference coordinate system
into theWCS.

reset_transformation()→ None
Reset block reference attributes location, rotation angle and the extrusion vector but preserves the scale factors.

Attrib

The ATTRIB (DXF Reference) entity represents a text value associated with a tag. In most cases an ATTRIB is appended
to an Insert entity, but it can also be used as a standalone entity.

Subclass of ezdxf.entities.Text
DXF type 'ATTRIB'
Factory function ezdxf.layouts.BaseLayout.add_attrib() (stand alone entity)
Factory function Insert.add_attrib() (attached to Insert)
Inherited DXF attributes Common graphical DXF attributes

See also:
Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Attrib

ATTRIB supports all DXF attributes and methods of parent class Text.
dxf.tag

Tag to identify the attribute (str)
dxf.text

Attribute content as text (str)
property is_invisible: bool

Attribute is invisible if True.
property is_const: bool

This is a constant attribute if True.
property is_verify: bool

Verification is required on input of this attribute. (interactive CAD application feature)

9.8. Reference 271

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7DD8B495-C3F8-48CD-A766-14F9D7D0DD9B

ezdxf Documentation, Release 1.3.2

property is_preset: bool

No prompt during insertion. (interactive CAD application feature)
property has_embedded_mtext_entity: bool

Returns True if the entity has an embedded MTEXT entity for multi-line support.
virtual_mtext_entity()→MText

Returns the embeddedMTEXT entity as a regular but virtualMText entity with the same graphical properties
as the host entity.

plain_mtext(fast=True)→ str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.
The fast mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The accurate mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.
The accurate mode is much slower than the fast mode.

Parameters
fast – uses the fast mode to extract the plain MTEXT content if True or the accuratemode
if set to False

set_mtext(mtext: MText, graphic_properties=True)→ None
Set multi-line properties from a MText entity.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from sourceMTEXT
if True

embed_mtext(mtext: MText, graphic_properties=True)→ None
Set multi-line properties from a MText entity and destroy the source entity afterwards.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from sourceMTEXT
if True

AttDef

The ATTDEF (DXF Reference) entity is a template in a BlockLayout, which will be used to create an attached
Attrib entity for an Insert entity.

Subclass of ezdxf.entities.Text
DXF type 'ATTDEF'
Factory function ezdxf.layouts.BaseLayout.add_attdef()
Inherited DXF attributes Common graphical DXF attributes

272 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0EA099B-6F88-4BCC-BEC7-247BA64838A4

ezdxf Documentation, Release 1.3.2

See also:
Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.AttDef

ATTDEF supports all DXF attributes and methods of parent class Text.
dxf.tag

Tag to identify the attribute (str)
dxf.text

Attribute content as text (str)
dxf.prompt

Attribute prompt string. (CAD application feature)
dxf.field_length

Just relevant to CAD programs for validating user input
property is_invisible: bool

Attribute is invisible if True.
property is_const: bool

This is a constant attribute if True.
property is_verify: bool

Verification is required on input of this attribute. (interactive CAD application feature)
property is_preset: bool

No prompt during insertion. (interactive CAD application feature)
property has_embedded_mtext_entity: bool

Returns True if the entity has an embedded MTEXT entity for multi-line support.
virtual_mtext_entity()→MText

Returns the embeddedMTEXT entity as a regular but virtualMText entity with the same graphical properties
as the host entity.

plain_mtext(fast=True)→ str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.
The fast mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The accurate mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.
The accurate mode is much slower than the fast mode.

Parameters
fast – uses the fast mode to extract the plain MTEXT content if True or the accuratemode
if set to False

set_mtext(mtext: MText, graphic_properties=True)→ None
Set multi-line properties from a MText entity.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

9.8. Reference 273

ezdxf Documentation, Release 1.3.2

Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from sourceMTEXT
if True

embed_mtext(mtext: MText, graphic_properties=True)→ None
Set multi-line properties from a MText entity and destroy the source entity afterwards.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from sourceMTEXT
if True

Layouts

Layout Manager

The layout manager is unique to each DXF drawing, access the layout manager as layouts attribute of the Drawing
object (e.g. doc.layouts.rename("Layout1", "PlanView")).
class ezdxf.layouts.Layouts

The Layouts class manages Paperspace layouts and the Modelspace.
__len__()→ int

Returns count of existing layouts, including the modelspace layout.
__contains__(name: str)→ bool

Returns True if layout name exist.
__iter__()→ Iterator[Layout]

Returns iterable of all layouts as Layout objects, including the modelspace layout.
names()→ list[str]

Returns a list of all layout names, all names in original case sensitive form.
names_in_taborder()→ list[str]

Returns all layout names in tab order as shown in CAD applications.
modelspace()→Modelspace

Returns the Modelspace layout.
get(name: str | None)→ Layout

Returns Layout by name, case insensitive “Model” == “MODEL”.
Parameters

name – layout name as shown in tab, e.g. 'Model' for modelspace
new(name: str, dxfattribs=None)→ Paperspace

Returns a new Paperspace layout.
Parameters

• name – layout name as shown in tabs in CAD applications

274 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• dxfattribs – additional DXF attributes for the DXFLayout entity
Raises

• DXFValueError – Invalid characters in layout name.
• DXFValueError – Layout name already exist.

rename(old_name: str, new_name: str)→ None
Rename a layout from old_name to new_name. Can not rename layout 'Model' and the new name of a
layout must not exist.

Parameters
• old_name – actual layout name, case insensitive
• new_name – new layout name, case insensitive

Raises
• DXFValueError – try to rename 'Model'
• DXFValueError – Layout new_name already exist.

delete(name: str)→ None
Delete layout name and destroy all entities in that layout.

Parameters
name (str) – layout name as shown in tabs

Raises
• DXFKeyError – if layout name do not exists
• DXFValueError – deleting modelspace layout is not possible
• DXFValueError – deleting last paperspace layout is not possible

active_layout()→ Paperspace
Returns the active paperspace layout.

set_active_layout(name: str)→ None
Set layout name as active paperspace layout.

get_layout_for_entity(entity: DXFEntity)→ Layout
Returns the owner layout for a DXF entity.

Layout Types

A Layout represents and manages DXF entities, there are three different layout objects:
• Modelspace is the common working space, containing basic drawing entities.
• Paperspace is the arrangement of objects for printing and plotting, this layout contains basic drawing entities
and viewports to the Modelspace.

• BlockLayout works on an associated Block, Blocks are collections of DXF entities for reusing by block
references.

Warning: Do not instantiate layout classes by yourself - always use the provided factory functions!

9.8. Reference 275

ezdxf Documentation, Release 1.3.2

Entity Ownership

A layout owns all entities residing in their entity space, therefore the dxf.owner attribute of any DXFGraphic entity
in this layout is the dxf.handle of the layout, and deleting an entity from a layout is the end of life of this entity,
because it is also deleted from the EntityDB. It’s possible to just unlink an entity from a layout to assign the entity to
another layout, use the move_to_layout() method to move entities between layouts.

BaseLayout

class ezdxf.layouts.BaseLayout

BaseLayout is the common base class for Layout and BlockLayout.
is_alive

False if layout is deleted.
is_active_paperspace

True if is active layout.
is_any_paperspace

True if is any kind of paperspace layout.
is_modelspace

True if is modelspace layout.
is_any_layout

True if is any kind of modelspace or paperspace layout.
is_block_layout

True if not any kind of modelspace or paperspace layout, just a regular block definition.
units

set drawing units.
Type

Get/Set layout/block drawing units as enum, see also
Type

ref
__len__()→ int

Returns count of entities owned by the layout.
__iter__()→ Iterator[DXFGraphic]

Returns iterable of all drawing entities in this layout.
__getitem__(index)

Get entity at index.
The underlying data structure for storing entities is organized like a standard Python list, therefore index can
be any valid list indexing or slicing term, like a single index layout[-1] to get the last entity, or an index
slice layout[:10] to get the first 10 or less entities as list[DXFGraphic].

get_extension_dict()→ ExtensionDict
Returns the associated extension dictionary, creates a new one if necessary.

delete_entity(entity: DXFGraphic)→ None
Delete entity from layout entity space and the entity database, this destroys the entity.

276 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

delete_all_entities()→ None
Delete all entities from this layout and from entity database, this destroys all entities in this layout.

unlink_entity(entity: DXFGraphic)→ None
Unlink entity from layout but does not delete entity from the entity database, this removes entity just from the
layout entity space.

purge()

Remove all destroyed entities from the layout entity space.
query(query: str = '*')→ EntityQuery

Get all DXF entities matching the Entity Query String.
groupby(dxfattrib: str = '', key: KeyFunc | None = None)→ dict

Returns a dict of entity lists, where entities are grouped by a dxfattrib or a key function.
Parameters

• dxfattrib – grouping by DXF attribute like 'layer'
• key – key function, which accepts a DXFGraphic entity as argument and returns the
grouping key of an entity or None to ignore the entity. Reason for ignoring: a queried DXF
attribute is not supported by entity.

move_to_layout(entity: DXFGraphic, layout: BaseLayout)→ None
Move entity to another layout.

Parameters
• entity – DXF entity to move
• layout – any layout (modelspace, paperspace, block) from same drawing

set_redraw_order(handles: dict | Iterable[tuple[str, str]])→ None
If the header variable $SORTENTS Regen flag (bit-code value 16) is set, AutoCAD regenerates entities in
ascending handles order.
To change redraw order associate a different sort-handle to entities, this redefines the order in which the
entities are regenerated. The handles argument can be a dict of entity_handle and sort_handle as (k, v) pairs,
or an iterable of (entity_handle, sort_handle) tuples.
The sort-handle doesn’t have to be unique, some or all entities can share the same sort-handle and a sort-handle
can be an existing handle.
The “0” handle can be used, but this sort-handle will be drawn as latest (on top of all other entities) and not
as first as expected.

Parameters
handles – iterable or dict of handle associations; an iterable of 2-tuples (entity_handle,
sort_handle) or a dict (k, v) association as (entity_handle, sort_handle)

get_redraw_order()→ Iterable[tuple[str, str]]
Returns iterable for all existing table entries as (entity_handle, sort_handle) pairs, see also
set_redraw_order().

entities_in_redraw_order(reverse=False)→ Iterable[DXFGraphic]
Yields all entities from layout in ascending redraw order or descending redraw order if reverse is True.

9.8. Reference 277

ezdxf Documentation, Release 1.3.2

add_entity(entity: DXFGraphic)→ None
Add an existing DXFGraphic entity to a layout, but be sure to unlink (unlink_entity()) entity from
the previous owner layout. Adding entities from a different DXF drawing is not supported.

Warning: This is a low-level tool - use it with caution and make sure you understand what you are doing!
If used improperly, the DXF document may be damaged.

add_foreign_entity(entity: DXFGraphic, copy=True)→ None
Add a foreign DXF entity to a layout, this foreign entity could be from another DXF document or an entity
without an assigned DXF document. The intention of this method is to add simple entities from another
DXF document or from a DXF iterator, for more complex operations use the importer add-on. Especially
objects with BLOCK section (INSERT, DIMENSION, MLEADER) or OBJECTS section dependencies
(IMAGE, UNDERLAY) can not be supported by this simple method.
Not all DXF types are supported and every dependency or resource reference from another DXF document
will be removed except attribute layer will be preserved but only with default attributes like color 7 and
linetype CONTINUOUS because the layer attribute doesn’t need a layer table entry.
If the entity is part of another DXF document, it will be unlinked from this document and its entity database
if argument copy is False, else the entity will be copied. Unassigned entities like from DXF iterators will
just be added.
Supported DXF types:
• POINT
• LINE
• CIRCLE
• ARC
• ELLIPSE
• LWPOLYLINE
• SPLINE
• POLYLINE
• 3DFACE
• SOLID
• TRACE
• SHAPE
• MESH
• ATTRIB
• ATTDEF
• TEXT
• MTEXT
• HATCH

Parameters
• entity – DXF entity to copy or move

278 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• copy – if True copy entity from other document else unlink from other document
Raises

CopyNotSupported – copying of entity i not supported

add_point(location: UVec, dxfattribs=None)→ Point
Add a Point entity at location.

Parameters
• location – 2D/3D point inWCS

• dxfattribs – additional DXF attributes
add_line(start: UVec, end: UVec, dxfattribs=None)→ Line

Add a Line entity from start to end.
Parameters

• start – 2D/3D point inWCS

• end – 2D/3D point inWCS

• dxfattribs – additional DXF attributes
add_circle(center: UVec, radius: float, dxfattribs=None)→ Circle

Add a Circle entity. This is an 2D element, which can be placed in space by using OCS.
Parameters

• center – 2D/3D point inWCS

• radius – circle radius
• dxfattribs – additional DXF attributes

add_ellipse(center: UVec, major_axis: UVec = (1, 0, 0), ratio: float = 1, start_param: float = 0,
end_param: float = math.tau, dxfattribs=None)→ Ellipse

Add an Ellipse entity, ratio is the ratio of minor axis to major axis, start_param and end_param defines
start and end point of the ellipse, a full ellipse goes from 0 to 2π. The ellipse goes from start to end param in
counter-clockwise direction.

Parameters
• center – center of ellipse as 2D/3D point inWCS

• major_axis – major axis as vector (x, y, z)
• ratio – ratio of minor axis to major axis in range +/-[1e-6, 1.0]
• start_param – start of ellipse curve
• end_param – end param of ellipse curve
• dxfattribs – additional DXF attributes

add_arc(center: UVec, radius: float, start_angle: float, end_angle: float, is_counter_clockwise: bool = True,
dxfattribs=None)→ Arc

Add an Arc entity. The arc goes from start_angle to end_angle in counter-clockwise direction by default, set
parameter is_counter_clockwise to False for clockwise orientation.

Parameters
• center – center of arc as 2D/3D point inWCS

• radius – arc radius

9.8. Reference 279

ezdxf Documentation, Release 1.3.2

• start_angle – start angle in degrees
• end_angle – end angle in degrees
• is_counter_clockwise – False for clockwise orientation
• dxfattribs – additional DXF attributes

add_solid(points: Iterable[UVec], dxfattribs=None)→ Solid

Add a Solid entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters
• points – iterable of 3 or 4 2D/3D points inWCS

• dxfattribs – additional DXF attributes

add_trace(points: Iterable[UVec], dxfattribs=None)→ Trace
Add a Trace entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters
• points – iterable of 3 or 4 2D/3D points inWCS

• dxfattribs – additional DXF attributes

add_3dface(points: Iterable[UVec], dxfattribs=None)→ Face3d
Add a 3DFace entity, points is an iterable 3 or 4 2D/3D points.

Hint: In contrast to SOLID and TRACE, the last two vertices are in regular order: a square has the vertex
order 0-1-2-3

Parameters
• points – iterable of 3 or 4 2D/3D points inWCS

• dxfattribs – additional DXF attributes

add_text(text: str, *, height: float | None = None, rotation: float | None = None, dxfattribs=None)→ Text

Add a Text entity, see also Textstyle.
Parameters

• text – content string
• height – text height in drawing units
• rotation – text rotation in degrees
• dxfattribs – additional DXF attributes

280 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_blockref(name: str, insert: UVec, dxfattribs=None)→ Insert
Add an Insert entity.
When inserting a block reference into the modelspace or another block layout with different units, the scaling
factor between these units should be applied as scaling attributes (xscale, …) e.g. modelspace in meters
and block in centimeters, xscale has to be 0.01.

Parameters
• name – block name as str
• insert – insert location as 2D/3D point inWCS

• dxfattribs – additional DXF attributes
add_auto_blockref(name: str, insert: UVec, values: dict[str, str], dxfattribs=None)→ Insert

Add an Insert entity. This method adds for each Attdef entity, defined in the block definition, automat-
ically an Attrib entity to the block reference and set (tag, value) DXF attributes of the ATTRIB entities
by the (key, value) pairs (both as strings) of the values dict.
The Attrib entities are placed relative to the insert point, which is equal to the block base point.
This method wraps the INSERT and all the ATTRIB entities into an anonymous block, which produces
the best visual results, especially for non-uniform scaled block references, because the transformation
and scaling is done by the CAD application. But this makes evaluation of block references with at-
tributes more complicated, if you prefer INSERT and ATTRIB entities without a wrapper block use the
add_blockref_with_attribs() method.

Parameters
• name – block name
• insert – insert location as 2D/3D point inWCS

• values – Attrib tag values as (tag, value) pairs
• dxfattribs – additional DXF attributes

add_attdef(tag: str, insert: UVec = (0, 0), text: str = '', *, height: float | None = None, rotation: float | None
= None, dxfattribs=None)→ AttDef

Add an AttDef as stand alone DXF entity.
Set position and alignment by the idiom:

layout.add_attdef("NAME").set_placement(
(2, 3), align=TextEntityAlignment.MIDDLE_CENTER

)

Parameters
• tag – tag name as string
• insert – insert location as 2D/3D point inWCS

• text – tag value as string
• height – text height in drawing units
• rotation – text rotation in degrees
• dxfattribs – additional DXF attributes

9.8. Reference 281

ezdxf Documentation, Release 1.3.2

add_polyline2d(points: Iterable[UVec], format: str | None = None, *, close: bool = False,
dxfattribs=None)→ Polyline

Add a 2D Polyline entity.
Parameters

• points – iterable of 2D points inWCS

• close – True for a closed polyline
• format – user defined point format like add_lwpolyline(), default is None
• dxfattribs – additional DXF attributes

add_polyline3d(points: Iterable[UVec], *, close: bool = False, dxfattribs=None)→ Polyline
Add a 3D Polyline entity.

Parameters
• points – iterable of 3D points inWCS

• close – True for a closed polyline
• dxfattribs – additional DXF attributes

add_polymesh(size: tuple[int, int] = (3, 3), dxfattribs=None)→ Polymesh
Add a Polymesh entity, which is a wrapper class for the POLYLINE entity. A polymesh is a grid ofmcount
x ncount vertices and every vertex has its own (x, y, z)-coordinates.

Parameters
• size – 2-tuple (mcount, ncount)
• dxfattribs – additional DXF attributes

add_polyface(dxfattribs=None)→ Polyface
Add a Polyface entity, which is a wrapper class for the POLYLINE entity.

Parameters
dxfattribs – additional DXF attributes for Polyline entity

add_shape(name: str, insert: UVec = (0, 0), size: float = 1.0, dxfattribs=None)→ Shape
Add a Shape reference to an external stored shape.

Parameters
• name – shape name as string
• insert – insert location as 2D/3D point inWCS

• size – size factor
• dxfattribs – additional DXF attributes

add_lwpolyline(points: Iterable[UVec], format: str = 'xyseb', *, close: bool = False, dxfattribs=None)→
LWPolyline

Add a 2D polyline as LWPolyline entity. A points are defined as (x, y, [start_width, [end_width, [bulge]]])
tuples, but order can be redefined by the format argument. Set start_width, end_width to 0 to be ignored like
(x, y, 0, 0, bulge).
The LWPolyline is defined as a single DXF entity and needs less disk space than a Polyline entity.
(requires DXF R2000)
Format codes:

282 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• x = x-coordinate
• y = y-coordinate
• s = start width
• e = end width
• b = bulge value
• v = (x, y [,z]) tuple (z-axis is ignored)

Parameters
• points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuples
• format – user defined point format, default is “xyseb”
• close – True for a closed polyline
• dxfattribs – additional DXF attributes

add_mtext(text: str, dxfattribs=None)→ MText

Add a multiline text entity with automatic text wrapping at boundaries as MText entity. (requires DXF
R2000)

Parameters
• text – content string
• dxfattribs – additional DXF attributes

add_mtext_static_columns(content: Iterable[str], width: float, gutter_width: float, height: float,
dxfattribs=None)→ MText

Add a multiline text entity with static columns as MText entity. The content is spread across the columns,
the count of content strings determine the count of columns.
This factory method adds automatically a column break "\N" at the end of each column text to force a new
column. The height attribute should be big enough to reserve enough space for the tallest column. Too small
values produce valid DXF files, but the visual result will not be as expected. The height attribute also defines
the total height of the MTEXT entity.
(requires DXF R2000)

Parameters
• content – iterable of column content
• width – column width
• gutter_width – distance between columns
• height – max. column height
• dxfattribs – additional DXF attributes

add_mtext_dynamic_manual_height_columns(content: str, width: float, gutter_width: float, heights:
Sequence[float], dxfattribs=None)→ MText

Add a multiline text entity with dynamic columns as MText entity. The content is spread across the columns
automatically by the CAD application. The heights sequence determine the height of the columns, except for
the last column, which always takes the remaining content. The height value for the last column is required
but can be 0, because the value is ignored. The count of heights also determines the count of columns, and
max(heights) defines the total height of the MTEXT entity, which may be wrong if the last column
requires more space.

9.8. Reference 283

ezdxf Documentation, Release 1.3.2

This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXF viewers and CAD application, which do the MTEXT content distribution completely by itself.
(requires DXF R2000)

Parameters
• content – column content as a single string
• width – column width
• gutter_width – distance between columns
• heights – column height for each column
• dxfattribs – additional DXF attributes

add_mtext_dynamic_auto_height_columns(content: str, width: float, gutter_width: float, height:
float, count: int, dxfattribs=None)→ MText

Add a multiline text entity with as many columns as needed for the given common fixed height. The content
is spread across the columns automatically by the CAD application. The height argument also defines the
total height of the MTEXT entity. To get the correct column count requires an exactMTEXT rendering like
AutoCAD, which is not done by ezdxf, therefore passing the expected column count is required to calculate
the correct total width.
This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXF viewers and CAD application, which do the MTEXT content distribution completely by itself.
Because of the current limitations the use of this method is not recommend. This situation may improve in
future releases, but the exact rendering of the content will also slow down the processing speed dramatically.
(requires DXF R2000)

Parameters
• content – column content as a single string
• width – column width
• gutter_width – distance between columns
• height – max. column height
• count – expected column count
• dxfattribs – additional DXF attributes

add_ray(start: UVec, unit_vector: UVec, dxfattribs=None)→ Ray
Add a Ray that begins at start point and continues to infinity (construction line). (requires DXF R2000)

Parameters
• start – location 3D point inWCS

• unit_vector – 3D vector (x, y, z)
• dxfattribs – additional DXF attributes

add_xline(start: UVec, unit_vector: UVec, dxfattribs=None)→ XLine
Add an infinity XLine (construction line). (requires DXF R2000)

Parameters

284 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• start – location 3D point inWCS

• unit_vector – 3D vector (x, y, z)
• dxfattribs – additional DXF attributes

add_mline(vertices: Iterable[UVec] | None = None, *, close: bool = False, dxfattribs=None)→ MLine

Add a MLine entity
Parameters

• vertices – MLINE vertices (inWCS)
• close – True to add a closed MLINE
• dxfattribs – additional DXF attributes

add_spline(fit_points: Iterable[UVec] | None = None, degree: int = 3, dxfattribs=None)→ Spline
Add a B-spline (Spline entity) defined by the given fit_points - the control points and knot values are created
by the CAD application, therefore it is not predictable how the rendered spline will look like, because for every
set of fit points exists an infinite set of B-splines.
If fit_points is None, an “empty” spline will be created, all data has to be set by the user.
The SPLINE entity requires DXF R2000.
AutoCAD creates a spline through fit points by a global curve interpolation and an unknown method to
estimate the direction of the start- and end tangent.
See also:

• Tutorial for Spline

• ezdxf.math.fit_points_to_cad_cv()

Parameters
• fit_points – iterable of fit points as (x, y[, z]) inWCS, creates an empty Spline
if None

• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• dxfattribs – additional DXF attributes

add_cad_spline_control_frame(fit_points: Iterable[UVec], tangents: Iterable[UVec] | None = None,
dxfattribs=None)→ Spline

Add a Spline entity passing through the given fit points. This method creates the same control points as
CAD applications.

Parameters
• fit_points – iterable of fit points as (x, y[, z]) inWCS

• tangents – start- and end tangent, default is autodetect
• dxfattribs – additional DXF attributes

add_spline_control_frame(fit_points: Iterable[UVec], degree: int = 3, method: str = 'chord',
dxfattribs=None)→ Spline

Add a Spline entity passing through the given fit_points, the control points are calculated by a global curve
interpolation without start- and end tangent constrains. The new SPLINE entity is defined by control points
and not by the fit points, therefore the SPLINE looks always the same, no matter which CAD application
renders the SPLINE.

9.8. Reference 285

ezdxf Documentation, Release 1.3.2

• “uniform”: creates a uniform t vector, from 0 to 1 evenly spaced, see uniform method
• “distance”, “chord”: creates a t vector with values proportional to the fit point distances, see chord length
method

• “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see
centripetal method

• “arc”: creates a t vector with values proportional to the arc length between fit points.
Use function add_cad_spline_control_frame() to create SPLINE entities from fit points similar
to CAD application including start- and end tangent constraints.

Parameters
• fit_points – iterable of fit points as (x, y[, z]) inWCS

• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• method – calculation method for parameter vector t
• dxfattribs – additional DXF attributes

add_open_spline(control_points: Iterable[UVec], degree: int = 3, knots: Iterable[float] | None = None,
dxfattribs=None)→ Spline

Add an open uniform Spline defined by control_points. (requires DXF R2000)
Open uniform B-splines start and end at your first and last control point.

Parameters
• control_points – iterable of 3D points inWCS

• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• knots – knot values as iterable of floats
• dxfattribs – additional DXF attributes

add_rational_spline(control_points: Iterable[UVec], weights: Sequence[float], degree: int = 3, knots:
Iterable[float] | None = None, dxfattribs=None)→ Spline

Add an open rational uniform Spline defined by control_points. (requires DXF R2000)
weights has to be an iterable of floats, which defines the influence of the associated control point to the shape
of the B-spline, therefore for each control point is one weight value required.
Open rational uniform B-splines start and end at the first and last control point.

Parameters
• control_points – iterable of 3D points inWCS

• weights – weight values as iterable of floats
• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• knots – knot values as iterable of floats
• dxfattribs – additional DXF attributes

add_hatch(color: int = 7, dxfattribs=None)→ Hatch
Add a Hatch entity. (requires DXF R2000)

Parameters
• color – fill color as :ref`ACI`, default is 7 (black/white).
• dxfattribs – additional DXF attributes

286 Chapter 9. Contents

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-uniform.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-chord-length.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-centripetal.html

ezdxf Documentation, Release 1.3.2

add_helix(radius: float, pitch: float, turns: float, ccw=True, dxfattribs=None)→ Helix
Add a Helix entity.
The center of the helix is always (0, 0, 0) and the helix axis direction is the +z-axis.
Transform the new HELIX by the transform() method to your needs.

Parameters
• radius – helix radius
• pitch – the height of one complete helix turn
• turns – count of turns
• ccw – creates a counter-clockwise turning (right-handed) helix if True
• dxfattribs – additional DXF attributes

add_mpolygon(color: int = const.BYLAYER, fill_color: int | None = None, dxfattribs=None)→ MPolygon
Add a MPolygon entity. (requires DXF R2000)
The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application or DXF
library.
DXF version R2004+ is required to use a fill color different from BYLAYER. For R2000 the fill color is
always BYLAYER, set any ACI value to create a filled MPOLYGON entity.

Parameters
• color – boundary color as AutoCAD Color Index (ACI), default is BYLAYER.
• fill_color – fill color as AutoCAD Color Index (ACI), default is None
• dxfattribs – additional DXF attributes

add_mesh(dxfattribs=None)→ Mesh
Add a Mesh entity. (requires DXF R2007)

Parameters
dxfattribs – additional DXF attributes

add_image(image_def: ImageDef, insert: UVec, size_in_units: tuple[float, float], rotation: float = 0.0,
dxfattribs=None)→ Image

Add an Image entity, requires a ImageDef entity, see Tutorial for Image and ImageDef. (requires DXF
R2000)

Parameters
• image_def – required image definition as ImageDef
• insert – insertion point as 3D point inWCS

• size_in_units – size as (x, y) tuple in drawing units
• rotation – rotation angle around the extrusion axis, default is the z-axis, in degrees
• dxfattribs – additional DXF attributes

add_wipeout(vertices: Iterable[UVec], dxfattribs=None)→ Wipeout

Add a ezdxf.entities.Wipeout entity, the masking area is defined by WCS vertices.
This method creates only a 2D entity in the xy-plane of the layout, the z-axis of the input vertices are ignored.

9.8. Reference 287

ezdxf Documentation, Release 1.3.2

add_underlay(underlay_def: UnderlayDefinition, insert: UVec = (0, 0, 0), scale=(1, 1, 1), rotation: float =
0.0, dxfattribs=None)→ Underlay

Add an Underlay entity, requires a UnderlayDefinition entity, see Tutorial for Underlay and Un-
derlayDefinition. (requires DXF R2000)

Parameters
• underlay_def – required underlay definition as UnderlayDefinition
• insert – insertion point as 3D point inWCS

• scale – underlay scaling factor as (x, y, z) tuple or as single value for uniform scaling for
x, y and z

• rotation – rotation angle around the extrusion axis, default is the z-axis, in degrees
• dxfattribs – additional DXF attributes

add_linear_dim(base: UVec, p1: UVec, p2: UVec, location: UVec | None = None, text: str = '<>', angle:
float = 0, text_rotation: float | None = None, dimstyle: str = 'EZDXF', override: dict | None
= None, dxfattribs=None)→ DimStyleOverride

Add horizontal, vertical and rotated Dimension line. If an UCS is used for dimension line rendering,
all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function.
Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render() manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• base – location of dimension line, any point on the dimension line or its extension will do
(in UCS)

• p1 – measurement point 1 and start point of extension line 1 (in UCS)
• p2 – measurement point 2 and start point of extension line 2 (in UCS)
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• angle – angle from ucs/wcs x-axis to dimension line in degrees
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

288 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_multi_point_linear_dim(base: UVec, points: Iterable[UVec], angle: float = 0, ucs: UCS | None
= None, avoid_double_rendering: bool = True, dimstyle: str = 'EZDXF',
override: dict | None = None, dxfattribs=None, discard=False)→ None

Add multiple linear dimensions for iterable points. If an UCS is used for dimension line rendering, all point
definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion
vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method sets many design decisions by itself, the necessary geometry will be generated automatically, no
required nor possible render() call. This method is easy to use, but you get what you get.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• base – location of dimension line, any point on the dimension line or its extension will do
(in UCS)

• points – iterable of measurement points (in UCS)
• angle – angle from ucs/wcs x-axis to dimension line in degrees (0 = horizontal, 90 = ver-
tical)

• ucs – user defined coordinate system
• avoid_double_rendering – suppresses the first extension line and the first arrow if
possible for continued dimension entities

• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
• discard – discard rendering result for friendly CAD applications like BricsCAD to get a
native and likely better rendering result. (does not work with AutoCAD)

add_aligned_dim(p1: UVec, p2: UVec, distance: float, text: str = '<>', dimstyle: str = 'EZDXF', override:
dict | None = None, dxfattribs=None)→ DimStyleOverride

Add linear dimension aligned with measurement points p1 and p2. If an UCS is used for dimension line
rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering
function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimStyleOverride object, to create the necessary dimension geometry, you have
to call DimStyleOverride.render() manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• p1 – measurement point 1 and start point of extension line 1 (in UCS)
• p2 – measurement point 2 and start point of extension line 2 (in UCS)
• distance – distance of dimension line from measurement points

9.8. Reference 289

ezdxf Documentation, Release 1.3.2

• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_radius_dim(center: UVec, mpoint: UVec | None = None, radius: float | None = None, angle: float |

None = None, *, location: UVec | None = None, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None)→ DimStyleOverride

Add a radius Dimension line. The radius dimension line requires a center point and a point mpoint on
the circle or as an alternative a radius and a dimension line angle in degrees. See also: Tutorial for Radius
Dimensions

If a UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render() manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.
Following render types are supported:
• Default text location outside: text aligned with dimension line; dimension style: “EZ_RADIUS”
• Default text location outside horizontal: “EZ_RADIUS” + dimtoh=1
• Default text location inside: text aligned with dimension line; dimension style: “EZ_RADIUS_INSIDE”
• Default text location inside horizontal: “EZ_RADIUS_INSIDE” + dimtih=1
• User defined text location: argument location != None, text aligned with dimension line; dimension style:
“EZ_RADIUS”

• User defined text location horizontal: argument location != None, “EZ_RADIUS” + dimtoh=1 for text
outside horizontal, “EZ_RADIUS” + dimtih=1 for text inside horizontal

Placing the dimension text at a user defined location, overrides thempoint and the angle argument, but requires
a given radius argument. The location argument does not define the exact text location, instead it defines the
dimension line starting at center and the measurement text midpoint projected on this dimension line going
through location, if text is aligned to the dimension line. If text is horizontal, location is the kink point of the
dimension line from radial to horizontal direction.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• center – center point of the circle (in UCS)
• mpoint – measurement point on the circle, overrides angle and radius (in UCS)
• radius – radius in drawing units, requires argument angle
• angle – specify angle of dimension line in degrees, requires argument radius
• location – user defined dimension text location, overrides mpoint and angle, but requires

radius (in UCS)

290 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_radius_dim_2p(center: UVec, mpoint: UVec, *, text: str = '<>', dimstyle: str = 'EZ_RADIUS',

override: dict | None = None, dxfattribs=None)→ DimStyleOverride
Shortcut method to create a radius dimension by center point, measurement point on the circle and the mea-
surement text at the default location defined by the associated dimstyle, for further information see general
method add_radius_dim().
• dimstyle “EZ_RADIUS”: places the dimension text outside
• dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
• center – center point of the circle (in UCS)
• mpoint – measurement point on the circle (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_radius_dim_cra(center: UVec, radius: float, angle: float, *, text: str = '<>', dimstyle: str =

'EZ_RADIUS', override: dict | None = None, dxfattribs=None)→ DimStyleOverride
Shortcut method to create a radius dimension by (c)enter point, (r)adius and (a)ngle, the measurement text is
placed at the default location defined by the associated dimstyle, for further information see general method
add_radius_dim().
• dimstyle “EZ_RADIUS”: places the dimension text outside
• dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
• center – center point of the circle (in UCS)
• radius – radius in drawing units
• angle – angle of dimension line in degrees
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

9.8. Reference 291

ezdxf Documentation, Release 1.3.2

Returns: DimStyleOverride
add_diameter_dim(center: UVec, mpoint: UVec | None = None, radius: float | None = None, angle: float |

None = None, *, location: UVec | None = None, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None)→ DimStyleOverride

Add a diameter Dimension line. The diameter dimension line requires a center point and a point mpoint
on the circle or as an alternative a radius and a dimension line angle in degrees.
If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation intoWCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render() manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• center – specifies the center of the circle (in UCS)
• mpoint – specifies the measurement point on the circle (in UCS)
• radius – specify radius, requires argument angle, overrides p1 argument
• angle – specify angle of dimension line in degrees, requires argument radius, overrides p1
argument

• location – user defined location for the text midpoint (in UCS)
• text – None or "<>" the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_diameter_dim_2p(p1: UVec, p2: UVec, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: dict |

None = None, dxfattribs=None)→ DimStyleOverride
Shortcut method to create a diameter dimension by two points on the circle and the measurement text
at the default location defined by the associated dimstyle, for further information see general method
add_diameter_dim(). Center point of the virtual circle is the midpoint between p1 and p2.
• dimstyle “EZ_RADIUS”: places the dimension text outside
• dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
• p1 – first point of the circle (in UCS)
• p2 – second point on the opposite side of the center point of the circle (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

292 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_angular_dim_2l(base: UVec, line1: tuple[UVec, UVec], line2: tuple[UVec, UVec], *, location:

UVec | None = None, text: str = '<>', text_rotation: float | None = None, dimstyle: str
= 'EZ_CURVED', override: dict | None = None, dxfattribs=None)→
DimStyleOverride

Add angular Dimension from two lines. The measurement is always done from line1 to line2 in counter-
clockwise orientation. This does not always match the result in CAD applications!
If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render() manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• base – location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

• line1 – specifies start leg of the angle (start point, end point) and determines extension line
1 (in UCS)

• line2 – specifies end leg of the angle (start point, end point) and determines extension line
2 (in UCS)

• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_angular_dim_3p(base: UVec, center: UVec, p1: UVec, p2: UVec, *, location: UVec | None = None,

text: str = '<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED',
override: dict | None = None, dxfattribs=None)→ DimStyleOverride

Add angular Dimension from three points (center, p1, p2). The measurement is always done from p1 to
p2 in counter-clockwise orientation. This does not always match the result in CAD applications!
If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

9.8. Reference 293

ezdxf Documentation, Release 1.3.2

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render() manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• base – location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

• center – specifies the vertex of the angle
• p1 – specifies start leg of the angle (center -> p1) and end-point of extension line 1 (in UCS)
• p2 – specifies end leg of the angle (center -> p2) and end-point of extension line 2 (in UCS)
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_angular_dim_cra(center: UVec, radius: float, start_angle: float, end_angle: float, distance: float, *,

location: UVec | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None)→
DimStyleOverride

Shortcut method to create an angular dimension by (c)enter point, (r)adius and start- and end (a)ngles,
the measurement text is placed at the default location defined by the associated dimstyle. The measure-
ment is always done from start_angle to end_angle in counter-clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim_3p().

Parameters
• center – center point of the angle (in UCS)
• radius – the distance from center to the start of the extension lines in drawing units
• start_angle – start angle in degrees (in UCS)
• end_angle – end angle in degrees (in UCS)
• distance – distance from start of the extension lines to the dimension line in drawing units
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

294 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_angular_dim_arc(arc: ConstructionArc, distance: float, *, location: UVec | None = None, text: str =

'<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override:
dict | None = None, dxfattribs=None)→ DimStyleOverride

Shortcut method to create an angular dimension from a ConstructionArc. This construction tool can
be created from ARC entities and the tool itself provides various construction class methods. The mea-
surement text is placed at the default location defined by the associated dimstyle. The measurement is al-
ways done from start_angle to end_angle of the arc in counter-clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim_3p().

Parameters
• arc – ConstructionArc
• distance – distance from start of the extension lines to the dimension line in drawing units
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_arc_dim_3p(base: UVec, center: UVec, p1: UVec, p2: UVec, *, location: UVec | None = None, text: str

= '<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override: dict |
None = None, dxfattribs=None)→ DimStyleOverride

Add ArcDimension from three points (center, p1, p2). Point p1 defines the radius and the start-angle of
the arc, point p2 only defines the end-angle of the arc.
If an UCS is used for arc dimension rendering, all point definitions in UCS coordinates, translation intoWCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry, you
have to call render() manually, this two-step process allows additional processing steps on the ArcDi-
mension entity between creation and rendering.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters

9.8. Reference 295

ezdxf Documentation, Release 1.3.2

• base – location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

• center – specifies the vertex of the angle
• p1 – specifies the radius (center -> p1) and the star angle of the arc, this is also the start point
for the 1st extension line (in UCS)

• p2 – specifies the end angle of the arc. The start 2nd extension line is defined by this angle
and the radius defined by p1 (in UCS)

• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_arc_dim_cra(center: UVec, radius: float, start_angle: float, end_angle: float, distance: float, *,

location: UVec | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None)→
DimStyleOverride

Shortcut method to create an arc dimension by (c)enter point, (r)adius and start- and end (a)ngles, the mea-
surement text is placed at the default location defined by the associated dimstyle.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters
• center – center point of the angle (in UCS)
• radius – the distance from center to the start of the extension lines in drawing units
• start_angle – start-angle in degrees (in UCS)
• end_angle – end-angle in degrees (in UCS)
• distance – distance from start of the extension lines to the dimension line in drawing units
• location – user defined location for text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

296 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Returns: DimStyleOverride
add_arc_dim_arc(arc: ConstructionArc, distance: float, *, location: UVec | None = None, text: str = '<>',

text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override: dict | None =
None, dxfattribs=None)→ DimStyleOverride

Shortcut method to create an arc dimension from a ConstructionArc. This construction tool can be
created from ARC entities and the tool itself provides various construction class methods. The measurement
text is placed at the default location defined by the associated dimstyle.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters
• arc – ConstructionArc
• distance – distance from start of the extension lines to the dimension line in drawing units
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_ordinate_dim(feature_location: UVec, offset: UVec, dtype: int, *, origin: UVec = NULLVEC,

rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None =
None, dxfattribs=None)→ DimStyleOverride

Add an ordinate type Dimension line. The feature location is defined in the global coordinate system,
which is set as render UCS, which is theWCS by default.
If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation intoWCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render() manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
• feature_location – feature location in the global coordinate system (UCS)
• offset – offset vector of leader end point from the feature location in the local coordinate
system

• dtype – 1 = x-type, 0 = y-type

9.8. Reference 297

ezdxf Documentation, Release 1.3.2

• origin – specifies the origin (0, 0) of the local coordinate system in UCS
• rotation – rotation angle of the local coordinate system in degrees
• text – None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
add_ordinate_x_dim(feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation: float

= 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None)→ DimStyleOverride

Shortcut to add an x-type feature ordinate DIMENSION, for more information see
add_ordinate_dim().

add_ordinate_y_dim(feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation: float
= 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None)→ DimStyleOverride

Shortcut to add a y-type feature ordinate DIMENSION, for more information see
add_ordinate_dim().

add_leader(vertices: Iterable[UVec], dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None)→ Leader

The Leader entity represents an arrow, made up of one or more vertices (or spline fit points) and an arrow-
head. The label or other content to which the Leader is attached is stored as a separate entity, and is not
part of the Leader itself. (requires DXF R2000)
Leader shares its styling infrastructure with Dimension.
By default a Leader without any annotation is created. For creating more fancy leaders and annotations see
documentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementa-
tion notes .

Parameters
• vertices – leader vertices (inWCS)
• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – override DimStyleOverride attributes
• dxfattribs – additional DXF attributes

add_multileader_mtext(style: str = 'Standard', dxfattribs=None)→ MultiLeaderMTextBuilder
Add a MultiLeader entity but returns a MultiLeaderMTextBuilder.

add_multileader_block(style: str = 'Standard', dxfattribs=None)→ MultiLeaderBlockBuilder

Add a MultiLeader entity but returns a MultiLeaderBlockBuilder.
add_body(dxfattribs=None)→ Body

Add a Body entity. (requires DXF R2000 or later)
The ACIS data has to be set as SAT or SAB.

298 Chapter 9. Contents

https://atlight.github.io/formats/dxf-leader.html
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 1.3.2

add_region(dxfattribs=None)→ Region
Add a Region entity. (requires DXF R2000 or later)
The ACIS data has to be set as SAT or SAB.

add_3dsolid(dxfattribs=None)→ Solid3d

Add a 3DSOLID entity (Solid3d). (requires DXF R2000 or later)
The ACIS data has to be set as SAT or SAB.

add_surface(dxfattribs=None)→ Surface
Add a Surface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.

add_extruded_surface(dxfattribs=None)→ ExtrudedSurface

Add a ExtrudedSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.

add_lofted_surface(dxfattribs=None)→ LoftedSurface
Add a LoftedSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.

add_revolved_surface(dxfattribs=None)→ RevolvedSurface
Add a RevolvedSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.

add_swept_surface(dxfattribs=None)→ SweptSurface
Add a SweptSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.

Layout

class ezdxf.layouts.Layout

Layout is a subclass of BaseLayout and common base class of Modelspace and Paperspace.
name

Layout name as shown in tabs of CAD applications.
dxf

Returns the DXF name space attribute of the associated DXFLayout object.
This enables direct access to the underlying LAYOUT entity, e.g. Layout.dxf.layout_flags

__contains__(entity: DXFGraphic | str)→ bool
Returns True if entity is stored in this layout.

Parameters
entity – DXFGraphic object or handle as hex string

reset_extents(extmin=(+1e20, +1e20, +1e20), extmax=(-1e20, -1e20, -1e20))→ None
Reset extents to given values or the AutoCAD default values.
“Drawing extents are the bounds of the area occupied by objects.” (Quote Autodesk Knowledge Network)

Parameters

9.8. Reference 299

https://knowledge.autodesk.com/de/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/DEU/AutoCAD-Core/files/GUID-B3926CFA-DE74-4661-A9A5-2738A1FD937B-htm.html

ezdxf Documentation, Release 1.3.2

• extmin – minimum extents or (+1e20, +1e20, +1e20) as default value
• extmax – maximum extents or (-1e20, -1e20, -1e20) as default value

reset_limits(limmin=None, limmax=None)→ None
Reset limits to given values or the AutoCAD default values.
“Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking
or entering point locations.” (Quote Autodesk Knowledge Network)
The Paperspace class has an additional method reset_paper_limits() to deduce the default limits
from the paper size settings.

Parameters
• limmin – minimum limits or (0, 0) as default
• limmax – maximum limits or (paper width, paper height) as default value

set_plot_type(value: int = 5)→ None

0 last screen display
1 drawing extents
2 drawing limits
3 view specific (defined by Layout.dxf.plot_view_name)
4 window specific (defined by Layout.set_plot_window_limits())
5 layout information (default)

Parameters
value – plot type

Raises
DXFValueError – for value out of range

set_plot_style(name: str = 'ezdxf.ctb', show: bool = False)→ None
Set plot style file of type .ctb.

Parameters
• name – plot style filename
• show – show plot style effect in preview? (AutoCAD specific attribute)

set_plot_window(lower_left: tuple[float, float] = (0, 0), upper_right: tuple[float, float] = (0, 0))→ None
Set plot window size in (scaled) paper space units.

Parameters
• lower_left – lower left corner as 2D point
• upper_right – upper right corner as 2D point

plot_viewport_borders(state: bool = True)→ None

show_plot_styles(state: bool = True)→ None

plot_centered(state: bool = True)→ None

plot_hidden(state: bool = True)→ None

use_standard_scale(state: bool = True)→ None

300 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html

ezdxf Documentation, Release 1.3.2

use_plot_styles(state: bool = True)→ None

scale_lineweights(state: bool = True)→ None

print_lineweights(state: bool = True)→ None

draw_viewports_first(state: bool = True)→ None

model_type(state: bool = True)→ None

update_paper(state: bool = True)→ None

zoom_to_paper_on_update(state: bool = True)→ None

plot_flags_initializing(state: bool = True)→ None

prev_plot_init(state: bool = True)→ None

set_plot_flags(flag, state: bool = True)→ None

Modelspace

class ezdxf.layouts.Modelspace

Modelspace is a subclass of Layout.
The modelspace contains the “real” world representation of the drawing subjects in real world units.
name

Name of modelspace is fixed as “Model”.
new_geodata(dxfattribs=None)→ GeoData

Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OB-
JECTS section and not in the modelspace, it is linked to the modelspace by an ExtensionDict located
in BLOCK_RECORD of the modelspace.
The GEODATA entity requires DXF R2010. The DXF reference does not document if other layouts than
the modelspace supports geo referencing, so I assume getting/setting geo data may only make sense for the
modelspace.

Parameters
dxfattribs – DXF attributes for GeoData entity

get_geodata()→ GeoData | None
Returns the GeoData entity associated to the modelspace or None.

Paperspace

class ezdxf.layouts.Paperspace

Paperspace is a subclass of Layout.
Paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF
export.
name

Layout name as shown in tabs of CAD applications.

9.8. Reference 301

ezdxf Documentation, Release 1.3.2

page_setup(size=(297, 210), margins=(10, 15, 10, 15), units='mm', offset=(0, 0), rotation=0, scale=16,
name='ezdxf', device='DWG to PDF.pc3')

Setup plot settings and paper size and reset viewports. All parameters in given units (mm or inch).
Reset paper limits, extents and viewports.

Parameters
• size – paper size as (width, height) tuple
• margins – (top, right, bottom, left) hint: clockwise
• units – “mm” or “inch”
• offset – plot origin offset is 2D point
• rotation – see table Rotation
• scale – integer in range [0, 32] defines a standard scale type or as tuple(numerator, de-
nominator) e.g. (1, 50) for scale 1:50

• name – paper name prefix “{name}_({width}_x_{height}_{unit})”
• device – device .pc3 configuration file or system printer name

int Rotation
0 no rotation
1 90 degrees counter-clockwise
2 upside-down
3 90 degrees clockwise

viewports()→ list[Viewport]
Get all VIEWPORT entities defined in this paperspace layout.

main_viewport()→ Viewport | None
Returns the main viewport of this paper space layout, or None if no main viewport exist.

add_viewport(center: UVec, size: tuple[float, float], view_center_point: UVec, view_height: float, status: int
= 2, dxfattribs=None)→ Viewport

Add a new Viewport entity.
Viewport status:
• -1 is on, but is fully off-screen, or is one of the viewports that is not active because the $MAXACTVP
count is currently being exceeded.

• 0 is off
• any value>0 is on and active. The value indicates the order of stacking for the viewports, where 1 is the
“active viewport”, 2 is the next, …

reset_viewports()→ None
Delete all existing viewports, and create a new main viewport.

reset_main_viewport(center: UVec = None, size: UVec = None)→ Viewport
Reset the main viewport of this paper space layout to the given values, or reset them to the default values,
deduced from the paper settings. Creates a new main viewport if none exist.
Ezdxf does not create a main viewport by default, because CAD applications don’t require one.

Parameters

302 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• center – center of the viewport in paper space units
• size – viewport size as (width, height) tuple in paper space units

reset_paper_limits()→ None
Set paper limits to default values, all values in paperspace units but without plot scale (?).

get_paper_limits()→ tuple[Vec2, Vec2]
Returns paper limits in plot paper units, relative to the plot origin.
plot origin = lower left corner of printable area + plot origin offset

Returns
tuple (Vec2(x1, y1), Vec2(x2, y2)), lower left corner is (x1, y1), upper right corner is (x2, y2).

BlockLayout

class ezdxf.layouts.BlockLayout

BlockLayout is a subclass of BaseLayout.
Block layouts are reusable sets of graphical entities, which can be referenced by multiple Insert entities. Each
reference can be placed, scaled and rotated individually and can have it’s own set of DXF Attrib entities attached.

property name: str

Get/set the BLOCK name
property block: Block | None

the associated Block entity.
property endblk: EndBlk | None

the associated EndBlk entity.
property dxf

DXF name space of associated BlockRecord table entry.
property can_explode: bool

Set property to True to allow exploding block references of this block.
property scale_uniformly: bool

Set property to True to allow block references of this block only scale uniformly.
property base_point: Vec3

Get/Set the base point of the block.
__contains__(entity)→ bool

Returns True if block contains entity.
Parameters

entity – DXFGraphic object or handle as hex string
attdefs()→ Iterable[AttDef]

Returns iterable of all Attdef entities.
has_attdef(tag: str)→ bool

Returns True if an Attdef for tag exist.

9.8. Reference 303

ezdxf Documentation, Release 1.3.2

get_attdef(tag: str)→ DXFGraphic | None
Returns attached Attdef entity by tag name.

get_attdef_text(tag: str, default: str = '')→ str
Returns text content for Attdef tag as string or returns default if no Attdef for tag exist.

Parameters
• tag – name of tag
• default – default value if tag not exist

Groups

A group is just a bunch of DXF entities tied together. All entities of a group has to be in the same layout (modelspace
or any paperspace layout but not block). Groups can be named or unnamed, but in reality an unnamed groups has just a
special name like “*Annnn”. The name of a group has to be unique in the drawing. Groups are organized in the group
table, which is stored as attribute groups in the Drawing object.

Important: Group entities have to reside in the modelspace or an paperspace layout but not in a block definition!

DXFGroup

class ezdxf.entities.dxfgroups.DXFGroup

The group name is not stored in the GROUP entity, it is stored in the GroupCollection object.
dxf.description

group description (string)
dxf.unnamed

1 for unnamed, 0 for named group (int)
dxf.selectable

1 for selectable, 0 for not selectable group (int)
__iter__()→ Iterator[DXFEntity]

Iterate over all DXF entities in DXFGroup as instances of DXFGraphic or inherited (LINE, CIRCLE,
…).

__len__()→ int
Returns the count of DXF entities in DXFGroup.

__getitem__(item)
Returns entities by standard Python indexing and slicing.

__contains__(item: str | DXFEntity)→ bool
Returns True if item is in DXFGroup. item has to be a handle string or an object of type DXFEntity or
inherited.

handles()→ Iterable[str]
Iterable of handles of all DXF entities in DXFGroup.

304 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

edit_data()→ list[DXFEntity]
Context manager which yields all the group entities as standard Python list:

with group.edit_data() as data:
add new entities to a group
data.append(modelspace.add_line((0, 0), (3, 0)))
remove last entity from a group
data.pop()

set_data(entities: Iterable[DXFEntity])→ None
Set entities as new group content, entities should be an iterable of DXFGraphic (LINE, CIRCLE, …).

Raises
DXFValueError – not all entities are located on the same layout (modelspace or any pa-
perspace layout but not block)

extend(entities: Iterable[DXFEntity])→ None
Add entities to DXFGroup, entities should be an iterable of DXFGraphic (LINE, CIRCLE, …).

Raises
DXFValueError – not all entities are located on the same layout (modelspace or any pa-
perspace layout but not block)

clear()→ None
Remove all entities from DXFGroup, does not delete any drawing entities referenced by this group.

audit(auditor: Auditor)→ None
Remove invalid entities from DXFGroup.
Invalid entities are:
• deleted entities
• all entities which do not reside in model- or paper space
• all entities if they do not reside in the same layout

GroupCollection

Each Drawing has one group table, which is accessible by the attribute groups.
class ezdxf.entities.dxfgroups.GroupCollection

Manages all DXFGroup objects of a Drawing.
__len__()

Returns the count of DXF groups.
__iter__()

Iterate over all existing groups as (name, group) tuples. name is the name of the group as string and group is
an DXFGroup object.

__contains__()

Returns True if a group name exist.
get(name: str)→ DXFGroup

Returns the group name. Raises DXFKeyError if group name does not exist.

9.8. Reference 305

ezdxf Documentation, Release 1.3.2

groups()→ Iterator[DXFGroup]
Iterable of all existing groups.

new(name: str | None = None, description: str = '', selectable: bool = True)→ DXFGroup

Creates a new group. If name is None an unnamed group is created, which has an automatically generated
name like “*Annnn”. Group names are case-insensitive.

Parameters
• name – group name as string
• description – group description as string
• selectable – group is selectable if True

delete(group: DXFGroup | str)→ None
Delete group, group can be an object of type DXFGroup or a group name as string.

clear()

Delete all groups.
audit(auditor: Auditor)→ None

Removes empty groups and invalid handles from all groups.

DXF Entities

All DXF entities can only reside in the BaseLayout and inherited classes like Modelspace, Paperspace and
BlockLayout.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

DXF Entity Base Class

Common base class for all DXF entities and objects.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFEntity

dxf

The DXF attributes namespace:

set attribute value
entity.dxf.layer = 'MyLayer'

get attribute value
linetype = entity.dxf.linetype

delete attribute
del entity.dxf.linetype

306 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.handle

DXF handle is a unique identifier as plain hex string like F000. (feature for experts)
dxf.owner

Handle to owner as plain hex string like F000. (feature for experts)
doc

Get the associated Drawing instance.
property is_alive: bool

Is False if entity has been deleted.
property is_virtual: bool

Is True if entity is a virtual entity.
property is_bound: bool

Is True if entity is bound to DXF document.
property is_copy: bool

Is True if the entity is a copy.
property uuid: UUID

Returns a UUID, which allows to distinguish even virtual entities without a handle.
Dynamic attribute: this UUID will be created at the first request.

property source_of_copy: DXFEntity | None

The immediate source entity if this entity is a copy else None. Never references a destroyed entity.
property origin_of_copy: DXFEntity | None

The origin source entity if this entity is a copy else None. References the first non-virtual source entity and
never references a destroyed entity.

property has_source_block_reference: bool

Is True if this virtual entity was created by a block reference.
property source_block_reference: Insert | None

The source block reference (INSERT) which created this virtual entity. The property is None if this entity
was not created by a block reference.

dxftype()→ str
Get DXF type as string, like LINE for the line entity.

__str__()→ str
Returns a simple string representation.

__repr__()→ str
Returns a simple string representation including the class.

has_dxf_attrib(key: str)→ bool
Returns True if DXF attribute key really exist.
Raises DXFAttributeError if key is not an supported DXF attribute.

is_supported_dxf_attrib(key: str)→ bool
Returns True if DXF attrib key is supported by this entity. Does not grant that attribute key really exist.

9.8. Reference 307

ezdxf Documentation, Release 1.3.2

get_dxf_attrib(key: str, default: Any = None)→ Any
Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if default is DXF-
ValueError and no DXF default value is defined:

layer = entity.get_dxf_attrib("layer")
same as
layer = entity.dxf.layer

Raises DXFAttributeError if key is not an supported DXF attribute.
set_dxf_attrib(key: str, value: Any)→ None

Set new value for DXF attribute key:

entity.set_dxf_attrib("layer", "MyLayer")
same as
entity.dxf.layer = "MyLayer"

Raises DXFAttributeError if key is not an supported DXF attribute.
del_dxf_attrib(key: str)→ None

Delete DXF attribute key, does not raise an error if attribute is supported but not present.
Raises DXFAttributeError if key is not an supported DXF attribute.

dxfattribs(drop: set[str] | None = None)→ dict
Returns a dict with all existing DXF attributes and their values and exclude all DXF attributes listed in set
drop.

update_dxf_attribs(dxfattribs: dict)→ None
Set DXF attributes by a dict like {'layer': 'test', 'color': 4}.

set_flag_state(flag: int, state: bool = True, name: str = 'flags')→ None
Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to 0 (off) if state is False.

get_flag_state(flag: int, name: str = 'flags')→ bool
Returns True if any flag of DXF attribute is 1 (on), else False. Always check only one flag state at the
time.

has_extension_dict

Returns True if entity has an attached ExtensionDict instance.
get_extension_dict()→ ExtensionDict

Returns the existing ExtensionDict instance.
Raises

AttributeError – extension dict does not exist
new_extension_dict()→ ExtensionDict

Create a new ExtensionDict instance.
discard_extension_dict()→ None

Delete ExtensionDict instance.
discard_empty_extension_dict()→ None

Delete ExtensionDict instance when empty.
has_app_data(appid: str)→ bool

Returns True if application defined data for appid exist.

308 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

get_app_data(appid: str)→ Tags
Returns application defined data for appid.

Parameters
appid – application name as defined in the APPID table.

Raises
DXFValueError – no data for appid found

set_app_data(appid: str, tags: Iterable)→ None
Set application defined data for appid as iterable of tags.

Parameters
• appid – application name as defined in the APPID table.
• tags – iterable of (code, value) tuples or DXFTag

discard_app_data(appid: str)

Discard application defined data for appid. Does not raise an exception if no data for appid exist.
has_xdata(appid: str)→ bool

Returns True if extended data for appid exist.
get_xdata(appid: str)→ Tags

Returns extended data for appid.
Parameters

appid – application name as defined in the APPID table.
Raises

DXFValueError – no extended data for appid found
set_xdata(appid: str, tags: Iterable)→ None

Set extended data for appid as iterable of tags.
Parameters

• appid – application name as defined in the APPID table.
• tags – iterable of (code, value) tuples or DXFTag

discard_xdata(appid: str)→ None
Discard extended data for appid. Does not raise an exception if no extended data for appid exist.

has_xdata_list(appid: str, name: str)→ bool
Returns True if a tag list name for extended data appid exist.

get_xdata_list(appid: str, name: str)→ Tags
Returns tag list name for extended data appid.

Parameters
• appid – application name as defined in the APPID table.
• name – extended data list name

Raises
DXFValueError – no extended data for appid found or no data list name not found

9.8. Reference 309

ezdxf Documentation, Release 1.3.2

set_xdata_list(appid: str, name: str, tags: Iterable)→ None
Set tag list name for extended data appid as iterable of tags.

Parameters
• appid – application name as defined in the APPID table.
• name – extended data list name
• tags – iterable of (code, value) tuples or DXFTag

discard_xdata_list(appid: str, name: str)→ None
Discard tag list name for extended data appid. Does not raise an exception if no extended data for appid or
no tag list name exist.

replace_xdata_list(appid: str, name: str, tags: Iterable)→ None
Replaces tag list name for existing extended data appid by tags. Appends new list if tag list name do not exist,
but raises DXFValueError if extended data appid do not exist.

Parameters
• appid – application name as defined in the APPID table.
• name – extended data list name
• tags – iterable of (code, value) tuples or DXFTag

Raises
DXFValueError – no extended data for appid found

has_reactors()→ bool
Returns True if entity has reactors.

get_reactors()→ list[str]
Returns associated reactors as list of handles.

set_reactors(handles: Iterable[str])→ None
Set reactors as list of handles.

append_reactor_handle(handle: str)→ None
Append handle to reactors.

discard_reactor_handle(handle: str)→ None
Discard handle from reactors. Does not raise an exception if handle does not exist.

DXF Graphic Entity Base Class

Common base class for all graphical DXF entities.
All graphical entities reside in an entity space like Modelspace, any Paperspace or BlockLayout.
See also:

• ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities
• ezdxf.colors module
• Tutorial for Common Graphical Attributes

310 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFEntity

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFGraphic

rgb

Get/set/delete DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute dxf.
true_color is not set.

entity.rgb = (30, 40, 50) # set as tuple[int, int, int] or color.RGB
r, g, b = entity.rgb # returns tuple[int, int, int] or None
del entity.rgb # discard true color value, no exception if not exist

This is the recommend method to get/set/delete RGB values, when ever possible do not use the DXF low
level attribute dxf.true_color.

transparency

Get/set the transparency value as float. The transparency value is in the range from 0 to 1, where 0 means
the entity is opaque and 1 means the entity is 100% transparent (invisible). This is the recommend method
to get/set the transparency value, when ever possible do not use the DXF low level attribute DXFGraphic.
dxf.transparency.
This attribute requires DXF R2004 or later, returns 0 for older DXF versions and raises DXFAttribu-
teError for setting transparency in older DXF versions.

property is_transparency_by_layer: bool

Returns True if entity inherits transparency from layer.
property is_transparency_by_block: bool

Returns True if entity inherits transparency from block.
ocs()→ OCS

Returns object coordinate system (OCS) for 2D entities like Text or Circle, returns a pass-through OCS
for entities without OCS support.

get_layout()→ BaseLayout | None
Returns the owner layout or returns None if entity is not assigned to any layout.

unlink_from_layout()→ None
Unlink entity from associated layout. Does nothing if entity is already unlinked.
It is more efficient to call the unlink_entity() method of the associated layout, especially if you have
to unlink more than one entity.

copy_to_layout(layout: BaseLayout)→ Self
Copy entity to another layout, returns new created entity as DXFEntity object. Copying between different
DXF drawings is not supported.

Parameters
layout – any layout (model space, paper space, block)

Raises
DXFStructureError – for copying between different DXF drawings

9.8. Reference 311

ezdxf Documentation, Release 1.3.2

move_to_layout(layout: BaseLayout, source: BaseLayout | None = None)→ None
Move entity from model space or a paper space layout to another layout. For block layout as source, the block
layout has to be specified. Moving between different DXF drawings is not supported.

Parameters
• layout – any layout (model space, paper space, block)
• source – provide source layout, faster for DXF R12, if entity is in a block layout

Raises
DXFStructureError – for moving between different DXF drawings

graphic_properties()→ dict
Returns the important common properties layer, color, linetype, lineweight, ltscale, true_color and
color_name as dxfattribs dict.

has_hyperlink()→ bool
Returns True if entity has an attached hyperlink.

get_hyperlink()→ tuple[str, str, str]
Returns hyperlink, description and location.

set_hyperlink(link: str, description: str | None = None, location: str | None = None)

Set hyperlink of an entity.
transform(m: Matrix44)→ Self

Inplace transformation interface, returns self (floating interface).
Parameters

m – 4x4 transformation matrix (ezdxf.math.Matrix44)
translate(dx: float, dy: float, dz: float)→ Self

Translate entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).
Basic implementation uses the transform() interface, subclasses may have faster implementations.

scale(sx: float, sy: float, sz: float)→ Self
Scale entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).

scale_uniform(s: float)→ Self
Scale entity inplace uniform about s in x-axis, y-axis and z-axis, returns self (floating interface).

rotate_x(angle: float)→ Self
Rotate entity inplace about x-axis, returns self (floating interface).

Parameters
angle – rotation angle in radians

rotate_y(angle: float)→ Self
Rotate entity inplace about y-axis, returns self (floating interface).

Parameters
angle – rotation angle in radians

rotate_z(angle: float)→ Self
Rotate entity inplace about z-axis, returns self (floating interface).

Parameters
angle – rotation angle in radians

312 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

rotate_axis(axis: UVec, angle: float)→ Self
Rotate entity inplace about vector axis, returns self (floating interface).

Parameters
• axis – rotation axis as tuple or Vec3
• angle – rotation angle in radians

Common graphical DXF attributes

DXFGraphic.dxf.layer

Layer name as string; default = “0”
DXFGraphic.dxf.linetype

Linetype as string, special names “BYLAYER”, “BYBLOCK”; default value is “BYLAYER”
DXFGraphic.dxf.color

AutoCAD Color Index (ACI), default value is 256
Constants defined in ezdxf.lldxf.const or use the ezdxf.colors module

0 BYBLOCK
256 BYLAYER
257 BYOBJECT

DXFGraphic.dxf.lineweight

Line weight in mm times 100 (e.g. 0.13mm = 13). There are fixed valid lineweights which are accepted
by AutoCAD, other values prevents AutoCAD from loading the DXF document, BricsCAD isn’t that
picky. (requires DXF R2000)
Constants defined in ezdxf.lldxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT_DEFAULT

Valid DXF lineweights stored in VALID_DXF_LINEWEIGHTS: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35,
40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211

DXFGraphic.dxf.ltscale

Line type scale as float; default value is 1.0; (requires DXF R2000)
DXFGraphic.dxf.invisible

1 for invisible, 0 for visible; default value is 0; (requires DXF R2000)
DXFGraphic.dxf.paperspace

0 for entity resides in modelspace or a block, 1 for paperspace, this attribute is set automatically by
adding an entity to a layout (feature for experts); default value is 0

DXFGraphic.dxf.extrusion

Extrusion direction as 3D vector; default value is (0, 0, 1)

9.8. Reference 313

ezdxf Documentation, Release 1.3.2

DXFGraphic.dxf.thickness

Entity thickness as float; default value is 0.0; (requires DXF R2000)
DXFGraphic.dxf.true_color

True color value as int 0x00RRGGBB, use DXFGraphic.rgb to get/set true color values as (r, g,
b) tuples. (requires DXF R2004)

DXFGraphic.dxf.color_name

Color name as string. (requires DXF R2004)
DXFGraphic.dxf.transparency

Transparency value as int, 0x020000TT, 0x00 = 100% transparent / 0xFF = opaque, spe-
cial value 0x01000000 means transparency by block. An unset transparency value means
transparency by layer. Use DXFGraphic.transparency to get/set transparency as float
value, and the properties DXFGraphic.is_transparency_by_block and DXFGraphic.
is_transparency_by_layer to check special cases.
(requires DXF R2004)

DXFGraphic.dxf.shadow_mode

0 casts and receives shadows
1 casts shadows
2 receives shadows
3 ignores shadows

(requires DXF R2007)
See also:

• ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities
• ezdxf.colors module
• Tutorial for Common Graphical Attributes

Face3d

The 3DFACE entity (DXF Reference) is real 3D solid filled triangle or quadrilateral. Access vertices by name (entity.
dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)).
Unlike the entities Solid and Trace, the vertices of Face3d have the expected vertex order:

msp.add_3dface([(0, 0), (10, 0), (10, 10), (0, 10)])

314 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-747865D5-51F0-45F2-BEFE-9572DBC5B151

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFGraphic
DXF type '3DFACE'
Factory function ezdxf.layouts.BaseLayout.add_3dface()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Face3d

The class name is Face3d because 3dface is not a valid Python class name.
dxf.vtx0

Location of 1. vertex (3D Point inWCS)
dxf.vtx1

Location of 2. vertex (3D Point inWCS)
dxf.vtx2

Location of 3. vertex (3D Point inWCS)

9.8. Reference 315

ezdxf Documentation, Release 1.3.2

dxf.vtx3

Location of 4. vertex (3D Point inWCS)
dxf.invisible_edges

invisible edge flag (int, default=0)

1 first edge is invisible
2 second edge is invisible
4 third edge is invisible
8 fourth edge is invisible

Combine values by adding them, e.g. 1+4 = first and third edge is invisible.
transform(m: Matrix44)→ Face3d

Transform the 3DFACE entity by transformation matrix m inplace.
wcs_vertices(close: bool = False)→ list[Vec3]

Returns WCS vertices, if argument close is True, the first vertex is also returned as closing last vertex.
Returns 4 vertices when close is False and 5 vertices when close is True. Some edges may have zero-
length. This is a compatibility interface to SOLID and TRACE. The 3DFACE entity is already defined by
WCS vertices.

Solid3d

3DSOLID entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
See also:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXF type '3DSOLID'
Factory function ezdxf.layouts.BaseLayout.add_3dsolid()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Solid3d

Same attributes and methods as parent class Body.
dxf.history_handle

Handle to history object.

316 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-19AB1C40-0BE0-4F32-BCAB-04B37044A0D3
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 1.3.2

ACADProxyEntity

An ACAD_PROXY_ENTITY (DXF Reference) is a proxy entity that represents an entity created by an Autodesk or 3rd
party application. It stores the graphics and data of the original entity.
The internals of this entity are unknown, so the entity cannot be copied or transformed. However, ezdxf can extract the
proxy graphic from these entities as virtual entities or replace (explode) the entire entity with its proxy graphic. The
meaning and data of this entity is lost when the entity is exploded.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'ACAD_PROXY_ENTITY'
Factory function not supported
Inherited DXF attributes Common graphical DXF attributes

class ezdxf.entities.ACADProxyEntity

virtual_entities()→ Iterator[DXFGraphic]
Yields proxy graphic as “virtual” entities.

explode(target_layout: BaseLayout | None = None)→ EntityQuery

Explodes the proxy graphic for the ACAD_PROXY_ENTITY into the target layout, if target layout
is None, the layout of the ACAD_PROXY_ENTITY will be used. This method destroys the source
ACAD_PROXY_ENTITY entity.

Parameters
target_layout – target layout for exploded entities, None for same layout as the source
ACAD_PROXY_ENTITY.

Returns
EntityQuery container referencing all exploded DXF entities.

Arc

The ARC entity (DXF Reference) represents a circular arc, which is defined by the DXF attributes dxf.center, dxf.
radius, dxf.start_angle and dxf.end_angle. The arc-curve goes always from dxf.start_angle to
dxf.end_angle in counter-clockwise orientation around the dxf.extrusion vector, which is (0, 0, 1) by default
and the usual case for 2D arcs. The ARC entity has OCS coordinates.
The helper tool ezdxf.math.ConstructionArc supports creating arcs from various scenarios, like from 3 points
or 2 points and an angle or 2 points and a radius and the upright module can convert inverted extrusion vectors from
(0, 0, -1) to (0, 0, 1) without changing the curve.
See also:

• Tutorial for Simple DXF Entities, section Arc

• ezdxf.math.ConstructionArc

• Object Coordinate System (OCS)

• ezdxf.upright module

Subclass of ezdxf.entities.Circle
DXF type 'ARC'
Factory function ezdxf.layouts.BaseLayout.add_arc()
Inherited DXF attributes Common graphical DXF attributes

9.8. Reference 317

https://help.autodesk.com/view/OARX/2019/ENU/?guid=GUID-89A690F9-E859-4D57-89EA-750F3FB76C6B
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0B14D8F1-0EBA-44BF-9108-57D8CE614BC8

ezdxf Documentation, Release 1.3.2

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Arc

dxf.center

Center point of arc (2D/3D Point in OCS)
dxf.radius

Radius of arc (float)
dxf.start_angle

Start angle in degrees (float)
dxf.end_angle

End angle in degrees (float)
start_point

Returns the start point of the arc inWCS, takes the OCS into account.
end_point

Returns the end point of the arc inWCS, takes the OCS into account.
angles(num: int)→ Iterator[float]

Yields num angles from start- to end angle in degrees in counter-clockwise orientation. All angles are nor-
malized in the range from [0, 360).

flattening(sagitta: float)→ Iterator[Vec3]
Approximate the arc by vertices inWCS, the argument sagitta defines the maximum distance from the center
of an arc segment to the center of its chord.

transform(m: Matrix44)→ Arc
Transform ARC entity by transformation matrix m inplace. Raises NonUniformScalingError() for
non-uniform scaling.

to_ellipse(replace=True)→ Ellipse
Convert the CIRCLE/ARC entity to an Ellipse entity.
Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.

Parameters
replace – replace (delete) source entity by ELLIPSE entity if True

to_spline(replace=True)→ Spline

Convert the CIRCLE/ARC entity to a Spline entity.
Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace – replace (delete) source entity by SPLINE entity if True

construction_tool()→ ConstructionArc
Returns the 2D construction tool ezdxf.math.ConstructionArc but the extrusion vector is ignored.

apply_construction_tool(arc: ConstructionArc)→ Arc
Set ARC data from the construction tool ezdxf.math.ConstructionArc but the extrusion vector is
ignored.

318 Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.3.2

Body

BODY entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
See also:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.DXFGraphic
DXF type 'BODY'
Factory function ezdxf.layouts.BaseLayout.add_body()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Body

dxf.version

Modeler format version number, default value is 1
dxf.flags

Require DXF R2013.
dxf.uid

Require DXF R2013.
property acis_data: bytes | Sequence[str]

Returns SAT data for DXF R2000 up to R2010 and SAB data for DXF R2013 and later
property sat: Sequence[str]

Get/Set SAT data as sequence of strings.
property sab: bytes

Get/Set SAB data as bytes.
property has_binary_data

Returns True if the entity contains SAB data and False if the entity contains SAT data.
tostring()→ str

Returns ACIS SAT data as a single string if the entity has SAT data.

Circle

The CIRCLE entity (DXF Reference) defined by the DXF attributes dxf.center and dxf.radius. The CIRCLE
entity has OCS coordinates.
See also:

• Tutorial for Simple DXF Entities, section Circle

• ezdxf.math.ConstructionCircle

• Object Coordinate System (OCS)

9.8. Reference 319

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7FB91514-56FF-4487-850E-CF1047999E77
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8663262B-222C-414D-B133-4A8506A27C18

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFGraphic
DXF type 'CIRCLE'
Factory function ezdxf.layouts.BaseLayout.add_circle()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Circle

dxf.center

Center point of circle (2D/3D Point in OCS)
dxf.radius

Radius of circle (float)
vertices(angles: Iterable[float])→ Iterator[Vec3]

Yields the vertices of the circle of all given angles as Vec3 instances inWCS.
Parameters

angles – iterable of angles in OCS as degrees, angle goes counter-clockwise around the ex-
trusion vector, and the OCS x-axis defines 0-degree.

flattening(sagitta: float)→ Iterator[Vec3]
Approximate the circle by vertices inWCS as Vec3 instances. The argument sagitta is the maximum distance
from the center of an arc segment to the center of its chord. Yields a closed polygon where the start vertex is
equal to the end vertex!

transform(m: Matrix44)→ Circle
Transform the CIRCLE entity by transformation matrix m inplace. Raises NonUniformScalingEr-
ror() for non-uniform scaling.

translate(dx: float, dy: float, dz: float)→ Circle
Optimized CIRCLE/ARC translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating
interface).

to_ellipse(replace=True)→ Ellipse
Convert the CIRCLE/ARC entity to an Ellipse entity.
Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.

Parameters
replace – replace (delete) source entity by ELLIPSE entity if True

to_spline(replace=True)→ Spline
Convert the CIRCLE/ARC entity to a Spline entity.
Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace – replace (delete) source entity by SPLINE entity if True

320 Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.3.2

Dimension

The DIMENSION entity (DXF Reference) represents several types of dimensions in many orientations and alignments.
The basic types of dimensioning are linear, radial, angular, ordinate, and arc length.
For more information about dimensions see the online help from AutoDesk: About the Types of Dimensions

Important: The DIMENSION entity is reused to create dimensional constraints, such entities do not have an associ-
ated geometrical block nor a dimension type group code (2) and reside on layer *ADSK_CONSTRAINTS. Use property
Dimension.is_dimensional_constraint to check for this objects. Dimensional constraints are not docu-
mented in the DXF reference and not supported by ezdxf.

See also:
• Tutorial for Linear Dimensions

• Tutorial for Radius Dimensions

• Tutorial for Diameter Dimensions

• Tutorial for Angular Dimensions

• Tutorial for Ordinate Dimensions

Subclass of ezdxf.entities.DXFGraphic
DXF type 'DIMENSION'
factory function see table below
Inherited DXF attributes Common graphical DXF attributes

Factory Functions

Linear and Rotated Dimension (DXF) add_linear_dim()
Aligned Dimension (DXF) add_aligned_dim()
Angular Dimension (DXF) add_angular_dim_2l()
Angular 3P Dimension (DXF) add_angular_dim_3p()
Angular Dimension by center, radius, angles add_angular_dim_cra()
Angular Dimension by ConstructionArc add_angular_dim_arc()
Diameter Dimension (DXF) add_diameter_dim()
Radius Dimension (DXF) add_radius_dim()
Ordinate Dimension (DXF) add_ordinate_dim()

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Dimension

There is only one Dimension class to represent all different dimension types.
dxf.version

Version number: 0 = R2010. (int, DXF R2010)

9.8. Reference 321

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-239A1BDD-7459-4BB9-8DD7-08EC79BF1EB0
https://knowledge.autodesk.com/support/autocad/getting-started/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-9A8AB1F2-4754-444C-B90D-CD3F2FC8A3E0-htm.html
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 1.3.2

dxf.geometry

Name of the BLOCK that contains the entities that make up the dimension picture.
For AutoCAD this graphical representation is mandatory, otherwise AutoCAD will not open the DXF docu-
ment. BricsCAD will render the DIMENSION entity by itself, if the graphical representation is not present,
but displays the BLOCK content if present.

dxf.dimstyle

Dimension style (DimStyle) name as string.
dxf.dimtype

Values 0-6 are integer values that represent the dimension type. Values 32, 64, and 128 are bit values, which
are added to the integer values.

0 Linear and Rotated Dimension (DXF)
1 Aligned Dimension (DXF)
2 Angular Dimension (DXF)
3 Diameter Dimension (DXF)
4 Radius Dimension (DXF)
5 Angular 3P Dimension (DXF)
6 Ordinate Dimension (DXF)
8 subclass ezdxf.entities.ArcDimension introduced in DXF R2004
32 Indicates that graphical representation geometry is referenced by this dimension only. (always

set in DXF R13 and later)
64 Ordinate type. This is a bit value (bit 7) used only with integer value 6. If set, ordinate is X-type; if

not set, ordinate is Y-type
128 This is a bit value (bit 8) added to the other dimtype values if the dimension text has been posi-

tioned at a user-defined location rather than at the default location

dxf.defpoint

Definition point for all dimension types. (3D Point inWCS)
• Linear- and rotated dimension: dxf.defpoint specifies the dimension line location.
• Arc- and angular dimension: dxf.defpoint and dxfdefpoint4 specify the endpoints of the line
used to determine the second extension line.

dxf.defpoint2

Definition point for linear- and angular dimensions. (3D Point inWCS)
• Linear- and rotated dimension: The dxf.defpoint2 specifies the start point of the first extension
line.

• Arc- and angular dimension: The dxf.defpoint2 and dxf.defpoint3 specify the endpoints of
the line used to determine the first extension line.

dxf.defpoint3

Definition point for linear- and angular dimensions. (3D Point inWCS)
• Linear- and rotated dimension: The dxf.defpoint3 specifies the start point of the second extension
line.

• Arc- and angular dimension: The dxf.defpoint2 and dxf.defpoint3 specify the endpoints of
the line used to determine the first extension line.

322 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 1.3.2

dxf.defpoint4

Definition point for diameter-, radius-, and angular dimensions. (3D Point inWCS)
The dxf.defpoint and dxf.defpoint4 specify the endpoints of the line used to determine the second
extension line for arc- and angular dimension:

dxf.defpoint5

This point defines the location of the arc for angular dimensions. (3D Point in OCS)
dxf.angle

Rotation angle of linear and rotated dimensions in degrees. (float)
dxf.leader_length

Leader length for radius and diameter dimensions. (float)
dxf.text_midpoint

Middle point of dimension text. (3D Point in OCS)
dxf.insert

Insertion point for clones of a linear dimensions. (3D Point in OCS)
This value translates the content of the associated anonymous block for cloned linear dimensions, similar to
the insert attribute of the Insert entity.

dxf.attachment_point

Text attachment point (int, DXF R2000), default value is 5.

1 Top left
2 Top center
3 Top right
4 Middle left
5 Middle center
6 Middle right
7 Bottom left
8 Bottom center
9 Bottom right

dxf.line_spacing_style

Dimension text line-spacing style (int, DXF R2000), default value is 1.

1 At least (taller characters will override)
2 Exact (taller characters will not override)

dxf.line_spacing_factor

Dimension text-line spacing factor. (float, DXF R2000)
Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00.

dxf.actual_measurement

Actual measurement (float, DXF R2000), this is an optional attribute and often not present. (read-only value)
dxf.text

Dimension text explicitly entered by the user (str), default value is an empty string.
If empty string or “<>”, the dimension measurement is drawn as the text, if “ ” (one blank space), the text is
suppressed. Anything else will be displayed as the dimension text.

9.8. Reference 323

ezdxf Documentation, Release 1.3.2

dxf.oblique_angle

The optional dxf.oblique_angle defines the angle of the extension lines for linear dimension.
dxf.text_rotation

Defines is the rotation angle of the dimension text away from its default orientation (the direction of the
dimension line). (float)

dxf.horizontal_direction

Indicates the horizontal direction for the dimension entity (float).
This attribute determines the orientation of dimension text and lines for horizontal, vertical, and rotated linear
dimensions. This value is the negative of the angle in the OCS xy-plane between the dimension line and the
OCS x-axis.

property dimtype: int

dxf.dimtype without binary flags (32, 62, 128).
property is_dimensional_constraint: bool

Returns True if the DIMENSION entity is a dimensional constraint object.
get_dim_style()→ DimStyle

Returns the associated DimStyle entity.
get_geometry_block()→ BlockLayout | None

Returns BlockLayout of associated anonymous dimension block, which contains the entities that make
up the dimension picture. Returns None if block name is not set or the BLOCK itself does not exist

get_measurement()→ float | Vec3
Returns the actual dimension measurement in WCS units, no scaling applied for linear dimensions. Returns
angle in degrees for angular dimension from 2 lines and angular dimension from 3 points. Returns vector
from origin to feature location for ordinate dimensions.

override()→ DimStyleOverride
Returns the DimStyleOverride object.

render()→ None
Renders the graphical representation of the DIMENSION entity as DXF primitives (TEXT, LINE, ARC,…)
into an anonymous content BLOCK.

transform(m: Matrix44)→ Dimension
Transform the DIMENSION entity by transformation matrix m inplace.
Raises NonUniformScalingError() for non uniform scaling.

virtual_entities()→ Iterator[DXFGraphic]
Yields the graphical representation of the anonymous content BLOCK as virtual DXF primitives (LINE,
ARC, TEXT, …).
These virtual entities are located at the original location of the DIMENSION entity, but they are not stored
in the entity database, have no handle and are not assigned to any layout.

explode(target_layout: BaseLayout | None = None)→ EntityQuery
Explodes the graphical representation of the DIMENSION entity as DXF primitives (LINE, ARC, TEXT,
…) into the target layout, None for the same layout as the source DIMENSION entity.
Returns an EntityQuery container containing all DXF primitives.

Parameters
target_layout – target layout for the DXF primitives, None for same layout as source
DIMENSION entity.

324 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DimStyleOverride

All of the DimStyle attributes can be overridden for each Dimension entity individually.
The DimStyleOverride class manages all the complex dependencies between DimStyle and Dimension, the
different features of all DXF versions and the rendering process to create the Dimension picture as BLOCK, which is
required for AutoCAD.
class ezdxf.entities.DimStyleOverride

dimension

Base Dimension entity.
dimstyle

By dimension referenced DimStyle entity.
dimstyle_attribs

Contains all overridden attributes of dimension, as a dict with DimStyle attribute names as keys.
__getitem__(key: str)→ Any

Returns DIMSTYLE attribute key, see also get().
__setitem__(key: str, value: Any)→ None

Set DIMSTYLE attribute key in dimstyle_attribs.
__delitem__(key: str)→ None

Deletes DIMSTYLE attribute key from dimstyle_attribs, ignores KeyErrors silently.
get(attribute: str, default: Any = None)→ Any

Returns DIMSTYLE attribute from override dict dimstyle_attribs or base DimStyle.
Returns default value for attributes not supported by DXF R12. This is a hack to use the same algorithm to
render DXF R2000 and DXF R12 DIMENSION entities. But the DXF R2000 attributes are not stored in the
DXF R12 file! This method does not catch invalid attribute names! Check debug log for ignored DIMSTYLE
attributes.

pop(attribute: str, default: Any = None)→ Any
Returns DIMSTYLE attribute from override dict dimstyle_attribs and removes this attribute from
override dict.

update(attribs: dict)→ None
Update override dict dimstyle_attribs.

Parameters
attribs – dict of DIMSTYLE attributes

commit()→ None
Writes overridden DIMSTYLE attributes into ACAD:DSTYLE section of XDATA of the DIMENSION
entity.

get_arrow_names()→ tuple[str, str]
Get arrow names as strings like ‘ARCHTICK’ as tuple (dimblk1, dimblk2).

set_arrows(blk: str | None = None, blk1: str | None = None, blk2: str | None = None, ldrblk: str | None =
None, size: float | None = None)→ None

Set arrows or user defined blocks and disable oblique stroke as tick.
Parameters

• blk – defines both arrows at once as name str or user defined block

9.8. Reference 325

ezdxf Documentation, Release 1.3.2

• blk1 – defines left arrow as name str or as user defined block
• blk2 – defines right arrow as name str or as user defined block
• ldrblk – defines leader arrow as name str or as user defined block
• size – arrow size in drawing units

set_tick(size: float = 1)→ None
Use oblique stroke as tick, disables arrows.

Parameters
size – arrow size in daring units

set_text_align(halign: str | None = None, valign: str | None = None, vshift: float | None = None)→ None
Set measurement text alignment, halign defines the horizontal alignment, valign defines the vertical alignment,
above1 and above2 means above extension line 1 or 2 and aligned with extension line.

Parameters
• halign – left, right, center, above1, above2, requires DXF R2000+
• valign – above, center, below
• vshift – vertical text shift, if valign is center; >0 shift upward, <0 shift downwards

set_tolerance(upper: float, lower: float | None = None, hfactor: float | None = None, align:
MTextLineAlignment | None = None, dec: int | None = None, leading_zeros: bool | None =
None, trailing_zeros: bool | None = None)→ None

Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and
trailing zero suppression.

Parameters
• upper – upper tolerance value
• lower – lower tolerance value, if None same as upper
• hfactor – tolerance text height factor in relation to the dimension text height
• align – tolerance text alignment enum ezdxf.enums.MTextLineAlignment

• dec – Sets the number of decimal places displayed
• leading_zeros – suppress leading zeros for decimal dimensions if False
• trailing_zeros – suppress trailing zeros for decimal dimensions if False

set_limits(upper: float, lower: float, hfactor: float | None = None, dec: int | None = None, leading_zeros:
bool | None = None, trailing_zeros: bool | None = None)→ None

Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading
and trailing zero suppression.

Parameters
• upper – upper limit value added to measurement value
• lower – lower limit value subtracted from measurement value
• hfactor – limit text height factor in relation to the dimension text height
• dec – Sets the number of decimal places displayed, requires DXF R2000+
• leading_zeros – suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

326 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+

set_text_format(prefix: str = '', postfix: str = '', rnd: float | None = None, dec: int | None = None, sep: str |
None = None, leading_zeros: bool | None = None, trailing_zeros: bool | None = None)→
None

Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.
Parameters

• prefix – dimension text prefix text as string
• postfix – dimension text postfix text as string
• rnd – Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

• dec – Sets the number of decimal places displayed for the primary units of a dimension.
requires DXF R2000+

• sep – “.” or “,” as decimal separator
• leading_zeros – suppress leading zeros for decimal dimensions if False
• trailing_zeros – suppress trailing zeros for decimal dimensions if False

set_dimline_format(color: int | None = None, linetype: str | None = None, lineweight: int | None = None,
extension: float | None = None, disable1: bool | None = None, disable2: bool | None
= None)

Set dimension line properties.
Parameters

• color – color index
• linetype – linetype as string
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm
• extension – extension length
• disable1 – True to suppress first part of dimension line
• disable2 – True to suppress second part of dimension line

set_extline_format(color: int | None = None, lineweight: int | None = None, extension: float | None =
None, offset: float | None = None, fixed_length: float | None = None)

Set common extension line attributes.
Parameters

• color – color index
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm
• extension – extension length above dimension line
• offset – offset from measurement point
• fixed_length – set fixed length extension line, length below the dimension line

set_extline1(linetype: str | None = None, disable=False)
Set attributes of the first extension line.

Parameters

9.8. Reference 327

ezdxf Documentation, Release 1.3.2

• linetype – linetype for the first extension line
• disable – disable first extension line if True

set_extline2(linetype: str | None = None, disable=False)
Set attributes of the second extension line.

Parameters
• linetype – linetype for the second extension line
• disable – disable the second extension line if True

set_text(text: str = '<>')→ None
Set dimension text.
• text = “ “ to suppress dimension text
• text = “” or “<>” to use measured distance as dimension text
• otherwise display text literally

shift_text(dh: float, dv: float)→ None
Set relative text movement, implemented as user location override without leader.

Parameters
• dh – shift text in text direction
• dv – shift text perpendicular to text direction

set_location(location: UVec, leader=False, relative=False)→ None
Set text location by user, special version for linear dimensions, behaves for other dimension types like
user_location_override().

Parameters
• location – user defined text location
• leader – create leader from text to dimension line
• relative – location is relative to default location.

user_location_override(location: UVec)→ None
Set text location by user, location is relative to the origin of the UCS defined in the render() method or
WCS if the ucs argument is None.

render(ucs: UCS | None = None, discard=False)→ BaseDimensionRenderer
Starts the dimension line rendering process and also writes overridden dimension style attributes into the
DSTYLE XDATA section. The rendering process “draws” the graphical representation of the DIMENSION
entity as DXF primitives (TEXT, LINE, ARC, …) into an anonymous content BLOCK.
You can discard the content BLOCK for a friendly CAD applications like BricsCAD, because the rendering
of the dimension entity is done automatically by BricsCAD if the content BLOCK is missing, and the result
is in most cases better than the rendering done by ezdxf.
AutoCAD does not render DIMENSION entities automatically, therefore I see AutoCAD as an unfriendly
CAD application.

Parameters
• ucs – user coordinate system
• discard – discard the content BLOCK created by ezdxf, this works for BricsCAD, Auto-
CAD refuses to open DXF files containing DIMENSION entities without a content BLOCK

328 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Returns
The rendering object of the DIMENSION entity for analytics

ArcDimension

The ARC_DIMENSION entity was introduced in DXF R2004 and is not documented in the DXF reference.
See also:
Tutorial for Arc Dimensions

Subclass of ezdxf.entities.Dimension
DXF type 'ARC_DIMENSION'
factory function • add_arc_dim_3p()

• add_arc_dim_cra()
• add_arc_dim_arc()

Inherited DXF attributes Common graphical DXF attributes
Required DXF version R2004 / AC1018

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.ArcDimension

dxf.defpoint2

start point of first extension line in OCS

dxf.defpoint3

start point of second extension line in OCS

dxf.defpoint4

center point of arc in OCS

dxf.start_angle

dxf.end_angle

dxf.is_partial

dxf.has_leader

dxf.leader_point1

dxf.leader_point2

dimtype

Returns always 8.

9.8. Reference 329

ezdxf Documentation, Release 1.3.2

Ellipse

The ELLIPSE entity (DXF Reference) is an elliptic 3D curve defined by the DXF attributes dxf.center, the dxf.
major_axis vector and the dxf.extrusion vector.
The dxf.ratio attribute is the ratio of minor axis to major axis and has to be smaller or equal 1. The dxf.
start_param and dxf.end_param attributes defines the starting- and the end point of the ellipse, a full ellipse
goes from 0 to 2π. The curve always goes from start- to end param in counter clockwise orientation.
The dxf.extrusion vector defines the normal vector of the ellipse plane. The minor axis direction is calculated by
dxf.extrusion cross dxf.major_axis. The default extrusion vector (0, 0, 1) defines an ellipse plane parallel to
xy-plane of theWCS.
All coordinates and vectors inWCS.
See also:

• Tutorial for Simple DXF Entities, section Ellipse

• ezdxf.math.ConstructionEllipse

Subclass of ezdxf.entities.DXFGraphic
DXF type 'ELLIPSE'
factory function add_ellipse()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.Ellipse

dxf.center

Center point of circle (2D/3D Point inWCS)
dxf.major_axis

Endpoint of major axis, relative to the dxf.center (Vec3), default value is (1, 0, 0).
dxf.ratio

Ratio of minor axis to major axis (float), has to be in range from 0.000001 to 1.0, default value is 1.
dxf.start_param

Start parameter (float), default value is 0.
dxf.end_param

End parameter (float), default value is 2π.
start_point

Returns the start point of the ellipse in WCS.
end_point

Returns the end point of the ellipse in WCS.
minor_axis

Returns the minor axis of the ellipse as Vec3 in WCS.
construction_tool()→ ConstructionEllipse

Returns construction tool ezdxf.math.ConstructionEllipse.
apply_construction_tool(e: ConstructionEllipse)→ Ellipse

Set ELLIPSE data from construction tool ezdxf.math.ConstructionEllipse.

330 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-107CB04F-AD4D-4D2F-8EC9-AC90888063AB

ezdxf Documentation, Release 1.3.2

vertices(params: Iterable[float])→ Iterable[Vec3]
Yields vertices on ellipse for iterable params in WCS.

Parameters
params – param values in the range from 0 to 2π in radians, param goes counter-clockwise
around the extrusion vector, major_axis = local x-axis = 0 rad.

flattening(distance: float, segments: int = 8)→ Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided. Returns a closed polygon for a full ellipse where the start vertex has the same value as the
end vertex.

Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count

params(num: int)→ Iterable[float]
Returns num params from start- to end param in counter-clockwise order.
All params are normalized in the range [0, 2π).

transform(m: Matrix44)→ Ellipse
Transform the ELLIPSE entity by transformation matrix m inplace.

translate(dx: float, dy: float, dz: float)→ Ellipse
Optimized ELLIPSE translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating inter-
face).

to_spline(replace=True)→ Spline
Convert ELLIPSE to a Spline entity.
Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace – replace (delete) source entity by SPLINE entity if True

classmethod from_arc(entity: DXFGraphic)→ Ellipse
Create a new virtual ELLIPSE entity from an ARC or a CIRCLE entity.
The new entity has no owner, no handle, is not stored in the entity database nor assigned to any layout!

Hatch

The HATCH entity (DXF Reference) fills a closed area defined by one or more boundary paths by a hatch pattern, a solid
fill, or a gradient fill.
All points in OCS as (x, y) tuples (Hatch.dxf.elevation is the z-axis value).
There are two different hatch pattern default scaling, depending on the HEADER variable $MEASUREMENT, one for
ISO measurement (m, cm, mm, …) and one for imperial measurement (in, ft, yd, …).
The default scaling for predefined hatch pattern will be chosen according this measurement setting in the HEADER
section, this replicates the behavior of BricsCAD and other CAD applications. Ezdxf uses the ISO pattern definitions as a
base line and scales this pattern down by factor 1/25.6 for imperial measurement usage. The pattern scaling is independent
from the drawing units of the document defined by the HEADER variable $INSUNITS.

9.8. Reference 331

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-C6C71CED-CE0F-4184-82A5-07AD6241F15B

ezdxf Documentation, Release 1.3.2

See also:
Tutorial for Hatch and DXF Units

Subclass of ezdxf.entities.DXFGraphic
DXF type 'HATCH'
Factory function ezdxf.layouts.BaseLayout.add_hatch()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Boundary paths classes

Path manager: BoundaryPaths
• PolylinePath

• EdgePath

– LineEdge

– ArcEdge

– EllipseEdge

– SplineEdge

Pattern and gradient classes

• Pattern

• PatternLine

• Gradien

class ezdxf.entities.Hatch

dxf.pattern_name

Pattern name as string
dxf.solid_fill

1 solid fill, use method Hatch.set_solid_fill()
0 pattern fill, use method Hatch.set_pattern_fill()

dxf.associative

1 associative hatch
0 not associative hatch

Associations are not managed by ezdxf.

332 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.hatch_style

0 normal
1 outer
2 ignore

(search AutoCAD help for more information)
dxf.pattern_type

0 user
1 predefined
2 custom

dxf.pattern_angle

The actual pattern rotation angle in degrees (float). Changing this value does not rotate the pattern, use
set_pattern_angle() for this task.

dxf.pattern_scale

The actual pattern scale factor (float). Changing this value does not scale the pattern use
set_pattern_scale() for this task.

dxf.pattern_double

1 = double pattern size else 0. (int)
dxf.n_seed_points

Count of seed points (use get_seed_points())
dxf.elevation

Z value represents the elevation height of the OCS. (float)
paths

BoundaryPaths object.
pattern

Pattern object.
gradient

Gradient object.
seeds

A list of seed points as (x, y) tuples.
property has_solid_fill: bool

True if entity has a solid fill. (read only)
property has_pattern_fill: bool

True if entity has a pattern fill. (read only)
property has_gradient_data: bool

True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)

9.8. Reference 333

ezdxf Documentation, Release 1.3.2

property bgcolor: RGB | None

Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)
usage:

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition(lines: Sequence, factor: float = 1, angle: float = 0)→ None
Setup pattern definition by a list of definition lines and the definition line is a 4-tuple (angle, base_point, offset,
dash_length_items). The pattern definition should be designed for a pattern scale factor of 1 and a pattern
rotation angle of 0.
• angle: line angle in degrees
• base-point: (x, y) tuple
• offset: (dx, dy) tuple
• dash_length_items: list of dash items (item > 0 is a line, item < 0 is a gap and item == 0.0 is a point)

Parameters
• lines – list of definition lines
• factor – pattern scale factor
• angle – rotation angle in degrees

set_pattern_scale(scale: float)→ None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale(1) call resets the pat-
tern scale to the original appearance as defined by the pattern designer, but only if the pattern attribute dxf.
pattern_scale represents the actual scale, it cannot restore the original pattern scale from the pattern
definition itself.

Parameters
scale – pattern scale factor

set_pattern_angle(angle: float)→ None
Sets the pattern rotation angle and rotates the pattern definition.
The method always starts from the original base rotation of 0, the set_pattern_angle(0) call resets
the pattern rotation angle to the original appearance as defined by the pattern designer, but only if the pattern
attributedxf.pattern_angle represents the actual pattern rotation, it cannot restore the original rotation
angle from the pattern definition itself.

Parameters
angle – pattern rotation angle in degrees

set_solid_fill(color: int = 7, style: int = 1, rgb: RGB | None = None)

Set the solid fill mode and removes all gradient and pattern fill related data.
Parameters

• color – AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
• style – hatch style (0 = normal; 1 = outer; 2 = ignore)

334 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• rgb – true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2000.

set_pattern_fill(name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int
= 1, pattern_type: int = 1, definition=None)→ None

Sets the pattern fill mode and removes all gradient related data.
The pattern definition should be designed for a scale factor 1 and a rotation angle of 0 degrees. The predefined
hatch pattern like “ANSI33” are scaled according to the HEADER variable $MEASUREMENT for ISO
measurement (m, cm, …), or imperial units (in, ft, …), this replicates the behavior of BricsCAD.

Parameters
• name – pattern name as string
• color – pattern color as AutoCAD Color Index (ACI)

• angle – pattern rotation angle in degrees
• scale – pattern scale factor
• double – double size flag
• style – hatch style (0 = normal; 1 = outer; 2 = ignore)
• pattern_type – pattern type (0 = user-defined; 1 = predefined; 2 = custom)
• definition – list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition()

set_gradient(color1: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,
centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR')→ None

Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004 or newer. A gradient
filled hatch is also a solid filled hatch.
Valid gradient type names are:
• “LINEAR”
• “CYLINDER”
• “INVCYLINDER”
• “SPHERICAL”
• “INVSPHERICAL”
• “HEMISPHERICAL”
• “INVHEMISPHERICAL”
• “CURVED”
• “INVCURVED”

Parameters
• color1 – (r, g, b)-tuple for first color, rgb values as int in the range [0, 255]
• color2 – (r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
• rotation – rotation angle in degrees
• centered – determines whether the gradient is centered or not
• one_color – 1 for gradient from color1 to tinted color1

9.8. Reference 335

ezdxf Documentation, Release 1.3.2

• tint – determines the tinted target color1 for a one color gradient. (valid range 0.0 to 1.0)
• name – name of gradient type, default “LINEAR”

set_seed_points(points: Iterable[tuple[float, float]])→ None
Set seed points, points is an iterable of (x, y)-tuples. I don’t know why there can be more than one seed point.
All points in OCS (Hatch.dxf.elevation is the Z value)

transform(m: Matrix44)→ Hatch

Transform entity by transformation matrix m inplace.
associate(path: AbstractBoundaryPath, entities: Iterable[DXFEntity])

Set association from hatch boundary path to DXF geometry entities.
A HATCH entity can be associative to a base geometry, this association is not maintained nor verified by
ezdxf, so if youmodify the base geometry the geometry of the boundary path is not updated and no verification
is done to check if the associated geometry matches the boundary path, this opens many possibilities to create
invalid DXF files: USE WITH CARE!

remove_association()

Remove associated path elements.

Boundary Paths

The hatch entity is build by different path types, these are the filter flags for the Hatch.dxf.hatch_style:
• EXTERNAL: defines the outer boundary of the hatch
• OUTERMOST: defines the first tier of inner hatch boundaries
• DEFAULT: default boundary path

As you will learn in the next sections, these are more the recommended usage type for the flags, but the fill algorithm
doesn’t care much about that, for instance an OUTERMOST path doesn’t have to be inside the EXTERNAL path.

Island Detection

In general the island detection algorithm works always from outside to inside and alternates filled and unfilled areas. The
area between then 1st and the 2nd boundary is filled, the area between the 2nd and the 3rd boundary is unfilled and so on.
The different hatch styles defined by the Hatch.dxf.hatch_style attribute are created by filtering some boundary
path types.

Hatch Style

• HATCH_STYLE_IGNORE: Ignores all paths except the paths marked as EXTERNAL, if there are more than
one path marked as EXTERNAL, they are filled in NESTED style. Creates no hatch if no path is marked as
EXTERNAL.

• HATCH_STYLE_OUTERMOST: Ignores all paths marked as DEFAULT, remaining EXTERNAL and OUTER-
MOST paths are filled in NESTED style. Creates no hatch if no path is marked as EXTERNAL or OUTERMOST.

• HATCH_STYLE_NESTED: Use all existing paths.

336 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Hatch Boundary Classes

class ezdxf.entities.BoundaryPaths

Defines the borders of the hatch, a hatch can consist of more than one path.
paths

List of all boundary paths. Contains PolylinePath and EdgePath objects. (read/write)
external_paths()→ Iterable[AbstractBoundaryPath]

Iterable of external paths, could be empty.
outermost_paths()→ Iterable[AbstractBoundaryPath]

Iterable of outermost paths, could be empty.
default_paths()→ Iterable[AbstractBoundaryPath]

Iterable of default paths, could be empty.
rendering_paths(hatch_style: int = const.HATCH_STYLE_NESTED)→ Iterable[AbstractBoundaryPath]

Iterable of paths to process for rendering, filters unused boundary paths according to the given hatch style:
• NESTED: use all boundary paths
• OUTERMOST: use EXTERNAL and OUTERMOST boundary paths
• IGNORE: ignore all paths except EXTERNAL boundary paths

Yields paths in order of EXTERNAL, OUTERMOST and DEFAULT.
add_polyline_path(path_vertices: Iterable[tuple[float, ...]], is_closed: bool = True, flags: int = 1)→

PolylinePath
Create and add a new PolylinePath object.

Parameters
• path_vertices – iterable of polyline vertices as (x, y) or (x, y, bulge)-tuples.
• is_closed – 1 for a closed polyline else 0
• flags – external(1) or outermost(16) or default (0)

add_edge_path(flags: int = 1)→ EdgePath
Create and add a new EdgePath object.

Parameters
flags – external(1) or outermost(16) or default (0)

polyline_to_edge_paths(just_with_bulge=True)→ None
Convert polyline paths including bulge values to line- and arc edges.

Parameters
just_with_bulge – convert only polyline paths including bulge values if True

edge_to_polyline_paths(distance: float, segments: int = 16)

Convert all edge paths to simple polyline paths without bulges.
Parameters

• distance – maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

• segments – minimum segment count per curve

9.8. Reference 337

ezdxf Documentation, Release 1.3.2

arc_edges_to_ellipse_edges()→ None
Convert all arc edges to ellipse edges.

ellipse_edges_to_spline_edges(num: int = 32)→ None
Convert all ellipse edges to spline edges (approximation).

Parameters
num – count of control points for a full ellipse, partial ellipses have proportional fewer control
points but at least 3.

spline_edges_to_line_edges(factor: int = 8)→ None
Convert all spline edges to line edges (approximation).

Parameters
factor – count of approximation segments = count of control points x factor

all_to_spline_edges(num: int = 64)→ None
Convert all bulge, arc and ellipse edges to spline edges (approximation).

Parameters
num – count of control points for a full circle/ellipse, partial circles/ellipses have proportional
fewer control points but at least 3.

all_to_line_edges(num: int = 64, spline_factor: int = 8)→ None
Convert all bulge, arc and ellipse edges to spline edges and approximate this splines by line edges.

Parameters
• num – count of control points for a full circle/ellipse, partial circles/ellipses have proportional
fewer control points but at least 3.

• spline_factor – count of spline approximation segments = count of control points x
spline_factor

clear()→ None
Remove all boundary paths.

class ezdxf.entities.BoundaryPathType

POLYLINE

polyline path type
EDGE

edge path type
class ezdxf.entities.PolylinePath

A polyline as hatch boundary path.
type

Path type as BoundaryPathType.POLYLINE enum
path_type_flags

(bit coded flags)

0 default
1 external
2 polyline, will be set by ezdxf
16 outermost

338 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

My interpretation of the path_type_flags, see also Tutorial for Hatch:
• external: path is part of the hatch outer border
• outermost: path is completely inside of one or more external paths
• default: path is completely inside of one or more outermost paths

If there are troubles with AutoCAD, maybe the hatch entity has the Hatch.dxf.pixel_size attribute
set - delete it del hatch.dxf.pixel_size and maybe the problem is solved. Ezdxf does not use the
Hatch.dxf.pixel_size attribute, but it can occur in DXF files created by other applications.

is_closed

True if polyline path is closed.
vertices

List of path vertices as (x, y, bulge)-tuples. (read/write)
source_boundary_objects

List of handles of the associated DXF entities for associative hatches. There is no support for associative
hatches by ezdxf, you have to do it all by yourself. (read/write)

set_vertices(vertices: Iterable[Sequence[float]], is_closed: bool = True)→ None
Set new vertices as new polyline path, a vertex has to be a (x, y) or a (x, y, bulge)-tuple.

clear()→ None
Removes all vertices and all handles to associated DXF objects (source_boundary_objects).

class ezdxf.entities.EdgePath

Boundary path build by edges. There are four different edge types: LineEdge, ArcEdge, EllipseEdge of
SplineEdge. Make sure there are no gaps between edges and the edge path must be closed to be recognized as
path. AutoCAD is very picky in this regard. Ezdxf performs no checks on gaps between the edges and does not
prevent creating open loops.

Note: ArcEdge and EllipseEdge are ALWAYS represented in counter-clockwise orientation, even if an
clockwise oriented edge is required to build a closed loop. To add a clockwise oriented curve swap start- and end
angles and set the ccw flag to False and ezdxf will export a correct clockwise orientated curve.

type

Path type as BoundaryPathType.EDGE enum
path_type_flags

(bit coded flags)

0 default
1 external
16 outermost

see PolylinePath.path_type_flags
edges

List of boundary edges of type LineEdge, ArcEdge, EllipseEdge of SplineEdge
source_boundary_objects

Required for associative hatches, list of handles to the associated DXF entities.

9.8. Reference 339

ezdxf Documentation, Release 1.3.2

clear()→ None
Delete all edges.

add_line(start: UVec, end: UVec)→ LineEdge
Add a LineEdge from start to end.

Parameters
• start – start point of line, (x, y)-tuple
• end – end point of line, (x, y)-tuple

add_arc(center: UVec, radius: float = 1.0, start_angle: float = 0.0, end_angle: float = 360.0, ccw: bool =
True)→ ArcEdge

Add an ArcEdge.
Adding Clockwise Oriented Arcs:
Clockwise oriented ArcEdge objects are sometimes necessary to build closed loops, but the ArcEdge
objects are always represented in counter-clockwise orientation. To add a clockwise oriented ArcEdge
you have to swap the start- and end angle and set the ccw flag to False, e.g. to add a clockwise oriented
ArcEdge from 180 to 90 degree, add the ArcEdge in counter-clockwise orientation with swapped angles:

edge_path.add_arc(center, radius, start_angle=90, end_angle=180, ccw=False)

Parameters
• center – center point of arc, (x, y)-tuple
• radius – radius of circle
• start_angle – start angle of arc in degrees (end_angle for a clockwise oriented arc)
• end_angle – end angle of arc in degrees (start_angle for a clockwise oriented arc)
• ccw – True for counter-clockwise False for clockwise orientation

add_ellipse(center: UVec, major_axis: UVec = (1.0, 0.0), ratio: float = 1.0, start_angle: float = 0.0,
end_angle: float = 360.0, ccw: bool = True)→ EllipseEdge

Add an EllipseEdge.
Adding Clockwise Oriented Ellipses:
Clockwise oriented EllipseEdge objects are sometimes necessary to build closed loops, but the El-
lipseEdge objects are always represented in counter-clockwise orientation. To add a clockwise oriented
EllipseEdge you have to swap the start- and end angle and set the ccw flag to False, e.g. to add a
clockwise oriented EllipseEdge from 180 to 90 degree, add the EllipseEdge in counter-clockwise
orientation with swapped angles:

edge_path.add_ellipse(center, major_axis, ratio, start_angle=90, end_
↪→angle=180, ccw=False)

Parameters
• center – center point of ellipse, (x, y)-tuple
• major_axis – vector of major axis as (x, y)-tuple
• ratio – ratio of minor axis to major axis as float
• start_angle – start angle of ellipse in degrees (end_angle for a clockwise oriented el-
lipse)

340 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• end_angle – end angle of ellipse in degrees (start_angle for a clockwise oriented ellipse)
• ccw – True for counter-clockwise False for clockwise orientation

add_spline(fit_points: Iterable[UVec] | None = None, control_points: Iterable[UVec] | None = None,
knot_values: Iterable[float] | None = None, weights: Iterable[float] | None = None, degree: int =
3, periodic: int = 0, start_tangent: UVec | None = None, end_tangent: UVec | None = None)→
SplineEdge

Add a SplineEdge.
Parameters

• fit_points – points through which the spline must go, at least 3 fit points are required.
list of (x, y)-tuples

• control_points – affects the shape of the spline, mandatory and AutoCAD crashes on
invalid data. list of (x, y)-tuples

• knot_values – (knot vector) mandatory and AutoCAD crashes on invalid data. list of
floats; ezdxf provides two tool functions to calculate valid knot values: ezdxf.math.
uniform_knot_vector(), ezdxf.math.open_uniform_knot_vector()
(default if None)

• weights – weight of control point, not mandatory, list of floats.
• degree – degree of spline (int)
• periodic – 1 for periodic spline, 0 for none periodic spline
• start_tangent – start_tangent as 2d vector, optional
• end_tangent – end_tangent as 2d vector, optional

Warning: Unlike for the spline entity AutoCAD does not calculate the necessary knot_values for the
spline edge itself. On the contrary, if the knot_values in the spline edge are missing or invalid AutoCAD
crashes.

class ezdxf.entities.EdgeType

LINE

ARC

ELLIPSE

SPLINE

class ezdxf.entities.LineEdge

Straight boundary edge.
type

Edge type as EdgeType.LINE enum
start

Start point as (x, y)-tuple. (read/write)
end

End point as (x, y)-tuple. (read/write)

9.8. Reference 341

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.ArcEdge

Arc as boundary edge in counter-clockwise orientation, see EdgePath.add_arc().
type

Edge type as EdgeType.ARC enum
center

Center point of arc as (x, y)-tuple. (read/write)
radius

Arc radius as float. (read/write)
start_angle

Arc start angle in counter-clockwise orientation in degrees. (read/write)
end_angle

Arc end angle in counter-clockwise orientation in degrees. (read/write)
ccw

True for counter clockwise arc else False. (read/write)
class ezdxf.entities.EllipseEdge

Elliptic arc as boundary edge in counter-clockwise orientation, see EdgePath.add_ellipse().
type

Edge type as EdgeType.ELLIPSE enum
major_axis_vector

Ellipse major axis vector as (x, y)-tuple. (read/write)
minor_axis_length

Ellipse minor axis length as float. (read/write)
radius

Ellipse radius as float. (read/write)
start_angle

Ellipse start angle in counter-clockwise orientation in degrees. (read/write)
end_angle

Ellipse end angle in counter-clockwise orientation in degrees. (read/write)
ccw

True for counter clockwise ellipse else False. (read/write)
class ezdxf.entities.SplineEdge

Spline as boundary edge.
type

Edge type as EdgeType.SPLINE enum
degree

Spline degree as int. (read/write)
rational

1 for rational spline else 0. (read/write)

342 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

periodic

1 for periodic spline else 0. (read/write)
knot_values

List of knot values as floats. (read/write)
control_points

List of control points as (x, y)-tuples. (read/write)
fit_points

List of fit points as (x, y)-tuples. (read/write)
weights

List of weights (of control points) as floats. (read/write)
start_tangent

Spline start tangent (vector) as (x, y)-tuple. (read/write)
end_tangent

Spline end tangent (vector) as (x, y)-tuple. (read/write)

Hatch Pattern Definition Classes

class ezdxf.entities.Pattern

lines

List of pattern definition lines (read/write). see PatternLine
add_line(angle: float = 0, base_point: UVec = (0, 0), offset: UVec = (0, 0), dash_length_items:

Iterable[float] | None = None)→ None
Create a new pattern definition line and add the line to the Pattern.lines attribute.

clear()→ None
Delete all pattern definition lines.

scale(factor: float = 1, angle: float = 0)→ None
Scale and rotate pattern.
Be careful, this changes the base pattern definition, maybe better use Hatch.set_pattern_scale()
or Hatch.set_pattern_angle().

Parameters
• factor – scaling factor
• angle – rotation angle in degrees

class ezdxf.entities.PatternLine

Represents a pattern definition line, use factory function Pattern.add_line() to create new pattern definition
lines.
angle

Line angle in degrees. (read/write)
base_point

Base point as (x, y)-tuple. (read/write)

9.8. Reference 343

ezdxf Documentation, Release 1.3.2

offset

Offset as (x, y)-tuple. (read/write)
dash_length_items

List of dash length items (item > 0 is line, < 0 is gap, 0.0 = dot). (read/write)

Hatch Gradient Fill Class

class ezdxf.entities.Gradient

color1

First rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)
color2

Second rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)
one_color

If one_color is 1 - the hatch is filled with a smooth transition between color1 and a specified tint of
color1. (read/write)

rotation

Gradient rotation in degrees. (read/write)
centered

Specifies a symmetrical gradient configuration. If this option is not selected, the gradient fill is shifted up and
to the left, creating the illusion of a light source to the left of the object. (read/write)

tint

Specifies the tint (color1mixed with white) of a color to be used for a gradient fill of one color. (read/write)
See also:
Tutorial for Hatch Pattern Definition

Helix

The HELIX entity (DXF Reference).
The helix curve is represented by a cubic B-spline curve, therefore the HELIX entity is also derived from the SPLINE
entity.
See also:

• Wikipedia article about the helix shape

Subclass of ezdxf.entities.Spline
DXF type 'HELIX'
Factory function ezdxf.layouts.BaseLayout.add_helix()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.Helix

All points inWCS as (x, y, z) tuples

344 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-76DB3ABF-3C8C-47D1-8AFB-72942D9AE1FF
https://en.wikipedia.org/wiki/Helix

ezdxf Documentation, Release 1.3.2

dxf.axis_base_point

The base point of the helix axis (Vec3).
dxf.start_point

The starting point of the helix curve (Vec3). This also defines the base radius as the distance from the start
point to the axis base point.

dxf.axis_vector

Defines the direction of the helix axis (Vec3).
dxf.radius

Defines the top radius of the helix (float).
dxf.turn_height

Defines the pitch (height if one helix turn) of the helix (float).
dxf.turns

The count of helix turns (float).
dxf.handedness

Helix orientation (int).

0 clock wise (left handed)
1 counter clockwise (right handed)

dxf.constrain

0 constrain turn height (pitch)
1 constrain count of turns
2 constrain total height

Image

The IMAGE entity (DXF Reference) represents a raster image, the image file itself is not embedded into the DXF file,
it is always a separated file. The IMAGE entity is like a block reference, it can be used to add the image multiple times
at different locations with different scale and rotation angles. Every IMAGE entity requires an image definition, see
entity ImageDef. Ezdxf creates only images in the xy-plan, it’s possible to place images in 3D space, therefore the
Image.dxf.u_pixel and the Image.dxf.v_pixel vectors has to be set accordingly.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'IMAGE'
Factory function ezdxf.layouts.BaseLayout.add_image()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Image

9.8. Reference 345

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3A2FF847-BE14-4AC5-9BD4-BD3DCAEF2281

ezdxf Documentation, Release 1.3.2

dxf.insert

Insertion point, lower left corner of the image (3D Point inWCS).
dxf.u_pixel

U-vector of a single pixel as (x, y, z) tuple. This vector points along the visual bottom of the image, starting
at the insertion point.

dxf.v_pixel

V-vector of a single pixel as (x, y, z) tuple. This vector points along the visual left side of the image, starting
at the insertion point.

dxf.image_size

Image size in pixels as (x, y) tuple
dxf.image_def_handle

Handle to the image definition entity, see ImageDef
dxf.flags

Image.SHOW_IMAGE 1 Show image
Image.SHOW_WHEN_NOT_ALIGNED 2 Show image when not aligned with screen
Image.USE_CLIPPING_BOUNDARY 4 Use clipping boundary
Image.USE_TRANSPARENCY 8 Transparency is on

dxf.clipping

Clipping state:

0 clipping off
1 clipping on

dxf.brightness

Brightness value in the range [0, 100], default is 50
dxf.contrast

Contrast value in the range [0, 100], default is 50
dxf.fade

Fade value in the range [0, 100], default is 0
dxf.clipping_boundary_type

1 Rectangular
2 Polygonal

dxf.count_boundary_points

Number of clip boundary vertices, this attribute is maintained by ezdxf.
dxf.clip_mode

0 Outside
1 Inside

346 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

requires DXF R2010 or newer
boundary_path

Returns the boundray path in raw form in pixel coordinates.
A list of vertices as pixel coordinates, Two vertices describe a rectangle, lower left corner is (-0.5, -0.5) and
upper right corner is (ImageSizeX-0.5, ImageSizeY-0.5), more than two vertices is a polygon as clipping path.
All vertices as pixel coordinates. (read/write)

image_def

Returns the associated IMAGEDEF entity, see ImageDef.
reset_boundary_path()→ None

Reset boundary path to the default rectangle [(-0.5, -0.5), (ImageSizeX-0.5, ImageSizeY-0.5)].
set_boundary_path(vertices: Iterable[UVec])→ None

Set boundary path to vertices. Two vertices describe a rectangle (lower left and upper right corner), more
than two vertices is a polygon as clipping path.

pixel_boundary_path()→ list[Vec2]
Returns the boundary path as closed loop in pixel coordinates. Resolves the simple form of two vertices as a
rectangle. The image coordinate system has an inverted y-axis and the top-left corner is (0, 0).
Changed in version 1.2.0: renamed from boundray_path_ocs()

boundary_path_wcs()→ list[Vec3]
Returns the boundary/clipping path in WCS coordinates.
It’s recommended to acquire the clipping path as Path object by the make_path() function:

from ezdxf.path import make_path

image = ... # get image entity
clipping_path = make_path(image)

transform(m: Matrix44)→ Self
Transform IMAGE entity by transformation matrix m inplace.

Leader

The LEADER entity (DXF Reference) represents a pointer line, made up of one or more vertices (or spline fit points)
and an arrowhead. The label or other content to which the Leader is attached is stored as a separate entity, and is not
part of the Leader itself.
The LEADER entity uses parts of the styling infrastructure of the DIMENSION entity.
By default a Leader without any annotation is created. For creating more fancy leaders and annotations see the docu-
mentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementation notes .

Subclass of ezdxf.entities.DXFGraphic
DXF type 'LEADER'
Factory function ezdxf.layouts.BaseLayout.add_leader()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

9.8. Reference 347

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-396B2369-F89F-47D7-8223-8B7FB794F9F3
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.Leader

dxf.dimstyle

Name of Dimstyle as string.
dxf.has_arrowhead

0 Disabled
1 Enabled

dxf.path_type

Leader path type:

0 Straight line segments
1 Spline

dxf.annotation_type

0 Created with text annotation
1 Created with tolerance annotation
2 Created with block reference annotation
3 Created without any annotation (default)

dxf.hookline_direction

Hook line direction flag:

0 Hookline (or end of tangent for a splined leader) is the opposite direction from the horizontal vector
1 Hookline (or end of tangent for a splined leader) is the same direction as horizontal vector (see

has_hook_line)

dxf.has_hookline

0 No hookline
1 Has a hookline

dxf.text_height

Text annotation height in drawing units.
dxf.text_width

Text annotation width.
dxf.block_color

Color to use if leader’s DIMCLRD = BYBLOCK
dxf.annotation_handle

Hard reference (handle) to associated annotation (MText, Tolerance, or Insert entity)
dxf.normal_vector

Extrusion vector? default is (0, 0, 1).

348 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

.dxf.horizontal_direction

Horizontal direction for leader, default is (1, 0, 0).
dxf.leader_offset_block_ref

Offset of last leader vertex from block reference insertion point, default is (0, 0, 0).
dxf.leader_offset_annotation_placement

Offset of last leader vertex from annotation placement point, default (0, 0, 0).
vertices

List of Vec3 objects, representing the vertices of the leader (3D Point inWCS).
set_vertices(vertices: Iterable[UVec])

Set vertices of the leader, vertices is an iterable of (x, y [,z]) tuples or Vec3.
transform(m: Matrix44)→ Leader

Transform LEADER entity by transformation matrix m inplace.
virtual_entities()→ Iterator[DXFGraphic]

Yields the DXF primitives the LEADER entity is build up as virtual entities.
These entities are located at the original location, but are not stored in the entity database, have no handle and
are not assigned to any layout.

explode(target_layout: BaseLayout | None = None)→ EntityQuery
Explode parts of the LEADER entity as DXF primitives into target layout, if target layout is None, the target
layout is the layout of the LEADER entity. This method destroys the source entity.
Returns an EntityQuery container referencing all DXF primitives.

Parameters
target_layout – target layout for the created DXF primitives, None for the same layout
as the source entity.

Line

The LINE entity (DXF Reference) is a 3D line defined by the DXF attributes dxf.start and dxf.end. The LINE
entity hasWCS coordinates.
See also:

• Tutorial for Simple DXF Entities, section Line

• ezdxf.math.ConstructionRay

• ezdxf.math.ConstructionLine

Subclass of ezdxf.entities.DXFGraphic
DXF type 'LINE'
Factory function ezdxf.layouts.BaseLayout.add_line()
Inherited DXF Attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

9.8. Reference 349

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-FCEF5726-53AE-4C43-B4EA-C84EB8686A66

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.Line

dxf.start

start point of line (2D/3D Point inWCS)
dxf.end

end point of line (2D/3D Point inWCS)
dxf.thickness

Line thickness in 3D space in direction extrusion, default value is 0. This value should not be confused
with the lineweight value.

dxf.extrusion

extrusion vector, default value is (0, 0, 1)
transform(m: Matrix44)→ Line

Transform the LINE entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float)→ Line

Optimized LINE translation about dx in x-axis, dy in y-axis and dz in z-axis.

LWPolyline

The LWPOLYLINE entity (Lightweight POLYLINE, DXF Reference) is defined as a single graphic entity, which differs
from the old-style Polyline entity, which is defined as a group of sub-entities. LWPolyline display faster (in
AutoCAD) and consume less disk space, it is a planar element, therefore all points are located in the OCS as (x, y)-tuples
(LWPolyline.dxf.elevation is the z-axis value).

Subclass of ezdxf.entities.DXFGraphic
DXF type 'LWPOLYLINE'
factory function add_lwpolyline()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Bulge value

The bulge value is used to create arc shaped line segments for Polyline and LWPolyline entities. The arc starts at
the vertex which includes the bulge value and ends at the following vertex. The bulge value defines the ratio of the arc
sagitta (versine) to half line segment length, a bulge value of 1 defines a semicircle.
The sign of the bulge value defines the side of the bulge:

• positive value (> 0): bulge is right of line (counter clockwise)
• negative value (< 0): bulge is left of line (clockwise)
• 0 = no bulge

350 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-748FC305-F3F2-4F74-825A-61F04D757A50

ezdxf Documentation, Release 1.3.2

Start- and end width

The start width and end width values defines the width in drawing units for the following line segment. To use the default
width value for a line segment set value to 0.

Width and bulge values at last point

The width and bulge values of the last point has only a meaning if the polyline is closed, and they apply to the last line
segment from the last to the first point.
See also:
Tutorial for LWPolyline and Bulge Related Functions

9.8. Reference 351

ezdxf Documentation, Release 1.3.2

User Defined Point Format Codes

Code Point Component
x x-coordinate
y y-coordinate
s start width
e end width
b bulge value
v (x, y [, z]) as tuple

class ezdxf.entities.LWPolyline

dxf.elevation

OCS z-axis value for all polyline points, default=0
dxf.flags

Constants defined in ezdxf.lldxf.const:

dxf.flags Value Description
LWPOLYLINE_CLOSED 1 polyline is closed
LWPOLYLINE_PLINEGEN 128 linetype is generated across the points

dxf.const_width

Constant line width (float), default value is 0.
dxf.count

Count of polyline points (read only), same as len(polyline)
property closed: bool

Get/set closed state of polyline. A closed polyline has a connection segment from the last vertex to the first
vertex.

property is_closed: bool

Get closed state of LWPOLYLINE. Compatibility interface to Polyline
close(state: bool = True)→ None

Set closed state of LWPOLYLINE. Compatibility interface to Polyline
property has_arc: bool

Returns True if LWPOLYLINE has an arc segment.
property has_width: bool

Returns True if LWPOLYLINE has any segment with width attributes or the DXF attribute const_width is
not 0.

__len__()→ int
Returns count of polyline points.

__getitem__(index: int)→ Tuple[float, float, float, float, float]
Returns point at position index as (x, y, start_width, end_width, bulge) tuple. start_width, end_width and
bulge is 0 if not present, supports extended slicing. Point format is fixed as “xyseb”.
All coordinates in OCS.

352 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

__setitem__(index: int, value: Sequence[float])→ None
Set point at position index as (x, y, [start_width, [end_width, [bulge]]]) tuple. If start_width or end_width is
0 or left off the default width value is used. If the bulge value is left off, bulge is 0 by default (straight line).
Does NOT support extend slicing. Point format is fixed as “xyseb”.
All coordinates in OCS.

Parameters
• index – point index
• value – point value as (x, y, [start_width, [end_width, [bulge]]]) tuple

__delitem__(index: int)→ None
Delete point at position index, supports extended slicing.

__iter__()→ Iterator[Tuple[float, float, float, float, float]]
Returns iterable of tuples (x, y, start_width, end_width, bulge).

vertices()→ Iterator[tuple[float, float]]
Returns iterable of all polyline points as (x, y) tuples in OCS (dxf.elevation is the z-axis value).

vertices_in_wcs()→ Iterator[Vec3]
Returns iterable of all polyline points as Vec3(x, y, z) inWCS.

append(point: Sequence[float], format: str = DEFAULT_FORMAT)→ None
Append point to polyline, format specifies a user defined point format.
All coordinates in OCS.

Parameters
• point – (x, y, [start_width, [end_width, [bulge]]]) tuple
• format – format string, default is “xyseb”, see: format codes

append_points(points: Iterable[Sequence[float]], format: str = DEFAULT_FORMAT)→ None
Append new points to polyline, format specifies a user defined point format.
All coordinates in OCS.

Parameters
• points – iterable of point, point is (x, y, [start_width, [end_width, [bulge]]]) tuple
• format – format string, default is “xyseb”, see: format codes

insert(pos: int, point: Sequence[float], format: str = DEFAULT_FORMAT)→ None
Insert new point in front of positions pos, format specifies a user defined point format.
All coordinates in OCS.

Parameters
• pos – insert position
• point – point data
• format – format string, default is “xyseb”, see: format codes

clear()→ None
Remove all points.

9.8. Reference 353

ezdxf Documentation, Release 1.3.2

get_points(format: str = DEFAULT_FORMAT)→ list[Sequence[float]]
Returns all points as list of tuples, format specifies a user defined point format.
All points in OCS as (x, y) tuples (dxf.elevation is the z-axis value).

Parameters
format – format string, default is “xyseb”, see format codes

set_points(points: Iterable[Sequence[float]], format: str = DEFAULT_FORMAT)→ None
Remove all points and append new points.
All coordinates in OCS.

Parameters
• points – iterable of point, point is (x, y, [start_width, [end_width, [bulge]]]) tuple
• format – format string, default is “xyseb”, see format codes

points(format: str = DEFAULT_FORMAT)→ Iterator[list[Sequence[float]]]
Context manager for polyline points. Returns a standard Python list of points, according to the format string.
All coordinates in OCS.

Parameters
format – format string, see format codes

transform(m: Matrix44)→ LWPolyline
Transform the LWPOLYLINE entity by transformation matrix m inplace.
A non-uniform scaling is not supported if the entity contains circular arc segments (bulges).

Parameters
m – transformation Matrix44

Raises
NonUniformScalingError – for non-uniform scaling of entity containing circular arc
segments (bulges)

virtual_entities()→ Iterator[Line | Arc]
Yields the graphical representation of LWPOLYLINE as virtual DXF primitives (LINE or ARC).
These virtual entities are located at the original location, but are not stored in the entity database, have no
handle and are not assigned to any layout.

explode(target_layout: BaseLayout | None = None)→ EntityQuery
Explode the LWPOLYLINE entity as DXF primitives (LINE or ARC) into the target layout, if the target
layout is None, the target layout is the layout of the source entity. This method destroys the source entity.
Returns an EntityQuery container referencing all DXF primitives.

Parameters
target_layout – target layout for the DXF primitives, None for same layout as the source
entity.

354 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MLine

The MLINE entity (DXF Reference).

Subclass of ezdxf.entities.DXFGraphic
DXF type 'MLINE'
factory function add_mline()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.MLine

dxf.style_name

MLineStyle name stored in Drawing.mline_styles dictionary, use set_style() to change the
MLINESTYLE and update geometry accordingly.

dxf.style_handle

Handle of MLineStyle, use set_style() to change the MLINESTYLE and update geometry accord-
ingly.

dxf.scale_factor

MLINE scaling factor, use method set_scale_factor() to change the scaling factor and update ge-
ometry accordingly.

dxf.justification

Justification defines the location of the MLINE in relation to the reference line, use method
set_justification() to change the justification and update geometry accordingly.
Constants defined in ezdxf.lldxf.const:

dxf.justification Value
MLINE_TOP 0
MLINE_ZERO 1
MLINE_BOTTOM 2
MLINE_RIGHT (alias) 0
MLINE_CENTER (alias) 1
MLINE_LEFT (alias) 2

dxf.flags

Use method close() and the properties start_caps and end_caps to change these flags.
Constants defined in ezdxf.lldxf.const:

dxf.flags Value
MLINE_HAS_VERTEX 1
MLINE_CLOSED 2
MLINE_SUPPRESS_START_CAPS 4
MLINE_SUPPRESS_END_CAPS 8

dxf.start_location

Start location of the reference line. (read only)

9.8. Reference 355

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-590E8AE3-C6D9-4641-8485-D7B3693E432C

ezdxf Documentation, Release 1.3.2

dxf.count

Count of MLINE vertices. (read only)
dxf.style_element_count

Count of elements in MLineStyle definition. (read only)
dxf.extrusion

Normal vector of the entity plane, but MLINE is not an OCS entity, all vertices of the reference line are
WCS! (read only)

vertices

MLINE vertices as MLineVertex objects, stored in a regular Python list.
property style: MLineStyle | None

Get associated MLINESTYLE.
set_style(name: str)→ None

Set MLINESTYLE by name and update geometry accordingly. The MLINESTYLE definition must exist.
set_scale_factor(value: float)→ None

Set the scale factor and update geometry accordingly.
set_justification(value: int)→ None

Set MLINE justification and update geometry accordingly. See dxf.justification for valid settings.
property is_closed: bool

Returns True if MLINE is closed. Compatibility interface to Polyline
close(state: bool = True)→ None

Get/set closed state of MLINE and update geometry accordingly. Compatibility interface to Polyline
property start_caps: bool

Get/Set start caps state. True to enable start caps and False tu suppress start caps.
property end_caps: bool

Get/Set end caps state. True to enable end caps and False tu suppress start caps.
__len__()

Count of MLINE vertices.
start_location()→ Vec3

Returns the start location of the reference line. Callback function for dxf.start_location.
get_locations()→ list[Vec3]

Returns the vertices of the reference line.
extend(vertices: Iterable[UVec])→ None

Append multiple vertices to the reference line.
It is possible to work with 3D vertices, but all vertices have to be in the same plane and the normal vector of
this plan is stored as extrusion vector in the MLINE entity.

clear()→ None
Remove all MLINE vertices.

update_geometry()→ None
Regenerate the MLINE geometry based on current settings.

356 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

generate_geometry(vertices: list[Vec3])→ None
Regenerate the MLINE geometry for new reference line defined by vertices.

transform(m: Matrix44)→ Self
Transform MLINE entity by transformation matrix m inplace.

virtual_entities()→ Iterator[DXFGraphic]
Yields virtual DXF primitives of the MLINE entity as LINE, ARC and HATCH entities.
These entities are located at the original positions, but are not stored in the entity database, have no handle
and are not assigned to any layout.

explode(target_layout: BaseLayout | None = None)→ EntityQuery
Explode the MLINE entity as LINE, ARC and HATCH entities into target layout, if target layout is None,
the target layout is the layout of the MLINE. This method destroys the source entity.
Returns an EntityQuery container referencing all DXF primitives.

Parameters
target_layout – target layout for DXF primitives, None for same layout as source entity.

class ezdxf.entities.MLineVertex

location

Reference line vertex location.
line_direction

Reference line direction.
miter_direction

line_params

The line parameterization is a list of float values. The list may contain zero or more items.
The first value (miter-offset) is the distance from the vertex location along the miter_direction
vector to the point where the line element’s path intersects the miter vector.
The next value (line-start-offset) is the distance along the line_direction from the miter/line path in-
tersection point to the actual start of the line element.
The next value (dash-length) is the distance from the start of the line element (dash) to the first break (gap)
in the line element. The successive values continue to list the start and stop points of the line element in this
segment of the mline.

fill_params

The fill parameterization is also a list of float values. Similar to the line parameterization, it describes the
parameterization of the fill area for this mline segment. The values are interpreted identically to the line
parameters and when taken as a whole for all line elements in the mline segment, they define the boundary of
the fill area for the mline segment.

class ezdxf.entities.MLineStyle

The MLineStyle stores the style properties for the MLINE entity.
dxf.name

dxf.description

dxf.flags

9.8. Reference 357

ezdxf Documentation, Release 1.3.2

dxf.fill_color

AutoCAD Color Index (ACI) value of the fill color
dxf.start_angle

dxf.end_angle

elements

MLineStyleElements object
update_all()

Update all MLINE entities using this MLINESTYLE.
The update is required if elements were added or removed or the offset of any element was changed.

class ezdxf.entities.mline.MLineStyleElements

elements

List of MLineStyleElement objects, one for each line element.
MLineStyleElements.__len__()

MLineStyleElements.__getitem__(item)

MLineStyleElements.append(offset: float, color: int = 0, linetype: str = 'BYLAYER')→ None
Append a new line element.

Parameters
• offset – normal offset from the reference line: if justification is MLINE_ZERO, positive
values are above and negative values are below the reference line.

• color – AutoCAD Color Index (ACI) value
• linetype – linetype name

class ezdxf.entities.mline.MLineStyleElement

Named tuple to store properties of a line element.
offset

Normal offset from the reference line: if justification is MLINE_ZERO, positive values are above and negative
values are below the reference line.

color

AutoCAD Color Index (ACI) value
linetype

Linetype name

Mesh

The MESH entity (DXF Reference) is a 3D surface in WCS build up from vertices and faces similar to the Polyface
entity.
All vertices inWCS as (x, y, z) tuples

358 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-4B9ADA67-87C8-4673-A579-6E4C76FF7025

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFGraphic
DXF type 'MESH'
Factory function ezdxf.layouts.BaseLayout.add_mesh()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

See also:
Tutorial for Mesh and helper classes: MeshBuilder, MeshVertexMerger
class ezdxf.entities.Mesh

dxf.version

dxf.blend_crease

0 = off, 1 = on
dxf.subdivision_levels

0 for no smoothing else integer greater than 0.
vertices

Vertices as list like VertexArray. (read/write)
edges

Edges as list like TagArray. (read/write)
faces

Faces as list like TagList. (read/write)
creases

Creases as array.array. (read/write)
edit_data()→ Iterator[MeshData]

Context manager for various mesh data, returns a MeshData instance.
Despite that vertices, edge and faces are accessible as packed data types, the usage of MeshData by context
manager edit_data() is still recommended.

transform(m: Matrix44)→Mesh
Transform the MESH entity by transformation matrix m inplace.

MeshData

class ezdxf.entities.MeshData

vertices

A standard Python list with (x, y, z) tuples (read/write)
faces

A standard Python list with (v1, v2, v3,…) tuples (read/write)
Each face consist of a list of vertex indices (= index in vertices).

9.8. Reference 359

ezdxf Documentation, Release 1.3.2

edges

A Python list with (v1, v2) tuples (read/write). This list represents the edges to which the
edge_crease_values values will be applied. Each edge consist of exact two vertex indices (= index in
vertices).

edge_crease_values

A Python list of float values, one value for each edge. (read/write)
add_face(vertices: Iterable[UVec])→ Sequence[int]

Add a face by a list of vertices.
add_edge_crease(v1: int, v2: int, crease: float)

Add an edge crease value, the edge is defined by the vertex indices v1 and v2.
The crease value defines the amount of subdivision that will be applied to this edge. A crease value of the
subdivision level prevents the edge from deformation and a value of 0.0 means no protection from subdividing.

optimize()

Reduce vertex count by merging coincident vertices.

MPolygon

The MPOLYGON entity is not a core DXF entity and is not supported by all CAD applications and DXF libraries. The
MPolygon class is very similar to the Hatch class with small differences in the supported features and DXF attributes.
The boundary paths of the MPOLYGON are visible and use the graphical DXF attributes of the main entity like dxf.
color, dxf.linetype and so on. The solid filling is only visible if the attribute dxf.solid_fill is 1, the
color of the solid fill is defined by dxf.fill_color as AutoCAD Color Index (ACI). The MPOLYGON supports
ezdxf.entities.Gradient settings like HATCH for DXF R2004 and newer. This feature is used by method
MPolygon.set_solid_fill() to set a solid RGB fill color as linear gradient, this disables pattern fill automati-
cally. The MPOLYGON does not support associated source path entities, because the MPOLYGON also represents the
boundary paths as visible graphical objects. Hatch patterns are supported, but the hatch style tag is not supported, the
default hatch style is ezdxf.const.HATCH_STYLE_NESTED and the style flags of the boundary paths are ignored.
Background color for pattern fillings is supported, set background color by property MPolygon.bgcolor as RGB
tuple.

Note: Background RGB fill color for solid fill and pattern fill is set differently!

Autodesk products do support polyline paths including bulges. An example for edge paths as boundary paths is not
available or edge paths are not supported. Ezdxf does not export MPOLYGON entities including edge paths! The
BoundaryPaths.edge_to_polyline_paths() method converts all edge paths to simple polyline paths with
approximated curves, this conversion has to be done explicit.
See also:
For more information see the ezdxf.entities.Hatch documentation.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'MPOLYGON'
Factory function ezdxf.layouts.BaseLayout.add_mpolygon()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

360 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.MPolygon

dxf.pattern_name

Pattern name as string
dxf.solid_fill

1 solid fill, better use: MPolygon.set_solid_fill()
0 pattern fill, better use: MPolygon.set_pattern_fill()

(search AutoCAD help for more information)
dxf.pattern_type

0 user
1 predefined
2 custom

dxf.pattern_angle

Actual pattern angle in degrees (float). Changing this value does not rotate the pattern, use
set_pattern_angle() for this task.

dxf.pattern_scale

Actual pattern scaling factor (float). Changing this value does not scale the pattern use
set_pattern_scale() for this task.

dxf.pattern_double

1 = double pattern size else 0. (int)
dxf.elevation

Z value represents the elevation height of the OCS. (float)
paths

BoundaryPaths object.
pattern

Pattern object.
gradient

Gradient object.
property has_solid_fill: bool

True if entity has a solid fill. (read only)
property has_pattern_fill: bool

True if entity has a pattern fill. (read only)
property has_gradient_data: bool

True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)
property bgcolor: RGB | None

Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)
usage:

9.8. Reference 361

ezdxf Documentation, Release 1.3.2

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition(lines: Sequence, factor: float = 1, angle: float = 0)→ None
Setup pattern definition by a list of definition lines and the definition line is a 4-tuple (angle, base_point, offset,
dash_length_items). The pattern definition should be designed for a pattern scale factor of 1 and a pattern
rotation angle of 0.
• angle: line angle in degrees
• base-point: (x, y) tuple
• offset: (dx, dy) tuple
• dash_length_items: list of dash items (item > 0 is a line, item < 0 is a gap and item == 0.0 is a point)

Parameters
• lines – list of definition lines
• factor – pattern scale factor
• angle – rotation angle in degrees

set_pattern_scale(scale: float)→ None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale(1) call resets the pat-
tern scale to the original appearance as defined by the pattern designer, but only if the pattern attribute dxf.
pattern_scale represents the actual scale, it cannot restore the original pattern scale from the pattern
definition itself.

Parameters
scale – pattern scale factor

set_pattern_angle(angle: float)→ None
Sets the pattern rotation angle and rotates the pattern definition.
The method always starts from the original base rotation of 0, the set_pattern_angle(0) call resets
the pattern rotation angle to the original appearance as defined by the pattern designer, but only if the pattern
attributedxf.pattern_angle represents the actual pattern rotation, it cannot restore the original rotation
angle from the pattern definition itself.

Parameters
angle – pattern rotation angle in degrees

set_solid_fill(color: int = 7, style: int = 1, rgb: RGB | None = None)

Set MPolygon to solid fill mode and removes all gradient and pattern fill related data.
Parameters

• color – AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
• style – hatch style is not supported by MPOLYGON, just for symmetry to HATCH
• rgb – true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2004+

362 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

set_pattern_fill(name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int
= 1, pattern_type: int = 1, definition=None)→ None

Sets the pattern fill mode and removes all gradient related data.
The pattern definition should be designed for a scale factor 1 and a rotation angle of 0 degrees. The predefined
hatch pattern like “ANSI33” are scaled according to the HEADER variable $MEASUREMENT for ISO
measurement (m, cm, …), or imperial units (in, ft, …), this replicates the behavior of BricsCAD.

Parameters
• name – pattern name as string
• color – pattern color as AutoCAD Color Index (ACI)

• angle – pattern rotation angle in degrees
• scale – pattern scale factor
• double – double size flag
• style – hatch style (0 = normal; 1 = outer; 2 = ignore)
• pattern_type – pattern type (0 = user-defined; 1 = predefined; 2 = custom)
• definition – list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition()

set_gradient(color1: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,
centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR')→ None

Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004 or newer. A gradient
filled hatch is also a solid filled hatch.
Valid gradient type names are:
• “LINEAR”
• “CYLINDER”
• “INVCYLINDER”
• “SPHERICAL”
• “INVSPHERICAL”
• “HEMISPHERICAL”
• “INVHEMISPHERICAL”
• “CURVED”
• “INVCURVED”

Parameters
• color1 – (r, g, b)-tuple for first color, rgb values as int in the range [0, 255]
• color2 – (r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
• rotation – rotation angle in degrees
• centered – determines whether the gradient is centered or not
• one_color – 1 for gradient from color1 to tinted color1

• tint – determines the tinted target color1 for a one color gradient. (valid range 0.0 to 1.0)
• name – name of gradient type, default “LINEAR”

9.8. Reference 363

ezdxf Documentation, Release 1.3.2

transform(m: Matrix44)→ DXFPolygon
Transform entity by transformation matrix m inplace.

MText

The MTEXT entity (DXF Reference) fits a multiline text in a specified width but can extend vertically to an indefinite
length. You can format individual words or characters within the MText.
See also:
Tutorial for MText and MTextEditor

Subclass of ezdxf.entities.DXFGraphic
DXF type 'MTEXT'
Factory function ezdxf.layouts.BaseLayout.add_mtext()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.MText

dxf.insert

Insertion point (3D Point in OCS)
dxf.char_height

Initial text height (float); default=1.0
dxf.width

Reference text width (float), forces text wrapping at given width.
dxf.attachment_point

Constants defined in ezdxf.lldxf.const:

MText.dxf.attachment_point Value
MTEXT_TOP_LEFT 1
MTEXT_TOP_CENTER 2
MTEXT_TOP_RIGHT 3
MTEXT_MIDDLE_LEFT 4
MTEXT_MIDDLE_CENTER 5
MTEXT_MIDDLE_RIGHT 6
MTEXT_BOTTOM_LEFT 7
MTEXT_BOTTOM_CENTER 8
MTEXT_BOTTOM_RIGHT 9

dxf.flow_direction

Constants defined in ezdxf.const:

MText.dxf.flow_direction Value Description
MTEXT_LEFT_TO_RIGHT 1 left to right
MTEXT_TOP_TO_BOTTOM 3 top to bottom
MTEXT_BY_STYLE 5 by style (the flow direction is inherited from the associated text

style)

364 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-5E5DB93B-F8D3-4433-ADF7-E92E250D2BAB

ezdxf Documentation, Release 1.3.2

dxf.style

Text style (string); default is “STANDARD”
dxf.text_direction

X-axis direction vector in WCS (3D Point); default value is (1, 0, 0); if dxf.rotation and dxf.
text_direction are present, dxf.text_direction wins.

dxf.rotation

Text rotation in degrees (float); default is 0
dxf.line_spacing_style

Line spacing style (int), see table below
dxf.line_spacing_factor

Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00 (float).
Constants defined in ezdxf.lldxf.const:

MText.dxf.line_spacing_style Value Description
MTEXT_AT_LEAST 1 taller characters will override
MTEXT_EXACT 2 taller characters will not override

dxf.bg_fill

Defines the background fill type. (DXF R2007)

MText.dxf.bg_fill Value Description
MTEXT_BG_OFF 0 no background color
MTEXT_BG_COLOR 1 use specified color
MTEXT_BG_WINDOW_COLOR 2 use window color (?)
MTEXT_BG_CANVAS_COLOR 3 use canvas background color

dxf.box_fill_scale

Determines how much border there is around the text. (DXF R2007)
Requires that the attributes bg_fill, bg_fill_color are present otherwise AutoCAD complains.
It’s recommended to use set_bg_color()

dxf.bg_fill_color

Background fill color as AutoCAD Color Index (ACI) (DXF R2007)
It’s recommended to use set_bg_color()

dxf.bg_fill_true_color

Background fill color as true color value (DXF R2007), also the dxf.bg_fill_color attribute must be
present otherwise AutoCAD complains.
It’s recommended to use set_bg_color()

dxf.bg_fill_color_name

Background fill color as name string (?) (DXF R2007), also the dxf.bg_fill_color attribute must be
present otherwise AutoCAD complains.
It’s recommended to use set_bg_color()

9.8. Reference 365

ezdxf Documentation, Release 1.3.2

dxf.transparency

Transparency of background fill color (DXF R2007), not supported by AutoCAD nor BricsCAD.
text

MTEXT content as string (read/write).
The line ending character\nwill be replaced by theMTEXT line ending\P at DXF export, but not vice versa
the \P character by \n at DXF file loading, therefore loaded MTEXT entities always use the \P character
for line endings.

set_location(insert: UVec, rotation: float | None = None, attachment_point: int | None = None)→MText
Sets the attributes dxf.insert, dxf.rotation and dxf.attachment_point, None for dxf.
rotation or dxf.attachment_point preserves the existing value.

get_rotation()→ float
Returns the text rotation in degrees.

set_rotation(angle: float)→MText
Sets the attribute rotation to angle (in degrees) and deletes dxf.text_direction if present.

get_text_direction()→ Vec3

Returns the horizontal text direction as Vec3 object, even if only the text rotation is defined.
set_bg_color(color: int | str | RGB | None, scale: float = 1.5, text_frame=False)

Sets the background color as AutoCAD Color Index (ACI) value, as name string or as (r, g, b) tuple.
Use the special color name canvas, to set the background color to the canvas background color. Remove
the background filling by setting argument color to None.

Parameters
• color – color as AutoCAD Color Index (ACI), string, (r, g, b) tuple or None
• scale – determines how much border there is around the text, the value is based on the text
height, and should be in the range of [1, 5], where 1 fits exact the MText entity.

• text_frame – draw a text frame in text color if True
__iadd__(text: str)→MText

Append text to existing content (text attribute).
append(text: str)→MText

Append text to existing content (text attribute).
plain_text(split=False, fast=True)→ list[str] | str

Returns the text content without inline formatting codes.
The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

Parameters
• split – split content text at line breaks if True and returns a list of strings without line
endings

• fast – uses the “fast” mode to extract the plain MTEXT content if True or the “accurate”
mode if set to False

366 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

all_columns_plain_text(split=False)→ list[str] | str
Returns the text content of all columns without inline formatting codes.

Parameters
split – split content text at line breaks if True and returns a list of strings without line
endings

all_columns_raw_content()→ str
Returns the text content of all columns as a single string including the inline formatting codes.

transform(m: Matrix44)→MText
Transform the MTEXT entity by transformation matrix m inplace.

ucs()→ UCS
Returns the UCS of the MText entity, defined by the insert location (origin), the text direction or rotation
(x-axis) and the extrusion vector (z-axis).

9.8. Reference 367

ezdxf Documentation, Release 1.3.2

MText Inline Codes

Code Description
\L Start underline
\l Stop underline
\O Start overline
\o Stop overline
\K Start strike-through
\k Stop strike-through
\P New paragraph (new line)
\p Paragraphs properties: indentation, alignment, tabulator

stops
\X Paragraph wrap on the dimension line (only in dimen-

sions)
\Q Slanting (oblique) text by angle - e.g. \Q30;
\H Text height - e.g. relative \H3x; absolut \H3;
\W Text width - e.g. relative \W0.8x; absolut \W0.8;
\T Tracking, character spacing - e.g. relative \T0.5x; absolut

\T2;
\F Font selection e.g. \Fgdt;o - GDT-tolerance
\S Stacking, fractions e.g. \SA^ B; space after “^” is required

to avoid caret decoding, \SX/Y; \S1#4;
\A Alignment

• \A0; = bottom
• \A1; = center
• \A2; = top

\C Color change
• \C1; = red
• \C2; = yellow
• \C3; = green
• \C4; = cyan
• \C5; = blue
• \C6; = magenta
• \C7; = white

\~ Non breaking space
{} Braces - define the text area influenced by the code, codes

and braces can be nested up to 8 levels deep
\ Escape character - e.g. \{ = “{”

368 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Convenient constants defined in MTextEditor:

Constant Description
UNDERLINE_START start underline text
UNDERLINE_STOP stop underline text
OVERSTRIKE_START start overline
OVERSTRIKE_STOP stop overline
STRIKE_START start strike through
STRIKE_STOP stop strike through
GROUP_START start of group
GROUP_END end of group
NEW_LINE start in new line
NBSP none breaking space

MultiLeader

TheMULTILEADER entity (DXF Reference) represents one or more leaders, made up of one or more vertices (or spline
fit points) and an arrowhead. In contrast to the Leader entity the text- or block content is part of the MULTILEADER
entity.
AutoCAD, BricsCAD and maybe other CAD applications do accept “MLEADER” as type string but they always create
entities with “MULTILEADER” as type string.
Because of the complexity of the MULTILEADER entity, the usage of factory methods to create new entities by special
builder classes is recommended:

• add_multileader_mtext() returns a new MultiLeaderMTextBuilder instance
• add_multileader_block() returns a new MultiLeaderBlockBuilder instance

The visual design is based on an associated MLeaderStyle, but almost all attributes are also stored in the MULTI-
LEADER entity itself.
The attribute MultiLeader.dxf.property_override_flags should indicate which MLEADERSTYLE at-
tributes are overridden by MULTILEADER attributes, but these flags do not always reflect the state of overridden at-
tributes. The ezdxf MULTILEADER renderer uses always the attributes from the MULTILEADER entity and ignores
the override flags.
All vertices are WCS coordinates, even those for BLOCK entities which are OCS coordinates for regular usage.
See also:

• ezdxf.entities.MLeaderStyle

• ezdxf.render.MultiLeaderBuilder

• Tutorial for MultiLeader

• MULTILEADER Internals

9.8. Reference 369

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72D20B8C-0F5E-4993-BEB7-0FCF94F32BE0

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFGraphic
DXF type 'MULTILEADER'
Factory functions • ezdxf.layouts.BaseLayout.

add_multileader_mtext()
• ezdxf.layouts.BaseLayout.
add_multileader_block()

Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.MultiLeader

dxf.arrow_head_handle

handle of the arrow head, see also ezdxf.render.arrows module, “closed filled” arrow if not set
dxf.arrow_head_size

arrow head size in drawing units
dxf.block_color

block color as raw-color value, default is BY_BLOCK_RAW_VALUE
dxf.block_connection_type

0 center extents
1 insertion point

dxf.block_record_handle

handle to block record of the BLOCK content
dxf.block_rotation

BLOCK rotation in radians
dxf.block_scale_vector

Vec3 object which stores the scaling factors for the x-, y- and z-axis
dxf.content_type

0 none
1 BLOCK
2 MTEXT
3 TOLERANCE

dxf.dogleg_length

dogleg length in drawing units
dxf.has_dogleg

dxf.has_landing

dxf.has_text_frame

370 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.is_annotative

dxf.is_text_direction_negative

dxf.leader_extend_to_text

dxf.leader_line_color

leader line color as raw-color value
dxf.leader_linetype_handle

handle of the leader linetype, “CONTINUOUS” if not set
dxf.leader_lineweight

dxf.leader_type

0 invisible
1 straight line leader
2 spline leader

dxf.property_override_flags

Each bit shows if the MLEADERSTYLE is overridden by the value in the MULTILEADER entity, but this
is not always the case for all values, it seems to be save to always use the value from the MULTILEADER
entity.

dxf.scale

overall scaling factor
dxf.style_handle

handle to the associated MLEADERSTYLE object
dxf.text_IPE_align

unknown meaning
dxf.text_alignment_type

unknown meaning - its not the MTEXT attachment point!
dxf.text_angle_type

0 text angle is equal to last leader line segment angle
1 text is horizontal
2 text angle is equal to last leader line segment angle, but potentially rotated by 180 degrees so the right

side is up for readability.

dxf.text_attachment_direction

defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top &
bottom:

0 horizontal - left & right of content
1 vertical - top & bottom of content

9.8. Reference 371

ezdxf Documentation, Release 1.3.2

dxf.text_attachment_point

MTEXT attachment point

1 top left
2 top center
3 top right

dxf.text_bottom_attachment_type

9 center
10 overline and center

dxf.text_color

MTEXT color as raw-color value
dxf.text_left_attachment_type

0 top of top MTEXT line
1 middle of top MTEXT line
2 middle of whole MTEXT
3 middle of bottom MTEXT line
4 bottom of bottom MTEXT line
5 bottom of bottom MTEXT line & underline bottom MTEXT line
6 bottom of top MTEXT line & underline top MTEXT line
7 bottom of top MTEXT line
8 bottom of top MTEXT line & underline all MTEXT lines

dxf.text_right_attachment_type

0 top of top MTEXT line
1 middle of top MTEXT line
2 middle of whole MTEXT
3 middle of bottom MTEXT line
4 bottom of bottom MTEXT line
5 bottom of bottom MTEXT line & underline bottom MTEXT line
6 bottom of top MTEXT line & underline top MTEXT line
7 bottom of top MTEXT line
8 bottom of top MTEXT line & underline all MTEXT lines

dxf.text_style_handle

handle of the MTEXT text style, “Standard” if not set
dxf.text_top_attachment_type

9 center
10 overline and center

372 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.version

always 2?
context

MLeaderContext instance
arrow_heads

list of ArrowHeadData
block_attribs

list of AttribData
property has_mtext_content: bool

True if MULTILEADER has MTEXT content.
get_mtext_content()→ str

Get MTEXT content as string, return “” if MULTILEADER has BLOCK content.
set_mtext_content(text: str)

Set MTEXT content as string, does nothing if MULTILEADER has BLOCK content.
property has_block_content: bool

True if MULTILEADER has BLOCK content.
get_block_content()→ dict[str, str]

Get BLOCK attributes as dictionary of (tag, value) pairs. Returns an empty dictionary if MULTILEADER
has MTEXT content.

set_block_content(content: dict[str, str])
Set BLOCK attributes by a dictionary of (tag, value) pairs. Does nothing if MULTILEADER has MTEXT
content.

virtual_entities()→ Iterator[DXFGraphic]
Yields the graphical representation of MULTILEADER as virtual DXF primitives.
These entities are located at the original location, but are not stored in the entity database, have no handle and
are not assigned to any layout.

explode(target_layout: BaseLayout | None = None)→ EntityQuery
Explode MULTILEADER as DXF primitives into target layout, if target layout is None, the target layout is
the layout of the source entity.
Returns an EntityQuery container with all DXF primitives.

Parameters
target_layout – target layout for the DXF primitives, None for same layout as the source
entity.

transform(m: Matrix44)→MultiLeader
Transform the MULTILEADER entity by transformation matrix m inplace.
Non-uniform scaling is not supported.

Parameters
m – transformation Matrix44

Raises
NonUniformScalingError – for non-uniform scaling

9.8. Reference 373

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.MLeaderContext

leaders

list of LeaderData objects
scale

redundant data: MultiLeader.dxf.scale
base_point

insert location as Vec3 of the MTEXT or the BLOCK entity?
char_height

MTEXT char height, already scaled
arrow_head_size

redundant data: MultiLeader.dxf.arrow_head_size
landing_gap_size

left_attachment

redundant data: MultiLeader.dxf.text_left_attachment_type
right_attachment

redundant data: MultiLeader.dxf.text_right_attachment_type
text_align_type

redundant data: MultiLeader.dxf.text_attachment_point
attachment_type

BLOCK alignment?

0 content extents
1 insertion point

mtext

instance of MTextData if content is MTEXT otherwise None
block

instance of BlockData if content is BLOCK otherwise None
plane_origin

Vec3

plane_x_axis

Vec3

plane_y_axis

Vec3

plane_normal_reversed

the plan normal is x-axis “cross” y-axis (right-hand-rule), this flag indicates to invert this plan normal
top_attachment

redundant data: MultiLeader.dxf.text_top_attachment_type
bottom_attachment

redundant data: MultiLeader.dxf.text_bottom_attachment_type

374 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.LeaderData

lines

list of LeaderLine
has_last_leader_line

unknown meaning
has_dogleg_vector

last_leader_point

WCS point as Vec3
dogleg_vector

WCS direction as Vec3
dogleg_length

redundant data: MultiLeader.dxf.dogleg_length
index

leader index?
attachment_direction

redundant data: MultiLeader.dxf.text_attachment_direction
breaks

list of break vertices as Vec3 objects
class ezdxf.entities.LeaderLine

vertices

list of WCS coordinates as Vec3
breaks

mixed list of mixed integer indices and break coordinates or None leader lines without breaks in it
index

leader line index?
color

leader line color override, ignore override value if BY_BLOCK_RAW_VALUE
class ezdxf.entities.ArrowHeadData

index

arrow head index?
handle

handle to arrow head block
class ezdxf.entities.AttribData

handle

handle to Attdef entity in the BLOCK definition
index

unknown meaning

9.8. Reference 375

ezdxf Documentation, Release 1.3.2

width

text width factor?
text

Attrib content
class ezdxf.entities.MTextData

stores the content and attributes of the MTEXT entity
default_content

content as string
extrusion

extrusion vector of the MTEXT entity but MTEXT is not an OCS entity!
style_handle

redundant data: MultiLeader.dxf.text_style_handle
insert

insert location in WCS coordinates, same as MLeaderContext.base_point?
text_direction

“horizontal” text direction vector in WCS
rotation

rotation angle in radians (!) around the extrusion vector, calculated as it were an OCS entity
width

unscaled column width
defined_height

unscaled defined column height
line_spacing_factor

see MText.dxf.line_spacing_factor
line_spacing_style

see MText.dxf.line_spacing_style
color

redundant data: MultiLeader.dxf.text_color
alignment

redundant data: MultiLeader.dxf.text_attachment_point
flow_direction

1 horizontal
3 vertical
6 by text style

bg_color

background color as raw-color value
bg_scale_factor

see MText.dxf.box_fill_scale

376 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

bg_transparency

background transparency value
use_window_bg_color

has_bg_fill

column_type

unknown meaning - most likely:

0 none
1 static
2 dynamic

use_auto_height

column_width

unscaled column width, redundant data width
column_gutter_width

unscaled column gutter width
column_flow_reversed

column_sizes

list of unscaled columns heights for dynamic column with manual heights
use_word_break

class ezdxf.entities.BlockData

stores the attributes for the Insert entity
block_record_handle

redundant data: MultiLeader.dxf.block_record_handle
extrusion

extrusion vector in WCS
insert

insertion location in WCS as Vec3, same as MLeaderContext.base_point?
scale

redundant data: MultiLeader.dxf.block_scale_vector
rotation

redundant data: MultiLeader.dxf.block_rotation
color

redundant data: MultiLeader.dxf.block_color

9.8. Reference 377

ezdxf Documentation, Release 1.3.2

Point

The POINT entity (DXF Reference) represents a dimensionless point inWCS.
The POINT styling is a global setting, stored as header variable $PDMODE, this also means all POINT entities in a DXF
document have the same styling:

0 center dot (.)
1 none ()
2 cross (+)
3 x-cross (x)
4 tick (‘)

Combined with these bit values

32 circle
64 Square

e.g. circle + square + center dot = 32 + 64 + 0 = 96

The size of the points is defined by the header variable $PDSIZE:

0 5% of draw area height
<0 Specifies a percentage of the viewport size
>0 Specifies an absolute size

See also:
• Tutorial for Simple DXF Entities, section Point

Subclass of ezdxf.entities.DXFGraphic
DXF type 'POINT'
Factory function ezdxf.layouts.BaseLayout.add_point()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Point

378 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-9C6AD32D-769D-4213-85A4-CA9CCB5C5317
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-82F9BB52-D026-4D6A-ABA6-BF29641F459B-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/AutoCAD-Core/files/GUID-826CA91D-704B-400B-B784-7FCC9619AFB9-htm.html?st=\protect \TU\textdollar PDSIZE

ezdxf Documentation, Release 1.3.2

dxf.location

Location of the point (2D/3D Point inWCS)
dxf.angle

Angle in degrees of the x-axis for the UCS in effect when POINT was drawn (float); used when PDMODE
is nonzero.

transform(m: Matrix44)→ Point
Transform the POINT entity by transformation matrix m inplace.

translate(dx: float, dy: float, dz: float)→ Point
Optimized POINT translation about dx in x-axis, dy in y-axis and dz in z-axis.

virtual_entities(pdsize: float = 1, pdmode: int = 0)→ Iterator[DXFGraphic]
Yields the graphical representation of POINT as virtual DXF primitives (LINE and CIRCLE). The dimen-
sionless point is rendered as zero-length line!
Check for this condition:

e.dxftype() == 'LINE' and e.dxf.start.isclose(e.dxf.end)

if the rendering engine can’t handle zero-length lines.
Parameters

• pdsize – point size in drawing units
• pdmode – point styling mode

Polyline

The POLYLINE entity (POLYLINE DXF Reference) is very complex, it’s used to build 2D/3D polylines, 3D meshes
and 3D polyfaces. For every type exists a different wrapper class but they all have the same DXF type “POLYLINE”.
Detect the actual POLYLINE type by the method Polyline.get_mode().
POLYLINE types returned by Polyline.get_mode():

• 'AcDb2dPolyline' for 2D Polyline

• 'AcDb3dPolyline' for 3D Polyline

• 'AcDbPolygonMesh' for Polymesh
• 'AcDbPolyFaceMesh' for Polyface

For 2D entities all vertices in OCS.
For 3D entities all vertices inWCS.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'POLYLINE'
2D factory function ezdxf.layouts.BaseLayout.add_polyline2d()
3D factory function ezdxf.layouts.BaseLayout.add_polyline3d()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

9.8. Reference 379

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-ABF6B778-BE20-4B49-9B58-A94E64CEFFF3

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.Polyline

The Vertex entities are stored in the Python list Polyline.vertices. The VERTEX entities can be re-
trieved and deleted by direct access to the Polyline.vertices attribute:

delete first and second vertex
del polyline.vertices[:2]

dxf.elevation

Elevation point, the X and Y values are always 0, and the Z value is the polyline elevation (3D Point).
dxf.flags

Constants defined in ezdxf.lldxf.const:

Polyline.dxf.flags Value Description
POLYLINE_CLOSED 1 This is a closed Polyline (or a polygon mesh closed in the

M direction)
POLY-
LINE_MESH_CLOSED_M_DIRECTION

1 equals POLYLINE_CLOSED

POLY-
LINE_CURVE_FIT_VERTICES_ADDED

2 Curve-fit vertices have been added

POLY-
LINE_SPLINE_FIT_VERTICES_ADDED

4 Spline-fit vertices have been added

POLYLINE_3D_POLYLINE 8 This is a 3D Polyline
POLYLINE_3D_POLYMESH 16 This is a 3D polygon mesh
POLY-
LINE_MESH_CLOSED_N_DIRECTION

32 The polygon mesh is closed in the N direction

POLYLINE_POLYFACE_MESH 64 This Polyline is a polyface mesh
POLY-
LINE_GENERATE_LINETYPE_PATTERN

128 The linetype pattern is generated continuously around the
vertices of this Polyline

dxf.default_start_width

Default line start width (float); default is 0
dxf.default_end_width

Default line end width (float); default is 0
dxf.m_count

Polymesh M vertex count (int); default is 1
dxf.n_count

Polymesh N vertex count (int); default is 1
dxf.m_smooth_density

Smooth surface M density (int); default is 0
dxf.n_smooth_density

Smooth surface N density (int); default is 0
dxf.smooth_type

Curves and smooth surface type (int); default is 0, see table below
Constants for smooth_type defined in ezdxf.lldxf.const:

380 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Polyline.dxf.smooth_type Value Description
POLYMESH_NO_SMOOTH 0 no smooth surface fitted
POLYMESH_QUADRATIC_BSPLINE 5 quadratic B-spline surface
POLYMESH_CUBIC_BSPLINE 6 cubic B-spline surface
POLYMESH_BEZIER_SURFACE 8 Bezier surface

vertices

List of Vertex entities.
is_2d_polyline

True if POLYLINE is a 2D polyline.
is_3d_polyline

True if POLYLINE is a 3D polyline.
is_polygon_mesh

True if POLYLINE is a polygon mesh, see Polymesh
is_poly_face_mesh

True if POLYLINE is a poly face mesh, see Polyface
is_closed

True if POLYLINE is closed.
is_m_closed

True if POLYLINE (as Polymesh) is closed in m direction.
is_n_closed

True if POLYLINE (as Polymesh) is closed in n direction.
has_arc

Returns True if 2D POLYLINE has an arc segment.
has_width

Returns True if 2D POLYLINE has default width values or any segment with width attributes.
get_mode()→ str

Returns POLYLINE type as string:
• “AcDb2dPolyline”
• “AcDb3dPolyline”
• “AcDbPolygonMesh”
• “AcDbPolyFaceMesh”

m_close(status=True)→ None
Close POLYMESH in m direction if status is True (also closes POLYLINE), clears closed state if status is
False.

n_close(status=True)→ None
Close POLYMESH in n direction if status is True, clears closed state if status is False.

close(m_close=True, n_close=False)→ None
Set closed state of POLYMESH and POLYLINE in m direction and n direction. True set closed flag,
False clears closed flag.

9.8. Reference 381

ezdxf Documentation, Release 1.3.2

__len__()→ int
Returns count of Vertex entities.

__getitem__(pos)→ DXFVertex
Get Vertex entity at position pos, supports list-like slicing.

points()→ Iterator[Vec3]
Returns iterable of all polyline vertices as (x, y, z) tuples, not as Vertex objects.

append_vertex(point: UVec, dxfattribs=None)→ None
Append a single Vertex entity at location point.

Parameters
• point – as (x, y[, z]) tuple
• dxfattribs – dict of DXF attributes for Vertex class

append_vertices(points: Iterable[UVec], dxfattribs=None)→ None
Append multiple Vertex entities at location points.

Parameters
• points – iterable of (x, y[, z]) tuples
• dxfattribs – dict of DXF attributes for the VERTEX objects

append_formatted_vertices(points: Iterable[Sequence], format: str = 'xy', dxfattribs=None)→ None
Append multiple Vertex entities at location points.

Parameters
• points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple
• format – format string, default is “xy”, see: User Defined Point Format Codes

• dxfattribs – dict of DXF attributes for the VERTEX objects
insert_vertices(pos: int, points: Iterable[UVec], dxfattribs=None)→ None

Insert vertices points into Polyline.vertices list at insertion location pos .
Parameters

• pos – insertion position of list Polyline.vertices
• points – list of (x, y[, z]) tuples
• dxfattribs – dict of DXF attributes for Vertex class

transform(m: Matrix44)→ Polyline
Transform the POLYLINE entity by transformation matrix m inplace.
A non-uniform scaling is not supported if a 2D POLYLINE contains circular arc segments (bulges).

Parameters
m – transformation Matrix44

Raises
NonUniformScalingError – for non-uniform scaling of 2D POLYLINE containing cir-
cular arc segments (bulges)

382 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

virtual_entities()→ Iterator[Line | Arc | Face3d]
Yields the graphical representation of POLYLINE as virtual DXF primitives (LINE, ARC or 3DFACE).
These virtual entities are located at the original location, but are not stored in the entity database, have no
handle and are not assigned to any layout.

explode(target_layout: BaseLayout | None = None)→ EntityQuery
Explode the POLYLINE entity as DXF primitives (LINE, ARC or 3DFACE) into the target layout, if the
target layout is None, the target layout is the layout of the POLYLINE entity.
Returns an EntityQuery container referencing all DXF primitives.

Parameters
target_layout – target layout for DXF primitives, None for same layout as source entity.

Vertex

A VERTEX (VERTEX DXF Reference) represents a polyline/mesh vertex.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'VERTEX'
Factory function Polyline.append_vertex()
Factory function Polyline.extend()
Factory function Polyline.insert_vertices()
Inherited DXF Attributes Common graphical DXF attributes

class ezdxf.entities.Vertex

dxf.location

Vertex location (2D/3D Point OCS when 2D,WCS when 3D)
dxf.start_width

Line segment start width (float); default is 0
dxf.end_width

Line segment end width (float); default is 0
dxf.bulge

Bulge value (float); default is 0.
The bulge value is used to create arc shaped line segments.

dxf.flags

Constants defined in ezdxf.lldxf.const:

Vertex.dxf.flags Value Description
VTX_EXTRA_VERTEX_CREATED1 Extra vertex created by curve-fitting
VTX_CURVE_FIT_TANGENT2 curve-fit tangent defined for this vertex. A curve-fit tangent direction of

0 may be omitted from the DXF output, but is significant if this bit is set.
VTX_SPLINE_VERTEX_CREATED8 spline vertex created by spline-fitting
VTX_SPLINE_FRAME_CONTROL_POINT16 spline frame control point
VTX_3D_POLYLINE_VERTEX32 3D polyline vertex
VTX_3D_POLYGON_MESH_VERTEX64 3D polygon mesh
VTX_3D_POLYFACE_MESH_VERTEX128 polyface mesh vertex

9.8. Reference 383

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0741E831-599E-4CBF-91E1-8ADBCFD6556D

ezdxf Documentation, Release 1.3.2

dxf.tangent

Curve fit tangent direction (float), used for 2D spline in DXF R12.
dxf.vtx1

Index of 1st vertex, if used as face (feature for experts)
dxf.vtx2

Index of 2nd vertex, if used as face (feature for experts)
dxf.vtx3

Index of 3rd vertex, if used as face (feature for experts)
dxf.vtx4

Index of 4th vertex, if used as face (feature for experts)
is_2d_polyline_vertex

is_3d_polyline_vertex

is_polygon_mesh_vertex

is_poly_face_mesh_vertex

is_face_record

format(format='xyz')→ Sequence
Return formatted vertex components as tuple.
Format codes:
• “x” = x-coordinate
• “y” = y-coordinate
• “z” = z-coordinate
• “s” = start width
• “e” = end width
• “b” = bulge value
• “v” = (x, y, z) as tuple

Args:
format: format string, default is “xyz”

Polymesh

Subclass of ezdxf.entities.Polyline
DXF type 'POLYLINE'
Factory function ezdxf.layouts.BaseLayout.add_polymesh()
Inherited DXF Attributes Common graphical DXF attributes

class ezdxf.entities.Polymesh

A polymesh is a grid of m_count by n_count vertices, every vertex has its own (x, y, z) location. The
Polymesh is a subclass of Polyline, the DXF type is also “POLYLINE”, the method get_mode() returns
“AcDbPolygonMesh”.

384 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

get_mesh_vertex(pos: tuple[int, int])→ DXFVertex
Get location of a single mesh vertex.

Parameters
pos – 0-based (row, col) tuple, position of mesh vertex

set_mesh_vertex(pos: tuple[int, int], point: UVec, dxfattribs=None)
Set location and DXF attributes of a single mesh vertex.

Parameters
• pos – 0-based (row, col) tuple, position of mesh vertex
• point – (x, y, z) tuple, new 3D coordinates of the mesh vertex
• dxfattribs – dict of DXF attributes

get_mesh_vertex_cache()→MeshVertexCache
Get a MeshVertexCache object for this POLYMESH. The caching object provides fast access to the
location attribute of mesh vertices.

MeshVertexCache

class ezdxf.entities.MeshVertexCache

Cache mesh vertices in a dict, keys are 0-based (row, col) tuples.
Set vertex location: cache[row, col] = (x, y, z)

Get vertex location: x, y, z = cache[row, col]

vertices

Dict of mesh vertices, keys are 0-based (row, col) tuples.
__getitem__(pos: tuple[int, int])→ UVec

Get mesh vertex location as (x, y, z)-tuple.
Parameters

pos – 0-based (row, col)-tuple.
__setitem__(pos: tuple[int, int], location: UVec)→ None

Get mesh vertex location as (x, y, z)-tuple.
Parameters

• pos – 0-based (row, col)-tuple.
• location – (x, y, z)-tuple

Polyface

Subclass of ezdxf.entities.Polyline
DXF type 'POLYLINE'
Factory function ezdxf.layouts.BaseLayout.add_polyface()
Inherited DXF Attributes Common graphical DXF attributes

See also:
Tutorial for Polyface

9.8. Reference 385

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.Polyface

A polyface consist of multiple 3D areas called faces, only faces with 3 or 4 vertices are supported. The Poly-
face is a subclass of Polyline, the DXF type is also “POLYLINE”, the get_mode() returns “AcDbPoly-
FaceMesh”.
append_face(face: FaceType, dxfattribs=None)→ None

Append a single face. A face is a sequence of (x, y, z) tuples.
Parameters

• face – sequence of (x, y, z) tuples
• dxfattribs – dict of DXF attributes for the VERTEX objects

append_faces(faces: Iterable[FaceType], dxfattribs=None)→ None
Append multiple faces. faces is a list of single faces and a single face is a sequence of (x, y, z) tuples.

Parameters
• faces – iterable of sequences of (x, y, z) tuples
• dxfattribs – dict of DXF attributes for the VERTEX entity

faces()→ Iterator[list[DXFVertex]]
Iterable of all faces, a face is a tuple of vertices.

Returns
list of [vertex, vertex, vertex, [vertex,] face_record]

optimize(precision: int = 6)→ None
Rebuilds the Polyface by merging vertices with nearly same vertex locations.

Parameters
precision – floating point precision for determining identical vertex locations

Ray

The RAY entity (DXF Reference) starts at Ray.dxf.point and continues to infinity (construction line).

Subclass of ezdxf.entities.XLine
DXF type 'RAY'
Factory function ezdxf.layouts.BaseLayout.add_ray()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.Ray

dxf.start

Start point as (3D Point inWCS)
dxf.unit_vector

Unit direction vector as (3D Point inWCS)
transform(m: Matrix44)→ XLine

Transform the XLINE/RAY entity by transformation matrix m inplace.

386 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-638B9F01-5D86-408E-A2DE-FA5D6ADBD415

ezdxf Documentation, Release 1.3.2

translate(dx: float, dy: float, dz: float)→ XLine
Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.

Region

REGION entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
See also:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXF type 'REGION'
Factory function ezdxf.layouts.BaseLayout.add_region()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Region

Same attributes and methods as parent class Body.

Shape

The SHAPE entity (DXF Reference) is used like a block references, each SHAPE reference can be scaled and rotated
individually. The SHAPE definitions are stored in external shape files (*.SHX), and ezdxf can not load or create these
shape files.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'SHAPE'
Factory function ezdxf.layouts.BaseLayout.add_shape()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Shape

dxf.insert

Insertion location as (2D/3D Point inWCS)
dxf.name

Shape name (str)
dxf.size

Shape size (float)

9.8. Reference 387

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-644BF0F0-FD79-4C5E-AD5A-0053FCC5A5A4
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0988D755-9AAB-4D6C-8E26-EC636F507F2C

ezdxf Documentation, Release 1.3.2

dxf.rotation

Rotation angle in degrees; default value is 0
dxf.xscale

Relative X scale factor (float); default value is 1
dxf.oblique

Oblique angle in degrees (float); default value is 0
transform(m: Matrix44)→ Shape

Transform the SHAPE entity by transformation matrix m inplace.

Solid

The SOLID entity (DXF Reference) is a filled triangle or quadrilateral. Access vertices by name (entity.dxf.vtx0
= (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). If only 3 vertices are provided the last (3rd) vertex
will be repeated in the DXF file.
The SOLID entity stores the vertices in an unusual way, the last two vertices are reversed:

msp.add_solid([(0, 0), (10, 0), (10, 10), (0, 10)])

Reverse the last two vertices to get the expected square:

388 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E0C5F04E-D0C5-48F5-AC09-32733E8848F2

ezdxf Documentation, Release 1.3.2

msp.add_solid([(0, 0), (10, 0), (0, 10), (10, 10)])

Note: The quirky vertex order is preserved at the lowest access level because ezdxf is intended as a DXF file format
interface and presents the content of the DXF document to the package user as natively as possible.
The Solid.vertices() and Solid.wcs_vertices() methods return the vertices in the expected (reversed)
order.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'SOLID'
Factory function ezdxf.layouts.BaseLayout.add_solid()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Solid

dxf.vtx0

Location of 1. vertex (2D/3D Point in OCS)

9.8. Reference 389

ezdxf Documentation, Release 1.3.2

dxf.vtx1

Location of 2. vertex (2D/3D Point in OCS)
dxf.vtx2

Location of 3. vertex (2D/3D Point in OCS)
dxf.vtx3

Location of 4. vertex (2D/3D Point in OCS)
transform(m: Matrix44)→ Solid

Transform the SOLID/TRACE entity by transformation matrix m inplace.
vertices(close: bool = False)→ list[Vec3]

Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

wcs_vertices(close: bool = False)→ list[Vec3]
Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

Spline

The SPLINE entity (DXF Reference) is a 3D curve, all coordinates have to be 3D coordinates even if the spline is just a
2D planar curve.
The spline curve is defined by control points, knot values and weights. The control points establish the spline, the various
types of knot vector determines the shape of the curve and the weights of rational splines define how strong a control
point influences the shape.
A SPLINE can be created just from fit points - knot values and weights are optional (tested with AutoCAD 2010). If you
add additional data, be sure you know what you do, because invalid data may invalidate the whole DXF file.
The function ezdxf.math.fit_points_to_cad_cv() calculates control vertices from given fit points. This
control vertices define a cubic B-spline which matches visually the SPLINE entities created by BricsCAD and AutoCAD
from fit points.
See also:

• Wikipedia article about B_splines
• Department of Computer Science and Technology at the Cambridge University
• Tutorial for Spline

Subclass of ezdxf.entities.DXFGraphic
DXF type 'SPLINE'
Factory function see table below
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

390 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E1F884F8-AA90-4864-A215-3182D47A9C74
https://en.wikipedia.org/wiki/Spline_%28mathematics%29
https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node4.html

ezdxf Documentation, Release 1.3.2

Factory Functions

Basic spline entity add_spline()
Spline control frame from fit points add_spline_control_frame()
Open uniform spline add_open_spline()
Closed uniform spline add_closed_spline()
Open rational uniform spline add_rational_spline()
Closed rational uniform spline add_closed_rational_spline()

class ezdxf.entities.Spline

All points inWCS as (x, y, z) tuples
dxf.degree

Degree of the spline curve (int).
dxf.flags

Bit coded option flags, constants defined in ezdxf.lldxf.const:

dxf.flags Value Description
CLOSED_SPLINE 1 Spline is closed
PERIODIC_SPLINE 2
RATIONAL_SPLINE 4
PLANAR_SPLINE 8
LINEAR_SPLINE 16 planar bit is also set

dxf.n_knots

Count of knot values (int), automatically set by ezdxf (read only)
dxf.n_fit_points

Count of fit points (int), automatically set by ezdxf (read only)
dxf.n_control_points

Count of control points (int), automatically set by ezdxf (read only)
dxf.knot_tolerance

Knot tolerance (float); default is 1e-10
dxf.fit_tolerance

Fit tolerance (float); default is 1e-10
dxf.control_point_tolerance

Control point tolerance (float); default is 1e-10
dxf.start_tangent

Start tangent vector as 3D vector inWCS

dxf.end_tangent

End tangent vector as 3D vector inWCS

closed

True if spline is closed. A closed spline has a connection from the last control point to the first control point.
(read/write)

9.8. Reference 391

ezdxf Documentation, Release 1.3.2

control_points

VertexArray of control points inWCS.
fit_points

VertexArray of fit points inWCS.
knots

Knot values as array.array('d').
weights

Control point weights as array.array('d').
control_point_count()→ int

Count of control points.
fit_point_count()→ int

Count of fit points.
knot_count()→ int

Count of knot values.
construction_tool()→ BSpline

Returns the construction tool ezdxf.math.BSpline.
apply_construction_tool(s)→ Spline

Apply SPLINE data from a BSpline construction tool or from a geomdl.BSpline.Curve object.
flattening(distance: float, segments: int = 4)→ Iterator[Vec3]

Adaptive recursive flattening. The argument segments is the minimum count of approximation segments
between two knots, if the distance from the center of the approximation segment to the curve is bigger than
distance the segment will be subdivided.

Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count between two knots

set_open_uniform(control_points: Sequence[UVec], degree: int = 3)→ None
Open B-spline with a uniform knot vector, start and end at your first and last control points.

set_uniform(control_points: Sequence[UVec], degree: int = 3)→ None
B-spline with a uniform knot vector, does NOT start and end at your first and last control points.

set_closed(control_points: Sequence[UVec], degree=3)→ None
Closed B-spline with a uniform knot vector, start and end at your first control point.

set_open_rational(control_points: Sequence[UVec], weights: Sequence[float], degree: int = 3)→ None
Open rational B-spline with a uniform knot vector, start and end at your first and last control points, and has
additional control possibilities by weighting each control point.

set_uniform_rational(control_points: Sequence[UVec], weights: Sequence[float], degree: int = 3)→
None

Rational B-spline with a uniform knot vector, does NOT start and end at your first and last control points, and
has additional control possibilities by weighting each control point.

392 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

set_closed_rational(control_points: Sequence[UVec], weights: Sequence[float], degree: int = 3)→
None

Closed rational B-spline with a uniform knot vector, start and end at your first control point, and has additional
control possibilities by weighting each control point.

transform(m: Matrix44)→ Spline
Transform the SPLINE entity by transformation matrix m inplace.

classmethod from_arc(entity: DXFGraphic)→ Spline
Create a new SPLINE entity from a CIRCLE, ARC or ELLIPSE entity.
The new SPLINE entity has no owner, no handle, is not stored in the entity database nor assigned to any
layout!

Surface

SURFACE entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
See also:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXF type 'SURFACE'
Factory function ezdxf.layouts.BaseLayout.add_surface()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Surface

Same attributes and methods as parent class Body.
dxf.u_count

Number of U isolines.
dxf.v_count

Number of V2 isolines.

ExtrudedSurface

(DXF Reference)

Subclass of ezdxf.entities.Surface
DXF type 'EXTRUDEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add_extruded_surface()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021')

9.8. Reference 393

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.ExtrudedSurface

Same attributes and methods as parent class Surface.
dxf.class_id

dxf.sweep_vector

dxf.draft_angle

dxf.draft_start_distance

dxf.draft_end_distance

dxf.twist_angle

dxf.scale_factor

dxf.align_angle

dxf.solid

dxf.sweep_alignment_flags

0 No alignment
1 Align sweep entity to path
2 Translate sweep entity to path
3 Translate path to sweep entity

dxf.align_start

dxf.bank

dxf.base_point_set

dxf.sweep_entity_transform_computed

dxf.path_entity_transform_computed

dxf.reference_vector_for_controlling_twist

transformation_matrix_extruded_entity

type: Matrix44
sweep_entity_transformation_matrix

type: Matrix44
path_entity_transformation_matrix

type: Matrix44

394 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

LoftedSurface

(DXF Reference)

Subclass of ezdxf.entities.Surface
DXF type 'LOFTEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add_lofted_surface()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021')

class ezdxf.entities.LoftedSurface

Same attributes and methods as parent class Surface.
dxf.plane_normal_lofting_type

dxf.start_draft_angle

dxf.end_draft_angle

dxf.start_draft_magnitude

dxf.end_draft_magnitude

dxf.arc_length_parameterization

dxf.no_twist

dxf.align_direction

dxf.simple_surfaces

dxf.closed_surfaces

dxf.solid

dxf.ruled_surface

dxf.virtual_guide

set_transformation_matrix_lofted_entity

type: Matrix44

RevolvedSurface

(DXF Reference)

Subclass of ezdxf.entities.Surface
DXF type 'REVOLVEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add_revolved_surface()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021')

9.8. Reference 395

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.RevolvedSurface

Same attributes and methods as parent class Surface.
dxf.class_id

dxf.axis_point

dxf.axis_vector

dxf.revolve_angle

dxf.start_angle

dxf.draft_angle

dxf.start_draft_distance

dxf.end_draft_distance

dxf.twist_angle

dxf.solid

dxf.close_to_axis

transformation_matrix_revolved_entity

type: Matrix44

SweptSurface

(DXF Reference)

Subclass of ezdxf.entities.Surface
DXF type 'SWEPTSURFACE'
Factory function ezdxf.layouts.BaseLayout.add_swept_surface()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021')

class ezdxf.entities.SweptSurface

Same attributes and methods as parent class Surface.
dxf.swept_entity_id

dxf.path_entity_id

dxf.draft_angle

draft_start_distance

dxf.draft_end_distance

dxf.twist_angle

dxf.scale_factor

dxf.align_angle

396 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 1.3.2

dxf.solid

dxf.sweep_alignment

dxf.align_start

dxf.bank

dxf.base_point_set

dxf.sweep_entity_transform_computed

dxf.path_entity_transform_computed

dxf.reference_vector_for_controlling_twist

transformation_matrix_sweep_entity

type: Matrix44
transformation_matrix_path_entity()

type: Matrix44
sweep_entity_transformation_matrix()

type: Matrix44
path_entity_transformation_matrix()

type: Matrix44

Text

The TEXT entity (DXF Reference) represents a single line of text. The style attribute stores the associated
Textstyle entity as string, which defines the basic font properties. The text size is stored as cap-height in the height
attribute in drawing units. Text alignments are defined as enums of type ezdxf.enums.TextEntityAlignment.
See also:
See the documentation for the Textstyle class to understand the limitations of text representation in the DXF format.
Tutorial for Text

Subclass of ezdxf.entities.DXFGraphic
DXF type 'TEXT'
Factory function ezdxf.layouts.BaseLayout.add_text()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Text

dxf.text

Text content as string.
dxf.insert

First alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT, ALIGNED and FIT.

9.8. Reference 397

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-62E5383D-8A14-47B4-BFC4-35824CAE8363

ezdxf Documentation, Release 1.3.2

dxf.align_point

The main alignment point of text (2D/3D Point in OCS), if the alignment is anything else than LEFT, or the
second alignment point for the ALIGNED and FIT alignments.

dxf.height

Text height in drawing units as float value, the default value is 1.
dxf.rotation

Text rotation in degrees as float value, the default value is 0.
dxf.oblique

Text oblique angle (slanting) in degrees as float value, the default value is 0 (straight vertical text).
dxf.style

Textstyle name as case insensitive string, the default value is “Standard”
dxf.width

Width scale factor as float value, the default value is 1.
dxf.halign

Horizontal alignment flag as int value, use the set_placement() and get_align_enum() methods
to handle text alignment, the default value is 0.

0 Left
2 Right
3 Aligned (if vertical alignment = 0)
4 Middle (if vertical alignment = 0)
5 Fit (if vertical alignment = 0)

dxf.valign

Vertical alignment flag as int value, use the set_placement() and get_align_enum() methods to
handle text alignment, the default value is 0.

0 Baseline
1 Bottom
2 Middle
3 Top

dxf.text_generation_flag

Text generation flags as int value, use the is_backward and is_upside_down attributes to handle this
flags.

2 text is backward (mirrored in X)
4 text is upside down (mirrored in Y)

property is_backward: bool

Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.
property is_upside_down: bool

Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.

398 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

set_placement(p1: UVec, p2: UVec | None = None, align: TextEntityAlignment | None = None)→ Text
Set text alignment and location.
The alignments ALIGNED and FIT are special, they require a second alignment point, the text is aligned on
the virtual line between these two points and sits vertically at the baseline.
• ALIGNED: Text is stretched or compressed to fit exactly between p1 and p2 and the text height is also
adjusted to preserve height/width ratio.

• FIT: Text is stretched or compressed to fit exactly between p1 and p2 but only the text width is adjusted,
the text height is fixed by the dxf.height attribute.

• MIDDLE: also a special adjustment, centered text like MIDDLE_CENTER, but vertically centred at the
total height of the text.

Parameters
• p1 – first alignment point as (x, y[, z])
• p2 – second alignment point as (x, y[, z]), required for ALIGNED and FIT else ignored
• align – new alignment as enum TextEntityAlignment, None to preserve the exist-
ing alignment.

get_placement()→ tuple[TextEntityAlignment, Vec3, Vec3 | None]
Returns a tuple (align, p1, p2), align is the alignment enum TextEntityAlignment, p1 is the alignment
point, p2 is only relevant if align is ALIGNED or FIT, otherwise it is None.

get_align_enum()→ TextEntityAlignment
Returns the current text alignment as TextEntityAlignment, see also set_placement().

set_align_enum(align=TextEntityAlignment.LEFT)→ Text
Just for experts: Sets the text alignment without setting the alignment points, set adjustment points
attr:dxf.insert and dxf.align_point manually.

Parameters
align – TextEntityAlignment

transform(m: Matrix44)→ Text
Transform the TEXT entity by transformation matrix m inplace.

translate(dx: float, dy: float, dz: float)→ Text
Optimized TEXT/ATTRIB/ATTDEF translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self.

plain_text()→ str
Returns text content without formatting codes.

font_name()→ str
Returns the font name of the associated Textstyle.

fit_length()→ float
Returns the text length for alignments TextEntityAlignment.FIT and TextEntityAlignment.
ALIGNED, defined by the distance from the insertion point to the align point or 0 for all other alignments.

9.8. Reference 399

ezdxf Documentation, Release 1.3.2

Trace

The TRACE entity (DXF Reference) is solid filled triangle or quadrilateral. Access vertices by name (entity.dxf.
vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). If only 3 vertices are provided the last (3rd)
vertex will be repeated in the DXF file.
The TRACE entity stores the vertices in an unusual way, the last two vertices are reversed:

msp.add_solid([(0, 0), (10, 0), (10, 10), (0, 10)])

Reverse the last two vertices to get the expected square:

msp.add_solid([(0, 0), (10, 0), (0, 10), (10, 10)])

400 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EA6FBCA8-1AD6-4FB2-B149-770313E93511

ezdxf Documentation, Release 1.3.2

Note: The quirky vertex order is preserved at the lowest access level because ezdxf is intended as a DXF file format
interface and presents the content of the DXF document to the package user as natively as possible.
The Trace.vertices() and Trace.wcs_vertices() methods return the vertices in the expected (reversed)
order.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'TRACE'
Factory function ezdxf.layouts.BaseLayout.add_trace()
Inherited DXF attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Trace

dxf.vtx0

Location of 1. vertex (2D/3D Point in OCS)
dxf.vtx1

Location of 2. vertex (2D/3D Point in OCS)

9.8. Reference 401

ezdxf Documentation, Release 1.3.2

dxf.vtx2

Location of 3. vertex (2D/3D Point in OCS)
dxf.vtx3

Location of 4. vertex (2D/3D Point in OCS)
transform(m: Matrix44)→ Solid

Transform the SOLID/TRACE entity by transformation matrix m inplace.
vertices(close: bool = False)→ list[Vec3]

Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

wcs_vertices(close: bool = False)→ list[Vec3]
Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
the duplicated last vertex if the entity represents a triangle.

Underlay

The UNDERLAY entity (DXF Reference) links an underlay file to the DXF file, the file itself is not embedded into the
DXF file, it is always a separated file. The (PDF)UNDERLAY entity is like a block reference, you can use it multiple
times to add the underlay on different locations with different scales and rotations. But therefore you need a also a
(PDF)DEFINITION entity, see UnderlayDefinition.
The DXF standard supports three different file formats: PDF, DWF (DWFx) and DGN. An Underlay can be clipped by
a rectangle or a polygon path. The clipping coordinates are 2D OCS coordinates in drawing units but without scaling.

Subclass of ezdxf.entities.DXFGraphic
DXF type internal base class
Factory function ezdxf.layouts.BaseLayout.add_underlay()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.Underlay

Base class of PdfUnderlay, DwfUnderlay and DgnUnderlay
dxf.insert

Insertion point, lower left corner of the image in OCS.
dxf.scale_x

Scaling factor in x-direction (float)
dxf.scale_y

Scaling factor in y-direction (float)
dxf.scale_z

Scaling factor in z-direction (float)
dxf.rotation

ccw rotation in degrees around the extrusion vector (float)
dxf.extrusion

extrusion vector, default is (0, 0, 1)

402 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3EC8FBCC-A85A-4B0B-93CD-C6C785959077

ezdxf Documentation, Release 1.3.2

dxf.underlay_def_handle

Handle to the underlay definition entity, see UnderlayDefinition
dxf.flags

dxf.flags Value Description
UNDERLAY_CLIPPING 1 clipping is on/off
UNDERLAY_ON 2 underlay is on/off
UNDERLAY_MONOCHROME 4 Monochrome
UNDERLAY_ADJUST_FOR_BACKGROUND 8 Adjust for background

dxf.contrast

Contrast value (20 - 100; default is 100)
dxf.fade

Fade value (0 - 80; default is 0)
clipping

True or False (read/write)
on

True or False (read/write)
monochrome

True or False (read/write)
adjust_for_background

True or False (read/write)
scale

Scaling (x, y, z) tuple (read/write)
boundary_path

Boundary path as list of vertices (read/write).
Two vertices describe a rectangle (lower left and upper right corner), more than two vertices is a polygon as
clipping path.

get_underlay_def()

Returns the associated DEFINITION entity. see UnderlayDefinition.
set_underlay_def()

Set the associated DEFINITION entity. see UnderlayDefinition.
reset_boundary_path()→ None

Removes the clipping path.

9.8. Reference 403

ezdxf Documentation, Release 1.3.2

PdfUnderlay

Subclass of ezdxf.entities.Underlay
DXF type 'PDFUNDERLAY'
Factory function ezdxf.layouts.BaseLayout.add_underlay()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.PdfUnderlay

PDF underlay.

DwfUnderlay

Subclass of ezdxf.entities.Underlay
DXF type 'DWFUNDERLAY'
Factory function ezdxf.layouts.BaseLayout.add_underlay()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.DwfUnderlay

DWF underlay.

DgnUnderlay

Subclass of ezdxf.entities.Underlay
DXF type 'DGNUNDERLAY'
Factory function ezdxf.layouts.BaseLayout.add_underlay()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.DgnUnderlay

DGN underlay.

Viewport

The VIEWPORT entity (DXF Reference) is a window from a paperspace layout to the modelspace.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'VIEWPORT'
Factory function ezdxf.layouts.Paperspace.add_viewport()
Inherited DXF attributes Common graphical DXF attributes

404 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-2602B0FB-02E4-4B9A-B03C-B1D904753D34

ezdxf Documentation, Release 1.3.2

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Viewport

dxf.center

Center point of the viewport located in the paper space layout in paper space units stored as 3D point. (Error
in the DXF reference)

dxf.width

Viewport width in paperspace units (float)
dxf.height

Viewport height in paperspace units (float)
dxf.status

Viewport status field (int)

-1 On, but is fully off screen, or is one of the viewports that is not active because the $MAXACTVP
count is currently being exceeded.

0 Off
>0 On and active. The value indicates the order of stacking for the viewports, where 1 is the active

viewport, 2 is the next, and so forth.

dxf.id

Viewport id (int)
dxf.view_center_point

View center point in modelspace stored as 2D point, but represents aWCS point. (Error in the DXF reference)
dxf.snap_base_point

dxf.snap_spacing

dxf.snap_angle

dxf.grid_spacing

dxf.view_direction_vector

View direction (3D vector inWCS).
dxf.view_target_point

View target point (3D point inWCS).
dxf.perspective_lens_length

Lens focal length in mm as 35mm film equivalent.
dxf.front_clip_plane_z_value

dxf.back_clip_plane_z_value

dxf.view_height

View height inWCS.
dxf.view_twist_angle

9.8. Reference 405

ezdxf Documentation, Release 1.3.2

dxf.circle_zoom

dxf.flags

Viewport status bit-coded flags:

Bit value Constant in
ezdxf.const

Description

1 (0x1) VSF_PERSPECTIVE_MODEEnables perspective mode
2 (0x2) VSF_FRONT_CLIPPINGEnables front clipping
4 (0x4) VSF_BACK_CLIPPINGEnables back clipping
8 (0x8) VSF_USC_FOLLOW Enables UCS follow
16 (0x10) VSF_FRONT_CLIPPING_NOT_AT_EYEEnables front clip not at eye
32 (0x20) VSF_UCS_ICON_VISIBILITYEnables UCS icon visibility
64 (0x40) VSF_UCS_ICON_AT_ORIGINEnables UCS icon at origin
128
(0x80)

VSF_FAST_ZOOM Enables fast zoom

256
(0x100)

VSF_SNAP_MODE Enables snap mode

512
(0x200)

VSF_GRID_MODE Enables grid mode

1024
(0x400)

VSF_ISOMETRIC_SNAP_STYLEEnables isometric snap style

2048
(0x800)

VSF_HIDE_PLOT_MODEEnables hide plot mode

4096
(0x1000)

VSF_KISOPAIR_TOPkIsoPairTop. If set and kIsoPairRight is not set, then isopair top is
enabled. If both kIsoPairTop and kIsoPairRight are set, then isopair
left is enabled

8192
(0x2000)

VSF_KISOPAIR_RIGHTkIsoPairRight. If set and kIsoPairTop is not set, then isopair right is
enabled

16384
(0x4000)

VSF_LOCK_ZOOM Enables viewport zoom locking

32768
(0x8000)

VSF_CURRENTLY_ALWAYS_ENABLEDCurrently always enabled

65536
(0x10000)

VSF_NON_RECTANGULAR_CLIPPINGEnables non-rectangular clipping

131072
(0x20000)

VSF_TURN_VIEWPORT_OFFTurns the viewport off

262144
(0x40000)

VSF_NO_GRID_LIMITSEnables the display of the grid beyond the drawing limits

524288
(0x80000)

VSF_ADAPTIVE_GRID_DISPLAYEnable adaptive grid display

1048576
(0x100000)

VSF_SUBDIVIDE_GRIDEnables subdivision of the grid below the set grid spacing when the
grid display is adaptive

2097152
(0x200000)

VSF_GRID_FOLLOW_WORKPLANEEnables grid follows workplane switching

Use helper method set_flag_state() to set and clear viewport flags, e.g. lock viewport:

vp.set_flag_state(ezdxf.const.VSF_LOCK_ZOOM, True)

dxf.clipping_boundary_handle

dxf.plot_style_name

406 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.render_mode

0 2D Optimized (classic 2D)
1 Wireframe
2 Hidden line
3 Flat shaded
4 Gouraud shaded
5 Flat shaded with wireframe
6 Gouraud shaded with wireframe

dxf.ucs_per_viewport

dxf.ucs_icon

dxf.ucs_origin

UCS origin as 3D point.
dxf.ucs_x_axis

UCS x-axis as 3D vector.
dxf.ucs_y_axis

UCS y-axis as 3D vector.
dxf.ucs_handle

Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed.
dxf.ucs_ortho_type

0 not orthographic
1 Top
2 Bottom
3 Front
4 Back
5 Left
6 Right

dxf.ucs_base_handle

Handle of UCSTable of base UCS if UCS is orthographic (Viewport.dxf.ucs_ortho_type is
non-zero). If not present and Viewport.dxf.ucs_ortho_type is non-zero, then base UCS is taken
to be WORLD.

dxf.elevation

dxf.shade_plot_mode

(DXF R2004)

0 As Displayed
1 Wireframe
2 Hidden
3 Rendered

9.8. Reference 407

ezdxf Documentation, Release 1.3.2

dxf.grid_frequency

Frequency of major grid lines compared to minor grid lines. (DXF R2007)
dxf.background_handle

dxf.shade_plot_handle

dxf.visual_style_handle

dxf.default_lighting_flag

dxf.default_lighting_style

0 One distant light
1 Two distant lights

dxf.view_brightness

dxf.view_contrast

dxf.ambient_light_color_1

as AutoCAD Color Index (ACI)

dxf.ambient_light_color_2

as true color value
dxf.ambient_light_color_3

as true color value
dxf.sun_handle

dxf.ref_vp_object_1

dxf.ref_vp_object_2

dxf.ref_vp_object_3

dxf.ref_vp_object_4

frozen_layers

Set/get frozen layers as list of layer names.
is_frozen(layer_name: str)→ bool

Returns True if layer_name id frozen in this viewport.
freeze(layer_name: str)→ None

Freeze layer_name in this viewport.
thaw(layer_name: str)→ None

Thaw layer_name in this viewport.
has_extended_clipping_path

Returns True if a non-rectangular clipping path is defined.
clipping_rect()→ tuple[Vec2, Vec2]

Returns the lower left and the upper right corner of the clipping rectangle in paperspace coordinates.

408 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

clipping_rect_corners()→ list[Vec2]
Returns the default rectangular clipping path as list of vertices. Use function ezdxf.path.
make_path() to get also non-rectangular shaped clipping paths if defined.

get_aspect_ratio()→ float
Returns the aspect ratio of the viewport, return 0.0 if width or height is zero.

get_modelspace_limits()→ tuple[float, float, float, float]
Returns the limits of the modelspace to view in drawing units as tuple (min_x, min_y, max_x, max_y).

get_scale()→ float
Returns the scaling factor from modelspace to viewport.

get_transformation_matrix()→ Matrix44
Returns the transformation matrix from modelspace to paperspace coordinates.

Wipeout

The WIPEOUT entity (DXF Reference) is a polygonal area that masks underlying objects with the current background
color. The WIPEOUT entity is based on the IMAGE entity, but usage does not require any knowledge about the IMAGE
entity.
The handles to the support entities ImageDef and ImageDefReactor are always “0”, both are not needed by the
WIPEOUT entity.

Subclass of ezdxf.entities.Image
DXF type 'WIPEOUT'
Factory function ezdxf.layouts.BaseLayout.add_wipeout()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Wipeout

set_masking_area(vertices: Iterable[UVec])→ None
Set a new masking area, the area is placed in the layout xy-plane.

XLine

The XLINE entity (DXF Reference) is a construction line that extents to infinity in both directions.

Subclass of ezdxf.entities.DXFGraphic
DXF type 'XLINE'
Factory function ezdxf.layouts.BaseLayout.add_xline()
Inherited DXF attributes Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015')

class ezdxf.entities.XLine

9.8. Reference 409

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-2229F9C4-3C80-4C67-9EDA-45ED684808DC
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-55080553-34B6-40AA-9EE2-3F3A3A2A5C0A

ezdxf Documentation, Release 1.3.2

dxf.start

Location point of line as (3D Point inWCS)
dxf.unit_vector

Unit direction vector as (3D Point inWCS)
transform(m: Matrix44)→ XLine

Transform the XLINE/RAY entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float)→ XLine

Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.

DXF Objects

All DXF objects can only reside in the OBJECTS section of a DXF document.
The purpose of the OBJECTS section is to allow CAD software developers to define and store custom objects that are
not included in the basic DXF file format. These custom objects can be used to represent complex data structures, such
as database tables or project management information, that are not easily represented by basic DXF entities.
By including custom objects in the OBJECTS section, CAD software developers can extend the functionality of their
software to support new types of data and objects. For example, a custom application might define a new type of block
or dimension style that is specific to a particular industry or workflow. By storing this custom object definition in the
OBJECTS section, the CAD software can recognize and use the new object type in a drawing.
In summary, the OBJECTS section is an important part of the DXF file format because it allows CAD software developers
to extend the functionality of their software by defining and storing custom objects and entity types. This makes it possible
to represent complex data structures and workflows in CAD drawings, and allows CAD software to be customized to meet
the specific needs of different industries and applications.

Dictionary

The DICTIONARY entity is a general storage entity.
AutoCAD maintains items such as MLINE_STYLES and GROUP definitions as objects in dictionaries. Other applica-
tions are free to create and use their own dictionaries as they see fit. The prefix 'ACAD_' is reserved for use by AutoCAD
applications.
Dictionary entries are (key, DXFEntity) pairs for fully loaded or new created DXF documents. The referenced entities
are owned by the dictionary and cannot be graphical entities that always belong to the layout in which they are located.
Loading DXF files is done in two passes, because at the first loading stage not all referenced objects are already stored in
the entity database. Therefore the entities are stored as handles strings at the first loading stage and have to be replaced
by the real entity at the second loading stage. If the entity is still a handle string after the second loading stage, the entity
does not exist.
Dictionary keys are handled case insensitive by AutoCAD, but not by ezdxf, in doubt use an uppercase key. AutoCAD
stores all keys in uppercase.

Subclass of ezdxf.entities.DXFObject
DXF type 'DICTIONARY'
Factory function ezdxf.sections.objects.ObjectsSection.add_dictionary()

410 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-40B92C63-26F0-485B-A9C2-B349099B26D0

ezdxf Documentation, Release 1.3.2

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.Dictionary

dxf.hard_owned

If set to 1, indicates that elements of the dictionary are to be treated as hard-owned.
dxf.cloning

Duplicate record cloning flag (determines how to merge duplicate entries, ignored by ezdxf):

0 not applicable
1 keep existing
2 use clone
3 <xref>0<name>
4 0<name>
5 Unmangle name

is_hard_owner

Returns True if the dictionary is hard owner of entities. Hard owned entities will be destroyed by deleting
the dictionary.

__len__()→ int
Returns count of dictionary entries.

__contains__(key: str)→ bool
Returns key in self.

__getitem__(key: str)→ DXFEntity
Return self[key].
The returned value can be a handle string if the entity does not exist.

Raises
DXFKeyError – key does not exist

__setitem__(key: str, entity: DXFObject)→ None
Set self[key] = entity.
Only DXF objects stored in the OBJECTS section are allowed as content of Dictionary objects. DXF
entities stored in layouts are not allowed.

Raises
DXFTypeError – invalid DXF type

__delitem__(key: str)→ None
Delete self[key].

Raises
DXFKeyError – key does not exist

keys()

Returns a KeysView of all dictionary keys.
items()

Returns an ItemsView for all dictionary entries as (key, entity) pairs. An entity can be a handle string if
the entity does not exist.

9.8. Reference 411

ezdxf Documentation, Release 1.3.2

count()→ int
Returns count of dictionary entries.

get(key: str, default: DXFObject | None = None)→ DXFObject | None
Returns the DXFEntity for key, if key exist else default. An entity can be a handle string if the entity does
not exist.

add(key: str, entity: DXFObject)→ None
Add entry (key, value).
If the DICTIONARY is hard owner of its entries, the add() does NOT take ownership of the entity auto-
matically.

Raises
• DXFValueError – invalid entity handle
• DXFTypeError – invalid DXF type

remove(key: str)→ None
Delete entry key. Raises DXFKeyError, if key does not exist. Destroys hard owned DXF entities.

discard(key: str)→ None
Delete entry key if exists. Does not raise an exception if key doesn’t exist and does not destroy hard owned
DXF entities.

clear()→ None
Delete all entries from the dictionary and destroys hard owned DXF entities.

add_new_dict(key: str, hard_owned: bool = False)→ Dictionary
Create a new sub-dictionary of type Dictionary.

Parameters
• key – name of the sub-dictionary
• hard_owned – entries of the new dictionary are hard owned

get_required_dict(key: str, hard_owned=False)→ Dictionary
Get entry key or create a new Dictionary, if Key not exist.

add_dict_var(key: str, value: str)→ DictionaryVar
Add a new DictionaryVar.

Parameters
• key – entry name as string
• value – entry value as string

add_xrecord(key: str)→ XRecord
Add a new XRecord.

Parameters
key – entry name as string

link_dxf_object(name: str, obj: DXFObject)→ None
Add obj and set owner of obj to this dictionary.
Graphical DXF entities have to reside in a layout and therefore can not be owned by a Dictionary.

Raises
DXFTypeError – obj has invalid DXF type

412 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DictionaryWithDefault

Subclass of ezdxf.entities.Dictionary
DXF type 'ACDBDICTIONARYWDFLT'
Factory func-
tion

ezdxf.sections.objects.ObjectsSection.add_dictionary_with_default()

class ezdxf.entities.DictionaryWithDefault

dxf.default

Handle to default entry as hex string like FF00.
get(key: str, default: DXFObject | None = None)→ DXFObject | None

Returns DXFEntity for key or the predefined dictionary wide dxf.default entity if key does not exist
or None if default value also not exist.

set_default(default: DXFObject)→ None
Set dictionary wide default entry.

Parameters
default – default entry as DXFEntity

DictionaryVar

Subclass of ezdxf.entities.DXFObject
DXF type 'DICTIONARYVAR'
Factory function ezdxf.entities.Dictionary.add_dict_var()

class ezdxf.entities.DictionaryVar

dxf.schema

Object schema number (currently set to 0)
dxf.value

Value as string.
property value: str

Get/set the value of the DictionaryVar as string.

DXFLayout

LAYOUT entity is part of a modelspace or paperspace layout definitions.

Subclass of ezdxf.entities.PlotSettings
DXF type 'LAYOUT'
Factory function internal data structure, use Layouts to manage layout objects.

class ezdxf.entities.DXFLayout

9.8. Reference 413

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-433D25BF-655D-4697-834E-C666EDFD956D

ezdxf Documentation, Release 1.3.2

dxf.name

Layout name as shown in tabs by CAD applications
dxf.layout_flags

1 Indicates the PSLTSCALE value for this layout when this layout is current
2 Indicates the LIMCHECK value for this layout when this layout is current

dxf.tab_order

default is 1
dxf.limmin

default is Vec2(0, 0)
dxf.limmax

default is Vec2(420, 297)
dxf.insert_base

default is Vec3(0, 0, 0)
dxf.extmin

default is Vec3(1e20, 1e20, 1e20)
dxf.extmax

default is Vec3(-1e20, -1e20, -1e20)
dxf.elevation

default is 0
dxf.ucs_origin

default is Vec3(0, 0, 0)
dxf.ucs_xaxis

default is Vec3(1, 0, 0)
dxf.ucs_yaxis

default is Vec3(0, 1, 0)
dxf.ucs_type

0 UCS is not orthographic
1 Top
2 Bottom
3 Front
4 Back
5 Left
6 Right

default is 1
dxf.block_record_handle

dxf.viewport_handle

dxf.ucs_handle

dxf.base_ucs_handle

414 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DXFObject

Common base class for all non-graphical DXF objects.
class ezdxf.entities.DXFObject

A class hierarchy marker class and subclass of ezdxf.entities.DXFEntity

GeoData

The GEODATA entity is associated to the Modelspace object. The GEODATA entity is supported since the DXF
version R2000, but was officially documented the first time in the DXF reference for version R2009.

Subclass of ezdxf.entities.DXFObject
DXF type 'GEODATA'
Factory function ezdxf.layouts.Modelspace.new_geodata()
Required DXF version R2010 ('AC1024')

See also:
geodata_setup_local_grid.py

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.GeoData

dxf.version

1 R2009
2 R2010

dxf.coordinate_type

0 unknown
1 local grid
2 projected grid
3 geographic (latitude/longitude)

dxf.block_record_handle

Handle of host BLOCK_RECORD table entry, in general the Modelspace.
dxf.design_point

Reference point inWCS coordinates.
dxf.reference_point

Reference point in geo coordinates, valid only when coordinate type is local grid. The difference between
dxf.design_point and dxf.reference_point defines the translation from WCS coordinates to geo-coordinates.

9.8. Reference 415

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-104FE0E2-4801-4AC8-B92C-1DDF5AC7AB64
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-104FE0E2-4801-4AC8-B92C-1DDF5AC7AB64
https://github.com/mozman/ezdxf/blob/master/examples/entities/geodata_setup_local_grid.py

ezdxf Documentation, Release 1.3.2

dxf.north_direction

North direction as 2D vector. Defines the rotation (about the dxf.design_point) to transform from WCS
coordinates to geo-coordinates

dxf.horizontal_unit_scale

Horizontal unit scale, factor which converts horizontal design coordinates to meters by multiplication.
dxf.vertical_unit_scale

Vertical unit scale, factor which converts vertical design coordinates to meters by multiplication.
dxf.horizontal_units

Horizontal units (see BlockRecord). Will be 0 (Unitless) if units specified by horizontal unit scale is not
supported by AutoCAD enumeration.

dxf.vertical_units

Vertical units (see BlockRecord). Will be 0 (Unitless) if units specified by vertical unit scale is not sup-
ported by AutoCAD enumeration.

dxf.up_direction

Up direction as 3D vector.
dxf.scale_estimation_method

1 none
2 user specified scale factor
3 grid scale at reference point
4 prismoidal

dxf.sea_level_correction

Bool flag specifying whether to do sea level correction.
dxf.user_scale_factor

dxf.sea_level_elevation

dxf.coordinate_projection_radius

dxf.geo_rss_tag

dxf.observation_from_tag

dxf.observation_to_tag

dxf.mesh_faces_count

source_vertices

2D source vertices in the CRS of the GeoData as VertexArray. Used together with target_vertices to
define the transformation from the CRS of the GeoData to WGS84.

target_vertices

2D target vertices in WGS84 (EPSG:4326) as VertexArray. Used together with source_vertices to define
the transformation from the CRS of the geoData to WGS84.

faces

List of face definition tuples, each face entry is a 3-tuple of vertex indices (0-based).

416 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

coordinate_system_definition

The coordinate system definition string. Stored as XML. Defines the CRS used by the GeoData. The EPSG
number and other details like the axis-ordering of the CRS is stored.

get_crs()→ tuple[int, bool]
Returns the EPSG index and axis-ordering, axis-ordering is True if fist axis is labeled “E” or “W” and
False if first axis is labeled “N” or “S”.
If axis-ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON (see
chapter 3.1.1).

Raises
InvalidGeoDataException – for invalid or unknown XML data

The EPSG number is stored in a tag like:

<Alias id="27700" type="CoordinateSystem">
<ObjectId>OSGB1936.NationalGrid</ObjectId>
<Namespace>EPSG Code</Namespace>

</Alias>

The axis-ordering is stored in a tag like:

<Axis uom="METER">
<CoordinateSystemAxis>
<AxisOrder>1</AxisOrder>
<AxisName>Easting</AxisName>
<AxisAbbreviation>E</AxisAbbreviation>
<AxisDirection>east</AxisDirection>

</CoordinateSystemAxis>
<CoordinateSystemAxis>
<AxisOrder>2</AxisOrder>
<AxisName>Northing</AxisName>
<AxisAbbreviation>N</AxisAbbreviation>
<AxisDirection>north</AxisDirection>

</CoordinateSystemAxis>
</Axis>

get_crs_transformation(*, no_checks: bool = False)→ tuple[Matrix44, int]
Returns the transformation matrix and the EPSG index to transformWCS coordinates into CRS coordinates.
Because of the lack of proper documentation this method works only for tested configurations, set argument
no_checks to True to use the method for untested geodata configurations, but the results may be incorrect.
Supports only “Local Grid” transformation!

Raises
InvalidGeoDataException – for untested geodata configurations

setup_local_grid(*, design_point: UVec, reference_point: UVec, north_direction: UVec = (0, 1), crs: str
= EPSG_3395)

Setup local grid coordinate system. This method is designed to setup CRS similar to EPSG:3395 World
Mercator, the basic features of the CRS should fulfill these assumptions:
• base unit of reference coordinates is 1 meter
• right-handed coordinate system: +Y=north/+X=east/+Z=up

The CRS string is not validated nor interpreted!

9.8. Reference 417

ezdxf Documentation, Release 1.3.2

Hint: The reference point must be a 2D cartesian map coordinate and not a globe (lon/lat) coordinate like
stored in GeoJSON or GPS data.

Parameters
• design_point – WCS coordinates of the CRS reference point
• reference_point – CRS reference point in 2D cartesian coordinates
• north_direction – north direction a 2D vertex, default is (0, 1)
• crs – Coordinate Reference System definition XML string, default is the definition string
for EPSG:3395 World Mercator

ImageDef

The IMAGEDEF entity defines an image file, which can be placed by the Image entity.

Subclass of ezdxf.entities.DXFObject
DXF type 'IMAGEDEF'
Factory function (1) ezdxf.document.Drawing.add_image_def()
Factory function (2) ezdxf.sections.objects.ObjectsSection.add_image_def()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.ImageDef

dxf.class_version

Current version is 0.
dxf.filename

Relative (to the DXF file) or absolute path to the image file as string.
dxf.image_size

Image size in pixel as (x, y) tuple.
dxf.pixel_size

Default size of one pixel in drawing units as (x, y) tuple.
dxf.loaded

0 = unloaded; 1 = loaded, default is 1
dxf.resolution_units

0 No units
2 Centimeters
5 Inch

default is 0

418 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EFE5319F-A71A-4612-9431-42B6C7C3941F

ezdxf Documentation, Release 1.3.2

ImageDefReactor

class ezdxf.entities.ImageDefReactor

dxf.class_version

dxf.image_handle

MLeaderStyle

The MLEADERSTYLE entity (DXF Reference) stores all attributes required to create new MultiLeader entities.
The meaning of these attributes are not really documented in the DXF Reference. The default style “Standard” always
exist.
See also:

• ezdxf.entities.MultiLeader

• ezdxf.render.MultiLeaderBuilder

• Tutorial for MultiLeader

Create a new MLeaderStyle:

import ezdxf

doc = ezdxf.new()
new_style = doc.mleader_styles.new("NewStyle")

Duplicate an existing style:

duplicated_style = doc.mleader_styles.duplicate_entry("Standard", "DuplicatedStyle")

Subclass of ezdxf.entities.DXFObject
DXF type 'MLEADERSTYLE'
Factory function ezdxf.document.Drawing.mleader_styles.new()

class ezdxf.entities.MLeaderStyle

dxf.align_space

unknown meaning
dxf.arrow_head_handle

handle of default arrow head, see also ezdxf.render.arrowsmodule, by default no handle is set, which
mean default arrow “closed filled”

dxf.arrow_head_size

default arrow head size in drawing units, default is 4.0
dxf.block_color

default block color as ;term:raw color value, default is BY_BLOCK_RAW_VALUE

9.8. Reference 419

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0E489B69-17A4-4439-8505-9DCE032100B4
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0E489B69-17A4-4439-8505-9DCE032100B4

ezdxf Documentation, Release 1.3.2

dxf.block_connection_type

0 center extents
1 insertion point

dxf.block_record_handle

handle to block record of the BLOCK content, not set by default
dxf.block_rotation

default BLOCK rotation in radians, default is 0.0
dxf.block_scale_x

default block x-axis scale factor, default is 1.0
dxf.block_scale_y

default block y-axis scale factor, default is 1.0
dxf.block_scale_z

default block z-axis scale factor, default is 1.0
dxf.break_gap_size

default break gap size, default is 3.75
dxf.char_height

default MTEXT char height, default is 4.0
dxf.content_type

0 none
1 BLOCK
2 MTEXT
3 TOLERANCE

default is MTEXT (2)
dxf.default_text_content

default MTEXT content as string, default is “”
dxf.dogleg_length

default dogleg length, default is 8.0
dxf.draw_leader_order_type

unknown meaning
dxf.draw_mleader_order_type

unknown meaning
dxf.first_segment_angle_constraint

angle of fist leader segment in radians, default is 0.0
dxf.has_block_rotation

dxf.has_block_scaling

420 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.has_dogleg

default is 1
dxf.has_landing

default is 1
dxf.is_annotative

default is 0
dxf.landing_gap_size

default landing gap size, default is 2.0
dxf.leader_line_color

default leader line color as raw-color value, default is BY_BLOCK_RAW_VALUE
dxf.leader_linetype_handle

handle of default leader linetype
dxf.leader_lineweight

default leader lineweight, default is LINEWEIGHT_BYBLOCK
dxf.leader_type

0 invisible
1 straight line leader
2 spline leader

default is 1
dxf.max_leader_segments_points

max count of leader segments, default is 2
dxf.name

MLEADERSTYLE name
dxf.overwrite_property_value

unknown meaning
dxf.scale

overall scaling factor, default is 1.0
dxf.second_segment_angle_constraint

angle of fist leader segment in radians, default is 0.0
dxf.text_align_always_left

use always left side to attach leaders, default is 0
dxf.text_alignment_type

unknown meaning - its not the MTEXT attachment point!
dxf.text_angle_type

0 text angle is equal to last leader line segment angle
1 text is horizontal
2 text angle is equal to last leader line segment angle, but potentially rotated by 180 degrees so the right

side is up for readability.

9.8. Reference 421

ezdxf Documentation, Release 1.3.2

default is 1
dxf.text_attachment_direction

defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top &
bottom:

0 horizontal - left & right of content
1 vertical - top & bottom of content

default is 0
dxf.text_bottom_attachment_type

9 center
10 overline and center

default is 9
dxf.text_color

default MTEXT color as raw-color value, default is BY_BLOCK_RAW_VALUE
dxf.text_left_attachment_type

0 top of top MTEXT line
1 middle of top MTEXT line
2 middle of whole MTEXT
3 middle of bottom MTEXT line
4 bottom of bottom MTEXT line
5 bottom of bottom MTEXT line & underline bottom MTEXT line
6 bottom of top MTEXT line & underline top MTEXT line
7 bottom of top MTEXT line
8 bottom of top MTEXT line & underline all MTEXT lines

dxf.text_right_attachment_type

0 top of top MTEXT line
1 middle of top MTEXT line
2 middle of whole MTEXT
3 middle of bottom MTEXT line
4 bottom of bottom MTEXT line
5 bottom of bottom MTEXT line & underline bottom MTEXT line
6 bottom of top MTEXT line & underline top MTEXT line
7 bottom of top MTEXT line
8 bottom of top MTEXT line & underline all MTEXT lines

dxf.text_style_handle

handle of the default MTEXT text style, not set by default, which means “Standard”

422 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.text_top_attachment_type

9 center
10 overline and center

Placeholder

The ACDBPLACEHOLDER object for internal usage.

Subclass of ezdxf.entities.DXFObject
DXF type 'ACDBPLACEHOLDER'
Factory function ezdxf.sections.objects.ObjectsSection.add_placeholder()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.Placeholder

PlotSettings

All PLOTSETTINGS attributes are part of the DXFLayout entity, I don’t know if this entity also appears as standalone
entity.

Subclass of ezdxf.entities.DXFObject
DXF type 'PLOTSETTINGS'
Factory function internal data structure

class ezdxf.entities.PlotSettings

dxf.page_setup_name

default is “”
dxf.plot_configuration_file

default is “Adobe PDF”
dxf.paper_size

default is “A3”
dxf.plot_view_name

default is “”
dxf.left_margin

default is 7.5 mm
dxf.bottom_margin

default is 20 mm
dxf.right_margin

default is 7.5 mm

9.8. Reference 423

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3BC75FF1-6139-49F4-AEBB-AE2AB4F437E4
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1113675E-AB07-4567-801A-310CDE0D56E9

ezdxf Documentation, Release 1.3.2

dxf.top_margin

default is 20 mm
dxf.paper_width

default is 420 mm
dxf.paper_height

default is 297 mm
dxf.plot_origin_x_offset

default is 0
dxf.plot_origin_y_offset

default is 0
dxf.plot_window_x1

default is 0
dxf.plot_window_y1

default is 0
dxf.plot_window_x2

default is 0
dxf.plot_window_y2

default is 0
dxf.scale_numerator

default is 1
dxf.scale_denominator

default is 1
dxf.plot_layout_flags

1 plot viewport borders
2 show plot-styles
4 plot centered
8 plot hidden == hide paperspace entities?
16 use standard scale
32 plot with plot-styles
64 scale lineweights
128 plot entity lineweights
512 draw viewports first
1024 model type
2048 update paper
4096 zoom to paper on update
8192 initializing
16384 prev plot-init

default is 688
dxf.plot_paper_units

424 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

0 Plot in inches
1 Plot in millimeters
2 Plot in pixels

dxf.plot_rotation

0 No rotation
1 90 degrees counterclockwise
2 Upside-down
3 90 degrees clockwise

dxf.plot_type

0 Last screen display
1 Drawing extents
2 Drawing limits
3 View specified by code 6
4 Window specified by codes 48, 49, 140, and 141
5 Layout information

dxf.current_style_sheet

default is “”
dxf.standard_scale_type

0 Scaled to Fit
1 1/128”=1’
2 1/64”=1’
3 1/32”=1’
4 1/16”=1’
5 3/32”=1’
6 1/8”=1’
7 3/16”=1’
8 1/4”=1’
9 3/8”=1’
10 1/2”=1’
11 3/4”=1’
12 1”=1’
13 3”=1’
14 6”=1’
15 1’=1’
16 1:1
17 1:2
18 1:4
19 1:8
20 1:10
21 1:16
22 1:20

continues on next page

9.8. Reference 425

ezdxf Documentation, Release 1.3.2

Table 2 – continued from previous page
23 1:30
24 1:40
25 1:50
26 1:100
27 2:1
28 4:1
29 8:1
30 10:1
31 100:1
32 1000:1

dxf.shade_plot_mode

0 As Displayed
1 Wireframe
2 Hidden
3 Rendered

dxf.shade_plot_resolution_level

0 Draft
1 Preview
2 Normal
3 Presentation
4 Maximum
5 Custom

dxf.shade_plot_custom_dpi

default is 300
dxf.unit_factor

default is 1
dxf.paper_image_origin_x

default is 0
dxf.paper_image_origin_y

default is 0
dxf.shade_plot_handle

426 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

SpatialFilter

The SPATIAL_FILTER object stores the clipping path for external references and block references. For more information
about getting, setting and removing clippings paths read the docs for the ezdxf.xclip.XClip class.
The HEADER variable $XCLIPFRAME determines if the clipping path is displayed and plotted:

0 not displayed, not plotted
1 displayed, not plotted
2 displayed and plotted

See also:
• ezdxf.xclip

• Knowledge Graph: https://ezdxf.mozman.at/notes/#/page/spatial_filter

Subclass of ezdxf.entities.DXFObject
DXF type 'SPATIAL_FILTER'
Factory function internal data structure

class ezdxf.entities.SpatialFilter

dxf.back_clipping_plane_distance

Defines the distance of the back clipping plane from the origin in direction of the extrusion vector.
dxf.is_clipping_enabled

Block reference clipping is enabled when 1 and disabled when 0.
dxf.extrusion

Defines the orientation of the OCS
dxf.front_clipping_plane_distance

Defines the distance of the front clipping plane from the origin in direction of the extrusion vector.
dxf.has_back_clipping_plane

dxf.has_front_clipping_plane

dxf.origin

Defines the origin of the OCS
property boundary_vertices: tuple[Vec2, ...]

Returns the clipping path vertices in OCS coordinates.
property inverse_insert_matrix: Matrix44

Returns the inverse insert matrix.
This matrix is the inverse of the original block reference (insert entity) transformation. The original block
reference transformation is the one that is applied to all entities in the block when the block reference is
regenerated.

property transform_matrix: Matrix44

Returns the transform matrix.
This matrix transforms points into the coordinate system of the clip boundary.

9.8. Reference 427

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-34F179D8-2030-47E4-8D49-F87B6538A05A
https://ezdxf.mozman.at/notes/#/page/spatial_filter

ezdxf Documentation, Release 1.3.2

set_boundary_vertices(vertices: Iterable[UVec])→ None
Set the clipping path vertices in OCS coordinates.

set_inverse_insert_matrix(m: Matrix44)→ None

set_transform_matrix(m: Matrix44)→ None

Sun

The SUN entity defines properties of the sun.

Subclass of ezdxf.entities.DXFObject
DXF type 'SUN'
Factory function creating a new SUN entity is not supported

class ezdxf.entities.Sun

dxf.version

Current version is 1.
dxf.status

on = 1 or off = 0
dxf.color

AutoCAD Color Index (ACI) value of the sun.
dxf.true_color

true-color value of the sun.
dxf.intensity

Intensity value in the range of [0, 1]. (float)
dxf.julian_day

use calendardate() to convert dxf.julian_day to datetime.datetime object.
dxf.time

Day time in seconds past midnight. (int)
dxf.daylight_savings_time

dxf.shadows

0 Sun do not cast shadows
1 Sun do cast shadows

dxf.shadow_type

dxf.shadow_map_size

dxf.shadow_softness

428 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB191D89-9302-45E4-9904-108AB418FAE1

ezdxf Documentation, Release 1.3.2

UnderlayDefinition

UnderlayDefinition (DXF Reference) defines an underlay file, which can be placed by the Underlay entity.

Subclass of ezdxf.entities.DXFObject
DXF type internal base class
Factory function (1) ezdxf.document.Drawing.add_underlay_def()
Factory function (2) ezdxf.sections.objects.ObjectsSection.add_underlay_def()

class ezdxf.entities.UnderlayDefinition

Base class of PdfDefinition, DwfDefinition and DgnDefinition
dxf.filename

Relative (to the DXF file) or absolute path to the underlay file as string.
dxf.name

Defines which part of the underlay file to display.

“pdf” PDF page number
“dgn” always “default”
“dwf” ?

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

PdfDefinition

Subclass of ezdxf.entities.UnderlayDefinition
DXF type 'PDFDEFINITION'
Factory function (1) ezdxf.document.Drawing.add_underlay_def()
Factory function (2) ezdxf.sections.objects.ObjectsSection.add_underlay_def()

class ezdxf.entities.PdfDefinition

PDF underlay file.

DwfDefinition

Subclass of ezdxf.entities.UnderlayDefinition
DXF type 'DWFDEFINITION'
Factory function (1) ezdxf.document.Drawing.add_underlay_def()
Factory function (2) ezdxf.sections.objects.ObjectsSection.add_underlay_def()

class ezdxf.entities.DwfDefinition

DWF underlay file.

9.8. Reference 429

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A4FF15D3-F745-4E1F-94D4-1DC3DF297B0F

ezdxf Documentation, Release 1.3.2

DgnDefinition

Subclass of ezdxf.entities.UnderlayDefinition
DXF type 'DGNDEFINITION'
Factory function (1) ezdxf.document.Drawing.add_underlay_def()
Factory function (2) ezdxf.sections.objects.ObjectsSection.add_underlay_def()

class ezdxf.entities.DgnDefinition

DGN underlay file.

XRecord

Important class for storing application defined data in DXF files.
The XRECORD entities are used to store and manage arbitrary data. They are composed of DXF group codes ranging
from 1 through 369. This object is similar in concept to XDATA but is not limited by size or order.
To reference a XRECORD by an DXF entity, store the handle of the XRECORD in the XDATA section, application
defined data or the ExtensionDict of the DXF entity.
See also:

• Extended Data (XDATA)

• Extension Dictionary

• Storing Custom Data in DXF Files

Subclass of ezdxf.entities.DXFObject
DXF type 'XRECORD'
Factory function ezdxf.sections.objects.ObjectsSection.add_xrecord()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.XRecord

dxf.cloning

Duplicate record cloning flag (determines how to merge duplicate entries, ignored by ezdxf):

0 not applicable
1 keep existing
2 use clone
3 <xref>0<name>
4 0<name>
5 Unmangle name

tags

Raw DXF tag container Tags. Be careful ezdxf does not validate the content of XRECORDS.

430 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-24668FAF-AE03-41AE-AFA4-276C3692827F

ezdxf Documentation, Release 1.3.2

clear()→ None
Remove all DXF tags.

reset(tags: Iterable[DXFTag | tuple[int, Any]])→ None
Reset DXF tags.

extend(tags: Iterable[DXFTag | tuple[int, Any]])→ None
Extend DXF tags.

Extended Data (XDATA)

Extended data (XDATA) is a DXF tags structure to store arbitrary data in DXF entities. The XDATA is associated to an
AppID and only one tag list is supported for each AppID per entity.

Warning: Low level usage of XDATA is an advanced feature, it is the responsibility of the programmer to create
valid XDATA structures. Any errors can invalidate the DXF file!

This section shows how to store DXF tags directly in DXF entity but there is also a more user friendly and safer way to
store custom XDATA in DXF entities:

• XDataUserList

• XDataUserDict

Use the high level methods of DXFEntity to manage XDATA tags.
• has_xdata()

• get_xdata()

• set_xdata()

Get XDATA tags as a ezdxf.lldxf.tags.Tags data structure, without the mandatory first tag (1001, AppID):

if entity.has_xdata("EZDXF"):
tags = entity.get_xdata("EZDXF")

or use alternatively:
try:

tags = entity.get_xdata("EZDXF")
except DXFValueError:

XDATA for "EZDXF" does not exist
...

Set DXF tags as list of (group code, value) tuples or as ezdxf.lldxf.tags.Tags data structure, valid DXF tags
for XDATA are documented in the section about the Extended Data internals. The mandatory first tag (1001, AppID) is
inserted automatically if not present.
Set only new XDATA tags:

if not entity.has_xdata("EZDXF"):
entity.set_xdata("EZDXF", [(1000, "MyString")])

Replace or set new XDATA tags:

entity.set_xdata("EZDXF", [(1000, "MyString")])

See also:

9.8. Reference 431

ezdxf Documentation, Release 1.3.2

• Tutorial: Storing Custom Data in DXF Files

• Internals about Extended Data tags
• Internal XDATA management class: XData
• DXF R2018 Reference

Application-Defined Data (AppData)

The application-defined data feature is not very well documented in the DXF reference, so usage as custom data store is
not recommended. AutoCAD uses these feature to store the handle to the extension dictionary (ExtensionDict) of
a DXF entity and the handles to the persistent reactors (Reactors) of a DXF entity.
Use the high level methods of DXFEntity to manage application-defined data tags.

• has_app_data()

• get_app_data()

• set_app_data()

• discard_app_data()

Hint: Ezdxf uses special classes to manage the extension dictionary and the reactor handles. These features cannot be
accessed by the methods above.

Set application-defined data:

entity.set_app_data("YOURAPPID", [(1, "DataString")]))

Setting the content tags can contain the opening structure tag (102, “{YOURAPPID”) and the closing tag (102, “}”), but
doesn’t have to. The returned Tags objects does not contain these structure tags. Which tags are valid for application-
defined data is not documented.
The AppID has to have an entry in the AppID table.
Get application-defined data:

if entity.has_app_data("YOURAPPID"):
tags = entity.get_app_data("YOURAPPID")

tags content is [DXFTag(1, 'DataString')]

See also:
• Internals about Application-Defined Codes

• Internal AppData management class: AppData

432 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A2A628B0-3699-4740-A215-C560E7242F63

ezdxf Documentation, Release 1.3.2

Extension Dictionary

Every entity can have an extension dictionary, which can reference arbitrary DXF objects from the OBJECTS section
but not graphical entities. Using this mechanism, several applications can attach data to the same entity. The usage
of extension dictionaries is more complex than Extended Data (XDATA) but also more flexible with higher capacity for
adding data.
Use the high level methods of DXFEntity to manage extension dictionaries.

• has_extension_dict()

• get_extension_dict()

• new_extension_dict()

• discard_extension_dict()

The main data storage objects referenced by extension dictionaries are:
• Dictionary, structural container
• DictionaryVar, stores a single string
• XRecord, stores arbitrary data

See also:
• Tutorial: Storing Custom Data in DXF Files

class ezdxf.entities.xdict.ExtensionDict

Internal management class for extension dictionaries.
See also:

• Underlying DXF Dictionary class
• DXF Internals: Extension Dictionary

• DXF R2018 Reference

property is_alive

Returns True if the underlying Dictionary object is not deleted.
__contains__(key: str)

Return key in self.
__getitem__(key: str)

Get self[key].
__setitem__(key: str, value)

Set self[key] to value.
Only DXF objects stored in the OBJECTS section are allowed as content of the extension dictionary. DXF
entities stored in layouts are not allowed.

Raises
DXFTypeError – invalid DXF type

__delitem__(key: str)
Delete self[key], destroys referenced entity.

__len__()

Returns count of extension dictionary entries.

9.8. Reference 433

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A55D4A3D-67CF-417E-B63F-3124CD8027FD

ezdxf Documentation, Release 1.3.2

get(key: str, default=None)→ DXFEntity | None
Return extension dictionary entry key.

keys()

Returns a KeysView of all extension dictionary keys.
items()

Returns an ItemsView for all extension dictionary entries as (key, entity) pairs. An entity can be a handle
string if the entity does not exist.

discard(key: str)→ None
Discard extension dictionary entry key.

add_dictionary(name: str, hard_owned: bool = True)→ Dictionary

Create a new Dictionary object as extension dictionary entry name.
add_dictionary_var(name: str, value: str)→ DictionaryVar

Create a new DictionaryVar object as extension dictionary entry name.
add_xrecord(name: str)→ XRecord

Create a new XRecord object as extension dictionary entry name.
link_dxf_object(name: str, obj: DXFObject)→ None

Link obj to the extension dictionary as entry name.
Linked objects are owned by the extensions dictionary and therefore cannot be a graphical entity, which have
to be owned by a BaseLayout.

Raises
DXFTypeError – obj has invalid DXF type

destroy()

Destroy the underlying Dictionary object.

Reactors

Persistent reactors are optional object handles of objects registering themselves as reactors on an object. Any DXF object
or DXF entity may have reactors.
Use the high level methods of DXFEntity to manage persistent reactor handles.

• has_reactors()

• get_reactors()

• set_reactors()

• append_reactor_handle()

• discard_reactor_handle()

Ezdxf keeps these reactors only up to date, if this is absolute necessary according to the DXF reference.
See also:

• Internals about Persistent Reactors
• Internal Reactors management class: Reactors

434 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Block Reference Management

The package ezdxf is not designed as a CAD library and does not automatically monitor all internal changes. This enables
faster entity processing at the cost of an unknown state of the DXF document.
In order to carry out precise BLOCK reference management, i.e. to handle dependencies or to delete unused BLOCK
definition, the block reference status (counter) must be acquired explicitly by the package user. All block reference
management structures must be explicitly recreated each time the document content is changed. This is not very efficient,
but it is safe.

Warning: And even with all this careful approach, it is always possible to destroy a DXF document by deleting an
absolutely necessary block definition.

Always remember that ezdxf is not intended or suitable as a basis for a CAD application!
class ezdxf.blkrefs.BlockDefinitionIndex(doc: Drawing)

Index of all BlockRecord entities representing real BLOCK definitions, excluding all BlockRecord entities
defining model space or paper space layouts. External references (XREF) and XREF overlays are included.
property block_records: Iterator[BlockRecord]

Returns an iterator of all BlockRecord entities representing BLOCK definitions.
rebuild()

Rebuild index from scratch.
has_handle(handle: str)→ bool

Returns True if a BlockRecord for the given block record handle exist.
by_handle(handle: str)→ BlockRecord | None

Returns the BlockRecord for the given block record handle or None.
has_name(name: str)→ bool

Returns True if a BlockRecord for the given block name exist.
by_name(name: str)→ BlockRecord | None

Returns BlockRecord for the given block name or None.
class ezdxf.blkrefs.BlockReferenceCounter(doc: Drawing, index: BlockDefinitionIndex | None =

None)

Counts all block references in a DXF document.
Check if a block is referenced by any entity or any resource (DIMSYTLE, MLEADERSTYLE) in a DXF docu-
ment:

import ezdxf
from ezdxf.blkrefs import BlockReferenceCounter

doc = ezdxf.readfile("your.dxf")
counter = BlockReferenceCounter(doc)
count = counter.by_name("XYZ")
print(f"Block 'XYZ' if referenced {count} times.")

by_handle(handle: str)→ int
Returns the block reference count for a given BlockRecord handle.

by_name(block_name: str)→ int
Returns the block reference count for a given block name.

9.8. Reference 435

ezdxf Documentation, Release 1.3.2

Const

The module ezdxf.lldxf.const, is also accessible from the ezdxf namespace:

from ezdxf.lldxf.const import DXF12
import ezdxf

print(DXF12)
print(ezdxf.const.DXF12)

DXF Version Strings

Name Version Alias
DXF9 “AC1004” “R9”
DXF10 “AC1006” “R10”
DXF12 “AC1009” “R12”
DXF13 “AC1012” “R13”
DXF14 “AC1014” “R14”
DXF2000 “AC1015” “R2000”
DXF2004 “AC1018” “R2004”
DXF2007 “AC1021” “R2007”
DXF2010 “AC1024” “R2010”
DXF2013 “AC1027” “R2013”
DXF2018 “AC1032” “R2018”

Exceptions

class ezdxf.lldxf.const.DXFError

Base exception for all ezdxf exceptions.
class ezdxf.lldxf.const.DXFStructureError(DXFError)

class ezdxf.lldxf.const.DXFVersionError(DXFError)
Errors related to features not supported by the chosen DXF Version

class ezdxf.lldxf.const.DXFValueError(DXFError)

class ezdxf.lldxf.const.DXFInvalidLineType(DXFValueError)

class ezdxf.lldxf.const.DXFBlockInUseError(DXFValueError)

class ezdxf.lldxf.const.DXFKeyError(DXFError)

class ezdxf.lldxf.const.DXFUndefinedBlockError(DXFKeyError)

class ezdxf.lldxf.const.DXFAttributeError(DXFError)

class ezdxf.lldxf.const.DXFIndexError(DXFError)

class ezdxf.lldxf.const.DXFTypeError(DXFError)

class ezdxf.lldxf.const.DXFTableEntryError(DXFValueError)

436 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.8.3 Colors

Colors Module

This module provides functions and constants to manage all kinds of colors in DXF documents.

Converter Functions

ezdxf.colors.rgb2int(rgb: RGB | tuple[int, int, int])→ int
Combined integer value from (r, g, b) tuple.

ezdxf.colors.int2rgb(value: int)→ RGB

Split RGB integer value into (r, g, b) tuple.
ezdxf.colors.aci2rgb(index: int)→ RGB

Convert AutoCAD Color Index (ACI) into (r, g, b) tuple, based on default AutoCAD colors.
ezdxf.colors.luminance(color: Sequence[float])→ float

Returns perceived luminance for an RGB color in the range [0.0, 1.0] from dark to light.
ezdxf.colors.decode_raw_color(value: int)→ tuple[int, int | RGB]

Decode raw-color value as tuple(type, Union[aci, (r, g, b)]), the true color value is a (r, g, b) tuple.
ezdxf.colors.decode_raw_color_int(value: int)→ tuple[int, int]

Decode raw-color value as tuple(type, int), the true color value is a 24-bit int value.
ezdxf.colors.encode_raw_color(value: int | RGB)→ int

Encode true-color value or AutoCAD Color Index (ACI) color value into a :term: raw color value.
ezdxf.colors.transparency2float(value: int)→ float

Returns transparency value as float from 0 to 1, 0 for no transparency (opaque) and 1 for 100% transparency.
Parameters

value – DXF integer transparency value, 0 for 100% transparency and 255 for opaque
ezdxf.colors.float2transparency(value: float)→ int

Returns DXF transparency value as integer in the range from 0 to 255, where 0 is 100% transparent and 255 is
opaque.

Parameters
value – transparency value as float in the range from 0 to 1, where 0 is opaque and 1 is 100%
transparent.

RGB Class

class ezdxf.colors.RGB(r: int, g: int, b: int)
Named tuple representing an RGB color value.
r

red channel in range [0, 255]
Type

int

9.8. Reference 437

ezdxf Documentation, Release 1.3.2

g

green channel in range [0, 255]
Type

int
b

blue channel in range [0, 255]
Type

int
property luminance: float

Returns perceived luminance for an RGB color in range [0.0, 1.0] from dark to light.
to_hex()→ str

Returns the color value as hex string “#RRGGBB”.
classmethod from_hex(color: str)→ Self

Returns an RGB instance from a hex color string, the color string is a hex string “RRGGBB” with an optional
leading “#”, an appended alpha channel is ignore.

to_floats()→ tuple[float, float, float]
Returns the color value as a tuple of floats in range [0, 1].

classmethod from_floats(rgb: tuple[float, float, float])→ Self
Returns an RGB instance from floats in range [0, 1].

RGBA Class

class ezdxf.colors.RGBA(r: int, g: int, b: int, a: int = 255)
Named tuple representing an RGBA color value. The default alpha channel is 255 (opaque).
r

red channel in range [0, 255]
Type

int
g

green channel in range [0, 255]
Type

int
b

blue channel in range [0, 255]
Type

int
a

alpha channel in range [0, 255], where 0 is transparent and 255 is opaque
Type

int

438 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

property luminance: float

Returns perceived luminance for an RGB color in range [0.0, 1.0] from dark to light.
to_hex()→ str

Returns the color value as hex string “#RRGGBBAA”.
classmethod from_hex(color: str)→ Self

Returns an RGBA instance from a hex color string, the color string is a hex string “RRGGBBAA” with an
optional leading “#”. The alpha channel is optional. The default alpha channel is 255 (opaque).

to_floats()→ tuple[float, float, float, float]
Returns the color value as a tuple of floats in range [0, 1].

classmethod from_floats(values: Sequence[float])→ Self
Returns an RGBA instance from floats in range [0, 1].
The alpha channel is optional. The default alpha channel is 255 (opaque).

ACI Color Values

Common AutoCAD Color Index (ACI) values, also accessible as IntEnum ezdxf.enums.ACI

BYBLOCK 0
BYLAYER 256
BYOBJECT 257
RED 1
YELLOW 2
GREEN 3
CYAN 4
BLUE 5
MAGENTA 6
BLACK (on light background) 7
WHITE (on dark background) 7
GRAY 8
LIGHT_GRAY 9

Default Palettes

Default color mappings from AutoCAD Color Index (ACI) to true-color values.

model space DXF_DEFAULT_COLORS
paper space DXF_DEFAULT_PAPERSPACE_COLORS

9.8. Reference 439

ezdxf Documentation, Release 1.3.2

Raw Color Types

COLOR_TYPE_BY_LAYER 0xC0
COLOR_TYPE_BY_BLOCK 0xC1
COLOR_TYPE_RGB 0xC2
COLOR_TYPE_ACI 0xC3
COLOR_TYPE_WINDOW_BG 0xC8

Raw Color Vales

BY_LAYER_RAW_VALUE -1073741824
BY_BLOCK_RAW_VALUE -1056964608
WINDOW_BG_RAW_VALUE -939524096

Transparency Values

OPAQUE 0x20000FF
TRANSPARENCY_10 0x20000E5
TRANSPARENCY_20 0x20000CC
TRANSPARENCY_30 0x20000B2
TRANSPARENCY_40 0x2000099
TRANSPARENCY_50 0x200007F
TRANSPARENCY_60 0x2000066
TRANSPARENCY_70 0x200004C
TRANSPARENCY_80 0x2000032
TRANSPARENCY_90 0x2000019
TRANSPARENCY_BYBLOCK 0x1000000

9.8.4 Enums

TextEntityAlignment

class ezdxf.enums.TextEntityAlignment(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

Text alignment enum for the Text, Attrib and AttDef entities.
LEFT

CENTER

RIGHT

ALIGNED

MIDDLE

FIT

440 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

BOTTOM_LEFT

BOTTOM_CENTER

BOTTOM_RIGHT

MIDDLE_LEFT

MIDDLE_CENTER

MIDDLE_RIGHT

TOP_LEFT

TOP_CENTER

TOP_RIGHT

MTextEntityAlignment

class ezdxf.enums.MTextEntityAlignment(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

Text alignment enum for the MText entity.
TOP_LEFT

TOP_CENTER

TOP_RIGHT

MIDDLE_LEFT

MIDDLE_CENTER

MIDDLE_RIGHT

BOTTOM_LEFT

BOTTOM_CENTER

BOTTOM_RIGHT

MTextParagraphAlignment

class ezdxf.enums.MTextParagraphAlignment(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

DEFAULT

LEFT

RIGHT

CENTER

JUSTIFIED

DISTRIBUTED

9.8. Reference 441

ezdxf Documentation, Release 1.3.2

MTextFlowDirection

class ezdxf.enums.MTextFlowDirection(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

LEFT_TO_RIGHT

TOP_TO_BOTTOM

BY_STYLE

MTextLineAlignment

class ezdxf.enums.MTextLineAlignment(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

BOTTOM

MIDDLE

TOP

MTextStroke

class ezdxf.enums.MTextStroke(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Combination of flags is supported: UNDERLINE + STRIKE_THROUGH
UNDERLINE

STRIKE_THROUGH

OVERLINE

MTextLineSpacing

class ezdxf.enums.MTextLineSpacing(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

AT_LEAST

EXACT

MTextBackgroundColor

class ezdxf.enums.MTextBackgroundColor(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

OFF

COLOR

442 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

WINDOW

CANVAS

InsertUnits

class ezdxf.enums.InsertUnits(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Unitless

Inches

Feet

Miles

Millimeters

Centimeters

Meters

Kilometers

Microinches

Mils

Yards

Angstroms

Nanometers

Microns

Decimeters

Decameters

Hectometers

Gigameters

AstronomicalUnits

Lightyears

Parsecs

USSurveyFeet

USSurveyInch

USSurveyYard

USSurveyMile

9.8. Reference 443

ezdxf Documentation, Release 1.3.2

Measurement

class ezdxf.enums.Measurement(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Imperial

Metric

LengthUnits

class ezdxf.enums.LengthUnits(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Scientific

Decimal

Engineering

Architectural

Fractional

AngularUnits

class ezdxf.enums.AngularUnits(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

DecimalDegrees

DegreesMinutesSeconds

Grad

Radians

SortEntities

class ezdxf.enums.SortEntities(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

DISABLE

SELECTION

Sorts for object selection
SNAP

Sorts for object snap
REDRAW

Sorts for redraws; obsolete

444 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MSLIDE

Sorts for MSLIDE command slide creation; obsolete
REGEN

Sorts for REGEN commands
PLOT

Sorts for plotting
POSTSCRIPT

Sorts for PostScript output; obsolete

ACI

class ezdxf.enums.ACI(value, names=_not_given, *values, module=None, qualname=None, type=None,
start=1, boundary=None)

AutoCAD Color Index
BYBLOCK

BYLAYER

BYOBJECT

RED

YELLOW

GREEN

CYAN

BLUE

MAGENTA

BLACK

WHITE

GRAY

LIGHT_GRAY

EndCaps

class ezdxf.enums.EndCaps(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Lineweight end caps setting for new objects.
NONE

ROUND

ANGLE

SQUARE

9.8. Reference 445

ezdxf Documentation, Release 1.3.2

JoinStyle

class ezdxf.enums.JoinStyle(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Lineweight joint setting for new objects.
NONE

ROUND

ANGLE

FLAT

9.8.5 Math

Core

Math core module: ezdxf.math
These are the core math functions and classes which should be imported from ezdxf.math.

Utility Functions

arc_angle_span_deg Returns the counter-clockwise angle span from start to
end in degrees.

arc_angle_span_rad Returns the counter-clockwise angle span from start to
end in radians.

arc_chord_length Returns the chord length for an arc defined by radius and
the sagitta.

arc_segment_count Returns the count of required segments for the approxi-
mation of an arc for a given maximum sagitta.

area Returns the area of a polygon.
closest_point Returns the closest point to a give base point.
ellipse_param_span Returns the counter-clockwise params span of an elliptic

arc from start- to end param.
has_matrix_2d_stretching Returns True if matrix m performs a non-uniform xy-

scaling.
has_matrix_3d_stretching Returns True if matrix m performs a non-uniform xyz-

scaling.
open_uniform_knot_vector Returns an open (clamped) uniform knot vector for a B-

spline of order and count control points.
required_knot_values Returns the count of required knot-values for a B-spline

of order and count control points.
uniform_knot_vector Returns an uniform knot vector for a B-spline of order

and count control points.
xround Extended rounding function.
gps_to_world_mercator Transform GPS (long/lat) to World Mercator.
world_mercator_to_gps Transform World Mercator to GPS.

446 Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)
https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.3.2

ezdxf.math.closest_point(base: UVec, points: Iterable[UVec])→ Vec3 | None
Returns the closest point to a give base point.

Parameters
• base – base point as Vec3 compatible object
• points – iterable of points as Vec3 compatible object

ezdxf.math.uniform_knot_vector(count: int, order: int, normalize=False)→ list[float]
Returns an uniform knot vector for a B-spline of order and count control points.
order = degree + 1

Parameters
• count – count of control points
• order – spline order
• normalize – normalize values in range [0, 1] if True

ezdxf.math.open_uniform_knot_vector(count: int, order: int, normalize=False)→ list[float]
Returns an open (clamped) uniform knot vector for a B-spline of order and count control points.
order = degree + 1

Parameters
• count – count of control points
• order – spline order
• normalize – normalize values in range [0, 1] if True

ezdxf.math.required_knot_values(count: int, order: int)→ int
Returns the count of required knot-values for a B-spline of order and count control points.

Parameters
• count – count of control points, in text-books referred as “n + 1”
• order – order of B-Spline, in text-books referred as “k”

Relationship:
“p” is the degree of the B-spline, text-book notation.

• k = p + 1
• 2 ≤ k ≤ n + 1

ezdxf.math.xround(value: float, rounding: float = 0.) → float
Extended rounding function.
The argument rounding defines the rounding limit:

0 remove fraction
0.1 round next to x.1, x.2, … x.0
0.25 round next to x.25, x.50, x.75 or x.00
0.5 round next to x.5 or x.0
1.0 round to a multiple of 1: remove fraction
2.0 round to a multiple of 2: xxx2, xxx4, xxx6 …
5.0 round to a multiple of 5: xxx5 or xxx0
10.0 round to a multiple of 10: xx10, xx20, …

9.8. Reference 447

ezdxf Documentation, Release 1.3.2

Parameters
• value – float value to round
• rounding – rounding limit

ezdxf.math.area(vertices: Iterable[UVec])→ float
Returns the area of a polygon.
Returns the projected area in the xy-plane for any vertices (z-axis will be ignored).

ezdxf.math.arc_angle_span_deg(start: float, end: float)→ float
Returns the counter-clockwise angle span from start to end in degrees.
Returns the angle span in the range of [0, 360], 360 is a full circle. Full circle handling is a special case, because
normalization of angles which describe a full circle would return 0 if treated as regular angles. e.g. (0, 360) →
360, (0, -360) → 360, (180, -180) → 360. Input angles with the same value always return 0 by definition: (0, 0) →
0, (-180, -180) → 0, (360, 360) → 0.

ezdxf.math.arc_angle_span_rad(start: float, end: float)→ float
Returns the counter-clockwise angle span from start to end in radians.
Returns the angle span in the range of [0, 2π], 2π is a full circle. Full circle handling is a special case, because
normalization of angles which describe a full circle would return 0 if treated as regular angles. e.g. (0, 2π) → 2π,
(0, -2π) → 2π, (π, -π) → 2π. Input angles with the same value always return 0 by definition: (0, 0) → 0, (-π, -π)
→ 0, (2π, 2π) → 0.

ezdxf.math.arc_segment_count(radius: float, angle: float, sagitta: float)→ int
Returns the count of required segments for the approximation of an arc for a given maximum sagitta.

Parameters
• radius – arc radius
• angle – angle span of the arc in radians
• sagitta – max. distance from the center of an arc segment to the center of its chord

ezdxf.math.arc_chord_length(radius: float, sagitta: float)→ float
Returns the chord length for an arc defined by radius and the sagitta.

Parameters
• radius – arc radius
• sagitta – distance from the center of the arc to the center of its base

ezdxf.math.ellipse_param_span(start_param: float, end_param: float)→ float
Returns the counter-clockwise params span of an elliptic arc from start- to end param.
Returns the param span in the range [0, 2π], 2π is a full ellipse. Full ellipse handling is a special case, because
normalization of params which describe a full ellipse would return 0 if treated as regular params. e.g. (0, 2π) →
2π, (0, -2π) → 2π, (π, -π) → 2π. Input params with the same value always return 0 by definition: (0, 0) → 0, (-π,
-π) → 0, (2π, 2π) → 0.
Alias to function: ezdxf.math.arc_angle_span_rad()

ezdxf.math.has_matrix_2d_stretching(m: Matrix44)→ bool
Returns True if matrix m performs a non-uniform xy-scaling. Uniform scaling is not stretching in this context.
Does not check if the target system is a cartesian coordinate system, use theMatrix44 propertyis_cartesian
for that.

448 Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)
https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.3.2

ezdxf.math.has_matrix_3d_stretching(m: Matrix44)→ bool
Returns True if matrix m performs a non-uniform xyz-scaling. Uniform scaling is not stretching in this context.
Does not check if the target system is a cartesian coordinate system, use theMatrix44 propertyis_cartesian
for that.

ezdxf.math.gps_to_world_mercator(longitude: float, latitude: float)→ tuple[float, float]
Transform GPS (long/lat) to World Mercator.
Transform WGS84 EPSG:4326 location given as latitude and longitude in decimal degrees as used by GPS into
World Mercator cartesian 2D coordinates in meters EPSG:3395.

Parameters
• longitude – represents the longitude value (East-West) in decimal degrees
• latitude – represents the latitude value (North-South) in decimal degrees.

Added in version 1.3.0.
ezdxf.math.world_mercator_to_gps(x: float, y: float, tol: float = 1e-6)→ tuple[float, float]

Transform World Mercator to GPS.
Transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordinates x, y in meters into
WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS.

Parameters
• x – coordinate WGS84 World Mercator
• y – coordinate WGS84 World Mercator
• tol – accuracy for latitude calculation

Added in version 1.3.0.

Bulge Related Functions

arc_to_bulge Returns bulge parameters from arc parameters.
bulge_3_points Returns bulge value defined by three points.
bulge_center Returns center of arc described by the given bulge param-

eters.
bulge_radius Returns radius of arc defined by the given bulge parame-

ters.
bulge_to_arc Returns arc parameters from bulge parameters.
bulge_from_radius_and_chord Returns the bulge value for the given arc radius and chord

length.
bulge_from_arc_angle Returns the bulge value for the given arc angle.

See also:
Description of the Bulge value.
ezdxf.math.arc_to_bulge(center: UVec, start_angle: float, end_angle: float, radius: float)→ tuple[Vec2,

Vec2, float]
Returns bulge parameters from arc parameters.

Parameters

9.8. Reference 449

https://epsg.io/4326
https://epsg.io/3395
https://epsg.io/3395
https://epsg.io/4326

ezdxf Documentation, Release 1.3.2

• center – circle center point as Vec2 compatible object
• start_angle – start angle in radians
• end_angle – end angle in radians
• radius – circle radius

Returns
(start_point, end_point, bulge)

Return type
tuple

ezdxf.math.bulge_3_points(start_point: UVec, end_point: UVec, point: UVec)→ float
Returns bulge value defined by three points.
Based on 3-Points to Bulge by Lee Mac.

Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• point – arbitrary point as Vec2 compatible object

ezdxf.math.bulge_center(start_point: UVec, end_point: UVec, bulge: float)→ Vec2
Returns center of arc described by the given bulge parameters.
Based on Bulge Center by Lee Mac.

Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• bulge – bulge value as float

ezdxf.math.bulge_radius(start_point: UVec, end_point: UVec, bulge: float)→ float
Returns radius of arc defined by the given bulge parameters.
Based on Bulge Radius by Lee Mac

Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• bulge – bulge value

ezdxf.math.bulge_to_arc(start_point: UVec, end_point: UVec, bulge: float)→ tuple[Vec2, float, float, float]
Returns arc parameters from bulge parameters.
The arcs defined by bulge values of LWPolyline and 2D Polyline entities start at the vertex which includes
the bulge value and ends at the following vertex.
Based on Bulge to Arc by Lee Mac.

Parameters
• start_point – start vertex as Vec2 compatible object
• end_point – end vertex as Vec2 compatible object
• bulge – bulge value

450 Chapter 9. Contents

http://www.lee-mac.com/bulgeconversion.html
http://www.lee-mac.com/bulgeconversion.html
http://www.lee-mac.com/bulgeconversion.html
http://www.lee-mac.com/bulgeconversion.html

ezdxf Documentation, Release 1.3.2

Returns
(center, start_angle, end_angle, radius)

Return type
Tuple

ezdxf.math.bulge_from_radius_and_chord(radius: float, chord: float)→ float
Returns the bulge value for the given arc radius and chord length. Returns 0 if the radius is zero or the radius is
too small for the given chord length to create an arc.

Parameters
• radius – arc radius
• chord – chord length

ezdxf.math.bulge_from_arc_angle(angle: float)→ float
Returns the bulge value for the given arc angle.

Parameters
angle – arc angle in radians

2D Graphic Functions

convex_hull_2d Returns the 2D convex hull of given points.
distance_point_line_2d Returns the normal distance from point to 2D line defined

by start- and end point.
intersect_polylines_2d Returns the intersection points for two polylines as list of

Vec2 objects, the list is empty if no intersection points
exist.

intersection_line_line_2d Compute the intersection of two lines in the xy-plane.
is_axes_aligned_rectangle_2d Returns True if the given points represent a rectangle

aligned with the coordinate system axes.
is_convex_polygon_2d Returns True if the 2D polygon is convex.
is_point_in_polygon_2d Test if point is inside polygon.
is_point_left_of_line ReturnsTrue if point is "left of line" defined by start- and

end point, a colinear point is also "left of line" if argument
colinear is True.

is_point_on_line_2d Returns True if point is on line.
offset_vertices_2d Yields vertices of the offset line to the shape defined by

vertices.
point_to_line_relation Returns -1 if point is left line, +1 if point is right of line

and 0 if point is on the line.
rytz_axis_construction The Rytz’s axis construction is a basic method of de-

scriptive Geometry to find the axes, the semi-major axis
and semi-minor axis, starting from two conjugated half-
diameters.

ezdxf.math.convex_hull_2d(points: Iterable[UVec])→ list[Vec2]
Returns the 2D convex hull of given points.
Returns a closed polyline, first vertex is equal to the last vertex.

Parameters
points – iterable of points, z-axis is ignored

9.8. Reference 451

ezdxf Documentation, Release 1.3.2

ezdxf.math.distance_point_line_2d(point: Vec2, start: Vec2, end: Vec2)→ float
Returns the normal distance from point to 2D line defined by start- and end point.

ezdxf.math.intersect_polylines_2d(p1: Sequence[Vec2], p2: Sequence[Vec2], abs_tol=1e-10)→
list[Vec2]

Returns the intersection points for two polylines as list of Vec2 objects, the list is empty if no intersection points
exist. Does not return self intersection points of p1 or p2. Duplicate intersection points are removed from the result
list, but the list does not have a particular order! You can sort the result list by result.sort() to introduce an
order.

Parameters
• p1 – first polyline as sequence of Vec2 objects
• p2 – second polyline as sequence of Vec2 objects
• abs_tol – absolute tolerance for comparisons

ezdxf.math.intersection_line_line_2d(line1: Sequence[Vec2], line2: Sequence[Vec2], virtual=True,
abs_tol=TOLERANCE)→ Vec2 | None

Compute the intersection of two lines in the xy-plane.
Parameters

• line1 – start- and end point of first line to test e.g. ((x1, y1), (x2, y2)).
• line2 – start- and end point of second line to test e.g. ((x3, y3), (x4, y4)).
• virtual – True returns any intersection point, False returns only real intersection points.
• abs_tol – tolerance for intersection test.

Returns
None if there is no intersection point (parallel lines) or intersection point as Vec2

ezdxf.math.is_axes_aligned_rectangle_2d(points: list[Vec2])→ bool
Returns True if the given points represent a rectangle aligned with the coordinate system axes.
The sides of the rectangle must be parallel to the x- and y-axes of the coordinate system. The rectangle can be open
or closed (first point == last point) and oriented clockwise or counter-clockwise. Only works with 4 or 5 vertices,
rectangles that have sides with collinear edges are not considered rectangles.
Added in version 1.2.0.

ezdxf.math.is_convex_polygon_2d(polygon: list[Vec2], *, strict=False, epsilon=1e-6)→ bool
Returns True if the 2D polygon is convex.
This function supports open and closed polygons with clockwise or counter-clockwise vertex orientation.
Coincident vertices will always be skipped and if argument strict is True, polygons with collinear vertices are not
considered as convex.
This solution works only for simple non-self-intersecting polygons!

ezdxf.math.is_point_in_polygon_2d(point: Vec2, polygon: list[Vec2], abs_tol=TOLERANCE)→ int
Test if point is inside polygon. Returns +1 for inside, 0 for on the boundary and -1 for outside.
Supports convex and concave polygons with clockwise or counter-clockwise oriented polygon vertices. Does not
raise an exception for degenerated polygons.

Parameters
• point – 2D point to test as Vec2

452 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• polygon – list of 2D points as Vec2
• abs_tol – tolerance for distance check

Returns
+1 for inside, 0 for on the boundary, -1 for outside

ezdxf.math.is_point_left_of_line(point: Vec2, start: Vec2, end: Vec2, colinear=False)→ bool
Returns True if point is “left of line” defined by start- and end point, a colinear point is also “left of line” if
argument colinear is True.

Parameters
• point – 2D point to test as Vec2
• start – line definition point as Vec2
• end – line definition point as Vec2
• colinear – a colinear point is also “left of line” if True

ezdxf.math.is_point_on_line_2d(point: Vec2, start: Vec2, end: Vec2, ray=True, abs_tol=TOLERANCE)
→ bool

Returns True if point is on line.
Parameters

• point – 2D point to test as Vec2
• start – line definition point as Vec2
• end – line definition point as Vec2
• ray – if True point has to be on the infinite ray, if False point has to be on the line segment
• abs_tol – tolerance for on the line test

ezdxf.math.offset_vertices_2d(vertices: Iterable[UVec], offset: float, closed: bool = False)→
Iterable[Vec2]

Yields vertices of the offset line to the shape defined by vertices. The source shape consist of straight segments
and is located in the xy-plane, the z-axis of input vertices is ignored. Takes closed shapes into account if argument
closed is True, which yields intersection of first and last offset segment as first vertex for a closed shape. For closed
shapes the first and last vertex can be equal, else an implicit closing segment from last to first vertex is added. A
shape with equal first and last vertex is not handled automatically as closed shape.

Warning: Adjacent collinear segments in opposite directions, same as a turn by 180 degree (U-turn), leads to
unexpected results.

Parameters
• vertices – source shape defined by vertices
• offset – line offset perpendicular to direction of shape segments defined by vertices order,
offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of line segment

• closed – True to handle as closed shape

source = [(0, 0), (3, 0), (3, 3), (0, 3)]
result = list(offset_vertices_2d(source, offset=0.5, closed=True))

9.8. Reference 453

ezdxf Documentation, Release 1.3.2

Example for a closed collinear shape, which creates 2 additional vertices and the first one has an unexpected location:

source = [(0, 0), (0, 1), (0, 2), (0, 3)]
result = list(offset_vertices_2d(source, offset=0.5, closed=True))

454 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.math.point_to_line_relation(point: Vec2, start: Vec2, end: Vec2, abs_tol=TOLERANCE)→ int
Returns -1 if point is left line, +1 if point is right of line and 0 if point is on the line. The line is defined by two
vertices given as arguments start and end.

Parameters
• point – 2D point to test as Vec2
• start – line definition point as Vec2
• end – line definition point as Vec2
• abs_tol – tolerance for minimum distance to line

ezdxf.math.rytz_axis_construction(d1: Vec3, d2: Vec3)→ tuple[Vec3, Vec3, float]
The Rytz’s axis construction is a basic method of descriptive Geometry to find the axes, the semi-major axis and
semi-minor axis, starting from two conjugated half-diameters.
Source: Wikipedia
Given conjugated diameter d1 is the vector from center C to point P and the given conjugated diameter d2 is the
vector from center C to point Q. Center of ellipse is always (0, 0, 0). This algorithm works for 2D/3D vectors.

Parameters
• d1 – conjugated semi-major axis as Vec3
• d2 – conjugated semi-minor axis as Vec3

Returns
Tuple of (major axis, minor axis, ratio)

3D Graphic Functions

basic_transformation Returns a combined transformation matrix for translation,
scaling and rotation about the z-axis.

best_fit_normal Returns the "best fit" normal for a plane defined by three
or more vertices.

bezier_to_bspline Convert multiple quadratic or cubic Bèzier curves into a
single cubic B-spline.

continues on next page

9.8. Reference 455

https://en.m.wikipedia.org/wiki/Rytz%27s_construction

ezdxf Documentation, Release 1.3.2

Table 3 – continued from previous page
closed_uniform_bspline Creates a closed uniform (periodic) B-spline curve (open

curve).
cubic_bezier_bbox Returns the BoundingBox of a cubic Bézier curve of

type Bezier4P.
cubic_bezier_from_3p Returns a cubic Bèzier curve Bezier4P from three

points.
cubic_bezier_from_arc Returns an approximation for a circular 2D arc by multi-

ple cubic Bézier-curves.
cubic_bezier_from_ellipse Returns an approximation for an elliptic arc by multiple

cubic Bézier-curves.
cubic_bezier_interpolation Returns an interpolation curve for given data points as

multiple cubic Bézier-curves.
distance_point_line_3d Returns the normal distance from a point to a 3D line.
estimate_end_tangent_magnitude Estimate tangent magnitude of start- and end tangents.
estimate_tangents Estimate tangents for curve defined by given fit points.
fit_points_to_cad_cv Returns a cubic BSpline from fit points as close as pos-

sible to common CAD applications like BricsCAD.
fit_points_to_cubic_bezier Returns a cubic BSpline from fit points without end

tangents.
global_bspline_interpolation B-spline interpolation by the Global Curve Interpolation.
have_bezier_curves_g1_continuity Return True if the given adjacent Bézier curves have G1

continuity.
intersect_polylines_3d Returns the intersection points for two polylines as list of

Vec3 objects, the list is empty if no intersection points
exist.

intersection_line_line_3d Returns the intersection point of two 3D lines, returns
None if lines do not intersect.

intersection_line_polygon_3d Returns the intersection point of the 3D line form start to
end and the given polygon.

intersection_ray_polygon_3d Returns the intersection point of the infinite 3D ray de-
fined by origin and the direction vector and the given poly-
gon.

intersection_ray_ray_3d Calculate intersection of two 3D rays, returns a 0-tuple for
parallel rays, a 1-tuple for intersecting rays and a 2-tuple
for not intersecting and not parallel rays with points of the
closest approach on each ray.

is_planar_face Returns True if sequence of vectors is a planar face.
linear_vertex_spacing Returns count evenly spaced vertices from start to end.
local_cubic_bspline_interpolation B-spline interpolation by 'Local Cubic Curve Interpola-

tion', which creates B-spline from fit points and estimated
tangent direction at start-, end- and passing points.

normal_vector_3p Returns normal vector for 3 points, which is the normal-
ized cross product for: a->b x a->c.

open_uniform_bspline Creates an open uniform (periodic) B-spline curve (open
curve).

quadratic_bezier_bbox Returns the BoundingBox of a quadratic Bézier curve
of type Bezier3P.

quadratic_bezier_from_3p Returns a quadratic Bèzier curve Bezier3P from three
points.

quadratic_to_cubic_bezier Convert quadratic Bèzier curves (ezdxf.math.
Bezier3P) into cubic Bèzier curves (ezdxf.math.
Bezier4P).

continues on next page

456 Chapter 9. Contents

https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html

ezdxf Documentation, Release 1.3.2

Table 3 – continued from previous page
rational_bspline_from_arc Returns a rational B-splines for a circular 2D arc.
rational_bspline_from_ellipse Returns a rational B-splines for an elliptic arc.
safe_normal_vector Safe function to detect the normal vector for a face or

polygon defined by 3 or more vertices.
spherical_envelope Calculate the spherical envelope for the given points.
split_bezier Split a Bèzier curve at parameter t.
split_polygon_by_plane Split a convex polygon by the given plane.
subdivide_face Subdivides faces by subdividing edges and adding a center

vertex.
subdivide_ngons Subdivides faces into triangles by adding a center vertex.

See also:
The free online book 3D Math Primer for Graphics and Game Development is a very good resource for learning vector
math and other graphic related topics, it is easy to read for beginners and especially targeted to programmers.
ezdxf.math.basic_transformation(move: UVec = (0, 0, 0), scale: UVec = (1, 1, 1), z_rotation: float = 0)

→ Matrix44

Returns a combined transformation matrix for translation, scaling and rotation about the z-axis.
Parameters

• move – translation vector
• scale – x-, y- and z-axis scaling as float triplet, e.g. (2, 2, 1)
• z_rotation – rotation angle about the z-axis in radians

ezdxf.math.best_fit_normal(vertices: Iterable[UVec])→ Vec3
Returns the “best fit” normal for a plane defined by three or more vertices. This function tolerates imperfect plane
vertices. Safe function to detect the extrusion vector of flat arbitrary polygons.

ezdxf.math.bezier_to_bspline(curves: Iterable[Bezier3P | Bezier4P])→ BSpline
Convert multiple quadratic or cubic Bèzier curves into a single cubic B-spline.
For good results the curves must be lined up seamlessly, i.e. the starting point of the following curve must be the
same as the end point of the previous curve. G1 continuity or better at the connection points of the Bézier curves
is required to get best results.

ezdxf.math.closed_uniform_bspline(control_points: Iterable[UVec], order: int = 4, weights:
Iterable[float] | None = None)→ BSpline

Creates a closed uniform (periodic) B-spline curve (open curve).
This B-spline does not pass any of the control points.

Parameters
• control_points – iterable of control points as Vec3 compatible objects
• order – spline order (degree + 1)
• weights – iterable of weight values

ezdxf.math.cubic_bezier_bbox(curve: Bezier4P, *, abs_tol=1e-12)→ BoundingBox
Returns the BoundingBox of a cubic Bézier curve of type Bezier4P.

ezdxf.math.cubic_bezier_from_3p(p1: UVec, p2: UVec, p3: UVec)→ Bezier4P
Returns a cubic Bèzier curve Bezier4P from three points. The curve starts at p1, goes through p2 and ends at
p3. (source: pomax-2)

9.8. Reference 457

https://gamemath.com/
https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
https://pomax.github.io/bezierinfo/#pointcurves

ezdxf Documentation, Release 1.3.2

ezdxf.math.cubic_bezier_from_arc(center: UVec = (0, 0, 0), radius: float = 1, start_angle: float = 0,
end_angle: float = 360, segments: int = 1)→
Iterator[Bezier4P[Vec3]]

Returns an approximation for a circular 2D arc by multiple cubic Bézier-curves.
Parameters

• center – circle center as Vec3 compatible object
• radius – circle radius
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• segments – count of Bèzier-curve segments, at least one segment for each quarter (90 deg),
1 for as few as possible.

ezdxf.math.cubic_bezier_from_ellipse(ellipse: ConstructionEllipse, segments: int = 1)→
Iterator[Bezier4P[Vec3]]

Returns an approximation for an elliptic arc by multiple cubic Bézier-curves.
Parameters

• ellipse – ellipse parameters as ConstructionEllipse object
• segments – count of Bèzier-curve segments, at least one segment for each quarter (π/2), 1
for as few as possible.

ezdxf.math.cubic_bezier_interpolation(points: Iterable[UVec])→ Iterable[Bezier4P[Vec3]]
Returns an interpolation curve for given data points as multiple cubic Bézier-curves. Returns n-1 cubic Bézier-
curves for n given data points, curve i goes from point[i] to point[i+1].

Parameters
points – data points

ezdxf.math.distance_point_line_3d(point: Vec3, start: Vec3, end: Vec3)→ float
Returns the normal distance from a point to a 3D line.

Parameters
• point – point to test
• start – start point of the 3D line
• end – end point of the 3D line

ezdxf.math.estimate_end_tangent_magnitude(points: list[Vec3], method: str = 'chord')→ tuple[float,
float]

Estimate tangent magnitude of start- and end tangents.
Available estimation methods:

• “chord”: total chord length, curve approximation by straight segments
• “arc”: total arc length, curve approximation by arcs
• “bezier-n”: total length from cubic bezier curve approximation, n segments per section

Parameters
• points – start-, end- and passing points of curve
• method – tangent magnitude estimation method

458 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.math.estimate_tangents(points: list[Vec3], method: str = '5-points', normalize=True)→ list[Vec3]
Estimate tangents for curve defined by given fit points. Calculated tangents are normalized (unit-vectors).
Available tangent estimation methods:

• “3-points”: 3 point interpolation
• “5-points”: 5 point interpolation
• “bezier”: tangents from an interpolated cubic bezier curve
• “diff”: finite difference

Parameters
• points – start-, end- and passing points of curve
• method – tangent estimation method
• normalize – normalize tangents if True

Returns
tangents as list of Vec3 objects

ezdxf.math.fit_points_to_cad_cv(fit_points: Iterable[UVec], tangents: Iterable[UVec] | None = None)
→ BSpline

Returns a cubic BSpline from fit points as close as possible to common CAD applications like BricsCAD.
There exist infinite numerical correct solution for this setup, but some facts are known:

• CAD applications use the global curve interpolation with start- and end derivatives if the end tangents are
defined otherwise the equation system will be completed by setting the second derivatives of the start and end
point to 0, for more information read this answer on stackoverflow: https://stackoverflow.com/a/74863330/
6162864

• The degree of the B-spline is always 3 regardless which degree is stored in the SPLINE entity, this is only
valid for B-splines defined by fit points

• Knot parametrization method is “chord”
• Knot distribution is “natural”

Parameters
• fit_points – points the spline is passing through
• tangents – start- and end tangent, default is autodetect

ezdxf.math.fit_points_to_cubic_bezier(fit_points: Iterable[UVec])→ BSpline

Returns a cubic BSpline from fit points without end tangents.
This function uses the cubic Bèzier interpolation to create multiple Bèzier curves and combine them into a single B-
spline, this works for short simple splines better than the fit_points_to_cad_cv(), but is worse for longer
and more complex splines.

Parameters
fit_points – points the spline is passing through

ezdxf.math.global_bspline_interpolation(fit_points: Iterable[UVec], degree: int = 3, tangents:
Iterable[UVec] | None = None, method: str = 'chord')→
BSpline

9.8. Reference 459

https://stackoverflow.com/a/74863330/6162864
https://stackoverflow.com/a/74863330/6162864

ezdxf Documentation, Release 1.3.2

B-spline interpolation by the Global Curve Interpolation. Given are the fit points and the degree of the B-spline.
The function provides 3 methods for generating the parameter vector t:

• “uniform”: creates a uniform t vector, from 0 to 1 evenly spaced, see uniform method
• “chord”, “distance”: creates a t vector with values proportional to the fit point distances, see chord length
method

• “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see
centripetal method

• “arc”: creates a t vector with values proportional to the arc length between fit points.
It is possible to constraint the curve by tangents, by start- and end tangent if only two tangents are given or by one
tangent for each fit point.
If tangents are given, they represent 1st derivatives and should be scaled if they are unit vectors, if only start- and
end tangents given the function estimate_end_tangent_magnitude() helps with an educated guess, if
all tangents are given, scaling by chord length is a reasonable choice (Piegl & Tiller).

Parameters
• fit_points – fit points of B-spline, as list of Vec3 compatible objects
• tangents – if only two vectors are given, take the first and the last vector as start- and end
tangent constraints or if for all fit points a tangent is given use all tangents as interpolation
constraints (optional)

• degree – degree of B-spline
• method – calculation method for parameter vector t

Returns
BSpline

ezdxf.math.have_bezier_curves_g1_continuity(b1: Bezier3P | Bezier4P, b2: Bezier3P | Bezier4P,
g1_tol: float = 1e-4)→ bool

Return True if the given adjacent Bézier curves have G1 continuity.
ezdxf.math.intersect_polylines_3d(p1: Sequence[Vec3], p2: Sequence[Vec3], abs_tol=1e-10)→

list[Vec3]
Returns the intersection points for two polylines as list of Vec3 objects, the list is empty if no intersection points
exist. Does not return self intersection points of p1 or p2. Duplicate intersection points are removed from the result
list, but the list does not have a particular order! You can sort the result list by result.sort() to introduce an
order.

Parameters
• p1 – first polyline as sequence of Vec3 objects
• p2 – second polyline as sequence of Vec3 objects
• abs_tol – absolute tolerance for comparisons

ezdxf.math.intersection_line_line_3d(line1: Sequence[Vec3], line2: Sequence[Vec3], virtual: bool =
True, abs_tol: float = 1e-10)→ Vec3 | None

Returns the intersection point of two 3D lines, returns None if lines do not intersect.
Parameters

• line1 – first line as tuple of two points as Vec3 objects
• line2 – second line as tuple of two points as Vec3 objects

460 Chapter 9. Contents

https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-uniform.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-chord-length.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-centripetal.html

ezdxf Documentation, Release 1.3.2

• virtual – True returns any intersection point, False returns only real intersection points
• abs_tol – absolute tolerance for comparisons

ezdxf.math.intersection_line_polygon_3d(start: Vec3, end: Vec3, polygon: Iterable[Vec3], *,
coplanar=True, boundary=True,
abs_tol=PLANE_EPSILON)→ Vec3 | None

Returns the intersection point of the 3D line form start to end and the given polygon.
Parameters

• start – start point of 3D line as Vec3
• end – end point of 3D line as Vec3
• polygon – 3D polygon as iterable of Vec3
• coplanar – if True a coplanar start- or end point as intersection point is valid
• boundary – if True an intersection point at the polygon boundary line is valid
• abs_tol – absolute tolerance for comparisons

ezdxf.math.intersection_ray_polygon_3d(origin: Vec3, direction: Vec3, polygon: Iterable[Vec3], *,
boundary=True, abs_tol=PLANE_EPSILON)→ Vec3 |
None

Returns the intersection point of the infinite 3D ray defined by origin and the direction vector and the given polygon.
Parameters

• origin – origin point of the 3D ray as Vec3
• direction – direction vector of the 3D ray as Vec3
• polygon – 3D polygon as iterable of Vec3
• boundary – if True intersection points at the polygon boundary line are valid
• abs_tol – absolute tolerance for comparisons

ezdxf.math.intersection_ray_ray_3d(ray1: Sequence[Vec3], ray2: Sequence[Vec3],
abs_tol=TOLERANCE)→ Sequence[Vec3]

Calculate intersection of two 3D rays, returns a 0-tuple for parallel rays, a 1-tuple for intersecting rays and a 2-tuple
for not intersecting and not parallel rays with points of the closest approach on each ray.

Parameters
• ray1 – first ray as tuple of two points as Vec3 objects
• ray2 – second ray as tuple of two points as Vec3 objects
• abs_tol – absolute tolerance for comparisons

ezdxf.math.is_planar_face(face: Sequence[Vec3], abs_tol=1e-9)→ bool
Returns True if sequence of vectors is a planar face.

Parameters
• face – sequence of Vec3 objects
• abs_tol – tolerance for normals check

ezdxf.math.linear_vertex_spacing(start: Vec3, end: Vec3, count: int)→ list[Vec3]
Returns count evenly spaced vertices from start to end.

9.8. Reference 461

ezdxf Documentation, Release 1.3.2

ezdxf.math.local_cubic_bspline_interpolation(fit_points: Iterable[UVec], method: str = '5-points',
tangents: Iterable[UVec] | None = None)→
BSpline

B-spline interpolation by ‘Local Cubic Curve Interpolation’, which creates B-spline from fit points and estimated
tangent direction at start-, end- and passing points.
Source: Piegl & Tiller: “The NURBS Book” - chapter 9.3.4
Available tangent estimation methods:

• “3-points”: 3 point interpolation
• “5-points”: 5 point interpolation
• “bezier”: cubic bezier curve interpolation
• “diff”: finite difference

or pass pre-calculated tangents, which overrides tangent estimation.
Parameters

• fit_points – all B-spline fit points as Vec3 compatible objects
• method – tangent estimation method
• tangents – tangents as Vec3 compatible objects (optional)

Returns
BSpline

ezdxf.math.normal_vector_3p(a: Vec3, b: Vec3, c: Vec3)→ Vec3
Returns normal vector for 3 points, which is the normalized cross product for: a->b x a->c.

ezdxf.math.open_uniform_bspline(control_points: Iterable[UVec], order: int = 4, weights: Iterable[float] |
None = None)→ BSpline

Creates an open uniform (periodic) B-spline curve (open curve).
This is an unclamped curve, which means the curve passes none of the control points.

Parameters
• control_points – iterable of control points as Vec3 compatible objects
• order – spline order (degree + 1)
• weights – iterable of weight values

ezdxf.math.quadratic_bezier_bbox(curve: Bezier3P, *, abs_tol=1e-12)→ BoundingBox
Returns the BoundingBox of a quadratic Bézier curve of type Bezier3P.

ezdxf.math.quadratic_bezier_from_3p(p1: UVec, p2: UVec, p3: UVec)→ Bezier3P

Returns a quadratic Bèzier curve Bezier3P from three points. The curve starts at p1, goes through p2 and ends
at p3. (source: pomax-2)

ezdxf.math.quadratic_to_cubic_bezier(curve: Bezier3P)→ Bezier4P
Convert quadratic Bèzier curves (ezdxf.math.Bezier3P) into cubic Bèzier curves (ezdxf.math.
Bezier4P).

ezdxf.math.rational_bspline_from_arc(center: Vec3 = (0, 0), radius: float = 1, start_angle: float = 0,
end_angle: float = 360, segments: int = 1)→ BSpline

Returns a rational B-splines for a circular 2D arc.
Parameters

462 Chapter 9. Contents

https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
https://pomax.github.io/bezierinfo/#pointcurves

ezdxf Documentation, Release 1.3.2

• center – circle center as Vec3 compatible object
• radius – circle radius
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• segments – count of spline segments, at least one segment for each quarter (90 deg), default
is 1, for as few as needed.

ezdxf.math.rational_bspline_from_ellipse(ellipse: ConstructionEllipse, segments: int = 1)→
BSpline

Returns a rational B-splines for an elliptic arc.
Parameters

• ellipse – ellipse parameters as ConstructionEllipse object
• segments – count of spline segments, at least one segment for each quarter (π/2), default is
1, for as few as needed.

ezdxf.math.safe_normal_vector(vertices: Sequence[Vec3])→ Vec3
Safe function to detect the normal vector for a face or polygon defined by 3 or more vertices.

ezdxf.math.spherical_envelope(points: Sequence[UVec])→ tuple[Vec3, float]
Calculate the spherical envelope for the given points. Returns the centroid (a.k.a. geometric center) and the radius
of the enclosing sphere.

Note: The result does not represent the minimal bounding sphere!

ezdxf.math.split_bezier(control_points: Sequence[T], t: float)→ tuple[list[T], list[T]]
Split a Bèzier curve at parameter t.
Returns the control points for two new Bèzier curves of the same degree and type as the input curve. (source:
pomax-1)

Parameters
• control_points – of the Bèzier curve as Vec2 or Vec3 objects. Requires 3 points for
a quadratic curve, 4 points for a cubic curve , …

• t – parameter where to split the curve in the range [0, 1]
ezdxf.math.split_polygon_by_plane(polygon: Iterable[Vec3], plane: Plane, *, coplanar=True,

abs_tol=PLANE_EPSILON)→ tuple[Sequence[Vec3],
Sequence[Vec3]]

Split a convex polygon by the given plane.
Returns a tuple of front- and back vertices (front, back). Returns also coplanar polygons if the argument coplanar
is True, the coplanar vertices goes into either front or back depending on their orientation with respect to this
plane.

ezdxf.math.subdivide_face(face: Sequence[Vec3], quads: bool = True)→ Iterator[Sequence[Vec3]]
Subdivides faces by subdividing edges and adding a center vertex.

Parameters
• face – a sequence of Vec3
• quads – create quad faces if True else create triangles

9.8. Reference 463

https://pomax.github.io/bezierinfo/#splitting

ezdxf Documentation, Release 1.3.2

ezdxf.math.subdivide_ngons(faces: Iterable[Sequence[Vec3]], max_vertex_count=4)→
Iterator[Sequence[Vec3]]

Subdivides faces into triangles by adding a center vertex.
Parameters

• faces – iterable of faces as sequence of Vec3
• max_vertex_count – subdivide only ngons with more vertices

Transformation Classes

Matrix44 An optimized 4x4 transformation matrix.
OCS Establish an OCS for a given extrusion vector.
UCS Establish a user coordinate system (UCS).

OCS Class

class ezdxf.math.OCS(extrusion: UVec = Z_AXIS)
Establish an OCS for a given extrusion vector.

Parameters
extrusion – extrusion vector.

ux

x-axis unit vector
uy

y-axis unit vector
uz

z-axis unit vector
from_wcs(point: UVec)→ Vec3

Returns OCS vector for WCS point.
points_from_wcs(points: Iterable[UVec])→ Iterator[Vec3]

Returns iterable of OCS vectors from WCS points.
to_wcs(point: UVec)→ Vec3

Returns WCS vector for OCS point.
points_to_wcs(points: Iterable[UVec])→ Iterator[Vec3]

Returns iterable of WCS vectors for OCS points.
render_axis(layout: BaseLayout, length: float = 1, colors: RGB = RGB(1, 3, 5))→ None

Render axis as 3D lines into a layout.

464 Chapter 9. Contents

https://en.wikipedia.org/wiki/Transformation_matrix

ezdxf Documentation, Release 1.3.2

UCS Class

class ezdxf.math.UCS(origin: UVec = (0, 0, 0), ux: UVec | None = None, uy: UVec | None = None, uz: UVec
| None = None)

Establish a user coordinate system (UCS). The UCS is defined by the origin and two unit vectors for the x-, y- or
z-axis, all axis inWCS. The missing axis is the cross product of the given axis.
If x- and y-axis are None: ux = (1, 0, 0), uy = (0, 1, 0), uz = (0, 0, 1).
Unit vectors don’t have to be normalized, normalization is done at initialization, this is also the reason why scaling
gets lost by copying or rotating.

Parameters
• origin – defines the UCS origin in world coordinates
• ux – defines the UCS x-axis as vector inWCS

• uy – defines the UCS y-axis as vector inWCS

• uz – defines the UCS z-axis as vector inWCS

ux

x-axis unit vector
uy

y-axis unit vector
uz

z-axis unit vector
is_cartesian

Returns True if cartesian coordinate system.
copy()→ UCS

Returns a copy of this UCS.
to_wcs(point: Vec3)→ Vec3

Returns WCS point for UCS point.
points_to_wcs(points: Iterable[Vec3])→ Iterator[Vec3]

Returns iterable of WCS vectors for UCS points.
direction_to_wcs(vector: Vec3)→ Vec3

Returns WCS direction for UCS vector without origin adjustment.
from_wcs(point: Vec3)→ Vec3

Returns UCS point for WCS point.
points_from_wcs(points: Iterable[Vec3])→ Iterator[Vec3]

Returns iterable of UCS vectors from WCS points.
direction_from_wcs(vector: Vec3)→ Vec3

Returns UCS vector for WCS vector without origin adjustment.
to_ocs(point: Vec3)→ Vec3

Returns OCS vector for UCS point.
The OCS is defined by the z-axis of the UCS.

9.8. Reference 465

ezdxf Documentation, Release 1.3.2

points_to_ocs(points: Iterable[Vec3])→ Iterator[Vec3]
Returns iterable of OCS vectors for UCS points.
The OCS is defined by the z-axis of the UCS.

Parameters
points – iterable of UCS vertices

to_ocs_angle_deg(angle: float)→ float
Transforms angle from current UCS to the parent coordinate system (most likely the WCS) including the
transformation to the OCS established by the extrusion vector UCS.uz.

Parameters
angle – in UCS in degrees

transform(m: Matrix44)→ UCS
General inplace transformation interface, returns self (floating interface).

Parameters
m – 4x4 transformation matrix (ezdxf.math.Matrix44)

rotate(axis: UVec, angle: float)→ UCS

Returns a new rotated UCS, with the same origin as the source UCS. The rotation vector is located in the
origin and hasWCS coordinates e.g. (0, 0, 1) is the WCS z-axis as rotation vector.

Parameters
• axis – arbitrary rotation axis as vector inWCS

• angle – rotation angle in radians
rotate_local_x(angle: float)→ UCS

Returns a new rotated UCS, rotation axis is the local x-axis.
Parameters

angle – rotation angle in radians
rotate_local_y(angle: float)→ UCS

Returns a new rotated UCS, rotation axis is the local y-axis.
Parameters

angle – rotation angle in radians
rotate_local_z(angle: float)→ UCS

Returns a new rotated UCS, rotation axis is the local z-axis.
Parameters

angle – rotation angle in radians
shift(delta: UVec)→ UCS

Shifts current UCS by delta vector and returns self.
Parameters

delta – shifting vector
moveto(location: UVec)→ UCS

Place current UCS at new origin location and returns self.
Parameters

location – new origin in WCS

466 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

static from_x_axis_and_point_in_xy(origin: UVec, axis: UVec, point: UVec)→ UCS
Returns a new UCS defined by the origin, the x-axis vector and an arbitrary point in the xy-plane.

Parameters
• origin – UCS origin as (x, y, z) tuple inWCS

• axis – x-axis vector as (x, y, z) tuple inWCS

• point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple inWCS

static from_x_axis_and_point_in_xz(origin: UVec, axis: UVec, point: UVec)→ UCS
Returns a new UCS defined by the origin, the x-axis vector and an arbitrary point in the xz-plane.

Parameters
• origin – UCS origin as (x, y, z) tuple inWCS

• axis – x-axis vector as (x, y, z) tuple inWCS

• point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple inWCS

static from_y_axis_and_point_in_xy(origin: UVec, axis: UVec, point: UVec)→ UCS
Returns a new UCS defined by the origin, the y-axis vector and an arbitrary point in the xy-plane.

Parameters
• origin – UCS origin as (x, y, z) tuple inWCS

• axis – y-axis vector as (x, y, z) tuple inWCS

• point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple inWCS

static from_y_axis_and_point_in_yz(origin: UVec, axis: UVec, point: UVec)→ UCS
Returns a new UCS defined by the origin, the y-axis vector and an arbitrary point in the yz-plane.

Parameters
• origin – UCS origin as (x, y, z) tuple inWCS

• axis – y-axis vector as (x, y, z) tuple inWCS

• point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple inWCS

static from_z_axis_and_point_in_xz(origin: UVec, axis: UVec, point: UVec)→ UCS
Returns a new UCS defined by the origin, the z-axis vector and an arbitrary point in the xz-plane.

Parameters
• origin – UCS origin as (x, y, z) tuple inWCS

• axis – z-axis vector as (x, y, z) tuple inWCS

• point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple inWCS

static from_z_axis_and_point_in_yz(origin: UVec, axis: UVec, point: UVec)→ UCS
Returns a new UCS defined by the origin, the z-axis vector and an arbitrary point in the yz-plane.

Parameters
• origin – UCS origin as (x, y, z) tuple inWCS

• axis – z-axis vector as (x, y, z) tuple inWCS

• point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple inWCS

render_axis(layout: BaseLayout, length: float = 1, colors: RGB = RGB(1, 3, 5))
Render axis as 3D lines into a layout.

9.8. Reference 467

ezdxf Documentation, Release 1.3.2

Matrix44

class ezdxf.math.Matrix44(*args)
An optimized 4x4 transformation matrix.
The utility functions for constructing transformations and transforming vectors and points assumes that vectors are
stored as row vectors, meaning when multiplied, transformations are applied left to right (e.g. vAB transforms v
by A then by B).
Matrix44 initialization:

• Matrix44() returns the identity matrix.
• Matrix44(values) values is an iterable with the 16 components of the matrix.
• Matrix44(row1, row2, row3, row4) four rows, each row with four values.

__repr__()→ str
Returns the representation string of the matrix in row-major order: Matrix44((col0, col1, col2,
col3), (...), (...), (...))

get_row(row: int)→ tuple[float, ...]
Get row as list of four float values.

Parameters
row – row index [0 .. 3]

set_row(row: int, values: Sequence[float])→ None
Sets the values in a row.

Parameters
• row – row index [0 .. 3]
• values – iterable of four row values

get_col(col: int)→ tuple[float, ...]
Returns a column as a tuple of four floats.

Parameters
col – column index [0 .. 3]

set_col(col: int, values: Sequence[float])
Sets the values in a column.

Parameters
• col – column index [0 .. 3]
• values – iterable of four column values

copy()→ Matrix44
Returns a copy of same type.

__copy__()→ Matrix44
Returns a copy of same type.

classmethod scale(sx: float, sy: float | None = None, sz: float | None = None)→ Matrix44
Returns a scaling transformation matrix. If sy is None, sy = sx, and if sz is None sz = sx.

classmethod translate(dx: float, dy: float, dz: float)→ Matrix44
Returns a translation matrix for translation vector (dx, dy, dz).

468 Chapter 9. Contents

https://en.wikipedia.org/wiki/Transformation_matrix

ezdxf Documentation, Release 1.3.2

classmethod x_rotate(angle: float)→ Matrix44
Returns a rotation matrix about the x-axis.

Parameters
angle – rotation angle in radians

classmethod y_rotate(angle: float)→ Matrix44

Returns a rotation matrix about the y-axis.
Parameters

angle – rotation angle in radians
classmethod z_rotate(angle: float)→ Matrix44

Returns a rotation matrix about the z-axis.
Parameters

angle – rotation angle in radians
classmethod axis_rotate(axis: UVec, angle: float)→ Matrix44

Returns a rotation matrix about an arbitrary axis.
Parameters

• axis – rotation axis as (x, y, z) tuple or Vec3 object
• angle – rotation angle in radians

classmethod xyz_rotate(angle_x: float, angle_y: float, angle_z: float)→ Matrix44
Returns a rotation matrix for rotation about each axis.

Parameters
• angle_x – rotation angle about x-axis in radians
• angle_y – rotation angle about y-axis in radians
• angle_z – rotation angle about z-axis in radians

classmethod shear_xy(angle_x: float = 0, angle_y: float = 0)→ Matrix44
Returns a translation matrix for shear mapping (visually similar to slanting) in the xy-plane.

Parameters
• angle_x – slanting angle in x direction in radians
• angle_y – slanting angle in y direction in radians

classmethod perspective_projection(left: float, right: float, top: float, bottom: float, near: float,
far: float)→ Matrix44

Returns a matrix for a 2D projection.
Parameters

• left – Coordinate of left of screen
• right – Coordinate of right of screen
• top – Coordinate of the top of the screen
• bottom – Coordinate of the bottom of the screen
• near – Coordinate of the near clipping plane
• far – Coordinate of the far clipping plane

9.8. Reference 469

ezdxf Documentation, Release 1.3.2

classmethod perspective_projection_fov(fov: float, aspect: float, near: float, far: float)→
Matrix44

Returns a matrix for a 2D projection.
Parameters

• fov – The field of view (in radians)
• aspect – The aspect ratio of the screen (width / height)
• near – Coordinate of the near clipping plane
• far – Coordinate of the far clipping plane

static chain(*matrices: Matrix44)→ Matrix44
Compose a transformation matrix from one or more matrices.

static ucs(ux: Vec3 = X_AXIS, uy: Vec3 = Y_AXIS, uz: Vec3 = Z_AXIS, origin: Vec3 = NULLVEC)→
Matrix44

Returns a matrix for coordinate transformation from WCS to UCS. For transformation from UCS to WCS,
transpose the returned matrix.

Parameters
• ux – x-axis for UCS as unit vector
• uy – y-axis for UCS as unit vector
• uz – z-axis for UCS as unit vector
• origin – UCS origin as location vector

__hash__()

Return hash(self).
__getitem__(index: tuple[int, int])

Get (row, column) element.
__setitem__(index: tuple[int, int], value: float)

Set (row, column) element.
__iter__()→ Iterator[float]

Iterates over all matrix values.
rows()→ Iterator[tuple[float, ...]]

Iterate over rows as 4-tuples.
columns()→ Iterator[tuple[float, ...]]

Iterate over columns as 4-tuples.
__mul__(other: Matrix44)→ Matrix44

Returns a new matrix as result of the matrix multiplication with another matrix.
__imul__(other: Matrix44)→ Matrix44

Inplace multiplication with another matrix.
transform(vector: UVec)→ Vec3

Returns a transformed vertex.
transform_direction(vector: UVec, normalize=False)→ Vec3

Returns a transformed direction vector without translation.

470 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

transform_vertices(vectors: Iterable[UVec])→ Iterator[Vec3]
Returns an iterable of transformed vertices.

fast_2d_transform(points: Iterable[UVec])→ Iterator[Vec2]
Fast transformation of 2D points. For 3D input points the z-axis will be ignored. This only works reliable if
only 2D transformations have been applied to the 4x4 matrix!
Profiling results - speed gains over transform_vertices():
• pure Python code: ~1.6x
• Python with C-extensions: less than 1.1x
• PyPy 3.8: ~4.3x

But speed isn’t everything, returning the processed input points as Vec2 instances is another advantage.
Added in version 1.1.

transform_directions(vectors: Iterable[UVec], normalize=False)→ Iterator[Vec3]
Returns an iterable of transformed direction vectors without translation.

transpose()→ None
Swaps the rows for columns inplace.

determinant()→ float
Returns determinant.

inverse()→ None
Calculates the inverse of the matrix.

Raises
ZeroDivisionError – if matrix has no inverse.

property is_cartesian: bool

Returns True if target coordinate system is a right handed orthogonal coordinate system.
property is_orthogonal: bool

Returns True if target coordinate system has orthogonal axis.
Does not check for left- or right handed orientation, any orientation of the axis valid.

Basic Construction Classes

BoundingBox 3D bounding box.
BoundingBox2d 2D bounding box.
ConstructionArc Construction tool for 2D arcs.
ConstructionBox Construction tool for 2D rectangles.
ConstructionCircle Construction tool for 2D circles.
ConstructionEllipse Construction tool for 3D ellipsis.
ConstructionLine Construction tool for 2D lines.
ConstructionPolyline Construction tool for 3D polylines.
ConstructionRay Construction tool for infinite 2D rays.
Plane Construction tool for 3D planes.
Shape2d Construction tools for 2D shapes.
Vec2 Immutable 2D vector class.
Vec3 Immutable 3D vector class.

9.8. Reference 471

ezdxf Documentation, Release 1.3.2

UVec

class ezdxf.math.UVec

Type alias for Union[Sequence[float], Vec2, Vec3]

Vec3

class ezdxf.math.Vec3(*args)
Immutable 3D vector class.
This class is optimized for universality not for speed. Immutable means you can’t change (x, y, z) components after
initialization:

v1 = Vec3(1, 2, 3)
v2 = v1
v2.z = 7 # this is not possible, raises AttributeError
v2 = Vec3(v2.x, v2.y, 7) # this creates a new Vec3() object
assert v1.z == 3 # and v1 remains unchanged

Vec3 initialization:
• Vec3(), returns Vec3(0, 0, 0)

• Vec3((x, y)), returns Vec3(x, y, 0)

• Vec3((x, y, z)), returns Vec3(x, y, z)

• Vec3(x, y), returns Vec3(x, y, 0)

• Vec3(x, y, z), returns Vec3(x, y, z)

Addition, subtraction, scalar multiplication and scalar division left and right-handed are supported:

v = Vec3(1, 2, 3)
v + (1, 2, 3) == Vec3(2, 4, 6)
(1, 2, 3) + v == Vec3(2, 4, 6)
v - (1, 2, 3) == Vec3(0, 0, 0)
(1, 2, 3) - v == Vec3(0, 0, 0)
v * 3 == Vec3(3, 6, 9)
3 * v == Vec3(3, 6, 9)
Vec3(3, 6, 9) / 3 == Vec3(1, 2, 3)
-Vec3(1, 2, 3) == (-1, -2, -3)

Comparison between vectors and vectors or tuples is supported:

Vec3(1, 2, 3) < Vec3 (2, 2, 2)
(1, 2, 3) < tuple(Vec3(2, 2, 2)) # conversion necessary
Vec3(1, 2, 3) == (1, 2, 3)

bool(Vec3(1, 2, 3)) is True
bool(Vec3(0, 0, 0)) is False

x

x-axis value
y

y-axis value

472 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

z

z-axis value
xy

Vec3 as (x, y, 0), projected on the xy-plane.
xyz

Vec3 as (x, y, z) tuple.
vec2

Real 2D vector as Vec2 object.
magnitude

Length of vector.
magnitude_xy

Length of vector in the xy-plane.
magnitude_square

Square length of vector.
is_null

Vec3(0, 0, 0). Has a fixed absolute testing tolerance of 1e-12!
Type

True if all components are close to zero
angle

Angle between vector and x-axis in the xy-plane in radians.
angle_deg

Returns angle of vector and x-axis in the xy-plane in degrees.
spatial_angle

Spatial angle between vector and x-axis in radians.
spatial_angle_deg

Spatial angle between vector and x-axis in degrees.
__str__()→ str

Return '(x, y, z)' as string.
__repr__()→ str

Return 'Vec3(x, y, z)' as string.
__len__()→ int

Returns always 3.
__hash__()→ int

Returns hash value of vector, enables the usage of vector as key in set and dict.
copy()→ Vec3

Returns a copy of vector as Vec3 object.
__copy__()→ Vec3

Returns a copy of vector as Vec3 object.
__deepcopy__(memodict: dict)→ Vec3

copy.deepcopy() support.

9.8. Reference 473

ezdxf Documentation, Release 1.3.2

__getitem__(index: int)→ float
Support for indexing:
• v[0] is v.x
• v[1] is v.y
• v[2] is v.z

__iter__()→ Iterator[float]
Returns iterable of x-, y- and z-axis.

__abs__()→ float
Returns length (magnitude) of vector.

replace(x: float | None = None, y: float | None = None, z: float | None = None)→ Vec3

Returns a copy of vector with replaced x-, y- and/or z-axis.
classmethod generate(items: Iterable[UVec])→ Iterator[Vec3]

Returns an iterable of Vec3 objects.
classmethod list(items: Iterable[UVec])→ list[Vec3]

Returns a list of Vec3 objects.
classmethod tuple(items: Iterable[UVec])→ Sequence[Vec3]

Returns a tuple of Vec3 objects.
classmethod from_angle(angle: float, length: float = 1.0)→ Vec3

Returns a Vec3 object from angle in radians in the xy-plane, z-axis = 0.
classmethod from_deg_angle(angle: float, length: float = 1.0)→ Vec3

Returns a Vec3 object from angle in degrees in the xy-plane, z-axis = 0.
orthogonal(ccw: bool = True)→ Vec3

Returns orthogonal 2D vector, z-axis is unchanged.
Parameters

ccw – counter-clockwise if True else clockwise
lerp(other: UVec, factor=0.5)→ Vec3

Returns linear interpolation between self and other.
Parameters

• other – end point as Vec3 compatible object
• factor – interpolation factor (0 = self, 1 = other, 0.5 = mid point)

is_parallel(other: Vec3, *, rel_tol: float = 1e-9, abs_tol: float = 1e-12)→ bool
Returns True if self and other are parallel to vectors.

project(other: UVec)→ Vec3
Returns projected vector of other onto self.

normalize(length: float = 1.0)→ Vec3

Returns normalized vector, optional scaled by length.
reversed()→ Vec3

Returns negated vector (-self).

474 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

isclose(other: UVec, *, rel_tol: float = 1e-9, abs_tol: float = 1e-12)→ bool
Returns True if self is close to other. Uses math.isclose() to compare all axis.
Learn more about the math.isclose() function in PEP 485.

__neg__()→ Vec3

Returns negated vector (-self).
__bool__()→ bool

Returns True if vector is not (0, 0, 0).
__eq__(other: UVec)→ bool

Equal operator.
Parameters

other – Vec3 compatible object
__lt__(other: UVec)→ bool

Lower than operator.
Parameters

other – Vec3 compatible object
__add__(other: UVec)→ Vec3

Add Vec3 operator: self + other.
__radd__(other: UVec)→ Vec3

RAdd Vec3 operator: other + self.
__sub__(other: UVec)→ Vec3

Sub Vec3 operator: self - other.
__rsub__(other: UVec)→ Vec3

RSub Vec3 operator: other - self.
__mul__(other: float)→ Vec3

Scalar Mul operator: self * other.
__rmul__(other: float)→ Vec3

Scalar RMul operator: other * self.
__truediv__(other: float)→ Vec3

Scalar Div operator: self / other.
dot(other: UVec)→ float

Dot operator: self . other
Parameters

other – Vec3 compatible object
cross(other: UVec)→ Vec3

Cross operator: self x other

Parameters
other – Vec3 compatible object

distance(other: UVec)→ float
Returns distance between self and other vector.

9.8. Reference 475

https://www.python.org/dev/peps/pep-0485/

ezdxf Documentation, Release 1.3.2

angle_about(base: UVec, target: UVec)→ float
Returns counter-clockwise angle in radians about self from base to target when projected onto the plane
defined by self as the normal vector.

Parameters
• base – base vector, defines angle 0
• target – target vector

angle_between(other: UVec)→ float
Returns angle between self and other in radians. +angle is counter clockwise orientation.

Parameters
other – Vec3 compatible object

rotate(angle: float)→ Vec3

Returns vector rotated about angle around the z-axis.
Parameters

angle – angle in radians
rotate_deg(angle: float)→ Vec3

Returns vector rotated about angle around the z-axis.
Parameters

angle – angle in degrees
static sum(items: Iterable[UVec])→ Vec3

Add all vectors in items.
ezdxf.math.X_AXIS

Vec3(1, 0, 0)

ezdxf.math.Y_AXIS

Vec3(0, 1, 0)

ezdxf.math.Z_AXIS

Vec3(0, 0, 1)

ezdxf.math.NULLVEC

Vec3(0, 0, 0)

Vec2

class ezdxf.math.Vec2(v=(0.0, 0.0), y=None)
Immutable 2D vector class.

Parameters
• v – vector object with x and y attributes/properties or a sequence of float [x, y, ...] or
x-axis as float if argument y is not None

• y – second float for Vec2(x, y)

Vec2 implements a subset of Vec3.

476 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Plane

class ezdxf.math.Plane(normal: Vec3, distance: float)
Construction tool for 3D planes.
Represents a plane in 3D space as a normal vector and the perpendicular distance from the origin.
normal

Normal vector of the plane.
distance_from_origin

The (perpendicular) distance of the plane from origin (0, 0, 0).
vector

Returns the location vector.
classmethod from_3p(a: Vec3, b: Vec3, c: Vec3)→ Plane

Returns a new plane from 3 points in space.
classmethod from_vector(vector: UVec)→ Plane

Returns a new plane from the given location vector.
copy()→ Plane

Returns a copy of the plane.
signed_distance_to(v: Vec3)→ float

Returns signed distance of vertex v to plane, if distance is > 0, v is in ‘front’ of plane, in direction of the
normal vector, if distance is < 0, v is at the ‘back’ of the plane, in the opposite direction of the normal vector.

distance_to(v: Vec3)→ float
Returns absolute (unsigned) distance of vertex v to plane.

is_coplanar_vertex(v: Vec3, abs_tol=1e-9)→ bool
Returns True if vertex v is coplanar, distance from plane to vertex v is 0.

is_coplanar_plane(p: Plane, abs_tol=1e-9)→ bool
Returns True if plane p is coplanar, normal vectors in same or opposite direction.

intersect_line(start: Vec3, end: Vec3, *, coplanar=True, abs_tol=PLANE_EPSILON)→ Vec3 | None
Returns the intersection point of the 3D line from start to end and this plane orNone if there is no intersection.
If the argument coplanar is False the start- or end point of the line are ignored as intersection points.

intersect_ray(origin: Vec3, direction: Vec3)→ Vec3 | None
Returns the intersection point of the infinite 3D ray defined by origin and the direction vector and this plane
or None if there is no intersection. A coplanar ray does not intersect the plane!

BoundingBox

class ezdxf.math.BoundingBox(vertices: Iterable[UVec] | None = None)

3D bounding box.
Parameters

vertices – iterable of (x, y, z) tuples or Vec3 objects
extmin

“lower left” corner of bounding box

9.8. Reference 477

ezdxf Documentation, Release 1.3.2

extmax

“upper right” corner of bounding box
property is_empty: bool

Returns True if the bounding box is empty or the bounding box has a size of 0 in any or all dimensions or
is undefined.

property has_data: bool

Returns True if the bonding box has known limits.
property size: T

Returns size of bounding box.
property center: T

Returns center of bounding box.
inside(vertex: UVec)→ bool

Returns True if vertex is inside this bounding box.
Vertices at the box border are inside!

any_inside(vertices: Iterable[UVec])→ bool
Returns True if any vertex is inside this bounding box.
Vertices at the box border are inside!

all_inside(vertices: Iterable[UVec])→ bool
Returns True if all vertices are inside this bounding box.
Vertices at the box border are inside!

has_intersection(other: AbstractBoundingBox[T])→ bool
Returns True if this bounding box intersects with other but does not include touching bounding boxes, see
also has_overlap():

bbox1 = BoundingBox([(0, 0, 0), (1, 1, 1)])
bbox2 = BoundingBox([(1, 1, 1), (2, 2, 2)])
assert bbox1.has_intersection(bbox2) is False

has_overlap(other: AbstractBoundingBox[T])→ bool
Returns True if this bounding box intersects with other but in contrast to has_intersection() in-
cludes touching bounding boxes too:

bbox1 = BoundingBox([(0, 0, 0), (1, 1, 1)])
bbox2 = BoundingBox([(1, 1, 1), (2, 2, 2)])
assert bbox1.has_overlap(bbox2) is True

contains(other: AbstractBoundingBox[T])→ bool
Returns True if the other bounding box is completely inside this bounding box.

extend(vertices: Iterable[UVec])→ None
Extend bounds by vertices.

Parameters
vertices – iterable of vertices

union(other: AbstractBoundingBox[T])→ AbstractBoundingBox[T]
Returns a new bounding box as union of this and other bounding box.

478 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

intersection(other: AbstractBoundingBox[T])→ BoundingBox
Returns the bounding box of the intersection cube of both 3D bounding boxes. Returns an empty bounding
box if the intersection volume is 0.

rect_vertices()→ Sequence[Vec2]
Returns the corners of the bounding box in the xy-plane as Vec2 objects.

cube_vertices()→ Sequence[Vec3]
Returns the 3D corners of the bounding box as Vec3 objects.

grow(value: float)→ None
Grow or shrink the bounding box by an uniform value in x, y and z-axis. A negative value shrinks the bounding
box. Raises ValueError for shrinking the size of the bounding box to zero or below in any dimension.

BoundingBox2d

class ezdxf.math.BoundingBox2d(vertices: Iterable[UVec] | None = None)
2D bounding box.

Parameters
vertices – iterable of (x, y[, z]) tuples or Vec3 objects

extmin

“lower left” corner of bounding box
extmax

“upper right” corner of bounding box
property is_empty: bool

Returns True if the bounding box is empty. The bounding box has a size of 0 in any or all dimensions or is
undefined.

property has_data: bool

Returns True if the bonding box has known limits.
property size: T

Returns size of bounding box.
property center: T

Returns center of bounding box.
inside(vertex: UVec)→ bool

Returns True if vertex is inside this bounding box.
Vertices at the box border are inside!

any_inside(vertices: Iterable[UVec])→ bool
Returns True if any vertex is inside this bounding box.
Vertices at the box border are inside!

all_inside(vertices: Iterable[UVec])→ bool
Returns True if all vertices are inside this bounding box.
Vertices at the box border are inside!

9.8. Reference 479

ezdxf Documentation, Release 1.3.2

has_intersection(other: AbstractBoundingBox[T])→ bool
Returns True if this bounding box intersects with other but does not include touching bounding boxes, see
also has_overlap():

bbox1 = BoundingBox2d([(0, 0), (1, 1)])
bbox2 = BoundingBox2d([(1, 1), (2, 2)])
assert bbox1.has_intersection(bbox2) is False

has_overlap(other: AbstractBoundingBox[T])→ bool
Returns True if this bounding box intersects with other but in contrast to has_intersection() in-
cludes touching bounding boxes too:

bbox1 = BoundingBox2d([(0, 0), (1, 1)])
bbox2 = BoundingBox2d([(1, 1), (2, 2)])
assert bbox1.has_overlap(bbox2) is True

contains(other: AbstractBoundingBox[T])→ bool
Returns True if the other bounding box is completely inside this bounding box.

extend(vertices: Iterable[UVec])→ None
Extend bounds by vertices.

Parameters
vertices – iterable of vertices

union(other: AbstractBoundingBox[T])→ AbstractBoundingBox[T]
Returns a new bounding box as union of this and other bounding box.

intersection(other: AbstractBoundingBox[T])→ BoundingBox2d
Returns the bounding box of the intersection rectangle of both 2D bounding boxes. Returns an empty bound-
ing box if the intersection area is 0.

rect_vertices()→ Sequence[Vec2]
Returns the corners of the bounding box in the xy-plane as Vec2 objects.

ConstructionRay

class ezdxf.math.ConstructionRay(p1: UVec, p2: UVec | None = None, angle: float | None = None)

Construction tool for infinite 2D rays.
Parameters

• p1 – definition point 1
• p2 – ray direction as 2nd point or None
• angle – ray direction as angle in radians or None

location

Location vector as Vec2.
direction

Direction vector as Vec2.
slope

Slope of ray or None if vertical.

480 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

angle

Angle between x-axis and ray in radians.
angle_deg

Angle between x-axis and ray in degrees.
is_vertical

True if ray is vertical (parallel to y-axis).
is_horizontal

True if ray is horizontal (parallel to x-axis).
__str__()

Return str(self).
is_parallel(other: ConstructionRay)→ bool

Returns True if rays are parallel.
intersect(other: ConstructionRay)→ Vec2

Returns the intersection point as (x, y) tuple of self and other.
Raises

ParallelRaysError – if rays are parallel
orthogonal(location: UVec)→ ConstructionRay

Returns orthogonal ray at location.
bisectrix(other: ConstructionRay)→ ConstructionRay

Bisectrix between self and other.
yof(x: float)→ float

Returns y-value of ray for x location.
Raises

ArithmeticError – for vertical rays
xof(y: float)→ float

Returns x-value of ray for y location.
Raises

ArithmeticError – for horizontal rays

ConstructionLine

class ezdxf.math.ConstructionLine(start: UVec, end: UVec)
Construction tool for 2D lines.
The ConstructionLine class is similar to ConstructionRay, but has a start- and endpoint. The direction
of line goes from start- to endpoint, “left of line” is always in relation to this line direction.

Parameters
• start – start point of line as Vec2 compatible object
• end – end point of line as Vec2 compatible object

start

start point as Vec2

9.8. Reference 481

ezdxf Documentation, Release 1.3.2

end

end point as Vec2
bounding_box

bounding box of line as BoundingBox2d object.
ray

collinear ConstructionRay.
is_vertical

True if line is vertical.
is_horizontal

True if line is horizontal.
__str__()

Return str(self).
translate(dx: float, dy: float)→ None

Move line about dx in x-axis and about dy in y-axis.
Parameters

• dx – translation in x-axis
• dy – translation in y-axis

length()→ float
Returns length of line.

midpoint()→ Vec2
Returns mid point of line.

inside_bounding_box(point: UVec)→ bool
Returns True if point is inside of line bounding box.

intersect(other: ConstructionLine, abs_tol: float = TOLERANCE)→ Vec2 | None
Returns the intersection point of to lines or None if they have no intersection point.

Parameters
• other – other ConstructionLine
• abs_tol – tolerance for distance check

has_intersection(other: ConstructionLine, abs_tol: float = TOLERANCE)→ bool
Returns True if has intersection with other line.

is_point_left_of_line(point: UVec, colinear=False)→ bool
Returns True if point is left of construction line in relation to the line direction from start to end.
If colinear is True, a colinear point is also left of the line.

482 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ConstructionCircle

class ezdxf.math.ConstructionCircle(center: UVec, radius: float = 1.0)
Construction tool for 2D circles.

Parameters
• center – center point as Vec2 compatible object
• radius – circle radius > 0

center

center point as Vec2
radius

radius as float
bounding_box

2D bounding box of circle as BoundingBox2d object.
static from_3p(p1: UVec, p2: UVec, p3: UVec)→ ConstructionCircle

Creates a circle from three points, all points have to be compatible to Vec2 class.
__str__()→ str

Returns string representation of circle “ConstructionCircle(center, radius)”.
translate(dx: float, dy: float)→ None

Move circle about dx in x-axis and about dy in y-axis.
Parameters

• dx – translation in x-axis
• dy – translation in y-axis

point_at(angle: float)→ Vec2
Returns point on circle at angle as Vec2 object.

Parameters
angle – angle in radians, angle goes counter clockwise around the z-axis, x-axis = 0 deg.

vertices(angles: Iterable[float])→ Iterable[Vec2]
Yields vertices of the circle for iterable angles.

Parameters
angles – iterable of angles as radians, angle goes counter-clockwise around the z-axis, x-axis
= 0 deg.

flattening(sagitta: float)→ Iterator[Vec2]
Approximate the circle by vertices, argument sagitta is the max. distance from the center of an arc segment
to the center of its chord. Returns a closed polygon where the start vertex is coincident with the end vertex!

inside(point: UVec)→ bool
Returns True if point is inside circle.

tangent(angle: float)→ ConstructionRay

Returns tangent to circle at angle as ConstructionRay object.
Parameters

angle – angle in radians

9.8. Reference 483

ezdxf Documentation, Release 1.3.2

intersect_ray(ray: ConstructionRay, abs_tol: float = 1e-10)→ Sequence[Vec2]
Returns intersection points of circle and ray as sequence of Vec2 objects.

Parameters
• ray – intersection ray
• abs_tol – absolute tolerance for tests (e.g. test for tangents)

Returns
tuple of Vec2 objects

tuple size Description
0 no intersection
1 ray is a tangent to circle
2 ray intersects with the circle

intersect_line(line: ConstructionLine, abs_tol: float = 1e-10)→ Sequence[Vec2]
Returns intersection points of circle and line as sequence of Vec2 objects.

Parameters
• line – intersection line
• abs_tol – absolute tolerance for tests (e.g. test for tangents)

Returns
tuple of Vec2 objects

tuple size Description
0 no intersection
1 line intersects or touches the circle at one point
2 line intersects the circle at two points

intersect_circle(other: ConstructionCircle, abs_tol: float = 1e-10)→ Sequence[Vec2]
Returns intersection points of two circles as sequence of Vec2 objects.

Parameters
• other – intersection circle
• abs_tol – absolute tolerance for tests

Returns
tuple of Vec2 objects

tuple size Description
0 no intersection
1 circle touches the other circle at one point
2 circle intersects with the other circle

484 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ConstructionArc

class ezdxf.math.ConstructionArc(center: UVec = (0, 0), radius: float = 1.0, start_angle: float = 0.0,
end_angle: float = 360.0, is_counter_clockwise: bool | None = True)

Construction tool for 2D arcs.
ConstructionArc represents a 2D arc in the xy-plane, use an UCS to place a DXF Arc entity in 3D space,
see method add_to_layout().
Implements the 2D transformation tools: translate(), scale_uniform() and rotate_z()

Parameters
• center – center point as Vec2 compatible object
• radius – radius
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• is_counter_clockwise – swaps start- and end angle if False

center

center point as Vec2
radius

radius as float
start_angle

start angle in degrees
end_angle

end angle in degrees
angle_span

Returns angle span of arc from start- to end param.
start_angle_rad

Returns the start angle in radians.
end_angle_rad

Returns the end angle in radians.
start_point

start point of arc as Vec2.
end_point

end point of arc as Vec2.
bounding_box

bounding box of arc as BoundingBox2d.
angles(num: int)→ Iterable[float]

Returns num angles from start- to end angle in degrees in counter-clockwise order.
All angles are normalized in the range from [0, 360).

9.8. Reference 485

ezdxf Documentation, Release 1.3.2

vertices(a: Iterable[float])→ Iterable[Vec2]
Yields vertices on arc for angles in iterable a in WCS as location vectors.

Parameters
a – angles in the range from 0 to 360 in degrees, arc goes counter clockwise around the z-axis,
WCS x-axis = 0 deg.

tangents(a: Iterable[float])→ Iterable[Vec2]
Yields tangents on arc for angles in iterable a in WCS as direction vectors.

Parameters
a – angles in the range from 0 to 360 in degrees, arc goes counter-clockwise around the z-axis,
WCS x-axis = 0 deg.

translate(dx: float, dy: float)→ ConstructionArc

Move arc about dx in x-axis and about dy in y-axis, returns self (floating interface).
Parameters

• dx – translation in x-axis
• dy – translation in y-axis

scale_uniform(s: float)→ ConstructionArc
Scale arc inplace uniform about s in x- and y-axis, returns self (floating interface).

rotate_z(angle: float)→ ConstructionArc
Rotate arc inplace about z-axis, returns self (floating interface).

Parameters
angle – rotation angle in degrees

classmethod from_2p_angle(start_point: UVec, end_point: UVec, angle: float, ccw: bool = True)→
ConstructionArc

Create arc from two points and enclosing angle. Additional precondition: arc goes by default in counter-
clockwise orientation from start_point to end_point, can be changed by ccw = False.

Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• angle – enclosing angle in degrees
• ccw – counter-clockwise direction if True

classmethod from_2p_radius(start_point: UVec, end_point: UVec, radius: float, ccw: bool = True,
center_is_left: bool = True)→ ConstructionArc

Create arc from two points and arc radius. Additional precondition: arc goes by default in counter-clockwise
orientation from start_point to end_point can be changed by ccw = False.
The parameter center_is_left defines if the center of the arc is left or right of the line from start_point to
end_point. Parameter ccw = False swaps start- and end point, which also inverts the meaning of cen-
ter_is_left.

Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• radius – arc radius

486 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• ccw – counter-clockwise direction if True
• center_is_left – center point of arc is left of line from start- to end point if True

classmethod from_3p(start_point: UVec, end_point: UVec, def_point: UVec, ccw: bool = True)→
ConstructionArc

Create arc from three points. Additional precondition: arc goes in counter-clockwise orientation from
start_point to end_point.

Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• def_point – additional definition point as Vec2 compatible object
• ccw – counter-clockwise direction if True

add_to_layout(layout: BaseLayout, ucs: UCS | None = None, dxfattribs=None)→ Arc
Add arc as DXF Arc entity to a layout.
Supports 3D arcs by using an UCS. An ConstructionArc is always defined in the xy-plane, but by using
an arbitrary UCS, the arc can be placed in 3D space, automatically OCS transformation included.

Parameters
• layout – destination layout as BaseLayout object
• ucs – place arc in 3D space by UCS object
• dxfattribs – additional DXF attributes for the ARC entity

intersect_ray(ray: ConstructionRay, abs_tol: float = 1e-10)→ Sequence[Vec2]
Returns intersection points of arc and ray as sequence of Vec2 objects.

Parameters
• ray – intersection ray
• abs_tol – absolute tolerance for tests (e.g. test for tangents)

Returns
tuple of Vec2 objects

tuple size Description
0 no intersection
1 line intersects or touches the arc at one point
2 line intersects the arc at two points

intersect_line(line: ConstructionLine, abs_tol: float = 1e-10)→ Sequence[Vec2]
Returns intersection points of arc and line as sequence of Vec2 objects.

Parameters
• line – intersection line
• abs_tol – absolute tolerance for tests (e.g. test for tangents)

Returns
tuple of Vec2 objects

9.8. Reference 487

ezdxf Documentation, Release 1.3.2

tuple size Description
0 no intersection
1 line intersects or touches the arc at one point
2 line intersects the arc at two points

intersect_circle(circle: ConstructionCircle, abs_tol: float = 1e-10)→ Sequence[Vec2]
Returns intersection points of arc and circle as sequence of Vec2 objects.

Parameters
• circle – intersection circle
• abs_tol – absolute tolerance for tests

Returns
tuple of Vec2 objects

tuple size Description
0 no intersection
1 circle intersects or touches the arc at one point
2 circle intersects the arc at two points

intersect_arc(other: ConstructionArc, abs_tol: float = 1e-10)→ Sequence[Vec2]
Returns intersection points of two arcs as sequence of Vec2 objects.

Parameters
• other – other intersection arc
• abs_tol – absolute tolerance for tests

Returns
tuple of Vec2 objects

tuple size Description
0 no intersection
1 other arc intersects or touches the arc at one point
2 other arc intersects the arc at two points

ConstructionEllipse

class ezdxf.math.ConstructionEllipse(center: UVec = NULLVEC, major_axis: UVec = X_AXIS,
extrusion: UVec = Z_AXIS, ratio: float = 1, start_param: float
= 0, end_param: float = math.tau, ccw: bool = True)

Construction tool for 3D ellipsis.
Parameters

• center – 3D center point
• major_axis – major axis as 3D vector

488 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• extrusion – normal vector of ellipse plane
• ratio – ratio of minor axis to major axis
• start_param – start param in radians
• end_param – end param in radians
• ccw – is counter-clockwise flag - swaps start- and end param if False

center

center point as Vec3
major_axis

major axis as Vec3
minor_axis

minor axis as Vec3, automatically calculated from major_axis and extrusion.
extrusion

extrusion vector (normal of ellipse plane) as Vec3
ratio

ratio of minor axis to major axis (float)
start

start param in radians (float)
end

end param in radians (float)
start_point

Returns start point of ellipse as Vec3.
end_point

Returns end point of ellipse as Vec3.
property param_span: float

Returns the counter-clockwise params span from start- to end param, see also ezdxf.math.
ellipse_param_span() for more information.

to_ocs()→ ConstructionEllipse
Returns ellipse parameters as OCS representation.
OCS elevation is stored in center.z.

params(num: int)→ Iterable[float]
Returns num params from start- to end param in counter-clockwise order.
All params are normalized in the range from [0, 2π).

vertices(params: Iterable[float])→ Iterable[Vec3]
Yields vertices on ellipse for iterable params in WCS.

Parameters
params – param values in the range from [0, 2π) in radians, param goes counter-clockwise
around the extrusion vector, major_axis = local x-axis = 0 rad.

9.8. Reference 489

ezdxf Documentation, Release 1.3.2

flattening(distance: float, segments: int = 4)→ Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided. Returns a closed polygon for a full ellipse: start vertex == end vertex.

Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count

params_from_vertices(vertices: Iterable[UVec])→ Iterable[float]
Yields ellipse params for all given vertices.
The vertex don’t have to be exact on the ellipse curve or in the range from start- to end param or even in the
ellipse plane. Param is calculated from the intersection point of the ray projected on the ellipse plane from
the center of the ellipse through the vertex.

Warning: An input for start- and end vertex at param 0 and 2π return unpredictable results because of
floating point inaccuracy, sometimes 0 and sometimes 2π.

dxfattribs()→ dict[str, Any]
Returns required DXF attributes to build an ELLIPSE entity.
Entity ELLIPSE has always a ratio in range from 1e-6 to 1.

main_axis_points()→ Iterable[Vec3]
Yields main axis points of ellipse in the range from start- to end param.

classmethod from_arc(center: UVec = NULLVEC, radius: float = 1, extrusion: UVec = Z_AXIS,
start_angle: float = 0, end_angle: float = 360, ccw: bool = True)→
ConstructionEllipse

Returns ConstructionEllipse from arc or circle.
Arc and Circle parameters defined in OCS.

Parameters
• center – center in OCS
• radius – arc or circle radius
• extrusion – OCS extrusion vector
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• ccw – arc curve goes counter clockwise from start to end if True

transform(m: Matrix44)→ None
Transform ellipse in place by transformation matrix m.

swap_axis()→ None
Swap axis and adjust start- and end parameter.

add_to_layout(layout: BaseLayout, dxfattribs=None)→ Ellipse
Add ellipse as DXF Ellipse entity to a layout.

Parameters

490 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• layout – destination layout as BaseLayout object
• dxfattribs – additional DXF attributes for the ELLIPSE entity

ConstructionBox

class ezdxf.math.ConstructionBox(center: UVec = (0, 0), width: float = 1, height: float = 1, angle: float
= 0)

Construction tool for 2D rectangles.
Parameters

• center – center of rectangle
• width – width of rectangle
• height – height of rectangle
• angle – angle of rectangle in degrees

center

box center
width

box width
height

box height
angle

rotation angle in degrees
corners

box corners as sequence of Vec2 objects.
bounding_box

BoundingBox2d

incircle_radius

incircle radius
circumcircle_radius

circum circle radius
__iter__()→ Iterable[Vec2]

Iterable of box corners as Vec2 objects.
__getitem__(corner)→ Vec2

Get corner by index corner, list like slicing is supported.
__repr__()→ str

Returns string representation of box as ConstructionBox(center, width, height, angle)

classmethod from_points(p1: UVec, p2: UVec)→ ConstructionBox

Creates a box from two opposite corners, box sides are parallel to x- and y-axis.
Parameters

• p1 – first corner as Vec2 compatible object

9.8. Reference 491

ezdxf Documentation, Release 1.3.2

• p2 – second corner as Vec2 compatible object
translate(dx: float, dy: float)→ None

Move box about dx in x-axis and about dy in y-axis.
Parameters

• dx – translation in x-axis
• dy – translation in y-axis

expand(dw: float, dh: float)→ None
Expand box: dw expand width, dh expand height.

scale(sw: float, sh: float)→ None
Scale box: sw scales width, sh scales height.

rotate(angle: float)→ None
Rotate box by angle in degrees.

is_inside(point: UVec)→ bool
Returns True if point is inside of box.

is_any_corner_inside(other: ConstructionBox)→ bool
Returns True if any corner of other box is inside this box.

is_overlapping(other: ConstructionBox)→ bool
Returns True if this box and other box do overlap.

border_lines()→ Sequence[ConstructionLine]
Returns borderlines of box as sequence of ConstructionLine.

intersect(line: ConstructionLine)→ list[Vec2]
Returns 0, 1 or 2 intersection points between line and box borderlines.

Parameters
line – line to intersect with borderlines

Returns
list of intersection points

list size Description
0 no intersection
1 line touches box at one corner
2 line intersects with box

ConstructionPolyline

class ezdxf.math.ConstructionPolyline(vertices: Iterable[UVec], close: bool = False, rel_tol: float =
REL_TOL)

Construction tool for 3D polylines.
A polyline construction tool to measure, interpolate and divide anything that can be approximated or flattened into
vertices. This is an immutable data structure which supports the Sequence interface.

Parameters

492 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• vertices – iterable of polyline vertices
• close – True to close the polyline (first vertex == last vertex)
• rel_tol – relative tolerance for floating point comparisons

Example to measure or divide a SPLINE entity:

import ezdxf
from ezdxf.math import ConstructionPolyline

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
spline = msp.query("SPLINE").first
if spline is not None:

polyline = ConstructionPolyline(spline.flattening(0.01))
print(f"Entity {spline} has an approximated length of {polyline.length}")
get dividing points with a distance of 1.0 drawing unit to each other
points = list(polyline.divide_by_length(1.0))

property length: float

Returns the overall length of the polyline.
property is_closed: bool

Returns True if the polyline is closed (first vertex == last vertex).
data(index: int)→ tuple[float, float, Vec3]

Returns the tuple (distance from start, distance from previous vertex, vertex). All distances measured along
the polyline.

index_at(distance: float)→ int
Returns the data index of the exact or next data entry for the given distance. Returns the index of last entry
if distance > length.

vertex_at(distance: float)→ Vec3
Returns the interpolated vertex at the given distance from the start of the polyline.

divide(count: int)→ Iterator[Vec3]
Returns count interpolated vertices along the polyline. Argument count has to be greater than 2 and the start-
and end vertices are always included.

divide_by_length(length: float, force_last: bool = False)→ Iterator[Vec3]
Returns interpolated vertices along the polyline. Each vertex has a fix distance length from its predecessor.
Yields the last vertex if argument force_last is True even if the last distance is not equal to length.

Shape2d

class ezdxf.math.Shape2d(vertices: Iterable[UVec] | None = None)
Construction tools for 2D shapes.
A 2D geometry object as list of Vec2 objects, vertices can be moved, rotated and scaled.

Parameters
vertices – iterable of Vec2 compatible objects.

vertices

List of Vec2 objects

9.8. Reference 493

ezdxf Documentation, Release 1.3.2

bounding_box

Returns the bounding box of the shape.
__len__()→ int

Returns count of vertices.
__getitem__(item: int)→ Vec2

__getitem__(item: slice)→ list[Vec2]
Get vertex by index item, supports list like slicing.

append(vertex: UVec)→ None
Append single vertex.

Parameters
vertex – vertex as Vec2 compatible object

extend(vertices: Iterable[UVec])→ None
Append multiple vertices.

Parameters
vertices – iterable of vertices as Vec2 compatible objects

translate(vector: UVec)→ None
Translate shape about vector.

scale(sx: float = 1.0, sy: float = 1.0)→ None
Scale shape about sx in x-axis and sy in y-axis.

scale_uniform(scale: float)→ None
Scale shape uniform about scale in x- and y-axis.

rotate(angle: float, center: UVec | None = None)→ None
Rotate shape around rotation center about angle in degrees.

rotate_rad(angle: float, center: UVec | None = None)→ None
Rotate shape around rotation center about angle in radians.

offset(offset: float, closed: bool = False)→ Shape2d
Returns a new offset shape, for more information see also ezdxf.math.offset_vertices_2d()
function.

Parameters
• offset – line offset perpendicular to direction of shape segments defined by vertices order,
offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of line segment

• closed – True to handle as closed shape
convex_hull()→ Shape2d

Returns convex hull as new shape.

494 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Curves

ApproxParamT Approximation tool for parametrized curves.
BSpline B-spline construction tool.
Bezier Generic Bézier curve of any degree.
Bezier3P Implements an optimized quadratic Bézier curve for exact

3 control points.
Bezier4P Implements an optimized cubic Bézier curve for exact 4

control points.
EulerSpiral This class represents an euler spiral (clothoid) for curva-

ture (Radius of curvature).

BSpline

class ezdxf.math.BSpline(control_points: Iterable[UVec], order: int = 4, knots: Iterable[float] | None =
None, weights: Iterable[float] | None = None)

B-spline construction tool.
Internal representation of a B-spline curve. The default configuration of the knot vector is a uniform open knot
vector (“clamped”).
Factory functions:

• fit_points_to_cad_cv()

• fit_points_to_cubic_bezier()

• open_uniform_bspline()

• closed_uniform_bspline()

• rational_bspline_from_arc()

• rational_bspline_from_ellipse()

• global_bspline_interpolation()

• local_cubic_bspline_interpolation()

Parameters
• control_points – iterable of control points as Vec3 compatible objects
• order – spline order (degree + 1)
• knots – iterable of knot values
• weights – iterable of weight values

property control_points: Sequence[Vec3]

Control points as tuple of Vec3
property count: int

Count of control points, (n + 1 in text book notation).
property order: int

Order (k) of B-spline = p + 1

9.8. Reference 495

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 1.3.2

property degree: int

Degree (p) of B-spline = order - 1
property max_t: float

Biggest knot value.
property is_rational

Returns True if curve is a rational B-spline. (has weights)
property is_clamped

Returns True if curve is a clamped (open) B-spline.
knots()→ Sequence[float]

Returns a tuple of knot values as floats, the knot vector always has order + count values (n + p + 2 in text
book notation).

weights()→ Sequence[float]
Returns a tuple of weights values as floats, one for each control point or an empty tuple.

params(segments: int)→ Iterable[float]
Yield evenly spaced parameters for given segment count.

reverse()→ BSpline
Returns a new BSpline object with reversed control point order.

transform(m: Matrix44)→ BSpline
Returns a new BSpline object transformed by a Matrix44 transformation matrix.

approximate(segments: int = 20)→ Iterable[Vec3]
Approximates curve by vertices as Vec3 objects, vertices count = segments + 1.

flattening(distance: float, segments: int = 4)→ Iterator[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments
between two knots, if the distance from the center of the approximation segment to the curve is bigger than
distance the segment will be subdivided.

Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count between two knots

point(t: float)→ Vec3
Returns point for parameter t.

Parameters
t – parameter in range [0, max_t]

points(t: Iterable[float])→ Iterable[Vec3]
Yields points for parameter vector t.

Parameters
t – parameters in range [0, max_t]

derivative(t: float, n: int = 2)→ list[Vec3]
Return point and derivatives up to n <= degree for parameter t.
e.g. n=1 returns point and 1st derivative.

Parameters

496 Chapter 9. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 1.3.2

• t – parameter in range [0, max_t]
• n – compute all derivatives up to n <= degree

Returns
n+1 values as Vec3 objects

derivatives(t: Iterable[float], n: int = 2)→ Iterable[list[Vec3]]
Yields points and derivatives up to n <= degree for parameter vector t.
e.g. n=1 returns point and 1st derivative.

Parameters
• t – parameters in range [0, max_t]
• n – compute all derivatives up to n <= degree

Returns
List of n+1 values as Vec3 objects

insert_knot(t: float)→ BSpline
Insert an additional knot, without altering the shape of the curve. Returns a new BSpline object.

Parameters
t – position of new knot 0 < t < max_t

knot_refinement(u: Iterable[float])→ BSpline
Insert multiple knots, without altering the shape of the curve. Returns a new BSpline object.

Parameters
u – vector of new knots t and for each t: 0 < t < max_t

static from_ellipse(ellipse: ConstructionEllipse)→ BSpline
Returns the ellipse as BSpline of 2nd degree with as few control points as possible.

static from_arc(arc: ConstructionArc)→ BSpline
Returns the arc as BSpline of 2nd degree with as few control points as possible.

static from_fit_points(points: Iterable[UVec], degree=3, method='chord')→ BSpline
Returns BSpline defined by fit points.

static arc_approximation(arc: ConstructionArc, num: int = 16)→ BSpline
Returns an arc approximation as BSpline with num control points.

static ellipse_approximation(ellipse: ConstructionEllipse, num: int = 16)→ BSpline
Returns an ellipse approximation as BSpline with num control points.

bezier_decomposition()→ Iterable[list[Vec3]]
Decompose a non-rational B-spline into multiple Bézier curves.
This is the preferred method to represent the most common non-rational B-splines of 3rd degree by cubic
Bézier curves, which are often supported by render backends.

Returns
Yields control points of Bézier curves, each Bézier segment has degree+1 control points e.g.
B-spline of 3rd degree yields cubic Bézier curves of 4 control points.

cubic_bezier_approximation(level: int = 3, segments: int | None = None)→ Iterable[Bezier4P]
Approximate arbitrary B-splines (degree != 3 and/or rational) by multiple segments of cubic Bézier
curves. The choice of cubic Bézier curves is based on the widely support of this curves by many ren-
der backends. For cubic non-rational B-splines, which is maybe the most common used B-spline, is
bezier_decomposition() the better choice.

9.8. Reference 497

ezdxf Documentation, Release 1.3.2

1. approximation by level: an educated guess, the first level of approximation segments is based on the
count of control points and their distribution along the B-spline, every additional level is a subdivision of
the previous level.

E.g. a B-Spline of 8 control points has 7 segments at the first level, 14 at the 2nd level and 28 at the 3rd level,
a level >= 3 is recommended.
2. approximation by a given count of evenly distributed approximation segments.

Parameters
• level – subdivision level of approximation segments (ignored if argument segments is not
None)

• segments – absolute count of approximation segments
Returns

Yields control points of cubic Bézier curves as Bezier4P objects

Bezier

class ezdxf.math.Bezier(defpoints: Iterable[UVec])
Generic Bézier curve of any degree.
A Bézier curve is a parametric curve used in computer graphics and related fields. Bézier curves are used to model
smooth curves that can be scaled indefinitely. “Paths”, as they are commonly referred to in image manipulation
programs, are combinations of linked Bézier curves. Paths are not bound by the limits of rasterized images and are
intuitive to modify. (Source: Wikipedia)
This is a generic implementation which works with any count of definition points greater than 2, but it is a simple
and slow implementation. For more performance look at the specialized Bezier4P and Bezier3P classes.
Objects are immutable.

Parameters
defpoints – iterable of definition points as Vec3 compatible objects.

control_points

Control points as tuple of Vec3 objects.
params(segments: int)→ Iterable[float]

Yield evenly spaced parameters from 0 to 1 for given segment count.
reverse()→ Bezier

Returns a new Bèzier-curve with reversed control point order.
transform(m: Matrix44)→ Bezier

General transformation interface, returns a new Bezier curve.
Parameters

m – 4x4 transformation matrix (ezdxf.math.Matrix44)
approximate(segments: int = 20)→ Iterable[Vec3]

Approximates curve by vertices as Vec3 objects, vertices count = segments + 1.
flattening(distance: float, segments: int = 4)→ Iterable[Vec3]

Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided.

498 Chapter 9. Contents

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

ezdxf Documentation, Release 1.3.2

Parameters
• distance – maximum distance from the center of the curve (Cn) to the center of the
linear (C1) curve between two approximation points to determine if a segment should be
subdivided.

• segments – minimum segment count
point(t: float)→ Vec3

Returns a point for parameter t in range [0, 1] as Vec3 object.
points(t: Iterable[float])→ Iterable[Vec3]

Yields multiple points for parameters in vector t as Vec3 objects. Parameters have to be in range [0, 1].
derivative(t: float)→ tuple[Vec3, Vec3, Vec3]

Returns (point, 1st derivative, 2nd derivative) tuple for parameter t in range [0, 1] as Vec3 objects.
derivatives(t: Iterable[float])→ Iterable[tuple[Vec3, Vec3, Vec3]]

Returns multiple (point, 1st derivative, 2nd derivative) tuples for parameter vector t as Vec3 objects. Pa-
rameters in range [0, 1]

Bezier4P

class ezdxf.math.Bezier4P(defpoints: Sequence[T])
Implements an optimized cubic Bézier curve for exact 4 control points.
A Bézier curve is a parametric curve, parameter t goes from 0 to 1, where 0 is the first control point and 1 is the
fourth control point.
The class supports points of type Vec2 and Vec3 as input, the class instances are immutable.

Parameters
defpoints – sequence of definition points as Vec2 or Vec3 compatible objects.

control_points

Control points as tuple of Vec3 or Vec2 objects.
reverse()→ Bezier4P[T]

Returns a new Bèzier-curve with reversed control point order.
transform(m: Matrix44)→ Bezier4P[Vec3]

General transformation interface, returns a new Bezier4p curve as a 3D curve.
Parameters

m – 4x4 transformation Matrix44
approximate(segments: int)→ Iterator[T]

Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y[, z]) tuples.
Parameters

segments – count of segments for approximation
flattening(distance: float, segments: int = 4)→ Iterator[T]

Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided.

Parameters

9.8. Reference 499

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

ezdxf Documentation, Release 1.3.2

• distance – maximum distance from the center of the cubic (C3) curve to the center of
the linear (C1) curve between two approximation points to determine if a segment should be
subdivided.

• segments – minimum segment count
approximated_length(segments: int = 128)→ float

Returns estimated length of Bèzier-curve as approximation by line segments.
point(t: float)→ T

Returns point for location t at the Bèzier-curve.
Parameters

t – curve position in the range [0, 1]

tangent(t: float)→ T
Returns direction vector of tangent for location t at the Bèzier-curve.

Parameters
t – curve position in the range [0, 1]

Bezier3P

class ezdxf.math.Bezier3P(defpoints: Sequence[T])
Implements an optimized quadratic Bézier curve for exact 3 control points.
The class supports points of type Vec2 and Vec3 as input, the class instances are immutable.

Parameters
defpoints – sequence of definition points as Vec2 or Vec3 compatible objects.

control_points

Control points as tuple of Vec3 or Vec2 objects.
reverse()→ Bezier3P[T]

Returns a new Bèzier-curve with reversed control point order.
transform(m: Matrix44)→ Bezier3P[Vec3]

General transformation interface, returns a new Bezier3P curve and it is always a 3D curve.
Parameters

m – 4x4 transformation Matrix44
approximate(segments: int)→ Iterator[T]

Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y[, z]) tuples.
Parameters

segments – count of segments for approximation
flattening(distance: float, segments: int = 4)→ Iterator[T]

Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided.

Parameters
• distance – maximum distance from the center of the quadratic (C2) curve to the center
of the linear (C1) curve between two approximation points to determine if a segment should
be subdivided.

500 Chapter 9. Contents

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

ezdxf Documentation, Release 1.3.2

• segments – minimum segment count
approximated_length(segments: int = 128)→ float

Returns estimated length of Bèzier-curve as approximation by line segments.
point(t: float)→ T

Returns point for location t at the Bèzier-curve.
Parameters

t – curve position in the range [0, 1]

tangent(t: float)→ T
Returns direction vector of tangent for location t at the Bèzier-curve.

Parameters
t – curve position in the range [0, 1]

ApproxParamT

class ezdxf.math.ApproxParamT(curve, *, max_t: float = 1.0, segments: int = 100)
Approximation tool for parametrized curves.

• approximate parameter t for a given distance from the start of the curve
• approximate the distance for a given parameter t from the start of the curve

These approximations can be applied to all parametrized curves which provide a point() method, like
Bezier4P, Bezier3P and BSpline.
The approximation is based on equally spaced parameters from 0 to max_t for a given segment count. The flat-
tening() method can not be used for the curve approximation, because the required parameter t is not logged
by the flattening process.

Parameters
• curve – curve object, requires a method point()
• max_t – the max. parameter value
• segments – count of approximation segments

property max_t: float

property polyline: ConstructionPolyline

param_t(distance: float)

Approximate parameter t for the given distance from the start of the curve.
distance(t: float)→ float

Approximate the distance from the start of the curve to the point t on the curve.

9.8. Reference 501

ezdxf Documentation, Release 1.3.2

EulerSpiral

class ezdxf.math.EulerSpiral(curvature: float = 1.0)
This class represents an euler spiral (clothoid) for curvature (Radius of curvature).
This is a parametric curve, which always starts at the origin = (0, 0).

Parameters
curvature – radius of curvature

radius(t: float)→ float
Get radius of circle at distance t.

tangent(t: float)→ Vec3
Get tangent at distance t as Vec3 object.

distance(radius: float)→ float
Get distance L from origin for radius.

point(t: float)→ Vec3
Get point at distance t as Vec3.

circle_center(t: float)→ Vec3
Get circle center at distance t.

approximate(length: float, segments: int)→ Iterable[Vec3]
Approximate curve of length with line segments. Generates segments+1 vertices as Vec3 objects.

bspline(length: float, segments: int = 10, degree: int = 3, method: str = 'uniform')→ BSpline
Approximate euler spiral as B-spline.

Parameters
• length – length of euler spiral
• segments – count of fit points for B-spline calculation
• degree – degree of BSpline
• method – calculation method for parameter vector t

Returns
BSpline

Clipping

Clipping module: ezdxf.math.clipping
ezdxf.math.clipping.greiner_hormann_union(p1: Iterable[UVec], p2: Iterable[UVec])→

list[list[Vec2]]
Returns the UNION of polygon p1 | polygon p2. This algorithm works only for polygons with real intersection
points and line end points on face edges are not considered as such intersection points!

ezdxf.math.clipping.greiner_hormann_difference(p1: Iterable[UVec], p2: Iterable[UVec])→
list[list[Vec2]]

Returns the DIFFERENCE of polygon p1 - polygon p2. This algorithm works only for polygons with real inter-
section points and line end points on face edges are not considered as such intersection points!

502 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.math.clipping.greiner_hormann_intersection(p1: Iterable[UVec], p2: Iterable[UVec])→
list[list[Vec2]]

Returns the INTERSECTION of polygon p1 & polygon p2. This algorithm works only for polygons with real
intersection points and line end points on face edges are not considered as such intersection points!

class ezdxf.math.clipping.ConvexClippingPolygon2d(vertices: Iterable[Vec2], ccw_check=True,
abs_tol=TOLERANCE)

The clipping path is an arbitrary convex 2D polygon.
clip_polygon(polygon: Sequence[Vec2])→ Sequence[Sequence[Vec2]]

Returns the parts of the clipped polygon. A polygon is a closed polyline.
clip_polyline(polyline: Sequence[Vec2])→ Sequence[Sequence[Vec2]]

Returns the parts of the clipped polyline.
clip_line(start: Vec2, end: Vec2)→ Sequence[tuple[Vec2, Vec2]]

Returns the parts of the clipped line.
is_inside(point: Vec2)→ bool

Returns True if point is inside the clipping polygon.
class ezdxf.math.clipping.ClippingRect2d(bottom_left: Vec2, top_right: Vec2,

abs_tol=TOLERANCE)

The clipping path is an axis-aligned rectangle, where all sides are parallel to the x- and y-axis.
clip_polygon(polygon: Sequence[Vec2])→ Sequence[Sequence[Vec2]]

Returns the parts of the clipped polygon. A polygon is a closed polyline.
clip_polyline(polyline: Sequence[Vec2])→ Sequence[Sequence[Vec2]]

Returns the parts of the clipped polyline.
clip_line(start: Vec2, end: Vec2)→ Sequence[tuple[Vec2, Vec2]]

Returns the clipped line.
is_inside(point: Vec2)→ bool

Returns True if point is inside the clipping rectangle.
class ezdxf.math.clipping.ConcaveClippingPolygon2d(vertices: Iterable[Vec2],

abs_tol=TOLERANCE)

The clipping path is an arbitrary concave 2D polygon.
clip_polygon(polygon: Sequence[Vec2])→ Sequence[Sequence[Vec2]]

Returns the parts of the clipped polygon. A polygon is a closed polyline.
clip_polyline(polyline: Sequence[Vec2])→ Sequence[Sequence[Vec2]]

Returns the parts of the clipped polyline.
clip_line(start: Vec2, end: Vec2)→ Sequence[tuple[Vec2, Vec2]]

Returns the clipped line.
is_inside(point: Vec2)→ bool

Returns True if point is inside the clipping polygon.
class ezdxf.math.clipping.InvertedClippingPolygon2d(inner_polygon: Iterable[Vec2],

outer_bounds: BoundingBox2d,
abs_tol=TOLERANCE)

9.8. Reference 503

ezdxf Documentation, Release 1.3.2

This class represents an inverted clipping path. Everything between the inner polygon and the outer extents is
considered as inside. The inner clipping path is an arbitrary 2D polygon.

Important: The outer_bounds must be larger than the content to clip to work correctly.

clip_polygon(polygon: Sequence[Vec2])→ Sequence[Sequence[Vec2]]
Returns the parts of the clipped polygon. A polygon is a closed polyline.

clip_polyline(polyline: Sequence[Vec2])→ Sequence[Sequence[Vec2]]
Returns the parts of the clipped polyline.

clip_line(start: Vec2, end: Vec2)→ Sequence[tuple[Vec2, Vec2]]
Returns the clipped line.

is_inside(point: Vec2)→ bool
Returns True if point is inside the clipping polygon.

Clustering

Clustering module: ezdxf.math.clustering
ezdxf.math.clustering.average_cluster_radius(clusters: list[list[Vec2 | Vec3]])→ float

Returns the average cluster radius.
ezdxf.math.clustering.average_intra_cluster_distance(clusters: list[list[Vec2 | Vec3]])→

float
Returns the average point-to-point intra cluster distance.

ezdxf.math.clustering.dbscan(points: list[Vec2 | Vec3], *, radius: float, min_points: int = 4, rtree: RTree |
None = None, max_node_size: int = 5)→ list[list[Vec2 | Vec3]]

DBSCAN clustering.
https://en.wikipedia.org/wiki/DBSCAN

Parameters
• points – list of points to cluster
• radius – radius of the dense regions
• min_points – minimum number of points that needs to be within the radius for a point to
be a core point (must be >= 2)

• rtree – optional RTree
• max_node_size – max node size for internally created RTree

Returns
list of clusters, each cluster is a list of points

ezdxf.math.clustering.k_means(points: list[Vec2 | Vec3], k: int, max_iter: int = 10)→ list[list[Vec2 |
Vec3]]

K-means clustering.
https://en.wikipedia.org/wiki/K-means_clustering

Parameters

504 Chapter 9. Contents

https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/K-means_clustering

ezdxf Documentation, Release 1.3.2

• points – list of points to cluster
• k – number of clusters
• max_iter – max iterations

Returns
list of clusters, each cluster is a list of points

Linear Algebra

Linear algebra module for internal usage: ezdxf.math.linalg

Functions

ezdxf.math.linalg.tridiagonal_vector_solver(A: List[List[float]], B: Iterable[float])→ list[float]
Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side quantities as vector
B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1 (c)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.
If an ZeroDivisionError exception occurs, the equation system can possibly be solved by
BandedMatrixLU(A, 1, 1).solve_vector(B)

Parameters
• A – diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]

[[b0, c0, 0, 0, ...],
[a1, b1, c1, 0, ...],
[0, a2, b2, c2, ...],
...]

• B – iterable of floats [[b1, b1, …, bn]
Returns

list of floats
Raises

ZeroDivisionError – singular matrix
ezdxf.math.linalg.tridiagonal_matrix_solver(A: List[List[float]] | ndarray[Any, dtype[float64]],

B: List[List[float]] | ndarray[Any, dtype[float64]])
→ Matrix

Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side quantities as nxm
Matrix B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1 (c)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.
If an ZeroDivisionError exception occurs, the equation system can possibly be solved by
BandedMatrixLU(A, 1, 1).solve_vector(B)

Parameters
• A – diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]

9.8. Reference 505

ezdxf Documentation, Release 1.3.2

[[b0, c0, 0, 0, ...],
[a1, b1, c1, 0, ...],
[0, a2, b2, c2, ...],
...]

• B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]
Returns

matrix as Matrix object
Raises

ZeroDivisionError – singular matrix
ezdxf.math.linalg.banded_matrix(A:Matrix, check_all=True)→ tuple[Matrix, int, int]

Transform matrix A into a compact banded matrix representation. Returns compact representation as Matrix
object and lower- and upper band count m1 and m2.

Parameters
• A – input Matrix
• check_all – check all diagonals if True or abort testing after first all zero diagonal if
False.

ezdxf.math.linalg.detect_banded_matrix(A:Matrix, check_all=True)→ tuple[int, int]
Returns lower- and upper band count m1 and m2.

Parameters
• A – input Matrix
• check_all – check all diagonals if True or abort testing after first all zero diagonal if
False.

ezdxf.math.linalg.compact_banded_matrix(A:Matrix, m1: int, m2: int)→ Matrix
Returns compact banded matrix representation as Matrix object.

Parameters
• A – matrix to transform
• m1 – lower band count, excluding main matrix diagonal
• m2 – upper band count, excluding main matrix diagonal

Matrix Class

class ezdxf.math.linalg.Matrix(items: Any = None, shape: Tuple[int, int] | None = None, matrix:
List[List[float]] | ndarray[Any, dtype[float64]] | None = None)

Basic matrix implementation based numpy.ndarray. Matrix data is stored in row major order, this means in a
list of rows, where each row is a list of floats.
Initialization:

• Matrix(shape=(rows, cols)) … new matrix filled with zeros
• Matrix(matrix[, shape=(rows, cols)]) … from copy of matrix and optional reshape
• Matrix([[row_0], [row_1], …, [row_n]]) … from Iterable[Iterable[float]]
• Matrix([a1, a2, …, an], shape=(rows, cols)) … from Iterable[float] and shape

506 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Changed in version 1.2: Implementation based on numpy.ndarray.
matrix

matrix data as numpy.ndarray
nrows

Count of matrix rows.
ncols

Count of matrix columns.
shape

Shape of matrix as (n, m) tuple for n rows and m columns.
append_col(items: Sequence[float])→ None

Append a column to the matrix.
append_row(items: Sequence[float])→ None

Append a row to the matrix.
col(index: int)→ list[float]

Return column index as list of floats.
cols()→ list[list[float]]

Return a list of all columns.
determinant()→ float

Returns determinant of matrix, raises ZeroDivisionError if matrix is singular.
diag(index: int)→ list[float]

Returns diagonal index as list of floats.
An index of 0 specifies the main diagonal, negative values specifies diagonals below the main diagonal and
positive values specifies diagonals above the main diagonal.
e.g. given a 4x4 matrix:
• index 0 is [00, 11, 22, 33],
• index -1 is [10, 21, 32] and
• index +1 is [01, 12, 23]

freeze()→ Matrix
Returns a frozen matrix, all data is stored in immutable tuples.

classmethod identity(shape: Tuple[int, int])→ Matrix

Returns the identity matrix for configuration shape.
inverse()→ Matrix

Returns inverse of matrix as new object.
isclose(other: object)→ bool

Returns True if matrices are close to equal, tolerance value for comparison is adjustable by the attribute
Matrix.abs_tol.

static reshape(items: Iterable[float], shape: Tuple[int, int])→ Matrix

Returns a new matrix for iterable items in the configuration of shape.

9.8. Reference 507

ezdxf Documentation, Release 1.3.2

row(index: int)→ list[float]
Returns row index as list of floats.

rows()→ list[list[float]]
Return a list of all rows.

set_col(index: int, items: float | Iterable[float] = 1.0)→ None
Set column values to a fixed value or from an iterable of floats.

set_diag(index: int = 0, items: float | Iterable[float] = 1.0)→ None
Set diagonal values to a fixed value or from an iterable of floats.
An index of 0 specifies the main diagonal, negative values specifies diagonals below the main diagonal and
positive values specifies diagonals above the main diagonal.
e.g. given a 4x4 matrix: index 0 is [00, 11, 22, 33], index -1 is [10, 21, 32] and index +1 is [01, 12, 23]

set_row(index: int, items: float | Iterable[float] = 1.0)→ None
Set row values to a fixed value or from an iterable of floats.

transpose()→ Matrix
Returns a new transposed matrix.

__getitem__(item: tuple[int, int])→ float
Get value by (row, col) index tuple, fancy slicing as known from numpy is not supported.

__setitem__(item: tuple[int, int], value: float)
Set value by (row, col) index tuple, fancy slicing as known from numpy is not supported.

__eq__(other: object)→ bool
Returns True if matrices are equal.

__add__(other: Matrix | float)→ Matrix
Matrix addition by another matrix or a float, returns a new matrix.

__sub__(other: Matrix | float)→ Matrix
Matrix subtraction by another matrix or a float, returns a new matrix.

__mul__(other: Matrix | float)→ Matrix
Matrix multiplication by another matrix or a float, returns a new matrix.

NumpySolver

class ezdxf.math.linalg.NumpySolver(A: List[List[float]] | ndarray[Any, dtype[float64]])
Replaces in v1.2 the LUDecomposition solver.
solve_vector(B: Iterable[float])→ list[float]

Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as vector B
with n elements.

Parameters
B – vector [b1, b2, …, bn]

Raises
numpy.linalg.LinAlgError – singular matrix

508 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

solve_matrix(B: List[List[float]] | ndarray[Any, dtype[float64]])→ Matrix
Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as nxmMatrix
B.

Parameters
B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]

Raises
numpy.linalg.LinAlgError – singular matrix

BandedMatrixLU Class

class ezdxf.math.linalg.BandedMatrixLU(A:Matrix, m1: int, m2: int)
Represents a LU decomposition of a compact banded matrix.
upper

Upper triangle
lower

Lower triangle
m1

Lower band count, excluding main matrix diagonal
m2

Upper band count, excluding main matrix diagonal
index

Swapped indices
nrows

Count of matrix rows.
solve_vector(B: Iterable[float])→ list[float]

Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as
vector B with n elements.

Parameters
B – vector [b1, b2, …, bn]

Returns
vector as list of floats

solve_matrix(B: List[List[float]] | ndarray[Any, dtype[float64]])→ Matrix
Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as nxm
Matrix B.

Parameters
B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]

Returns
matrix as Matrix object

9.8. Reference 509

ezdxf Documentation, Release 1.3.2

RTree

RTree module: ezdxf.math.rtree
class ezdxf.math.rtree.RTree(points: Iterable[T], max_node_size: int = 5)

Immutable spatial search tree loosely based on R-trees.
The search tree is buildup once at initialization and immutable afterwards, because rebuilding the tree after inserting
or deleting nodes is very costly and makes the implementation very complex.
Without the ability to alter the content the restrictions which forces the tree balance at growing and shrinking of
the original R-trees, are ignored, like the fixed minimum and maximum node size.
This class uses internally only 3D bounding boxes, but also supports Vec2 as well as Vec3 objects as input data,
but point types should not be mixed in a search tree.
The point objects keep their type and identity and the returned points of queries can be compared by theis operator
for identity to the input points.
The implementation requires a maximum node size of at least 2 and does not support empty trees!

Raises
ValueError – max. node size too small or no data given

__len__()

Returns the count of points in the search tree.
__iter__()→ Iterator[T]

Yields all points in the search tree.
contains(point: T)→ bool

Returns True if point exists, the comparison is done by the isclose() method and not by the identity
operator is.

nearest_neighbor(target: T)→ tuple[T, float]
Returns the closest point to the target point and the distance between these points.

points_in_sphere(center: T , radius: float)→ Iterator[T]
Returns all points in the range of the given sphere including the points at the boundary.

points_in_bbox(bbox: BoundingBox)→ Iterator[T]
Returns all points in the range of the given bounding box including the points at the boundary.

avg_leaf_size(spread: float = 1.0)→ float
Returns the average size of the leaf bounding boxes. The size of a leaf bounding box is the maximum size
in all dimensions. Excludes outliers of sizes beyond mean + standard deviation * spread. Returns 0.0 if less
than two points in tree.

avg_spherical_envelope_radius(spread: float = 1.0)→ float
Returns the average radius of spherical envelopes of the leaf nodes. Excludes outliers with radius beyond
mean + standard deviation * spread. Returns 0.0 if less than two points in tree.

avg_nn_distance(spread: float = 1.0)→ float
Returns the average of the nearest neighbor distances inside (!) leaf nodes. Excludes outliers with a distance
beyond the overall mean + standard deviation * spread. Returns 0.0 if less than two points in tree.

Warning: This is a brute force check with O(n!) for each leaf node, where n is the point count of the
leaf node.

510 Chapter 9. Contents

https://en.wikipedia.org/wiki/R-tree
https://en.wikipedia.org/wiki/R-tree

ezdxf Documentation, Release 1.3.2

Triangulation

Triangulation module: ezdxf.math.triangulation
ezdxf.math.triangulation.mapbox_earcut_2d(exterior: Iterable[UVec], holes:

Iterable[Iterable[UVec]] | None = None)→
list[Sequence[Vec2]]

Mapbox triangulation algorithm with hole support for 2D polygons.
Implements a modified ear slicing algorithm, optimized by z-order curve hashing and extended to handle holes,
twisted polygons, degeneracies and self-intersections in a way that doesn’t guarantee correctness of triangulation,
but attempts to always produce acceptable results for practical data.
Source: https://github.com/mapbox/earcut

Parameters
• exterior – exterior polygon as iterable of Vec2 objects
• holes – iterable of holes as iterable of Vec2 objects, a hole with single point represents a
Steiner point.

Returns
yields the result as 3-tuples of Vec2 objects

ezdxf.math.triangulation.mapbox_earcut_3d(exterior: Iterable[UVec], holes:
Iterable[Iterable[UVec]] | None = None)→
Iterator[Sequence[Vec3]]

Mapbox triangulation algorithm with hole support for flat 3D polygons.
Implements a modified ear slicing algorithm, optimized by z-order curve hashing and extended to handle holes,
twisted polygons, degeneracies and self-intersections in a way that doesn’t guarantee correctness of triangulation,
but attempts to always produce acceptable results for practical data.
Source: https://github.com/mapbox/earcut

Parameters
• exterior – exterior polygon as iterable of Vec3 objects
• holes – iterable of holes as iterable of Vec3 objects, a hole with single point represents a
Steiner point.

Returns
yields the result as 3-tuples of Vec3 objects

Raises
• TypeError – invalid input data type
• ZeroDivisionError – normal vector calculation failed

9.8. Reference 511

https://github.com/mapbox/earcut
https://en.wikipedia.org/wiki/Steiner_point_(computational_geometry)
https://github.com/mapbox/earcut
https://en.wikipedia.org/wiki/Steiner_point_(computational_geometry)

ezdxf Documentation, Release 1.3.2

9.8.6 Construction

ACIS Tools

The ezdxf.acis sub-package provides some ACIS data management tools. The main goals of this tools are:
1. load and parse simple and known ACIS data structures
2. create and export simple and known ACIS data structures

It is NOT a goal to load and edit arbitrary existing ACIS structures.
Don’t even try it!

These tools cannot replace the official ACIS SDK due to the complexity of the data structures and the absence of an ACIS
kernel. Without access to the full documentation it is very cumbersome to reverse-engineer entities and their properties,
therefore the analysis of the ACIS data structures is limited to the use as embedded data in DXF and DWG files.
The ezdxf library does not provide an ACIS kernel and there are no plans for implementing one because this is far beyond
my capabilities, but it is possible to extract geometries made up only by flat polygonal faces (polyhedron) from ACIS data.
Exporting polyhedrons as ACIS data and loading this DXF file by Autodesk products or BricsCAD works for SAT data
for DXF R2000-R2010 and for SAB data for DXF R2013-R2018.

Important: Always import from the public interface module ezdxf.acis.api, the internal package and module
structure may change in the future and imports from other modules than api will break.

Functions

ezdxf.acis.api.load_dxf(entity: DXFEntity)→ list[Body]
Load the ACIS bodies from the given DXF entity. This is the recommended way to load ACIS data.
The DXF entity has to be an ACIS based entity and inherit from ezdxf.entities.Body. The entity has to
be bound to a valid DXF document and the DXF version of the document has to be DXF R2000 or newer.

Raises
• DXFTypeError – invalid DXF entity type
• DXFValueError – invalid DXF document
• DXFVersionError – invalid DXF version

Warning: Only a limited count of ACIS entities is supported, all unsupported entities are loaded as
NONE_ENTITY and their data is lost. Exporting such NONE_ENTITIES will raise an ExportError ex-
ception.
To emphasize that again: It is not possible to load and re-export arbitrary ACIS data!

Example:

import ezdxf
from ezdxf.acis import api as acis

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()

(continues on next page)

512 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

for e in msp.query("3DSOLID"):
bodies = acis.load_dxf(e)
...

ezdxf.acis.api.export_dxf(entity: DXFEntity, bodies: Sequence[Body])
Store the ACIS bodies in the given DXF entity. This is the recommended way to set ACIS data of DXF entities.
The DXF entity has to be an ACIS based entity and inherit from ezdxf.entities.Body. The entity has to
be bound to a valid DXF document and the DXF version of the document has to be DXF R2000 or newer.

Raises
• DXFTypeError – invalid DXF entity type
• DXFValueError – invalid DXF document
• DXFVersionError – invalid DXF version

Example:

import ezdxf
from ezdxf.render import forms
from ezdxf.acis import api as acis

doc = ezdxf.new("R2000")
msp = doc.modelspace()

create an ACIS body from a simple cube-mesh
body = acis.body_from_mesh(forms.cube())
solid3d = msp.add_3dsolid()
acis.export_dxf(solid3d, [body])
doc.saveas("cube.dxf")

ezdxf.acis.api.load(data: str | Sequence[str] | bytes | bytearray)→ list[Body]
Returns a list of Body entities from SAT or SAB data. Accepts SAT data as a single string or a sequence of strings
and SAB data as bytes or bytearray.

ezdxf.acis.api.export_sat(bodies: Sequence[Body], version: int = const.DEFAULT_SAT_VERSION)→
list[str]

Export one or more Body entities as text based SAT data.
ACIS version 700 is sufficient for DXF versions R2000, R2004, R2007 and R2010, later DXF versions require
SAB data.

Raises
• ExportError – ACIS structures contain unsupported entities
• InvalidLinkStructure – corrupt link structure

ezdxf.acis.api.export_sab(bodies: Sequence[Body], version: int = const.DEFAULT_SAB_VERSION)→
bytes

Export one or more Body entities as binary encoded SAB data.
ACIS version 21800 is sufficient for DXF versions R2013 and R2018, earlier DXF versions require SAT data.

Raises
• ExportError – ACIS structures contain unsupported entities

9.8. Reference 513

ezdxf Documentation, Release 1.3.2

• InvalidLinkStructure – corrupt link structure
ezdxf.acis.api.mesh_from_body(body: Body, merge_lumps=True)→ list[MeshTransformer]

Returns a list of MeshTransformer instances from the given ACIS Body entity. The list contains multiple
meshes if merge_lumps is False or just a single mesh if merge_lumps is True.
The ACIS format stores the faces in counter-clockwise orientation where the face-normal points outwards (away)
from the solid body (material).

Note: This function returns meshes build up only from flat polygonal Face entities, for a tessellation of more
complex ACIS entities (spline surfaces, tori, cones, …) is an ACIS kernel required which ezdxf does not provide.

Parameters
• body – ACIS entity of type Body
• merge_lumps – returns all Lump entities from a body as a single mesh if True otherwise
each Lump entity is a separated mesh

Raises
TypeError – given body entity has invalid type

The following images show the limitations of the mesh_from_body() function. The first image shows the source
3DSOLID entities with subtraction of entities with flat and curved faces:

Example script to extracts all flat polygonal faces as meshes:

514 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

import ezdxf
from ezdxf.acis import api as acis

doc = ezdxf.readfile("3dsolids.dxf")
msp = doc.modelspace()

doc_out = ezdxf.new()
msp_out = doc_out.modelspace()

for e in msp.query("3DSOLID"):
for body in acis.load_dxf(data):

for mesh in acis.mesh_from_body(body):
mesh.render_mesh(msp_out)

doc_out.saveas("meshes.dxf")

The second image shows the flat faces extracted from the 3DSOLID entities and exported as Mesh entities:

As you can see all faces which do not have straight lines as boundaries are lost.
ezdxf.acis.api.body_from_mesh(mesh: MeshBuilder, precision: int = 6)→ Body

Returns a ACIS Body entity from a MeshBuilder instance.
This entity can be assigned to a Solid3d DXF entity as SAT or SAB data according to the version your DXF
document uses (SAT for DXF R2000 to R2010 and SAB for DXF R2013 and later).
If the mesh contains multiple separated meshes, each mesh will be a separated Lump node. If each mesh should
get its own Body entity, separate the meshes beforehand by the method separate_meshes().

9.8. Reference 515

ezdxf Documentation, Release 1.3.2

A closed mesh creates a solid body and an open mesh creates an open (hollow) shell. The detection if the mesh is
open or closed is based on the edges of the mesh: if all edges of mesh have two adjacent faces the mesh is closed.
The current implementation applies automatically a vertex optimization, which merges coincident vertices into a
single vertex.

ezdxf.acis.api.vertices_from_body(body: Body)→ list[Vec3]
Returns all stored vertices in the given Body entity. The result is not optimized, meaning the vertices are in no
particular order and there are duplicates.
This function can be useful to determining the approximate bounding box of an ACIS entity. The result is exact for
polyhedra with flat faces with straight edges, but not for bodies with curved edges and faces.

Parameters
body – ACIS entity of type Body

Raises
TypeError – given body entity has invalid type

Exceptions

class ezdxf.acis.api.AcisException

Base exception of the ezdxf.acis package.
class ezdxf.acis.api.ParsingError

Exception raised when loading invalid or unknown ACIS structures.
class ezdxf.acis.api.ExportError

Exception raised when exporting invalid or unknown ACIS structures.
class ezdxf.acis.api.InvalidLinkStructure

Exception raised when the internal link structure is damaged.

Entities

A document (sat.pdf) about the basic ACIS 7.0 file format is floating in the internet.
This section contains the additional information about the entities, I got from analyzing the SAT data extracted from DXF
files exported by BricsCAD.
This documentation ignores the differences to the ACIS format prior to version 7.0 and all this differences are handled
internally.
Writing support for ACIS version < 7.0 is not required because all CAD applications should be able to process version
7.0, even if embedded in a very old DXF R2000 format (tested with Autodesk TrueView, BricsCAD and Nemetschek
Allplan).
The first goal is to document the entities which are required to represent a geometry as flat polygonal faces (polyhedron),
which can be converted into a MeshBuilder object.
Topology Entities:

• Body

• Lump

• Shell

• Face

516 Chapter 9. Contents

https://duckduckgo.com/?q=acis%2Bsat.pdf

ezdxf Documentation, Release 1.3.2

• Loop

• Coedge

• Edge

• Vertex

Geometry Entities:
• Transform

• Surface

• Plane

• Curve

• StraightCurve

• Point

ezdxf.acis.entities.NONE_REF

Special sentinel entity which supports the type attribute and the is_none property. Represents all unset entities.
Use this idiom on any entity type to check if an entity is unset:

if entity.is_none:
...

AcisEntity

class ezdxf.acis.entities.AcisEntity

Base class for all ACIS entities.
type

Name of the type as str.
id

Unique id as int or -1 if not set.
attributes

Reference to the first Attribute entity (not supported).
is_none

True for unset entities represented by the NONE_REF instance.

Transform

class ezdxf.acis.entities.Transform(AcisEntity)

Represents an affine transformation operation which transform the body to the final location, size and rotation.
matrix

Transformation matrix of type ezdxf.math.Matrix44.

9.8. Reference 517

ezdxf Documentation, Release 1.3.2

Body

class ezdxf.acis.entities.Body(AcisEntity)
Represents a solid geometry, which can consist of multiple Lump entities.
pattern

Reference to the Pattern entity.
lump

Reference to the first Lump entity
wire

Reference to the first Wire entity
transform

Reference to the Transform entity (optional)
lumps()→ list[Lump]

Returns all linked Lump entities as a list.
append_lump(lump: Lump)→ None

Append a Lump entity as last lump.

Pattern

class ezdxf.acis.entities.Pattern(AcisEntity)
Not implemented.

Lump

class ezdxf.acis.entities.Lump(AcisEntity)
The lump represents a connected entity and there can be multiple lumps in a Body. Multiple lumps are linked
together by the next_lump attribute which points to the next lump entity the last lump has a NONE_REF as next
lump. The body attribute references to the parent Body entity.
next_lump

Reference to the next Lump entity, the last lump references NONE_REF.
shell

Reference to the Shell entity.
body

Reference to the parent Body entity.
shells()→ list[Shell]

Returns all linked Shell entities as a list.
append_shell(shell: Shell)→ None

Append a Shell entity as last shell.

518 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Wire

class ezdxf.acis.entities.Wire(AcisEntity)
Not implemented.

Shell

class ezdxf.acis.entities.Shell(AcisEntity)
A shell defines the boundary of a solid object or a void (subtraction object). A shell references a list of Face and
Wire entities. All linked Shell entities are disconnected.
next_shell

Reference to the next Shell entity, the last shell references NONE_REF.
subshell

Reference to the first Subshell entity.
face

Reference to the first Face entity.
wire

Reference to the first Wire entity.
lump

Reference to the parent Lump entity.
faces()→ list[Face]

Returns all linked Face entities as a list.
append_face(face: Face)→ None

Append a Face entity as last face.

Subshell

class ezdxf.acis.entities.Subshell(AcisEntity)
Not implemented.

Face

class ezdxf.acis.entities.Face(AcisEntity)
A face is the building block for Shell entities. The boundary of a face is represented by one or more Loop
entities. The spatial geometry of the face is defined by the surface object, which is a bounded or unbounded
parametric 3d surface (plane, ellipsoid, spline-surface, …).
next_face

Reference to the next Face entity, the last face references NONE_REF.
loop

Reference to the first Loop entity.
shell

Reference to the parent Shell entity.

9.8. Reference 519

ezdxf Documentation, Release 1.3.2

subshell

Reference to the parent Subshell entity.
surface

Reference to the parametric Surface geometry.
sense

Boolean value of direction of the face normal with respect to the Surface entity:
• True: “reversed” direction of the face normal
• False: “forward” for same direction of the face normal

double_sided

Boolean value which indicates the sides of the face:
• True: the face is part of a hollow object and has two sides.
• False: the face is part of a solid object and has only one side which points away from the “material”.

containment

Unknown meaning.
If double_sided is True:
• True is “in”
• False is “out”

loops()→ list[Loop]
Returns all linked Loop entities as a list.

append_loop(loop: Loop)→ None
Append a Loop entity as last loop.

Loop

class ezdxf.acis.entities.Loop(AcisEntity)
A loop represents connected coedges which are building the boundaries of a Face, there can be multiple loops
for a single face e.g. faces can contain holes. The coedge attribute references the first Coedge of the loop, the
additional coedges are linked to this first Coedge. In closed loops the coedges are organized as a circular list, in
open loops the last coedge references the NONE_REF entity as next_coedge and the first coedge references the
NONE_REF as prev_coedge.
next_loop

Reference to the next Loop entity, the last loop references NONE_REF.
coedge

Reference to the first Coedge entity.
face

Reference to the parent Face entity.
coedges()→ list[Coedge]

Returns all linked Coedge entities as a list.
set_coedges(coedges: list[Coedge], close=True)→ None

Set all coedges of a loop at once.

520 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Coedge

class ezdxf.acis.entities.Coedge(AcisEntity)
The coedges are a double linked list where next_coedge points to the next Coedge and prev_coedge to
the previous Coedge.
The partner_coedge attribute references the first partner Coedge of an adjacent Face, the partner edges
are organized as a circular list. In a manifold closed surface each Face is connected to one partner face by an
Coedge. In a non-manifold surface a face can have more than one partner face.
next_coedge

References the next Coedge, reference the NONE_REF if it is the last coedge in an open Loop.
prev_coedge

References the previous Coedge, reference the NONE_REF if it is the first coedge in an open Loop.
partner_coedge

References the partner Coedge of an adjacent Face entity. The partner coedges are organized in a circular
list.

edge

References the Edge entity.
loop

References the parent Loop entity.
pcurve

References the PCurve entity.

Edge

class ezdxf.acis.entities.Edge(AcisEntity)
The Edge entity represents the physical edge of an object. Its geometry is defined by the bounded portion of a
parametric space curve. This bounds are stored as object-space Vertex entities.
start_vertex

The start Vertex of the space-curve in object coordinates, if NONE_REF the curve is unbounded in this
direction.

start_param

The parametric starting bound for the parametric curve. Evaluating the curve for this parameter should
return the coordinates of the start_vertex.

end_vertex

The end Vertex of the space-curve in object coordinates, if NONE_REF the curve is unbounded in this
direction.

end_param

The parametric end bound for the parametric curve.
coedge

Parent Coedge of this edge.
curve

The parametric space-curve which defines this edge. The curve can be the NULL_REF while both Vertex
entities are the same vertex. In this case the Edge represents an single point like the apex of a cone.

9.8. Reference 521

ezdxf Documentation, Release 1.3.2

sense

Boolean value which indicates the direction of the edge:
• True: the edge has the “reversed” direction as the underlying curve
• False: the edge has the same direction as the underlying curve (“forward”)

convexity

Unknown meaning, always the string “unknown”.

Vertex

class ezdxf.acis.entities.Vertex(AcisEntity)
Represents a vertex of an Edge entity and references a Point entity.
point

The spatial location in object-space as Point entity.
edge

Parent Edge of this vertex. The vertex can be referenced by multiple edges, anyone of them can be the parent
of the vertex.

Surface

class ezdxf.acis.entities.Surface(AcisEntity)
Abstract base class for all parametric surfaces.
The parameterization of any Surface maps a 2D rectangle (u, v parameters) into the spatial object-space (x, y,
z).
u_bounds

Tuple of (start bound, end bound) parameters as two floats which define the bounds of the parametric surface
in the u-direction, one or both values can be math.inf which indicates an unbounded state of the surface
in that direction.

v_bounds

Tuple of (start bound, end bound) parameters as two floats which define the bounds of the parametric surface
in the v-direction, one or both values can be math.inf which indicates an unbounded state of the surface
in that direction.

abstract evaluate(u: float, v: float)→ Vec3
Returns the spatial location at the parametric surface for the given parameters u and v.

Plane

class ezdxf.acis.entities.Plane(Surface)
Defines a flat plan as parametric surface.
origin

Location vector of the origin of the flat plane as Vec3.
normal

Normal vector of the plane as Vec3. Has to be an unit-vector!

522 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

u_dir

Direction vector of the plane in u-direction as Vec3. Has to be an unit-vector!
v_dir

Direction vector of the plane in v-direction as Vec3. Has to be an unit-vector!
reverse_v

Boolean value which indicates the orientation of the coordinate system:
• True: left-handed system, the v-direction is reversed and the normal vector is v_dir cross u_dir.
• False: right-handed system and the normal vector is u_dir cross v_dir.

Curve

class ezdxf.acis.entities.Curve(AcisEntity)
Abstract base class for all parametric curves.
The parameterization of any Curve maps a 1D line (the parameter) into the spatial object-space (x, y, z).
bounds

Tuple of (start bound, end bound) parameters as two floats which define the bounds of the parametric curve,
one or both values can be math.inf which indicates an unbounded state of the curve in that direction.

abstract evaluate(param: float)→ Vec3
Returns the spatial location at the parametric curve for the given parameter.

StraightCurve

class ezdxf.acis.entities.StraightCurve(Curve)
Defines a straight line as parametric curve.
origin

Location vector of the origin of the straight line as Vec3.
direction

Direction vector the straight line as Vec3. Has to be an unit-vector!

PCurve

class ezdxf.acis.entities.PCurve(AcisEntity)
Not implemented.

Point

class ezdxf.acis.entities.Point(AcisEntity)
Represents a point in the 3D object-space.
location

Cartesian coordinates as Vec3.

9.8. Reference 523

ezdxf Documentation, Release 1.3.2

Bounding Box

Theezdxf.bboxmodule provide tools to calculate bounding boxes formanyDXF entities, but not for all. The bounding
box calculation is based on the ezdxf.disassemble module and therefore has the same limitation.

Warning: If accurate boundary boxes for text entities are important for you, read this first: Text Boundary Calcula-
tion. TL;DR: Boundary boxes for text entities are not accurate!

Unsupported DXF entities:
• All ACIS based types like BODY, 3DSOLID or REGION
• External references (XREF) and UNDERLAY object
• RAY and XRAY, extend into infinite
• ACAD_TABLE, no basic support - only preserved by ezdxf

Unsupported entities are silently ignored, filtering of these DXF types is not necessary.
The base type for bounding boxes is the BoundingBox class from the module ezdxf.math.
The entities iterable as input can be the whole modelspace, an entity query or any iterable container of DXF entities.
The Calculation of bounding boxes of curves is done by flattening the curve by a default flattening distance of 0.01. Set
argument flatten to 0 to speedup the bounding box calculation by accepting less precision for curved objects by using only
the control vertices.
The optional caching object Cache has to be instantiated by the user, this is only useful if the same entities will be
processed multiple times.
Example usage with caching:

from ezdxf import bbox

msp = doc.modelspace()
cache = bbox.Cache()
get overall bounding box
first_bbox = bbox.extents(msp, cache=cache)
bounding box of all LINE entities
second_bbox = bbox.extend(msp.query("LINE"), cache=cache)

Functions

ezdxf.bbox.extents(entities: Iterable[DXFEntity], *, fast=False, cache: Cache | None = None)→
BoundingBox

Returns a single bounding box for all given entities.
If argument fast is True the calculation of Bézier curves is based on their control points, this may return a slightly
larger bounding box.

ezdxf.bbox.multi_flat(entities: Iterable[DXFEntity], *, fast=False, cache: Cache | None = None)→
Iterable[BoundingBox]

Yields a bounding box for each of the given entities.
If argument fast is True the calculation of Bézier curves is based on their control points, this may return a slightly
larger bounding box.

524 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.bbox.multi_recursive(entities: Iterable[DXFEntity], *, fast=False, cache: Cache | None = None)→
Iterable[BoundingBox]

Yields all bounding boxes for the given entities or all bounding boxes for their sub entities. If an entity (INSERT)
has sub entities, only the bounding boxes of these sub entities will be yielded, not the bounding box of the entity
(INSERT) itself.
If argument fast is True the calculation of Bézier curves is based on their control points, this may return a slightly
larger bounding box.

Caching Strategies

Because ezdxf is not a CAD application, ezdxf does not manage data structures which are optimized for a usage by a CAD
kernel. This means that the content of complex entities like block references or leaders has to be created on demand by
DXF primitives on the fly. These temporarily created entities are called virtual entities and have no handle and are not
stored in the entity database.
All this is required to calculate the bounding box of complex entities, and it is therefore a very time consuming task.
By using a Cache object it is possible to speedup this calculations, but this is not a magically feature, it requires an
understanding of what is happening under the hood to achieve any performance gains.
For a single bounding box calculation, without any reuse of entities it makes no sense of using a Cache object, e.g.
calculation of the modelspace extents:

from pathlib import Path
import ezdxf
from ezdxf import bbox

CADKitSamples = Path(ezdxf.EZDXF_TEST_FILES) / 'CADKitSamples'

doc = ezdxf.readfile(CADKitSamples / 'A_000217.dxf')
cache = bbox.Cache()
ext = bbox.extents(doc.modelspace(), cache)

print(cache)

1226 cached objects and not a single cache hit:

Cache(n=1226, hits=0, misses=3273)

The result for using UUIDs to cache virtual entities is not better:

Cache(n=2206, hits=0, misses=3273)

Same count of hits and misses, but now the cache also references ~1000 virtual entities, which block your memory until
the cache is deleted, luckily this is a small DXF file (~838 kB).
Bounding box calculations for multiple entity queries, which have overlapping entity results, using a Cache object may
speedup the calculation:

doc = ezdxf.readfile(CADKitSamples / 'A_000217.dxf.dxf')
msp = doc.modelspace()
cache = bbox.Cache(uuid=False)

ext = bbox.extents(msp, cache)
print(cache)

(continues on next page)

9.8. Reference 525

ezdxf Documentation, Release 1.3.2

(continued from previous page)
process modelspace again
ext = bbox.extents(msp, cache)
print(cache)

Processing the same data again leads some hits:

1st run: Cache(n=1226, hits=0, misses=3273)
2nd run: Cache(n=1226, hits=1224, misses=3309)

Using uuid=True leads not to more hits, but more cache entries:

1st run: Cache(n=2206, hits=0, misses=3273)
2nd run: Cache(n=2206, hits=1224, misses=3309)

Creating stable virtual entities by disassembling the entities at first leads to more hits:

from ezdxf import disassemble

entities = list(disassemble.recursive_decompose(msp))
cache = bbox.Cache(uuid=False)

bbox.extents(entities, cache)
print(cache)

bbox.extents(entities, cache)
print(cache)

First without UUID for stable virtual entities:

1st run: Cache(n=1037, hits=0, misses=4074)
2nd run: Cache(n=1037, hits=1037, misses=6078)

Using UUID for stable virtual entities leads to more hits:

1st run: Cache(n=2019, hits=0, misses=4074)
2nd run: Cache(n=2019, hits=2018, misses=4116)

But caching virtual entities needs also more memory.
In conclusion: Using a cache is only useful, if you often process nearly the same data; only then can an increase in
performance be expected.

Cache Class

class ezdxf.bbox.Cache(uuid=False)
Caching object for ezdxf.math.BoundingBox objects.

Parameters
uuid – use UUIDs for virtual entities

has_data

True if the cache contains any bounding boxes
hits

526 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

misses

invalidate(entities: Iterable[DXFEntity])→ None
Invalidate cache entries for the given DXF entities.
If entities are changed by the user, it is possible to invalidate individual entities. Use with care - discarding
the whole cache is the safer workflow.
Ignores entities which are not stored in cache.

Disassemble

This module provide tools for the recursive decomposition of nested block reference structures into a flat stream of DXF
entities and converting DXF entities into geometric primitives of Path and MeshBuilder objects encapsulated into
intermediate Primitive classes.

Warning: Do not expect advanced vectorization capabilities: Text entities like TEXT, ATTRIB, ATTDEF and
MTEXT get only a rough border box representation. The text2path add-on can convert text into paths. VIEW-
PORT, IMAGE andWIPEOUT are represented by their clipping path. Unsupported entities: all ACIS based entities,
XREF, UNDERLAY, ACAD_TABLE, RAY, XLINE. Unsupported entities will be ignored.

Text Boundary Calculation

Text boundary calculations are based on monospaced (fixed-pitch, fixed-width, non-proportional) font metrics, which do
not provide a good accuracy for text height calculation and much less accuracy for text width calculation. It is possible to
improve this results by using the font support from the optional Matplotlib package.
Install Matplotlib from command line:

C:\> pip3 install matplotlib

The Matplotlib font support will improve the results for TEXT, ATTRIB and ATTDEF. The MTEXT entity has many
advanced features which would require a full “Rich Text Format” rendering and that is far beyond the goals and capabilities
of this library, therefore the boundary box for MTEXT will never be as accurate as in a dedicated CAD application.
Using theMatplotlib font support adds runtime overhead, therefore it is possible to deactivate theMatplotlib font support
by setting the global option:

options.use_matplotlib_font_support = False

Flatten Complex DXF Entities

ezdxf.disassemble.recursive_decompose(entities: Iterable[DXFEntity])→ Iterable[DXFEntity]
Recursive decomposition of the given DXF entity collection into a flat stream of DXF entities. All block references
(INSERT) and entities which provide a virtual_entities()method will be disassembled into simple DXF
sub-entities, therefore the returned entity stream does not contain any INSERT entity.
Point entities will not be disassembled into DXF sub-entities, as defined by the current point style $PDMODE.
These entity types include sub-entities and will be decomposed into simple DXF entities:

• INSERT
• DIMENSION

9.8. Reference 527

ezdxf Documentation, Release 1.3.2

• LEADER
• MLEADER
• MLINE

Decomposition of XREF, UNDERLAY and ACAD_TABLE entities is not supported.
This function does not apply the clipping path created by the XCLIP command. The function returns all entities
and ignores the clipping path polygon and no entity is clipped.

Entity Deconstruction

These functions disassemble DXF entities into simple geometric objects like meshes, paths or vertices. The Primitive
is a simplified intermediate class to use a common interface on various DXF entities.
ezdxf.disassemble.make_primitive(entity: DXFEntity, max_flattening_distance=None)→ Primitive

Factory to create path/mesh primitives. Themax_flattening_distance defines the max distance between the approx-
imation line and the original curve. Use max_flattening_distance to override the default value.
Returns an empty primitive for unsupported entities. The empty state of a primitive can be checked by the property
is_empty. The path and the mesh attributes of an empty primitive are None and the vertices()method
yields no vertices.

ezdxf.disassemble.to_primitives(entities: Iterable[DXFEntity], max_flattening_distance: float | None =
None)→ Iterable[Primitive]

Yields all DXF entities as path or mesh primitives. Yields unsupported entities as empty primitives, see
make_primitive().

Parameters
• entities – iterable of DXF entities
• max_flattening_distance – override the default value

ezdxf.disassemble.to_meshes(primitives: Iterable[Primitive])→ Iterable[MeshBuilder]
Yields all MeshBuilder objects from the given primitives. Ignores primitives without a defined mesh.

ezdxf.disassemble.to_paths(primitives: Iterable[Primitive])→ Iterable[Path]
Yields all Path objects from the given primitives. Ignores primitives without a defined path.

ezdxf.disassemble.to_vertices(primitives: Iterable[Primitive])→ Iterable[Vec3]
Yields all vertices from the given primitives. Paths will be flattened to create the associated vertices. See also
to_control_vertices() to collect only the control vertices from the paths without flattening.

ezdxf.disassemble.to_control_vertices(primitives: Iterable[Primitive])→ Iterable[Vec3]
Yields all path control vertices and all mesh vertices from the given primitives. Liketo_vertices(), but without
flattening.

class ezdxf.disassemble.Primitive

Interface class for path/mesh primitives.
entity

Reference to the source DXF entity of this primitive.
max_flattening_distance

The max_flattening_distance attribute defines the max distance in drawing units between the approximation line
and the original curve. Set the value by direct attribute access. (float) default = 0.01

528 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

property path: Path | None

Path representation or None, idiom to check if is a path representation (could be empty):

if primitive.path is not None:
process(primitive.path)

property mesh: MeshBuilder | None

MeshBuilder representation or None, idiom to check if is a mesh representation (could be empty):

if primitive.mesh is not None:
process(primitive.mesh)

property is_empty: bool

Returns True if represents an empty primitive which do not yield any vertices.
abstract vertices()→ Iterable[Vec3]

Yields all vertices of the path/mesh representation as Vec3 objects.
bbox(fast=False)→ BoundingBox

Returns the BoundingBox of the path/mesh representation. Returns the precise bounding box for the path
representation if fast is False, otherwise the bounding box for Bézier curves is based on their control points.

Math Construction Tools

These are links to tools in the ezdxf.math core module:

ezdxf.math.ConstructionRay Construction tool for infinite 2D rays.
ezdxf.math.ConstructionLine Construction tool for 2D lines.
ezdxf.math.ConstructionCircle Construction tool for 2D circles.
ezdxf.math.ConstructionArc Construction tool for 2D arcs.
ezdxf.math.ConstructionEllipse Construction tool for 3D ellipsis.
ezdxf.math.ConstructionBox Construction tool for 2D rectangles.
ezdxf.math.ConstructionPolyline Construction tool for 3D polylines.
ezdxf.math.Shape2d Construction tools for 2D shapes.
ezdxf.math.BSpline B-spline construction tool.
ezdxf.math.Bezier4P Implements an optimized cubic Bézier curve for exact 4

control points.
ezdxf.math.Bezier3P Implements an optimized quadratic Bézier curve for exact

3 control points.
ezdxf.math.Bezier Generic Bézier curve of any degree.
ezdxf.math.EulerSpiral This class represents an euler spiral (clothoid) for curva-

ture (Radius of curvature).

9.8. Reference 529

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

ezdxf Documentation, Release 1.3.2

Path

This module implements a geometric Path, supported by several render backends, with the goal to create such paths
from DXF entities like LWPOLYLINE, POLYLINE or HATCH and send them to the render backend, see ezdxf.
addons.drawing.
Minimum common interface:

• matplotlib: PathPatch
– matplotlib.path.Path() codes:
– MOVETO
– LINETO
– CURVE3 - quadratic Bèzier-curve
– CURVE4 - cubic Bèzier-curve

• PyQt: QPainterPath
– moveTo()
– lineTo()
– quadTo() - quadratic Bèzier-curve (converted to a cubic Bèzier-curve)
– cubicTo() - cubic Bèzier-curve

• PyCairo: Context
– move_to()
– line_to()
– no support for quadratic Bèzier-curve
– curve_to() - cubic Bèzier-curve

• SVG: SVG-Path
– “M” - absolute move to
– “L” - absolute line to
– “Q” - absolute quadratic Bèzier-curve
– “C” - absolute cubic Bèzier-curve

ARC and ELLIPSE entities are approximated by multiple cubic Bézier-curves, which are close enough for display ren-
dering. Non-rational SPLINES of 3rd degree can be represented exact as multiple cubic Bézier-curves, other B-splines
will be approximated. The XLINE and the RAY entities are not supported, because of their infinite nature.
This Path class is a full featured 3D object, although the backends only support 2D paths.

Hint: A Path can not represent a point. A Path with only a start point yields no vertices!

The usability of the Path class expanded by the introduction of the reverse conversion from Path to DXF entities
(LWPOLYLINE, POLYLINE, LINE), and many other tools in ezdxf v0.16. To emphasize this new usability, the Path
class has got its own subpackage ezdxf.path.
Empty-Path

Contains only a start point, the length of the path is 0 and the methods Path.approximate(), Path.
flattening() and Path.control_vertices() do not yield any vertices.

530 Chapter 9. Contents

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch
https://doc.qt.io/qt-5/qpainterpath.html
https://pycairo.readthedocs.io/en/latest/reference/context.html
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths

ezdxf Documentation, Release 1.3.2

Single-Path
The Path object contains only one path without gaps, the property Path.has_sub_paths is False and the
method Path.sub_paths() yields only this one path.

Multi-Path
The Path object contains more than one path, the property Path.has_sub_paths is True and the method
Path.sub_paths() yields all paths within this object as single-path objects. It is not possible to detect the
orientation of a multi-path object, therefore the methods Path.has_clockwise_orientation(), Path.
clockwise() and Path.counter_clockwise() raise a TypeError exception.

Warning: Always import from the top level ezdxf.path, never from the sub-modules

Factory Functions

Functions to create Path objects from other objects.
ezdxf.path.make_path(entity: DXFEntity)→ Path

Factory function to create a single Path object from a DXF entity. Supported DXF types:
• LINE
• CIRCLE
• ARC
• ELLIPSE
• SPLINE and HELIX
• LWPOLYLINE
• 2D and 3D POLYLINE
• SOLID, TRACE, 3DFACE
• IMAGE, WIPEOUT clipping path
• VIEWPORT clipping path
• HATCH as Multi-Path object

Parameters
• entity – DXF entity
• segments – minimal count of cubic Bézier-curves for elliptical arcs like CIRCLE, ARC,
ELLIPSE, BULGE see Path.add_ellipse()

• level – subdivide level for SPLINE approximation, see Path.add_spline()
Raises

TypeError – for unsupported DXF types

ezdxf.path.from_hatch(hatch: DXFPolygon, offset: Vec3 = NULLVEC)→ Iterator[Path]
Yield all HATCH/MPOLYGON boundary paths as separated Path objects in WCS coordinates.

ezdxf.path.from_vertices(vertices: Iterable[UVec], close=False)→ Path
Returns a Path object from the given vertices.

9.8. Reference 531

ezdxf Documentation, Release 1.3.2

Render Functions

Functions to create DXF entities from paths and add them to the modelspace, a paperspace layout or a block definition.
ezdxf.path.render_hatches(layout: GenericLayoutType, paths: Iterable[Path], *, edge_path: bool = True,

distance: float = MAX_DISTANCE, segments: int = MIN_SEGMENTS, g1_tol:
float = G1_TOL, extrusion: UVec = Z_AXIS, dxfattribs=None)→ EntityQuery

Render the given paths into layout as Hatch entities. The extrusion vector is applied to all paths, all vertices are
projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane
elevation is the distance from the WCS origin to the start point of the first path.

Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path or Path2d objects
• edge_path – True for edge paths build of LINE and SPLINE edges, False for only
LWPOLYLINE paths as boundary paths

• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten polyline paths
• g1_tol – tolerance for G1 continuity check to separate SPLINE edges
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs

Returns
created entities in an EntityQuery object

ezdxf.path.render_lines(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, dxfattribs=None)→
EntityQuery

Render the given paths into layout as Line entities.
Parameters

• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path`or :class:`Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs

Returns
created entities in an EntityQuery object

ezdxf.path.render_lwpolylines(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, extrusion: UVec =
Z_AXIS, dxfattribs=None)→ EntityQuery

Render the given paths into layout as LWPolyline entities. The extrusion vector is applied to all paths, all vertices
are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The
plane elevation is the distance from the WCS origin to the start point of the first path.

Parameters
• layout – the modelspace, a paperspace layout or a block definition

532 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• paths – iterable of Path or Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs

Returns
created entities in an EntityQuery object

ezdxf.path.render_mpolygons(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, extrusion: UVec =
Z_AXIS, dxfattribs=None)→ EntityQuery

Render the given paths into layout as MPolygon entities. The MPOLYGON entity supports only polyline bound-
ary paths. All curves will be approximated.
The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector.
The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start
point of the first path.

Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path or Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten polyline paths
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs

Returns
created entities in an EntityQuery object

ezdxf.path.render_polylines2d(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
0.01, segments: int = 4, extrusion: UVec = Z_AXIS, dxfattribs=None)→
EntityQuery

Render the given paths into layout as 2D Polyline entities. The extrusion vector is applied to all paths, all
vertices are projected onto the plane normal to this extrusion vector.The default extrusion vector is the WCS z-axis.
The plane elevation is the distance from the WCS origin to the start point of the first path.

Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path or Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs

Returns
created entities in an EntityQuery object

9.8. Reference 533

ezdxf Documentation, Release 1.3.2

ezdxf.path.render_polylines3d(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, dxfattribs=None)
→ EntityQuery

Render the given paths into layout as 3D Polyline entities.
Parameters

• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path`or :class:`Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs

Returns
created entities in an EntityQuery object

ezdxf.path.render_splines_and_polylines(layout: GenericLayoutType, paths: Iterable[Path], *,
g1_tol: float = G1_TOL, dxfattribs=None)→ EntityQuery

Render the given paths into layout as Spline and 3D Polyline entities.
Parameters

• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path`or :class:`Path2d objects
• g1_tol – tolerance for G1 continuity check
• dxfattribs – additional DXF attribs

Returns
created entities in an EntityQuery object

Entity Maker

Functions to create DXF entities from paths.
ezdxf.path.to_hatches(paths: Iterable[Path], *, edge_path: bool = True, distance: float = MAX_DISTANCE,

segments: int = MIN_SEGMENTS, g1_tol: float = G1_TOL, extrusion: UVec =
Z_AXIS, dxfattribs=None)→ Iterator[Hatch]

Convert the given paths into Hatch entities. Uses LWPOLYLINE paths for boundaries without curves and edge
paths, build of LINE and SPLINE edges, as boundary paths for boundaries including curves. The extrusion vector
is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion
vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first
path.

Parameters
• paths – iterable of Path objects
• edge_path – True for edge paths build of LINE and SPLINE edges, False for only
LWPOLYLINE paths as boundary paths

• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten LWPOLYLINE paths
• g1_tol – tolerance for G1 continuity check to separate SPLINE edges

534 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• extrusion – extrusion vector to all paths
• dxfattribs – additional DXF attribs

Returns
iterable of Hatch objects

ezdxf.path.to_lines(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, dxfattribs=None)→ Iterator[Line]

Convert the given paths into Line entities.
Parameters

• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs

Returns
iterable of Line objects

ezdxf.path.to_lwpolylines(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None)→
Iterator[LWPolyline]

Convert the given paths into LWPolyline entities. The extrusion vector is applied to all paths, all vertices are
projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane
elevation is the distance from the WCS origin to the start point of the first path.

Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs

Returns
iterable of LWPolyline objects

ezdxf.path.to_mpolygons(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None)→
Iterator[MPolygon]

Convert the given paths into MPolygon entities. In contrast to HATCH, MPOLYGON supports only polyline
boundary paths. All curves will be approximated.
The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector.
The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start
point of the first path.

Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten LWPOLYLINE paths
• extrusion – extrusion vector to all paths

9.8. Reference 535

ezdxf Documentation, Release 1.3.2

• dxfattribs – additional DXF attribs
Returns

iterable of MPolygon objects
ezdxf.path.to_polylines2d(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =

MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None)→
Iterator[Polyline]

Convert the given paths into 2D Polyline entities. The extrusion vector is applied to all paths, all vertices are
projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane
elevation is the distance from the WCS origin to the start point of the first path.

Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs

Returns
iterable of 2D Polyline objects

ezdxf.path.to_polylines3d(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, dxfattribs=None)→ Iterator[Polyline]

Convert the given paths into 3D Polyline entities.
Parameters

• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs

Returns
iterable of 3D Polyline objects

ezdxf.path.to_splines_and_polylines(paths: Iterable[Path], *, g1_tol: float = G1_TOL,
dxfattribs=None)→ Iterator[Spline | Polyline]

Convert the given paths into Spline and 3D Polyline entities.
Parameters

• paths – iterable of Path objects
• g1_tol – tolerance for G1 continuity check
• dxfattribs – additional DXF attribs

Returns
iterable of Line objects

536 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Tool Maker

Functions to create construction tools.
ezdxf.path.to_bsplines_and_vertices(path: Path, g1_tol: float = G1_TOL)→ Iterator[BSpline |

List[Vec3]]
Convert a Path object into multiple cubic B-splines and polylines as lists of vertices. Breaks adjacent Bèzier
without G1 continuity into separated B-splines.

Parameters
• path – Path objects
• g1_tol – tolerance for G1 continuity check

Returns
BSpline and lists of Vec3

Utility Functions

ezdxf.path.add_bezier3p(path: Path, curves: Iterable[Bezier3P])→ None
Add multiple quadratic Bèzier-curves to the given path.
Auto-detect the connection point to the given path, if neither the start- nor the end point of the curves is close to
the path end point, a line from the path end point to the start point of the first curve will be added automatically.

ezdxf.path.add_bezier4p(path: Path, curves: Iterable[Bezier4P])→ None
Add multiple cubic Bèzier-curves to the given path.
Auto-detect the connection point to the given path, if neither the start- nor the end point of the curves is close to
the path end point, a line from the path end point to the start point of the first curve will be added automatically.

ezdxf.path.add_ellipse(path: Path, ellipse: ConstructionEllipse, segments=1, reset=True)→ None
Add an elliptical arc as multiple cubic Bèzier-curves to the given path, use from_arc() constructor of class
ConstructionEllipse to add circular arcs.
Auto-detect the connection point to the given path, if neither the start- nor the end point of the ellipse is close
to the path end point, a line from the path end point to the ellipse start point will be added automatically (see
add_bezier4p()).
By default, the start of an empty path is set to the start point of the ellipse, setting argument reset to False
prevents this behavior.

Parameters
• path – Path object
• ellipse – ellipse parameters as ConstructionEllipse object
• segments – count of Bèzier-curve segments, at least one segment for each quarter (pi/2), 1
for as few as possible.

• reset – set start point to start of ellipse if path is empty
ezdxf.path.add_spline(path: Path, spline: BSpline, level=4, reset=True)→ None

Add a B-spline as multiple cubic Bèzier-curves.
Non-rational B-splines of 3rd degree gets a perfect conversion to cubic Bézier curves with a minimal count of curve
segments, all other B-spline require much more curve segments for approximation.

9.8. Reference 537

ezdxf Documentation, Release 1.3.2

Auto-detect the connection point to the given path, if neither the start- nor the end point of the B-spline is close
to the path end point, a line from the path end point to the start point of the B-spline will be added automatically.
(see add_bezier4p()).
By default, the start of an empty path is set to the start point of the spline, setting argument reset to False prevents
this behavior.

Parameters
• path – Path object
• spline – B-spline parameters as BSpline object
• level – subdivision level of approximation segments
• reset – set start point to start of spline if path is empty

ezdxf.path.bbox(paths: Iterable[Path], *, fast=False)→ BoundingBox

Returns the BoundingBox for the given paths.
Parameters

• paths – iterable of Path or Path2d objects
• fast – calculates the precise bounding box of Bèzier curves if False, otherwise uses the
control points of Bézier curves to determine their bounding box.

ezdxf.path.chamfer(points: Sequence[Vec3], length: float)→ Path
Returns a Path with chamfers of given length between straight line segments.

Parameters
• points – coordinates of the line segments
• length – chamfer length

ezdxf.path.chamfer2(points: Sequence[Vec3], a: float, b: float)→ Path
Returns a Path with chamfers at the given distances a and b from the segment points between straight line seg-
ments.

Parameters
• points – coordinates of the line segments
• a – distance of the chamfer start point to the segment point
• b – distance of the chamfer end point to the segment point

ezdxf.path.fillet(points: Sequence[Vec3], radius: float)→ Path
Returns a Path with circular fillets of given radius between straight line segments.

Parameters
• points – coordinates of the line segments
• radius – fillet radius

ezdxf.path.fit_paths_into_box(paths: Iterable[Path], size: tuple[float, float, float], uniform: bool = True,
source_box: BoundingBox | None = None)→ list[Path]

Scale the given paths to fit into a box of the given size, so that all path vertices are inside these borders. If source_box
is None the default source bounding box is calculated from the control points of the paths.
Note: if the target size has a z-size of 0, the paths are projected into the xy-plane, same is true for the x-size, projects
into the yz-plane and the y-size, projects into and xz-plane.

Parameters

538 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• paths – iterable of Path objects
• size – target box size as tuple of x-, y- and z-size values
• uniform – True for uniform scaling
• source_box – pass precalculated source bounding box, or None to calculate the default
source bounding box from the control vertices

ezdxf.path.have_close_control_vertices(a: Path, b: Path, *, rel_tol=1e-9, abs_tol=1e-12)→ bool
Returns True if the control vertices of given paths are close.

ezdxf.path.lines_to_curve3(path: Path)→ Path
Replaces all lines by quadratic Bézier curves. Returns a new Path instance.

ezdxf.path.lines_to_curve4(path: Path)→ Path
Replaces all lines by cubic Bézier curves. Returns a new Path instance.

ezdxf.path.polygonal_fillet(points: Sequence[Vec3], radius: float, count: int = 32)→ Path
Returns a Path with polygonal fillets of given radius between straight line segments. The count argument defines
the vertex count of the fillet for a full circle.

Parameters
• points – coordinates of the line segments
• radius – fillet radius
• count – polygon vertex count for a full circle, minimum is 4

ezdxf.path.single_paths(paths: Iterable[Path])→ Iterable[Path]
Yields all given paths and their sub-paths as single path objects.

ezdxf.path.to_multi_path(paths: Iterable[Path])→ Path
Returns a multi-path object from all given paths and their sub-paths. Ignores paths without any commands (empty
paths).

ezdxf.path.transform_paths(paths: Iterable[Path], m: Matrix44)→ list[Path]
Transform multiple path objects at once by transformation matrixm. Returns a list of the transformed path objects.

Parameters
• paths – iterable of Path or Path2d objects
• m – transformation matrix of type Matrix44

ezdxf.path.transform_paths_to_ocs(paths: Iterable[Path], ocs: OCS)→ list[Path]
Transform multiple Path objects at once from WCS to OCS. Returns a list of the transformed Path objects.

Parameters
• paths – iterable of Path or Path2d objects
• ocs – OCS transformation of type OCS

ezdxf.path.triangulate(paths: Iterable[Path], max_sagitta: float = 0.01, min_segments: int = 16)→
Iterator[Sequence[Vec2]]

Tessellate nested 2D paths into triangle-faces. For 3D paths the projection onto the xy-plane will be triangulated.
Parameters

• paths – iterable of nested Path instances

9.8. Reference 539

ezdxf Documentation, Release 1.3.2

• max_sagitta – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.

• min_segments – minimum segment count per Bézier curve

Basic Shapes

ezdxf.path.elliptic_transformation(center: UVec = (0, 0, 0), radius: float = 1, ratio: float = 1,
rotation: float = 0)→ Matrix44

Returns the transformation matrix to transform a unit circle into an arbitrary circular- or elliptic arc.
Example how to create an ellipse with a major axis length of 3, a minor axis length 1.5 and rotated about 90°:

m = elliptic_transformation(radius=3, ratio=0.5, rotation=math.pi / 2)
ellipse = shapes.unit_circle(transform=m)

Parameters
• center – curve center in WCS
• radius – radius of the major axis in drawing units
• ratio – ratio of minor axis to major axis
• rotation – rotation angle about the z-axis in radians

ezdxf.path.gear(count: int, top_width: float, bottom_width: float, height: float, outside_radius: float, transform:
Matrix44 | None = None)→ Path

Returns a gear (cogwheel) shape as a Path object, with the center at (0, 0, 0). The base geometry is created by
function ezdxf.render.forms.gear().

Warning: This function does not create correct gears for mechanical engineering!

Parameters
• count – teeth count >= 3
• top_width – teeth width at outside radius
• bottom_width – teeth width at base radius
• height – teeth height; base radius = outside radius - height
• outside_radius – outside radius
• transform – transformation Matrix applied to the gear shape

ezdxf.path.helix(radius: float, pitch: float, turns: float, ccw=True, segments: int = 4)→ Path
Returns a helix as a Path object. The center of the helix is always (0, 0, 0), a positive pitch value creates a helix
along the +z-axis, a negative value along the -z-axis.

Parameters
• radius – helix radius
• pitch – the height of one complete helix turn
• turns – count of turns

540 Chapter 9. Contents

https://en.wikipedia.org/wiki/Gear
https://en.wikipedia.org/wiki/Helix

ezdxf Documentation, Release 1.3.2

• ccw – creates a counter-clockwise turning (right-handed) helix if True
• segments – cubic Bezier segments per turn

ezdxf.path.ngon(count: int, length: float | None = None, radius: float = 1.0, transform: Matrix44 | None =
None)→ Path

Returns a regular polygon a Path object, with the center at (0, 0, 0). The polygon size is determined by the edge
length or the circum radius argument. If both are given length has higher priority. Default size is a radius of 1.
The ngon starts with the first vertex is on the x-axis! The base geometry is created by function ezdxf.render.
forms.ngon().

Parameters
• count – count of polygon corners >= 3
• length – length of polygon side
• radius – circum radius, default is 1
• transform – transformation Matrix applied to the ngon

ezdxf.path.rect(width: float = 1, height: float = 1, transform: Matrix44 | None = None)→ Path
Returns a closed rectangle as a Path object, with the center at (0, 0, 0) and the given width and height in drawing
units.

Parameters
• width – width of the rectangle in drawing units, width > 0
• height – height of the rectangle in drawing units, height > 0
• transform – transformation Matrix applied to the rectangle

ezdxf.path.star(count: int, r1: float, r2: float, transform: Matrix44 | None = None)→ Path
Returns a star shape as a Path object, with the center at (0, 0, 0).
Argument count defines the count of star spikes, r1 defines the radius of the “outer” vertices and r2 defines the
radius of the “inner” vertices, but this does not mean that r1 has to be greater than r2. The star shape starts with
the first vertex is on the x-axis! The base geometry is created by function ezdxf.render.forms.star().

Parameters
• count – spike count >= 3
• r1 – radius 1
• r2 – radius 2
• transform – transformation Matrix applied to the star

ezdxf.path.unit_circle(start_angle: float = 0, end_angle: float = math.tau, segments: int = 1, transform:
Matrix44 | None = None)→ Path

Returns a unit circle as a Path object, with the center at (0, 0, 0) and the radius of 1 drawing unit.
The arc spans from the start- to the end angle in counter-clockwise orientation. The end angle has to be greater
than the start angle and the angle span has to be greater than 0.

Parameters
• start_angle – start angle in radians
• end_angle – end angle in radians (end_angle > start_angle!)
• segments – count of Bèzier-curve segments, default is one segment for each arc quarter
(π/2)

9.8. Reference 541

https://en.wikipedia.org/wiki/Regular_polygon
https://en.wikipedia.org/wiki/Star_polygon

ezdxf Documentation, Release 1.3.2

• transform – transformation Matrix applied to the unit circle
ezdxf.path.wedge(start_angle: float, end_angle: float, segments: int = 1, transform: Matrix44 | None = None)

→ Path
Returns a wedge as a Path object, with the center at (0, 0, 0) and the radius of 1 drawing unit.
The arc spans from the start- to the end angle in counter-clockwise orientation. The end angle has to be greater
than the start angle and the angle span has to be greater than 0.

Parameters
• start_angle – start angle in radians
• end_angle – end angle in radians (end_angle > start_angle!)
• segments – count of Bèzier-curve segments, default is one segment for each arc quarter
(π/2)

• transform – transformation Matrix applied to the wedge
The text2path add-on provides additional functions to create paths from text strings and DXF text entities.

The Path Class

class ezdxf.path.Path

property end: Vec3

Path end point.
property has_curves: bool

Returns True if the path has any curve segments.
property has_lines: bool

Returns True if the path has any line segments.
property has_sub_paths: bool

Returns True if the path is a Multi-Path object that contains multiple sub-paths.
property is_closed: bool

Returns True if the start point is close to the end point.
property start: Vec3

Path start point, resetting the start point of an empty path is possible.
property user_data: Any

Attach arbitrary user data to a Path object. The user data is copied by reference, no deep copy is applied
therefore a mutable state is shared between copies.

append_path(path: Path)→ None
Append another path to this path. Adds a self.line_to(path.start) if the end of this path != the
start of appended path.

approximate(segments: int = 20)→ Iterator[Vec3]
Approximate path by vertices, segments is the count of approximation segments for each Bézier curve.
Does not yield any vertices for empty paths, where only a start point is present!
Approximation of Multi-Path objects is possible, but gaps are indistinguishable from line segments.

542 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

bbox()→ BoundingBox
Returns the bounding box of all control vertices as BoundingBox instance.

clockwise()→ Self
Returns new Path in clockwise orientation.

Raises
TypeError – can’t detect orientation of a Multi-Path object

clone()→ Self
Returns a new copy of Path with shared immutable data.

close()→ None
Close path by adding a line segment from the end point to the start point.

close_sub_path()→ None
Close last sub-path by adding a line segment from the end point to the start point of the last sub-path. Behaves
like close() for Single-Path instances.

control_vertices()→ list[Vec3]
Yields all path control vertices in consecutive order.

counter_clockwise()→ Self
Returns new Path in counter-clockwise orientation.

Raises
TypeError – can’t detect orientation of a Multi-Path object

curve3_to(location: UVec, ctrl: UVec)→ None
Add a quadratic Bèzier-curve from actual path end point to location, ctrl is the control point for the quadratic
Bèzier-curve.

curve4_to(location: UVec, ctrl1: UVec, ctrl2: UVec)→ None
Add a cubic Bèzier-curve from actual path end point to location, ctrl1 and ctrl2 are the control points for the
cubic Bèzier-curve.

extend_multi_path(path: Path)→ None
Extend the path by another path. The source path is automatically a Multi-Path object, even if the previous
end point matches the start point of the appended path. Ignores paths without any commands (empty paths).

flattening(distance: float, segments: int = 4)→ Iterator[Vec3]
Approximate path by vertices and use adaptive recursive flattening to approximate Bèzier curves. The ar-
gument segments is the minimum count of approximation segments for each curve, if the distance from the
center of the approximation segment to the curve is bigger than distance the segment will be subdivided.
Does not yield any vertices for empty paths, where only a start point is present!
Flattening of Multi-Path objects is possible, but gaps are indistinguishable from line segments.

Parameters
• distance – maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

• segments – minimum segment count per Bézier curve
has_clockwise_orientation()→ bool

Returns True if 2D path has clockwise orientation, ignores z-axis of all control vertices.
Raises

TypeError – can’t detect orientation of a Multi-Path object

9.8. Reference 543

ezdxf Documentation, Release 1.3.2

line_to(location: UVec)→ None
Add a line from actual path end point to location.

move_to(location: UVec)→ None
Start a new sub-path at location. This creates a gap between the current end-point and the start-point of the
new sub-path. This converts the instance into a Multi-Path object.
If the move_to() command is the first command, the start point of the path will be reset to location.

reversed()→ Self
Returns a new Path with reversed commands and control vertices.

sub_paths()→ Iterator[Self]
Yield all sub-paths as Single-Path objects.
It’s safe to call sub_paths() on any path-type: Single-Path, Multi-Path and Empty-Path.

transform(m: Matrix44)→ Self
Returns a new transformed path.

Parameters
m – transformation matrix of type Matrix44

Reorder

Tools to reorder DXF entities by handle or a special sort handle mapping.
Such reorder mappings are stored only in layouts as Modelspace, Paperspace or BlockLayout, and can be
retrieved by the method get_redraw_order().
Each entry in the handle mapping replaces the actual entity handle, where the “0” handle has a special meaning, this
handle always shows up at last in ascending ordering.
ezdxf.reorder.ascending(entities: Iterable[DXFGraphic], mapping: dict | Iterable[tuple[str, str]] | None =

None)→ Iterable[DXFGraphic]
Yields entities in ascending handle order.
The sort-handle doesn’t have to be the entity handle, every entity handle in mapping will be replaced by the given
sort-handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle) or a dict (entity_handle, sort_handle).
Entities with equal sort-handles show up in source entities order.

Parameters
• entities – iterable of DXFGraphic objects
• mapping – iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict.

ezdxf.reorder.descending(entities: Iterable[DXFGraphic], mapping: dict | Iterable[tuple[str, str]] | None =
None)→ Iterable[DXFGraphic]

Yields entities in descending handle order.
The sort-handle doesn’t have to be the entity handle, every entity handle in mapping will be replaced by the given
sort-handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle) or a dict (entity_handle, sort_handle).
Entities with equal sort-handles show up in reversed source entities order.

Parameters
• entities – iterable of DXFGraphic objects
• mapping – iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict.

544 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Transform

Added in version 1.1.
This module provides functions to apply transformations to multiple DXF entities inplace or to virtual copies of that
entities in a convenient and safe way:

import math

import ezdxf
from ezdxf import transform

doc = ezdxf.readfile("my.dxf")
msp = doc.modelspace()

log = transform.inplace(msp, m=transform.Matrix44.rotate_z(math.pi/2))

or more simple
log = transform.z_rotate(msp, math.pi/2)

All functions handle errors by collecting them in an logging object without raising an error. The input entities are an
iterable of DXFEntity, which can be any layout, EntityQuery or just a list/sequence of entities and virtual entities
are supported as well.

inplace Transforms the given entities inplace by the transforma-
tion matrix m, non-uniform scaling is supported.

copies Copy entities and transform them by matrix m.
translate Translates (moves) entities inplace by the offset vector.
scale_uniform Scales entities inplace by a factor in all axis.
scale Scales entities inplace by the factors sx in x-axis, sy in y-

axis and sz in z-axis.
x_rotate Rotates entities inplace by angle in radians about the x-

axis.
y_rotate Rotates entities inplace by angle in radians about the y-

axis.
z_rotate Rotates entities inplace by angle in radians about the x-

axis.
axis_rotate Rotates entities inplace by angle in radians about the rota-

tion axis starting at the origin pointing in axis direction.

ezdxf.transform.inplace(entities: Iterable[DXFEntity], m: Matrix44)→ Logger
Transforms the given entities inplace by the transformation matrix m, non-uniform scaling is supported. The func-
tion converts circular arcs into ellipses to perform non-uniform scaling. The function logs errors and does not raise
errors for unsupported entities or transformation errors, see enum Error.

Important: The inplace() function does not support type conversion for virtual entities e.g. non-uniform
scaling for CIRCLE, ARC or POLYLINE with bulges, see also function copies().

ezdxf.transform.copies(entities: Iterable[DXFEntity], m: Matrix44 | None = None)→ Tuple[Logger,
List[DXFEntity]]

Copy entities and transform them by matrix m. Does not raise any exception and ignores all entities that cannot be
copied or transformed. Just copies the input entities if matrix m is None. Returns a tuple of Logger and a list of

9.8. Reference 545

ezdxf Documentation, Release 1.3.2

transformed virtual copies. The function supports virtual entities as input and converts circular arcs into ellipses to
perform non-uniform scaling.

ezdxf.transform.translate(entities: Iterable[DXFEntity], offset: UVec)→ Logger
Translates (moves) entities inplace by the offset vector.

ezdxf.transform.scale_uniform(entities: Iterable[DXFEntity], factor: float)→ Logger

Scales entities inplace by a factor in all axis. Scaling factors smaller than MIN_SCALING_FACTOR are ignored.
ezdxf.transform.scale(entities: Iterable[DXFEntity], sx: float, sy: float, sz: float)→ Logger

Scales entities inplace by the factors sx in x-axis, sy in y-axis and sz in z-axis. Scaling factors smaller than
MIN_SCALING_FACTOR are ignored.

Important: same limitations for virtual entities as the inplace() function

ezdxf.transform.x_rotate(entities: Iterable[DXFEntity], angle: float)→ Logger

Rotates entities inplace by angle in radians about the x-axis.
ezdxf.transform.y_rotate(entities: Iterable[DXFEntity], angle: float)→ Logger

Rotates entities inplace by angle in radians about the y-axis.
ezdxf.transform.z_rotate(entities: Iterable[DXFEntity], angle: float)→ Logger

Rotates entities inplace by angle in radians about the x-axis.
ezdxf.transform.axis_rotate(entities: Iterable[DXFEntity], axis: UVec, angle: float)→ Logger

Rotates entities inplace by angle in radians about the rotation axis starting at the origin pointing in axis direction.
ezdxf.transform.MIN_SCALING_FACTOR

Minimal scaling factor: 1e-12
class ezdxf.transform.Error

NONE

No error, same as a boolean False, this allows check if error: ...

COPY_NOT_SUPPORTED

Entity without copy support.
TRANSFORMATION_NOT_SUPPORTED

Entity without transformation support.
NON_UNIFORM_SCALING_ERROR

Circular arcs (CIRCLE, ARC, bulges in POLYLINE and LWPOLYLINE entities) cannot be scaled non-
uniformly.

INSERT_TRANSFORMATION_ERROR

INSERT entities cannot represent a non-orthogonal target coordinate system. Maybe exploding the
INSERT entities (recursively) beforehand can solve this issue, see function ezdxf.disassemble.
recursive_decompose().

VIRTUAL_ENTITY_NOT_SUPPORTED

Transformation not supported for virtual entities e.g. non-uniform scaling for CIRCLE, ARC or POLYLINE
with bulges

class ezdxf.transform.Logger

A Sequence of errors as Logger.Entry instances.

546 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

class Entry

Named tuple representing a logger entry.
error

Error enum
msg

error message as string
entity

DXF entity which causes the error
__len__()→ int

Returns the count of error entries.
__getitem__(index: int)→ Entry

Returns the error entry at index.
__iter__()→ Iterator[Entry]

Iterates over all error entries.
messages()→ list[str]

Returns all error messages as list of strings.

Upright

The functions in this module can help to convert an inverted OCS defined by an extrusion vector (0, 0, -1) into a WCS
aligned OCS defined by an extrusion vector (0, 0, 1).
This simplifies 2D entity processing for ezdxf users and creates DXF output for 3rd party DXF libraries which ignore the
existence of the OCS.
Supported DXF entities:

• CIRCLE
• ARC
• ELLIPSE (WCS entity, flips only the extrusion vector)
• SOLID
• TRACE
• LWPOLYLINE
• POLYLINE (only 2D entities)
• HATCH
• MPOLYGON
• INSERT (block references)

Warning: The WCS representation of OCS entities with flipped extrusion vector is not 100% identical to the source
entity, curve orientation and vertex order may change, see additional explanation below. A mirrored text represented
by an extrusion vector (0, 0, -1) cannot represented by an extrusion vector (0, 0, 1), therefore this CANNOT work for
text entities or entities including text: TEXT, ATTRIB, ATTDEF, MTEXT, DIMENSION, LEADER, MLEADER

9.8. Reference 547

ezdxf Documentation, Release 1.3.2

Usage

The functions can be applied to any DXF entity without expecting errors or exceptions if the DXF entity is not supported
or the extrusion vector differs from (0, 0, -1). This also means you can apply the functions multiple times to the same
entities without any problems. A common case would be to upright all entities of the model space:

import ezdxf
from ezdxf.upright import upright_all

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
upright_all(msp)
doing it again is no problem but also has no further effects
upright_all(msp)

Another use case is exploding block references (INSERT) which may include reflections (= scaling by negative factors)
that can lead to inverted extrusion vectors.

for block_ref in msp.query("INSERT"):
entities = block_ref.explode() # -> EntityQuery object
upright_all(entities)

Functions

ezdxf.upright.upright(entity: DXFGraphic)→ None
Flips an inverted OCS defined by extrusion vector (0, 0, -1) into aWCS aligned OCS defined by extrusion vector (0,
0, 1). DXF entities with other extrusion vectors and unsupported DXF entities will be silently ignored. For more
information about the limitations read the documentation of the ezdxf.upright module.

ezdxf.upright.upright_all(entities: Iterable[DXFGraphic])→ None
Call function upright() for all DXF entities in iterable entities:

upright_all(doc.modelspace())

Additional Explanation

This example shows why the entities with an inverted OCS, extrusion vector is (0, 0, -1), are not exact the same as with
an WCS aligned OCS, extrusion vector is (0, 0, 1).

Note: The ARC entity represents the curve always in counter-clockwise orientation around the extrusion vector.

import ezdxf
from ezdxf.upright import upright
from ezdxf.math import Matrix44

doc = ezdxf.new()
msp = doc.modelspace()

arc = msp.add_arc(
(5, 0),
radius=5,

(continues on next page)

548 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
start_angle=-90,
end_angle=90,
dxfattribs={"color": ezdxf.const.RED},

)
draw lines to the start- and end point of the ARC
msp.add_line((0, 0), arc.start_point, dxfattribs={"color": ezdxf.const.GREEN})
msp.add_line((0, 0), arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})

copy arc
mirrored_arc = arc.copy()
msp.add_entity(mirrored_arc)

mirror copy
mirrored_arc.transform(Matrix44.scale(-1, 1, 1))

This creates an inverted extrusion vector:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1))

draw lines to the start- and end point of the mirrored ARC
msp.add_line((0, 0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN}
↪→)
msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})

Result without applying the upright() function - true mirroring:

...

This creates an inverted extrusion vector:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1))

(continues on next page)

9.8. Reference 549

ezdxf Documentation, Release 1.3.2

(continued from previous page)

start_point_inv = mirrored_arc.start_point
end_point_inv = mirrored_arc.end_point

upright(mirrored_arc)
OCS is aligned with WCS:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, 1))

start- and end points are swapped after applying upright()
assert mirrored_arc.start_point.isclose(end_point_inv)
assert mirrored_arc.end_point.isclose(start_point_inv)

draw lines to the start- and end point of the mirrored ARC
msp.add_line((0, 0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN}
↪→)
msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})

Result after applying the upright() function - false mirroring:

To avoid this issue the ARC entity would have to represent the curve in clockwise orientation around the extrusion vector
(0, 0, 1), which is not possible!

Note: The shape of the mirrored arcs is the same for both extrusion vectors, but the start- and the end points are swapped
(reversed vertex order)!

550 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.8.7 Custom Data

Custom XDATA

The classes XDataUserList and XDataUserDict manage custom user data stored in the XDATA section of a
DXF entity. For more information about XDATA see reference section: Extended Data (XDATA)

These classes store only a limited set of data types with fixed group codes and the types are checked by isinstance()
so a Vec3 object can not be replaced by a (x, y, z)-tuple:

Group Code Data Type
1000 str, limited to 255 characters, line breaks "\n" and "\r" are not allowed
1010 Vec3
1040 float
1071 32-bit int, restricted by the DXF standard not by Python!

Strings are limited to 255 characters, line breaks "\n" and "\r" are not allowed.
This classes assume a certain XDATA structure and therefore can not manage arbitrary XDATA!
This classes do not create the required AppID table entry, only the default AppID “EZDXF” exist by default. Setup a
new AppID in the AppID table: doc.appids.add("MYAPP").
For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files.
See also:

• Tutorial: Storing Custom Data in DXF Files

• Example at github
• XDATA reference: Extended Data (XDATA)

• XDATA management class: XData

XDataUserList

class ezdxf.entities.xdata.XDataUserList

Manage user data as a named list-like object in XDATA. Multiple user lists with different names can be stored in
a single XData instance for a single AppID.
Recommended usage by context manager entity():

with XDataUserList.entity(entity, name="MyList", appid="MYAPP") as ul:
ul.append("The value of PI") # str "\n" and "\r" are not allowed
ul.append(3.141592) # float
ul.append(1) # int
ul.append(Vec3(1, 2, 3)) # Vec3

invalid data type raises DXFTypeError
ul.append((1, 2, 3)) # tuple instead of Vec3

retrieve a single value
s = ul[0]

store whole content into a Python list
data = list(ul)

9.8. Reference 551

https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XDATA.py
https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XDATA.py

ezdxf Documentation, Release 1.3.2

Implements the MutableSequence interface.
xdata

The underlying XData instance.
__init__(xdata: XData | None = None, name='DefaultList', appid='EZDXF')

Setup a XDATA user list name for the given appid.
The data is stored in the given xdata object, or in a new created XData instance if None. Changes of the
content has to be committed at the end to be stored in the underlying xdata object.

Parameters
• xdata (XData) – underlying XData instance, if None a new one will be created
• name (str) – name of the user list
• appid (str) – application specific AppID

__str__()

Return str(self).
__len__()→ int

Returns len(self).
__getitem__(item)

Get self[item].
__setitem__(item, value)

Set self[item] to value.
__delitem__(item)

Delete self[item].
classmethod entity(entity: DXFEntity, name='DefaultList', appid='EZDXF')→

Iterator[XDataUserList]
Context manager to manage a XDATA list name for a given DXF entity. Appends the user list to the existing
XData instance or creates new XData instance.

Parameters
• entity (DXFEntity) – target DXF entity for the XDATA
• name (str) – name of the user list
• appid (str) – application specific AppID

commit()→ None
Store all changes to the underlying XData instance. This call is not required if using the entity() context
manager.

Raises
• DXFValueError – invalid chars "\n" or "\r" in a string
• DXFTypeError – invalid data type

552 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

XDataUserDict

class ezdxf.entities.xdata.XDataUserDict

Manage user data as a named dict-like object in XDATA. Multiple user dicts with different names can be stored in
a single XData instance for a single AppID. The keys have to be strings.
Recommended usage by context manager entity():

with XDataUserDict.entity(entity, name="MyDict", appid="MYAPP") as ud:
ud["comment"] = "The value of PI" # str "\n" and "\r" are not allowed
ud["pi"] = 3.141592 # float
ud["number"] = 1 # int
ud["vertex"] = Vec3(1, 2, 3) # Vec3

invalid data type raises DXFTypeError
ud["vertex"] = (1, 2, 3) # tuple instead of Vec3

retrieve single values
s = ud["comment"]
pi = ud.get("pi", 3.141592)

store whole content into a Python dict
data = dict(ud)

Implements the MutableMapping interface.
The data is stored in XDATA like a XDataUserList by (key, value) pairs, therefore a XDataUser-
Dict can also be loaded as XDataUserList. It is not possible to distinguish a XDataUserDict from a
XDataUserList except by the name of the data structure.
xdata

The underlying XData instance.
__init__(xdata: XData | None = None, name='DefaultDict', appid='EZDXF')

Setup a XDATA user dict name for the given appid.
The data is stored in the given xdata object, or in a new created XData instance if None. Changes of the
content has to be committed at the end to be stored in the underlying xdata object.

Parameters
• xdata (XData) – underlying XData instance, if None a new one will be created
• name (str) – name of the user list
• appid (str) – application specific AppID

__str__()

Return str(self).
__len__()

Returns len(self).
__getitem__(key)

Get self[key].
__setitem__(key, item)

Set self[key] to value, key has to be a string.
Raises

DXFTypeError – key is not a string

9.8. Reference 553

ezdxf Documentation, Release 1.3.2

__delitem__(key)
Delete self[key].

discard(key)

Delete self[key], without raising a KeyError if key does not exist.
__iter__()

Implement iter(self).
classmethod entity(entity: DXFEntity, name='DefaultDict', appid='EZDXF')→

Iterator[XDataUserDict]
Context manager to manage a XDATA dict name for a given DXF entity. Appends the user dict to the existing
XData instance or creates new XData instance.

Parameters
• entity (DXFEntity) – target DXF entity for the XDATA
• name (str) – name of the user list
• appid (str) – application specific AppID

commit()→ None
Store all changes to the underlying XData instance. This call is not required if using the entity() context
manager.

Raises
• DXFValueError – invalid chars "\n" or "\r" in a string
• DXFTypeError – invalid data type

Custom XRecord

The UserRecord and BinaryRecord classes help to store custom data in DXF files in XRecord objects a simple
and safe way. This way requires DXF version R2000 or later, for DXF version R12 the only way to store custom data is
Extended Data (XDATA).
The UserRecord stores Python types and nested container types: int, float, str, Vec2, Vec3, list and dict.
Requirements for Python structures:

• The top level structure has to be a list.
• Strings has to have max. 2049 characters and can not contain line breaks "\\n" or "\\r".
• Dict keys have to be simple Python types: int, float, str.

DXF Tag layout for Python types and structures stored in the XRecord object:
Only for the UserRecord the first tag is (2, user record name).

Type DXF Tag(s)
str (1, value) string with less than 2050 chars and including no line breaks
int (90, value) int 32-bit, restricted by the DXF standard not by Python!
float (40, value) “C” double
Vec2 (10, x), (20, y)
Vec3 (10, x) (20, y) (30, z)
list starts with (2, “[”) and ends with (2, “]”)
dict starts with (2, “{”) and ends with (2, “}”)

554 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The BinaryRecord stores arbitrary binary data as BLOB.
Storage size limits of XRECORD according the DXF reference:

“This object is similar in concept to XDATA but is not limited by size or order.”
For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files.
See also:

• Tutorial: Storing Custom Data in DXF Files

• Example at github
• ezdxf.entities.XRecord

UserRecord

class ezdxf.urecord.UserRecord

xrecord

The underlying XRecord instance
name

The name of the UserRecord, an arbitrary string with less than 2050 chars and including no line breaks.
data

The Python data. The top level structure has to be a list (MutableSequence). Inside this container the
following Python types are supported: str, int, float, Vec2, Vec3, list, dict
Nested data structures are supported list or/and dict in list or dict. Dict keys have to be simple Python types:
int, float, str.

property handle: str | None

DXF handle of the underlying XRecord instance.
__init__(xrecord: XRecord | None = None, *, name: str = DEFAULT_NAME, doc: Drawing | None = None)

Setup a UserRecord with the given name.
The data is stored in the given xrecord object, or in a new created XRecord instance if None. If doc is not
None the new xrecord is added to the OBJECTS section of the DXF document.
Changes of the content has to be committed at the end to be stored in the underlying xrecord object.

Parameters
• xrecord (XRecord) – underlying XRecord instance, if None a new one will be created
• name (str) – name of the user list
• doc (Drawing) – DXF document or None

__str__()

Return str(self).
commit()→ XRecord

Store data in the underlying XRecord instance. This call is not required if using the class by the with
statement.

Raises
• DXFValueError – invalid chars "\n" or "\r" in a string

9.8. Reference 555

https://en.wikipedia.org/wiki/Binary_large_object
https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XRECORD.py
https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XRECORD.py

ezdxf Documentation, Release 1.3.2

• DXFTypeError – invalid data type

BinaryRecord

class ezdxf.urecord.BinaryRecord

xrecord

The underlying XRecord instance
data

The binary data as bytes, bytearray or memoryview.
property handle: str | None

DXF handle of the underlying XRecord instance.
__init__(xrecord: XRecord | None = None, *, doc: Drawing | None = None)

Setup a BinaryRecord.
The data is stored in the given xrecord object, or in a new created XRecord instance if None. If doc is not
None the new xrecord is added to the OBJECTS section of the DXF document.
Changes of the content has to be committed at the end to be stored in the underlying xrecord object.

Parameters
• xrecord (XRecord) – underlying XRecord instance, if None a new one will be created
• doc (Drawing) – DXF document or None

__str__()→ str
Return str(self).

commit()→ XRecord
Store binary data in the underlying XRecord instance. This call is not required if using the class by the
with statement.

9.8.8 Fonts

Fonts

The module ezdxf.fonts.fonts manages the internal usage of fonts and has no relation how the DXF formats
manages text styles.
See also:
The Textstyle entity, the DXF way to define fonts.
Added in version 1.1.
Since ezdxf v1.1 text rendering is done by the fontTools package. Support for stroke fonts, these are the basic vector fonts
included in CAD applications, like .shx, .shp or .lff fonts was also added.
None of the required font files (.ttf, .ttc, .otf, .shx, .shp or .lff) are included in ezdxf as they are copyrighted or, in the case
of the LibreCAD font format (.lff), licensed under the “GPL v2 and later”.

556 Chapter 9. Contents

https://pypi.org/project/fonttools/

ezdxf Documentation, Release 1.3.2

Font Locations

TrueType Fonts

The font manager searches the following directories recursively for .ttf, .ttc and .otf font files.
• Windows:

– ~/AppData/Local/Microsoft/Windows/Fonts
– <SystemRoot>/Fonts

• Linux and other *nix like systems:
– /usr/share/fonts
– /usr/local/share/fonts
– ~/.fonts
– ~/.local/share/fonts
– ~/.local/share/texmf/fonts

• macOS:
– /Library/Fonts
– /System/Library/Fonts

The fc-list command on Linux shows all available fonts and their location.
The default font is selected in the following order, if none of them is available on your system - install one of them, the
open source fonts can be found in the github repository in the folder ezdxf/fonts.

• Arial.ttf
• DejaVuSansCondensed.ttf
• DejaVuSans.ttf
• LiberationSans-Regular.ttf
• OpenSans-Regular.ttf

Basic Stroke Fonts

There is no universal way to find the basic stroke fonts of CAD applications on a system, beside scanning all drives. Set the
paths to the stroke fonts in your config file manually to tell ezdxf where to search for them, all paths are search recursively,
see also option ezdxf.options.support_dirs:

[core]
support_dirs =

"C:\Program Files\Bricsys\BricsCAD V23 en_US\Fonts",
~/shx_fonts,
~/shp_fonts,
~/lff_fonts,

The .shx fonts can be found on the internet but be aware that they are not free as all websites claim. The LibreCAD
font files (.llf) can be downloaded from their github repository: https://github.com/LibreCAD/LibreCAD/tree/master/
librecad/support/fonts

9.8. Reference 557

https://github.com/mozman/ezdxf/tree/master/fonts
https://github.com/LibreCAD/LibreCAD/tree/master/librecad/support/fonts
https://github.com/LibreCAD/LibreCAD/tree/master/librecad/support/fonts

ezdxf Documentation, Release 1.3.2

Font Caching

The fonts available on a system are cached automatically, the cache has to be rebuild to recognize new installed fonts by
build_system_font_cache(). The cache is stored in the users home directory “~/.cache/ezdxf” or the directory
specified by the environment variable “XDG_CACHE_HOME”.

Rebuilding the Font Cache

When you add new fonts to your system or add a font directory to the support directories in the config file you have to
rebuild the font-cache of ezdxf to recognize these new fonts:

import ezdxf
from ezdxf.fonts import fonts

fonts.build_system_font_cache()

or call the ezdxf launcher to do that:

ezdxf --fonts

Functions

ezdxf.fonts.fonts.make_font(font_name: str, cap_height: float, width_factor: float = 1.0)→ AbstractFont
Returns a font abstraction based on class AbstractFont.
Supported font types:

• .ttf, .ttc and .otf - TrueType fonts
• .shx, .shp - Autodesk® shapefile fonts
• .lff - LibreCAD font format

The special name “*monospace” returns the fallback font MonospaceFont for testing and basic measurements.

Note: The font definition files are not included in ezdxf.

Parameters
• font_name – font file name as stored in theTextstyle entity e.g. “OpenSans-Regular.ttf”
• cap_height – desired cap height in drawing units.
• width_factor – horizontal text stretch factor

ezdxf.fonts.fonts.get_font_face(font_name: str, map_shx=True)→ FontFace
Returns the FontFace definition for the given font filename e.g. “LiberationSans-Regular.ttf”.
This function translates a DXF font definition by the TTF font file name into a FontFace object. Returns the
FontFace of the default font when a font is not available on the current system.

Parameters
• font_name – raw font file name as stored in the Textstyle entity
• map_shx – maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt_____.ttf”

558 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.fonts.fonts.find_font_face(font_name: str)→ FontFace
Returns the FontFace definition for the given font filename e.g. “LiberationSans-Regular.ttf”.

ezdxf.fonts.fonts.find_font_file_name(font_face: FontFace)→ str
Returns the true type font file name without parent directories e.g. “Arial.ttf”.

ezdxf.fonts.fonts.find_best_match(*, family: str = 'sans-serif', style: str = 'Regular', weight: int = 400,
width: int = 5, italic: bool | None = False)→ FontFace | None

Returns a FontFace that matches the given properties best. The search is based the descriptive properties and
not on comparing glyph shapes. Returns None if no font was found.

Parameters
• family – font family name e.g. “sans-serif”, “Liberation Sans”
• style – font style e.g. “Regular”, “Italic”, “Bold”
• weight – weight in the range from 1-1000 (usWeightClass)
• width – width in the range from 1-9 (usWidthClass)
• italic – True, False or None to ignore this flag

ezdxf.fonts.fonts.get_entity_font_face(entity: DXFEntity, doc: Drawing | None = None)→
FontFace

Returns the FontFace defined by the associated text style. Returns the default font face if the entity does not have
or support the DXF attribute “style”. Supports the extended font information stored in Textstyle table entries.
Pass a DXF document as argument doc to resolve text styles for virtual entities which are not assigned to a DXF
document. The argument doc always overrides the DXF document to which the entity is assigned to.

ezdxf.fonts.fonts.get_font_measurements(font_name: str, map_shx=True)→ FontMeasurements
Get FontMeasurements for the given font filename e.g. “LiberationSans-Regular.ttf”.

Parameters
• font_name – raw font file name as stored in the Textstyle entity
• map_shx – maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt_____.ttf”

ezdxf.fonts.fonts.build_system_font_cache()

Builds or rebuilds the font manager cache. The font manager cache has a fixed location in the cache di-
rectory of the users home directory “~/.cache/ezdxf” or the directory specified by the environment variable
“XDG_CACHE_HOME”.

ezdxf.fonts.fonts.load()

Reload all cache files. The cache files are loaded automatically at the import of ezdxf.
ezdxf.fonts.fonts.sideload_ttf(font_path: str | PathLike, cap_height)→ AbstractFont

This function bypasses the FontManager and loads the TrueType font straight from the file system, requires the
absolute font file path e.g. “C:/Windows/Fonts/Arial.ttf”.

Warning: Expert feature, use with care: no fallback font and no error handling.

9.8. Reference 559

ezdxf Documentation, Release 1.3.2

Classes

class ezdxf.fonts.fonts.AbstractFont(measurements: FontMeasurements)
The ezdxf font abstraction for text measurement and text path rendering.
name

The font filename e.g. “LiberationSans-Regular.ttf”
font_render_type

The font type, see enum FontRenderType

measurement

The FontMeasurements data.
abstract text_width(text: str)→ float

Returns the text width in drawing units for the given text string.
abstract text_width_ex(text: str, cap_height: float, width_factor: float = 1.0)→ float

Returns the text width in drawing units, bypasses the stored cap_height and width_factor.
abstract text_path(text: str)→ NumpyPath2d

Returns the 2D text path for the given text.
abstract text_path_ex(text: str, cap_height: float, width_factor: float = 1.0)→ NumpyPath2d

Returns the 2D text path for the given text, bypasses the stored cap_height and width_factor.
abstract space_width()→ float

Returns the width of a “space” character a.k.a. word spacing.
class ezdxf.fonts.fonts.MonospaceFont(cap_height: float, width_factor: float = 1.0, baseline: float =

0, descender_factor: float = DESCENDER_FACTOR,
x_height_factor: float = X_HEIGHT_FACTOR)

Represents a monospaced font where each letter has the same cap- and descender height and the same width. The
given cap height and width factor are the default values for measurements and rendering. The extended methods
can override these default values.
This font exists only for generic text measurement in tests and does not render any glyphs!

class ezdxf.fonts.fonts.TrueTypeFont(font_name: str, cap_height: float, width_factor: float = 1.0)
Represents a TrueType font. Font measurement and glyph rendering is done by the fontTools package. The given
cap height and width factor are the default values for measurements and glyph rendering. The extended methods
can override these default values.

class ezdxf.fonts.fonts.ShapeFileFont(font_name: str, cap_height: float, width_factor: float = 1.0)
Represents a shapefile font (.shx, .shp). Font measurement and glyph rendering is done by the ezdxf.fonts.shapefile
module. The given cap height and width factor are the default values for measurements and glyph rendering. The
extended methods can override these default values.

class ezdxf.fonts.fonts.LibreCadFont(font_name: str, cap_height: float, width_factor: float = 1.0)

Represents a LibreCAD font (.shx, .shp). Font measurement and glyph rendering is done by the ezdxf.fonts.lff
module. The given cap height and width factor are the default values for measurements and glyph rendering. The
extended methods can override these default values.

560 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Font Anatomy

• A Visual Guide to the Anatomy of Typography: https://visme.co/blog/type-anatomy/
• Anatomy of a Character: https://www.fonts.com/content/learning/fontology/level-1/type-anatomy/anatomy

Font Properties

DXF to store fonts in the Textstyle entity as TTF file name e.g. “LiberationSans-Regular.ttf”.
The FontFace class can be used to specify a font in a more generic way:
family

font name e.g. “Liberation Sans” or “Arial”, may a generic font family name, either “serif”, “sans-serif” or
“monospace”

style
“Regular”, “Italic”, “Oblique”, “Bold”, “BoldOblique”, …

width
(usWidthClass) A numeric value in the range 0-9

1 UltraCondensed
2 ExtraCondensed
3 Condensed
4 SemiCondensed
5 Normal or Medium
6 SemiExpanded
7 Expanded
8 ExtraExpanded
9 UltraExpanded

weight
(usWeightClass) A numeric value in the range 0-1000

100 Thin
200 ExtraLight
300 Light
400 Normal
500 Medium
600 SemiBold
700 Bold
800 ExtraBold
900 Black

See also:
• W3C: https://www.w3.org/TR/2018/REC-css-fonts-3-20180920/

class ezdxf.fonts.fonts.FontRenderType

Enumeration of font render type.
STROKE

Basic stroke font, can only be rendered as linear paths.

9.8. Reference 561

https://visme.co/blog/type-anatomy/
https://www.fonts.com/content/learning/fontology/level-1/type-anatomy/anatomy
https://www.w3.org/TR/2018/REC-css-fonts-3-20180920/

ezdxf Documentation, Release 1.3.2

OUTLINE

TrueType or similar font, can be rendered as filled paths or as outline strokes.
class ezdxf.fonts.fonts.FontFace(filename, family, style, weight, width)

filename

font file name without parent directories as string, e.g. “arial.ttf”
family

Family name as string, the default value is “sans-serif”
style

Font style as string, the default value is “Regular”
weight

Font weight as int in the renge from 0-1000, the default value is 400 (Normal)
property weight_str: str

Returns the weight as string e.g. “Thin”, “Normal”, “Bold”, …
width

Font width (stretch) as int in the range from 1-9, the default value is 5 (Normal)
property width_str: str

Returns the width as string e.g. “Condensed”, “Expanded”, …
property is_italic: bool

Returns True if font face is italic.
property is_oblique: bool

Returns True if font face is oblique.
property is_bold: bool

Returns True if font face weight > 400.
class ezdxf.fonts.fonts.FontMeasurements

See Font Anatomy for more information.
baseline

cap_height

x_height

descender_height

scale(factor: float = 1.0)→ FontMeasurements

scale_from_baseline(desired_cap_height: float)→ FontMeasurements

shift(distance: float = 0.0)→ FontMeasurements

property cap_top: float

property x_top: float

property bottom: float

property total_height: float

562 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.8.9 Tools

Application Settings

This is a high-level module for working with CAD application settings and behaviors. None of these settings have any
influence on the behavior of ezdxf, since ezdxf only takes care of the content of the DXF file and not of the way it is
presented to the user.

Important: You need to understand that these settings work at the application level, ezdxf cannot force an application to
do something in a certain way! The functionality of this module has been tested with Autodesk TrueView and BricsCAD,
other applications may show different results or ignore the settings.

Set Current Properties

The current properties are used by the CAD application to create new entities, these settings do not affect how ezdxf
creates new entities.
The module ezdxf.gfxattribs provides the class GfxAttribs(), which can load the current graphical entity
settings from the HEADER section for creating new entities by ezdxf: load_from_header()
ezdxf.appsettings.set_current_layer(doc: Drawing, name: str)

Set current layer.
ezdxf.appsettings.set_current_color(doc: Drawing, color: int)

Set current AutoCAD Color Index (ACI).
ezdxf.appsettings.set_current_linetype(doc: Drawing, name: str)

Set current linetype.
ezdxf.appsettings.set_current_lineweight(doc: Drawing, lineweight: int)

Set current lineweight, see Lineweights reference for valid values.
ezdxf.appsettings.set_current_linetype_scale(doc: Drawing, scale: float)

Set current linetype scale.
ezdxf.appsettings.set_current_textstyle(doc: Drawing, name: str)

Set current text style.
ezdxf.appsettings.set_current_dimstyle(doc: Drawing, name: str)

Set current dimstyle.
ezdxf.appsettings.set_current_dimstyle_attribs(doc: Drawing, name: str)

Set current dimstyle and copy all dimstyle attributes to the HEADER section.
ezdxf.appsettings.set_lineweight_display_style(doc: Drawing, end_caps: EndCaps, join_style:

JoinStyle)→ None
Set the style of end caps and joints for linear entities when displaying line weights. These settings only affect objects
created afterwards.

9.8. Reference 563

ezdxf Documentation, Release 1.3.2

Restore the WCS

ezdxf.appsettings.restore_wcs(doc: Drawing)
Restore the UCS settings in the HEADER section to theWCS and reset all active viewports to the WCS.

Update Extents

ezdxf.appsettings.update_extents(doc: Drawing)→ BoundingBox
Calculate the extents of the model space, update the HEADER variables $EXTMIN and $EXTMAX and returns
the result as ezdxf.math.BoundingBox. Note that this function uses the ezdxf.bboxmodule to calculate
the extent of the model space. This module is not very fast and not very accurate for text and ignores all ACIS based
entities.
The function updates only the values in the HEADER section, to zoom the active viewport to this extents, use this
recipe:

import ezdxf
from ezdxf import zoom, appsettings

doc = ezdxf.readfile("your.dxf")
extents = appsettings.update_extents(doc)
zoom.center(doc.modelspace(), extents.center, extents.size)

See also:

• the ezdxf.bbox module to understand the limitations of the extent calculation
• the ezdxf.zoom module

Show Lineweight

ezdxf.appsettings.show_lineweight(doc: Drawing, state=True)→ None
The CAD application or DXF viewer should show lines and curves with “thickness” (lineweight) if state is True.

Load DXF Comments

ezdxf.comments.from_stream(stream: TextIO, codes: set[int] | None = None)→ Iterable[DXFTag]
Yields comment tags from text stream as DXFTag objects.

Parameters
• stream – input text stream
• codes – set of group codes to yield additional DXF tags e.g. {5, 0} to also yield handle and
structure tags

ezdxf.comments.from_file(filename: str, codes: set[int] | None = None)→ Iterable[DXFTag]
Yields comment tags from file filename as DXFTag objects.

Parameters
• filename – filename as string
• codes – yields also additional tags with specified group codes e.g. {5, 0} to also yield handle
and structure tags

564 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

GfxAttribs

The ezdxf.gfxattribs module provides the GfxAttribs class to create valid attribute dictionaries for the most
often used DXF attributes supported by all graphical DXF entities. The advantage of using this class is auto-completion
support by IDEs and an instant validation of the attribute values.

import ezdxf
from ezdxf.gfxattribs import GfxAttribs

doc = ezdxf.new()
msp = doc.modelspace()

attribs = GfxAttribs(layer="MyLayer", color=ezdxf.colors.RED)
line = msp.add_line((0, 0), (1, 0), dxfattribs=attribs)
circle = msp.add_circle((0, 0), radius=1.0, dxfattribs=attribs)

Update DXF attributes of existing entities:
attribs = GfxAttribs(layer="MyLayer2", color=ezdxf.colors.BLUE)

Convert GfxAttribs() to dict(), but this method cannot reset
attributes to the default values like setting layer to "0".
line.update_dxf_attribs(dict(attribs))

Using GfxAttribs.asdict(default_values=True), can reset attributes to the
default values like setting layer to "0", except for true_color and
transparency, which do not have default values, their absence is the
default value.
circle.update_dxf_attribs(attribs.asdict(default_values=True))

Remove true_color and transparency by assigning None
attribs.transparency = None # reset to transparency by layer!
attribs.rgb = None

Validation features:
• layer - string which can not contain certain characters: <>/\":;?*=`
• color - AutoCAD Color Index (ACI) value as integer in the range from 0 to 257
• rgb - true color value as (red, green, blue) tuple, all channel values as integer values in the range from 0 to 255
• linetype - string which can not contain certain characters: <>/\":;?*=`, does not check if the linetype exists
• lineweight - integer value in the range from 0 to 211, see Lineweights for valid values
• transparency - float value in the range from 0.0 to 1.0 and -1.0 for transparency by block
• ltscale - float value > 0.0

class ezdxf.gfxattribs.GfxAttribs(*, layer: str = DEFAULT_LAYER, color: int =
DEFAULT_ACI_COLOR, rgb: RGB | None = None, linetype: str =
DEFAULT_LINETYPE, lineweight: int = DEFAULT_LINEWEIGHT ,
transparency: float | None = None, ltscale: float =
DEFAULT_LTSCALE)

Represents often used DXF attributes of graphical entities.
Parameters

• layer (str) – layer name as string
• color (int) – AutoCAD Color Index (ACI) color value as integer

9.8. Reference 565

ezdxf Documentation, Release 1.3.2

• rgb – RGB true color (red, green, blue) tuple, each channel value in the range from 0 to 255,
None for not set

• linetype (str) – linetype name, does not check if the linetype exist!
• lineweight (int) – see Lineweights documentation for valid values
• transparency (float) – transparency value in the range from 0.0 to 1.0, where 0.0 is
opaque and 1.0 if fully transparent, -1.0 for transparency by block, None for transparency by
layer

• ltscale (float) – linetype scaling factor > 0.0, default factor is 1.0
Raises

DXFValueError – invalid attribute value
property layer: str

layer name
property color: int

AutoCAD Color Index (ACI) color value
property rgb: RGB | None

true color value as (red, green, blue) tuple, None for not set
property linetype: str

linetype name
property lineweight: int

property transparency: float | None

transparency value from 0.0 for opaque to 1.0 is fully transparent, -1.0 is for transparency by block and None
if for transparency by layer

property ltscale: float

linetype scaling factor
__str__()→ str

Return str(self).
__repr__()→ str

Return repr(self).
__iter__()→ Iterator[tuple[str, Any]]

Returns iter(self).
asdict(default_values=False)→ dict[str, Any]

Returns the DXF attributes as dict, returns also the default values if argument default_values is True. The
true_color and transparency attributes do not have default values, the absence of these attributes is the default
value.

items(default_values=False)→ list[tuple[str, Any]]
Returns the DXF attributes as list of name, value pairs, returns also the default values if argument de-
fault_values is True. The true_color and transparency attributes do not have default values, the absence
of these attributes is the default value.

classmethod load_from_header(doc: Drawing)→ GfxAttribs
Load default DXF attributes from the HEADER section.
There is no default true color value and the default transparency is not stored in the HEADER section.

566 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Loads following header variables:
• $CLAYER - current layer name
• $CECOLOR - current ACI color
• $CELTYPE - current linetype name
• $CELWEIGHT - current lineweight
• $CELTSCALE - current linetype scaling factor

write_to_header(doc: Drawing)→ None
Write DXF attributes as default values to the HEADER section.
Writes following header variables:
• $CLAYER - current layer name, if a layer table entry exist in doc

• $CECOLOR - current ACI color
• $CELTYPE - current linetype name, if a linetype table entry exist in doc

• $CELWEIGHT - current lineweight
• $CELTSCALE - current linetype scaling factor

classmethod from_entity(entity: DXFEntity)→ GfxAttribs
Get the graphical attributes of an entity as GfxAttribs object.

classmethod from_dict(d: dict[str, Any])→ GfxAttribs
Construct GfxAttribs from a dictionary of raw DXF values.
Supported attributes are:
• layer: layer name as string
• color: AutoCAD Color Index (ACI) value as int
• true_color: raw DXF integer value for RGB colors
• rgb: RGB tuple of int or None
• linetype: linetype name as string
• lineweight: lineweight as int, see basic concept of Lineweights

• transparency: raw DXF integer value of transparency or a float in the range from 0.0 to 1.0
• ltscale: linetype scaling factor as float

Query Module

See also:
• Tutorial for Getting Data from DXF Files

• Usage of extended query features: Query Entities

9.8. Reference 567

ezdxf Documentation, Release 1.3.2

The new() Function

ezdxf.query.new(entities: Iterable[DXFEntity] | None = None, query: str = '*')→ EntityQuery
Start a new query based on sequence entities. The entities argument has to be an iterable of DXFEntity or
inherited objects and returns an EntityQuery object.

Entity Query String

QueryString := EntityQuery ("[" AttribQuery "]" "i"?)*

The query string is the combination of two queries, first the required entity query and second the optional attribute query,
enclosed in square brackets, append 'i' after the closing square bracket to ignore case for strings.

Entity Query

The entity query is a whitespace separated list of DXF entity names or the special name '*'. Where '*' means all
DXF entities, exclude some entity types by appending their names with a preceding ! (e.g. all entities except LINE = '*
!LINE'). All DXF names have to be uppercase.

Attribute Query

The optional attribute query is a boolean expression, supported operators are:
• not (!): !term is true, if term is false
• and (&): term & term is true, if both terms are true
• or (|): term | term is true, if one term is true
• and arbitrary nested round brackets
• append (i) after the closing square bracket to ignore case for strings

Attribute selection is a term: “name comparator value”, where name is a DXF entity attribute in lowercase, value is a
integer, float or double quoted string, valid comparators are:

• == equal “value”
• != not equal “value”
• < lower than “value”
• <= lower or equal than “value”
• > greater than “value”
• >= greater or equal than “value”
• ? match regular expression “value”
• !? does not match regular expression “value”

568 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

EntityQuery Class

class ezdxf.query.EntityQuery

The EntityQuery class is a result container, which is filled with DXF entities matching the query string. It
is possible to add entities to the container (extend), remove entities from the container and to filter the container.
Supports the standard Python Sequence methods and protocols. Does not remove automatically destroyed entities
(entities deleted by calling method destroy()), the method purge() has to be called explicitly to remove the
destroyed entities.
first

First entity or None.
last

Last entity or None.
__len__()→ int

Returns count of DXF entities.
__getitem__(item)

Returns DXFEntity at index item, supports negative indices and slicing. Returns all entities which support a
specific DXF attribute, if item is a DXF attribute name as string.

__setitem__(key, value)
Set the DXF attribute key for all supported DXF entities to value.

__delitem__(key)
Discard the DXF attribute key from all supported DXF entities.

__eq__(other)
Equal selector (self == other). Returns all entities where the selected DXF attribute is equal to other.

__ne__(other)
Not equal selector (self != other). Returns all entities where the selected DXF attribute is not equal to other.

__lt__(other)
Less than selector (self < other). Returns all entities where the selected DXF attribute is less than other.

Raises
TypeError – for vector based attributes like center or insert

__le__(other)

Less equal selector (self <= other). Returns all entities where the selected DXF attribute is less or equal other.
Raises

TypeError – for vector based attributes like center or insert
__gt__(other)

Greater than selector (self > other). Returns all entities where the selected DXF attribute is greater than other.
Raises

TypeError – for vector based attributes like center or insert
__ge__(other)

Greater equal selector (self >= other). Returns all entities where the selected DXF attribute is greater or equal
other.

Raises
TypeError – for vector based attributes like center or insert

9.8. Reference 569

ezdxf Documentation, Release 1.3.2

match(pattern: str)→ EntityQuery
Returns all entities where the selected DXF attribute matches the regular expression pattern.

Raises
TypeError – for non-string based attributes

__or__(other)

Union operator, see union().
__and__(other)

Intersection operator, see intersection().
__sub__(other)

Difference operator, see difference().
__xor__(other)

Symmetric difference operator, see symmetric_difference().
__iter__()→ Iterator[DXFEntity]

Returns iterable of DXFEntity objects.
purge()→ EntityQuery

Remove destroyed entities.
extend(entities: Iterable[DXFEntity], query: str = '*')→ EntityQuery

Extent the EntityQuery container by entities matching an additional query.
remove(query: str = '*')→ EntityQuery

Remove all entities from EntityQuery container matching this additional query.
query(query: str = '*')→ EntityQuery

Returns a new EntityQuery container with all entities matching this additional query.
Raises

pyparsing.ParseException – query string parsing error
groupby(dxfattrib: str = '', key: Callable[[DXFEntity], Hashable] | None = None)→ dict[Hashable,

list[DXFEntity]]
Returns a dict of entity lists, where entities are grouped by a DXF attribute or a key function.

Parameters
• dxfattrib – grouping DXF attribute as string like 'layer'
• key – key function, which accepts a DXFEntity as argument, returns grouping key of this
entity or None for ignore this object. Reason for ignoring: a queried DXF attribute is not
supported by this entity

filter(func: Callable[[DXFEntity], bool])→ EntityQuery

Returns a new EntityQuery with all entities from this container for which the callable func returns True.
Build your own operator to filter by attributes which are not DXF attributes or to build complex queries:

result = msp.query().filter(
lambda e: hasattr(e, "rgb") and e.rbg == (0, 0, 0)

)

union(other: EntityQuery)→ EntityQuery

Returns a new EntityQuery with entities from self and other. All entities are unique - no duplicates.

570 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

intersection(other: EntityQuery)→ EntityQuery
Returns a new EntityQuery with entities common to self and other.

difference(other: EntityQuery)→ EntityQuery
Returns a new EntityQuery with all entities from self that are not in other.

symmetric_difference(other: EntityQuery)→ EntityQuery
Returns a new EntityQuery with entities in either self or other but not both.

Revision Cloud

The module ezdxf.revcloud provides functions to render revision clouds similar to the REVCLOUD command in
CAD applications.
Added in version 1.3.0.
ezdxf.revcloud.points(vertices: Iterable[UVec], segment_length: float, *, bulge: float = REQUIRED_BULGE,

start_width: float = 0.0, end_width: float = 0.0)→ list[Sequence[float]]
Returns the points for a LWPolyline entity to render a revision cloud, similar to the REVCLOUD command in
CAD applications.

Parameters
• vertices – corner points of a polygon
• segment_length – approximate segment length
• bulge – LWPOLYLINE bulge value
• start_width – start width of the segment arc
• end_width – end width of the segment arc, CAD applications use 0.1 * segment_length for
a calligraphy effect

ezdxf.revcloud.add_entity(layout: BaseLayout, vertices: Iterable[UVec], segment_length: float, *,
calligraphy=True, dxfattribs: Any = None)→ LWPolyline

Adds a revision cloud as LWPolyline entity to layout, similar to the REVCLOUD command in CAD applica-
tions.

Parameters
• layout – target layout
• vertices – corner points of a polygon
• segment_length – approximate segment length
• calligraphy – True for a calligraphy effect
• dxfattribs – additional DXF attributes

ezdxf.revcloud.is_revcloud(entity: DXFEntity)→ bool
Returns True when the given entity represents a revision cloud.

Usage:

import ezdxf
from ezdxf.render import revcloud

doc = ezdxf.new()
msp = doc.modelspace()

(continues on next page)

9.8. Reference 571

ezdxf Documentation, Release 1.3.2

(continued from previous page)
revcloud.add_entity(msp, [(0, 0), (1, 0), (1, 1), (0, 1)], segment_length=0.1)
doc.saveas("revcloud.dxf")

Text Tools

MTextEditor

class ezdxf.tools.text.MTextEditor(text: str = '')

The MTextEditor is a helper class to buildMTEXT content strings with support for inline codes to change color,
font or paragraph properties. The result is always accessible by the text attribute or the magic __str__()
function as str(MTextEditor("text")).
All text building methods return self to implement a floating interface:

e = MTextEditor("This example ").color("red").append("switches color to red.")
mtext = msp.add_mtext(str(e))

The initial text height, color, text style and so on is determined by the DXF attributes of the MText entity.

572 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Warning: The MTextEditor assembles just the inline code, which has to be parsed and rendered by the
target CAD application, ezdxf has no influence to that result.
Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not work across
different CAD applications and keep the formatting in a logic manner like, do not change paragraph properties
in the middle of a paragraph.
There is no official documentation for the inline codes!

Parameters
text – init value of the MTEXT content string.

text

The MTEXT content as a simple string.
append(text: str)→ MTextEditor

Append text.
__iadd__(text: str)→ MTextEditor

Append text:

e = MTextEditor("First paragraph.\P")
e += "Second paragraph.\P")

__str__()→ str
Returns the MTEXT content attribute text.

clear()

Reset the content to an empty string.
font(name: str, bold: bool = False, italic: bool = False)→ MTextEditor

Set the text font by the font family name. Changing the font height should be done by the height() or the
scale_height() method. The font family name is the name shown in font selection widgets in desktop
applications: “Arial”, “Times New Roman”, “Comic Sans MS”. Switching the codepage is not supported.

Parameters
• name – font family name
• bold – flag
• italic – flag

height(height: float)→ MTextEditor
Set the absolute text height in drawing units.

scale_height(factor: float)→ MTextEditor
Scale the text height by a factor. This scaling will accumulate, which means starting at height 2.5 and scaling
by 2 and again by 3 will set the text height to 2.5 x 2 x 3 = 15. The current text height is not stored in the
MTextEditor, you have to track the text height by yourself! The initial text height is stored in the MText
entity as DXF attribute char_height.

width_factor(factor: float)→ MTextEditor
Set the absolute text width factor.

char_tracking_factor(factor: float)→ MTextEditor
Set the absolute character tracking factor.

9.8. Reference 573

ezdxf Documentation, Release 1.3.2

oblique(angle: int)→ MTextEditor
Set the text oblique angle in degrees, vertical is 0, a value of 15 will lean the text 15 degree to the right.

color(name: str)→ MTextEditor

Set the text color by color name: “red”, “yellow”, “green”, “cyan”, “blue”, “magenta” or “white”.
aci(aci: int)→ MTextEditor

Set the text color by AutoCAD Color Index (ACI) in range [0, 256].
rgb(rgb: RGB)→ MTextEditor

Set the text color as RGB value.
underline(text: str)→ MTextEditor

Append text with a line below the text.
overline(text: str)→ MTextEditor

Append text with a line above the text.
strike_through(text: str)→ MTextEditor

Append text with a line through the text.
group(text: str)→ MTextEditor

Group text, all properties changed inside a group are reverted at the end of the group. AutoCAD supports
grouping up to 8 levels.

stack(upr: str, lwr: str, t: str = '^')→ MTextEditor
Append stacked text upr over lwr, argument t defines the kind of stacking, the space “ “ after the “^” will be
added automatically to avoid caret decoding:

"^": vertical stacked without divider line, e.g. \SA^ B:
A
B

"/": vertical stacked with divider line, e.g. \SX/Y:
X
-
Y

"#": diagonal stacked, with slanting divider line, e.g. \S1#4:
1/4

paragraph(props: ParagraphProperties)→ MTextEditor
Set paragraph properties by a ParagraphProperties object.

bullet_list(indent: float, bullets: Iterable[str], content: Iterable[str])→ MTextEditor

Build bulleted lists by utilizing paragraph indentation and a tabulator stop. Any string can be used as bullet.
Indentation is a multiple of the initial MTEXT char height (see also docs about ParagraphProperties),
which means indentation in drawing units is MText.dxf.char_height x indent.
Useful UTF bullets:
• “bull” U+2022 = • (Alt Numpad 7)
• “circle” U+25CB = ○ (Alt Numpad 9)

For numbered lists just use numbers as bullets:

574 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MTextEditor.bullet_list(
indent=2,
bullets=["1.", "2."],
content=["first", "second"],

)

Parameters
• indent – content indentation as multiple of the initial MTEXT char height
• bullets – iterable of bullet strings, e.g. ["-"] * 3, for 3 dashes as bullet strings
• content – iterable of list item strings, one string per list item, list items should not contain
new line or new paragraph commands.

Constants stored in the MTextEditor class:

NEW_LINE '\P'
NEW_PARAGRAPH '\P'
NEW_COLUMN '\N
UNDERLINE_START '\L'
UNDERLINE_STOP '\l'
OVERSTRIKE_START '\O'
OVERSTRIKE_STOP '\o'
STRIKE_START '\K'
STRIKE_STOP '\k'
ALIGN_BOTTOM '\A0;'
ALIGN_MIDDLE '\A1;'
ALIGN_TOP '\A2;'
NBSP '\~'
TAB '^I'

class ezdxf.tools.text.ParagraphProperties(indent=0, left=0, right=0, align=DEFAULT ,
tab_stops=[])

Stores all known MTEXT paragraph properties in a NamedTuple. Indentations and tab stops are multiples of
the default text height MText.dxf.char_height. E.g. char_height is 0.25 and indent is 4, the real
indentation is 4 x 0.25 = 1 drawing unit. The default tabulator stops are 4, 8, 12, … if no tabulator stops are explicit
defined.

Parameters
• indent (float) – left indentation of the first line, relative to left, which means an in-
dent of 0 has always the same indentation as left

• left (float) – left indentation of the paragraph except for the first line
• right (float) – left indentation of the paragraph
• align – MTextParagraphAlignment enum
• tab_stops – tuple of tabulator stops, as float or as str, float values are left aligned
tab stops, strings with prefix "c" are center aligned tab stops and strings with prefix "r" are
right aligned tab stops

tostring()→ str
Returns the MTEXT paragraph properties as MTEXT inline code e.g. "\pxi-2,l2;".

9.8. Reference 575

ezdxf Documentation, Release 1.3.2

class ezdxf.lldxf.const.MTextParagraphAlignment

DEFAULT

LEFT

RIGHT

CENTER

JUSTIFIED

DISTRIBUTED

Single Line Text

class ezdxf.tools.text.TextLine(text: str, font: fonts.AbstractFont)
Helper class which represents a single line text entity (e.g. Text).

Parameters
• text – content string
• font – ezdxf font definition like MonospaceFont or TrueTypeFont

property width: float

Returns the final (stretched) text width.
property height: float

Returns the final (stretched) text height.
stretch(alignment: TextEntityAlignment, p1: Vec3, p2: Vec3)→ None

Set stretch factors for FIT and ALIGNED alignments to fit the text between p1 and p2, only the distance
between these points is important. Other given alignment values are ignore.

font_measurements()→ fonts.FontMeasurements
Returns the scaled font measurements.

baseline_vertices(insert: UVec, halign: int = 0, valign: int = 0, angle: float = 0, scale: tuple[float, float]
= (1, 1))→ list[Vec3]

Returns the left and the right baseline vertex of the text line.
Parameters

• insert – insertion location
• halign – horizontal alignment left=0, center=1, right=2
• valign – vertical alignment baseline=0, bottom=1, middle=2, top=3
• angle – text rotation in radians
• scale – scale in x- and y-axis as 2-tuple of float

corner_vertices(insert: UVec, halign: int = 0, valign: int = 0, angle: float = 0, scale: tuple[float, float] =
(1, 1), oblique: float = 0)→ list[Vec3]

Returns the corner vertices of the text line in the order bottom left, bottom right, top right, top left.
Parameters

• insert – insertion location

576 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• halign – horizontal alignment left=0, center=1, right=2
• valign – vertical alignment baseline=0, bottom=1, middle=2, top=3
• angle – text rotation in radians
• scale – scale in x- and y-axis as 2-tuple of float
• oblique – shear angle (slanting) in x-direction in radians

static transform_2d(vertices: Iterable[UVec], insert: UVec = Vec3(0, 0, 0), shift: tuple[float, float] =
(0, 0), rotation: float = 0, scale: tuple[float, float] = (1, 1), oblique: float = 0)→
list[Vec3]

Transform any vertices from the text line located at the base location at (0, 0) and alignment LEFT.
Parameters

• vertices – iterable of vertices
• insert – insertion location
• shift – (shift-x, shift-y) as 2-tuple of float
• rotation – text rotation in radians
• scale – (scale-x, scale-y) as 2-tuple of float
• oblique – shear angle (slanting) in x-direction in radians

Functions

ezdxf.tools.text.caret_decode(text: str)→ str
DXF stores some special characters using caret notation. This function decodes this notation to normalize the
representation of special characters in the string.
see: https://en.wikipedia.org/wiki/Caret_notation

ezdxf.tools.text.estimate_mtext_content_extents(content: str, font: fonts.AbstractFont,
column_width: float = 0.0,
line_spacing_factor: float = 1.0)→
tuple[float, float]

Estimate the width and height of the MText content string. The result is very inaccurate if inline codes are used
or line wrapping at the column border is involved! Column breaks \N will be ignored.

Parameters
• content – the MText content string
• font – font abstraction based on ezdxf.tools.fonts.AbstractFont
• column_width – MText.dxf.width or 0.0 for an unrestricted column width
• line_spacing_factor – MText.dxf.line_spacing_factor

Returns
tuple[width, height]

ezdxf.tools.text.estimate_mtext_extents(mtext: MText)→ tuple[float, float]
Estimate the width and height of a single column MText entity.
This function is faster than the mtext_size() function, but the result is very inaccurate if inline codes are used
or line wrapping at the column border is involved!

9.8. Reference 577

https://en.wikipedia.org/wiki/Caret_notation

ezdxf Documentation, Release 1.3.2

Returns
Tuple[width, height]

ezdxf.tools.text.fast_plain_mtext(text: str, split=False)→ list[str] | str
Returns the plain MTEXT content as a single string or a list of strings if split is True. Replaces \P by \n and
removes other controls chars and inline codes.
This function is more than 4x faster than plain_mtext(), but does not remove single letter inline commands
with arguments without a terminating semicolon like this "\C1red text".

Note: Well behaved CAD applications and libraries always create inline codes for commands with arguments with
a terminating semicolon like this "\C1;red text"!

Parameters
• text – MTEXT content string
• split – split content at line endings \P

ezdxf.tools.text.is_text_vertical_stacked(text: DXFEntity)→ bool
Returns True if the associated text Textstyle is vertical stacked.

ezdxf.tools.text.is_upside_down_text_angle(angle: float, tol: float = 3.0)→ bool
Returns True if the given text angle in degrees causes an upside down text in theWCS. The strict flip range is 90°
< angle < 270°, the tolerance angle tol extends this range to: 90+tol < angle < 270-tol. The angle is normalized to
[0, 360).

Parameters
• angle – text angle in degrees
• tol – tolerance range in which text flipping will be avoided

ezdxf.tools.text.leading(cap_height: float, line_spacing: float = 1.0)→ float
Returns the distance from baseline to baseline.

Parameters
• cap_height – cap height of the line
• line_spacing – line spacing factor as percentage of 3-on-5 spacing

ezdxf.tools.text.plain_mtext(text: str, split=False, tabsize: int = 4)→ list[str] | str
Returns the plain MTEXT content as a single string or a list of strings if split is True. Replaces \P by \n and
removes other controls chars and inline codes.
This function is much slower than fast_plain_mtext(), but removes all inline codes.

Parameters
• text – MTEXT content string
• split – split content at line endings \P
• tabsize – count of replacement spaces for tabulators ^I

ezdxf.tools.text.plain_text(text: str)→ str
Returns the plain text for Text, Attrib and Attdef content.

578 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.tools.text.safe_string(s: str | None, max_len: int = MAX_STR_LEN)→ str
Returns a string with line breaks \n replaced by \P and the length limited to max_len.

ezdxf.tools.text.text_wrap(text: str, box_width: float | None, get_text_width: Callable[[str], float])→
list[str]

Wrap text at \n and given box_width. This tool was developed for usage with the MTEXT entity. This isn’t the
most straightforward word wrapping algorithm, but it aims to match the behavior of AutoCAD.

Parameters
• text – text to wrap, included \n are handled as manual line breaks
• box_width – wrapping length, None to just wrap at \n
• get_text_width – callable which returns the width of the given string

ezdxf.tools.text.upright_text_angle(angle: float, tol: float = 3.0)→ float
Returns a readable (upright) text angle in the range angle <= 90+tol or angle >= 270-tol. The angle is normalized
to [0, 360).

Parameters
• angle – text angle in degrees
• tol – tolerance range in which text flipping will be avoided

Text Size Tools

class ezdxf.tools.text_size.TextSize

A frozen dataclass as return type for the text_size() function.
width

The text width in drawing units (float).
cap_height

The font cap-height in drawing units (float).
total_height

The font total-height = cap-height + descender-height in drawing units (float).
ezdxf.tools.text_size.text_size(text: Text)→ TextSize

Returns the measured text width, the font cap-height and the font total-height for a Text entity. This function
uses the optionalMatplotlib package if available to measure the final rendering width and font-height for the Text
entity as close as possible. This function does not measure the real char height! Without access to the Matplotlib
package the MonospaceFont is used and the measurements are very inaccurate.
See the text2path add-on for more tools to work with the text path objects created by the Matplotlib package.

class ezdxf.tools.text_size.MTextSize

A frozen dataclass as return type for the mtext_size() function.
total_width

The total width in drawing units (float)
total_height

The total height in drawing units (float), same as max(column_heights).
column_width

The width of a single column in drawing units (float)

9.8. Reference 579

ezdxf Documentation, Release 1.3.2

gutter_width

The space between columns in drawing units (float)
column_heights

A tuple of columns heights (float) in drawing units. Contains at least one column height and the column height
is 0 for an empty column.

column_count

The count of columns (int).
ezdxf.tools.text_size.mtext_size(mtext: MText, tool: MTextSizeDetector | None = None)→ MTextSize

Returns the total-width, -height and columns information for a MText entity.
This function uses the optionalMatplotlib package if available to do font measurements and the internal text layout
engine to determine the final rendering size for the MText entity as close as possible. Without access to the
Matplotlib package the MonospaceFont is used and the measurements are very inaccurate.
Attention: The required full layout calculation is slow!
The first call to this function with Matplotlib support is very slow, because Matplotlib lookup all available fonts
on the system. To speedup the calculation and accepting inaccurate results you can disable the Matplotlib support
manually:

ezdxf.option.use_matplotlib = False

ezdxf.tools.text_size.estimate_mtext_extents(mtext: MText)→ tuple[float, float]
Estimate the width and height of a single column MText entity.
This function is faster than the mtext_size() function, but the result is very inaccurate if inline codes are used
or line wrapping at the column border is involved!

Returns
Tuple[width, height]

XClip Module

Added in version 1.2.
The XClip class can set or remove the clipping path of external references or block references.
The clipping boundary determines the portion of an XREF or block instance that is hidden, either outside or inside the
boundary (inside = inverted clipping path). The visibility of the clipping boundary is controlled by the $XCLIPFRAME
header variable.
The XClip class supports only 2D clippings path and cannot create inverted clipping paths.
There exist two coordinate systems for the clipping path polygon:

• BLOCK coordinate system: the BLOCK coordinates are relative to the BLOCK origin
• WCS coordinate system: the WCS coordinates are relative to the origin of the of the coodintate system where the
block reference (INSERT entity) is inserted

The XClip class provides methods to set and get the clipping path for both variants and returns a ClippingPath
object.
The clipping polygon can be set visible/invisible when the header variable $XCLIPFRAME is not 0, otherwise the clipping
polygon is always invisible.
Remove the clipping path by the XClip.discard_clipping_path() method, does not raise an exception when
no clipping path exist.

580 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

See also:
example script: clipping_insert.py in the /examples/blocks folder
class ezdxf.xclip.XClip(insert: Insert)

Helper class to manage the clipping path of INSERT entities.
Provides a similar functionality as the XCLIP command in CAD applications.

Important: This class handles only 2D clipping paths.

The visibility of the clipping path can be set individually for each block reference, but the HEADER variable
$XCLIPFRAME ultimately determines whether the clipping path is displayed or plotted by the application:

0 not displayed not plotted
1 displayed not plotted
2 displayed plotted

The default setting is 2.
property has_clipping_path: bool

Returns if the INSERT entity has a clipping path.
property is_clipping_enabled: bool

Returns True if block reference clipping is enabled.
property is_inverted_clip: bool

Returns True if clipping path is inverted.
disable_clipping()→ None

Disable block reference clipping.

9.8. Reference 581

https://github.com/mozman/ezdxf/blob/master/examples/blocks/clipping_insert.py

ezdxf Documentation, Release 1.3.2

enable_clipping()→ None
Enable block reference clipping.

get_spatial_filter()→ SpatialFilter | None
Returns the underlaying SPATIAL_FILTER entity if the INSERT entity has a clipping path and returnsNone
otherwise.

get_xclip_frame_policy()→ int

get_block_clipping_path()→ ClippingPath
Returns the clipping path in block coordinates (relative to the block origin).

get_wcs_clipping_path()→ ClippingPath
Returns the clipping path in WCS coordinates (relative to the WCS origin) as 2D path projected onto the
xy-plane.

set_block_clipping_path(vertices: Iterable[UVec])→ None
Set clipping path in block coordinates (relative to block origin).
The clipping path is located in the xy-plane, the z-axis of all vertices will be ignored. The clipping path doesn’t
have to be closed (first vertex != last vertex). Two vertices define a rectangle where the sides are parallel to
x- and y-axis.

Raises
DXFValueError – clipping path has less than two vertrices

set_wcs_clipping_path(vertices: Iterable[UVec])→ None
Set clipping path in WCS coordinates (relative to WCS origin).
The clipping path is located in the xy-plane, the z-axis of all vertices will be ignored. The clipping path doesn’t
have to be closed (first vertex != last vertex). Two vertices define a rectangle where the sides are parallel to
x- and y-axis.

Raises
• DXFValueError – clipping path has less than two vertrices
• ZeroDivisionError – Block reference transformation matrix is not invertible

discard_clipping_path()→ None
Delete the clipping path. The clipping path doesn’t have to exist.
This method does not discard the extension dictionary of the base entity, even when its empty.

class ezdxf.xclip.ClippingPath(vertices: Sequence[Vec2] = (), inverted_clip: Sequence[Vec2] = (),
inverted_clip_compare: Sequence[Vec2] = (), is_inverted_clip: bool =
False)

Stores the SPATIAL_FILTER clipping paths in original form that I still don’t fully understand for inverted clipping
paths. All boundary paths are simple polygons as a sequence of Vec2.
vertices

Contains the boundary polygon for regular clipping paths. Contains the outer boundary path for inverted
clippings paths - but not always!

Type
Sequence[ezdxf.math._vector.Vec2]

inverted_clip

Contains the inner boundary for inverted clipping paths - but not always!

582 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Type
Sequence[ezdxf.math._vector.Vec2]

inverted_clip_compare

Contains the combined inner- and the outer boundaries for inverted clipping paths - but not always!
Type

Sequence[ezdxf.math._vector.Vec2]
is_inverted_clip

True for inverted clipping paths
Type

bool

Zoom Layouts

These functions mimic the ZOOM commands in CAD applications.
Zooming means resetting the current viewport limits to new values. The coordinates for the functions center() and
window() are drawing units for the model space and paper space units for paper space layouts. The modelspace units
in Drawing.units are ignored.
The extents detection for the functions entities() and extents() is done by the ezdxf.bbox module. Read
the associated documentation to understand the limitations of the ezdxf.bbox module. Tl;dr The extents detection is
slow and not accurate.
Because the ZOOM operations in CAD applications are not that precise, then zoom functions of this module uses the fast
bounding box calculationmode of thebboxmodule, whichmeans the argumentflatten is alwaysFalse forextents()
function calls.
The region displayed by CAD applications also depends on the aspect ratio of the application window, which is not
available to ezdxf, therefore the viewport size is just an educated guess of an aspect ratio of 2:1 (16:9 minus top toolbars
and the bottom status bar).

Warning: All zoom functions replace the current viewport configuration by a single window configuration.

Example to reset the main CAD viewport of the model space to the extents of its entities:

import ezdxf
from ezdxf import zoom

doc = ezdxf.new()
msp = doc.modelspace()
... # add your DXF entities

zoom.extents(msp)
doc.saveas("your.dxf")

ezdxf.zoom.center(layout: Layout, point: Sequence[float] | Vec2 | Vec3, size: Sequence[float] | Vec2 | Vec3)
Resets the active viewport center of layout to the given point, argument size defines the width and height of the
viewport. Replaces the current viewport configuration by a single window configuration.

ezdxf.zoom.objects(layout: Layout, entities: Iterable[DXFEntity], factor: float = 1)
Resets the active viewport limits of layout to the extents of the given entities. Only entities in the given layout are
taken into account. The argument factor scales the viewport limits. Replaces the current viewport configuration by
a single window configuration.

9.8. Reference 583

ezdxf Documentation, Release 1.3.2

ezdxf.zoom.extents(layout: Layout, factor: float = 1)
Resets the active viewport limits of layout to the extents of all entities in this layout. The argument factor scales
the viewport limits. Replaces the current viewport configuration by a single window configuration.

ezdxf.zoom.window(layout: Layout, p1: Sequence[float] | Vec2 | Vec3, p2: Sequence[float] | Vec2 | Vec3)
Resets the active viewport limits of layout to the lower left corner p1 and the upper right corner p2. Replaces the
current viewport configuration by a single window configuration.

Render Tools

The ezdxf.render subpackage provides helpful utilities to create complex forms.
• create complex meshes as Mesh entity.
• render complex curves like bezier curves, euler spirals or splines as Polyline entity
• vertex generators for simple and complex forms like circle, ellipse or euler spiral

Content

Spline

class ezdxf.render.Spline(points: Iterable[UVec] | None = None, segments: int = 100)
This class can be used to render B-splines into DXF R12 files as approximated Polyline entities. The advantage
of this class over the R12Spline class is, that this is a real 3D curve, which means that the B-spline vertices do
have to be located in a flat plane, and no UCS class is needed to place the curve in 3D space.
See also:
The newer BSpline class provides the advanced vertex interpolation method flattening().
__init__(points: Iterable[UVec] | None = None, segments: int = 100)

Parameters
• points – spline definition points
• segments – count of line segments for approximation, vertex count is segments + 1

subdivide(segments: int = 4)→ None
Calculate overall segment count, where segments is the sub-segment count, segments = 4, means 4 line seg-
ments between two definition points e.g. 4 definition points and 4 segments = 12 overall segments, useful
for fit point rendering.

Parameters
segments – sub-segments count between two definition points

render_as_fit_points(layout: BaseLayout, degree: int = 3, method: str = 'chord', dxfattribs: dict | None
= None)→ None

Render a B-spline as 2D/3D Polyline, where the definition points are fit points.
• 2D spline vertices uses: add_polyline2d()
• 3D spline vertices uses: add_polyline3d()

Parameters
• layout – BaseLayout object

584 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• degree – degree of B-spline (order = degree + 1)
• method – “uniform”, “distance”/”chord”, “centripetal”/”sqrt_chord” or “arc” calculation
method for parameter t

• dxfattribs – DXF attributes for Polyline

render_open_bspline(layout: BaseLayout, degree: int = 3, dxfattribs=None)→ None
Render an open uniform B-spline as 3D Polyline. Definition points are control points.

Parameters
• layout – BaseLayout object
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline

render_uniform_bspline(layout: BaseLayout, degree: int = 3, dxfattribs=None)→ None
Render a uniform B-spline as 3D Polyline. Definition points are control points.

Parameters
• layout – BaseLayout object
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline

render_closed_bspline(layout: BaseLayout, degree: int = 3, dxfattribs=None)→ None
Render a closed uniform B-spline as 3D Polyline. Definition points are control points.

Parameters
• layout – BaseLayout object
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline

render_open_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs=None)→
None

Render a rational open uniform BSpline as 3D Polyline. Definition points are control points.
Parameters

• layout – BaseLayout object
• weights – list of weights, requires a weight value (float) for each definition point.
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline

render_uniform_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3,
dxfattribs=None)→ None

Render a rational uniform B-spline as 3D Polyline. Definition points are control points.
Parameters

• layout – BaseLayout object
• weights – list of weights, requires a weight value (float) for each definition point.
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline

9.8. Reference 585

ezdxf Documentation, Release 1.3.2

render_closed_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs=None)
→ None

Render a rational B-spline as 3D Polyline. Definition points are control points.
Parameters

• layout – BaseLayout object
• weights – list of weights, requires a weight value (float) for each definition point.
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline

R12Spline

class ezdxf.render.R12Spline(control_points: Iterable[UVec], degree: int = 2, closed: bool = True)

DXF R12 supports 2D B-splines, but Autodesk do not document the usage in the DXF Reference. The base entity
for splines in DXF R12 is the POLYLINE entity. The spline itself is always in a plane, but as any 2D entity, the
spline can be transformed into the 3D object by elevation and extrusion (OCS, UCS).
This way it was possible to store the spline parameters in the DXF R12 file, to allow CAD applications to modify
the spline parameters and rerender the B-spline afterward again as polyline approximation. Therefore, the result
is not better than an approximation by the Spline class, it is also just a POLYLINE entity, but maybe someone
need exact this tool in the future.
__init__(control_points: Iterable[UVec], degree: int = 2, closed: bool = True)

Parameters
• control_points – B-spline control frame vertices
• degree – degree of B-spline, only 2 and 3 is supported
• closed – True for closed curve

render(layout: BaseLayout, segments: int = 40, ucs: UCS | None = None, dxfattribs=None)→ Polyline
Renders the B-spline into layout as 2D Polyline entity. Use an UCS to place the 2D spline in the 3D
space, see approximate() for more information.

Parameters
• layout – BaseLayout object
• segments – count of line segments for approximation, vertex count is segments + 1
• ucs – UCS definition, control points in ucs coordinates.
• dxfattribs – DXF attributes for Polyline

approximate(segments: int = 40, ucs: UCS | None = None)→ list[UVec]
Approximate the B-spline by a polyline with segments line segments. If ucs is not None, ucs defines an
UCS, to transform the curve into OCS. The control points are placed xy-plane of the UCS, don’t use z-axis
coordinates, if so make sure all control points are in a plane parallel to the OCS base plane (UCS xy-plane),
else the result is unpredictable and depends on the CAD application used to open the DXF file - it may crash.

Parameters
• segments – count of line segments for approximation, vertex count is segments + 1
• ucs – UCS definition, control points in ucs coordinates

586 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Returns
list of vertices in OCS as Vec3 objects

Bezier

class ezdxf.render.Bezier

Render a bezier curve as 2D/3D Polyline.
The Bezier class is implemented with multiple segments, each segment is an optimized 4 point bezier curve, the
4 control points of the curve are: the start point (1) and the end point (4), point (2) is start point + start vector and
point (3) is end point + end vector. Each segment has its own approximation count.
See also:
The new ezdxf.path package provides many advanced construction tools based on the Path class.
start(point: UVec, tangent: UVec)→ None

Set start point and start tangent.
Parameters

• point – start point
• tangent – start tangent as vector, example: (5, 0, 0) means a horizontal tangent with a
length of 5 drawing units

append(point: UVec, tangent1: UVec, tangent2: UVec | None = None, segments: int = 20)
Append a control point with two control tangents.

Parameters
• point – control point
• tangent1 – first tangent as vector “left” of the control point
• tangent2 – second tangent as vector “right” of the control point, if omitted tangent2 =

-tangent1

• segments – count of line segments for the polyline approximation, count of line segments
from the previous control point to the appended control point.

render(layout: BaseLayout, force3d: bool = False, dxfattribs=None)→ None
Render Bezier curve as 2D/3D Polyline.

Parameters
• layout – BaseLayout object
• force3d – force 3D polyline rendering
• dxfattribs – DXF attributes for Polyline

9.8. Reference 587

ezdxf Documentation, Release 1.3.2

EulerSpiral

class ezdxf.render.EulerSpiral(curvature: float = 1)
Render an euler spiral as a 3D Polyline or a Spline entity.
This is a parametric curve, which always starts at the origin (0, 0).
__init__(curvature: float = 1)

Parameters
curvature – Radius of curvature

render_polyline(layout: BaseLayout, length: float = 1, segments: int = 100, matrix: Matrix44 | None =
None, dxfattribs=None)

Render curve as Polyline.
Parameters

• layout – BaseLayout object
• length – length measured along the spiral curve from its initial position
• segments – count of line segments to use, vertex count is segments + 1
• matrix – transformation matrix as Matrix44
• dxfattribs – DXF attributes for Polyline

Returns
Polyline

render_spline(layout: BaseLayout, length: float = 1, fit_points: int = 10, degree: int = 3, matrix: Matrix44 |
None = None, dxfattribs=None)

Render curve as Spline.
Parameters

• layout – BaseLayout object
• length – length measured along the spiral curve from its initial position
• fit_points – count of spline fit points to use
• degree – degree of B-spline
• matrix – transformation matrix as Matrix44
• dxfattribs – DXF attributes for Spline

Returns
Spline

Random Paths

Random path generators for testing purpose.
ezdxf.render.random_2d_path(steps: int = 100, max_step_size: float = 1.0, max_heading: float = math.pi /

2, retarget: int = 20)→ Iterable[Vec2]
Returns a random 2D path as iterable of Vec2 objects.

Parameters
• steps – count of vertices to generate

588 Chapter 9. Contents

https://en.wikipedia.org/wiki/Euler_spiral

ezdxf Documentation, Release 1.3.2

• max_step_size – max step size
• max_heading – limit heading angle change per step to ± max_heading/2 in radians
• retarget – specifies steps before changing global walking target

ezdxf.render.random_3d_path(steps: int = 100, max_step_size: float = 1.0, max_heading: float = math.pi /
2.0, max_pitch: float = math.pi / 8.0, retarget: int = 20)→ Iterable[Vec3]

Returns a random 3D path as iterable of Vec3 objects.
Parameters

• steps – count of vertices to generate
• max_step_size – max step size
• max_heading – limit heading angle change per step to ± max_heading/2, rotation about the
z-axis in radians

• max_pitch – limit pitch angle change per step to ± max_pitch/2, rotation about the x-axis
in radians

• retarget – specifies steps before changing global walking target

Forms

This module provides functions to create 2D and 3D forms as vertices or mesh objects.
2D Forms

• box()

• circle()

• ellipse()

• euler_spiral()

• gear()

• ngon()

• square()

• star()

• turtle()

3D Forms
• cone_2p()

• cone()

• cube()

• cylinder()

• cylinder_2p()

• helix()

• sphere()

• torus()

3D Form Builder

9.8. Reference 589

ezdxf Documentation, Release 1.3.2

• extrude()

• extrude_twist_scale()

• from_profiles_linear()

• from_profiles_spline()

• rotation_form()

• sweep()

• sweep_profile()

2D Forms

Basic 2D shapes as iterable of Vec3.
ezdxf.render.forms.box(sx: float = 1.0, sy: float = 1.0, center=False)→ tuple[Vec3, Vec3, Vec3, Vec3]

Returns 4 vertices for a box with a width of sx by and a height of sy. The center of the box in (0, 0) if center is
True otherwise the lower left corner is (0, 0), upper right corner is (sx, sy).

ezdxf.render.forms.circle(count: int, radius: float = 1, elevation: float = 0, close: bool = False)→
Iterable[Vec3]

Create polygon vertices for a circle with the given radius and approximated by count vertices, elevation is the z-axis
for all vertices.

Parameters
• count – count of polygon vertices
• radius – circle radius
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.

Returns
vertices in counter-clockwise orientation as Vec3 objects

ezdxf.render.forms.ellipse(count: int, rx: float = 1, ry: float = 1, start_param: float = 0, end_param: float
= math.tau, elevation: float = 0)→ Iterable[Vec3]

Create polygon vertices for an ellipse with given rx as x-axis radius and ry as y-axis radius approximated by count
vertices, elevation is the z-axis for all vertices. The ellipse goes from start_param to end_param in counter clockwise
orientation.

Parameters
• count – count of polygon vertices
• rx – ellipse x-axis radius
• ry – ellipse y-axis radius
• start_param – start of ellipse in range [0, 2π]
• end_param – end of ellipse in range [0, 2π]
• elevation – z-axis for all vertices

Returns
vertices in counter clockwise orientation as Vec3 objects

590 Chapter 9. Contents

https://en.wikipedia.org/wiki/Circle
https://en.wikipedia.org/wiki/Ellipse

ezdxf Documentation, Release 1.3.2

ezdxf.render.forms.euler_spiral(count: int, length: float = 1, curvature: float = 1, elevation: float = 0)
→ Iterable[Vec3]

Create polygon vertices for an euler spiral of a given length and radius of curvature. This is a parametric curve,
which always starts at the origin (0, 0).

Parameters
• count – count of polygon vertices
• length – length of curve in drawing units
• curvature – radius of curvature
• elevation – z-axis for all vertices

Returns
vertices as Vec3 objects

ezdxf.render.forms.gear(count: int, top_width: float, bottom_width: float, height: float, outside_radius: float,
elevation: float = 0, close: bool = False)→ Iterable[Vec3]

Returns the corner vertices of a gear shape (cogwheel).

Warning: This function does not create correct gears for mechanical engineering!

Parameters
• count – teeth count >= 3
• top_width – teeth width at outside radius
• bottom_width – teeth width at base radius
• height – teeth height; base radius = outside radius - height
• outside_radius – outside radius
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.

Returns
vertices in counter clockwise orientation as Vec3 objects

ezdxf.render.forms.ngon(count: int, length: float | None = None, radius: float | None = None, rotation: float
= 0.0, elevation: float = 0.0, close: bool = False)→ Iterable[Vec3]

Returns the corner vertices of a regular polygon. The polygon size is determined by the edge length or the circum
radius argument. If both are given length has the higher priority.

Parameters
• count – count of polygon corners >= 3
• length – length of polygon side
• radius – circum radius
• rotation – rotation angle in radians
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.

9.8. Reference 591

https://en.wikipedia.org/wiki/Euler_spiral
https://en.wikipedia.org/wiki/Gear
https://en.wikipedia.org/wiki/Regular_polygon

ezdxf Documentation, Release 1.3.2

Returns
vertices as Vec3 objects

ezdxf.render.forms.square(size: float = 1.0, center=False)→ tuple[Vec3, Vec3, Vec3, Vec3]
Returns 4 vertices for a square with a side length of the given size. The center of the square in (0, 0) if center is
True otherwise the lower left corner is (0, 0), upper right corner is (size, size).

ezdxf.render.forms.star(count: int, r1: float, r2: float, rotation: float = 0.0, elevation: float = 0.0, close:
bool = False)→ Iterable[Vec3]

Returns the corner vertices for a star shape.
The shape has count spikes, r1 defines the radius of the “outer” vertices and r2 defines the radius of the “inner”
vertices, but this does not mean that r1 has to be greater than r2.

Parameters
• count – spike count >= 3
• r1 – radius 1
• r2 – radius 2
• rotation – rotation angle in radians
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.

Returns
vertices as Vec3 objects

ezdxf.render.forms.turtle(commands: str, start=Vec2(0, 0), angle: float = 0)→ Iterator[Vec2]
Returns the 2D vertices of a polyline created by turtle-graphic like commands:

• <length> - go <length> units forward in current direction and yield vertex
• r<angle> - turn right <angle> in degrees, a missing angle is 90 deg
• l<angle> - turn left <angle> in degrees, a missing angle is 90 deg
• @<x>,<y> - go relative <x>,<y> and yield vertex

The command string "10 l 10 l 10" returns the 4 corner vertices of a square with a side length of 10 drawing
units.

Parameters
• commands – command string, commands are separated by spaces
• start – starting point, default is (0, 0)
• angle – starting direction, default is 0 deg

3D Forms

Create 3D forms as MeshTransformer objects.
ezdxf.render.forms.cube(center: bool = True)→MeshTransformer

Create a cube as MeshTransformer object.
Parameters

center – ‘mass’ center of cube, (0, 0, 0) if True, else first corner at (0, 0, 0)

Returns: MeshTransformer

592 Chapter 9. Contents

https://en.wikipedia.org/wiki/Star_polygon
https://en.wikipedia.org/wiki/Cube

ezdxf Documentation, Release 1.3.2

ezdxf.render.forms.cone(count: int = 16, radius: float = 1.0, apex: UVec = (0, 0, 1), *, caps=True)→
MeshTransformer

Create a cone as MeshTransformer object, the base center is fixed in the origin (0, 0, 0).
Parameters

• count – edge count of basis_vector
• radius – radius of basis_vector
• apex – tip of the cone
• caps – add a bottom face as ngon if True

ezdxf.render.forms.cone_2p(count: int = 16, radius: float = 1.0, base_center: UVec = (0, 0, 0), apex: UVec
= (0, 0, 1), *, caps=True)→MeshTransformer

Create a cone as MeshTransformer object from two points, base_center is the center of the base circle and
apex as the tip of the cone.

Parameters
• count – edge count of basis_vector
• radius – radius of basis_vector
• base_center – center point of base circle
• apex – tip of the cone
• caps – add a bottom face as ngon if True

Raises
ValueError – the cone orientation cannot be detected (base center == apex)

ezdxf.render.forms.cylinder(count: int = 16, radius: float = 1.0, top_radius: float | None = None,
top_center: UVec = (0, 0, 1), *, caps=True)→MeshTransformer

Create a cylinder as MeshTransformer object, the base center is fixed in the origin (0, 0, 0).
Parameters

• count – profiles edge count
• radius – radius for bottom profile
• top_radius – radius for top profile, if None top_radius == radius
• top_center – location vector for the center of the top profile
• caps – close hull with top- and bottom faces (ngons)

ezdxf.render.forms.cylinder_2p(count: int = 16, radius: float = 1, base_center: UVec = (0, 0, 0),
top_center: UVec = (0, 0, 1), *, caps=True)→MeshTransformer

Creates a cylinder as MeshTransformer object from two points, base_center is the center of the base circle
and, top_center the center of the top circle.

Parameters
• count – cylinder profile edge count
• radius – radius for bottom profile
• base_center – center of base circle
• top_center – center of top circle
• caps – close hull with top- and bottom faces (ngons)

9.8. Reference 593

https://en.wikipedia.org/wiki/Cone
https://en.wikipedia.org/wiki/Cone
https://en.wikipedia.org/wiki/Cylinder
https://en.wikipedia.org/wiki/Cylinder

ezdxf Documentation, Release 1.3.2

Raises
ValueError – the cylinder orientation cannot be detected (base center == top center)

ezdxf.render.forms.helix(radius: float, pitch: float, turns: float, resolution: int = 16, ccw=True)→
Iterator[Vec3]

Yields the vertices of a helix. The center of the helix is always (0, 0), a positive pitch value creates a helix along
the +z-axis, a negative value along the -z-axis.

Parameters
• radius – helix radius
• pitch – the height of one complete helix turn
• turns – count of turns
• resolution – vertices per turn
• ccw – creates a counter-clockwise turning (right-handed) helix if True

ezdxf.render.forms.sphere(count: int = 16, stacks: int = 8, radius: float = 1, *, quads=True)→
MeshTransformer

Create a sphere as MeshTransformer object, the center of the sphere is always at (0, 0, 0).
Parameters

• count – longitudinal slices
• stacks – latitude slices
• radius – radius of sphere
• quads – use quadrilaterals as faces if True else triangles

ezdxf.render.forms.torus(major_count: int = 16, minor_count: int = 8, major_radius=1.0,
minor_radius=0.1, start_angle: float = 0.0, end_angle: float = math.tau, *,
caps=True)→MeshTransformer

Create a torus as MeshTransformer object, the center of the torus is always at (0, 0, 0). The major_radius has
to be bigger than the minor_radius.

Parameters
• major_count – count of circles
• minor_count – count of circle vertices
• major_radius – radius of the circle center
• minor_radius – radius of circle
• start_angle – start angle of torus in radians
• end_angle – end angle of torus in radians
• caps – close hull with start- and end faces (ngons) if the torus is open

594 Chapter 9. Contents

https://en.wikipedia.org/wiki/Helix
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Torus

ezdxf Documentation, Release 1.3.2

3D Form Builder

ezdxf.render.forms.extrude(profile: Iterable[UVec], path: Iterable[UVec], close=True, caps=False)→
MeshTransformer

Extrude a profile polygon along a path polyline, the vertices of profile should be in counter-clockwise order. The
sweeping profile will not be rotated at extrusion!

Parameters
• profile – sweeping profile as list of (x, y, z) tuples in counter-clockwise order
• path – extrusion path as list of (x, y, z) tuples
• close – close profile polygon if True
• caps – close hull with top- and bottom faces (ngons)

Returns: MeshTransformer
ezdxf.render.forms.extrude_twist_scale(profile: Iterable[UVec], path: Iterable[UVec], *, twist: float

= 0.0, scale: float = 1.0, step_size: float = 1.0, close=True,
caps=False, quads=True)→MeshTransformer

Extrude a profile polygon along a path polyline, the vertices of profile should be in counter-clockwise order. This
implementation can scale and twist the sweeping profile along the extrusion path. The path segment points are
fix points, the max_step_size is used to create intermediate profiles between this fix points. The max_step_size is
adapted for each segment to create equally spaced distances. The twist angle is the rotation angle in radians and the
scale argument defines the scale factor of the final profile. The twist angle and scaling factor of the intermediate
profiles will be linear interpolated between the start and end values.

Parameters
• profile – sweeping profile as list of (x, y, z) tuples in counter-clockwise order
• path – extrusion path as list of (x, y, z) tuples
• twist – rotate sweeping profile up to the given end rotation angle in radians
• scale – scale sweeping profile gradually from 1.0 to given value
• step_size – rough distance between automatically created intermediate profiles, the step
size is adapted to the distances between the path segment points, a value od 0.0 disables creating
intermediate profiles

• close – close profile polygon if True
• caps – close hull with top- and bottom faces (ngons)
• quads – use quads for “sweeping” faces if True else triangles, the top and bottom faces are
always ngons

Returns: MeshTransformer
ezdxf.render.forms.from_profiles_linear(profiles: Sequence[Sequence[Vec3]], *, close=True,

quads=True, caps=False)→MeshTransformer
Returns a MeshTransformer instance from linear connected profiles.

Parameters
• profiles – list of profiles
• close – close profile polygon if True
• quads – use quadrilaterals as connection faces if True else triangles

9.8. Reference 595

ezdxf Documentation, Release 1.3.2

• caps – close hull with top- and bottom faces (ngons)
ezdxf.render.forms.from_profiles_spline(profiles: Sequence[Sequence[Vec3]], subdivide: int = 4, *,

close=True, quads=True, caps=False)→
MeshTransformer

Returns aMeshTransformer instance by spline interpolation between given profiles. Requires at least 4 profiles.
A subdivide value of 4, means, create 4 face loops between two profiles, without interpolation two profiles create
one face loop.

Parameters
• profiles – list of profiles
• subdivide – count of face loops
• close – close profile polygon if True
• quads – use quadrilaterals as connection faces if True else triangles
• caps – close hull with top- and bottom faces (ngons)

ezdxf.render.forms.rotation_form(count: int, profile: Iterable[UVec], angle: float = math.tau, axis:
UVec = (1, 0, 0), *, caps=False)→MeshTransformer

Returns a MeshTransformer instance created by rotating a profile around an axis.
Parameters

• count – count of rotated profiles
• profile – profile to rotate as list of vertices
• angle – rotation angle in radians
• axis – rotation axis
• caps – close hull with start- and end faces (ngons)

ezdxf.render.forms.sweep(profile: Iterable[UVec], sweeping_path: Iterable[UVec], *, close=True,
quads=True, caps=True)→MeshTransformer

Returns the mesh from sweeping a profile along a 3D path, where the sweeping path defines the final location in
theWCS.
The profile is defined in a reference system. The origin of this reference system will be moved along the sweeping
path where the z-axis of the reference system is pointing into the moving direction.
Returns the mesh as ezdxf.render.MeshTransformer object.

Parameters
• profile – sweeping profile defined in the reference system as iterable of (x, y, z) coordinates
in counter-clockwise order

• sweeping_path – the sweeping path defined in theWCS as iterable of (x, y, z) coordinates
• close – close sweeping profile if True
• quads – use quadrilaterals as connection faces if True else triangles
• caps – close hull with top- and bottom faces (ngons)

ezdxf.render.forms.sweep_profile(profile: Iterable[UVec], sweeping_path: Iterable[UVec])→
list[Sequence[Vec3]]

Returns the intermediate profiles of sweeping a profile along a 3D path where the sweeping path defines the final
location in theWCS.

596 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The profile is defined in a reference system. The origin of this reference system will be moved along the sweeping
path where the z-axis of the reference system is pointing into the moving direction.
Returns the start-, end- and all intermediate profiles along the sweeping path.

MeshBuilder

The MeshBuilder classes are helper tools to manage meshes buildup by vertices and faces. The vertices are stored in
a vertices list as Vec3 instances. The faces are stored as a sequence of vertex indices which is the location of the vertex
in the vertex list. A single MeshBuilder class can contain multiple separated meshes at the same time.
The method MeshBuilder.render_mesh() renders the content as a single DXF Mesh entity, which supports
ngons, ngons are polygons with more than 4 vertices. This entity requires at least DXF R2000.
The method MeshBuilder.render_polyface() renders the content as a single DXF Polyface entity, which
supports only triangles and quadrilaterals. This entity is supported by DXF R12.
The method MeshBuilder.render_3dfaces() renders each face of the mesh as a single DXF Face3d entity,
which supports only triangles and quadrilaterals. This entity is supported by DXF R12.
The MeshTransformer class is often used as an interface object to transfer mesh data between functions and moduls,
like for the mesh exchange add-on meshex.
The basic MeshBuilder class does not support transformations.
class ezdxf.render.MeshBuilder

vertices

List of vertices as Vec3 or (x, y, z) tuple
faces

List of faces as list of vertex indices, where a vertex index is the index of the vertex in the vertices list.
A face requires at least three vertices, Mesh supports ngons, so the count of vertices is not limited.

add_face(vertices: Iterable[UVec])→ None
Add a face as vertices list to the mesh. A face requires at least 3 vertices, each vertex is a (x, y, z) tuple
or Vec3 object. The new vertex indices are stored as face in the faces list.

Parameters
vertices – list of at least 3 vertices [(x1, y1, z1), (x2, y2, z2), (x3, y3,
y3), ...]

add_mesh(vertices: list[Vec3] | None = None, faces: list[Sequence[int]] | None = None, mesh=None)→ None
Add another mesh to this mesh.
A mesh can be a MeshBuilder, MeshVertexMerger or Mesh object or requires the attributes ver-
tices and faces.

Parameters
• vertices – list of vertices, a vertex is a (x, y, z) tuple or Vec3 object
• faces – list of faces, a face is a list of vertex indices
• mesh – another mesh entity

add_vertices(vertices: Iterable[UVec])→ Sequence[int]
Add new vertices to the mesh, each vertex is a (x, y, z) tuple or a Vec3 object, returns the indices of
the vertices added to the vertices list.

9.8. Reference 597

ezdxf Documentation, Release 1.3.2

e.g. adding 4 vertices to an empty mesh, returns the indices (0, 1, 2, 3), adding additional 4 vertices
returns the indices (4, 5, 6, 7).

Parameters
vertices – list of vertices, vertex as (x, y, z) tuple or Vec3 objects

Returns
indices of the vertices added to the vertices list

Return type
tuple

bbox()→ BoundingBox
Returns the BoundingBox of the mesh.

copy()

Returns a copy of mesh.
diagnose()→MeshDiagnose

Returns the MeshDiagnose object for this mesh.
face_normals()→ Iterator[Vec3]

Yields all face normals, yields the NULLVEC instance for degenerated faces.
face_orientation_detector(reference: int = 0)→ FaceOrientationDetector

Returns a FaceOrientationDetector or short fod instance. The forward orientation is defined by the
reference face which is 0 by default.
The fod can check if all faces are reachable from the reference face and if all faces have the same orientation.
The fod can be reused to unify the face orientation of the mesh.

faces_as_vertices()→ Iterator[list[Vec3]]
Yields all faces as list of vertices.

flip_normals()→ None
Flips the normals of all faces by reversing the vertex order inplace.

classmethod from_builder(other: MeshBuilder)
Create new mesh from other mesh builder, faster than from_mesh() but supports only MeshBuilder
and inherited classes.

classmethod from_mesh(other: MeshBuilder |Mesh)→ T
Create new mesh from other mesh as class method.

Parameters
other – mesh of type MeshBuilder and inherited or DXF Mesh entity or any object pro-
viding attributes vertices, edges and faces.

classmethod from_polyface(other: Polymesh | Polyface)→ T
Create new mesh from a Polyface or Polymesh object.

get_face_vertices(index: int)→ Sequence[Vec3]
Returns the face index as sequence of Vec3 objects.

get_face_normal(index: int)→ Vec3
Returns the normal vector of the face index as Vec3, returns the NULLVEC instance for degenerated faces.

598 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

merge_coplanar_faces(passes: int = 1)→MeshTransformer
Returns a new MeshBuilder object with merged adjacent coplanar faces.
The faces have to share at least two vertices and have to have the same clockwise or counter-clockwise vertex
order.
The current implementation is not very capable!

mesh_tessellation(max_vertex_count: int = 4)→MeshTransformer
Returns a new MeshTransformer instance, where each face has no more vertices than the given
max_vertex_count.
The fast mode uses a shortcut for faces with less than 6 vertices which may not work for concave faces!

normalize_faces()→ None
Removes duplicated vertex indices from faces and stores all faces as open faces, where the last vertex is not
coincident with the first vertex.

open_faces()→ Iterator[Sequence[int]]
Yields all faces as sequence of integers where the first vertex is not coincident with the last vertex.

optimize_vertices(precision: int = 6)→MeshTransformer
Returns a new mesh with optimized vertices. Coincident vertices are merged together and all faces are open
faces (first vertex != last vertex). Uses internally the MeshVertexMerger class to merge vertices.

render_3dfaces(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 | None = None, ucs: UCS |
None = None)

Render mesh as Face3d entities into layout.
Parameters

• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}

• matrix – transformation matrix of type Matrix44
• ucs – transform vertices by UCS toWCS

render_3dsolid(layout: GenericLayoutType, dxfattribs=None)→ Solid3d
Render mesh as Solid3d entity into layout.
This is an experimental feature to create simple 3DSOLID entities from polyhedrons.
The method supports closed and open shells. A 3DSOLID entity can contain multiple shells. Separate the
meshes beforehand by the method separate_meshes() if required. The normals vectors of all faces
should point outwards. Faces can have more than 3 vertices (ngons) but non-planar faces and concave faces
will cause problems in some CAD applications. The method mesh_tesselation() can help to break
down the faces into triangles.
Requires a valid DXF document for layout and DXF version R2000 or newer.

Parameters
• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}

Raises
• DXFValueError – valid DXF document required, if layout.doc is None
• DXFVersionError – invalid DXF version

9.8. Reference 599

ezdxf Documentation, Release 1.3.2

Added in version 1.2.0.
render_mesh(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 | None = None, ucs: UCS |

None = None)

Render mesh as Mesh entity into layout.
Parameters

• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}

• matrix – transformation matrix of type Matrix44
• ucs – transform vertices by UCS toWCS

render_normals(layout: GenericLayoutType, length: float = 1, relative=True, dxfattribs=None)
Render face normals as Line entities into layout, useful to check orientation of mesh faces.

Parameters
• layout – BaseLayout object
• length – visual length of normal, use length < 0 to point normals in opposite direction
• relative – scale length relative to face size if True
• dxfattribs – dict of DXF attributes e.g. {'layer': 'normals', 'color':
6}

render_polyface(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 | None = None, ucs: UCS
| None = None)

Render mesh as Polyface entity into layout.
Parameters

• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}

• matrix – transformation matrix of type Matrix44
• ucs – transform vertices by UCS toWCS

separate_meshes()→ list[MeshTransformer]
A single MeshBuilder instance can store multiple separated meshes. This function returns this separated
meshes as multiple MeshTransformer instances.

subdivide(level: int = 1, quads=True)→MeshTransformer
Returns a new MeshTransformer object with all faces subdivided.

Parameters
• level – subdivide levels from 1 to max of 5
• quads – create quad faces if True else create triangles

subdivide_ngons(max_vertex_count=4)→ Iterator[Sequence[Vec3]]
Yields all faces as sequence of Vec3 instances, where all ngons which have more than max_vertex_count
vertices gets subdivided. In contrast to the tessellation()method, creates this method a new vertex in
the centroid of the face. This can create a more regular tessellation but only works reliable for convex faces!

600 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

tessellation(max_vertex_count: int = 4)→ Iterator[Sequence[Vec3]]
Yields all faces as sequence of Vec3 instances, each face has no more vertices than the given
max_vertex_count. This method uses the “ear clipping” algorithm which works with concave faces too and
does not create any additional vertices.

unify_face_normals(*, fod: FaceOrientationDetector | None = None)→MeshTransformer
Returns a new MeshTransformer object with unified face normal vectors of all faces. The forward di-
rection (not necessarily outwards) is defined by the face-normals of the majority of the faces. This function
can not process non-manifold meshes (more than two faces are connected by a single edge) or multiple dis-
connected meshes in a single MeshBuilder object.
It is possible to pass in an existing FaceOrientationDetector instance as argument fod.

Raises
• NonManifoldError – non-manifold mesh
• MultipleMeshesError – the MeshBuilder object contains multiple disconnected
meshes

unify_face_normals_by_reference(reference: int = 0, *, force_outwards=False, fod:
FaceOrientationDetector | None = None)→MeshTransformer

Returns a new MeshTransformer object with unified face normal vectors of all faces. The forward
direction (not necessarily outwards) is defined by the reference face, which is the first face of the mesh by
default. This function can not process non-manifold meshes (more than two faces are connected by a single
edge) or multiple disconnected meshes in a single MeshBuilder object.
The outward direction of all face normals can be forced by stetting the argument force_outwards to True
but this works only for closed surfaces, and it’s time-consuming!
It is not possible to check for a closed surface as long the face normal vectors are not unified. But it can be done
afterward by the attribute MeshDiagnose.is_closed_surface() to see if the result is trustworthy.
It is possible to pass in an existing FaceOrientationDetector instance as argument fod.

Parameters
• reference – index of the reference face
• force_outwards – forces face-normals to point outwards, this works only for closed
surfaces, and it’s time-consuming!

• fod – FaceOrientationDetector instance
Raises

ValueError – non-manifold mesh or the MeshBuilder object contains multiple discon-
nected meshes

MeshTransformer

Same functionality as MeshBuilder but supports inplace transformation.
class ezdxf.render.MeshTransformer

Subclass of MeshBuilder
transform(matrix: Matrix44)

Transform mesh inplace by applying the transformation matrix.
Parameters

matrix – 4x4 transformation matrix as Matrix44 object

9.8. Reference 601

ezdxf Documentation, Release 1.3.2

translate(dx: float | UVec = 0, dy: float = 0, dz: float = 0)
Translate mesh inplace.

Parameters
• dx – translation in x-axis or translation vector
• dy – translation in y-axis
• dz – translation in z-axis

scale(sx: float = 1, sy: float = 1, sz: float = 1)

Scale mesh inplace.
Parameters

• sx – scale factor for x-axis
• sy – scale factor for y-axis
• sz – scale factor for z-axis

scale_uniform(s: float)

Scale mesh uniform inplace.
Parameters

s – scale factor for x-, y- and z-axis
rotate_x(angle: float)

Rotate mesh around x-axis about angle inplace.
Parameters

angle – rotation angle in radians
rotate_y(angle: float)

Rotate mesh around y-axis about angle inplace.
Parameters

angle – rotation angle in radians
rotate_z(angle: float)

Rotate mesh around z-axis about angle inplace.
Parameters

angle – rotation angle in radians
rotate_axis(axis: UVec, angle: float)

Rotate mesh around an arbitrary axis located in the origin (0, 0, 0) about angle.
Parameters

• axis – rotation axis as Vec3
• angle – rotation angle in radians

602 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MeshVertexMerger

Same functionality as MeshBuilder, but created meshes with unique vertices and no doublets, but MeshVer-
texMerger needs extra memory for bookkeeping and also does not support transformations. The location of the
merged vertices is the location of the first vertex with the same key.
This class is intended as intermediate object to create compact meshes and convert them to MeshTransformer objects
to apply transformations:

mesh = MeshVertexMerger()

create your mesh
mesh.add_face(...)

convert mesh to MeshTransformer object
return MeshTransformer.from_builder(mesh)

class ezdxf.render.MeshVertexMerger(precision: int = 6)
Subclass of MeshBuilder
Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping.
MeshVertexMerger creates a key for every vertex by rounding its components by the Python round() func-
tion and a given precision value. Each vertex with the same key gets the same vertex index, which is the index of
first vertex with this key, so all vertices with the same key will be located at the location of this first vertex. If you
want an average location of all vertices with the same key use the MeshAverageVertexMerger class.

Parameters
precision – floating point precision for vertex rounding

MeshAverageVertexMerger

This is an extended version of MeshVertexMerger. The location of the merged vertices is the average location of
all vertices with the same key, this needs extra memory and runtime in comparison to MeshVertexMerger and this
class also does not support transformations.
class ezdxf.render.MeshAverageVertexMerger(precision: int = 6)

Subclass of MeshBuilder
Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping and runtime for calculation
of average vertex location.
MeshAverageVertexMerger creates a key for every vertex by rounding its components by the Python
round() function and a given precision value. Each vertex with the same key gets the same vertex index, which
is the index of first vertex with this key, the difference to the MeshVertexMerger class is the calculation of the
average location for all vertices with the same key, this needs extra memory to keep track of the count of vertices
for each key and extra runtime for updating the vertex location each time a vertex with an existing key is added.

Parameters
precision – floating point precision for vertex rounding

class ezdxf.render.mesh.EdgeStat(count: int, balance: int)
Named tuple of edge statistics.
count

how often the edge (a, b) is used in faces as (a, b) or (b, a)

9.8. Reference 603

ezdxf Documentation, Release 1.3.2

balance

count of edges (a, b) - count of edges (b, a) and should be 0 in “healthy” closed surfaces, if the balance is
not 0, maybe doubled coincident faces exist or faces may have mixed clockwise and counter-clockwise vertex
orders

MeshBuilder Helper Classes

class ezdxf.render.MeshDiagnose

Diagnose tool which can be used to analyze and detect errors of MeshBuilder objects like topology errors for
closed surfaces. The object contains cached values, which do not get updated if the source mesh will be changed!

Note: There exist no tools in ezdxf to repair broken surfaces, but you can use the ezdxf.addons.meshex
addon to exchange meshes with the open source tool MeshLab.

Create an instance of this tool by the MeshBuilder.diagnose() method.
property bbox: BoundingBox

Returns the BoundingBox of the mesh. (cached data)
property edge_stats: Dict[Tuple[int, int], EdgeStat]

Returns the edge statistics as a dict. The dict-key is the edge as tuple of two vertex indices (a, b) where a is
always smaller than b. The dict-value is an EdgeStat tuple of edge count and edge balance, see EdgeStat
for the definition of edge count and edge balance. (cached data)

property euler_characteristic: int

Returns the Euler characteristic: https://en.wikipedia.org/wiki/Euler_characteristic
This number is always 2 for convex polyhedra.

property face_normals: Sequence[Vec3]

Returns all face normal vectors as sequence. The NULLVEC instance is used as normal vector for degenerated
faces. (cached data)

property faces: Sequence[Sequence[int]]

Sequence of faces as Sequence[int]
property is_closed_surface: bool

Returns True if the mesh has a closed surface. This method does not require a unified face orientation. If
multiple separated meshes are present the state is only True if all meshes have a closed surface. (cached
data)
Returns False for non-manifold meshes.

property is_edge_balance_broken: bool

Returns True if the edge balance is broken, this indicates a topology error for closed surfaces. A non-broken
edge balance reflects that each edge connects two faces, where the edge is clockwise oriented in the first face
and counter-clockwise oriented in the second face. A broken edge balance indicates possible topology errors
like mixed face vertex orientations or a non-manifold mesh where an edge connects more than two faces.
(cached data)

property is_manifold: bool

Returns True if all edges have an edge count < 3. (cached data)
A non-manifold mesh has edges with 3 or more connected faces.

604 Chapter 9. Contents

https://www.meshlab.net/
https://en.wikipedia.org/wiki/Euler_characteristic

ezdxf Documentation, Release 1.3.2

property n_edges: int

Returns the unique edge count. (cached data)
property n_faces: int

Returns the face count.
property n_vertices: int

Returns the vertex count.
property vertices: Sequence[Vec3]

Sequence of mesh vertices as Vec3 instances
centroid()→ Vec3

Returns the centroid of all vertices. (center of mass)
estimate_face_normals_direction()→ float

Returns the estimated face-normals direction as float value in the range [-1.0, 1.0] for a closed surface.
This heuristic works well for simple convex hulls but struggles with more complex structures like a torus
(doughnut).
A counter-clockwise (ccw) vertex arrangement for outward pointing faces is assumed but a clockwise (cw)
arrangement works too but the return values are reversed.
The closer the value to 1.0 (-1.0 for cw) the more likely all normals pointing outwards from the surface.
The closer the value to -1.0 (1.0 for cw) the more likely all normals pointing inwards from the surface.
There are no exact confidence values if all faces pointing outwards, here some examples for surfaces created
by ezdxf.render.forms functions:
• cube() returns 1.0
• cylinder() returns 0.9992
• sphere() returns 0.9994
• cone() returns 0.9162
• cylinder() with all hull faces pointing outwards but caps pointing inwards returns 0.7785 but the
property is_edge_balance_broken returns True which indicates the mixed vertex orientation

• and the estimation of 0.0469 for a torus() is barely usable
has_non_planar_faces()→ bool

Returns True if any face is non-planar.
surface_area()→ float

Returns the surface area.
total_edge_count()→ int

Returns the total edge count of all faces, shared edges are counted separately for each face. In closed surfaces
this count should be 2x the unique edge count n_edges. (cached data)

unique_edges()→ Iterable[Tuple[int, int]]
Yields the unique edges of the mesh as int 2-tuples. (cached data)

volume()→ float
Returns the volume of a closed surface or 0 otherwise.

9.8. Reference 605

ezdxf Documentation, Release 1.3.2

Warning: The face vertices have to be in counter-clockwise order, this requirement is not checked by
this method.
The result is not correct for multiple separated meshes in a single MeshBuilder object!!!

class ezdxf.render.FaceOrientationDetector(mesh: MeshBuilder, reference: int = 0)

Helper class for face orientation and face normal vector detection. Use the method MeshBuilder.
face_orientation_detector() to create an instance.
The face orientation detector classifies the faces of a mesh by their forward or backward orientation. The forward
orientation is defined by a reference face, which is the first face of the mesh by default and this orientation is not
necessarily outwards.
This class has some overlapping features with MeshDiagnose but it has a longer setup time and needs more
memory than MeshDiagnose.

Parameters
• mesh – source mesh as MeshBuilder object
• reference – index of the reference face

is_manifold

True if all edges have an edge count < 3. A non-manifold mesh has edges with 3 or more connected faces.
property all_reachable: bool

Returns True if all faces are reachable from the reference face same as property is_single_mesh.
property count: tuple[int, int]

Returns the count of forward and backward oriented faces.
property backward_faces: Iterator[Sequence[int]]

Yields all backward oriented faces.
property forward_faces: Iterator[Sequence[int]]

Yields all forward oriented faces.
property has_uniform_face_normals: bool

Returns True if all reachable faces are forward oriented according to the reference face.
property is_closed_surface: bool

Returns True if the mesh has a closed surface. This method does not require a unified face orientation. If
multiple separated meshes are present the state is only True if all meshes have a closed surface.
Returns False for non-manifold meshes.

property is_single_mesh: bool

Returns True if only a single mesh is present same as property all_reachable.
classify_faces(reference: int = 0)→ None

Detect the forward and backward oriented faces.
The forward and backward orientation has to be defined by a reference face.

is_reference_face_pointing_outwards()→ bool
Returns True if the normal vector of the reference face is pointing outwards. This works only for meshes
with unified faces which represent a closed surfaces, and it’s a time-consuming calculation!

606 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Trace

This module provides tools to create banded lines like LWPOLYLINE with width information. Path rendering as quadri-
laterals: Trace, Solid or Face3d.
class ezdxf.render.trace.TraceBuilder

Sequence of 2D banded lines like polylines with start- and end width or curves with start- and end width.

Note: Accepts 3D input, but z-axis is ignored. The TraceBuilder is a 2D only object and uses only the OCS
coordinates!

abs_tol

Absolute tolerance for floating point comparisons
append(trace: AbstractTrace)→ None

Append a new trace.
close()

Close multi traces by merging first and last trace, if linear traces.
faces()→ Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]]

Yields all faces as 4-tuples of Vec2 objects in OCS.
faces_wcs(ocs: OCS, elevation: float)→ Iterable[Sequence[Vec3]]

Yields all faces as 4-tuples of Vec3 objects inWCS.
virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing | None = None)→

Iterable[Quadrilateral]
Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs.
If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically
added to the entity database of that document.

Note: The TraceBuilder is a 2D only object and uses only the OCS coordinates!

Parameters
• dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE”
• dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities
• doc – associated document

classmethod from_polyline(polyline: DXFGraphic, segments: int = 64)→ TraceBuilder

Create a complete trace from a LWPOLYLINE or a 2D POLYLINE entity, the trace consist of multiple
sub-traces if bulge values are present. Uses only the OCS coordinates!

Parameters
• polyline – LWPolyline or 2D Polyline

• segments – count of segments for bulge approximation, given count is for a full circle,
partial arcs have proportional less segments, but at least 3

__len__()

9.8. Reference 607

ezdxf Documentation, Release 1.3.2

__getitem__()

class ezdxf.render.trace.LinearTrace

Linear 2D banded lines like polylines with start- and end width.
Accepts 3D input, but z-axis is ignored.
abs_tol

Absolute tolerance for floating point comparisons
is_started

True if at least one station exist.
add_station(point: UVec, start_width: float, end_width: float | None = None)→ None

Add a trace station (like a vertex) at location point, start_width is the width of the next segment starting at
this station, end_width is the end width of the next segment.
Adding the last location again, replaces the actual last location e.g. adding lines (a, b), (b, c), creates only 3
stations (a, b, c), this is very important to connect to/from splines.

Parameters
• point – 2D location (vertex), z-axis of 3D vertices is ignored.
• start_width – start width of next segment
• end_width – end width of next segment

faces()→ Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]]
Yields all faces as 4-tuples of Vec2 objects.
First and last miter is 90 degrees if the path is not closed, otherwise the intersection of first and last segment
is taken into account, a closed path has to have explicit the same last and first vertex.

virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing | None = None)→
Iterable[Quadrilateral]

Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs.
If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically
added to the entity database of that document.

Parameters
• dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE”
• dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities
• doc – associated document

class ezdxf.render.trace.CurvedTrace

2D banded curves like arcs or splines with start- and end width.
Represents always only one curved entity and all miter of curve segments are perpendicular to curve tangents.
Accepts 3D input, but z-axis is ignored.
faces()→ Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]]

Yields all faces as 4-tuples of Vec2 objects.
virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing | None = None)→

Iterable[Quadrilateral]

608 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs.
If a document is given, the doc attribute of the new entities will be set and the new entities will be automatically
added to the entity database of that document.

Parameters
• dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE”
• dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities
• doc – associated document

classmethod from_arc(arc: ConstructionArc, start_width: float, end_width: float, segments: int = 64)
→ CurvedTrace

Create curved trace from an arc.
Parameters

• arc – ConstructionArc object
• start_width – start width
• end_width – end width
• segments – count of segments for full circle (360 degree) approximation, partial arcs have
proportional less segments, but at least 3

Raises
ValueError – if arc.radius <= 0

classmethod from_spline(spline: BSpline, start_width: float, end_width: float, segments: int)→
CurvedTrace

Create curved trace from a B-spline.
Parameters

• spline – BSpline object
• start_width – start width
• end_width – end width
• segments – count of segments for approximation

Point Rendering

Helper function to render Point entities as DXF primitives.
ezdxf.render.point.virtual_entities(point: Point, pdsize: float = 1, pdmode: int = 0)→

list[DXFGraphic]
Yields point graphic as DXF primitives LINE and CIRCLE entities. The dimensionless point is rendered as zero-
length line!
Check for this condition:

e.dxftype() == 'LINE' and e.dxf.start.isclose(e.dxf.end)

if the rendering engine can’t handle zero-length lines.
Parameters

9.8. Reference 609

ezdxf Documentation, Release 1.3.2

• point – DXF POINT entity
• pdsize – point size in drawing units
• pdmode – point styling mode, see Point class

See also:
Go to ezdxf.entities.Point class documentation for more information about POINT styling modes.

MultiLeaderBuilder

These are helper classes to build MultiLeader entities in an easy way. The MultiLeader entity supports two kinds
of content, for each exist a specialized builder class:

• MultiLeaderMTextBuilder for MText content
• MultiLeaderBlockBuilder for Block content

The usual steps of the building process are:
1. create entity by a factory method

• add_multileader_mtext()

• add_multileader_block()

2. set the content
• MultiLeaderMTextBuilder.set_content()

• MultiLeaderBlockBuilder.set_content()

• MultiLeaderBlockBuilder.set_attribute()

3. set properties
• MultiLeaderBuilder.set_arrow_properties()

• MultiLeaderBuilder.set_connection_properties()

• MultiLeaderBuilder.set_connection_types()

• MultiLeaderBuilder.set_leader_properties()

• MultiLeaderBuilder.set_mleader_style()

• MultiLeaderBuilder.set_overall_scaling()

4. add one or more leader lines
• MultiLeaderBuilder.add_leader_line()

5. finalize building process
• MultiLeaderBuilder.build()

The Tutorial for MultiLeader shows how to use these helper classes in more detail.
class ezdxf.render.MultiLeaderBuilder

Abstract base class to build MultiLeader entities.
property context: MLeaderContext

Returns the context entity MLeaderContext.

610 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

property multileader: MultiLeader

Returns the MultiLeader entity.
add_leader_line(side: ConnectionSide, vertices: Iterable[Vec2])→ None

Add leader as iterable of vertices in render UCS coordinates (WCS by default).

Note: Vertical (top, bottom) and horizontal attachment sides (left, right) can not be mixed in a single entity
- this is a limitation of the MULTILEADER entity.

Parameters
• side – connection side where to attach the leader line
• vertices – leader vertices

build(insert: Vec2, rotation: float = 0.0, ucs: UCS | None = None)→ None
Compute the required geometry data. The construction plane is the xy-plane of the given render UCS.

Parameters
• insert – insert location for the content in render UCS coordinates
• rotation – content rotation angle around the render UCS z-axis in degrees
• ucs – the render UCS, default is theWCS

set_arrow_properties(name: str = '', size: float = 0.0)
Set leader arrow properties all leader lines have the same arrow type.
The MULTILEADER entity is able to support multiple arrows, but this seems to be unsupported by CAD
applications and is therefore also not supported by the builder classes.

set_connection_properties(landing_gap: float = 0.0, dogleg_length: float = 0.0)
Set the properties how to connect the leader line to the content.
The landing gap is the space between the content and the start of the leader line. The “dogleg” is the first line
segment of the leader in the “horizontal” direction of the content.

set_connection_types(left=HorizontalConnection.by_style, right=HorizontalConnection.by_style,
top=VerticalConnection.by_style, bottom=VerticalConnection.by_style)

Set the connection type for each connection side.
set_leader_properties(color: int | RGB = colors.BYBLOCK, linetype: str = 'BYBLOCK', lineweight: int

= const.LINEWEIGHT_BYBLOCK, leader_type=LeaderType.straight_lines)
Set leader line properties.

Parameters
• color – line color as AutoCAD Color Index (ACI) or RGB tuple
• linetype – as name string, e.g. “BYLAYER”
• lineweight – as integer value, see: Lineweights

• leader_type – straight lines of spline type
set_mleader_style(style: MLeaderStyle)

Reset base properties by MLeaderStyle properties. This also resets the content!

9.8. Reference 611

ezdxf Documentation, Release 1.3.2

set_overall_scaling(scale: float)
Set the overall scaling factor for the whole entity, except for the leader line vertices!

Parameters
scale – scaling factor > 0.0

MultiLeaderMTextBuilder

Specialization of MultiLeaderBuilder to build MultiLeader with MTEXT content.
class ezdxf.render.MultiLeaderMTextBuilder

set_content(content: str, color: int | RGB | None = None, char_height: float = 0.0, alignment:
TextAlignment = TextAlignment.left, style: str = '')

Set MTEXT content.
Parameters

• content – MTEXT content as string
• color – block color as AutoCAD Color Index (ACI) or RGB tuple
• char_height – initial char height in drawing units
• alignment – TextAlignment - left, center, right
• style – name of Textstyle as string

quick_leader(content: str, target: Vec2, segment1: Vec2, segment2: Vec2 | None = None, connection_type:
HorizontalConnection | VerticalConnection = HorizontalConnection.middle_of_top_line, ucs:
UCS | None = None)→ None

Creates a quick MTEXT leader. The target point defines where the leader points to. The segment1 is the first
segment of the leader line relative to the target point, segment2 is an optional second line segment relative
to the first line segment. The connection_type defines the type of connection (horizontal or vertical) and the
MTEXT alignment (left, center or right). Horizontal connections are always left or right aligned, vertical
connections are always center aligned.

Parameters
• content – MTEXT content string
• target – leader target point as Vec2
• segment1 – first leader line segment as relative distance to insert

• segment2 – optional second leader line segment as relative distance to first line segment
• connection_type – one of HorizontalConnection or VerticalConnec-
tion

• ucs – the rendering UCS, default is theWCS

612 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MultiLeaderBlockBuilder

Specialization of MultiLeaderBuilder to build MultiLeader with BLOCK content.
class ezdxf.render.MultiLeaderBlockBuilder

property block_layout: BlockLayout

Returns the block layout.
property extents: BoundingBox

Returns the bounding box of the block.
set_content(name: str, color: int | RGB = colors.BYBLOCK, scale: float = 1.0,

alignment=BlockAlignment.center_extents)

Set BLOCK content.
Parameters

• name – the block name as string
• color – block color as AutoCAD Color Index (ACI) or RGB tuple
• scale – the block scaling, not to be confused with overall scaling
• alignment – the block insertion point or the center of extents

set_attribute(tag: str, text: str, width: float = 1.0)
Add BLOCK attributes based on an ATTDEF entity in the block definition. All properties of the new created
ATTRIB entity are defined by the template ATTDEF entity including the location.

Parameters
• tag – attribute tag name
• text – attribute content string
• width – width factor

Enums

class ezdxf.render.LeaderType(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

The leader type.
none

straight_lines

splines

class ezdxf.render.ConnectionSide(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

The leader connection side.
Vertical (top, bottom) and horizontal attachment sides (left, right) can not be mixed in a single entity - this is a
limitation of the MULTILEADER entity.
left

9.8. Reference 613

ezdxf Documentation, Release 1.3.2

right

top

bottom

class ezdxf.render.HorizontalConnection(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

The horizontal leader connection type.
by_style

top_of_top_line

middle_of_top_line

middle_of_text

middle_of_bottom_line

bottom_of_bottom_line

bottom_of_bottom_line_underline

bottom_of_top_line_underline

bottom_of_top_line

bottom_of_top_line_underline_all

class ezdxf.render.VerticalConnection(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

The vertical leader connection type.
by_style

center

center_overline

class ezdxf.render.TextAlignment(value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

The MText alignment type.
left

center

right

class ezdxf.render.BlockAlignment(value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

The Block alignment type.
center_extents

insertion_point

614 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Arrows

This module provides support for the AutoCAD standard arrow heads used in DIMENSION, LEADER and MULTI-
LEADER entities. Library user don’t have to use the ARROWS objects directly, but should know the arrow names stored
in it as attributes. The arrow names should be accessed that way:

import ezdxf

arrow = ezdxf.ARROWS.closed_filled

ezdxf.render.arrows.ARROWS

Single instance of _Arrows to work with.
class ezdxf.render.arrows._Arrows

Management object for standard arrows.
__acad__

Set of AutoCAD standard arrow names.
__ezdxf__

Set of arrow names special to ezdxf.
architectural_tick

closed_filled

dot

dot_small

9.8. Reference 615

ezdxf Documentation, Release 1.3.2

dot_blank

origin_indicator

origin_indicator_2

open

right_angle

open_30

closed

616 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dot_smallblank

none

oblique

box_filled

box

closed_blank

9.8. Reference 617

ezdxf Documentation, Release 1.3.2

datum_triangle_filled

datum_triangle

integral

ez_arrow

ez_arrow_blank

ez_arrow_filled

618 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

is_acad_arrow(item: str)→ bool
Returns True if item is a standard AutoCAD arrow.

is_ezdxf_arrow(item: str)→ bool
Returns True if item is a special ezdxf arrow.

insert_arrow(layout: GenericLayoutType, name: str, insert: UVec = NULLVEC, size: float = 1.0, rotation:
float = 0, *, dxfattribs=None)→ Vec2

Insert arrow as block reference into layout.
render_arrow(layout: GenericLayoutType, name: str, insert: UVec = NULLVEC, size: float = 1.0, rotation:

float = 0, *, dxfattribs=None)→ Vec2

Render arrow as basic DXF entities into layout.
virtual_entities(name: str, insert: UVec = NULLVEC, size: float = 0.625, rotation: float = 0, *,

dxfattribs=None)→ Iterator[DXFGraphic]
Returns all arrow components as virtual DXF entities.

Hatching

This module provides rendering support for hatch patterns as used in Hatch and MPolygon entities.

High Level Functions

ezdxf.render.hatching.hatch_entity(polygon: DXFPolygon, filter_text_boxes=True, jiggle_origin: bool
= True)→ Iterator[tuple[Vec3, Vec3]]

Yields the hatch pattern of the given HATCH or MPOLYGON entity as 3D lines. Each line is a pair of Vec3
instances as start- and end vertex, points are represented as lines of zero length, which means the start vertex is
equal to the end vertex.
The function yields nothing if polygon has a solid- or gradient filling or does not have a usable pattern assigned.

Parameters
• polygon – Hatch or MPolygon entity
• filter_text_boxes – ignore text boxes if True
• jiggle_origin – move pattern line origins a small amount to avoid intersections in corner
points which causes errors in patterns

ezdxf.render.hatching.hatch_polygons(baseline: HatchBaseLine, polygons:
Sequence[Sequence[Vec2]], terminate: Callable[[], bool] |
None = None)→ Iterator[Line]

Yields all pattern lines for all hatch lines generated by the given HatchBaseLine, intersecting the given 2D
polygons as Line instances. The polygons should represent a single entity with or without holes, the order of the
polygons and their winding orientation (cw or ccw) is not important. Entities which do not intersect or overlap
should be handled separately!

9.8. Reference 619

ezdxf Documentation, Release 1.3.2

Each polygon is a sequence of Vec2 instances, they are treated as closed polygons even if the last vertex is not
equal to the first vertex.
The hole detection is done by a simple inside/outside counting algorithm and far from perfect, but is able to handle
ordinary polygons well.
The terminate function WILL BE CALLED PERIODICALLY AND should return True to terminate execution.
This can be used to implement a timeout, which can be required if using a very small hatching distance, especially
if you get the data from untrusted sources.

Parameters
• baseline – HatchBaseLine
• polygons – multiple sequences of Vec2 instances of a single entity, the order of exterior-
and hole paths and the winding orientation (cw or ccw) of paths is not important

• terminate – callback function which is called periodically and should return True to ter-
minate the hatching function

ezdxf.render.hatching.hatch_paths(baseline: HatchBaseLine, paths: Sequence[Path], terminate:
Callable[[], bool] | None = None)→ Iterator[Line]

Yields all pattern lines for all hatch lines generated by the given HatchBaseLine, intersecting the given 2D
Path instances as Line instances. The paths are handled as projected into the xy-plane the z-axis of path vertices
will be ignored if present.
Same as the hatch_polygons() function, but for Path instances instead of polygons build of vertices. This
function does not flatten the paths into vertices, instead the real intersections of the Bézier curves and the hatch
lines are calculated.
For more information see the docs of the hatch_polygons() function.

Parameters
• baseline – HatchBaseLine
• paths – sequence of Path instances of a single entity, the order of exterior- and hole paths
and the winding orientation (cw or ccw) of the paths is not important

• terminate – callback function which is called periodically and should return True to ter-
minate the hatching function

Classes

class ezdxf.render.hatching.HatchBaseLine(origin: Vec2, direction: Vec2, offset: Vec2,
line_pattern: list[float] | None = None,
min_hatch_line_distance=MIN_HATCH_LINE_DISTANCE)

A hatch baseline defines the source line for hatching a geometry. A complete hatch pattern of a DXF entity can
consist of one or more hatch baselines.

Parameters
• origin – the origin of the hatch line as Vec2 instance
• direction – the hatch line direction as Vec2 instance, must not (0, 0)
• offset – the offset of the hatch line origin to the next or to the previous hatch line
• line_pattern – line pattern as sequence of floats, see also PatternRenderer

620 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• min_hatch_line_distance – minimum hatch line distance to render, raises an
DenseHatchingLinesError exception if the distance between hatch lines is smaller
than this value

Raises
• HatchLineDirectionError – hatch baseline has no direction, (0, 0) vector
• DenseHatchingLinesError – hatching lines are too narrow

hatch_line(distance: float)→ HatchLine
Returns the HatchLine at the given signed distance.

pattern_renderer(distance: float)→ PatternRenderer
Returns the PatternRenderer for the given signed distance.

signed_distance(point: Vec2)→ float
Returns the signed normal distance of the given point from this hatch baseline.

class ezdxf.render.hatching.HatchLine(origin: Vec2, direction: Vec2, distance: float)
Represents a single hatch line.

Parameters
• origin – the origin of the hatch line as Vec2 instance
• direction – the hatch line direction as Vec2 instance, must not (0, 0)
• distance – the normal distance to the base hatch line as float

intersect_line(a: Vec2, b: Vec2, dist_a: float, dist_b: float)→ Intersection
Returns the Intersection of this hatch line and the line defined by the points a and b. The arguments
dist_a and dist_b are the signed normal distances of the points a and b from the hatch baseline. The nor-
mal distances from the baseline are easy to calculate by the HatchBaseLine.signed_distance()
method and allow a fast intersection calculation by a simple point interpolation.

Parameters
• a – start point of the line as Vec2 instance
• b – end point of the line as Vec2 instance
• dist_a – normal distance of point a to the hatch baseline as float
• dist_b – normal distance of point b to the hatch baseline as float

intersect_cubic_bezier_curve(curve: Bezier4P)→ Sequence[Intersection]
Returns 0 to 3 Intersection points of this hatch line with a cubic Bèzier curve.

Parameters
curve – the cubic Bèzier curve as ezdxf.math.Bezier4P instance

class ezdxf.render.hatching.PatternRenderer(hatch_line: HatchLine, pattern: Sequence[float])
The hatch pattern of a DXF entity has one or more HatchBaseLine instances with an origin, direction, offset
and line pattern. The PatternRenderer for a certain distance from the baseline has to be acquired from the
HatchBaseLine by the pattern_renderer() method.
The origin of the hatch line is the starting point of the line pattern. The offset defines the origin of the adjacent
hatch line and doesn’t have to be orthogonal to the hatch line direction.
Line Pattern
The line pattern is a sequence of floats, where a value > 0.0 is a dash, a value < 0.0 is a gap and value of 0.0 is a
point.

9.8. Reference 621

ezdxf Documentation, Release 1.3.2

Parameters
• hatch_line – HatchLine
• pattern – the line pattern as sequence of float values

render(start: Vec2, end: Vec2)→ Iterator[tuple[Vec2, Vec2]]
Yields the pattern lines as pairs of Vec2 instances from the start- to the end point on the hatch line. For
points the start- and end point are the same Vec2 instance and can be tested by the is operator.
The start- and end points should be located collinear at the hatch line of this instance, otherwise the points a
projected onto this hatch line.

class ezdxf.render.hatching.Intersection(type: IntersectionType = IntersectionType.NONE, p0:
Vec2 = Vec2(nan, nan), p1: Vec2 = Vec2(nan, nan))

Represents an intersection.
type

intersection type as IntersectionType instance
p0

(first) intersection point as Vec2 instance
p1

second intersection point as Vec2 instance, only if type is COLLINEAR
class ezdxf.render.hatching.IntersectionType(value, names=_not_given, *values, module=None,

qualname=None, type=None, start=1,
boundary=None)

NONE

no intersection
REGULAR

regular intersection point at a polygon edge or a Bèzier curve
START

intersection point at the start vertex of a polygon edge
END

intersection point at the end vertex of a polygon edge
COLLINEAR

intersection is collinear to a polygon edge
class ezdxf.render.hatching.Line(start: 'Vec2', end: 'Vec2', distance: 'float')

start

start point as Vec2 instance
end

end point as Vec2 instance
distance

signed normal distance to the HatchBaseLine

622 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Helper Functions

ezdxf.render.hatching.hatch_boundary_paths(polygon: DXFPolygon, filter_text_boxes=True)→
list[Path]

Returns the hatch boundary paths as ezdxf.path.Path instances of HATCH and MPOLYGON entities. Ig-
nores text boxes if argument filter_text_boxes is True.

ezdxf.render.hatching.hatch_line_distances(point_distances: Sequence[float], normal_distance:
float)→ list[float]

Returns all hatch line distances in the range of the given point distances.
ezdxf.render.hatching.pattern_baselines(polygon: DXFPolygon, min_hatch_line_distance: float =

MIN_HATCH_LINE_DISTANCE, *, jiggle_origin: bool =
False)→ Iterator[HatchBaseLine]

Yields the hatch pattern baselines of HATCH and MPOLYGON entities as HatchBaseLine instances. Set
jiggle_origin to True to move pattern line origins a small amount to avoid intersections in corner points which
causes errors in patterns.

Exceptions

class ezdxf.render.hatching.HatchingError

Base exception class of the hatching module.
class ezdxf.render.hatching.HatchLineDirectionError

Hatching direction is undefined or a (0, 0) vector.
class ezdxf.render.hatching.DenseHatchingLinesError

Very small hatching distance which creates too many hatching lines.
TODO:

• ACAD_TABLE helper tools
• Dynamic Block helper tools

9.8.10 Global Options

Global Options Object

The global ezdxf options are stored in the object ezdxf.options.
Recommended usage of the global options object:

import ezdxf

value = ezdxf.options.attribute

The options object uses the Standard Python class ConfigParser to manage the configuration. Shortcut attributes
like test_files are simple properties and most shortcuts are read only marked by (Read only), read and writeable
attributes are marked by (Read/Write).
To change options, especially the read only attributes, you have to edit the config file with a text editor, or set options by
the set() method and write the current configuration into a config file.

9.8. Reference 623

ezdxf Documentation, Release 1.3.2

Config Files

The default config files are loaded from the user home directory as “~/.config/ezdxf/ezdxf.ini”, and the current working
directory as “./ezdxf.ini”. A custom config file can be specified by the environment variable EZDXF_CONFIG_FILE.
Ezdxf follows the XDG Base Directory specification if the environment variable XDG_CONFIG_HOME is set.
The config file loading order:

1. user home directory: “~/.config/ezdxf/ezdxf.ini”
2. current working directory: “./ezdxf.ini”
3. config file specified by EZDXF_CONFIG_FILE

A configuration file that is loaded later does not replace the previously loaded ones, only the existing options in the newly
loaded file are added to the configuration and can overwrite existing options.
Configuration files are regular INI files, managed by the standard Python ConfigParser class.
File Structure:

[core]
default_dimension_text_style = OpenSansCondensed-Light
test_files = D:\Source\dxftest
support_dirs =

"C:\Program Files\Bricsys\BricsCAD V23 en_US\Fonts",
"~/dir2",
"~/dir3",

load_proxy_graphics = true
store_proxy_graphics = true
log_unprocessed_tags = false
filter_invalid_xdata_group_codes = true
write_fixed_meta_data_for_testing = false
disable_c_ext = false

[browse-command]
text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}

Modify and Save Changes

This code shows how to get and set values of the underlying ConfigParser object, but use the shortcut attributes if
available:

Set options, value has to ba a str, use "true"/"false" for boolean values
ezdxf.options.set(section, key, value)

Get option as string
value = ezdxf.options.get(section, key, default="")

Special getter for boolean, int and float
value = ezdxf.options.get_bool(section, key, default=False)
value = ezdxf.options.get_int(section, key, default=0)
value = ezdxf.options.get_float(section, key, default=0.0)

If you set options, they are not stored automatically in a config file, you have to write back the config file manually:

write back the default user config file "ezdxf.ini" in the
user home directory

(continues on next page)

624 Chapter 9. Contents

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.python.org/3/library/configparser.html

ezdxf Documentation, Release 1.3.2

(continued from previous page)
ezdxf.options.write_home_config()

write back to the default config file "ezdxf.ini" in the
current working directory
ezdxf.options.write_file()

write back to a specific config file
ezdxf.options.write_file("my_config.ini")
which has to be loaded manually at startup
ezdxf.options.read_file("my_config.ini")

This example shows how to change the test_files path and save the changes into a custom config file “my_config.ini”:

import ezdxf

test_files = Path("~/my-dxf-test-files").expand_user()
ezdxf.options.set(

ezdxf.options.CORE, # section
"test_files", # key
"~/my-dxf-test-files", # value

)
ezdxf.options.write_file("my_config.ini")

Use a Custom Config File

You can specify a config file by the environment variable EZDXF_CONFIG_FILE, which is loaded after the default
config files.

C:\> set EZDXF_CONFIG_FILE=D:\user\path\custom.ini

Custom config files are not loaded automatically like the default config files.
This example shows how to load the previous created custom config file “my_config.ini” from the current working direc-
tory:

import ezdxf

ezdxf.options.read("my_config.ini")

That is all and because this is the last loaded config file, it overrides all default config files and the config file specified by
EZDXF_CONFIG_FILE.

Functions

ezdxf.options.set(section: str, key: str, value: str)
Set option key in section to values as str.

ezdxf.options.get(section: str, key: str, default: str = '')→ str
Get option key in section as string.

ezdxf.options.get_bool(section: str, key: str, default: bool = False)→ bool
Get option key in section as bool.

9.8. Reference 625

ezdxf Documentation, Release 1.3.2

ezdxf.options.get_int(section: str, key: str, default: int = 0)→ int
Get option key in section as int.

ezdxf.options.get_float(section: str, key: str, default: float = 0.0)→ flot
Get option key in section as float.

ezdxf.options.write(fp: TextIO)

Write configuration into given file object fp, the file object must be a writeable text file with “utf8” encoding.
ezdxf.options.write_file(filename: str = 'ezdxf.ini')

Write current configuration into file filename, default is “ezdxf.ini” in the current working directory.
ezdxf.options.write_home_config()

Write configuration into file “~/.config/ezdxf/ezdxf.ini”, $XDG_CONFIG_HOME is supported if set.
ezdxf.options.read_file(filename: str)

Append content from config file filename, but does not reset the configuration.
ezdxf.options.print()

Print configuration to stdout.
ezdxf.options.reset()

Reset options to factory default values.
ezdxf.options.delete_default_config_files()

Delete the default config files “ezdxf.ini” in the current working and in the user home directory “~/.config/ezdxf”,
$XDG_CONFIG_HOME is supported if set.

ezdxf.options.preserve_proxy_graphics(state=True)
Enable/disable proxy graphic load/store support by setting the options load_proxy_graphics and
store_proxy_graphics to state.

ezdxf.options.loaded_config_files

Read only property of loaded config files as tuple for Path objects.

Core Options

For all core options the section name is core.

Default Dimension Text Style

The default dimension text style is used by the DIMENSION renderer of ezdxf, if the specified text style exist in the
STYLE table. To use any of the default style of ezdxf you have to setup the styles at the creation of the DXF document:
ezdxf.new(setup=True), or setup the ezdxf default styles for a loaded DXF document:

import ezdxf
from ezdxf.tool.standard import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing(doc)

Config file key: default_dimension_text_style
Shortcut attribute:

626 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.options.default_dimension_text_style

(Read/Write) Get/Set default text style for DIMENSION rendering, default value is
OpenSansCondensed-Light.

Load Proxy Graphic

Proxy graphics are not essential for DXF files, but they can provide a simple graphical representation for complex entities,
but extra memory is needed to store this information. You can save some memory by not loading the proxy graphic, but
the proxy graphic is lost if you write back the DXF file.
The current version of ezdxf uses this proxy graphic to render MLEADER entities by the drawing add-on.
Config file key: load_proxy_graphics
Shortcut attribute:
ezdxf.options.load_proxy_graphics

(Read/Write) Load proxy graphics if True, default is True.

Store Proxy Graphic

Prevent exporting proxy graphics if set to False.
Config file key: store_proxy_graphics
Shortcut attribute:
ezdxf.options.store_proxy_graphics

(Read/Write) Export proxy graphics if True, default is True.

Support Directories

Search directories for support files:
• plot style tables, the .ctb or .stb pen assignment files
• shape font files of type .shx or .shp or .lff

Config file key: support_dirs
Shortcut attribute:
ezdxf.options.support_dirs

(Read/Write) Search directories as list of strings.
Use quotes for paths including spaces:

[core]
support_dirs =

~/dir1,
~/dir2,
"~/dir 3",

9.8. Reference 627

ezdxf Documentation, Release 1.3.2

Debugging Options

For all debugging options the section name is core.

Test Files

Path to test files. Some of the CADKit test files are used by the integration tests, these files should be located in the
ezdxf.options.test_files_path / "CADKitSamples" folder.
Config file key: test_files
Shortcut attributes:
ezdxf.options.test_files

(Read only) Returns the path to the ezdxf test files as str, expands “~” construct automatically.
ezdxf.options.test_files_path

(Read only) Path to test files as pathlib.Path object.

Filter Invalid XDATA Group Codes

Only a very limited set of group codes is valid in the XDATA section and AutoCAD is very picky about that. Ezdxf
removes invalid XDATA group codes if this option is set to True, but this needs processing time, which is wasted if you
get your DXF files from trusted sources like AutoCAD or BricsCAD.
Config file key: filter_invalid_xdata_group_codes
ezdxf.options.filter_invalid_xdata_group_codes

(Read only) Filter invalid XDATA group codes, default value is True.

Log Unprocessed Tags

Logs unprocessed DXF tags, this helps to find new and undocumented DXF features.
Config file key: log_unprocessed_tags
ezdxf.options.log_unprocessed_tags

(Read/Write) Log unprocessed DXF tags for debugging, default value is False.

Write Fixed Meta Data for Testing

Write the DXF files with fixed meta data to test your DXF files by a diff-like command, this is necessary to get always the
same meta data like the saving time stored in the HEADER section. This may not work across different ezdxf versions!
Config file key: write_fixed_meta_data_for_testing
ezdxf.options.write_fixed_meta_data_for_testing

(Read/Write) Enable this option to always create same meta data for testing scenarios, e.g. to use a diff-like tool
to compare DXF documents, default is False.

628 Chapter 9. Contents

https://cadkit.blogspot.com/p/sample-dxf-files.html?view=magazine

ezdxf Documentation, Release 1.3.2

Disable C-Extension

It is possible to deactivate the optional C-extensions if there are any issues with the C-extensions. This has to be done in
a default config file or by environment variable before the first import of ezdxf. For pypy3 the C-extensions are always
disabled, because the JIT compiled Python code is much faster.

Important: This option works only in the default config files, user config files which are loaded by ezdxf.options.
read_file() cannot disable the C-Extensions, because at this point the setup process of ezdxf is already finished!

Config file key: disable_c_ext
ezdxf.options.disable_c_ext

(Read only) This option disables the C-extensions if True. This can only be done before the first import of ezdxf
by using a config file or the environment variable EZDXF_DISABLE_C_EXT.

Use C-Extensions

ezdxf.options.use_c_ext

(Read only) Shows the actual state of C-extensions usage.

Environment Variables

Some feature can be controlled by environment variables. Command line example for disabling the optional C-extensions
on Windows:

C:\> set EZDXF_DISABLE_C_EXT=1

Important: If you change any environment variable, you have to restart the Python interpreter!

EZDXF_DISABLE_C_EXT
Set environment variable EZDXF_DISABLE_C_EXT to 1 or True to disable the usage of the C-extensions.

EZDXF_TEST_FILES
Path to the ezdxf test files required by some tests, for instance the CADKit sample files should be located in the
EZDXF_TEST_FILES/CADKitSamples folder. See also option ezdxf.options.test_files.

EZDXF_CONFIG_FILE
Specifies a user config file which will be loaded automatically after the default config files at the first import of
ezdxf.

9.8.11 For Developers

DXF Internals

• DXF Reference provided by Autodesk.
• DXF Developer Documentation provided by Autodesk.

9.8. Reference 629

https://cadkit.blogspot.com/p/sample-dxf-files.html?view=magazine
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
http://help.autodesk.com/view/OARX/2018/ENU/

ezdxf Documentation, Release 1.3.2

Basic DXF Structures

DXF File Encoding

DXF R2004 and prior

Drawing files of DXF R2004 (AC1018) and prior are saved as ASCII files with the encoding set by the header variable
$DWGCODEPAGE, which is ANSI_1252 by default if $DWGCODEPAGE is not set.
Characters used in the drawing which do not exist in the chosen ASCII encoding are encoded as unicode characters with
the schema \U+nnnn. see Unicode table

Known $DWGCODEPAGE encodings

DXF Python Name
ANSI_874 cp874 Thai
ANSI_932 cp932 Japanese
ANSI_936 gbk UnifiedChinese
ANSI_949 cp949 Korean
ANSI_950 cp950 TradChinese
ANSI_1250 cp1250 CentralEurope
ANSI_1251 cp1251 Cyrillic
ANSI_1252 cp1252 WesternEurope
ANSI_1253 cp1253 Greek
ANSI_1254 cp1254 Turkish
ANSI_1255 cp1255 Hebrew
ANSI_1256 cp1256 Arabic
ANSI_1257 cp1257 Baltic
ANSI_1258 cp1258 Vietnam

DXF R2007 and later

Starting with DXF R2007 (AC1021) the drawing file is UTF-8 encoded, the header variable $DWGCODEPAGE is still
in use, but I don’t know, if the setting still has any meaning.
Encoding characters in the unicode schema \U+nnnn is still functional.
See also:
String value encoding

630 Chapter 9. Contents

https://symbl.cc/en/

ezdxf Documentation, Release 1.3.2

DXF Tags

A Drawing Interchange File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic file
structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF value
on the following line. In the ezdxf documentation DXF tags will be written as (group code, value).
With the introduction of extended symbol names in DXF R2000, the 255-character limit for strings has been increased
to 2049 single-byte characters not including the newline at the end of the line. Nonetheless its safer to use only strings
with 255 and less characters, because its not clear if this fact is true for ALL string group codes or only for symbols like
layer- or text style names and not all 3rd party libraries may handle this fact correct. The MTEXT content and binary
data is still divided into chunks with less than 255 characters.
Group codes are indicating the value type:

Group Code Value Type
0-9 String
10-39 Double precision 3D point value
40-59 Double-precision floating-point value
60-79 16-bit integer value
90-99 32-bit integer value
100 String
102 String
105 String representing hexadecimal (hex) handle value
110-119 Double precision floating-point value
120-129 Double precision floating-point value
130-139 Double precision floating-point value
140-149 Double precision scalar floating-point value
160-169 64-bit integer value
170-179 16-bit integer value
210-239 Double-precision floating-point value
270-279 16-bit integer value
280-289 16-bit integer value
290-299 Boolean flag value
300-309 Arbitrary text string
310-319 String representing hex value of binary chunk
320-329 Arbitrary pointer, hex object ID, not translated during INSERT and XREF operations
330-339 Soft-pointer, hex object ID, translated during INSERT and XREF operations
340-349 Hard-pointer, hex object ID, translated during INSERT and XREF operations
350-359 Soft-owner, hex object ID, translated during INSERT and XREF operations
360-369 Hard-owner, hex object ID, translated during INSERT and XREF operations
370-379 16-bit integer value
380-389 16-bit integer value
390-399 String representing hex handle value
400-409 16-bit integer value
410-419 String
420-429 32-bit integer value
430-439 String
440-449 32-bit integer value
450-459 Long
460-469 Double-precision floating-point value
470-479 String
480-481 Hard-pointer, hex object ID, translated during INSERT and XREF operations
999 Comment (string)

continues on next page

9.8. Reference 631

ezdxf Documentation, Release 1.3.2

Table 4 – continued from previous page
Group Code Value Type
1000-1009 String
1010-1059 Double-precision floating-point value
1060-1070 16-bit integer value
1071 32-bit integer value

Explanation for some important group codes:

Group Code Meaning
0 DXF structure tag, entity start/end or table entries
1 The primary text value for an entity
2 A name: Attribute tag, Block name, and so on. Also used to identify a DXF section or table name.
3-4 Other textual or name values
5 Entity handle as hex string (fixed)
6 Line type name (fixed)
7 Text style name (fixed)
8 Layer name (fixed)
9 Variable name identifier (used only in HEADER section of the DXF file)
10 Primary X coordinate (start point of a Line or Text entity, center of a Circle, etc.)
11-18 Other X coordinates
20 Primary Y coordinate. 2n values always correspond to 1n values and immediately follow them in the file (expected by ezdxf!)
21-28 Other Y coordinates
30 Primary Z coordinate. 3n values always correspond to 1n and 2n values and immediately follow them in the file (expected by ezdxf!)
31-38 Other Z coordinates
39 This entity’s thickness if nonzero (fixed)
40-48 Float values (text height, scale factors, etc.)
49 Repeated value - multiple 49 groups may appear in one entity for variable length tables (such as the dash lengths in the LTYPE table). A 7x group always appears before the first 49 group to specify the table length
50-58 Angles in degree
62 Color number (fixed)
66 “Entities follow” flag (fixed), only in INSERT and POLYLINE entities
67 Identifies whether entity is in modelspace (0) or paperspace (1)
68 Identifies whether viewport is on but fully off screen, is not active, or is off
69 Viewport identification number
70-78 Integer values such as repeat counts, flag bits, or modes
105 DIMSTYLE entity handle as hex string (fixed)
210, 220, 230 X, Y, and Z components of extrusion direction (fixed)
310 Proxy entity graphics as binary encoded data
330 Owner handle as hex string
347 MATERIAL handle as hex string
348 VISUALSTYLE handle as hex string
370 Lineweight in mm times 100 (e.g. 0.13mm = 13).
390 PLOTSTYLE handle as hex string
420 True color value as 0x00RRGGBB 24-bit value
430 Color name as string
440 Transparency value 0x020000TT 0 = fully transparent / 255 = opaque
999 Comments

For explanation of all group codes see: DXF Group Codes in Numerical Order Reference provided by Autodesk

632 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3F0380A5-1C15-464D-BC66-2C5F094BCFB9

ezdxf Documentation, Release 1.3.2

Extended Data

DXF R2018 Reference
Extended data (XDATA) is created by AutoLISP or ObjectARX applications but any other application like ezdxf can
also define XDATA. If an entity contains extended data, it follows the entity’s normal definition.
But extended group codes (>=1000) can appear before the XDATA section, an example is the BLOCKBASEPOINT-
PARAMETER entity in AutoCAD Civil 3D or AutoCAD Map 3D.

Group
Code

Description

1000 Strings in extended data can be up to 255 bytes long (with the 256th byte reserved for the null character)
1001 (fixed) Registered application name (ASCII string up to 31 bytes long) for XDATA
1002 (fixed) An extended data control string can be either '{' or '}'. These braces enable applications to

organize their data by subdividing the data into lists. Lists can be nested.
1003 Name of the layer associated with the extended data
1004 Binary data is organized into variable-length chunks. The maximum length of each chunk is 127 bytes.

In ASCII DXF files, binary data is represented as a string of hexadecimal digits, two per binary byte
1005 Database Handle of entities in the drawing database, see also: About 1005 Group Codes
1010,
1020,
1030

Three real values, in the order X, Y, Z. They can be used as a point or vector record that will not be
modified at any transformation of the entity.

1011,
1021,
1031

a WCS point that is moved, scaled, rotated and mirrored along with the entity

1012,
1012,
1022

a WCS displacement that is scaled, rotated and mirrored along with the entity, but is not moved

1013,
1023,
1033

a WCS direction that is rotated and mirrored along with the entity, but is not moved or scaled

1040 A real value
1041 Distance, a real value that is scaled along with the parent entity
1042 Scale Factor, also a real value that is scaled along with the parent. The difference between a distance and

a scale factor is application-defined
1070 A 16-bit integer (signed or unsigned)
1071 A 32-bit signed (long) integer

The (1001, …) tag indicates the beginning of extended data. In contrast to normal entity data, with extended data the
same group code can appear multiple times, and order is important.
Extended data is grouped by registered application name. Each registered application group begins with a (1001, APPID)
tag, with the application name as APPID string value. Registered application names correspond to APPID symbol table
entries.
An application can use as many APPID names as needed. APPID names are permanent, although they can be purged if
they aren’t currently used in the drawing. Each APPID name can have no more than one data group attached to each
entity. Within an application group, the sequence of extended data groups and their meaning is defined by the application.

9.8. Reference 633

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A2A628B0-3699-4740-A215-C560E7242F63

ezdxf Documentation, Release 1.3.2

String value encoding

String values stored in a DXF file is plain ASCII or UTF-8, AutoCAD also supports CIF (Common Interchange Format)
and MIF (Maker Interchange Format) encoding. The UTF-8 format is only supported in DXF R2007 and later.
Ezdxf on import converts all strings into Python unicode strings without encoding or decoding CIF/MIF.
String values containing Unicode characters are represented with control character sequences \U+nnnn. (e.g. r'TEST\
U+7F3A\U+4E4F\U+89E3\U+91CA\U+6B63THIS\U+56FE')
To support the DXF unicode encoding ezdxf registers an encoding codec dxf_backslash_replace, defined in ezdxf.
lldxf.encoding().
String values can be stored with these dxf group codes:

• 0 - 9
• 100 - 101
• 300 - 309
• 410 - 419
• 430 - 439
• 470 - 479
• 999 - 1003

Multi tag text (MTEXT)

If the text string is less than 250 characters, all characters appear in tag (1, …). If the text string is longer than 250
characters, the string is divided into 250-character chunks, which appear in one or more (3, …) tags. If (3, …) tags are
used, the last group is a (1, …) tag and has fewer than 250 characters:

3
... TwoHundredAndFifty Characters
3
... TwoHundredAndFifty Characters
1
less than TwoHundredAndFifty Characters

As far I know this is only supported by the MTEXT entity.
See also:
DXF File Encoding

DXF R13 and later tag structure

With the introduction of DXF R13 Autodesk added additional group codes and DXF tag structures to the DXF Standard.

634 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Subclass Markers

Subclass markers (100, Subclass Name) divides DXF objects into several sections. Group codes can be reused in different
sections. A subclass ends with the following subclass marker or at the beginning of xdata or the end of the object. See
Subclass Marker Example in the DXF Reference.

Quote about group codes from the DXF reference

Some group codes that define an entity always appear; others are optional and appear only if their values
differ from the defaults.
Do not write programs that rely on the order given here. The end of an entity is indicated by the next 0
group, which begins the next entity or indicates the end of the section.
Note: Accommodating DXF files from future releases of AutoCAD will be easier if you write your DXF
processing program in a table-driven way, ignore undefined group codes, and make no assumptions about
the order of group codes in an entity. With each new AutoCAD release, new group codes will be added to
entities to accommodate additional features.

Usage of group codes in subclasses twice

Some later entities entities contains the same group code twice for different purposes, so order in the sense of which one
comes first is important. (e.g. ATTDEF group code 280)

Tag order is sometimes important especially for AutoCAD

In LWPOLYLINE the order of tags is important, if the count tag is not the first tag in the AcDbPolyline subclass,
AutoCAD will not close the polyline when the close flag is set, by the way other applications like BricsCAD ignores the
tag order and renders the polyline always correct.

Extension Dictionary

The extension dictionary is an optional sequence that stores the handle of a DICTIONARY object that belongs to the
current object, which in turn may contain entries. This facility allows attachment of arbitrary database objects to any
database object. Any object or entity may have this section.
The extension dictionary tag sequence:

102
{ACAD_XDICTIONARY
360
Hard-owner ID/handle to owner dictionary
102
}

9.8. Reference 635

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CC5ACB1B-BBA3-463B-84A5-6CCD320C66E7

ezdxf Documentation, Release 1.3.2

Persistent Reactors

Persistent reactors are an optional sequence that stores object handles of objects registering themselves as reactors on the
current object. Any object or entity may have this section.
The persistent reactors tag sequence:

102
{ACAD_REACTORS
330
first Soft-pointer ID/handle to owner dictionary
330
second Soft-pointer ID/handle to owner dictionary
...
102
}

Application-Defined Codes

Starting at DXF R13, DXF objects can contain application-defined codes outside of XDATA. This application-defined
codes can contain any tag except (0, …) and (102, ‘{…’). “{YOURAPPID” means the APPID string with an preceding
“{”. The application defined data tag sequence:

102
{YOURAPPID
...
102
}

(102, 'YOURAPPID}') is also a valid closing tag:

102
{YOURAPPID
...
102
YOURAPPID}

All groups defined with a beginning (102, …) appear in the DXF reference before the first subclass marker, I don’t know
if these groups can appear after the first or any subclass marker. Ezdxf accepts them at any position, and by default ezdxf
adds new app data in front of the first subclass marker to the first tag section of an DXF object.
Exception XRECORD: Tags with group code 102 and a value string without a preceding “{” or the scheme “YOURAP-
PID}”, should be treated as usual group codes.

Embedded Objects

The concept of embedded objects was introduced with AutoCAD 2018 (DXF version AC1032) and this is the only
information I found about it at the Autodesk knowledge base: Embedded and Encapsulated Objects
Quote from Embedded and Encapsulated Objects:

For DXF filing, the embedded object must be filed out and in after all the data of the encapsulating object
has been filed out and in.
A separator is needed between the encapsulating object’s data and the subsequent embedded object’s data.
The separator must be similar in function to the group 0 or 100 in that it must cause the filer to stop reading

636 Chapter 9. Contents

https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2017/ENU/OARXMAC-DevGuide/files/GUID-C953866F-A335-4FFD-AE8C-256A76065552-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2017/ENU/OARXMAC-DevGuide/files/GUID-C953866F-A335-4FFD-AE8C-256A76065552-htm.html

ezdxf Documentation, Release 1.3.2

data. The normal DXF group code 0 cannot be used because DXF proxies use it to determine when to stop
reading data. The group code 100 could have been used, but it might have caused confusion when manually
reading a DXF file, and there was a need to distinguish when an embedded object is about to be written out
in order to do some internal bookkeeping. Therefore, the DXF group code 101 was introduced.

Hard facts:
• Only used in ATTRIB, ATTDEF (embedded MTEXT) and MTEXT (columns) in DXF R2018.
• Embedded object start with (101, “Embedded Object”) tag
• Embedded object is appended to the encapsulated object
• Embedded object tags can contain any group code except the DXF structure tag (0, …)

Unconfirmed assumptions:
• The embedded object is written before the Extended Data. No examples for entities including embedded objects
and XDATA at the same time.

• XDATA sections replaced by embedded objects, at least for the MTEXT entity
• The encapsulating object can contain more than one embedded object.
• Embedded objects separated by (101, “Embedded Object”) tags
• every entity can contain embedded objects

Real world example from an AutoCAD 2018 file:

100 <<< start of encapsulating object
AcDbMText
10
2762.148
20
2327.073
30
0.0
40
2.5
41
18.852
46
0.0
71
1
72
5
1
{\fArial|b0|i0|c162|p34;CHANGE;\P\P\PTEXT}
73
1
44
1.0
101 <<< start of embedded object
Embedded Object
70
1
10
1.0
20
0.0

(continues on next page)

9.8. Reference 637

ezdxf Documentation, Release 1.3.2

(continued from previous page)
30
0.0
11
2762.148
21
2327.073
31
0.0
40
18.852
41
0.0
42
15.428
43
15.043
71
2
72
1
44
18.852
45
12.5
73
0
74
0
46
0.0

Handles

A handle is an arbitrary but in your DXF file unique hex value as string like ‘10FF’. It is common to to use uppercase
letters for hex numbers. Handle can have up to 16 hexadecimal digits (8 bytes).
For DXF R10 until R12 the usage of handles was optional. The header variable $HANDLING set to 1 indicate the usage
of handles, else $HANDLING is 0 or missing.
For DXF R13 and later the usage of handles is mandatory and the header variable $HANDLING was removed.
The $HANDSEED variable in the header section should be greater than the biggest handle used in the DXF file, so a
CAD application can assign handle values starting with the $HANDSEED value. But as always, don’t rely on the header
variable it could be wrong, AutoCAD ignores this value.

638 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Handle Definition

Entity handle definition is always the (5, ...), except for entities of the DIMSTYLE table (105, ...), because
the DIMSTYLE entity has also a group code 5 tag for DIMBLK.

Handle Pointer

A pointer is a reference to a DXF object in the same DXF file. There are four types of pointers:
• Soft-pointer handle
• Hard-pointer handle
• Soft-owner handle
• Hard-owner handle

Also, a group code range for “arbitrary” handles is defined to allow convenient storage of handle values that are unchanged
at any operation (AutoCAD).

Pointer and Ownership

A pointer is a reference that indicates usage, but not possession or responsibility, for another object. A pointer reference
means that the object uses the other object in some way, and shares access to it. An ownership reference means that an
owner object is responsible for the objects for which it has an owner handle. An object can have any number of pointer
references associated with it, but it can have only one owner.

Hard and Soft References

Hard references, whether they are pointer or owner, protect an object from being purged. Soft references do not.
In AutoCAD, block definitions and complex entities are hard owners of their elements. A symbol table and dictionaries
are soft owners of their elements. Polyline entities are hard owners of their vertex and seqend entities. Insert entities are
hard owners of their attrib and seqend entities.
When establishing a reference to another object, it is recommended that you think about whether the reference should
protect an object from the PURGE command.
A hard- and soft pointers will be translated during INSERT and XREF operations.

Arbitrary Handles

Arbitrary handles are distinct in that they are not translated to session-persistent identifiers internally, or to entity names
in AutoLISP, and so on. They are stored as handles. When handle values are translated in drawing-merge operations,
arbitrary handles are ignored.
In all environments, arbitrary handles can be exchanged for entity names of the current drawing by means of the handent
functions. A common usage of arbitrary handles is to refer to objects in external DXF and DWG files.

9.8. Reference 639

ezdxf Documentation, Release 1.3.2

About 1005 Group Codes

(1005, ...) xdata have the same behavior and semantics as soft pointers, which means that they are translated
whenever the host object is merged into a different drawing. However, 1005 items are not translated to session-persistent
identifiers or internal entity names in AutoLISP and ObjectARX. They are stored as handles.
When a drawingwith handles and extended data handles is imported into another drawing using INSERT, INSERT , XREF
Bind, XBIND, or partial OPEN, the extended data handles are **translated* in the same manner as their corresponding
entity handles, thus maintaining their binding. This is also done in the EXPLODE block operation or for any other
AutoCAD operation. When AUDIT detects an extended data handle that doesn’t match the handle of an entity in the
drawing file, it is considered an error. If AUDIT is fixing entities, it sets the handle to “0”

DXF File Structure

ADXF File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic file structure are DXF
tags, a DXF tag consist of a DXF group code as an integer value on its own line and a the DXF value on the following
line. In the ezdxf documentation DXF tags will be written as (group code, value). There exist a binary DXF
format, but it seems that it is not often used and for reducing file size, zipping is much more efficient. ezdxf does support
reading binary encoded DXF files.
See also:
For more information about DXF tags see: DXF Tags

A usual DXF file is organized in sections, starting with the DXF tag (0, ‘SECTION’) and ending with the DXF tag (0,
‘ENDSEC’). The (0, ‘EOF’) tag signals the end of file.

1. HEADER: General information about the drawing is found in this section of the DXF file. Each parameter has a
variable name starting with ‘$’ and an associated value. Has to be the first section.

2. CLASSES: Holds the information for application defined classes. (DXF R13 and later)
3. TABLES:: Contains several tables for style and property definitions.

• Linetype table (LTYPE)
• Layer table (LAYER)
• Text Style table (STYLE)
• View table (VIEW): (IMHO) layout of the CAD working space, only interesting for interactive CAD appli-
cations

• Viewport configuration table (VPORT): The VPORT table is unique in that it may contain several entries
with the same name (indicating a multiple-viewport configuration). The entries corresponding to the active
viewport configuration all have the name *ACTIVE. The first such entry describes the current viewport.

• Dimension Style table (DIMSTYLE)
• User Coordinate System table (UCS) (IMHO) only interesting for interactive CAD applications
• Application Identification table (APPID): Table of names for all applications registered with a drawing.
• Block Record table (BLOCK_RECORD) (DXF R13 and Later)

4. BLOCKS:Contains all block definitions. The block name *Model_Space or *MODEL_SPACE is reserved for the
drawing modelspace and the block name *Paper_Space or *PAPER_SPACE is reserved for the active paperspace
layout. Both block definitions are empty, the content of the modelspace and the active paperspace is stored in the
ENTITIES section. The entities of other layouts are stored in special block definitions called *Paper_Spacennn,
nnn is an arbitrary but unique number.

640 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

5. ENTITIES: Contains all graphical entities of the modelspace and the active paperspace layout. Entities of other
layouts are stored in the BLOCKS sections.

6. OBJECTS: Contains all non-graphical objects of the drawing (DXF R13 and later)
7. THUMBNAILIMAGE: Contains a preview image of the DXF file, it is optional and can usually be ignored.

(DXF R13 and later)
8. ACDSDATA: (DXF R2013 and later) No information in the DXF reference about this section
9. END OF FILE

For further information read the original DXF Reference.
Structure of a usual DXF R12 file:

0 <<< Begin HEADER section, has to be the first section
SECTION
2
HEADER

<<< Header variable items go here
0 <<< End HEADER section
ENDSEC
0 <<< Begin TABLES section
SECTION
2
TABLES
0
TABLE
2
VPORT
70 <<< viewport table maximum item count

<<< viewport table items go here
0
ENDTAB
0
TABLE
2
APPID, DIMSTYLE, LTYPE, LAYER, STYLE, UCS, VIEW, or VPORT
70 <<< Table maximum item count, a not reliable value and ignored by AutoCAD

<<< Table items go here
0
ENDTAB
0 <<< End TABLES section
ENDSEC
0 <<< Begin BLOCKS section
SECTION
2
BLOCKS

<<< Block definition entities go here
0 <<< End BLOCKS section
ENDSEC
0 <<< Begin ENTITIES section
SECTION
2
ENTITIES

<<< Drawing entities go here
0 <<< End ENTITIES section
ENDSEC
0 <<< End of file marker (required)

(continues on next page)

9.8. Reference 641

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 1.3.2

(continued from previous page)
EOF

Minimal DXF Content

DXF R12

Contrary to the previous chapter, the DXF R12 format (AC1009) and prior requires just the ENTITIES section:

0
SECTION
2
ENTITIES
0
ENDSEC
0
EOF

DXF R13/R14 and later

DXF version R13/14 and later needs much more DXF content than DXF R12.
Required sections: HEADER, CLASSES, TABLES, ENTITIES, OBJECTS
The HEADER section requires two entries:

• $ACADVER
• $HANDSEED

The CLASSES section can be empty, but some DXF entities requires class definitions to work in AutoCAD.
The TABLES section requires following tables:

• VPORT entry *ACTIVE is not required! Empty table is ok for AutoCAD.
• LTYPE with at least the following line types defined:

– BYBLOCK
– BYLAYER
– CONTINUOUS

• LAYER with at least an entry for layer ‘0’
• STYLE with at least an entry for style STANDARD
• VIEW can be empty
• UCS can be empty
• APPID with at least an entry for ACAD
• DIMSTYLE with at least an entry for style STANDARD
• BLOCK_RECORDS with two entries:

– *MODEL_SPACE
– *PAPER_SPACE

642 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The BLOCKS section requires two BLOCKS:
• *MODEL_SPACE
• *PAPER_SPACE

The ENTITIES section can be empty.
The OBJECTS section requires following entities:

• DICTIONARY - the root dict - one entry named ACAD_GROUP
• DICTIONARY ACAD_GROUP can be empty

Minimal DXF to download: https://github.com/mozman/ezdxf/tree/master/examples_dxf

Data Model

Database Objects

(from the DXF Reference)
AutoCAD drawings consist largely of structured containers for database objects. Database objects each have the following
features:

• A handle whose value is unique to the drawing/DXF file, and is constant for the lifetime of the drawing. This
format has existed since AutoCAD Release 10, and as of AutoCAD Release 13, handles are always enabled.

• An optional XDATA table, as entities have had since AutoCAD Release 11.
• An optional persistent reactor table.
• An optional ownership pointer to an extension dictionary which, in turn, owns subobjects placed in it by an appli-
cation.

Symbol tables and symbol table records are database objects and, thus, have a handle. They can also have xdata and
persistent reactors in their DXF records.

DXF R12 Data Model

The DXF R12 data model is identical to the file structure:
• HEADER section: common settings for the DXF drawing
• TABLES section: definitions for LAYERS, LINETYPE, STYLES ….
• BLOCKS section: block definitions and its content
• ENTITIES section: modelspace and paperspace content

References are realized by simple names. The INSERT entity references the BLOCK definition by the BLOCK name,
a TEXT entity defines the associated STYLE and LAYER by its name and so on, handles are not needed. Layout
association of graphical entities in the ENTITIES section by the paper_space tag (67, 0 or 1), 0 or missing tag
means modelspace, 1 means paperspace. The content of BLOCK definitions is enclosed by the BLOCK and the ENDBLK
entity, no additional references are needed.
A clean and simple file structure and data model, which seems to be the reason why the DXF R12 Reference (released
1992) is still a widely used file format and Autodesk/AutoCAD supports the format by reading and writing DXF R12 files
until today (DXF R13/R14 has no writing support by AutoCAD!).
TODO: list of available entities

9.8. Reference 643

https://github.com/mozman/ezdxf/tree/master/examples_dxf

ezdxf Documentation, Release 1.3.2

See also:
More information about the DXF DXF File Structure

DXF R13+ Data Model

With the DXF R13 file format, handles are mandatory and they are really used for organizing the new data structures
introduced with DXF R13.
The HEADER section is still the same with just more available settings.
The new CLASSES section contains AutoCAD specific data, has to be written like AutoCAD it does, but must not be
understood.
The TABLES section got a new BLOCK_RECORD table - see Block Management Structures for more information.
The BLOCKS sections is mostly the same, but with handles, owner tags and new ENTITY types. Not active paperspace
layouts store their content also in the BLOCKS section - see Layout Management Structures for more information.
The ENTITIES section is also mostly same, but with handles, owner tags and new ENTITY types.
TODO: list of new available entities
And the new OBJECTS section - now its getting complicated!
Most information about the OBJECTS section is just guessed or gathered by trail and error, because the documentation
of the OBJECTS section and its objects in the DXF reference provided by Autodesk is very shallow. This is also the
reason why I started the DXF Internals section, may be it helps other developers to start one or two steps above level zero.
The OBJECTS sections stores all the non-graphical entities of the DXF drawing. Non-graphical entities from now on
just called ‘DXF objects’ to differentiate them from graphical entities, just called ‘entities’. The OBJECTS section follows
commonly the ENTITIES section, but this is not mandatory.
DXF R13 introduces several new DXF objects, which resides exclusive in the OBJECTS section, taken from the DXF
R14 reference, because I have no access to the DXF R13 reference, the DXF R13 reference is a compiled .hlp file which
can’t be read on Windows 10 or later, this a perfect example for not using closed (proprietary) data formats ;):

• DICTIONARY: a general structural entity as a <name: handle> container
• ACDBDICTIONARYWDFLT: a DICTIONARY with a default value
• DICTIONARYVAR: used by AutoCAD to store named values in the database
• ACAD_PROXY_OBJECT: proxy object for entities created by other applications than AutoCAD
• GROUP: groups graphical entities without the need of a BLOCK definition
• IDBUFFER: just a list of references to objects
• IMAGEDEF: IMAGE definition structure, required by the IMAGE entity
• IMAGEDEF_REACTOR: also required by the IMAGE entity
• LAYER_INDEX: container for LAYER names
• MLINESTYLE
• OBJECT_PTR
• RASTERVARIABLES
• SPATIAL_INDEX: is always written out empty to a DXF file. This object can be ignored.
• SPATIAL_FILTER
• SORTENTSTABLE: control for regeneration/redraw order of entities

644 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• XRECORD: used to store and manage arbitrary data. This object is similar in concept to XDATA but is not limited
by size or order. Not supported by R13c0 through R13c3.

Still missing the LAYOUT object, which is mandatory in DXF R2000 to manage multiple paperspace layouts. I don’t
know how DXF R13/R14 manages multiple layouts or if they even support this feature, but I don’t care much about DXF
R13/R14, because AutoCAD has no write support for this two formats anymore. Ezdxf tries to upgrade this two DXF
versions to DXF R2000 with the advantage of only two different data models to support: DXF R12 and DXF R2000+
New objects introduced by DXF R2000:

• LAYOUT: management object for modelspace and multiple paperspace layouts
• ACDBPLACEHOLDER: surprise - just a place holder

New objects in DXF R2004:
• DIMASSOC
• LAYER_FILTER
• MATERIAL
• PLOTSETTINGS
• VBA_PROJECT

New objects in DXF R2007:
• DATATABLE
• FIELD
• LIGHTLIST
• RENDER
• RENDERENVIRONMENT
• MENTALRAYRENDERSETTINGS
• RENDERGLOBAL
• SECTION
• SUNSTUDY
• TABLESTYLE
• UNDERLAYDEFINITION
• VISUALSTYLE
• WIPEOUTVARIABLES

New objects in DXF R2013:
• GEODATA

New objects in DXF R2018:
• ACDBNAVISWORKSMODELDEF

Undocumented objects:
• SCALE
• ACDBSECTIONVIEWSTYLE
• FIELDLIST

9.8. Reference 645

ezdxf Documentation, Release 1.3.2

Objects Organisation

Many objects in the OBJECTS section are organized in a tree-like structure of DICTIONARY objects.
Starting point for this data structure is the ‘root’ DICTIONARY with several entries to other DICTIONARY objects. The
root DICTIONARY has to be the first object in the OBJECTS section. The management dicts for GROUP and LAYOUT
objects are really important, but IMHO most of the other management tables are optional and for the most use cases not
necessary. Ezdxf creates only these entries in the root dict and most of them pointing to an empty DICTIONARY:

• ACAD_COLOR: points to an empty DICTIONARY
• ACAD_GROUP: required
• ACAD_LAYOUT: required
• ACAD_MATERIAL: points to an empty DICTIONARY
• ACAD_MLEADERSTYLE: points to an empty DICTIONARY
• ACAD_MLINESTYLE: points to an empty DICTIONARY
• ACAD_PLOTSETTINGS: points to an empty DICTIONARY
• ACAD_PLOTSTYLENAME: required, points to ACDBDICTIONARYWDFLT with one entry: ‘Normal’
• ACAD_SCALELIST: points to an empty DICTIONARY
• ACAD_TABLESTYLE: points to an empty DICTIONARY
• ACAD_VISUALSTYLE: points to an empty DICTIONARY

Root DICTIONARY content for DXF R2018

0
SECTION
2 <<< start of the OBJECTS section
OBJECTS
0 <<< root DICTIONARY has to be the first object in the OBJECTS section
DICTIONARY
5 <<< handle
C
330 <<< owner tag
0 <<< always #0, has no owner
100
AcDbDictionary
281 <<< hard owner flag
1
3 <<< first entry
ACAD_CIP_PREVIOUS_PRODUCT_INFO
350 <<< handle to target (pointer)
78B <<< points to a XRECORD with product info about the creator application
3 <<< entry with unknown meaning, if I should guess: something with about␣
↪→colors ...
ACAD_COLOR
350
4FB <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACAD_DETAILVIEWSTYLE
350
7ED <<< points to a DICTIONARY

(continues on next page)

646 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
3 <<< GROUP management, mandatory in all DXF versions
ACAD_GROUP
350
4FC <<< points to a DICTIONARY
3 <<< LAYOUT management, mandatory if more than the *active* paperspace is used
ACAD_LAYOUT
350
4FD <<< points to a DICTIONARY
3 <<< MATERIAL management
ACAD_MATERIAL
350
4FE <<< points to a DICTIONARY
3 <<< MLEADERSTYLE management
ACAD_MLEADERSTYLE
350
4FF <<< points to a DICTIONARY
3 <<< MLINESTYLE management
ACAD_MLINESTYLE
350
500 <<< points to a DICTIONARY
3 <<< PLOTSETTINGS management
ACAD_PLOTSETTINGS
350
501 <<< points to a DICTIONARY
3 <<< plot style name management
ACAD_PLOTSTYLENAME
350
503 <<< points to a ACDBDICTIONARYWDFLT
3 <<< SCALE management
ACAD_SCALELIST
350
504 <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACAD_SECTIONVIEWSTYLE
350
7EB <<< points to a DICTIONARY
3 <<< TABLESTYLE management
ACAD_TABLESTYLE
350
505 <<< points to a DICTIONARY
3 <<< VISUALSTYLE management
ACAD_VISUALSTYLE
350
506 <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACDB_RECOMPOSE_DATA
350
7F3
3 <<< entry with unknown meaning
AcDbVariableDictionary
350
7AE <<< points to a DICTIONARY with handles to DICTIONARYVAR objects
0
DICTIONARY
...
...
0

(continues on next page)

9.8. Reference 647

ezdxf Documentation, Release 1.3.2

(continued from previous page)
ENDSEC

DXF Structures

DXF Sections

HEADER Section

In DXF R12 and prior the HEADER section was optional, but since DXF R13 the HEADER section is mandatory. The
overall structure is:

0 <<< Begin HEADER section
SECTION
2
HEADER
9
$ACADVER <<< Header variable items go here
1
AC1009
...
0
ENDSEC <<< End HEADER section

A header variable has a name defined by a (9, Name) tag and following value tags.
See also:
Documentation of ezdxf HeaderSection class.
DXF Reference: Header Variables

CLASSES Section

The CLASSES section contains CLASS definitions which are only important for Autodesk products, some DXF entities
require a class definition or AutoCAD will not open the DXF file.
The CLASSES sections was introduced with DXF AC1015 (AutoCAD Release R13).
See also:
DXF Reference: About the DXF CLASSES Section
Documentation of ezdxf ClassesSection class.
The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in the
BLOCKS, ENTITIES, and OBJECTS sections of the database. It is assumed that a class definition is permanently fixed
in the class hierarchy. All fields are required.
Update 2019-03-03:
Class names are not unique, Autodesk Architectural Desktop 2007 uses the same name, but with different CPP class
names in the CLASS section, so storing classes in a dictionary by name as key caused loss of class entries in ezdxf, using
a tuple of (name, cpp_class_name) as storage key solved the problem.

648 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6160F1F1-2805-4C69-8077-CA1AEB6B1005

ezdxf Documentation, Release 1.3.2

CLASS Entities

See also:
DXF Reference: Group Codes for the CLASS entity
CLASS entities have no handle and therefore ezdxf does not store the CLASS entity in the drawing entities database!

0
SECTION
2 <<< begin CLASSES section
CLASSES
0 <<< first CLASS entity
CLASS
1 <<< class DXF entity name; THIS ENTRY IS MAYBE NOT UNIQUE
ACDBDICTIONARYWDFLT
2 <<< C++ class name; always unique
AcDbDictionaryWithDefault
3 <<< application name
ObjectDBX Classes
90 <<< proxy capabilities flags
0
91 <<< instance counter for custom class, since DXF version AC1018 (R2004)
0 <<< no problem if the counter is wrong, AutoCAD doesn't care about
280 <<< was-a-proxy flag: 1= class was not loaded when this DXF file was␣
↪→created
0 <<< 0= otherwise
281 <<< is-an-entity flag: 1= instances reside in the BLOCKS or ENTITIES␣
↪→section
0 <<< 0= instances may appear only in the OBJECTS section
0 <<< next CLASS entity
CLASS
...
0 <<< end of CLASSES section
ENDSEC

TABLES Section

The TABLES section contains the resource tables of a DXF document.

APPID Table

The APPID table stores unique application identifiers. These identifiers are used to mark sub-sections in the XDATA
section of DXF entities. AutoCAD will not load DXF files which uses AppIDs without an entry in the AppIDs table and
the “ACAD” entry must always exist.
Some known AppIDs:

APPID Used by Description
ACAD Autodesk various use cases
AcAecLayerStandard Autodesk layer description
AcCmTransparency Autodesk layer transparency
HATCHBACKGROUNDCOLOR Autodesk background color for pattern fillings
EZDXF ezdxf meta data

9.8. Reference 649

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-DBD5351C-E408-4CED-9336-3BD489179EF5
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6E3140E9-E560-4C77-904E-480382F0553E

ezdxf Documentation, Release 1.3.2

See also:
• DXF Reference: TABLES Section
• DXF Reference: APPID Table
• AppID class

Table Structure DXF R12

0 <<< start of table
TABLE
2 <<< table type
APPID
70 <<< count of table entries, AutoCAD ignores this value
3
0 <<< 1. table entry
APPID
2 <<< unique application identifier
ACAD
70 <<< flags, see `APPID`_ reference
0 <<< in common cases always 0
0 <<< next table entry
APPID
...
0 <<< end of APPID table
ENDTAB

Table Structure DXF R2000+

0 <<< start of table
TABLE
2 <<< table type
APPID
5 <<< table handle
3
330 <<< owner tag, tables have no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries, AutoCAD ignores this value
3
0 <<< first table entry
APPID
5 <<< handle of appid
2A
330 <<< owner handle, handle of APPID table
3
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbRegAppTableRecord
2 <<< unique application identifier
ACAD
70 <<< flags, see `APPID`_ reference

(continues on next page)

650 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6E3140E9-E560-4C77-904E-480382F0553E

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0 <<< in common cases always 0
0 <<< next table entry
APPID
...
0 <<< end of APPID table
ENDTAB

Name References

APPID table entries are referenced by name:
• XDATA section of DXF entities

BLOCK_RECORD Table

Block records are essential elements for the entities management, each layout (modelspace and paperspace) and every
block definition has a block record entry. This block record is the hard owner of the entities of layouts, each entity has
an owner handle which points to a block record of the layout.

DIMSTYLE Table

The DIMSTYLE table stores all dimension style definitions of a DXF drawing.
You have access to the dimension styles table by the attribute Drawing.dimstyles.
See also:

• DXF Reference: TABLES Section
• DXF Reference: DIMSTYLE Table

Table Structure DXF R12

0 <<< start of table
TABLE
2 <<< set table type
DIMSTYLE
70 <<< count of line types defined in this table, AutoCAD ignores this value
9
0 <<< 1. DIMSTYLE table entry
DIMSTYLE

<<< DIMSTYLE data tags
0 <<< 2. DIMSTYLE table entry
DIMSTYLE

<<< DIMSTYLE data tags and so on
0 <<< end of DIMSTYLE table
ENDTAB

9.8. Reference 651

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F2FAD36F-0CE3-4943-9DAD-A9BCD2AE81DA
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F2FAD36F-0CE3-4943-9DAD-A9BCD2AE81DA

ezdxf Documentation, Release 1.3.2

DIMSTYLE Entry DXF R12

DIMSTYLE Variables DXF R12

Source: CADDManager Blog

652 Chapter 9. Contents

http://www.caddmanager.com/CMB/2009/09/cad-standards-autocad-dimension-variables/

ezdxf Documentation, Release 1.3.2

DIMVAR Code Description
DIMALT 170 Controls the display of alternate units

in dimensions.
DIMALTD 171 Controls the number of decimal

places in alternate units. If DI-
MALT is turned on, DIMALTD sets
the number of digits displayed to the
right of the decimal point in the alter-
nate measurement.

DIMALTF 143 Controls the multiplier for alternate
units. If DIMALT is turned on, DI-
MALTF multiplies linear dimensions
by a factor to produce a value in an al-
ternate system of measurement. The
initial value represents the number of
millimeters in an inch.

DIMAPOST 4 Specifies a text prefix or suffix (or
both) to the alternate dimension mea-
surement for all types of dimensions
except angular. For instance, if the
current units are Architectural, DI-
MALT is on, DIMALTF is 25.4 (the
number of millimeters per inch), DI-
MALTD is 2, and DIMPOST is set
to “mm”, a distance of 10 units would
be displayed as 10”[254.00mm].

DIMASZ 41 Controls the size of dimension line
and leader line arrowheads. Also
controls the size of hook lines. Mul-
tiples of the arrowhead size deter-
mine whether dimension lines and
text should fit between the extension
lines. DIMASZ is also used to scale
arrowhead blocks if set by DIM-
BLK. DIMASZ has no effect when
DIMTSZ is other than zero.

DIMBLK 5 Sets the arrowhead block displayed at
the ends of dimension lines.

DIMBLK1 6 Sets the arrowhead for the first end of
the dimension line when DIMSAH is
1.

DIMBLK2 7 Sets the arrowhead for the second end
of the dimension line when DIMSAH
is 1.

continues on next page

9.8. Reference 653

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMCEN 141 Controls drawing of circle or arc

center marks and centerlines by the
DIMCENTER, DIMDIAMETER,
and DIMRADIUS commands. For
DIMDIAMETER and DIMRA-
DIUS, the center mark is drawn
only if you place the dimension line
outside the circle or arc.

• 0 = No center marks or lines
are drawn

• <0 = Centerlines are drawn
• >0 = Center marks are drawn

DIMCLRD 176 Assigns colors to dimension lines,
arrowheads, and dimension leader
lines.

• 0 = BYBLOCK
• 1-255 = ACI AutoCAD Color
Index

• 256 = BYLAYER

DIMCLRE 177 Assigns colors to dimension exten-
sion lines, values like DIMCLRD

DIMCLRT 178 Assigns colors to dimension text, val-
ues like DIMCLRD

DIMDLE 46 Sets the distance the dimension line
extends beyond the extension line
when oblique strokes are drawn in-
stead of arrowheads.

DIMDLI 43 Controls the spacing of the dimen-
sion lines in baseline dimensions.
Each dimension line is offset from
the previous one by this amount, if
necessary, to avoid drawing over it.
Changes made with DIMDLI are not
applied to existing dimensions.

DIMEXE 44 Specifies how far to extend the exten-
sion line beyond the dimension line.

DIMEXO 42 Specifies how far extension lines are
offset from origin points. With fixed-
length extension lines, this value de-
termines the minimum offset.

continues on next page

654 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMGAP 147 Sets the distance around the dimen-

sion text when the dimension line
breaks to accommodate dimension
text. Also sets the gap between an-
notation and a hook line created with
the LEADER command. If you en-
ter a negative value, DIMGAP places
a box around the dimension text.
DIMGAP is also used as the mini-
mum length for pieces of the dimen-
sion line. When the default position
for the dimension text is calculated,
text is positioned inside the exten-
sion lines only if doing so breaks the
dimension lines into two segments
at least as long as DIMGAP. Text
placed above or below the dimension
line is moved inside only if there is
room for the arrowheads, dimension
text, and a margin between them at
least as large as DIMGAP: 2 * (DI-
MASZ + DIMGAP).

DIMLFAC 144 Sets a scale factor for linear dimen-
sion measurements. All linear di-
mension distances, including radii,
diameters, and coordinates, are mul-
tiplied by DIMLFAC before being
converted to dimension text. Positive
values of DIMLFAC are applied to
dimensions in both modelspace and
paperspace; negative values are ap-
plied to paperspace only.
DIMLFAC applies primarily to
nonassociative dimensions (DIMAS-
SOC set 0 or 1). For nonassociative
dimensions in paperspace, DIML-
FACmust be set individually for each
layout viewport to accommodate
viewport scaling.
DIMLFAC has no effect on angular
dimensions, and is not applied to the
values held inDIMRND,DIMTM, or
DIMTP.

continues on next page

9.8. Reference 655

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMLIM 72 Generates dimension limits as the de-

fault text. Setting DIMLIM to On
turns DIMTOL off.

• 0 = Dimension limits are not
generated as default text

• 1 = Dimension limits are gen-
erated as default text

DIMPOST 3 Specifies a text prefix or suffix (or
both) to the dimension measurement.
For example, to establish a suffix for
millimeters, set DIMPOST to mm; a
distance of 19.2 units would be dis-
played as 19.2 mm. If tolerances are
turned on, the suffix is applied to the
tolerances as well as to the main di-
mension.
Use “<>” to indicate placement of
the text in relation to the dimension
value. For example, enter “<>mm”
to display a 5.0 millimeter radial di-
mension as “5.0mm”. If you entered
mm “<>”, the dimension would be
displayed as “mm 5.0”.

DIMRND 45 Rounds all dimensioning distances to
the specified value.
For instance, if DIMRND is set to
0.25, all distances round to the near-
est 0.25 unit. If you set DIMRND
to 1.0, all distances round to the
nearest integer. Note that the num-
ber of digits edited after the decimal
point depends on the precision set by
DIMDEC. DIMRND does not apply
to angular dimensions.

DIMSAH 173 Controls the display of dimension
line arrowhead blocks.

• 0 = Use arrowhead blocks set
by DIMBLK

• 1 = Use arrowhead blocks set
by DIMBLK1 and DIMBLK2

continues on next page

656 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMSCALE 40 Sets the overall scale factor applied

to dimensioning variables that spec-
ify sizes, distances, or offsets. Also
affects the leader objects with the
LEADER command.
Use MLEADERSCALE to scale
multileader objects created with the
MLEADER command.

• 0.0 = A reasonable default
value is computed based on
the scaling between the current
model space viewport and pa-
perspace. If you are in pa-
perspace or modelspace and
not using the paperspace fea-
ture, the scale factor is 1.0.

• >0 = A scale factor is com-
puted that leads text sizes,
arrowhead sizes, and other
scaled distances to plot at their
face values.

DIMSCALE does not affect mea-
sured lengths, coordinates, or angles.
Use DIMSCALE to control the over-
all scale of dimensions. However, if
the current dimension style is anno-
tative, DIMSCALE is automatically
set to zero and the dimension scale
is controlled by the CANNOSCALE
system variable. DIMSCALE cannot
be set to a non-zero value when using
annotative dimensions.

DIMSE1 75 Suppresses display of the first exten-
sion line.

• 0 = Extension line is not sup-
pressed

• 1 = Extension line is sup-
pressed

DIMSE2 76 Suppresses display of the second ex-
tension line.

• 0 = Extension line is not sup-
pressed

• 1 = Extension line is sup-
pressed

continues on next page

9.8. Reference 657

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMSOXD 175 Suppresses arrowheads if not enough

space is available inside the extension
lines.

• 0 = Arrowheads are not sup-
pressed

• 1 =Arrowheads are suppressed
If not enough space is available in-
side the extension lines and DIMTIX
is on, setting DIMSOXD to On sup-
presses the arrowheads. If DIMTIX
is off, DIMSOXD has no effect.

DIMTAD 77 Controls the vertical position of text
in relation to the dimension line.

• 0 = Centers the dimension text
between the extension lines.

• 1 = Places the dimension text
above the dimension line ex-
cept when the dimension line
is not horizontal and text inside
the extension lines is forced
horizontal (DIMTIH = 1). The
distance from the dimension
line to the baseline of the low-
est line of text is the current
DIMGAP value.

• 2 = Places the dimension text
on the side of the dimension
line farthest away from the
defining points.

• 3 = Places the dimension text
to conform to Japanese Indus-
trial Standards (JIS).

• 4 = Places the dimension text
below the dimension line.

DIMTFAC 146 Specifies a scale factor for the text
height of fractions and tolerance val-
ues relative to the dimension text
height, as set by DIMTXT.
For example, if DIMTFAC is set to
1.0, the text height of fractions and
tolerances is the same height as the
dimension text. If DIMTFAC is set
to 0.7500, the text height of fractions
and tolerances is three-quarters the
size of dimension text.

continues on next page

658 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMTIH 73 Controls the position of dimension

text inside the extension lines for all
dimension types except Ordinate.

• 0 = Aligns text with the dimen-
sion line

• 1 = Draws text horizontally

DIMTIX 174 Draws text between extension lines.
• 0 = Varies with the type of di-
mension. For linear and angu-
lar dimensions, text is placed
inside the extension lines if
there is sufficient room. For
radius and diameter dimen-
sions hat don’t fit inside the cir-
cle or arc, DIMTIX has no ef-
fect and always forces the text
outside the circle or arc.

• 1 = Draws dimension text be-
tween the extension lines even
if it would ordinarily be placed
outside those lines

DIMTM 48 Sets the minimum (or lower) tol-
erance limit for dimension text
when DIMTOL or DIMLIM is
on. DIMTM accepts signed values.
If DIMTOL is on and DIMTP
and DIMTM are set to the same
value, a tolerance value is drawn. If
DIMTM and DIMTP values differ,
the upper tolerance is drawn above
the lower, and a plus sign is added
to the DIMTP value if it is positive.
For DIMTM, the program uses
the negative of the value you enter
(adding a minus sign if you specify
a positive number and a plus sign if
you specify a negative number).

continues on next page

9.8. Reference 659

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMTOFL 172 Controls whether a dimension line

is drawn between the extension lines
even when the text is placed outside.
For radius and diameter dimensions
(when DIMTIX is off), draws a di-
mension line inside the circle or arc
and places the text, arrowheads, and
leader outside.

• 0 = Does not draw dimen-
sion lines between the mea-
sured points when arrowheads
are placed outside the mea-
sured points

• 1 = Draws dimension lines
between the measured points
even when arrowheads are
placed outside the measured
points

DIMTOH 74 Controls the position of dimension
text outside the extension lines.

• 0 = Aligns text with the dimen-
sion line

• 1 = Draws text horizontally

DIMTOL 71 Appends tolerances to dimension
text. Setting DIMTOL to on turns
DIMLIM off.

DIMTP 47 Sets the maximum (or upper) toler-
ance limit for dimension text when
DIMTOL or DIMLIM is on. DIMTP
accepts signed values. If DIMTOL is
on and DIMTP and DIMTM are set
to the same value, a tolerance value
is drawn. If DIMTM and DIMTP
values differ, the upper tolerance is
drawn above the lower and a plus sign
is added to the DIMTP value if it is
positive.

DIMTSZ 142 Specifies the size of oblique strokes
drawn instead of arrowheads for lin-
ear, radius, and diameter dimension-
ing.

• 0 = Draws arrowheads.
• >0 = Draws oblique strokes in-
stead of arrowheads. The size
of the oblique strokes is deter-
mined by this value multiplied
by the DIMSCALE value

continues on next page

660 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Table 6 – continued from previous page
DIMVAR Code Description
DIMTVP 145 Controls the vertical position of di-

mension text above or below the di-
mension line. The DIMTVP value is
used when DIMTAD = 0. The mag-
nitude of the vertical offset of text
is the product of the text height and
DIMTVP. Setting DIMTVP to 1.0 is
equivalent to setting DIMTAD = 1.
The dimension line splits to accom-
modate the text only if the absolute
value of DIMTVP is less than 0.7.

DIMTXT 140 Specifies the height of dimension
text, unless the current text style has
a fixed height.

DIMZIN 78 Controls the suppression of zeros in
the primary unit value. Values 0-3 af-
fect feet-and-inch dimensions only:

• 0 = Suppresses zero feet and
precisely zero inches

• 1 = Includes zero feet and pre-
cisely zero inches

• 2 = Includes zero feet and sup-
presses zero inches

• 3 = Includes zero inches and
suppresses zero feet

• 4 (Bit 3) = Suppresses lead-
ing zeros in decimal dimen-
sions (for example, 0.5000 be-
comes .5000)

• 8 (Bit 4) = Suppresses trail-
ing zeros in decimal dimen-
sions (for example, 12.5000
becomes 12.5)

• 12 (Bit 3+4) = Suppresses both
leading and trailing zeros (for
example, 0.5000 becomes .5)

Table Structure DXF R2000+

0 <<< start of table
TABLE
2 <<< set table type
DIMSTYLE
5 <<< DIMSTYLE table handle
5F
330 <<< owner tag, tables has no owner
0
100 <<< subclass marker
AcDbSymbolTable

(continues on next page)

9.8. Reference 661

ezdxf Documentation, Release 1.3.2

(continued from previous page)
70 <<< count of dimension styles defined in this table, AutoCAD ignores this␣
↪→value
9
0 <<< 1. DIMSTYLE table entry
DIMSTYLE

<<< DIMSTYLE data tags
0 <<< 2. DIMSTYLE table entry
DIMSTYLE

<<< DIMSTYLE data tags and so on
0 <<< end of DIMSTYLE table
ENDTAB

Additional DIMSTYLE Variables DXF R13/14

Source: CADDManager Blog

662 Chapter 9. Contents

http://www.caddmanager.com/CMB/2009/09/cad-standards-autocad-dimension-variables/

ezdxf Documentation, Release 1.3.2

DIMVAR code Description
DIMADEC 179 Controls the number of precision

places displayed in angular dimen-
sions.

DIMALTTD 274 Sets the number of decimal places for
the tolerance values in the alternate
units of a dimension.

DIMALTTZ 286 Controls suppression of zeros in tol-
erance values.

DIMALTU 273 Sets the units format for alternate
units of all dimension substyles ex-
cept Angular.

DIMALTZ 285 Controls the suppression of zeros for
alternate unit dimension values. DI-
MALTZ values 0-3 affect feet-and-
inch dimensions only.

DIMAUNIT 275 Sets the units format for angular di-
mensions.

• 0 = Decimal degrees
• 1 = Degrees/minutes/seconds
• 2 = Grad
• 3 = Radians

DIMBLK_HANDLE 342 defines DIMBLK as handle to the
BLOCK RECORD entry

DIMBLK1_HANDLE 343 defines DIMBLK1 as handle to the
BLOCK RECORD entry

DIMBLK2_HANDLE 344 defines DIMBLK2 as handle to the
BLOCK RECORD entry

DIMDEC 271 Sets the number of decimal places
displayed for the primary units of a
dimension. The precision is based on
the units or angle format you have se-
lected.

DIMDSEP 278 Specifies a single-character decimal
separator to use when creating di-
mensions whose unit format is deci-
mal. When prompted, enter a single
character at the Command prompt.
If dimension units is set to Decimal,
the DIMDSEP character is used in-
stead of the default decimal point. If
DIMDSEP is set to NULL (default
value, reset by entering a period), the
decimal point is used as the dimen-
sion separator.

DIMJUST 280 Controls the horizontal positioning of
dimension text.

• 0 = Positions the text above
the dimension line and center-
justifies it between the exten-
sion lines

• 1 = Positions the text next to
the first extension line

• 2 = Positions the text next to
the second extension line

• 3 = Positions the text above and
aligned with the first extension
line

• 4 = =Positions the text above
and aligned with the second
extension line

DIMSD1 281 Controls suppression of the first di-
mension line and arrowhead. When
turned on, suppresses the display of
the dimension line and arrowhead be-
tween the first extension line and the
text.

• 0 = First dimension line is not
suppressed

• 1 = First dimension line is sup-
pressed

DIMSD2 282 Controls suppression of the second
dimension line and arrowhead. When
turned on, suppresses the display of
the dimension line and arrowhead be-
tween the second extension line and
the text.

• 0 = Second dimension line is
not suppressed

• 1 = Second dimension line is
suppressed

DIMTDEC 272 Sets the number of decimal places
to display in tolerance values for the
primary units in a dimension. This
system variable has no effect unless
DIMTOL is set to On. The default
for DIMTOL is Off.

DIMTOLJ 283 Sets the vertical justification for tol-
erance values relative to the nominal
dimension text. This system variable
has no effect unless DIMTOL is set
to On. The default for DIMTOL is
Off.

• 0 = Bottom
• 1 = Middle
• 2 = Top

DIMTXSTY_HANDLE 340 Specifies the text style of the dimen-
sion as handle to STYLE table entry

DIMTZIN 284 Controls the suppression of zeros in
tolerance values.
Values 0-3 affect feet-and-inch di-
mensions only.

• 0 = Suppresses zero feet and
precisely zero inches

• 1 = Includes zero feet and pre-
cisely zero inches

• 2 = Includes zero feet and sup-
presses zero inches

• 3 = Includes zero inches and
suppresses zero feet

• 4 = Suppresses leading zeros in
decimal dimensions (for exam-
ple, 0.5000 becomes .5000)

• 8 = Suppresses trailing zeros in
decimal dimensions (for exam-
ple, 12.5000 becomes 12.5)

• 12 = Suppresses both leading
and trailing zeros (for example,
0.5000 becomes .5)

DIMUPT 288 Controls options for user-positioned
text.

• 0 = Cursor controls only the di-
mension line location

• 1 = Cursor controls both the
text position and the dimension
line location

9.8. Reference 663

ezdxf Documentation, Release 1.3.2

Additional DIMSTYLE Variables DXF R2000

Source: CADDManager Blog

664 Chapter 9. Contents

http://www.caddmanager.com/CMB/2009/09/cad-standards-autocad-dimension-variables/

ezdxf Documentation, Release 1.3.2

DIMVAR Code Description
DIMALTRND 148 Rounds off the alternate dimension

units.
DIMATFIT 289 Determines how dimension text and

arrows are arranged when space is not
sufficient to place both within the ex-
tension lines.

• 0 = Places both text and arrows
outside extension lines

• 1 = Moves arrows first, then
text

• 2 = Moves text first, then ar-
rows

• 3 = Moves either text or ar-
rows, whichever fits best

A leader is added to moved dimen-
sion text when DIMTMOVE is set to
1.

DIMAZIN 79 Suppresses zeros for angular dimen-
sions.

• 0 = Displays all leading and
trailing zeros

• 1 = Suppresses leading zeros in
decimal dimensions (for exam-
ple, 0.5000 becomes .5000)

• 2 = Suppresses trailing zeros in
decimal dimensions (for exam-
ple, 12.5000 becomes 12.5)

• 3 = Suppresses leading and
trailing zeros (for example,
0.5000 becomes .5)

DIMFRAC 276 Sets the fraction format when DIM-
LUNIT is set to 4 (Architectural) or
5 (Fractional).

• 0 = Horizontal stacking
• 1 = Diagonal stacking
• 2 = Not stacked (for example,
1/2)

DIMLDRBLK_HANDLE 341 Specifies the arrow type for leaders.
Handle to BLOCK RECORD

DIMLUNIT 277 Sets units for all dimension types ex-
cept Angular.

• 1 = Scientific
• 2 = Decimal
• 3 = Engineering
• 4 = Architectural (always dis-
played stacked)

• 5 = Fractional (always dis-
played stacked)

• 6 = Microsoft Windows Desk-
top (decimal format using
Control Panel settings for
decimal separator and number
grouping symbols)

DIMLWD 371 Assigns lineweight to dimension
lines.

• -3 = Default (the LWDE-
FAULT value)

• -2 = BYBLOCK
• -1 = BYLAYER

DIMLWE 372 Assigns lineweight to extension lines.
• -3 = Default (the LWDE-
FAULT value)

• -2 = BYBLOCK
• -1 = BYLAYER

DIMTMOVE 279 Sets dimension text movement rules.
• 0 = Moves the dimension line
with dimension text

• 1 = Adds a leader when dimen-
sion text is moved

• 2 = Allows text to be moved
freely without a leader

9.8. Reference 665

ezdxf Documentation, Release 1.3.2

Text Location

This image shows the default text locations created by BricsCAD for dimension variables dimtad and dimjust:

Unofficial DIMSTYLE Variables for DXF R2007 and later

The following DIMVARS are not documented in the DXF Reference by Autodesk.

DIMVAR Code Description
DIMTFILL 69 Text fill 0=off; 1=background color; 2=custom color (see DIMTFILLCLR)
DIMTFILL-
CLR

70 Text fill custom color as color index

DIMFXLON 290 Extension line has fixed length if set to 1
DIMFXL 49 Length of extension line below dimension line if fixed (DIMFXLON is 1), DIMEXE defines

the the length above the dimension line
DIMJOGANG 50 Angle of oblique dimension line segment in jogged radius dimension
DIML-
TYPE_HANDLE

345 Specifies the LINETYPE of the dimension line. Handle to LTYPE table entry

DIML-
TEX1_HANDLE

346 Specifies the LINETYPE of the extension line 1. Handle to LTYPE table entry

DIML-
TEX2_HANDLE

347 Specifies the LINETYPE of the extension line 2. Handle to LTYPE table entry

666 Chapter 9. Contents

http://www.bricsys.com
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 1.3.2

Extended Settings as Special XDATA Groups

Prior to DXF R2007, some extended settings for the dimension and the extension lines are stored in the XDATA section
by following entries, this is not documented by Autodesk:

1001
ACAD_DSTYLE_DIM_LINETYPE <<< linetype for dimension line
1070
380 <<< group code, which differs from R2007 DIMDLTYPE
1005
FFFF <<< handle to LTYPE entry
1001
ACAD_DSTYLE_DIM_EXT1_LINETYPE <<< linetype for extension line 1
1070
381 <<< group code, which differs from R2007 DIMLTEX1
1005
FFFF <<< handle to LTYPE entry
1001
ACAD_DSTYLE_DIM_EXT2_LINETYPE <<< linetype for extension line 1
1070
382 <<< group code, which differs from R2007 DIMLTEX2
1005
FFFF <<< handle to LTYPE entry
1001
ACAD_DSTYLE_DIMEXT_ENABLED <<< extension line fixed
1070
383 <<< group code, which differs from R2007 DIMEXFIX
1070
1 <<< fixed if 1 else 0
1001
ACAD_DSTYLE_DIMEXT_LENGTH <<< extension line fixed length
1070
378 <<< group code, which differs from R2007 DIMEXLEN
1040
1.33 <<< length of extension line below dimension line

This XDATA groups requires also an appropriate APPID entry in the APPID table. This feature is not supported by
ezdxf.

LAYER Table

TODO
See also:

• DXF Reference: TABLES Section
• DXF Reference: LAYER Table
• Layer class

9.8. Reference 667

http://www.autodesk.com
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D94802B0-8BE8-4AC9-8054-17197688AFDB

ezdxf Documentation, Release 1.3.2

Table Structure DXF R2000+

0 <<< start of table
TABLE
2 <<< name of table "LAYER"
LAYER
5 <<< handle of the TABLE
2
330 <<< owner tag is always "0"
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of layers defined in this table, AutoCAD ignores this value
5
0 <<< 1. LAYER table entry
LAYER
... <<< LAYER entity tags
0 <<< 2. LAYER table entry
LAYER
... <<< LAYER entity tags
0 <<< end of TABLE
ENDTAB

Layer Entity Tags DXF R2000+

There are some quirks:
• the frozen/thawed state is stored in flags (group code 70)
• the locked/unlocked state is stored in flags (group code 70)
• the off state is stored as negative color value (group code 6)
• the layer description is stored in the XDATA section
• the transparency value is stored in the XDATA section

0 <<< LAYER table entry
LAYER
5 <<< handle of LAYER
10
330 <<< owner handle, handle of LAYER table
2
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLayerTableRecord
2 <<< layer name
0 <<< layer "0"
70 <<< flags
0
62 <<< color
7 <<< a negative value switches the layer off
420 <<< optional true color value
0
6 <<< linetype
Continuous

(continues on next page)

668 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
290 <<< optional plot flag
1
370 <<< lineweight
-3
390 <<< handle to plot style
F
347 <<< material handle
47
348 <<< unknown1
0
1001 <<< XDATA section, APPID
AcAecLayerStandard
1000 <<< unknown first value, here an empty string

1000 <<< layer description
This layer has a description
1001 <<< APPID
AcCmTransparency
1071 <<< layer transparency value
0

Layer Viewport Overrides

Some layer attributes can be overridden individually for any VIEWPORT entity. This overrides are stored as extension
dictionary entries of the LAYER entity pointing to XRECORD entities in the objects section:

0
LAYER
5
9F
102 <<< APP data, extension dictionary
{ACAD_XDICTIONARY
360 <<< handle to the xdict in the objects section
B3
102
}
330
2
100
AcDbSymbolTableRecord
100
AcDbLayerTableRecord
2
LayerA
...

The extension DICTIONARY entity:

0 <<< entity type
DICTIONARY
5 <<< handle
B3
330 <<< owner handle
9F <<< the layer owns this dictionary
100 <<< subclass marker

(continues on next page)

9.8. Reference 669

ezdxf Documentation, Release 1.3.2

(continued from previous page)
AcDbDictionary
280 <<< hard owned flag
1
281 <<< cloning type
1 <<< keep existing
3 <<< transparency override
ADSK_XREC_LAYER_ALPHA_OVR
360 <<< handle to XRECORD
E5
3 <<< color override
ADSK_XREC_LAYER_COLOR_OVR
360 <<< handle to XRECORD
B4
3 <<< linetype override
ADSK_XREC_LAYER_LINETYPE_OVR
360 <<< handle to XRECORD
DD
3 <<< lineweight override
ADSK_XREC_LAYER_LINEWT_OVR
360 <<< handle to XRECORD
E2

Transparency override XRECORD:

0 <<< entity type
XRECORD
5 <<< handle
E5
102 <<< reactors app data
{ACAD_REACTORS
330
B3 <<< extension dictionary
102
}
330 <<< owner tag
B3 <<< extension dictionary
100 <<< subclass marker
AcDbXrecord
280 <<< cloning flag
1 <<< keep existing
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_ALPHA_OVERRIDE
335 <<< handle to VIEWPORT
AC
440 <<< transparency override
33554661
102
}

Color override XRECORD:

0
XRECORD
... <<< like transparency XRECORD
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_COLOR_OVERRIDE
335 <<< handle to VIEWPORT

(continues on next page)

670 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
AF
420 <<< color override
-1023409925 <<< raw color value
102
}

Linetype override XRECORD:

0
XRECORD
... <<< like transparency XRECORD
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_LINETYPE_OVERRIDE
335 <<< handle to VIEWPORT
AC
343 <<< linetype override
DC <<< handle to LINETYPE table entry
102
}

Lineweight override XRECORD:

0
XRECORD
... <<< like transparency XRECORD
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_LINEWT_OVERRIDE
335 <<< handle to VIEWPORT
AC
91 <<< lineweight override
13 <<< lineweight value
102
}

Name References

LAYER table entries are referenced by name:
• all graphical DXF entities
• VIEWPORT entity, frozen layers
• LAYER_FILTER
• LAYER_INDEX

9.8. Reference 671

ezdxf Documentation, Release 1.3.2

LTYPE Table

The LTYPE table stores all line type definitions of a DXF drawing. Every line type used in the drawing has to have a
table entry, or the DXF drawing is invalid for AutoCAD.
DXF R12 supports just simple line types, DXF R2000+ supports also complex line types with text or shapes included.
You have access to the line types table by the attribute Drawing.linetypes. The line type table itself is not stored
in the entity database, but the table entries are stored in entity database, and can be accessed by its handle.
See also:

• DXF Reference: TABLES Section
• DXF Reference: LTYPE Table
• Linetype class

Table Structure DXF R12

0 <<< start of table
TABLE
2 <<< table type
LTYPE
70 <<< count of table entries, AutoCAD ignores this value
9
0 <<< 1. LTYPE table entry
LTYPE

<<< LTYPE data tags
0 <<< 2. LTYPE table entry
LTYPE

<<< LTYPE data tags and so on
0 <<< end of LTYPE table
ENDTAB

Table Structure DXF R2000+

0 <<< start of table
TABLE
2 <<< table type
LTYPE
5 <<< table handle
5F
330 <<< owner tag, tables have no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entiries, AutoCAD ignores this value
9
0 <<< 1. LTYPE table entry
LTYPE

<<< LTYPE data tags
0 <<< 2. LTYPE table entry
LTYPE

<<< LTYPE data tags and so on

(continues on next page)

672 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0 <<< end of LTYPE table
ENDTAB

Simple Line Type

ezdxf setup for line type “CENTER”:

dwg.linetypes.add("CENTER",
description="Center ____ _ ____ _ ____ _ ____ _ ____ _ ____",
pattern=[2.0, 1.25, -0.25, 0.25, -0.25],

)

Simple Line Type Tag Structure DXF R2000+

0 <<< line type table entry
LTYPE
5 <<< handle of line type
1B1
330 <<< owner handle, handle of LTYPE table
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2 <<< line type name
CENTER
70 <<< flags
0
3
Center ____ _ ____ _ ____ _ ____ _ ____ _ ____
72 <<< signature tag
65 <<< ascii code for "A"
73 <<< count of pattern groups starting with a code 49 tag
4 <<< 4 pattern groups
40 <<< overall pattern length in drawing units
2.0
49 <<< 1. pattern group
1.25 <<< >0 line, <0 gap, =0 point
74 <<< type marker
0 <<< 0 for line group
49 <<< 2. pattern group
-0.25
74
0
49 <<< 3. pattern group
0.25
74
0
49 <<< 4. pattern group
-0.25
74
0

9.8. Reference 673

ezdxf Documentation, Release 1.3.2

Complex Line Type TEXT

ezdxf setup for line type “GASLEITUNG”:

dwg.linetypes.add("GASLEITUNG",
description="Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--",
length=1,
pattern='A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25',

)

TEXT Tag Structure

0
LTYPE
5
614
330
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2
GASLEITUNG
70
0
3
Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--
72 <<< signature tag
65 <<< ascii code for "A"
73 <<< count of pattern groups starting with a code 49 tag
3 <<< 3 pattern groups
40 <<< overall pattern length in drawing units
1
49 <<< 1. pattern group
0.5 <<< >0 line, <0 gap, =0 point
74 <<< type marker
0 <<< 0 for line group
49 <<< 2. pattern group
-0.2
74 <<< type marker
2 <<< 2 for text group
75 <<< shape number in shape-file
0 <<< always 0 for text group
340 <<< handle to text style "STANDARD"
11
46 <<< scaling factor: "s" in pattern definition
0.1
50 <<< rotation angle: "r" and "u" in pattern definition
0.0
44 <<< shift x units: "x" in pattern definition = parallel to line direction
-0.1
45 <<< shift y units: "y" in pattern definition = normal to line direction
-0.05
9 <<< text

(continues on next page)

674 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
GAS
49 <<< 3. pattern group
-0.25
74
0

Complex Line Type SHAPE

ezdxf setup for line type ‘GRENZE2’:

dwg.linetypes.new('GRENZE2', dxfattribs={
'description': 'Grenze eckig ----[]-----[]----[]-----[]----[]--',
'length': 1.45,
'pattern': 'A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1',

})

SHAPE Tag Structure

0
LTYPE
5
615
330
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2
GRENZE2
70
0
3
Grenze eckig ----[]-----[]----[]-----[]----[]--
72 <<< signature tag
65 <<< ascii code for "A"
73 <<< count of pattern groups starting with a code 49 tag
4 <<< 4 pattern groups
40 <<< overall pattern length in drawing units
1.45
49 <<< 1. pattern group
0.25 <<< >0 line, <0 gap, =0 point
74 <<< type marker
0 <<< 0 for line group
49 <<< 2. pattern group
-0.1
74 <<< type marker
4 <<< 4 for shape group
75 <<< shape number in shape-file
132
340 <<< handle to shape-file entry "ltypeshp.shx"
616
46 <<< scaling factor: "s" in pattern definition

(continues on next page)

9.8. Reference 675

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0.1
50 <<< rotation angle: "r" and "u" in pattern definition
0.0
44 <<< shift x units: "x" in pattern definition = parallel to line direction
-0.1
45 <<< shift y units: "y" in pattern definition = normal to line direction
0.0
49 <<< 3. pattern group
-0.1
74
0
49 <<< 4. pattern group
1.0
74
0

Name References

LTYPE table entries are referenced by name:
• all graphical DXF entities
• LAYER table entry
• DIMSTYLE table entry
• DIMSTYLE override
• MLINESTYLE

STYLE Table

The STYLE table stores all text styles and shape-file definitions. The “STANDARD” entry must always exist.
Shape-files are also defined by a STYLE table entry, the bit 0 of the flags-tag is set to 1 and the name-tag is an empty
string, the only important data is the font-tag with group code 3 which stores the associated SHX font file.
See also:

• DXF Reference: TABLES Section
• DXF Reference: STYLE Table
• Textstyle class

Table Structure DXF R12

0 <<< start of table
TABLE
2 <<< table type
STYLE
70 <<< count of table entries, AutoCAD ignores this value
1
0 <<< first table entry
STYLE

(continues on next page)

676 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EF68AF7C-13EF-45A1-8175-ED6CE66C8FC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EF68AF7C-13EF-45A1-8175-ED6CE66C8FC9

ezdxf Documentation, Release 1.3.2

(continued from previous page)
2 <<< text style name
Standard
70 <<< flags, see `STYLE`_ reference
0
40 <<< fixed text height; 0 if not fixed
0.0
41 <<< width factor
1.0
50 <<< oblique angle
0.0
71 <<< text generation flags; 2=backwards (mirror-x), 4=upside down (mirror-
↪→y)
0
42 <<< last height used
2.5
3 <<< font file name; SHX or TTF file name
txt
4 <<< big font name; SHX file with unicode symbols; empty if none

0 <<< next text style
STYLE
...
0 <<< end of STYLE table
ENDTAB

Table Structure DXF R2000+

0 <<< start of table
TABLE
2 <<< table type
STYLE
5 <<< table handle
5
330 <<< owner tag, tables have no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries, AutoCAD ignores this value
1
0 <<< first table entry
STYLE
5 <<< handle of text style
29
330 <<< owner handle, handle of STYLE table
5
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbTextStyleTableRecord
2 <<< text style name
Standard
70 <<< flags, see `STYLE`_ reference
0
40 <<< fixed text height; 0 if not fixed

(continues on next page)

9.8. Reference 677

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0.0
41 <<< width factor
1.0
50 <<< oblique angle
0.0
71 <<< text generation flags; 2=backwards (mirror-x), 4=upside down (mirror-
↪→y)
0
42 <<< last height used
2.5
3 <<< font file name; SHX or TTF file name
txt
4 <<< big font name; SHX file with unicode symbols; empty if none

0 <<< next text style
STYLE
...
0 <<< end of STYLE table
ENDTAB

Extended Font Data

Additional information of the font-family, italic and bold style flags are stored in the XDATA section of the STYLE entity
by the APPID “ACAD”:

0
STYLE
...
3
Arial.ttf
4

1001 <<< start of the XDATA section
ACAD <<< APPID
1000 <<< font family name
Arial
1071 <<< style flags, see table below
50331682

Flag dec hex
ITALIC 16777216 0x1000000
BOLD 33554432 0x2000000

678 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Name References

STYLE table entries are referenced by name:
• TEXT entity
• MTEXT entity
• DIMSTYLE table entry
• DIMSTYLE override

UCS Table

TODO

VIEW Table

The VIEW entry stores a named view of the model or a paperspace layout. This stored views makes parts of the drawing
or some view points of the model in a CAD applications more accessible. This views have no influence to the drawing
content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the convenience of
CAD application users.
Using ezdxf you have access to the views table by the attribute Drawing.views. The views table itself is not stored
in the entity database, but the table entries are stored in entity database, and can be accessed by its handle.

DXF R12

0
VIEW
2 <<< name of view
VIEWNAME
70 <<< flags bit-coded: 1st bit -> (0/1 = modelspace/paperspace)
0 <<< modelspace
40 <<< view width in Display Coordinate System (DCS)
20.01
10 <<< view center point in DCS
40.36 <<< x value
20 <<< group code for y value
15.86 <<< y value
41 <<< view height in DCS
17.91
11 <<< view direction from target point, 3D vector
0.0 <<< x value
21 <<< group code for y value
0.0 <<< y value
31 <<< group code for z value
1.0 <<< z value
12 <<< target point in WCS
0.0 <<< x value
22 <<< group code for y value
0.0 <<< y value
32 <<< group code for z value
0.0 <<< z value

(continues on next page)

9.8. Reference 679

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C

ezdxf Documentation, Release 1.3.2

(continued from previous page)
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping plane, offset from target
0.0
44 <<< back clipping plane, offset from target
0.0
50 <<< twist angle
0.0
71 <<< view mode
0

See also:
Coordinate Systems

DXF R2000+

Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers.

0 <<< adding the VIEW table head, just for information
TABLE
2 <<< table name
VIEW
5 <<< handle of table, see owner tag of VIEW table entry
37C
330 <<< owner tag of table, always #0
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< VIEW table (max.) count, not reliable (ignore)
9
0 <<< first VIEW table entry
VIEW
5 <<< handle
3EA
330 <<< owner, the VIEW table is the owner of the VIEW entry
37C <<< handle of the VIEW table
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbViewTableRecord
2 <<< view name, from here all the same as DXF R12
VIEWNAME
70
0
40
20.01
10
40.36
20
15.86
41
17.91
11
0.0
21

(continues on next page)

680 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0.0
31
1.0
12
0.0
22
0.0
32
0.0
42
50.0
43
0.0
44
0.0
50
0.0
71
0
281 <<< render mode 0-6 (... too much options)
0 <<< 0= 2D optimized (classic 2D)
72 <<< UCS associated (0/1 = no/yes)
0 <<< 0 = no

DXF R2000+ supports additional features in the VIEW entry, see the VIEW table reference provided by Autodesk.

VPORT Configuration Table

The VPORT table stores the modelspace viewport configurations. A viewport configuration is a tiled view of multiple
viewports or just one viewport.

9.8. Reference 681

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8CE7CC87-27BD-4490-89DA-C21F516415A9

ezdxf Documentation, Release 1.3.2

In contrast to other tables the VPORT table can have multiple entries with the same name, because all VPORT entries
of a multi-viewport configuration are having the same name - the viewport configuration name. The name of the actual
displayed viewport configuration is '*ACTIVE', as always table entry names are case insensitive ('*ACTIVE' ==
'*Active').
The available display area in AutoCAD has normalized coordinates, the lower-left corner is (0, 0) and the upper-right
corner is (1, 1) regardless of the true aspect ratio and available display area in pixels. A single viewport configuration has
one VPORT entry '*ACTIVE' with the lower-left corner (0, 0) and the upper-right corner (1, 1).
The following statements refer to a 2D plan view: the view-target-point defines the origin of the DCS (Display Coordinate
system), the view-direction vector defines the z-axis of the DCS, the view-center-point (in DCS) defines the point in
modelspace translated to the center point of the viewport, the view height and the aspect-ratio defines how much of the
modelspace is displayed. AutoCAD tries to fit the modelspace area into the available viewport space e.g. view height is
15 units and aspect-ratio is 2.0 the modelspace to display is 30 units wide and 15 units high, if the viewport has an aspect
ratio of 1.0, AutoCAD displays 30x30 units of the modelspace in the viewport. If the modelspace aspect-ratio is 1.0 the
modelspace to display is 15x15 units and fits properly into the viewport area.
But tests show that the translation of the view-center-point to the middle of the viewport not always work as I expected.
(still digging…)

Note: All floating point values are rounded to 2 decimal places for better readability.

682 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DXF R12

Multi-viewport configuration with three viewports.

0 <<< table start
TABLE
2 <<< table type
VPORT
70 <<< VPORT table (max.) count, not reliable (ignore)
3
0 <<< first VPORT entry
VPORT
2 <<< VPORT (configuration) name
*ACTIVE
70 <<< standard flags, bit-coded
0
10 <<< lower-left corner of viewport
0.45 <<< x value, virtual coordinates in range [0 - 1]
20 <<< group code for y value
0.0 <<< y value, virtual coordinates in range [0 - 1]
11 <<< upper-right corner of viewport
1.0 <<< x value, virtual coordinates in range [0 - 1]
21 <<< group code for y value
1.0 <<< y value, virtual coordinates in range [0 - 1]
12 <<< view center point (in DCS), ???
13.71 <<< x value
22 <<< group code for y value
0.02 <<< y value
13 <<< snap base point (in DCS)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing X and Y
1.0 <<< x value
24 <<< group code for y value
1.0 <<< y value
15 <<< grid spacing X and Y
0.0 <<< x value
25 <<< group code for y value
0.0 <<< y value
16 <<< view direction from target point (in WCS), defines the z-axis of the DCS
1.0 <<< x value
26 <<< group code for y value
-1.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point (in WCS), defines the origin of the DCS
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
40 <<< view height
35.22
41 <<< viewport aspect ratio
0.99
42 <<< lens (focal) length

(continues on next page)

9.8. Reference 683

ezdxf Documentation, Release 1.3.2

(continued from previous page)
50.0 <<< 50mm
43 <<< front clipping planes, offsets from target point
0.0
44 <<< back clipping planes, offsets from target point
0.0
50 <<< snap rotation angle
0.0
51 <<< view twist angle
0.0
71 <<< view mode
0
72 <<< circle zoom percent
1000
73 <<< fast zoom setting
1
74 <<< UCSICON setting
3
75 <<< snap on/off
0
76 <<< grid on/off
0
77 <<< snap style
0
78 <<< snap isopair
0
0 <<< next VPORT entry
VPORT
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.5
11
0.45
21
1.0
12
8.21
22
9.41
...
...
0 <<< next VPORT entry
VPORT
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.0
11
0.45

(continues on next page)

684 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
21
0.5
12
2.01
22
-9.33
...
...
0
ENDTAB

DXF R2000+

Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers.

0 <<< table start
TABLE
2 <<< table type
VPORT
5 <<< table handle
151F
330 <<< owner, table has no owner - always #0
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< VPORT table (max.) count, not reliable (ignore)
3
0 <<< first VPORT entry
VPORT
5 <<< entry handle
158B
330 <<< owner, VPORT table is owner of VPORT entry
151F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbViewportTableRecord
2 <<< VPORT (configuration) name
*ACTIVE
70 <<< standard flags, bit-coded
0
10 <<< lower-left corner of viewport
0.45 <<< x value, virtual coordinates in range [0 - 1]
20 <<< group code for y value
0.0 <<< y value, virtual coordinates in range [0 - 1]
11 <<< upper-right corner of viewport
1.0 <<< x value, virtual coordinates in range [0 - 1]
21 <<< group code for y value
1.0 <<< y value, virtual coordinates in range [0 - 1]
12 <<< view center point (in DCS)
13.71 <<< x value
22 <<< group code for y value
0.38 <<< y value
13 <<< snap base point (in DCS)
0.0 <<< x value

(continues on next page)

9.8. Reference 685

ezdxf Documentation, Release 1.3.2

(continued from previous page)
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing X and Y
1.0 <<< x value
24 <<< group code for y value
1.0 <<< y value
15 <<< grid spacing X and Y
0.0 <<< x value
25 <<< group code for y value
0.0 <<< y value
16 <<< view direction from target point (in WCS)
1.0 <<< x value
26 <<< group code for y value
-1.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point (in WCS)
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
40 <<< view height
35.22
41 <<< viewport aspect ratio
0.99
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping planes, offsets from target point
0.0
44 <<< back clipping planes, offsets from target point
0.0
50 <<< snap rotation angle
0.0
51 <<< view twist angle
0.0
71 <<< view mode
0
72 <<< circle zoom percent
1000
73 <<< fast zoom setting
1
74 <<< UCSICON setting
3
75 <<< snap on/off
0
76 <<< grid on/off
0
77 <<< snap style
0
78 <<< snap isopair
0
281 <<< render mode 1-6 (... too many options)
0 <<< 0 = 2D optimized (classic 2D)
65 <<< Value of UCSVP for this viewport. (0 = UCS will not change when this␣
↪→viewport is activated)
1 <<< 1 = then viewport stores its own UCS which will become the current UCS␣

(continues on next page)

686 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
↪→whenever the viewport is activated.
110 <<< UCS origin (3D point)
0.0 <<< x value
120 <<< group code for y value
0.0 <<< y value
130 <<< group code for z value
0.0 <<< z value
111 <<< UCS X-axis (3D vector)
1.0 <<< x value
121 <<< group code for y value
0.0 <<< y value
131 <<< group code for z value
0.0 <<< z value
112 <<< UCS Y-axis (3D vector)
0.0 <<< x value
122 <<< group code for y value
1.0 <<< y value
132 <<< group code for z value
0.0 <<< z value
79 <<< Orthographic type of UCS 0-6 (... too many options)
0 <<< 0 = UCS is not orthographic
146 <<< elevation
0.0
1001 <<< extended data - undocumented
ACAD_NAV_VCDISPLAY
1070
3
0 <<< next VPORT entry
VPORT
5
158C
330
151F
100
AcDbSymbolTableRecord
100
AcDbViewportTableRecord
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.5
11
0.45
21
1.0
12
8.21
22
9.72
...
...
0 <<< next VPORT entry
VPORT

(continues on next page)

9.8. Reference 687

ezdxf Documentation, Release 1.3.2

(continued from previous page)
5
158D
330
151F
100
AcDbSymbolTableRecord
100
AcDbViewportTableRecord
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.0
11
0.45
21
0.5
12
2.01
22
-8.97
...
...
0
ENDTAB

The TABLES section of DXF R13 and later looks like this:

0
SECTION
2 <<< begin TABLES section
TABLES
0 <<< first TABLE
TABLE
2 <<< name of table "LTYPE"
LTYPE
5 <<< handle of the TABLE
8
330 <<< owner handle is always "0"
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries
4 <<< do not rely on this value!
0 <<< first table entry
LTYPE
...
0 <<< second table entry
LTYPE
...
0 <<< end of TABLE
ENDTAB
0 <<< next TABLE
TABLE

(continues on next page)

688 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
2 <<< name of table "LAYER"
LAYER
5 <<< handle of the TABLE
2
330 <<< owner handle is always "0"
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries
1
0 <<< first table entry
LAYER
...
0 <<< end of TABLE
ENDTAB
0 <<< end of SECTION
ENDSEC

The TABLES section of DXF R12 and prior is a bit simpler and does not contain the BLOCK_RECORD table. The
handles in DXF R12 and prior are optional and only present if the HEADER variable $HANDLING is 1.

0
SECTION
2 <<< begin TABLES section
TABLES
0 <<< first TABLE
TABLE
2 <<< name of table "LTYPE"
LTYPE
5 <<< optional handle of the TABLE
8
70 <<< count of table entries
4
0 <<< first table entry
LTYPE
...
0 <<< second table entry
LTYPE
...
0 <<< end of TABLE
ENDTAB
0 <<< next TABLE
TABLE
2 <<< name of table "LAYER"
LAYER
5 <<< optional handle of the TABLE
2
70 <<< count of table entries
1
0 <<< first table entry
LAYER
...
0 <<< end of TABLE
ENDTAB
0 <<< end of SECTION
ENDSEC

9.8. Reference 689

ezdxf Documentation, Release 1.3.2

BLOCKS Section

The BLOCKS section contains all BLOCK definitions, beside the normal reusable BLOCKS used by the INSERT entity,
all layouts, as there are the modelspace and all paperspace layouts, have at least a corresponding BLOCK definition in the
BLOCKS section. The name of the modelspace BLOCK is “*Model_Space” (DXF R12: “$MODEL_SPACE”) and the
name of the active paperspace BLOCK is “*Paper_Space” (DXF R12: “$PAPER_SPACE”), the entities of these two lay-
outs are stored in the ENTITIES section, the inactive paperspace layouts are named by the scheme “*Paper_Spacennnn”,
and the content of the inactive paperspace layouts are stored in their BLOCK definition in the BLOCKS section.
The content entities of blocks are stored between the BLOCK and the ENDBLK entity.
BLOCKS section structure:

0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
0 <<< start of 1. BLOCK definition
BLOCK
... <<< Block content
...
0 <<< end of 1. Block definition
ENDBLK
0 <<< start of 2. BLOCK definition
BLOCK
... <<< Block content
...
0 <<< end of 2. Block definition
ENDBLK
0 <<< end of BLOCKS section
ENDSEC

See also:
Block Management Structures Layout Management Structures

ENTITIES Section

TODO

OBJECTS Section

Objects in the OBJECTS section are organized in a hierarchical tree order, starting with the named objects dictionary as
the first entity in the OBJECTS section (Drawing.rootdict).
Not all entities in the OBJECTS section are included in this tree, Extension Dictionary and XRECORD data of graphical
entities are also stored in the OBJECTS section.

690 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DXF Tables

DXF Entities

DIMENSION Internals

See also:
• DXF Reference: DIMENSION
• DXFInternals: DIMSTYLE Table

MESH Internals

The MESH entity is the compact version of the PolyFaceMesh implemented by the Polyline entity . The entity stores
the vertices, edges and faces in a single entity and was introduced in DXF version R13/R14. For more information about
the top level stuff go to the Mesh class.
See also:

• DXF Reference: MESH
• ezdxf.entities.Mesh class

The following DXF code represents this cube with subdivision level of 0:

9.8. Reference 691

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-239A1BDD-7459-4BB9-8DD7-08EC79BF1EB0
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-4B9ADA67-87C8-4673-A579-6E4C76FF7025

ezdxf Documentation, Release 1.3.2

0
MESH <<< DXF type
5 <<< entity handle
2F
330 <<< block record handle of owner layout
17
100
AcDbEntity
8
0 <<< layer
62
6 <<< color
100

(continues on next page)

692 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
AcDbSubDMesh <<< subclass marker
71
2 <<< version
72
1 <<< blend crease, 1 is "on", 0 is "off"
91
0 <<< subdivision level is 0
92
8 <<< vertex count, 8 cube corners
10 <<< 1. vertex, x-axis
0.0
20 <<< y-axis
0.0
30 <<< z-axis
0.0
10 <<< 2. vertex
1.0
20
0.0
30
0.0
10 <<< 3. vertex
1.0
20
1.0
30
0.0
10 <<< 4. vertex
0.0
20
1.0
30
0.0
10 <<< 5. vertex
0.0
20
0.0
30
1.0
10 <<< 6. vertex
1.0
20
0.0
30
1.0
10 <<< 7. vertex
1.0
20
1.0
30
1.0
10 <<< 8. vertex
0.0
20
1.0
30
1.0

(continues on next page)

9.8. Reference 693

ezdxf Documentation, Release 1.3.2

(continued from previous page)
93 <<< size of face list
30 <<< size = count of group code 90 tags = 6 x 5
90 <<< vertex count of face 1
4 <<< MESH supports ngons, count = 3, 4, 5, 6 ...
90
0 <<< face 1, index of 1. vertex
90
3 <<< face 1, index of 2. vertex
90
2 <<< face 1, index of 3. vertex
90
1 <<< face 1, index of 4. vertex
90
4 <<< vertex count of face 2
90
4 <<< face 2, index of 1. vertex
90
5 <<< face 2, index of 2. vertex
90
6 <<< face 2, index of 3. vertex
90
7 <<< face 2, index of 4. vertex
90
4 <<< vertex count of face 3
90
0 <<< face 3, index of 1. vertex
90
1 <<< face 3, index of 2. vertex
90
5 <<< face 3, index of 3. vertex
90
4 <<< face 3, index of 4. vertex
90
4 <<< vertex count of face 4
90
1 <<< face 4, index of 1. vertex
90
2 <<< face 4, index of 2. vertex
90
6 <<< face 4, index of 3. vertex
90
5 <<< face 4, index of 4. vertex
90
4 <<< vertex count of face 5
90
3 <<< face 5, index of 1. vertex
90
7 <<< face 5, index of 2. vertex
90
6 <<< face 5, index of 3. vertex
90
2 <<< face 5, index of 4. vertex
90
4 <<< vertex count of face 6
90
0 <<< face 6, index of 1. vertex
90

(continues on next page)

694 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
4 <<< face 6, index of 2. vertex
90
7 <<< face 6, index of 3. vertex
90
3 <<< face 6, index of 4. vertex
94 <<< edge count, each edge has exact two group code 90 tags
4 <<< the real edge count not the group code 90 tags!
90
0 <<< edge 1, vertex 1
90
1 <<< edge 1, vertex 1
90
1 <<< edge 2, vertex 1
90
2 <<< edge 2, vertex 2
90
2 <<< edge 3, vertex 1
90
3 <<< edge 3, vertex 2
90
3 <<< edge 4, vertex 1
90
0 <<< edge 4, vertex 2
95 <<< edge crease count, has to match edge count!
4
140
3.0 <<< crease value for edge 1
140
3.0 <<< crease value for edge 2
140
3.0 <<< crease value for edge 3
140
3.0 <<< crease value for edge 4
90 <<< property overwrite???
0

The edge and crease data have only a meaning if subdivision of the geometry will be applied! A crease value equal to
the subdivision level prevents subdividing for the edge completely, a value between 0.0 and the subdivision level applies
subdivision partially.
The cube with subdivision level of 3 and crease values of 3.0:

9.8. Reference 695

ezdxf Documentation, Release 1.3.2

Front view for better details:

696 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The cube with subdivision levels of 3 and crease values of 2.0:

9.8. Reference 697

ezdxf Documentation, Release 1.3.2

The cube with subdivision level of 3 and crease values of 1.0:

698 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The property overriding protocol is not documented in the DXF reference and currently I have no access to a CAD
application which can created property overriding.

MULTILEADER Internals

The MULTILEADER leader is a very complex entity and has also some weird and unique properties.
1. MULTILEADER has the alias name MLEADER which is accepted by any reliable CAD application, but all of

them create the entity as MULTILEADER
2. uses raw-color values to define colors
3. creates a complex context data structures beyond simple tags inside the subclass AcDbMLeader

See also:
• ezdxf.entities.MultiLeader

• ezdxf.entities.MLeaderStyle

9.8. Reference 699

ezdxf Documentation, Release 1.3.2

• ezdxf.render.MultiLeaderBuilder

• Tutorial for MultiLeader

• DXF Reference: MLEADER
Example for ezdxf.entities.MLeaderContext created by BricsCAD:

300 <str> CONTEXT_DATA{
40 <float> 1.0 <<< content scale
10 <point> (x, y, z) <<< content base point
41 <float> 4.0 <<< text height
140 <float> 4.0 <<< arrowhead size
145 <float> 2.0 <<< landing gap size
174 <int> 1 <<< doc missing
175 <int> 1 <<< doc missing
176 <int> 0 <<< doc missing
177 <int> 0 <<< doc missing
290 <int> 1 <<< has_mtext_content
<<< START MText Content tags:
304 <str> MTEXT content string
11 <point> (0.0, 0.0, 1.0) <<< extrusion vector
340 <hex> #A0 <<< text style as handle
12 <point> (x, y, z) <<< text location
13 <point> (1.0, 0.0, 0.0) <<< text direction
42 <float> 0.0 <<< text rotation
43 <float> 0.0 <<< text width
44 <float> 0.0 <<< text height
45 <float> 1.0 <<< text line space factor
170 <int> 1 <<< text line space style
90 <int> -1056964608 <<< text color (raw value)
171 <int> 1 <<< text attachment
172 <int> 1 <<< text flow direction
91 <int> -939524096 <<< text background color (raw value)
141 <float> 1.5 <<< text background scale factor
92 <int> 0 <<< text background transparency
291 <int> 0 <<< has_text_bg_color
292 <int> 0 <<< has_text_bg_fill
173 <int> 0 <<< text column type
293 <int> 0 <<< use text auto height
142 <float> 0.0 <<< text column width
143 <float> 0.0 <<< text column gutter width
294 <int> 0 <<< text column flow reversed
144 <float> missing <<< text column height (optional?)
295 <int> 0 <<< text use word break
<<< END MText Content tags:
296 <int> 0 <<< has_block_content
<<< START Block content tags
<<< END Block content tags
110 <point> (0.0, 0.0, 0.0) <<< MLEADER plane origin point
111 <point> (1.0, 0.0, 0.0) <<< MLEADER plane x-axis direction
112 <point> (0.0, 1.0, 0.0) <<< MLEADER plane y-axis direction
297 <int> 0 <<< MLEADER normal reversed
302 <str> LEADER{
...
303 <str> }
302 <str> LEADER{
...
303 <str> }

(continues on next page)

700 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72D20B8C-0F5E-4993-BEB7-0FCF94F32BE0

ezdxf Documentation, Release 1.3.2

(continued from previous page)
272 <int> 9 <<< doc missing
273 <int> 9 <<< doc missing
301 <str> }
<<< BricsCAD example for block content:
300 <str> CONTEXT_DATA{
40 <float> 1.0
10 <point> (x, y, z)
41 <float> 4.0
140 <float> 4.0
145 <float> 2.0
174 <int> 1
175 <int> 1
176 <int> 0
177 <int> 0
290 <int> 0 <<< has_mtext_content
296 <int> 1 <<< has_block_content
<<< START Block content tags
341 <hex> #94 <<< dxf.block_record_handle
14 <point> (0.0, 0.0, 1.0) <<< Block extrusion vector
15 <point> (x, y, z) <<< Block location
16 <point> (1.0, 1.0, 1.0) <<< Block scale vector, the x-, y- and z-axis scaling␣
↪→factors
46 <float> 0.0 <<< Block rotation in radians!
93 <int> -1056964608 <<< Block color (raw value)
47 <float> 1.0 <<< start of transformation matrix (16x47)
47 <float> 0.0
47 <float> 0.0
47 <float> 18.427396871473
47 <float> 0.0
47 <float> 1.0
47 <float> 0.0
47 <float> 0.702618780008
47 <float> 0.0
47 <float> 0.0
47 <float> 1.0
47 <float> 0.0
47 <float> 0.0
47 <float> 0.0
47 <float> 0.0
47 <float> 1.0 <<< end of transformation matrix
<<< END Block content tags
110 <point> (0.0, 0.0, 0.0) <<< MLEADER plane origin point
111 <point> (1.0, 0.0, 0.0) <<< MLEADER plane x-axis direction
112 <point> (0.0, 1.0, 0.0) <<< MLEADER plane y-axis direction
297 <int> 0 <<< MLEADER normal reversed
302 <str> LEADER{
...
303 <str> }
272 <int> 9
273 <int> 9
301 <str> }
<<< Attribute content and other redundant block data is stored in the AcDbMLeader
<<< subclass:
100 <ctrl> AcDbMLeader
270 <int> 2 <<< dxf.version
300 <str> CONTEXT_DATA{ <<< start context data
...

(continues on next page)

9.8. Reference 701

ezdxf Documentation, Release 1.3.2

(continued from previous page)
301 <str> } <<< end context data
340 <hex> #6D <<< dxf.style_handle
90 <int> 6816768 <<< dxf.property_override_flags
... <<< property overrides
292 <int> 0 <<< dxf.has_frame_text
<<< mostly redundant block data:
344 <hex> #94 <<< dxf.block_record_handle
93 <int> -1056964608 <<< dxf.block_color (raw value)
10 <point> (1.0, 1.0, 1.0) <<< dxf.block_scale_vector
43 <float> 0.0 <<< dxf.block_rotation in radians!
176 <int> 0 <<< dxf.block_connection_type
293 <int> 0 <<< dxf.is_annotative
<<< REPEAT: (optional)
94 <int> <<< arrow head index?
345 <hex> <<< arrow head handle
<<< REPEAT: (optional)
330 <hex> #A3 <<< ATTDEF handle
177 <int> 1 <<< ATTDEF index
44 <float> 0.0 <<< ATTDEF width
302 <str> B <<< ATTDEF text (reused group code)
... common group codes 294, 178, 179, ...

MTEXT Internals

The MTEXT entity stores multiline text in a single entity and was introduced in DXF version R13/R14. For more
information about the top level stuff go to the MText class.
See also:

• DXF Reference: MTEXT
• ezdxf.entities.MText class

Orientation

The MTEXT entity does not establish an OCS. The entity has a text_direction attribute, which defines the local
x-axis, the extrusion attribute defines the normal vector and the y-axis = extrusion cross x-axis.
The MTEXT entity can have also a rotation attribute (in degrees), the x-axis attribute has higher priority than the
rotation attribute, but it is not clear how to convert the rotation attribute into a text_direction vector, but
for most common cases, where only the rotation attribute is present, the extrusion is most likely the WCS z-axis
and the rotation is the direction in the xy-plane.

Text Content

The content text is divided across multiple tags of group code 3 and 1, the last line has the group code 1, each line can
have a maximum line length of 255 bytes, but BricsCAD (and AutoCAD?) store only 249 bytes in single line and one
byte is not always one char.

702 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-5E5DB93B-F8D3-4433-ADF7-E92E250D2BAB

ezdxf Documentation, Release 1.3.2

Inline Code Specials

The text formatting is done by inline codes, see the MText class.
Information gathered by implementing the MTextEditor and the MTextParser classes:

• caret encoded characters:
– “^I” tabulator
– “^J” (LF) is a valid line break like “\P”
– “^M” (CR) is ignored
– other characters render as empty square “▯”
– a space “ “ after the caret renders the caret glyph: “1^ 2” renders “1^2”

• special encoded characters:
– “%%c” and “%%C” renders “Ø” (alt-0216)
– “%%d” and “%%D” renders “°” (alt-0176)
– “%%p” and “%%P” renders “±” (alt-0177)

• Alignment command “\A”: argument “0”, “1” or “2” is expected
– the terminator symbol “;” is optional
– the arguments “3”, “4”, “5”, “6”, “7”, “8”, “9” and “-” default to 0
– other characters terminate the command and will be printed: “\AX”, renders “X”

• ACI color command “\C”: int argument is expected
– the terminator symbol “;” is optional
– a leading “-” or “+” terminates the command, “\C+5” renders “\C+5”
– arguments > 255, are ignored but consumed “\C1000” renders nothing, not even a “0”
– a trailing “;” after integers is always consumed, even for much to big values, “\C10000;” renders nothing

• RGB color command “\c”: int argument is expected
– the terminator symbol “;” is optional
– a leading “-” or “+” terminates the command, “\c+255” renders “\c+255”
– arguments >= 16777216 are masked by: value & 0xFFFFFF
– a trailing “;” after integers is always consumed, even for much to big values, “\c9999999999;” renders
nothing and switches the color to yellow (255, 227, 11)

• Height command “\H” and “\H…x”: float argument is expected
– the terminator symbol “;” is optional
– a leading “-” is valid, but negative values are ignored
– a leading “+” is valid
– a leading “.” is valid like “\H.5x” for height factor 0.5
– exponential format is valid like “\H1e2” for height factor 100 and “\H1e-2” for 0.01
– an invalid floating point value terminates the command, “\H1..5” renders “\H1..5”

• Other commands with floating point arguments like the height command:

9.8. Reference 703

ezdxf Documentation, Release 1.3.2

– Width commands “\W” and “\W…x”
– Character tracking commands “\T” and “\T…x”, negative values are used
– Slanting (oblique) command “\Q”

• Stacking command “\S”:
– build fractions: “numerator (upr)” + “stacking type char (t)” + “denominator (lwr)” + “;”
– divider chars: “^”, “/” or “#”
– a space “ “ after the divider char “^” is mandatory to avoid caret decoding: “\S1^ 2;”
– the terminator symbol “;” is mandatory to end the command, all chars beyond the “\S” until the next “;”
or the end of the string are part of the fraction

– backslash escape “\;” to render the terminator char
– a space “ “ after the divider chars “/” and “#” is rendered as space “ ” in front of the denominator
– the numerator and denominator can contain spaces
– backslashes “\” inside the stacking command are ignored (except “\;”) “\S\N^ \P” render “N” over “P”,
therefore property changes (color, text height, …) are not possible inside the stacking command

– grouping chars “{” and “}” render as simple curly braces
– caret encoded chars are decoded “^I”, “^J”, “^M”, but render as a simple space “ “ or as the replacement
char “▯” plus a space

– a divider char after the first divider char, renders as the char itself: “\S1/2/3” renders the horizontal
fraction “1” / “2/3”

• Font command “\f” and “\F”: export only “\f”, parse both, “\F” ignores some arguments
– the terminator symbol “;” is mandatory to end the command, all chars beyond the “\f” until the next “;”
or the end of the string are part of the command

– the command arguments are separated by the pipe char “|”
– arguments: “font family name” | “bold” | “italic” | “codepage” | “pitch”; example “\fArial|b0|i0|c0|p0;”
– only the “font family name” argument is required, fonts which are not available on the system are replaced
by the “TXT.SHX” shape font

– the “font family name” is the font name shown in font selection widgets in desktop applications
– “b1” to use the bold font style, any other second char is interpreted as “non bold”
– “i1” to use an italic font style, any other second char is interpreted as “non italic”
– “c???” change codepage, “c0” use the default codepage, because of the age of unicode no further inves-
tigations, also seems to be ignored by AutoCAD and BricsCAD

– “p???” change pitch size, “p0” means don’t change, ignored by AutoCAD and BricsCAD, to change the
text height use the “\H” command

– the order is not important, but export always in the shown order: “\fArial|b0|i0;” the arguments “c0” and
“p0” are not required

• Paragraph properties command “\p”
– the terminator symbol “;” is mandatory to end the command, all chars beyond the “\p” until the next “;”
or the end of the string are part of the command

– the command arguments are separated by commas “,”

704 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

– all values are factors for the initial char height of the MTEXT entity, example: char height = 2.5, “\pl1;”
set the left paragraph indentation to 1 x 2.5 = 2.5 drawing units.

– all values are floating point values, see height command
– arguments are “i”, “l”, “r”, “q”, “t”
– a “*” as argument value, resets the argument to the initial value: “i0”, “l0”, “r0”, the “q” argument most
likely depends on the text direction; I haven’t seen “t*”. The sequence used by BricsCAD to reset all
values is "\pi*,l*,r*,q*,t;"

– “i” indentation of the first line relative to the “l” argument as floating point value, “\pi1.5”
– “l” left paragraph indentation as floating point value, “\pl1.5”
– “r” right paragraph indentation as floating point value, “\pr1.5”
– “x” is required if a “q” or a “t” argument is present, the placement of the “x” has no obvious rules
– “q” paragraph alignment

∗ “ql” left paragraph alignment
∗ “qr” right paragraph alignment
∗ “qc” center paragraph alignment
∗ “qj” justified paragraph alignment
∗ “qd” distributed paragraph alignment

– “t” tabulator stops as comma separated list, the default tabulator stops are located at 4, 8, 12, …, by
defining at least one tabulator stop, the default tabulator stops will be ignored. There 3 kind of tabulator
stops: left, right and center adjusted stops, e.g. “pxt1,r5,c8”:
∗ a left adjusted stop has no leading char, two left adjusted stops “\pxt1,2;”
∗ a right adjusted stop has a preceding “r” char, “\pxtr1,r2;”
∗ a center adjusted stop has a preceding “c” char, “\pxtc1,c2;”

complex example to create a numbered list with two items: "pxi-3,l4t4;1.^Ifirst item\
P2.^Isecond item"

– a parser should be very flexible, I have seen several different orders of the arguments and placing the
sometimes required “x” has no obvious rules.

– exporting seems to be safe to follow these three rules:
1. the command starts with “\px”, the “x” does no harm, if not required
2. argument order “i”, “l”, “r”, “q”, “t”, any of the arguments can be left off
3. terminate the command with a “;”

9.8. Reference 705

ezdxf Documentation, Release 1.3.2

Height Calculation

There is no reliable way to calculate the MTEXT height from the existing DXF attributes. The rect_height (group
code 43) attribute is not required and seldom present. DXF R2007 introduced the defined_height attribute to store
the defined column height of the MTEXT entity but only in column mode. MTEXT entities without columns, except
MTEXT entities created with column type “No Columns”, store always 0.0 as defined column height. Which seems to
mean: defined by the rendered text content.
The only way to calculate theMTEXT height is to replicate the rendering results of AutoCAD/BricsCAD by implementing
a rendering engine for MTEXT.
In column mode the MTEXT height is stored for every column for DXF version before R2018. In DXF R2018+ the
column heights are only stored if MTextColumns.auto_height is False. If MTextColumns.auto_height
is True. But DXF R2018+ stores the MTEXT total width and height in explicit attributes.

Width Calculation

The situation for width calculation is better than for the height calculation, but the attributes width and rect_width
are not mandatory.
There is a difference between MTEXT entities with and without columns:
Without columns the attribute width (reference column width) contains the true entity width if present. A long word
can overshoot this width! The rect_width attribute is seldom present.
For MTEXT with columns, the width attribute is maybe wrong, the correct width for a column is stored in the col-
umn_width attribute and the total_width attribute stores the total width of the MTEXT entity overall columns,
see also following section “Column Support”.

Background Filling

The background fill support is available for DXF R2007+. The group code 90 defines the kind of background fill:

0 off
1 color defined by group code 63, 421 or 431
2 drawing window color
3 background (canvas) color
16 bit-flag text frame, see Open Design Alliance Specification 20.4.46

Group codes to define background fill attributes:

45 scaling factor for the border around the text, the value should be in the range of [1, 5], where 1 fits exact the
MText entity

63 set the background color by ACI.
421 set the background color as true-color value.
431 set the background color by color name - no idea how this works
441 set the transparency of the background fill, not supported by AutoCAD or BricsCAD.

Group codes 45, 90 and 63 are required together if one of them is used. The group code 421 and 431 also requires the
group code 63, even this value is ignored.

706 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

... <snip>
1 <str> eu feugiat nulla facilisis at vero eros et accumsan et iusto ...
73 <int> 1
44 <float> 1.0
90 <int> 1, b00000001 <<< use a color
63 <int> 1 <<< ACI color (red)
45 <float> 1.5 <<< bg scaling factor, relative to the char height
441 <int> 0 <<< ignored (optional)
... <snip>

The background scaling does not alter the width, column_width or total_width attributes. The background
acquires additional space around the MTEXT entity.
Columns with background color:

9.8. Reference 707

ezdxf Documentation, Release 1.3.2

Text Frame

The MTEXT entity can have a text frame only, without a background filling, group code 90 has value 16. In this case all
other background related tags are removed (45, 63, 421, 431, 441) and the scaling factor is 1.5 by default.

708 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

XDATA for Text Frame

This XDATA exist only if the text frame flag in group code 90 is set and for DXF version < R2018!

... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_TEXT_BORDERS_BEGIN
1070 <int> 80 <<< group code for repeated flags
1070 <int> 16 <<< repeated group code 90?
1070 <int> 46 <<< group code for scaling factor, which is fixed?
1040 <float> 1.5 <<< scaling factor
1070 <int> 81 <<< group code for repeated flow direction?
1070 <int> 1 <<< flow direction?
1070 <int> 5 <<< group code for a handle, multiple entries possible
1005 <hex> #A8 <<< handle to the LWPOLYLINE text frame
1070 <int> 5 <<< group code for next handle
1005 <hex> #A9 <<< next handle
...
1000 <str> ACAD_MTEXT_TEXT_BORDERS_END

Extra LWPOLYLINE Entity as Text Frame

The newer versions of AutoCAD and BricsCAD get all the information they need from the MTEXT entity, but it seems
that older versions could not handle the text frame property correct. ThereforeAutoCAD andBricsCAD create a separated
LWPOLYLINE entity for the text frame for DXF versions < R2018. The handle to this text frame entity is stored in the
XDATA as group code 1005, see section above.
Because this LWPOLYLINE is not required ezdxf does not create such a text frame entity nor the associated XDATA
and ezdxf also removes this data from loaded DXF files at the second loading stage.

Column Support

CAD applications build multiple columns by linking 2 or more MTEXT entities together. In this case each column is a
self-sufficient entity in DXF version R13 until R2013. The additional columns specifications are stored in the XDATA if
the MTEXT which represents the first column.
DXF R2018 changed the implementation into a single MTEXT entity which contains all the content text at once and
stores the column specification in an embedded object.

Hint: The width attribute for the linked MTEXT entities could be wrong. Always use the column_width and the
total_width attributes in column mode.

There are two column types, the static type has the same column height for all columns, the dynamic type can have the
same (auto) height or an individual height for each column.
Common facts about columns for all column types:

• all columns have the same column width
• all columns have the same gutter width
• the top of the column are at the same height

9.8. Reference 709

ezdxf Documentation, Release 1.3.2

Column Type

The column type defines how a CAD application should create the columns, this is not important for the file format,
because the result of this calculation, the column count and the column height, is stored the DXF file.

Column Type
in BricsCAD

Description

Static All columns have the same height. The “auto height” flag is 0.
Dynamic (auto
height)

Same as the static type, all columns have the same height. The “auto height” flag is 1. The difference
to the static type is only important for interactive CAD applications.

Dynamic (man-
ual height)

same as the dynamic (auto height) type, but each column can have an individual height.

No column A regular MTEXT with “defined column height” attribute?

Column Type Defined Height Auto Height Column Heights
Static stored False not stored
Dynamic auto stored True not stored
Dynamic manual not stored False stored (last=0)

Column Count

For DXF versions < R2018 the column count is always given by the count of linked MTEXT columns. Caution: the
column count stored in the XDATA section by group code 76 may not match the count of linked MTEXT entities and
AutoCAD is OK with that! In DXF R2018+ this property is not available, because there are no linked MTEXT entities
anymore.
R2018+: For the column types “static” and “dynamic manual” the correct column count is stored as group code 72. For
the column type “dynamic auto” the stored column count is 0. It is possible to calculate the column count from the total
width and the column width if the total width is correct like in AutoCAD and BricsCAD.

Static Columns R2000

Example for a static column specification:
• Column Type: Static
• Number of Columns: 3
• Height: 150.0, manual entered value and all columns have the same height
• Width: 50.0
• Gutter Width: 12.5

710 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The column height is stored as the “defined column height” in XDATA (46) or the embedded object (41).
DXF R2000 example with a static column specification stored in XDATA:

0
MTEXT
5 <<< entity handle
9D
102
{ACAD_XDICTIONARY
360
9F
102
}
330 <<< block record handle of owner layout

(continues on next page)

9.8. Reference 711

ezdxf Documentation, Release 1.3.2

(continued from previous page)
1F
100
AcDbEntity
8 <<< layer
0
100 <<< begin of MTEXT specific data
AcDbMText
10 <<< (10, 20, 30) insert location in WCS
285.917876152751
20
276.101821192053
30
0.0
40 <<< character height in drawing units
2.5
41 <<< reference column width, if not in column mode
62.694... <<< in column mode: the real column is defined in XDATA (48)
71 <<< attachment point
1
72 <<< text flow direction
1
3 <<< begin of text
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam ...
3
kimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit ...
3
ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ...
3
At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd ...
3
ore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio ...
1 <<< last text line and end of text
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.
73 <<< line spacing style
1
44 <<< line spacing factor
1.0
1001
AcadAnnotative
1000
AnnotativeData
1002
{
1070
1
1070
0
1002
}
1001 <<< AppID "ACAD" contains the column specification
ACAD
1000
ACAD_MTEXT_COLUMN_INFO_BEGIN
1070
75 <<< group code column type
1070
1 <<< column type: 0=no column; 1=static columns; 2=dynamic columns

(continues on next page)

712 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
1070
79 <<< group code column auto height
1070
0 <<< flag column auto height
1070
76 <<< group code column count
1070
3 <<< column count
1070
78 <<< group code column flow reversed
1070
0 <<< flag column flow reversed
1070
48 <<< group code column width
1040
50.0 <<< column width in column mode
1070
49 <<< group code column gutter
1040
12.5 <<< column gutter width
1000
ACAD_MTEXT_COLUMN_INFO_END
1000 <<< linked MTEXT entities specification
ACAD_MTEXT_COLUMNS_BEGIN
1070
47 <<< group code for column count, incl. the 1st column - this entity
1070
3 <<< column count
1005
1B4 <<< handle to 2nd column as MTEXT entity
1005
1B5 <<< handle to 3rd column as MTEXT entity
1000
ACAD_MTEXT_COLUMNS_END
1000
ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070
46 <<< group code for defined column height
1040
150.0 <<< defined column height
1000
ACAD_MTEXT_DEFINED_HEIGHT_END

The linked column MTEXT #1B4 in a compressed representation:

0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (348.417876152751, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 150.0
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END

9.8. Reference 713

ezdxf Documentation, Release 1.3.2

The linkedMTEXT has no column specification except the “defined column height” in the XDATA. The reference column
width is not the real value of 50.0, see XDATA group code 48 in the main MTEXT #9D, instead the total width of
175.0 is stored at group code 41. This is problem if a renderer try to render this MTEXT as a standalone entity. The
renderer has to fit the content into the column width by itself and without the correct column width, this will produce an
incorrect result.
There exist no back link to the main MTEXT #9D. The linked MTEXT entities appear after the main MTEXT in the
layout space, but there can be other entities located between these linked MTEXT entities.
The linked column MTEXT #1B5:

0 <ctrl> MTEXT
5 <hex> #1B5
... <snip>
100 <ctrl> AcDbMText
10 <point> (410.917876152751, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 150.0
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END

Static Columns R2018

TheMTEXT entity in DXFR2018 contains all column information in a single entity. The text content of all three columns
are stored in a continuous text string, the separation into columns has to be done by the renderer. Themanual column break
\N is not used to indicate automatic column breaks. The MTEXT renderer has to replicate the AutoCAD/BricsCAD
rendering as exact as possible to achieve the same results, which is very hard without rendering guidelines or specifications.
The example from above in DXF R2018 with a static column specification stored in an embedded object:

0
MTEXT
5 <<< entity handle
9D
102
{ACAD_XDICTIONARY
360
9F
102
}
330 <<< block record handle of owner layout
1F
100
AcDbEntity
8 <<< layer
0
100
AcDbMText
10 <<< (10, 20, 30) insert location in WCS
285.917876152751
20
276.101821192053
30

(continues on next page)

714 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0.0
40 <<< character height in drawing units
2.5
41 <<< reference column width, if not in column mode
62.694536423841
46 <<< defined column height
150.0
71 <<< attachment point
1
72 <<< text flow direction
1
3 <<< text content of all three columns
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam n...
3
imata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit...
3
a rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lor...
3
vero eos et accusam et justo duo dolores et ea rebum. Stet clita ka...
3
eu feugiat nulla facilisis at vero eros et accumsan et iusto odio s...
3
od tincidunt ut laoreet dolore magna aliquam erat volutpat. \P\PU...
3
e velit esse molestie consequat, vel illum dolore eu feugiat nulla ...
3
obis eleifend option congue nihil imperdiet doming id quod mazim pl...
3
m ad minim veniam, quis nostrud exerci tation ullamcorper suscipit ...
3
lisis. \P\PAt vero eos et accusam et justo duo dolores et ea rebu...
3
t labore et dolore magna aliquyam erat, sed diam voluptua. At vero ...
3
litr, At accusam aliquyam diam diam dolore dolores duo eirmod eos e...
1
ipsum dolor sit amet, consetetur
73 <<< line spacing style
1
44 <<< line spacing factor
1.0
101 <<< column specification as embedded object
Embedded Object
70 <<< ???
1
10 <<< (10, 20, 30) text direction vector (local x-axis)
1.0
20
0.0
30
0.0
11 <<< (11, 21, 31) repeated insert location of AcDbMText
285.917876152751
21
276.101821192053
31
0.0

(continues on next page)

9.8. Reference 715

ezdxf Documentation, Release 1.3.2

(continued from previous page)
40 <<< repeated reference column width
62.694536423841
41 <<< repeated defined column height
150.0
42 <<< extents (total) width
175.0
43 <<< extents (total) height, max. height if different column heights
150.0
71 <<< column type: 0=no column; 1=static columns; 2=dynamic columns
1
72 <<< column height count
3
44 <<< column width
50.0
45 <<< column gutter width
12.5
73 <<< flag column auto height
0
74 <<< flag reversed column flow
0
1001
AcadAnnotative
1000
AnnotativeData
1002
{
1070
1
1070
0
1002
}

Dynamic (auto height) Columns R2000

Example for a dynamic column specification:
• Column Type: Dynamic
• Number of Columns: 3
• Height: 158.189… adjusted by widget and all columns have the same height
• Width: 50.0
• Gutter Width: 12.5

0 <ctrl> MTEXT
5 <hex> #A2 <<< entity handle
... <snip>
330 <hex> #1F <<< block record handle of owner layout
100 <ctrl> AcDbEntity
8 <str> 0 <<< layer
100 <ctrl> AcDbMText
10 <point> (-133.714579865783, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode

(continues on next page)

716 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed dia...
... <snip>
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
1001 <ctrl> AcadAnnotative
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_COLUMN_INFO_BEGIN
1070 <int> 75 <<< column type: 2=dynamic columns
1070 <int> 2
1070 <int> 79 <<< flag column auto height
1070 <int> 1
1070 <int> 76 <<< column count
1070 <int> 3
1070 <int> 78 <<< flag column flow reversed
1070 <int> 0
1070 <int> 48 <<< column width in column mode
1040 <float> 50.0
1070 <int> 49 <<< column gutter width
1040 <float> 12.5
1000 <str> ACAD_MTEXT_COLUMN_INFO_END
1000 <str> ACAD_MTEXT_COLUMNS_BEGIN
1070 <int> 47 <<< column count
1070 <int> 3
1005 <hex> #1B6 <<< handle to 2. column as MTEXT entity
1005 <hex> #1B7 <<< handle to 3. column as MTEXT entity
1000 <str> ACAD_MTEXT_COLUMNS_END
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END

The linked column MTEXT #1B6:

0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (-71.214579865783, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid column width
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END

The linked column MTEXT #1B7:

0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (-8.714579865783, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid column width

(continues on next page)

9.8. Reference 717

ezdxf Documentation, Release 1.3.2

(continued from previous page)
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END

Dynamic (auto height) Columns R2018

0 <ctrl> MTEXT
5 <hex> #A2 <<< entity handle
102 <ctrl> {ACAD_XDICTIONARY
360 <hex> #A3
102 <ctrl> }
330 <hex> #1F <<< block record handle of owner layout
100 <ctrl> AcDbEntity
8 <str> 0 <<< layer
100 <ctrl> AcDbMText
10 <point> (-133.714579865783, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode
46 <float> 158.189308131867 <<< defined column height
71 <int> 1 <<< attachment point
72 <int> 1 <<< text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam...
... <snip> text content of all three columns
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
101 <ctrl> Embedded Object
70 <int> 1, b00000001 <<< ???
10 <point> (1.0, 0.0, 0.0) <<< text direction vector (local x-axis)
11 <point> (-133.714579865783, 276.101821192053, 0.0) <<< repeated insert location
40 <float> 62.694536423841 <<< repeated reference column width
41 <float> 158.189308131867 <<< repeated defined column height
42 <float> 175.0 <<< extents (total) width
43 <float> 158.189308131867 <<< extents (total) height, max. height if different␣
↪→column heights
71 <int> 2 <<< column type: 2=dynamic columns
72 <int> 0 <<< column height count
44 <float> 50.0 <<< column width
45 <float> 12.5 <<< column gutter width
73 <int> 1 <<< flag column auto height
74 <int> 0 <<< flag reversed column flow
1001 <ctrl> AcadAnnotative
1000 <str> AnnotativeData
1002 <str> {
1070 <int> 1
1070 <int> 0
1002 <str> }

718 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Dynamic (manual height) Columns R2000

Example for a dynamic column specification with manual height definition for three columns with different column
heights. None of the (linked) MTEXT entities does contain XDATA for the defined column height.

Hint: If “content type” is 2 and flag “column auto height” is 0, no defined height in XDATA.

• Column Type: Dynamic
• Number of Columns: 3
• Height: 164.802450331126, max. column height
• Width: 50.0
• Gutter Width: 12.5

9.8. Reference 719

ezdxf Documentation, Release 1.3.2

0 <ctrl> MTEXT
5 <hex> #9C <<< entity handle
330 <hex> #1F <<< block record handle of owner layout
100 <ctrl> AcDbEntity
8 <str> 0 <<< layer
100 <ctrl> AcDbMText
10 <point> (69.806121185863, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction

(continues on next page)

720 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, ...
... <snip>
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_COLUMN_INFO_BEGIN
1070 <int> 75 <<< column type: 2=dynamic columns
1070 <int> 2
1070 <int> 79 <<< flag column auto height
1070 <int> 0
1070 <int> 76 <<< column count
1070 <int> 3
1070 <int> 78 <<< flag column flow reversed
1070 <int> 0
1070 <int> 48 <<< column width in column mode
1040 <float> 50.0
1070 <int> 49 <<< column gutter width
1040 <float> 12.5
1070 <int> 50 <<< column height count
1070 <int> 3
1040 <float> 164.802450331126 <<< column height 1. column
1040 <float> 154.311699779249 <<< column height 2. column
1040 <float> 0.0 <<< column height 3. column, takes the rest?
1000 <str> ACAD_MTEXT_COLUMN_INFO_END
1000 <str> ACAD_MTEXT_COLUMNS_BEGIN
1070 <int> 47 <<< column count
1070 <int> 3
1005 <hex> #1B2 <<< handle to 2. column as MTEXT entity
1005 <hex> #1B3 <<< handle to 3. column as MTEXT entity
1000 <str> ACAD_MTEXT_COLUMNS_END

The linked column MTEXT #1B2:

0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (132.306121185863, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
73 <int> 1
44 <float> 1.0

The linked column MTEXT #1B3:

0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (194.806121185863, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
73 <int> 1
44 <float> 1.0

9.8. Reference 721

ezdxf Documentation, Release 1.3.2

Dynamic (manual height) Columns R2018

Hint: If “content type” is 2 and flag “column auto height” is 0, the “defined column height” is 0.0.

0 <ctrl> MTEXT
5 <hex> #9C <<< entity handle
330 <hex> #1F
100 <ctrl> AcDbEntity
8 <str> 0 <<< block record handle of owner layout
100 <ctrl> AcDbMText
10 <point> (69.806121185863, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode
46 <float> 0.0 <<< defined column height
71 <int> 1 <<< attachment point
72 <int> 1 <<< text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam...
... <snip> text content of all three columns
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
101 <ctrl> Embedded Object
70 <int> 1, b00000001 <<< ???
10 <point> (1.0, 0.0, 0.0) <<< text direction vector (local x-axis)
11 <point> (69.806121185863, 276.101821192053, 0.0) <<< repeated insert location
40 <float> 62.694536423841 <<< repeated reference column width
41 <float> 0.0 <<< repeated defined column height
42 <float> 175.0 <<< extents (total) width
43 <float> 164.802450331126 <<< extents (total) height, max. height if different␣
↪→column heights
71 <int> 2 <<< column type: 2=dynamic columns
72 <int> 3 <<< column height count
44 <float> 50.0 <<< column width
45 <float> 12.5 <<< column gutter width
73 <int> 0 <<< flag column auto height
74 <int> 0 <<< flag reversed column flow
46 <float> 164.802450331126 <<< column height 1. column
46 <float> 154.311699779249 <<< column height 2. column
46 <float> 0.0 <<< column height 3. column, takes the rest?

No Columns R2000

I have no idea why this column type exist, but at least provides a reliable value for the MTEXT height by the “defined
column height” attribute. The column type is not stored in the MTEXT entity and is therefore not detectable!

• Column Type: No columns
• Number of Columns: 1
• Height: 158.189308131867, defined column height
• Width: 175.0, reference column width

0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText

(continues on next page)

722 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
10 <point> (-344.497343455795, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 175.0 <<< reference column width
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam...
... <snip> text content of all three columns
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END

No Columns R2018

Does not contain an embedded object.

0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (-334.691900433414, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 175.0 <<< reference column width
46 <float> 158.189308131867 <<< defined column height
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, ...
... <snip>
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
1001 <ctrl> AcadAnnotative
... <snip>

DXF Objects

TODO

Management Structures

Block Management Structures

A BLOCK is a layout like the modelspace or a paperspace layout, with the similarity that all these layouts are containers
for graphical DXF entities. This block definition can be referenced in other layouts by the INSERT entity. By using block
references, the same set of graphical entities can be located multiple times at different layouts, this block references can
be stretched and rotated without modifying the original entities. A block is referenced only by its name defined by the
DXF tag (2, name), there is a second DXF tag (3, name2) for the block name, which is not further documented
by Autodesk, just ignore it.

9.8. Reference 723

ezdxf Documentation, Release 1.3.2

The (10, base_point) tag (in BLOCK defines a insertion point of the block, by ‘inserting’ a block by the INSERT
entity, this point of the block is placed at the location defined by the (10, insert) tag in the INSERT entity, and it
is also the base point for stretching and rotation.
A block definition can contain INSERT entities, and it is possible to create cyclic block definitions (a BLOCK contains
a INSERT of itself), but this should be avoided, CAD applications will not load the DXF file at all or maybe just crash.
This is also the case for all other kinds of cyclic definitions like: BLOCK “A” -> INSERT BLOCK “B” and BLOCK “B”
-> INSERT BLOCK “A”.
See also:

• ezdxf DXF Internals: BLOCKS Section

• DXF Reference: BLOCKS Section
• DXF Reference: BLOCK Entity
• DXF Reference: ENDBLK Entity
• DXF Reference: INSERT Entity

Block Names

Block names has to be unique and they are case insensitive (“Test” == “TEST”). If there are two or more block definitions
with the same name, AutoCAD merges these blocks into a single block with unpredictable properties of all these blocks.
In my test with two blocks, the final block has the name of the first block and the base-point of the second block, and
contains all entities of both blocks.

Block Definitions in DXF R12

In DXFR12 the definition of a block is located in the BLOCKS section, no additional structures are needed. The definition
starts with a BLOCK entity and ends with a ENDBLK entity. All entities between this two entities are the content of the
block, the block is the owner of this entities like any layout.
As shown in the DXF file below (created by AutoCAD LT 2018), the BLOCK entity has no handle, but ezdxf writes also
handles for the BLOCK entity and AutoCAD doesn’t complain.
DXF R12 BLOCKS structure:

0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
... <<< modelspace and paperspace block definitions not shown,
... <<< see layout management
...
0 <<< start of a BLOCK definition
BLOCK
8 <<< layer
0
2 <<< block name
ArchTick
70 <<< flags
1
10 <<< base point, x
0.0
20 <<< base point, y

(continues on next page)

724 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1D14A213-5E4D-4EA6-A6B5-8709EB925D01
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-66D32572-005A-4E23-8B8B-8726E8C14302
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-27F7CC8A-E340-4C7F-A77F-5AF139AD502D
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-28FA4CFB-9D5E-4880-9F11-36C97578252F

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0.0
30 <<< base point, z
0.0
3 <<< second BLOCK name, same as (2, name)
ArchTick
1 <<< xref name, if block is an external reference

<<< empty string!
0 <<< start of the first entity of the BLOCK
LINE
5
28E
8
0
62
0
10
500.0
20
500.0
30
0.0
11
500.0
21
511.0
31
0.0
0 <<< start of the second entity of the BLOCK
LINE
...
0.0
0 <<< ENDBLK entity, marks the end of the BLOCK definition
ENDBLK
5 <<< ENDBLK gets a handle by AutoCAD, but BLOCK didn't
2F2
8 <<< as every entity, also ENDBLK requires a layer (same as BLOCK entity!)
0
0 <<< start of next BLOCK entity
BLOCK
...
0 <<< end BLOCK entity
ENDBLK
0 <<< end of BLOCKS section
ENDSEC

Block Definitions in DXF R2000+

The overall organization in the BLOCKS sections remains the same, but additional tags in the BLOCK entity, have to be
maintained.
Especially the concept of ownership is important. Since DXF R13 every graphic entity is associated to a specific layout
and a BLOCK definition is also a layout. So all entities in the BLOCK definition, including the BLOCK and the ENDBLK
entities, have an owner tag (330, ...), which points to a BLOCK_RECORD entry in the BLOCK_RECORD table.
This BLOCK_RECORD is the main management structure for all layouts and is the real owner of the layout entities.
As you can see in the chapter about Layout Management Structures, this concept is also valid for modelspace and pa-

9.8. Reference 725

ezdxf Documentation, Release 1.3.2

perspace layouts, because these layouts are also BLOCKS, with the special difference, that the entities of the modelspace
and the active paperspace layout are stored in the ENTITIES section.

See also:
• DXF R13 and later tag structure

• ezdxf DXF Internals: TABLES Section

• DXF Reference: TABLES Section
• DXF Reference: BLOCK_RECORD Entity

DXF R13 BLOCKS structure:

0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
... <<< modelspace and paperspace block definitions not shown,
... <<< see layout management
0 <<< start of BLOCK definition
BLOCK
5 <<< even BLOCK gets a handle now ;)
23A
330 <<< owner tag, the owner of a BLOCK is a BLOCK_RECORD in the
... BLOCK_RECORD table
238
100 <<< subclass marker
AcDbEntity
8 <<< layer of the BLOCK definition
0
100 <<< subclass marker
AcDbBlockBegin
2 <<< BLOCK name
ArchTick
70 <<< flags
0
10 <<< base point, x
0.0
20 <<< base point, y
0.0
30 <<< base point, z
0.0
3 <<< second BLOCK name, same as (2, name)

(continues on next page)

726 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A9FD9590-C97B-4E41-9F26-BD82C34A4F9F
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A1FD1934-7EF5-4D35-A4B0-F8AE54A9A20A

ezdxf Documentation, Release 1.3.2

(continued from previous page)
ArchTick
1 <<< xref name, if block is an external reference

<<< empty string!
0 <<< start of the first entity of the BLOCK
LWPOLYLINE
5
239
330 <<< owner tag of LWPOLYLINE
238 <<< handle of the BLOCK_RECORD!
100
AcDbEntity
8
0
6
ByBlock
62
0
100
AcDbPolyline
90
2
70
0
43
0.15
10
-0.5
20
-0.5
10
0.5
20
0.5
0 <<< ENDBLK entity, marks the end of the BLOCK definition
ENDBLK
5 <<< handle
23B
330 <<< owner tag, same BLOCK_RECORD as for the BLOCK entity
238
100 <<< subclass marker
AcDbEntity
8 <<< ENDBLK requires the same layer as the BLOCK entity!
0
100 <<< subclass marker
AcDbBlockEnd
0 <<< start of the next BLOCK
BLOCK
...
0
ENDBLK
...
0 <<< end of the BLOCKS section
ENDSEC

DXF R13 BLOCK_RECORD structure:

9.8. Reference 727

ezdxf Documentation, Release 1.3.2

0 <<< start of a SECTION
SECTION
2 <<< start of TABLES section
TABLES
0 <<< start of a TABLE
TABLE
2 <<< start of the BLOCK_RECORD table
BLOCK_RECORD
5 <<< handle of the table
1
330 <<< owner tag of the table
0 <<< is always #0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries, not reliable
4
0 <<< start of first BLOCK_RECORD entry
BLOCK_RECORD
5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key"
1F
330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table
1
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbBlockTableRecord
2 <<< name of the BLOCK or LAYOUT
*Model_Space
340 <<< pointer to the associated LAYOUT object
4AF
70 <<< AC1021 (R2007) block insertion units
0
280 <<< AC1021 (R2007) block explodability
1
281 <<< AC1021 (R2007) block scalability
0

... <<< paperspace not shown

...
0 <<< next BLOCK_RECORD
BLOCK_RECORD
5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key"
238
330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table
1
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbBlockTableRecord
2 <<< name of the BLOCK
ArchTick
340 <<< pointer to the associated LAYOUT object
0 <<< #0, because BLOCK doesn't have an associated LAYOUT object
70 <<< AC1021 (R2007) block insertion units
0
280 <<< AC1021 (R2007) block explodability
1

(continues on next page)

728 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
281 <<< AC1021 (R2007) block scalability
0
0 <<< end of BLOCK_RECORD table
ENDTAB
0 <<< next TABLE
TABLE
...
0
ENDTAB
0 <<< end of TABLES section
ENDESC

Layout Management Structures

Layouts are separated entity spaces, there are three different Layout types:
1. modelspace contains the ‘real’ world representation of the drawing subjects in real world units.
2. paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF export
3. Blocks are reusable sets of graphical entities, inserted/referenced by the INSERT entity.

All layouts have at least a BLOCK definition in the BLOCKS section and since DXF R13 exist the BLOCK_RECORD
table with an entry for every BLOCK in the BLOCKS section.
See also:
Information about Block Management Structures

The name of the modelspace BLOCK is “*Model_Space” (DXF R12: “$MODEL_SPACE”) and the name of the active
paperspace BLOCK is “*Paper_Space” (DXF R12: “$PAPER_SPACE”), the entities of these two layouts are stored in
the ENTITIES section, DXF R12 supports just one paperspace layout.
DXF R13+ supports multiple paperspace layouts, the active layout is still called “*Paper_Space”, the additional inactive
paperspace layouts are named by the scheme “*Paper_Spacennnn”, where the first inactive paper space is called “*Pa-
per_Space0”, the second “*Paper_Space1” and so on. A none consecutive numbering is tolerated by AutoCAD. The
content of the inactive paperspace layouts are stored as BLOCK content in the BLOCKS section. These names are just
the DXF internal layout names, each layout has an additional layout name which is displayed to the user by the CAD
application.
A BLOCK definition and a BLOCK_RECORD is not enough for a proper layout setup, an LAYOUT entity in the OB-
JECTS section is also required. All LAYOUT entities are managed by a DICTIONARY entity, which is referenced as
“ACAD_LAYOUT” entity in the root DICTIONARY of the DXF file.

Note: All floating point values are rounded to 2 decimal places for better readability.

9.8. Reference 729

ezdxf Documentation, Release 1.3.2

LAYOUT Entity

Since DXF R2000 modelspace and paperspace layouts require the DXF LAYOUT entity.

0
LAYOUT
5 <<< handle
59
102 <<< extension dictionary (ignore)
{ACAD_XDICTIONARY
360
1C3
102
}
102 <<< reactor (required?)
{ACAD_REACTORS
330
1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (layout management table)
102
}
330 <<< owner handle
1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (same as reactor pointer)
100 <<< PLOTSETTINGS
AcDbPlotSettings
1 <<< page setup name

2 <<< name of system printer or plot configuration file
none_device
4 <<< paper size, part in braces should follow the schema
... (width_x_height_unit) unit is 'Inches' or 'MM'
... Letter_(8.50_x_11.00_Inches) the part in front of the braces is
... ignored by AutoCAD
6 <<< plot view name

40 <<< size of unprintable margin on left side of paper in millimeters,
... defines also the plot origin-x
6.35
41 <<< size of unprintable margin on bottom of paper in millimeters,
... defines also the plot origin-y
6.35
42 <<< size of unprintable margin on right side of paper in millimeters
6.35
43 <<< size of unprintable margin on top of paper in millimeters
6.35
44 <<< plot paper size: physical paper width in millimeters
215.90
45 <<< plot paper size: physical paper height in millimeters
279.40
46 <<< X value of plot origin offset in millimeters, moves the plot origin-x
0.0
47 <<< Y value of plot origin offset in millimeters, moves the plot origin-y
0.0
48 <<< plot window area: X value of lower-left window corner
0.0
49 <<< plot window area: Y value of lower-left window corner
0.0
140 <<< plot window area: X value of upper-right window corner

(continues on next page)

730 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-433D25BF-655D-4697-834E-C666EDFD956D

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0.0
141 <<< plot window area: Y value of upper-right window corner
0.0
142 <<< numerator of custom print scale: real world (paper) units, 1.0
... for scale 1:50
1.0
143 <<< denominator of custom print scale: drawing units, 50.0
... for scale 1:50
1.0
70 <<< plot layout flags, bit-coded (... too many options)
688 <<< b1010110000 = UseStandardScale(16)/PlotPlotStyle(32)
... PrintLineweights(128)/DrawViewportsFirst(512)
72 <<< plot paper units (0/1/2 for inches/millimeters/pixels), are
... pixels really supported?
0
73 <<< plot rotation (0/1/2/3 for 0deg/90deg counter-cw/upside-down/90deg cw)
1 <<< 90deg clockwise
74 <<< plot type 0-5 (... too many options)
5 <<< 5 = layout information
7 <<< current plot style name, e.g. 'acad.ctb' or 'acadlt.ctb'

75 <<< standard scale type 0-31 (... too many options)
16 <<< 16 = 1:1, also 16 if user scale type is used
147 <<< unit conversion factor
1.0 <<< for plot paper units in mm, else 0.03937... (1/25.4) for inches
... as plot paper units
76 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered)
0 <<< as displayed
77 <<< shade plot resolution level 1-5 (... too many options)
2 <<< normal
78 <<< shade plot custom DPI: 100-32767, Only applied when shade plot
... resolution level is set to 5 (Custom)
300
148 <<< paper image origin: X value
0.0
149 <<< paper image origin: Y value
0.0
100 <<< LAYOUT settings
AcDbLayout
1 <<< layout name
Layout1
70 <<< flags bit-coded
1 <<< 1 = Indicates the PSLTSCALE value for this layout when this
... layout is current
71 <<< Tab order ("Model" tab always appears as the first tab
... regardless of its tab order)
1
10 <<< minimum limits for this layout (defined by LIMMIN while this
... layout is current)
-0.25 <<< x value, distance of the left paper margin from the plot
... origin-x, in plot paper units and by scale (e.g. x50 for 1:50)
20 <<< group code for y value
-0.25 <<< y value, distance of the bottom paper margin from the plot
... origin-y, in plot paper units and by scale (e.g. x50 for 1:50)
11 <<< maximum limits for this layout (defined by LIMMAX while this
... layout is current)
10.75 <<< x value, distance of the right paper margin from the plot

(continues on next page)

9.8. Reference 731

ezdxf Documentation, Release 1.3.2

(continued from previous page)
... origin-x, in plot paper units and by scale (e.g. x50 for 1:50)
21 <<< group code for y value
8.25 <<< y value, distance of the top paper margin from the plot
... origin-y, in plot paper units and by scale (e.g. x50 for 1:50)
12 <<< insertion base point for this layout (defined by INSBASE while
... this layout is current)
0.0 <<< x value
22 <<< group code for y value
0.0 <<< y value
32 <<< group code for z value
0.0 <<< z value
14 <<< minimum extents for this layout (defined by EXTMIN while this
... layout is current), AutoCAD default is (1e20, 1e20, 1e20)
1.05 <<< x value
24 <<< group code for y value
0.80 <<< y value
34 <<< group code for z value
0.0 <<< z value
15 <<< maximum extents for this layout (defined by EXTMAX while this
... layout is current), AutoCAD default is (-1e20, -1e20, -1e20)
9.45 <<< x value
25 <<< group code for y value
7.20 <<< y value
35 <<< group code for z value
0.0 <<< z value
146 <<< elevation ???
0.0
13 <<< UCS origin (3D Point)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
33 <<< group code for z value
0.0 <<< z value
16 <<< UCS X-axis (3D vector)
1.0 <<< x value
26 <<< group code for y value
0.0 <<< y value
36 <<< group code for z value
0.0 <<< z value
17 <<< UCS Y-axis (3D vector)
0.0 <<< x value
27 <<< group code for y value
1.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
76 <<< orthographic type of UCS 0-6 (... too many options)
0 <<< 0 = UCS is not orthographic ???
330 <<< ID/handle of required block table record
58
331 <<< ID/handle to the viewport that was last active in this layout
... when the layout was current
1B9
1001 <<< extended data (ignore)
...

And as it seems this is also not enough for a well defined LAYOUT, at least a “main” VIEWPORT entity with ID=1 is
required for paperspace layouts, located in the entity space of the layout.

732 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The modelspace layout requires (?) a VPORT entity in the VPORT table (group code 331 in the AcDbLayout subclass).

Main VIEWPORT Entity for LAYOUT

The “main” viewport for layout “Layout1” shown above. This viewport is located in the associated BLOCK definition
called “*Paper_Space0”. Group code 330 in subclass AcDbLayout points to the BLOCK_RECORDof “*Paper_Space0”.
Remember: the entities of the active paperspace layout are located in the ENTITIES section, therefore “Layout1” is not
the active paperspace layout.
The “main” VIEWPORT describes, how the application shows the paperspace layout on the screen, and I guess only
AutoCAD needs this values.

0
VIEWPORT
5 <<< handle
1B4
102 <<< extension dictionary (ignore)
{ACAD_XDICTIONARY
360
1B5
102
}
330 <<< owner handle
58 <<< points to BLOCK_RECORD (same as group code 330 in AcDbLayout of

(continues on next page)

9.8. Reference 733

ezdxf Documentation, Release 1.3.2

(continued from previous page)
... "Layout1")
100
AcDbEntity
67 <<< paperspace flag
1 <<< 0 = modelspace; 1 = paperspace
8 <<< layer,
0
100
AcDbViewport
10 <<< Center point (in WCS)
5.25 <<< x value
20 <<< group code for y value
4.00 <<< y value
30 <<< group code for z value
0.0 <<< z value
40 <<< width in paperspace units
23.55 <<< VIEW size in AutoCAD, depends on the workstation configuration
41 <<< height in paperspace units
9.00 <<< VIEW size in AutoCAD, depends on the workstation configuration
68 <<< viewport status field -1/0/n
2 <<< >0 On and active. The value indicates the order of stacking for
... the viewports, where 1 is the active viewport, 2 is the next, and so forth
69 <<< viewport ID
1 <<< "main" viewport has always ID=1
12 <<< view center point in Drawing Coordinate System (DCS), defines
... the center point of the VIEW in relation to the LAYOUT origin
5.25 <<< x value
22 <<< group code for y value
4.00 <<< y value
13 <<< snap base point in modelspace
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing in modelspace units
0.5 <<< x value
24 <<< group code for y value
0.5 <<< y value
15 <<< grid spacing in modelspace units
0.5 <<< x value
25 <<< group code for y value
0.5 <<< y value
16 <<< view direction vector from target (in WCS)
0.0 <<< x value
26 <<< group code for y value
0.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
42 <<< perspective lens length, focal length?
50.0 <<< 50mm
43 <<< front clip plane z value
0.0 <<< z value

(continues on next page)

734 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
44 <<< back clip plane z value
0.0 <<< z value
45 <<< view height (in modelspace units)
9.00
50 <<< snap angle
0.0
51 <<< view twist angle
0.0
72 <<< circle zoom percent
1000
90 <<< Viewport status bit-coded flags (... too many options)
819232 <<< b11001000000000100000
1 <<< plot style sheet name assigned to this viewport

281 <<< render mode (... too many options)
0 <<< 0 = 2D optimized (classic 2D)
71 <<< UCS per viewport flag
1 <<< 1 = This viewport stores its own UCS which will become the
... current UCS whenever the viewport is activated
74 <<< Display UCS icon at UCS origin flag
0 <<< this field is currently being ignored and the icon always
... represents the viewport UCS
110 <<< UCS origin (3D point)
0.0 <<< x value
120 <<< group code for y value
0.0 <<< y value
130 <<< group code for z value
0.0 <<< z value
111 <<< UCS X-axis (3D vector)
1.0 <<< x value
121 <<< group code for y value
0.0 <<< y value
131 <<< group code for z value
0.0 <<< z value
112 <<< UCS Y-axis (3D vector)
0.0 <<< x value
122 <<< group code for y value
1.0 <<< y value
132 <<< group code for z value
0.0 <<< z value
79 <<< Orthographic type of UCS (... too many options)
0 <<< 0 = UCS is not orthographic
146 <<< elevation
0.0
170 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered)
0 <<< as displayed
61 <<< frequency of major grid lines compared to minor grid lines
5 <<< major grid subdivided by 5
348 <<< visual style ID/handle (optional)
9F
292 <<< default lighting flag, on when no user lights are specified.
1
282 <<< Default lighting type (0/1 = one distant light/two distant lights)
1 <<< one distant light
141 <<< view brightness
0.0
142 <<< view contrast

(continues on next page)

9.8. Reference 735

ezdxf Documentation, Release 1.3.2

(continued from previous page)
0.0
63 <<< ambient light color (ACI), write only if not black color
250
421 <<< ambient light color (RGB), write only if not black color
3355443

Miscellaneous

Notes on Rendering DXF Content

A collection of AutoCAD behaviors determined experimentally. There may be mistakes and misunderstandings of the
inner workings of the algorithms. Not all edge cases may have been considered.

Colors

• Most entities are colored contextually, based on the layer or block that they reside in.
• Usually entity colors are stored as AutoCAD Color Indices (ACI) as an index into a lookup table. Different CAD
applications may use different color palettes making consistent coloring difficult.

• If a block insert is placed on layer ‘A’, and the block contains an entity on layer ‘B’ with BYLAYER color: the
entity will be drawn with the color of layer ‘B’.

• If a block insert is placed on layer ‘A’, and the block contains an entity on layer ‘0’ with BYLAYER color: the entity
will be drawn with the color of layer ‘A’, it seems that layer ‘0’ is the only special case for this.

• Ff an entity has BYBLOCK color set, and it exists outside a block: it will take on the layout default color which is
white in the modelspace and black in the paperspace.

Layers and Draw Order

• Layer names are case-insensitive, the document layer table keys are stored in lowercase, and in original style in all
other use cases (e.g. entity.dxf.layer).

• Layers do not play a role in entity draw order, only whether they appear at all based on the visibility of the layer.
• It appears that Insert entities have a single element in terms of draw order

– Entities inside a block can overlap each other and so have a draw order inside the block, but two Insert entities
cannot interleave the contents of their blocks. One is completely drawn on top of the other.

• For entities inside a block, the visibility of the layer that the block is inserted does not affect the visibility of the
entity unless the entity was created on layer 0 in which case the reverse is true:

– scenario: block created containing entity A (layer 0) and entity B (layer 1). The block is inserted into layer 2
– entity B visible if and only if layer 1 is visible
– entity A visible if and only if layer 2 is visible

736 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

TEXT

• The anchor of single line TEXT entities (and ATTRIB entities) is always the left-baseline regardless of what align-
ment parameters are stored in the DXF. Those are for re-adjusting the anchor when the text is edited.

• Attrib entities can have formatting commands in them

MTEXT

• The char_height in DXF corresponds to the cap-height of the font.
• The default line spacing is 5/3 * cap-height between the previous baseline and the next baseline. The

line_space_factor is a factor applied directly to this value, so a factor of 3/5 results in 0 space between lines,
because each baseline is 1 * cap-height apart.

• The middle (vertical) justification of MTEXT entities seems to be midpoint between the x-height of the first line
to the baseline of the last line.

• MTEXT word wrapping seems to only break on spaces, not underscores or dashes.
• MTEXT word wrapping seems to treat multiple spaces between lines as if they were a single space.
• Alignment seems to ignore extra spaces at the start or end of lines except for the first line, where spaces at the
beginning of the string have an effect. Whitespace at the beginning of the text can trigger word wrapping, which
creates a single blank line at the start

• If a line ends with an explicit newline character and is shorter than the column width, only one newline is inserted.
• If a line is a single word wider than the column width, it will not be broken but will instead spill outside the text
box. Placing a space before this word will create an empty line and push the word onto the next line.

POINT

• All POINT entities have the same style defined by the HEADER variable $PDMODE.
• POINT entities can be drawn relative to the view scale or in absolute units.

Low Level Functions

Some handy tool functions used internally by ezdxf.
ezdxf.tools.juliandate(date: datetime)→ float

ezdxf.tools.calendardate(juliandate: float)→ datetime

ezdxf.tools.set_flag_state(flags: int, flag: int, state: bool = True)→ int
Set/clear binary flag in data flags.

Parameters
• flags – data value
• flag – flag to set/clear
• state – True for setting, False for clearing

9.8. Reference 737

ezdxf Documentation, Release 1.3.2

ezdxf.tools.guid()→ str
Returns a general unique ID, based on uuid.uuid4().
This function creates a GUID for the header variables $VERSIONGUID and $FINGERPRINTGUID, which
matches the AutoCAD pattern {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}.

ezdxf.tools.bytes_to_hexstr(data: bytes)→ str
Returns data bytes as plain hex string.

ezdxf.tools.suppress_zeros(s: str, leading: bool = False, trailing: bool = True)
Suppress trailing and/or leading 0 of string s.

Parameters
• s – data string
• leading – suppress leading 0
• trailing – suppress trailing 0

ezdxf.tools.normalize_text_angle(angle: float, fix_upside_down=True)→ float
Normalizes text angle to the range from 0 to 360 degrees and fixes upside down text angles.

Parameters
• angle – text angle in degrees
• fix_upside_down – rotate upside down text angle about 180 degree

DXF Unicode Decoder

The DXF format uses a special form of unicode encoding: “\U+xxxx”.
To avoid a speed penalty such encoded characters are not decoded automatically by the regular loading func-
tion:func:ezdxf.readfile, only the recovermodule does the decoding automatically, because this loading mode is already
slow.
This kind of encoding is most likely used only in older DXF versions, because since DXF R2007 the whole DXF file is
encoded in utf8 and a special unicode encoding is not necessary.
The ezdxf.has_dxf_unicode() and ezdxf.decode_dxf_unicode() are new support functions to decode
unicode characters “\U+xxxx” manually.
ezdxf.has_dxf_unicode(s: str)→ bool

Returns True if string s contains \U+xxxx encoded characters.
ezdxf.decode_dxf_unicode(s: str)→ str

Decode \U+xxxx encoded characters.

SAT Format “Encryption”

ezdxf.tools.crypt.encode(text_lines: Iterable[str])→ Iterable[str]
Encode the Standard ACIS Text (SAT) format by AutoCAD “encryption” algorithm.

ezdxf.tools.crypt.decode(text_lines: Iterable[str])→ Iterable[str]
Decode the Standard ACIS Text (SAT) format “encrypted” by AutoCAD.

738 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Developer Guides

Information about ezdxf internals.

Source Code Formatting

Reformat code by Black with the default setting of 88 characters per line:

C:\> black <python-file>

Type Annotations

The use of type annotations is encouraged. New modules should pass mypy without errors in non-strict mode. Using #
type: ignore is fine in tricky situations - type annotations should be helpful in understanding the code and not be a
burden.
The following global options are required to pass mypy without error messages:

[mypy]
python_version = 3.7
ignore_missing_imports = True

Read this to learn where mypy searches for config files.
Use the mypy command line option --ignore-missing-imports and -p to check the whole package from any
location in the file system:

PS D:\Source\ezdxf.git> mypy --ignore-missing-imports -p ezdxf
Success: no issues found in 255 source files

Design

The Package Design for Developers section shows the structure of the ezdxf package for developers with more experience,
which want to have more insight into the package an maybe want to develop add-ons or want contribute to the ezdxf
package.
!!! UNDER CONSTRUCTION !!!

Package Design for Developers

A DXF document is divided into several sections, this sections are managed by the Drawing object. For each section
exist a corresponding attribute in the Drawing object:

Section Attribute
HEADER Drawing.header
CLASSES Drawing.classes
TABLES Drawing.tables
BLOCKS Drawing.blocks
ENTITIES Drawing.entities
OBJECTS Drawing.objects

9.8. Reference 739

https://pypi.org/project/black/
https://pypi.org/project/mypy/
https://pypi.org/project/mypy/
https://mypy.readthedocs.io/en/stable/config_file.html
https://pypi.org/project/mypy/
https://pypi.org/project/mypy/

ezdxf Documentation, Release 1.3.2

Resource entities (LAYER, STYLE, LTYPE, …) are stored in tables in the TABLES section. A table owns the table
entries, the owner handle of table entry is the handle of the table. Each table has a shortcut in the Drawing object:

Table Attribute
APPID Drawing.appids
BLOCK_RECORD Drawing.block_records
DIMSTYLE Drawing.dimstyles
LAYER Drawing.layers
LTYPE Drawing.linetypes
STYLE Drawing.styles
UCS Drawing.ucs
VIEW Drawing.views
VPORT Drawing.viewports

Graphical entities are stored in layouts: Modelspace, Paperspace layouts and BlockLayout. The core manage-
ment object of this layouts is the BLOCK_RECORD entity (BlockRecord), the BLOCK_RECORD is the real owner
of the entities, the owner handle of the entities is the handle of the BLOCK_RECORD and the BLOCK_RECORD also
owns and manages the entity space of the layout which contains all entities of the layout.
For more information about layouts see also: Layout Management Structures

For more information about blocks see also: Block Management Structures

Non-graphical entities (objects) are stored in the OBJECTS section. Every object has a parent object in the OBJECTS
section, most likely a DICTIONARY object, and is stored in the entity space of the OBJECTS section.
For more information about the OBJECTS section see also: OBJECTS Section

All table entries, DXF entities and DXF objects are stored in the entities database accessible as Drawing.entitydb.
The entity database is a simple key, value storage, key is the entity handle, value is the DXF object.
For more information about the DXF data model see also: Data Model

Terminology

States

DXF entities and objects can have different states:
UNBOUND

Entity is not stored in the Drawing entity database and DXF attribute handle is None and attribute doc can
be None

BOUND
Entity is stored in the Drawing entity database, attribute doc has a reference to Drawing and DXF attribute
handle is not None

UNLINKED
Entity is not linked to a layout/owner, DXF attribute owner is None

LINKED
Entity is linked to a layout/owner, DXF attribute owner is not None

Virtual Entity
State: UNBOUND & UNLINKED

740 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Unlinked Entity
State: BOUND & UNLINKED

Bound Entity
State: BOUND & LINKED

Actions

NEW
Create a new DXF document

LOAD
Load a DXF document from an external source

CREATE
Create DXF structures from NEW or LOAD data

DESTROY
Delete DXF structures

BIND
Bind an entity to a Drawing, set entity state to BOUND & UNLINKED and check or create required resources

UNBIND
unbind …

LINK
Link an entity to an owner/layout. This makes an entity to a real DXF entity, which will be exported at the saving
process. Any DXF entity can only be linked to one parent entity like DICTIONARY or BLOCK_RECORD.

UNLINK
unlink …

Loading a DXF Document

Loading a DXF document from an external source, creates a new Drawing object. This loading process has two stages:

First Loading Stage

• LOAD content from external source as SectionDict: loader.load_dxf_structure()
• LOAD tag structures as DXFEntity objects: loader.load_dxf_entities()
• BIND entities: loader.load_and_bind_dxf_content(); Special handling of the BIND process, be-
cause the Drawing is not full initialized, a complete validation is not possible at this stage.

9.8. Reference 741

ezdxf Documentation, Release 1.3.2

Second Loading Stage

Parse SectionDict:
• CREATE sections: HEADER, CLASSES, TABLES, BLOCKS and OBJECTS
• CREATE layouts: Blocks, Layouts
• LINK entities to a owner/layout

The ENTITIES section is a relict from older DXF versions and has to be exported including the modelspace and active
paperspace entities, but all entities reside in a BLOCK definition, even modelspace and paperspace layouts are only
BLOCK definitions and ezdxf has no explicit ENTITIES section.
Source Code: as developer start your journey at ezdxf.document.Drawing.read(), which has no public docu-
mentation, because package-user should use ezdxf.read() and ezdxf.readfile().

New DXF Document

Creating New DXF Entities

The default constructor of each entity type creates a new virtual entity:
• DXF attribute owner is None
• DXF attribute handle is None
• Attribute doc is None

The DXFEntity.new() constructor creates entities with given owner, handle and doc attributes, if doc is not None
and entity is not already bound to a document, the new() constructor automatically bind the entity to the given document
doc.
There exist only two scenarios:

1. UNBOUND: doc is None and handle is None
2. BOUND: doc is not None and handle is not None

Factory functions

• new(), create a new virtual DXF object/entity
• load(), load (create) virtual DXF object/entity from DXF tags
• bind(), bind an entity to a document, create required resources if necessary (e.g. ImageDefReactor, SEQEND)
and raise exceptions for non-existing resources.

– Bind entity loaded from an external source to a document, all referenced resources must exist, but try to repair
as many flaws as possible because errors were created by another application and are not the responsibility of
the package-user.

– Bind an entity from another DXF document, all invalid resources will be removed silently or created (e.g.
SEQEND). This is a simple import from another document without resource import, for a more advanced
import including resources exist the importer add-on.

– Bootstrap problem for binding loaded table entries and objects in the OBJECTS section! Can’t use Auditor
to repair this objects, because the DXF document is not fully initialized.

• is_bound() returns True if entity is bound to document doc

742 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

• unbind() function to remove an entity from a document and set state to a virtual entity, which should also
UNLINK the entity from layout, because an layout can not store a virtual entity.

• cls(), returns the class
• register_entity(), registration decorator
• replace_entity(), registration decorator

Class Interfaces

DXF Entities

• NEW constructor to create an entity from scratch
• LOAD constructor to create an entity loaded from an external source
• DESTROY interface to kill an entity, set entity state to dead, whichmeansentity.is_alive returns False. All
entity iterators like EntitySpace, EntityQuery, and EntityDB must filter (ignore) dead entities. Calling
DXFEntity.destroy() is a regular way to delete entities.

• LINK an entity to a layout by BlockRecord.link(), which set the owner handle to BLOCK_RECORD
handle (= layout key) and add the entity to the entity space of the BLOCK_RECORD and set/clear the paperspace
flag.

DXF Objects

• NEW, LOAD, DESTROY see DXF entities
• LINK: Linking an DXF object means adding the entity to a parent object in the OBJECTS section, most likely
a DICTIONARY object, and adding the object to the entity space of the OBJECTS section, the root-dict is the
only entity in the OBJECTS section which has an invalid owner handle “0”. Any other object with an invalid or
destroyed owner is an orphaned entity. The audit process destroys and removes orphaned objects.

• Extension dictionaries (ACAD_XDICTIONARY) are DICTIONARY objects located in the OBJECTS sections
and can reference/own other entities of the OBJECTS section.

• The root-dictionary is the only entity in the OBJECTS section which has an invalid owner handle “0”. Any other
object with an invalid or destroyed owner is an orphaned entity.

Layouts

• LINK interface to link an entity to a layout
• UNLINK interface to remove an entity from a layout

9.8. Reference 743

ezdxf Documentation, Release 1.3.2

Database

• BIND interface to add an entity to the database of a document
• delete_entity() interface, same as UNBIND and DESTROY an entity

Internal Data Structures

Entity Database

The EntityDB is a simple key/value database to store DXFEntity objects by it’s handle, every Drawing has its own
EntityDB, stored in the Drawing attribute entitydb.
Every DXF entity/object, except tables and sections, are represented as DXFEntity or inherited types, this entities are
stored in the EntityDB, database-key is the dxf.handle as plain hex string.
All iterators like keys(), values(), items() and __iter__() do not yield destroyed entities.

Warning: The get() method and the index operator [], return destroyed entities and entities from the trashcan.

class ezdxf.entitydb.EntityDB

__getitem__(handle: str)→ DXFEntity
Get entity by handle, does not filter destroyed entities nor entities in the trashcan.

__setitem__(handle: str, entity: DXFEntity)→ None
Set entity for handle.

__delitem__(handle: str)→ None
Delete entity by handle. Removes entity only from database, does not destroy the entity.

__contains__(item: str | DXFEntity)→ bool
True if database contains handle.

__len__()→ int
Count of database items.

__iter__()→ Iterator[str]
Iterable of all handles, does filter destroyed entities but not entities in the trashcan.

get(handle: str)→ DXFEntity | None
Returns entity for handle or None if no entry exist, does not filter destroyed entities.

next_handle()→ str
Returns next unique handle.

keys()→ Iterable[str]
Iterable of all handles, does filter destroyed entities.

values()→ Iterable[DXFEntity]
Iterable of all entities, does filter destroyed entities.

items()→ Iterable[Tuple[str, DXFEntity]]
Iterable of all (handle, entities) pairs, does filter destroyed entities.

744 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add(entity: DXFEntity)→ None
Add entity to database, assigns a new handle to the entity if entity.dxf.handle is None. Adding the
same entity multiple times is possible and creates only a single database entry.

new_trashcan()→ Trashcan
Returns a new trashcan, empty trashcan manually by: : func:Trashcan.clear().

trashcan()→ Trashcan
Returns a new trashcan in context manager mode, trashcan will be emptied when leaving context.

purge()→ None
Remove all destroyed entities from database, but does not empty the trashcan.

query(query: str = '*')→ EntityQuery
Entity query over all entities in the DXF document.

Parameters
query – query string

See also:
Entity Query String and Retrieve entities by query language

Entity Space

class ezdxf.entitydb.EntitySpace(entities: Iterable[DXFEntity] | None = None)
An EntitySpace is a collection of DXFEntity objects, that stores only references to DXFEntity objects.
The Modelspace, any Paperspace layout and BlockLayout objects have an EntitySpace container
to store their entities.
__iter__()→ Iterable[DXFEntity]

Iterable of all entities, filters destroyed entities.
__getitem__(index)→ DXFEntity

Get entity at index item

EntitySpace has a standard Python list like interface, therefore index can be any valid list indexing or
slicing term, like a single index layout[-1] to get the last entity, or an index slice layout[:10] to get
the first 10 or fewer entities as list[DXFEntity]. Does not filter destroyed entities.

__len__()→ int
Count of entities including destroyed entities.

has_handle(handle: str)→ bool
True if handle is present, does filter destroyed entities.

purge()

Remove all destroyed entities from entity space.
add(entity: DXFEntity)→ None

Add entity.
extend(entities: Iterable[DXFEntity])→ None

Add multiple entities.
remove(entity: DXFEntity)→ None

Remove entity.

9.8. Reference 745

ezdxf Documentation, Release 1.3.2

clear()→ None
Remove all entities.

DXF Types

Required DXF tag interface:
• property code: group code as int
• property value: tag value of unspecific type
• dxfstr(): returns the DXF string
• clone(): returns a deep copy of tag

DXFTag Factory Functions

ezdxf.lldxf.types.dxftag(code: int, value: Any)→ DXFTag
DXF tag factory function.

Parameters
• code – group code
• value – tag value

Returns: DXFTag or inherited
ezdxf.lldxf.types.tuples_to_tags(iterable: Iterable[tuple[int, Any]])→ Iterable[DXFTag]

Returns an iterable if DXFTag or inherited, accepts an iterable of (code, value) tuples as input.

DXFTag

class ezdxf.lldxf.types.DXFTag(code: int, value: Any)
Immutable DXFTag class.

Parameters
• code – group code as int
• value – tag value, type depends on group code

code

group code as int (do not change)
value

tag value (read-only property)
__eq__(other)→ bool

True if other and self has same content for code and value.
__getitem__(index: int)

Returns code for index 0 and value for index 1, emulates a tuple.
__hash__()

Hash support, DXFTag can be used in sets and as dict key.

746 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

__iter__()

Returns (code, value) tuples.
__repr__()→ str

Returns representation string 'DXFTag(code, value)'.
__str__()→ str

Returns content string '(code, value)'.
clone()→ DXFTag

Returns a clone of itself, this method is necessary for the more complex (and not immutable) DXF tag types.
dxfstr()→ str

Returns the DXF string e.g. ' 0\nLINE\n'

DXFBinaryTag

class ezdxf.lldxf.types.DXFBinaryTag(DXFTag)
Immutable BinaryTags class - immutable by design, not by implementation.
dxfstr()→ str

Returns the DXF string for all vertex components.
tostring()→ str

Returns binary value as single hex-string.

DXFVertex

class ezdxf.lldxf.types.DXFVertex(DXFTag)
Represents a 2D or 3D vertex, stores only the group code of the x-component of the vertex, because the y-group-
code is x-group-code + 10 and z-group-code id x-group-code+20, this is a rule that ALWAYS applies. This tag is
immutable by design, not by implementation.

Parameters
• code – group code of x-component
• value – sequence of x, y and optional z values

dxfstr()→ str
Returns the DXF string for all vertex components.

dxftags()→ Iterable[DXFTag]
Returns all vertex components as single DXFTag objects.

9.8. Reference 747

ezdxf Documentation, Release 1.3.2

NONE_TAG

ezdxf.lldxf.types.NONE_TAG

Special tag representing a none existing tag.

Tags

A list of DXFTag, inherits from Python standard list. Unlike the statement in the DXF Reference “Do not write programs
that rely on the order given here”, tag order is sometimes essential and some group codes may appear multiples times in
one entity. At the worst case (Material: normal map shares group codes with diffuse map) using same group codes
with different meanings.
class ezdxf.lldxf.tags.Tags

Subclass of list.
Collection of DXFTag as flat list. Low level tag container, only required for advanced stuff.
classmethod from_text(text: str)→ Tags

Constructor from DXF string.
dxftype()→ str

Returns DXF type of entity, e.g. 'LINE'.
get_handle()→ str

Get DXF handle. Raises DXFValueError if handle not exist.
Returns

handle as plain hex string like 'FF00'
Raises

DXFValueError – no handle found
replace_handle(new_handle: str)→ None

Replace existing handle.
Parameters

new_handle – new handle as plain hex string e.g. 'FF00'
has_tag(code: int)→ bool

Returns True if a DXFTag with given group code is present.
Parameters

code – group code as int
has_embedded_objects()→ bool

get_first_tag(code: int, default=DXFValueError)→ DXFTag

Returns first DXFTag with given group code or default, if default != DXFValueError, else raises DXF-
ValueError.

Parameters
• code – group code as int
• default – return value for default case or raises DXFValueError

748 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

get_first_value(code: int, default=DXFValueError)→ Any
Returns value of first DXFTag with given group code or default if default != DXFValueError, else raises
DXFValueError.

Parameters
• code – group code as int
• default – return value for default case or raises DXFValueError

find_all(code: int)→ List[DXFTag]
Returns a list of DXFTag with given group code.

Parameters
code – group code as int

filter(codes: Iterable[int])→ Iterable[DXFTag]
Iterate and filter tags by group codes.

Parameters
codes – group codes to filter

collect_consecutive_tags(codes: Iterable[int], start: int = 0, end: int = None)→ Tags
Collect all consecutive tags with group code in codes, start and end delimits the search range. A tag code not
in codes ends the process.

Parameters
• codes – iterable of group codes
• start – start index as int
• end – end index as int, None for end index = len(self)

Returns
collected tags as Tags

tag_index(code: int, start: int = 0, end: int | None = None)→ int
Return index of first DXFTag with given group code.

Parameters
• code – group code as int
• start – start index as int
• end – end index as int, None for end index = len(self)

update(tag: DXFTag)
Update first existing tag with same group code as tag, raises DXFValueError if tag not exist.

set_first(tag: DXFTag)
Update first existing tag with group code tag.code or append tag.

remove_tags(codes: Iterable[int])→ None
Remove all tags inplace with group codes specified in codes.

Parameters
codes – iterable of group codes as int

remove_tags_except(codes: Iterable[int])→ None
Remove all tags inplace except those with group codes specified in codes.

9.8. Reference 749

ezdxf Documentation, Release 1.3.2

Parameters
codes – iterable of group codes

pop_tags(codes: Iterable[int])→ Iterable[DXFTag]
Pop tags with group codes specified in codes.

Parameters
codes – iterable of group codes

classmethod strip(tags: Tags, codes: Iterable[int])→ Tags

Constructor from tags, strips all tags with group codes in codes from tags.
Parameters

• tags – iterable of DXFTag
• codes – iterable of group codes as int

ezdxf.lldxf.tags.group_tags(tags: Iterable[DXFTag], splitcode: int = 0)→ Iterable[Tags]
Group of tags starts with a SplitTag and ends before the next SplitTag. A SplitTag is a tag with code == splitcode,
like (0, ‘SECTION’) for splitcode == 0.

Parameters
• tags – iterable of DXFTag
• splitcode – group code of split tag

class ezdxf.lldxf.extendedtags.ExtendedTags(tags: Iterable[DXFTag] = None, legacy=False)
Represents the extended DXF tag structure introduced with DXF R13.
Args:

tags: iterable of DXFTag legacy: flag for DXF R12 tags
appdata

Application defined data as list of Tags
subclasses

Subclasses as list of Tags
xdata

XDATA as list of Tags
embedded_objects

embedded objects as list of Tags
noclass

Short cut to access first subclass.
get_handle()→ str

Returns handle as hex string.
dxftype()→ str

Returns DXF type as string like “LINE”.
replace_handle(handle: str)→ None

Replace the existing entity handle by a new value.
legacy_repair()

Legacy (DXF R12) tags handling and repair.

750 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

clone()→ ExtendedTags
Shallow copy.

flatten_subclasses()

Flatten subclasses in legacy mode (DXF R12).
There exists DXF R12 with subclass markers, technical incorrect but works if the reader ignore subclass
marker tags, unfortunately ezdxf tries to use this subclass markers and therefore R12 parsing by ezdxf does
not work without removing these subclass markers.
This method removes all subclass markers and flattens all subclasses into ExtendedTags.noclass.

get_subclass(name: str, pos: int = 0)→ Tags
Get subclass name.

Parameters
• name – subclass name as string like “AcDbEntity”
• pos – start searching at subclass pos.

has_xdata(appid: str)→ bool
True if has XDATA for appid.

get_xdata(appid: str)→ Tags
Returns XDATA for appid as Tags.

set_xdata(appid: str, tags: IterableTags)→ None
Set tags as XDATA for appid.

new_xdata(appid: str, tags: 'IterableTags' = None)→ Tags
Append a new XDATA block.
Assumes that no XDATA block with the same appid already exist:

try:
xdata = tags.get_xdata('EZDXF')

except ValueError:
xdata = tags.new_xdata('EZDXF')

has_app_data(appid: str)→ bool
True if has application defined data for appid.

get_app_data(appid: str)→ Tags
Returns application defined data for appid as Tags including marker tags.

get_app_data_content(appid: str)→ Tags
Returns application defined data for appid as Tags without first and last marker tag.

set_app_data_content(appid: str, tags: IterableTags)→ None
Set application defined data for appid for already exiting data.

new_app_data(appid: str, tags: 'IterableTags' = None, subclass_name: str = None)→ Tags
Append a new application defined data to subclass subclass_name.
Assumes that no app data block with the same appid already exist:

try:
app_data = tags.get_app_data('{ACAD_REACTORS', tags)

except ValueError:
app_data = tags.new_app_data('{ACAD_REACTORS', tags)

9.8. Reference 751

ezdxf Documentation, Release 1.3.2

classmethod from_text(text: str, legacy: bool = False)→ ExtendedTags
Create ExtendedTags from DXF text.

Packed DXF Tags

Store DXF tags in compact data structures as list or array.array to reduce memory usage.
class ezdxf.lldxf.packedtags.TagList(data: Iterable = None)

Store data in a standard Python list.
Args:

data: iterable of DXF tag values.
values

Data storage as list.
clone()→ TagList

Returns a deep copy.
classmethod from_tags(tags: Tags, code: int)→ TagList

Setup list from iterable tags.
Parameters

• tags – tag collection as Tags
• code – group code to collect

clear()→ None
Delete all data values.

class ezdxf.lldxf.packedtags.TagArray(data: Iterable = None)
TagArray is a subclass of TagList, which store data in an array.array. Array type is defined by class
variable DTYPE.
Args:

data: iterable of DXF tag values.
DTYPE

array.array type as string
values

Data storage as array.array
set_values(values: Iterable)→ None

Replace data by values.
class ezdxf.lldxf.packedtags.VertexArray(data: Iterable = None)

Store vertices in an array.array('d'). Vertex size is defined by class variable VERTEX_SIZE.
Args:

data: iterable of vertex values as linear list e.g. [x1, y1, x2, y2, x3, y3, ...].
VERTEX_SIZE

Size of vertex (2 or 3 axis).
__len__()→ int

Count of vertices.

752 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

__getitem__(index: int | slice)
Get vertex at index, extended slicing supported.

__setitem__(index: int, point: Sequence[float])→ None
Set vertex point at index, extended slicing not supported.

__delitem__(index: int | slice)→ None
Delete vertex at index, extended slicing supported.

__iter__()→ Iterator[Sequence[float]]
Returns iterable of vertices.

__str__()→ str
String representation.

insert(pos: int, point: Sequence[float])
Insert point in front of vertex at index pos.

Parameters
• pos – insert position
• point – point as tuple

append(point: Sequence[float])→ None
Append point.

extend(points: Iterable[Sequence[float]])→ None
Extend array by points.

set(points: Iterable[Sequence[float]])→ None
Replace all vertices by points.

clear()→ None
Delete all vertices.

clone()→ VertexArray
Returns a deep copy.

classmethod from_tags(tags: Iterable[DXFTag], code: int = 10)→ VertexArray
Setup point array from iterable tags.

Parameters
• tags – iterable of DXFVertex
• code – group code to collect

export_dxf(tagwriter: AbstractTagWriter, code=10)

9.8. Reference 753

ezdxf Documentation, Release 1.3.2

XData

class ezdxf.entities.xdata.XData

Internal management class for XDATA.
See also:

• XDATA user reference: Extended Data (XDATA)

• Wrapper class to store a list in XDATA: XDataUserList
• Wrapper class to store a dict in XDATA: XDataUserDict
• Tutorial: Storing Custom Data in DXF Files

• DXF Internals: Extended Data

• DXF R2018 Reference

__contains__(appid: str)→ bool
Returns True if DXF tags for appid exist.

add(appid: str, tags: Iterable[tuple[int, Any] | DXFTag])→ None
Add a list of DXF tags for appid. The tags argument is an iterable of (group code, value) tuples, where the
group code has to be an integer value. The mandatory XDATA marker (1001, appid) is added automatically
if front of the tags if missing.
Each entity can contain only one list of tags for each appid. Adding a second list of tags for the same appid
replaces the existing list of tags.
The valid XDATA group codes are restricted to some specific values in the range from 1000 to 1071, for
more information see also the internals about Extended Data.

get(appid: str)→ Tags
Returns the DXF tags as Tags list stored by appid.

Raises
DXFValueError – no data for appid exist

discard(appid)
Delete DXF tags for appid. None existing appids are silently ignored.

has_xlist(appid: str, name: str)→ bool
Returns True if list name from XDATA appid exists.

Parameters
• appid – APPID
• name – list name

get_xlist(appid: str, name: str)→ list[tuple]
Get list name from XDATA appid.

Parameters
• appid – APPID
• name – list name

Returns: list of DXFTags including list name and curly braces ‘{’ ‘}’ tags
Raises

754 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A2A628B0-3699-4740-A215-C560E7242F63

ezdxf Documentation, Release 1.3.2

• DXFKeyError – XDATA appid does not exist
• DXFValueError – list name does not exist

set_xlist(appid: str, name: str, tags: Iterable)→ None
Create new list name of XDATA appid with xdata_tags and replaces list name if already exists.

Parameters
• appid – APPID
• name – list name
• tags – list content as DXFTags or (code, value) tuples, list name and curly braces ‘{’ ‘}’ tags
will be added

discard_xlist(appid: str, name: str)→ None
Deletes list name from XDATA appid. Ignores silently if XDATA appid or list name not exist.

Parameters
• appid – APPID
• name – list name

replace_xlist(appid: str, name: str, tags: Iterable)→ None
Replaces list name of existing XDATA appid by tags. Appends new list if list name do not exist, but raises
DXFValueError if XDATA appid do not exist.
Low level interface, if not sure use set_xdata_list() instead.

Parameters
• appid – APPID
• name – list name
• tags – list content as DXFTags or (code, value) tuples, list name and curly braces ‘{’ ‘}’ tags
will be added

Raises
DXFValueError – XDATA appid do not exist

transform(m: Matrix44)→ None
Transform XDATA tags with group codes 1011, 1012, 1013, 1041 and 1042 inplace. For more information
see Extended Data Internals.

Application-Defined Data (AppData)

Starting at DXF R13, DXF objects can contain application-defined codes (AppData) outside of XDATA.
All AppData is defined with a beginning (102, “{APPID”) tag and according to the DXF reference appear should appear
before the first subclass marker.
There are two known use cases of this data structure in Autodesk products:

• ACAD_REACTORS, store handles to persistent reactors in a DXF entity
• ACAD_XDICTIONARY, store handle to the extension dictionary of a DXF entity

Both AppIDs are not defined/stored in the AppID table!

9.8. Reference 755

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.appdata.AppData

Internal management class for Application defined data.
See also:

• User reference: Application-Defined Data (AppData)

• Internals about Application-Defined Codes tags

__contains__(appid: str)→ bool
Returns True if application-defined data exist for appid.

__len__()→ int
Returns the count of AppData.

add(appid: str, data: Iterable[Sequence])→ None
Add application-defined tags for appid. Adds first tag (102, “{APPID”) if not exist. Adds last tag (102, “}”
if not exist.

get(appid: str)→ Tags

Get application-defined data for appid as Tags container. The first tag is always (102, “{APPID”). The last
tag is always (102, “}”).

set(tags: Tags)→ None
Store raw application-defined data tags. The first tag has to be (102, “{APPID”). The last tag has to be (102,
“}”).

discard(appid: str)
Delete application-defined data for appid without raising and error if appid doesn’t exist.

Reactors

class ezdxf.entities.appdata.Reactors

Internal management class for persistent reactor handles. Handles are stored as hex strings like "ABBA".
See also:

• User reference: Reactors
• Internals about Persistent Reactors tags

__contains__(handle: str)→ bool
Returns True if handle is registered.

__len__()→ int
Returns count of registered handles.

__iter__()→ Iterator[str]
Returns an iterator for all registered handles.

add(handle: str)→ None
Add a single handle.

get()→ list[str]
Returns all registered handles as sorted list.

756 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

set(handles: Iterable[str] | None)→ None
Reset all handles.

discard(handle: str)

Discard a single handle.

Documentation Guide

Formatting Guide

This section is only for myself, because of the long pauses between develop iterations, I often forget to be consistent in
documentation formatting.
Documentation is written with Sphinx and reSturcturedText.
Started integration of documentation into source code and using autodoc features of Sphinx wherever useful.
Sphinx theme provided by Read the Docs :

pip install sphinx-rtd-theme

guide— Example module

guide.example_func(a: int, b: str, test: str = None, flag: bool = True)→ None
Parameters a and b are positional arguments, argument test defaults to None and flag to True. Set a to 70 and
b to “x” as an example. Inline code examples example_func(70, 'x') or simple example_func(70,
"x")

• arguments: a, b, test and flags

• literal number values: 1, 2 … 999
• literal string values: “a String”
• literal tags: (5, “F000”)
• inline code: call a example_func(x)
• Python keywords: None, True, False, tuple, list, dict, str, int, float
• Exception classes: DXFAttributeError

class guide.ExampleCls(**kwargs)
The ExampleCls constructor accepts a number of optional keyword arguments. Each keyword argument corre-
sponds to an instance attribute, so for example

e = ExampleCls(flag=True)

flag

This is the attribute flag.
set_axis(axis)

axis as (x, y, z) tuple
Args:

axis: (x, y, z) tuple

9.8. Reference 757

https://github.com/mozman
http://www.sphinx-doc.org/en/master/
http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/master/
https://readthedocs.org

ezdxf Documentation, Release 1.3.2

example_method(flag: bool = False)→ None
Method example_method() of class ExampleCls

Text Formatting

DXF version
DXF R12 (AC1009), DXF R2004 (AC1018)

DXF Types
DXF types are always written in uppercase letters but without further formatting: DXF, LINE, CIRCLE

(internal API)
Marks methods as internal API, gets no public documentation.

(internal class)
Marks classes only for internal usage, gets not public documentation.

Spatial Dimensions
2D and 3D with an uppercase letter D

Axis
x-axis, y-axis and z-axis

Planes
xy-plane, xz-plane, yz-plane

Layouts
modelspace, paperspace [layout], block [layout]

Extended Entity Data
AppData, XDATA, embedded object, APPID

9.9 Launcher

The command line script ezdxf launches various sub-commands:

audit Audit and repair DXF files
draw Draw and convert DXF files by the Matplotlib backend
view PyQt DXF file viewer
browse PyQt DXF structure browser for DXF debugging and curious people
browse-acis PyQt ACIS entity content browser for SAT/SAB debugging
strip Strip comments and THUMBNAILIMAGE section from DXF files
config Manage config files
info Show information and optional stats of DXF files as loaded by ezdxf
hpgl View and/or convert HPGL/2 plot files to DXF, SVG or PDF

The help option -h is supported by the main script and all sub-commands:

C:\> ezdxf -h
usage: ezdxf [-h] [-V] [-v] [--config CONFIG] [--log LOG]

{pp,audit,draw,view,browse,browse-acis,strip,config} ...

Command launcher for the Python package "ezdxf":
https://pypi.org/project/ezdxf/

(continues on next page)

758 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

positional arguments:
{audit,draw,view,browse,strip}
audit audit and repair DXF files
draw draw and convert DXF files by Matplotlib
view view DXF files by the PyQt viewer
browse browse DXF file structure
browse-acis browse ACIS structures in DXF files
strip strip comments from DXF files
config manage config files
info show information and optional stats of DXF files loaded by␣

↪→ezdxf,
this may not represent the original content of the file, use␣

↪→the
browse command to see the original content

optional arguments:
-h, --help show this help message and exit
-V, --version show version and exit
-f, --fonts rebuild system font cache and print all fonts found
-v, --verbose give more output
--config CONFIG path to a config file
--log LOG path to a verbose appending log

Note: The ezdxf script is the only executable script installed on the user system.

9.9.1 System

ezdxf -V shows the ezdxf and Python version your are running and if the C-extensions are used.

ezdxf 1.1.0b1 from c:\source\ezdxf.git\src\ezdxf
Python version: 3.11.2 (tags/v3.11.2:878ead1, Feb 7 2023, 16:38:35) [MSC v.1934 64␣
↪→bit (AMD64)]
using C-extensions: yes

ezdxf -f rebuilds the system font cache and shows all fonts found.

9.9.2 Audit

Audit and recover the DXF file “gear.dxf” and save the recovered version as “gear.rec.dxf”:

C:\> ezdxf audit -s gear.dxf

auditing file: gear.dxf
No errors found.
Saved recovered file as: gear.rec.dxf

Print help:

C:\> ezdxf audit -h
usage: ezdxf audit [-h] [-s] FILE [FILE ...]

(continues on next page)

9.9. Launcher 759

ezdxf Documentation, Release 1.3.2

(continued from previous page)
positional arguments:

FILE audit DXF files

optional arguments:
-h, --help show this help message and exit
-s, --save save recovered files with extension ".rec.dxf"

9.9.3 Draw

Convert the DXF file “gear.dxf” into a SVG file by the Matplotlib backend:
Added in version 1.2.0: support for more backends

C:\> ezdxf draw -o gear.pdf gear.dxf

The “gear.pdf” created by the Matplotlib backend:

Show all output formats supported by the Matplotlib backend on your system. This output may vary:

C:\> ezdxf draw --formats
eps: Encapsulated Postscript
jpg: Joint Photographic Experts Group
jpeg: Joint Photographic Experts Group

(continues on next page)

760 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
pdf: Portable Document Format
pgf: PGF code for LaTeX
png: Portable Network Graphics
ps: Postscript
raw: Raw RGBA bitmap
rgba: Raw RGBA bitmap
svg: Scalable Vector Graphics
svgz: Scalable Vector Graphics
tif: Tagged Image File Format
tiff: Tagged Image File Format

Print help:

C:\> ezdxf draw -h
usage: ezdxf draw [-h] [--backend {matplotlib,qt,mupdf,custom_svg}] [--formats]

[-l LAYOUT]
[--background {DEFAULT,WHITE,BLACK,PAPERSPACE,MODELSPACE,OFF,CUSTOM}

↪→]
[--all-layers-visible] [--all-entities-visible] [-o OUT]
[--dpi DPI] [-f] [-v]
[FILE]

positional arguments:
FILE DXF file to view or convert

options:
-h, --help show this help message and exit
--backend {matplotlib,qt,mupdf,custom_svg}

choose the backend to use for rendering
--formats show all supported export formats and exit
-l LAYOUT, --layout LAYOUT

select the layout to draw, default is "Model"
--background {DEFAULT,WHITE,BLACK,PAPERSPACE,MODELSPACE,OFF,CUSTOM}

choose the background color to use
--all-layers-visible draw all layers including the ones marked as invisible
--all-entities-visible

draw all entities including the ones marked as invisible
(some entities are individually marked as invisible even if
the layer is visible)

-o OUT, --out OUT output filename for export
--dpi DPI target render resolution, default is 300
-f, --force overwrite the destination if it already exists
-v, --verbose give more output

9.9. Launcher 761

ezdxf Documentation, Release 1.3.2

9.9.4 View

View the DXF file “gear.dxf” by the PyQt backend:

C:\> ezdxf view gear.dxf

Print help:

C:\> ezdxf view -h
usage: ezdxf view [-h] [-l LAYOUT] [--lwscale LWSCALE] [FILE]

positional arguments:

(continues on next page)

762 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
FILE DXF file to view

optional arguments:
-h, --help show this help message and exit
-l LAYOUT, --layout LAYOUT

select the layout to draw, default is "Model"
--lwscale LWSCALE set custom line weight scaling, default is 0 to

disable line weights at all

9.9.5 Browse

Browse the internal structure of a DXF file like a file system:

C:\> ezdxf browse gear.dxf

C:\> ezdxf browse -h
usage: ezdxf browse [-h] [-l LINE] [-g HANDLE] [FILE]

positional arguments:
FILE DXF file to browse

optional arguments:
-h, --help show this help message and exit

(continues on next page)

9.9. Launcher 763

ezdxf Documentation, Release 1.3.2

(continued from previous page)
-l LINE, --line LINE go to line number
-g HANDLE, --handle HANDLE

go to entity by HANDLE, HANDLE has to be a hex value without
any prefix like 'fefe'

The browse command stores options in the config file, e.g. for the Notepad++ on Windows:

[browse-command]

text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}
icon_size = 32

text_editor is a simple format string: text_editor.format(filename="test.dxf", num=100)

Quote commands including spaces and always quote the filename argument!
For xed on Linux Mint use (note: absolute path to executable):

[browse-command]

text_editor = /usr/bin/xed "{filename}" +{num}
icon_size = 32

For gedit on Linux use (untested):

[browse-command]

text_editor = /usr/bin/gedit +{num} "{filename}"
icon_size = 32

The browse command opens a DXF structure browser to investigate the internals of a DXF file without interpreting the
content. The intended usage is debugging invalid DXF files, which can not be loaded by the ezdxf.readfile() or
the ezdxf.recover.readfile() functions.

Line Numbers

The low level tag loader ignores DXF comments (group code 999). If there are comments in the DXF file the line numbers
displayed in the DXF browser are not synchronized, use the strip command beforehand to remove all comments from the
DXF file in order to keep the line numbers synchronized.

GUI Features

The tree view on the left shows the outline of the DXF file. The number in round brackets on the right side of each item
shows the count of structure entities within the structure layer, the value in angle brackets on the left side is the entity
handle.
The right list view shows the entity content as DXF tags. Structure tags (data type <ctrl>) are shown in blue, a double
click on a reference handle (datatype <ref>) jumps to the referenced entity, reference handles of non-existent targets are
shown in red.
Clicking on the first structure tag in the list opens the DXF reference provided by Autodesk in the standard web browser.

764 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Auto Reload

The browser automatically displays a dialog for reloading DXF files if they have been modified by an external application.

Menus and Shortcuts

• File Menu
– Open DXF file… Ctrl+O

– Reload DXF file Ctrl+R

– Open in Text Editor Ctrl+T, open the DXF file in the associated text editor at the current location
– Export DXF Entity… Ctrl+E, export the current DXF entity shown in the list view as text file
– Copy selected DXF Tags to Clipboard Ctrl+C, copy the current selected DXF tags into the clipboard
– Copy DXF Entity to Clipboard Ctrl+Shift+C, copy all DXF tags of the current DXF entity shown in
the list view into the clipboard

– Quit Ctrl+Q

• Navigate Menu
– Go to Handle… Ctrl+G

– Go to Line… Ctrl+L

– Find Text… Ctrl+F, opens the find text dialog
– Next Entity Ctrl+Right, go to the next entity in the DXF structure
– Previous Entity Ctrl+Right, go to the previous entity in the DXF structure
– Show Entity in TreeView Ctrl+Down, expand the left tree view to the currently displayed entity in the
list view - this does not happen automatically for performance reasons

– Entity History Back Alt+Left

– Entity History Forward Alt+Right

– Go to HEADERS Section Shift+H

– Go to BLOCKS Section Shift+B

– Go to ENTITIES Section Shift+E

– Go to OBJECTS Section Shift+O

• Bookmarks Menu
– Store Bookmark… Ctrl+Shift+B, store current location as named bookmark
– Go to Bookmark… Ctrl+B, go to stored location

9.9. Launcher 765

ezdxf Documentation, Release 1.3.2

9.9.6 Browse-ACIS

Show and export the SAT or SAB content of ACIS entities:

C:\> ezdxf browse-acis 3dsolid.dxf

The DXF format stores modern solid geometry as SAT data for DXF R2000 - R2010 and as SAB data for DXF R2013
and later. This command shows the content of this entities and also let you export the raw data for further processing.

Entity View

The entity view is a read-only text editor, it’s possible to select and copy parts of the text into the clipboard. To improve
the readability all ACIS entities get automatically an id because AutoCAD and BricsCAD use relative references for ACIS
data export and do not assign entity ids. The id is shown as decimal number in parenthesis after the entity name. The ~
character is a shortcut for a null-pointer.

C:\>ezdxf browse-acis -h
usage: ezdxf browse-acis [-h] [-g HANDLE] [FILE]

positional arguments:
FILE DXF file to browse

(continues on next page)

766 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
options:

-h, --help show this help message and exit
-g HANDLE, --handle HANDLE

go to entity by HANDLE, HANDLE has to be a hex value
without any prefix like 'fefe'

Menus and Shortcuts

• File Menu
– Open DXF file… Ctrl+O

– Reload DXF file Ctrl+R

– Export Current Entity View… Ctrl+E, Export the parsed content of the entity view as text file
– Export Raw SAT/SAB Data… Ctrl+W, export the raw SAT data as text file and the raw SAB data as
a binary file for further processing

– Quit Ctrl+Q

9.9.7 Strip

Strip comment tags (group code 999) from ASCII DXF files and can remove the THUMBNAILIMAGE section. Binary
DXF files are not supported.
Added in version 1.1.3: remove handles from DXF R12 and older

C:\> ezdxf strip -h
usage: ezdxf strip [-h] [-b] [-t] [--handles] [-v] FILE [FILE ...]

positional arguments:
FILE DXF file to process, wildcards "*" and "?" are supported

options:
-h, --help show this help message and exit
-b, --backup make a backup copy with extension ".bak" from the DXF file,

overwrites existing backup files
-t, --thumbnail strip THUMBNAILIMAGE section
--handles remove handles from DXF R12 or older files
-v, --verbose give more output

9.9.8 Config

Manage config files.

C:\> ezdxf config -h
usage: ezdxf config [-h] [-p] [-w FILE] [--home] [--reset]

optional arguments:
-h, --help show this help message and exit
-p, --print print configuration
-w FILE, --write FILE

write configuration

(continues on next page)

9.9. Launcher 767

ezdxf Documentation, Release 1.3.2

(continued from previous page)
--home create config file 'ezdxf.ini' in the user home directory

'~/.config/ezdxf', $XDG_CONFIG_HOME is supported if set

--reset factory reset, delete default config files 'ezdxf.ini'

9.9.9 Info

Show information and optional stats of DXF files as loaded by ezdxf, this may not represent the original content of the
file, use the browse command to see the original content. The upgrade is necessary for very old DXF versions prior to
R12 and for the “special” versions R13 and R14. The -s option shows some statistics about the DXF content like entity
count or table count. Use the -v option show more of everything.

C:\> ezdxf info -h
usage: ezdxf info [-h] [-v] [-s] FILE [FILE ...]

positional arguments:
FILE DXF file to process, wildcards "*" and "?" are supported

options:
-h, --help show this help message and exit
-v, --verbose give more output
-s, --stats show content stats

This is the verbose output for an old DXF R10 file and shows that the loading process created some required structures
which do not exist in DXF R10 files, like the BLOCK_RECORD table or the OBJECTS section:

C:\> ezdxf info -v -s test_R10.dxf

Filename: "test_R10.dxf"
Loaded content was upgraded from DXF Version AC1006 (R10)
Release: R12
DXF Version: AC1009
Maintenance Version: <undefined>
Codepage: ANSI_1252
Encoding: cp1252
Unit system: Imperial
Modelspace units: Unitless
$LASTSAVEDBY: <undefined>
$HANDSEED: 0
$FINGERPRINTGUID: {9EADDC7C-5982-4C68-B770-8A62378C2B90}
$VERSIONGUID: {49336E63-D99B-45EC-803C-4D2BD03A7DE0}
$USERI1=0
$USERI2=0
$USERI3=0
$USERI4=0
$USERI5=0
$USERR1=0.0
$USERR2=0.0
$USERR3=0.0
$USERR4=0.0
$USERR5=0.0
File was not created by ezdxf >= 0.16.4
File was not written by ezdxf >= 0.16.4
Content stats:

(continues on next page)

768 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
LAYER table entries: 18

0
Defpoints
LYR_00
LYR_01
LYR_02
LYR_03
LYR_04
LYR_05
LYR_06
LYR_07
LYR_08
LYR_09
LYR_10
LYR_11
LYR_12
LYR_13
LYR_14
LYR_15

LTYPE table entries: 13
BORDER
ByBlock
ByLayer
CENTER
CONTINUOUS
CUTTING
DASHDOT
DASHED
DIVIDE
DOT
HIDDEN
PHANTOM
STITCH

STYLE table entries: 1
STANDARD

DIMSTYLE table entries: 1
Standard

APPID table entries: 1
ACAD

UCS table entries: 0
VIEW table entries: 0
VPORT table entries: 1

*Active
BLOCK_RECORD table entries: 2

*Model_Space
*Paper_Space

Entities in modelspace: 78
ARC (2)
CIRCLE (2)
LINE (74)

Entities in OBJECTS section: 20
ACDBDICTIONARYWDFLT (1)
ACDBPLACEHOLDER (1)
DICTIONARY (11)
LAYOUT (2)
MATERIAL (3)
MLEADERSTYLE (1)

(continues on next page)

9.9. Launcher 769

ezdxf Documentation, Release 1.3.2

(continued from previous page)
MLINESTYLE (1)

9.9.10 Show Version & Configuration

Show the ezdxf version and configuration:

C:\> ezdxf -Vv

ezdxf v0.16.5b0 @ d:\source\ezdxf.git\src\ezdxf
Python version: 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21) [MSC v.1929 64 bit␣
↪→(AMD64)]
using C-extensions: yes
using Matplotlib: yes

Configuration:
[core]
default_dimension_text_style = OpenSansCondensed-Light
test_files = D:\Source\dxftest
font_cache_directory =
load_proxy_graphics = true
store_proxy_graphics = true
log_unprocessed_tags = false
filter_invalid_xdata_group_codes = true
write_fixed_meta_data_for_testing = false
disable_c_ext = false

[browse-command]
text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}

Environment Variables:
EZDXF_DISABLE_C_EXT=
EZDXF_TEST_FILES=D:\Source\dxftest
EZDXF_CONFIG_FILE=

Existing Configuration Files:
C:\Users\manfred\.config\ezdxf\ezdxf.ini

See also:
Documentation of the ezdxf.options module and the Environment Variables.

9.9.11 HPGL/2 Viewer/Converter

Added in version 1.1.
The hpgl command shows and/or converts HPGL/2 plot files to DXF, SVG or PDF.

770 Chapter 9. Contents

https://en.wikipedia.org/wiki/HP-GL

ezdxf Documentation, Release 1.3.2

DXF

The page content is created at the origin of the modelspace and 1 drawing unit is 1 plot unit (1 plu = 0.025mm) unless
scaling values are provided.
The content of HPGL files is intended to be plotted on white paper, so the appearance on a dark background inmodelspace
is not very clear. To fix this, the --map_black_to_white option maps black fillings and lines to white.
All entities are mapped to a layer named COLOR_<#> according to the pen number. In order to process the content
better, it is also possible to assign the DXF elements an ACI color value according to the pen number through the --aci
option, but then the RGB color is lost because the RGB color always has the higher priority over the ACI value.
The first paperspace layout “Layout0” is set up to print the entire modelspace on one sheet, the size of the page is the size
of the original plot file in millimeters.

SVG

The plot units are mapped 1:1 to viewBox units and the size of image is the size of the original plot file in millimeters.

PDF

The plot units are converted to PDF units (1/72 inch) so the size of image is the size of the original plot file in millimeters.

All Formats

HPGL/2’s merge control works at the pixel level and cannot be replicated by DXF, but to prevent fillings from obscuring
text, the filled polygons are sorted by luminance - this can be forced or disabled by the --merge_control option.
Some plot files that contain pure HPGL/2 code do not contain the escape sequence “Enter HPGL/2 mode”, without this
sequence the HPGL/2 parser cannot recognize the beginning of the HPGL/2 code. The --force option inserts the
“Enter HPGL/2 mode” escape sequence into the data stream, regardless of whether the file is an HPGL/2 plot file or not,
so be careful.

C:\> ezdxf hpgl -h
usage: ezdxf hpgl [-h] [-e FORMAT] [-r {0,90,180,270}] [-x SX] [-y SY] [-m {0,1,2}]

[-f] [--aci] [--map_black_to_white]
[FILE]

positional arguments:
FILE view and/or convert HPGL/2 plot files, wildcards (*, ?)

supported in command line mode

options:
-h, --help show this help message and exit
-e FORMAT, --export FORMAT

convert HPGL/2 plot file to SVG, PDF or DXF from the
command line (no gui)

-r {0,90,180,270}, --rotate {0,90,180,270}
rotate page about 90, 180 or 270 degrees (no gui)

-x SX, --scale_x SX scale page in x-axis direction, use negative values to
mirror page, (no gui)

-y SY, --scale_y SY scale page in y-axis direction, use negative values to
mirror page (no gui)

-m {0,1,2}, --merge_control {0,1,2}
provides control over the order of filled polygons, 0=off

(continues on next page)

9.9. Launcher 771

ezdxf Documentation, Release 1.3.2

(continued from previous page)
(print order), 1=luminance (order by luminance), 2=auto
(default)

-f, --force inserts the mandatory 'enter HPGL/2 mode' escape sequence
into the data stream; use this flag when no HPGL/2 data was
found and you are sure the file is a HPGL/2 plot file

--aci use pen numbers as ACI colors (DXF only)
--map_black_to_white map black RGB plot colors to white RGB, does not affect ACI

colors (DXF only)

Note that plot files are intended to be plotted on white paper.

9.10 Tutorials

9.10.1 Tutorial for Getting Data from DXF Files

This tutorial shows how to get data from an existing DXF document. If you are a new user of ezdxf, read also the tutorial
Usage for Beginners.
Loading the DXF file:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_file.dxf")

except IOError:
print(f"Not a DXF file or a generic I/O error.")
sys.exit(1)

except ezdxf.DXFStructureError:
print(f"Invalid or corrupted DXF file.")
sys.exit(2)

This works well for DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or
major flaws look at the ezdxf.recover module.
See also:

• Document Management

• Usage for Beginners

Layouts

The term layout is used as a synonym for an arbitrary entity space which can contain DXF entities like LINE, CIRCLE,
TEXT and so on. Each DXF entity can only reside in exact one layout.
There are three different layout types:

• Modelspace: the common construction space
• Paperspace: used to to create print layouts
• BlockLayout: reusable elements, every block has its own entity space

A DXF document consist of exact one modelspace and at least one paperspace. DXF R12 has only one unnamed pa-
perspace the later DXF versions support more than one paperspace and each paperspace has a name.

772 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Getting the modelspace layout

The modelspace contains the “real” world representation of the drawing subjects in real world units. The modelspace has
the fixed name “Model” and the DXF document has a special getter method modelspace().

msp = doc.modelspace()

Iterate over DXF entities of a layout

This code shows how to iterate over all DXF entities in modelspace:

helper function
def print_entity(e):

print("LINE on layer: %s\n" % e.dxf.layer)
print("start point: %s\n" % e.dxf.start)
print("end point: %s\n" % e.dxf.end)

iterate over all entities in modelspace
msp = doc.modelspace()
for e in msp:

if e.dxftype() == "LINE":
print_entity(e)

entity query for all LINE entities in modelspace
for e in msp.query("LINE"):

print_entity(e)

All layout objects supports the standard Python iterator protocol and the in operator.

Access DXF attributes of an entity

The e.dxftype()method returns the DXF type, the DXF type is always an uppercase string like "LINE". All DXF
attributes of an entity are grouped in the namespace attribute dxf:

e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer

See Common graphical DXF attributes

If a DXF attribute is not set (the DXF attribute does not exist), a DXFValueError will be raised. The get()method
returns a default value in this case or None if no default value is specified:

If DXF attribute 'paperspace' does not exist, the entity defaults
to modelspace:
p = e.dxf.get("paperspace", 0)

or check beforehand if the attribute exist:

if e.dxf.hasattr("paperspace"):
...

An unsupported DXF attribute raises a DXFAttributeError, to check if an attribute is supported by an entity use:

if e.dxf.is_supported("paperspace"):
...

9.10. Tutorials 773

ezdxf Documentation, Release 1.3.2

Getting a paperspace layout

paperspace = doc.paperspace("layout0")

The code above retrieves the paperspace named layout0, the usage of the Paperspace object is the same as of the
modelspace object. DXF R12 provides only one paperspace, therefore the paperspace name in the method call doc.
paperspace("layout0") is ignored or can be left off. For newer DXF versions you can get a list of the available
layout names by the methods layout_names() and layout_names_in_taborder().

Retrieve entities by query language

Ezdxf provides a flexible query language for DXF entities. All layout types have a query() method to start an entity
query or use the ezdxf.query.new() function.
The query string is the combination of two queries, first the required entity query and second the optional attribute query,
enclosed in square brackets: "EntityQuery[AttributeQuery]"
The entity query is a whitespace separated list of DXF entity names or the special name *. Where * means all DXF
entities, all DXF names have to be uppercase. The * search can exclude entity types by adding the entity name with a
preceding ! (e.g. * !LINE, search all entities except lines).
The attribute query is used to select DXF entities by its DXF attributes. The attribute query is an addition to the entity
query and matches only if the entity already match the entity query. The attribute query is a boolean expression, supported
operators: and, or, !.
See also:
Entity Query String

Get all LINE entities from the modelspace:

msp = doc.modelspace()
lines = msp.query("LINE")

The result container EntityQuery also provides the query() method to further refine the query, such as retrieving
all LINE entities at layer construction:

construction_lines = lines.query('*[layer=="construction"]')

The * is a wildcard for all DXF types, in this case you could also use LINE instead of *, * works here because the source
just contains LINE entities.
This could be executed as a single query:

lines = msp.query('LINE[layer=="construction"]')

An advanced query for getting all modelspace entities at layer construction, but excluding entities with linetype
DASHED:

not_dashed_entities = msp.query('*[layer=="construction" and linetype!="DASHED"]')

774 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Extended EntityQuery Features

The EntityQuery class has properties and overloaded operators to build extended queries by Python features instead
of a query string.
Same task as in the previous section but using features of the EntityQuery container:

The overloaded rational operators return an EntityQuery object and not a bool value!
lines = msp.query("LINES").layer == "construction"
not_dashed_lines = lines.linetype != "DASHED"

See also:
Extended EntityQuery Features

Retrieve entities by groupby() function

The groupby() function searches and group entities by a user defined criteria. As an example let’s group all entities
frommodelspace by layer, the result will be a dict with layer names as dict-key and a list of all entities from the modelspace
matching this layer as dict-value:

from ezdxf.groupby import groupby
group = groupby(entities=msp, dxfattrib="layer")

The entities argument can be any container or generator which yields DXF entities:

group = msp.groupby(dxfattrib="layer")

for layer, entities in group.items():
print(f'Layer "{layer}" contains following entities:')
for entity in entities:

print(f" {entity}")
print("-"*40)

The previous example shows how to group entities by a single DXF attribute. For a more advanced query create a custom
key function, which accepts a DXF entity as argument and returns a hashable value as dict-key or None to exclude the
entity.
The following example shows how to group entities by layer and color, the dict-key is a (layer, color) tuple and
the dict-value is a list of entities with matching DXF attributes:

def layer_and_color_key(entity):
return None to exclude entities from the result container
if entity.dxf.layer == "0": # exclude entities from default layer "0"

return None
else:

return entity.dxf.layer, entity.dxf.color

group = msp.groupby(key=layer_and_color_key)
for key, entities in group.items():

print(f'Grouping criteria "{key}" matches following entities:')
for entity in entities:

print(f" {entity}")
print("-"*40)

The groupby() function catches DXFAttributeError exceptions while processing entities and excludes this en-
tities from the result. There is no need to worry about DXF entities which do not support certain attributes, they will be
excluded automatically.

9.10. Tutorials 775

ezdxf Documentation, Release 1.3.2

See also:
groupby() documentation

9.10.2 Tutorial for Creating DXF Drawings

Create a new DXF document by the ezdxf.new() function:

import ezdxf

create a new DXF R2010 document
doc = ezdxf.new("R2010")

add new entities to the modelspace
msp = doc.modelspace()
add a LINE entity
msp.add_line((0, 0), (10, 0))
save the DXF document
doc.saveas("line.dxf")

New entities are always added to layouts, a layout can be the modelspace, a paperspace layout or a block layout.
See also:
Thematic Index of Layout Factory Methods

Predefined Resources

Ezdxf creates new DXF documents with as little content as possible, this means only the resources that are absolutely
necessary are created. The ezdxf.new() function can create some standard resources, such as linetypes and text
styles, by setting the argument setup to True.

import ezdxf

doc = ezdxf.new("R2010", setup=True)
msp = doc.modelspace()
msp.add_line((0, 0), (10, 0), dxfattribs={"linetype": "DASHED"})

The defined standard linetypes are shown in the basic concept section for Linetypes and the available text styles are shown
in the Tutorial for Text.

Important: To see the defined text styles in a DXF viewer or CAD application, the applications have to know where the
referenced TTF fonts can be found. This configuration is not possible by ezdxf and has to be done for each application as
described in their documentation.
See also: Font Resources

776 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Simple DXF R12 drawings

The r12writer add-on creates simple DXF R12 drawings with a restricted set of DXF types: LINE, CIRCLE, ARC,
TEXT, POINT, SOLID, 3DFACE and POLYLINE.
The advantage of the r12writer is the speed and the small memory footprint, all entities are written directly to a file or
stream without creating a document structure in memory.
See also:
r12writer

9.10.3 Tutorial for Common Graphical Attributes

The graphical attributes color, linetype, lineweight, true_color, transparency, ltscale and in-
visible are available for all graphical DXF entities and are located in the DXF namespace attribute dxf of the DXF
entities. All these attributes are optional and all except for true_color and transparency have a default value.
Not all of these attributes are supported by all DXF versions. This table shows the minimum required DXF version for
each attribute:

R12 color, linetype
R2000 lineweight, ltscale, invisible
R2004 true_color, transparency

Color

Please read the section about the AutoCAD Color Index (ACI) to understand the basics.
The usage of the color attribute is very straight forward. Setting the value is:

entity.dxf.color = 1

and getting the value looks like this:

value = entity.dxf.color

The color attribute has a default value of 256, which means take the color defined by the layer associated to the entity.
The ezdxf.colors module defines some constants for often used color values:

entity.dxf.color = ezdxf.colors.RED

Theezdxf.colors.aci2rgb() function converts theACI value to the RGB value of the default modelspace palette.
See also:

• Basics about AutoCAD Color Index (ACI)

• ezdxf.colors module

9.10. Tutorials 777

ezdxf Documentation, Release 1.3.2

True Color

Please read the section about True Color to understand the basics.
The easiest way is to use the rgb property to set and get the true color values as RGB tuples:

entity.rgb = (255, 128, 16)

The rgb property return None if the true_color attribute is not present:

rgb = entity.rgb
if rgb is not None:

r, g, b = rgb

Setting and getting the true_color DXF attribute directly is possible and the ezdxf.colors module has helper
function to convert RGB tuples to 24-bit value and back:

entity.dxf.true_color = ezdxf.colors.rgb2int(255, 128, 16)

The true_color attribute is optional does not have a default value and therefore it is not safe to use the attribute
directly, check if the attribute exists beforehand:

if entity.dxf.hasattr("true_color"):
r, g, b = ezdxf.colors.int2rgb(entity.dxf.true_color)

or use the get() method of the dxf namespace attribute to get a default value if the attribute does not exist:

r, g, b = ezdxf.colors.int2rgb(entity.dxf.get("true_color", 0)

See also:
• Basics about True Color
• ezdxf.colors module

Transparency

Please read the section about Transparency to understand the basics.
It’s recommended to use the transparency property of the DXFGraphic base class. The transparency prop-
erty is a float value in the range from 0.0 to 1.0 where 0.0 is opaque and 1.0 if fully transparent:

entity.transparency = 0.5

or set the values of the DXF attribute by constants defined in the ezdxf.colors module:

entity.dxf.transparency = ezdxf.colors.TRANSPARENCY_50

The default setting for transparency in CAD applications is always transparency by layer, but the transparency
property in ezdxf has a default value of 0.0 (opaque), so there are additional entity properties to check if the transparency
value should be taken from the associated entity layer or from the parent block:

if entity.is_transparency_by_layer:
...

elif entity.is_transparency_by_block:
...

else:
...

778 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The top level entity attribute transparency does not support setting transparency by layer or block:

from ezdxf import colors

...

set transparency by layer by removing the DXF attribute "transparency":
entity.dxf.discard("transparency")

set transparency by block:
entity.dxf.transparency = colors.TRANSPARENCY_BYBLOCK

there are also some handy constants in the colors module:
TRANSPARENCY_10 upto TRANSPARENCY_90 in steps of 10
entity.dxf.transparency = colors.TRANSPARENCY_30 # set 30% transparency
entity.dxf.transparency = colors.OPAQUE

See also:
• Basics about Transparency
• ezdxf.colors module

Linetype

Please read the section about Linetypes to understand the basics.
The linetype attribute contains the name of the linetype as string and can be set by the dxf namespace attribute
directly:

entity.dxf.linetype = "DASHED" # linetype DASHED must exist!

The linetype attribute is optional and has a default value of “BYLAYER”, so the attribute can always be used without
any concerns:

name = entity.dxf.linetype

Warning: Make sure the linetype you assign to an entity is really defined in the linetype table otherwise AutoCAD
will not open the DXF file. There are no implicit checks for that by ezdxf but you can call the audit() method of
the DXF document explicitly to validate the document before exporting.

Ezdxf creates new DXF documents with as little content as possible, this means only the resources that are absolutely
necessary are created. The ezdxf.new() function can create some standard linetypes by setting the argument setup to
True:

doc = ezdxf.new("R2010", setup=True)

See also:
• Basics about Linetypes
• Tutorial for Creating Linetype Pattern

9.10. Tutorials 779

ezdxf Documentation, Release 1.3.2

Lineweight

Please read the section about Lineweights to understand the basics.
The lineweight attribute contains the lineweight as an integer value and can be set by the dxf namespace attribute
directly:

entity.dxf.lineweight = 25

The lineweight value is the line width in millimeters times 100 e.g. 0.25mm = 25, but only certain values are valid
for more information go to section: Lineweights.
Values < 0 have a special meaning and can be imported as constants from ezdxf.lldxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT_DEFAULT

The lineweight attribute is optional and has a default value of -1, so the attribute can always be used without any
concerns:

lineweight = entity.dxf.lineweight

Important: You have to enable the option to show lineweights in your CAD application or viewer to see the effect on
screen, which is disabled by default, the same has to be done in the page setup options for plotting lineweights.

activate on screen lineweight display
doc.header["$LWDISPLAY"] = 1

See also:
• Basics about Lineweights

Linetype Scale

The ltscale attribute scales the linetype pattern by a float value and can be set by the dxf namespace attribute directly:

entity.dxf.ltscale = 2.0

The ltscale attribute is optional and has a default value of 1.0, so the attribute can always be used without any concerns:

scale = entity.dxf.ltscale

See also:
• Basics about Linetypes

780 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Invisible

The invisible attribute an boolean value (0/1) which defines if an entity is invisible or visible and can be set by the
dxf namespace attribute directly:

entity.dxf.invisible = 1

The invisible attribute is optional and has a default value of 0, so the attribute can always be used without any
concerns:

is_invisible = bool(entity.dxf.invisible)

GfxAttribs

When adding new entities to an entity space like the modelspace or a block definition, the factory methods expect the
graphical DXF attributes by the argument dxfattribs. This object can be a Python dictwhere the key is the DXF attribute
name and the value is the attribute value, or better use the GfxAttribs object which has some additional validation
checks and support for code completions by IDEs:

import ezdxf
from ezdxf.gfxattribs import GfxAttribs

doc = ezdxf.new()
msp = doc.modelspace()

line = msp.add_line(
(0, 0), (10, 10), dxfattribs=GfxAttribs(layer="0", rgb=(25, 128, 16))

)

See also:
• ezdxf.gfxattribs module

9.10.4 Tutorial for Layers

If you are not familiar with the concept of layers, please read this first: Concept of Layers
Reminder: a layer definition is not required for using a layer!

Create a Layer Definition

import ezdxf

doc = ezdxf.new(setup=True) # setup required line types
msp = doc.modelspace()
doc.layers.add(name="MyLines", color=7, linetype="DASHED")

The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using
"BYLAYER" as linetype string and 256 as color, both values are default values for new entities so you can leave off these
assignments:

msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"})

The new created line will be drawn with color 7 and linetype "DASHED".

9.10. Tutorials 781

ezdxf Documentation, Release 1.3.2

Moving an Entity to a Different Layer

Moving an entity to a different layer is a simple assignment of the new layer name to the layer attribute of the entity.

line = msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"})
move the entity to layer "OtherLayer"
line.dxf.layer = "OtherLayer"

Changing Layer State

Get the layer definition object from the layer table:

my_lines = doc.layers.get('MyLines')

Check the state of the layer:

my_lines.is_off() # True if layer is off
my_lines.is_on() # True if layer is on
my_lines.is_locked() # True if layer is locked
layer_name = my_lines.dxf.name # get the layer name

Change the state of the layer:

switch layer off, entities at this layer will not shown in CAD applications/viewers
my_lines.off()

lock layer, entities at this layer are not editable in CAD applications
my_lines.lock()

Get/set the color of a layer by property Layer.color, because the DXF attribute Layer.dxf.color is misused
for switching the layer on and off, the layer is off if the color value is negative.
Changing the layer properties:

my_lines.dxf.linetype = "DOTTED"
my_lines.color = 13 # preserves on/off state of layer

See also:
For all methods and attributes see class Layer.

Check Available Layers

The LayerTable object supports some standard Python protocols:

iteration
for layer in doc.layers:

if layer.dxf.name != "0":
layer.off() # switch all layers off except layer "0"

check for existing layer definition
if "MyLines" in doc.layers:

layer = doc.layers.get("MyLines")

layer_count = len(doc.layers) # total count of layer definitions

782 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Renaming a Layer

The Layer class has a method for renaming the layer, but has same limitations, not all places where layer references can
occur are documented, third-party entities are black-boxes with unknown content and layer references could be stored in
the extended data section of any DXF entity or in a XRECORD entity, so some references may reference a non-existing
layer definition after the renaming, at least these references are still valid, because a layer definition is not required for
using a layer.

my_lines = doc.layers.get("MyLines")
my_lines.rename("YourLines")

Deleting a Layer Definition

Delete a layer definition:

doc.layers.remove("MyLines")

This just deletes the layer definition, all DXF entities referencing this layer still exist, if they inherit any properties from
the deleted layer they will now get the default layer properties.

Warning: The behavior of entities referencing the layer by handle is unknown and may break the DXF document.

Deleting All Entities From a Layer

Because of all these uncertainties about layer references mentioned above, deleting all entities referencing a certain layer
from a DXF document is not implemented as an API call!
Nonetheless deleting all graphical entities from the DXF document which do reference a certain layer by the layer
attribute is a safe procedure:

key_func = doc.layers.key
layer_key = key_func("MyLines")
The trashcan context-manager is a safe way to delete entities from the
entities database while iterating.
with doc.entitydb.trashcan() as trash:

for entity in doc.entitydb.values():
if not entity.dxf.hasattr("layer"):

continue
if layer_key == key_func(entity.dxf.layer):

safe destruction while iterating
trash.add(entity.dxf.handle)

9.10. Tutorials 783

ezdxf Documentation, Release 1.3.2

9.10.5 Tutorial for Creating Linetype Pattern

Simple line type example:

You can define your own linetypes. A linetype definition has a name, a description and line pattern elements:

elements = [total_pattern_length, elem1, elem2, ...]

total_pattern_length
Sum of all linetype elements (absolute values)

elem
if elem > 0 it is a line, if elem < 0 it is gap, if elem == 0.0 it is a dot

Create a new linetype definition:

import ezdxf
from ezdxf.tools.standards import linetypes # some predefined linetypes

doc = ezdxf.new()
msp = doc.modelspace()

my_line_types = [
(

"DOTTED",
"Dotted",
[0.2, 0.0, -0.2],

),
(

"DOTTEDX2",
"Dotted (2x) ",
[0.4, 0.0, -0.4],

),
(

"DOTTED2",
"Dotted (.5) ",
[0.1, 0.0, -0.1],

),
]
for name, desc, pattern in my_line_types:

if name not in doc.linetypes:
doc.linetypes.add(

name=name,
pattern=pattern,
description=desc,

)

Setup some predefined linetypes:

for name, desc, pattern in linetypes():
if name not in doc.linetypes:

doc.linetypes.add(
name=name,
pattern= pattern,
description=desc,

)

784 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Check Available Linetypes

The linetypes object supports some standard Python protocols:

iteration
print("available linetypes:")
for lt in doc.linetypes:

print(f"{lt.dxf.name}: {lt.dxf.description}")

check for existing linetype
if "DOTTED" in doc.linetypes:

pass

count = len(doc.linetypes) # total count of linetypes

Removing Linetypes

Warning: Ezdxf does not check if a linetype is still in use and deleting a linetype which is still in use generates an
invalid DXF file. The audit process audit() of the DXF document removes linetype attributes referencing
non existing linetypes.

You can delete a linetype:

doc.layers.remove("DASHED")

This just removes the linetype definition, the linetype attribute of DXF entities may still refer the removed linetype
definition “DASHED” and AutoCAD will not open DXF files including undefined linetypes.

9.10.6 Tutorial for Creating Complex Linetype Pattern

In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in line types.
Complex linetype example with text:

Complex line type example with shapes:

For easy usage the pattern string for complex line types is mostly the same string as the pattern definition strings in
AutoCAD “.lin” files.
Example for complex line type TEXT:

doc = ezdxf.new("R2018") # DXF R13 or later is required

doc.linetypes.add(
name="GASLEITUNG2",
linetype definition string from acad.lin:
pattern='A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25',
description= "Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----",

(continues on next page)

9.10. Tutorials 785

ezdxf Documentation, Release 1.3.2

(continued from previous page)
length=1, # required for complex line types

})

The pattern always starts with an “A”, the following float values have the same meaning as for simple linetypes, a value >
0 is a line, a value < 0 is a gap, and a 0 is a point, the opening square bracket “[” starts the complex part of the linetype
pattern.
The text after the “[” defines the complex linetype:

• A text in quotes (e.g. “GAS”) defines a complex TEXT linetype and represents the pattern text itself.
• A text without quotes is a SHAPE name (in “.lin” files) and defines a complex SHAPE linetype. Ezdxf can not

translate this SHAPE name from the “.lin” file into the required shape file index, so *YOU have to translate this
SHAPE name into the shape file index, e.g. saving the file with AutoCAD as DXF and searching for the DXF
linetype definition, see example below and the DXF Internals: LTYPE Table.

For complex TEXT linetypes the second parameter is the text style, for complex SHAPE linetypes the second parameter
is the shape file name, the shape file has to be in the same directory as the DXF file or in one of the CAD application
support paths.
The meaning of the following comple linetype parameters are shown in the table below:

S scaling factor, always > 0, if S=0 the TEXT or SHAPE is not visible
R or U rotation relative to the line direction
X x-direction offset (along the line)
Y y-direction offset (perpendicular to the line)

These parameters are case insensitive and the closing square bracket “]” ends the complex part of the linetype pattern.
The fine tuning of this parameters is a try an error process, for complex TEXT linetypes the scaling factor (e.g. the
STANDARD text style) sets the text height (e.g. “S=0.1” sets the text height to 0.1 units), by shifting in y-direction by
half of the scaling factor, the text is vertically centered to the line. For the x-direction it seems to be a good practice to
place a gap in front of the text and after the text, find x shifting value and gap sizes by try and error. The overall length is
at least the sum of all line and gap definitions (absolute values).
Example for complex line type SHAPE:

doc.linetypes.add("GRENZE2",
linetype definition in acad.lin:
A,.25,-.1,[BOX,ltypeshp.shx,x=-.1,s=.1],-.1,1
replacing BOX by shape index 132 (got index from an AutoCAD file),
ezdxf can't get shape index from ltypeshp.shx
pattern="A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1",
description="Grenze eckig ----[]-----[]----[]-----[]----[]--",
length= 1.45, # required for complex line types

})

Complex line types with shapes only work if the associated shape file (e. g. ltypeshp.shx) and the DXF file are in the
same directory or the shape file is placed in one of the CAD application support folders.

786 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.10.7 Tutorial for Simple DXF Entities

These are basic graphical entities located in an entity space like the modelspace or a block definition and only support the
common graphical attributes.
The entities in the following examples are always placed in the xy-plane of the WCS aka the 2D drawing space. Some
of these entities can only be placed outside the xy-plane in 3D space by utilizing the OCS, but this feature is beyond the
scope of this tutorial, for more information about that go to: Tutorial for OCS/UCS Usage.
Prelude to all following examples:

import ezdxf
from ezdxf.gfxattribs import GfxAttribs

doc = ezdxf.new()
doc.layers.new("ENTITY", color=1)
msp = doc.modelspace()
attribs = GfxAttribs(layer="ENTITY")

See also:
• Tutorial for Creating DXF Drawings

• Tutorial for Layers

• ezdxf.gfxattribs module

Point

The Point entity marks a 3D point in theWCS:

point = msp.add_point((10, 10), dxfattribs=attribs)

All Point entities have the same styling stored in the header variable $PDMODE, for more information read the refer-
ence of class Point.
See also:

• Reference of class Point
• Tutorial for Common Graphical Attributes

Line

The Line entity is a 3D line with a start- and an end point in theWCS:

line = msp.add_line((0, 0), (10, 10), dxfattribs=attribs)

See also:
• Reference of class Line
• Tutorial for Common Graphical Attributes

• ezdxf.math.ConstructionLine

9.10. Tutorials 787

ezdxf Documentation, Release 1.3.2

Circle

The Circle entity is an OCS entity defined by a center point and a radius:

circle = msp.add_circle((10, 10), radius=3, dxfattribs=attribs)

See also:
• Reference of class Circle
• Tutorial for Common Graphical Attributes

• ezdxf.math.ConstructionCircle

Arc

The Arc entity is an OCS entity defined by a center point, a radius a start- and an end angle in degrees:

arc = msp.add_arc((10, 10), radius=3, start_angle=30, end_angle=120,␣
↪→dxfattribs=attribs)

The arc goes always in counter-clockwise orientation around the z-axis more precisely the extrusion vector of OCS, but
this is beyond the scope of this tutorial.
The helper class ezdxf.math.ConstructionArc provides constructors to create arcs from different scenarios:

• from_2p_angle: arc from 2 points and an angle
• from_2p_radius: arc from 2 points and a radius
• from_3p: arc from 3 points

This example creates an arc from point (10, 0) to point (0, 0) passing the point (5, 3):

from ezdxf.math import ConstructionArc

-x-x-x- snip -x-x-x-

arc = ConstructionArc.from_3p(
start_point=(10, 0), end_point=(0, 0), def_point=(5, 3)

)
arc.add_to_layout(msp, dxfattribs=attribs)

See also:
• Reference of class Arc
• Tutorial for Common Graphical Attributes

• ezdxf.math.ConstructionArc

788 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Ellipse

The Ellipse entity requires DXF R2000 or newer and is a trueWCS entity. The ellipse is defined by a center point, a
vector for the major axis, the ratio between major- and minor axis and the start- and end parameter in radians:

ellipse = msp.add_ellipse(
(10, 10), major_axis=(5, 0), ratio=0.5, start_param=0, end_param=math.pi,␣

↪→dxfattribs=attribs
)

When placed in 3D space the extrusion vector defines the normal vector of the ellipse plane and the minor axis is the
extrusion vector cross the major axis.
See also:

• Reference of class Ellipse
• Tutorial for Common Graphical Attributes

• ezdxf.math.ConstructionEllipse

Further Tutorials

• Tutorial for LWPolyline

• Tutorial for Spline

• Tutorial for Text

• Tutorial for MText and MTextEditor

• Tutorial for Hatch

• Tutorial for MultiLeader

• Tutorial for Mesh

9.10.8 Tutorial for Entity Selection

This tutorial shows how to use the ezdxf.selectmodule, which provides functions to select entities based on various
shapes. These selection functions offer a way to filter entities based on their spatial location.
This is the base document for this tutorial:

Why Bounding Boxes?

The select module primarily relies on bounding boxes to perform selections. Bounding boxes offer a fast way to
identify potential overlaps between entities and the selection shape. This approach prioritizes performance over absolute
accuracy.

Note: The bounding boxes for text-based entities and entities containing curves are not accurate! For more information
read the docs for the ezdxf.bbox module.

9.10. Tutorials 789

ezdxf Documentation, Release 1.3.2

Source of Entities

The source of the selection can be any iterable of DXF entities, like the modelspace, any paperspace layout or a block
layout, also the result of an entity query as anEntityQuery container, or any collection of DXF entities that implements
the __iter__() method.

Selection Shapes

• Window: Defines a rectangular selection area.
• Circle: Selects entities within a circular area.
• Polygon: Selects entities based on the shape of a closed polygon.

Using Selection Functions

These selection functions utilize the selection shapes:
• bbox_inside(): Selects entities whose bounding box lies withing the selection shape.
• bbox_outside(): Selects entities whose bounding box is completely outside the selection shape.
• bbox_overlap(): Selects entities whose bounding box overlaps the selection shape.

Additional selection functions:
• bbox_chained(): Selects entities that are linked together by overlapping bounding boxes.
• bbox_crosses_fence(): Selects entities whose bounding box overlaps an open polyline.
• point_in_bbox(): Selects entities where the selection point lies within the bounding box.

The functions return an EntityQuery object, which provides access to the selected entities. You can iterate over the
EntityQuery to access each selected entity.

790 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Bounding Box Inside Selection

Selects entities which bounding boxes are completely within the selection shape.
Example to select entities inside a window:

import ezdxf
from ezdxf import select

doc = ezdxf.readfile("base.dxf")
msp 0 doc.modelspace()

window = select.Window((150, 105), (280, 240))
for entity in select.bbox_inside(window, msp):

print(str(entity))

output:

CIRCLE(#9D)
LWPOLYLINE(#9E)

Bounding Box Outside Selection

Selects entities whose bounding box is completely outside the selection shape.

window = select.Window((185, 105), (245, 240))
for entity in select.bbox_outside(window, msp):

print(str(entity))

output:

TEXT(#9F)
SPLINE(#A0)
LINE(#A1)

9.10. Tutorials 791

ezdxf Documentation, Release 1.3.2

Bounding Box Overlap Selection

Selects entities whose bounding box overlaps the selection shape.
This function works similar to the crossing selection in CAD applications, but not exactly the same. The function selects
entities whose bounding boxes overlap the selection shape. This will also select elements where all of the entity geometry
is outside the selection shape, but the bounding box overlaps the selection shape, e.g. border polylines.

window = select.Window((150, 105), (280, 240))
for entity in select.bbox_overlap(window, msp):

print(str(entity))

output:

792 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

CIRCLE(#9D)
LWPOLYLINE(#9E)
TEXT(#9F)
SPLINE(#A0)
LINE(#A1)
LWPOLYLINE(#A2)

Bounding Box Chained Selection

Selects elements that are directly or indirectly connected to each other by overlapping bounding boxes. The selection
begins at the specified starting element.

choose entity for the beginning of the chain:
line = msp.query("LINE").first
for entity in select.bbox_chained(line, msp):

print(str(entity))

output:

LINE(#A1)
CIRCLE(#9D)
LWPOLYLINE(#9E)
SPLINE(#A0)

9.10. Tutorials 793

ezdxf Documentation, Release 1.3.2

Bounding Box Crosses Fence

Selects entities whose bounding box intersects an open polyline.

for entity in select.bbox_crosses_fence([(83, 101), (186, 193), (300, 107)], msp):
print(str(entity))

output:

CIRCLE(#9D)
LWPOLYLINE(#9E)
SPLINE(#A0)
LINE(#A1)

Note: The polyline does not cross the entity geometry itself!

Point In Bounding Box Selection

Selects entities where the selection point lies within the bounding box.

for entity in select.bbox_point((264, 140), msp):
print(str(entity))

output:

LWPOLYLINE(#9E)
SPLINE(#A0)

794 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Circle Selection

For the circle shape, the selection tests are carried out on the real circlar area.
This example selects all entities around the CIRCLE entity within a 60 unit radius whose bounding box overlaps the circle
selection:

entity = msp.query("CIRCLE").first
circle = select.Circle(entity.dxf.center, radius=60)
for entity in select.bbox_overlap(circle, msp):

print(str(entity))

output:

9.10. Tutorials 795

ezdxf Documentation, Release 1.3.2

CIRCLE(#9D)
LWPOLYLINE(#9E)
TEXT(#9F)
SPLINE(#A0)

Polygon Selection

As for the circle shape, the polygon selection tests are carried out on the real polygon area.

Note: This may not work 100% correctly if the selection polygon has a complex concave shape!

This example selects all entities whose bounding box lies entirely within the selection polygon:

polygon = select.Polygon([(110, 168), (110, 107), (316, 107), (316, 243), (236, 243)])
for entity in select.bbox_inside(polygon, msp):

print(str(entity))

output:

LWPOLYLINE(#9E)
SPLINE(#A0)
LINE(#A1)

796 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.10.9 Tutorial for Blocks

If you are not familiar with the concept of blocks, please read this first: Concept of Blocks

Create a Block

Blocks are managed as BlockLayout objects by the BlocksSection object, every drawing has only one blocks
section referenced by attribute Drawing.blocks.

import ezdxf
import random # needed for random placing points

def get_random_point():
"""Returns random x, y coordinates."""
x = random.randint(-100, 100)
y = random.randint(-100, 100)
return x, y

Create a new drawing in the DXF format of AutoCAD 2010
doc = ezdxf.new('R2010')

Create a block with the name 'FLAG'
flag = doc.blocks.new(name='FLAG')

Add DXF entities to the block 'FLAG'.
The default base point (= insertion point) of the block is (0, 0).
flag.add_lwpolyline([(0, 0), (0, 5), (4, 3), (0, 3)]) # the flag symbol as 2D␣
↪→polyline
flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a␣
↪→circle

Block References (Insert)

A block reference can be created by adding an Insert entity to any of these layout types:
• Modelspace

• Paperspace

• BlockLayout

A block reference can be scaled and rotated individually. Lets add some random flags to the modelspace:

Get the modelspace of the drawing.
msp = doc.modelspace()

Get 50 random placing points.
placing_points = [get_random_point() for _ in range(50)]

for point in placing_points:
Every flag has a different scaling and a rotation of -15 deg.
random_scale = 0.5 + random.random() * 2.0
Add a block reference to the block named 'FLAG' at the coordinates 'point'.
msp.add_blockref('FLAG', point, dxfattribs={

(continues on next page)

9.10. Tutorials 797

ezdxf Documentation, Release 1.3.2

(continued from previous page)
'xscale': random_scale,
'yscale': random_scale,
'rotation': -15

})

Save the drawing.
doc.saveas("blockref_tutorial.dxf")

Query all block references of block FLAG:

for flag_ref in msp.query('INSERT[name=="FLAG"]'):
print(str(flag_ref))

When adding a block reference to a layout with different units, the scaling factor between these units should be applied
as scaling attributes (xscale, …) e.g. modelspace in meters and block in centimeters, xscale has to be 0.01.

Block Attributes

A block attribute (Attrib) is a text annotation attached to a block reference with an associated tag. Attributes are often
used to add information to blocks which can be evaluated and exported by CAD applications. An attribute can be added
to a block reference by the Insert.add_attrib() method, the ATTRIB entity is geometrically not related to the
block reference, so insertion point, rotation and scaling of the attribute have to be calculated by the user, but helper tools
for that do exist.

Using Attribute Definitions

Another way to add attributes to block references is using attribute templates (AttDef). First create the attribute
definition in the block definition, then add the block reference by add_blockref() and attach and fill attributes
automatically by the add_auto_attribs() method to the block reference. This method has the advantage that
all attributes are placed relative to the block base point with the same rotation and scaling as the block reference, but
non-uniform scaling is not handled very well.
The add_auto_blockref() method handles non-uniform scaling better by wrapping the block reference and its
attributes into an anonymous block and let the CAD application do the transformation work. This method has the disad-
vantage of a more complex evaluation of attached attributes
Using attribute definitions (AttDef templates):

Define some attributes for the block 'FLAG', placed relative
to the base point, (0, 0) in this case.
flag.add_attdef('NAME', (0.5, -0.5), dxfattribs={'height': 0.5, 'color': 3})
flag.add_attdef('XPOS', (0.5, -1.0), dxfattribs={'height': 0.25, 'color': 4})
flag.add_attdef('YPOS', (0.5, -1.5), dxfattribs={'height': 0.25, 'color': 4})

Get another 50 random placing points.
placing_points = [get_random_point() for _ in range(50)]

for number, point in enumerate(placing_points):
values is a dict with the attribute tag as item-key and
the attribute text content as item-value.
values = {

'NAME': "P(%d)" % (number + 1),
'XPOS': "x = %.3f" % point[0],
'YPOS': "y = %.3f" % point[1]

(continues on next page)

798 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
}

Every flag has a different scaling and a rotation of +15 deg.
random_scale = 0.5 + random.random() * 2.0
blockref = msp.add_blockref('FLAG', point, dxfattribs={

'rotation': 15
}).set_scale(random_scale)
blockref.add_auto_attribs(values)

Save the drawing.
doc.saveas("auto_blockref_tutorial.dxf")

Get/Set Attributes of Existing Block References

See the howto: Get/Set Block Reference Attributes

Evaluate Wrapped Block References

As mentioned above the evaluation of block references wrapped into anonymous blocks is complex:

Collect all anonymous block references starting with '*U'
anonymous_block_refs = modelspace.query('INSERT[name ? "^*U.+"]')

Collect the references of the 'FLAG' block
flag_refs = []
for block_ref in anonymous_block_refs:

Get the block layout of the anonymous block
block = doc.blocks.get(block_ref.dxf.name)
Find all block references to 'FLAG' in the anonymous block
flag_refs.extend(block.query('INSERT[name=="FLAG"]'))

Evaluation example: collect all flag names.
flag_numbers = [

flag.get_attrib_text("NAME")
for flag in flag_refs
if flag.has_attrib("NAME")

]

print(flag_numbers)

Exploding Block References

This is an advanced feature and the results may not be perfect. A non-uniform scaling lead to incorrect results for text
entities (TEXT, MTEXT, ATTRIB) and some other entities like HATCH with circular- or elliptic path segments. The
“exploded” entities are added to the same layout as the block reference by default.

for flag_ref in msp.query('INSERT[name=="FLAG"]'):
flag_ref.explode()

9.10. Tutorials 799

ezdxf Documentation, Release 1.3.2

Examine Entities of Block References

To just examine the content entities of a block reference use the virtual_entities()method. This methods yields
“virtual” entities with properties identical to “exploded” entities but they are not stored in the entity database, have no
handle and are not assigned to any layout.

for flag_ref in msp.query('INSERT[name=="FLAG"]'):
for entity in flag_ref.virtual_entities():

if entity.dxftype() == "LWPOLYLINE":
print(f"Found {str(entity)}.")

9.10.10 Tutorial for LWPolyline

The LWPolyline (lightweight polyline) was introduced in DXF R13/14 and it is defined as a single graphic entity,
which differs from the old-style Polyline entity, which is defined as a group of sub-entities. It is recommended to
prefer the LWPOLYLINE over the 2D POLYLINE entity because it requires less space in memory and in DXF files and
displays faster in AutoCAD.

Important: The LWPOLYLINE is a planar element, therefore the (x, y) point coordinates are located in the OCS and
the z-axis is stored in the LWPolyline.dxf.elevation attribute. The method vertices_in_wcs returns the
polyline vertices as WCS coordinates.

Create a simple polyline:

import ezdxf

doc = ezdxf.new("R2000")
msp = doc.modelspace()

points = [(0, 0), (3, 0), (6, 3), (6, 6)]
msp.add_lwpolyline(points)

doc.saveas("lwpolyline1.dxf")

Append multiple points to a polyline:

doc = ezdxf.readfile("lwpolyline1.dxf")
msp = doc.modelspace()

line = msp.query("LWPOLYLINE").first
if line is not None:

line.append_points([(8, 7), (10, 7)])

doc.saveas("lwpolyline2.dxf")

The index operator [] always returns polyline points as 5-tuple (x, y, start_width, end_width, bulge), the start_width,
end_width and bulge values are 0 if not present:

first_point = line[0]
x, y, start_width, end_width, bulge = first_point

The context manager points() can be used to edit polyline points, this method was introduced because accessing
individual points was very slow in early versions of ezdxf, in current versions of ezdxf the direct access by the index

800 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

operator [] is very fast and using the context manager is not required anymore, but the context manager still exist and
has the advantage of supporting an user defined point format:

doc = ezdxf.readfile("lwpolyline2.dxf")
msp = doc.modelspace()

line = msp.query("LWPOLYLINE").first

with line.points("xyseb") as points:
points is a standard Python list
existing points are 5-tuples, but new points can be
set as (x, y, [start_width, [end_width, [bulge]]]) tuple
set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

delete last 2 points
del points[-2:]
adding two points
points.extend([(4, 7), (0, 7)])

doc.saveas("lwpolyline3.dxf")

Each line segment can have a different start- and end width, if omitted start- and end width is 0:

doc = ezdxf.new("R2000")
msp = doc.modelspace()

point format = (x, y, [start_width, [end_width, [bulge]]])
set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

points = [(0, 0, .1, .15), (3, 0, .2, .25), (6, 3, .3, .35), (6, 6)]
msp.add_lwpolyline(points)

doc.saveas("lwpolyline4.dxf")

The first point carries the start- and end-width of the first segment, the second point of the second segment and so on,
the start- and end width value of the last point is used for the closing segment if the polyline is closed else these values
are ignored. Start- and end width only works if the DXF attribute dxf.const_width is unset, delete it to be sure it’s
unset:

no exception will be raised if const_width is already unset:
del line.dxf.const_width

LWPolyline can also have curved elements, they are defined by the Bulge value:

doc = ezdxf.new("R2000")
msp = doc.modelspace()

point format = (x, y, [start_width, [end_width, [bulge]]])
set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

points = [(0, 0, 0, .05), (3, 0, .1, .2, -.5), (6, 0, .1, .05), (9, 0)]
msp.add_lwpolyline(points)

doc.saveas("lwpolyline5.dxf")

9.10. Tutorials 801

ezdxf Documentation, Release 1.3.2

The curved segment is drawn from the point which defines the bulge value to the following point, the curved segment is
always an arc. The bulge value defines the ratio of the arc sagitta (segment height h) to half line segment length (point
distance), a bulge value of 1 defines a semicircle. The curve is on the right side of the line for a bulge value > 0, and on
the left side of the line for a bulge value < 0.
Helper functions to handle bulge values: Bulge Related Functions

The user defined point format, default is xyseb:
• x = x coordinate
• y = y coordinate
• s = start width
• e = end width
• b = bulge value
• v = (x, y) as tuple

msp.add_lwpolyline([(0, 0, 0), (10, 0, 1), (20, 0, 0)], format="xyb")
msp.add_lwpolyline([(0, 10, 0), (10, 10, .5), (20, 10, 0)], format="xyb")

802 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.10.11 Tutorial for Text

Add a simple one line text entity by factory function add_text().

import ezdxf
from ezdxf.enums import TextEntityAlignment

The TEXT entity is a DXF primitive and is supported in all DXF versions.
The argument setup=True creates standard linetypes and text styles in the
new DXF document.
doc = ezdxf.new("R12", setup=True)
msp = doc.modelspace()

Use method set_placement() to define the TEXT alignment, because the
relations between the DXF attributes 'halign', 'valign', 'insert' and
'align_point' are tricky.
msp.add_text("A Simple Text").set_placement(

(2, 3),
align=TextEntityAlignment.MIDDLE_RIGHT

)

Using a predefined text style:
(continues on next page)

9.10. Tutorials 803

ezdxf Documentation, Release 1.3.2

(continued from previous page)
msp.add_text(

"Text Style Example: Liberation Serif",
height=0.35,
dxfattribs={"style": "LiberationSerif"}

).set_placement((2, 6), align=TextEntityAlignment.LEFT)

doc.saveas("simple_text.dxf")

Alignments defined by the enum TextEntityAlignment:

Vert/Horiz Left Center Right
Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

Special alignments are ALIGNED and FIT, they require a second alignment point, the text is justified with the vertical
alignment Baseline on the virtual line between these two points.

Align-
ment

Description

ALIGNEDText is stretched or compressed to fit exactly between p1 and p2 and the text height is also adjusted to
preserve height/width ratio.

FIT Text is stretched or compressed to fit exactly between p1 and p2 but only the text width is adjusted, the text
height is fixed by the height attribute.

MID-
DLE

also a special adjustment, but the result is the same as for MIDDLE_CENTER.

Standard Text Styles

Setup some standard text styles and linetypes by argument setup=True:

doc = ezdxf.new('R12', setup=True)

Replaced all proprietary font declarations in setup_styles() (ARIAL, ARIAL_NARROW, ISOCPEUR and
TIMES) by open source fonts, this is also the style name (e.g. {'style': 'OpenSans-Italic'}):

804 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.10. Tutorials 805

ezdxf Documentation, Release 1.3.2

Important: To see the defined text styles in a DXF viewer or CAD application, the applications have to know where the
referenced TTF fonts can be found. This configuration is not possible by ezdxf and has to be done for each application as
described in their documentation.
See also: Font Resources

New Text Style

Creating a new text style is simple:

doc.styles.new("myStandard", dxfattribs={"font" : "OpenSans-Regular.ttf"})

Getting the correct font name is often not that simple, especially on Windows. This shows the required steps to get the
font name for Open Sans:

• open font folder c:\windows\fonts

• select and open the font-family Open Sans

• right-click on Open Sans Standard and select Properties
• on top of the first tab you see the font name: 'OpenSans-Regular.ttf'

The style name has to be unique in the DXF document, otherwise ezdxf will raise an DXFTableEntryError excep-
tion. To replace an existing entry, delete the existing entry by doc.styles.remove(name), and add the replace-
ment entry.

3D Text

It is possible to place the 2D Text entity into 3D space by using the OCS, for further information see: Tutorial for
OCS/UCS Usage and Tutorial for UCS Based Transformations.

9.10.12 Tutorial for MText and MTextEditor

The MText entity is a multi line entity with extended formatting possibilities and requires at least DXF version R2000,
to use all features (e.g. background fill) DXF R2007 is required.

Important: The rendering result of the MTEXT entity depends on the DXF viewer or CAD application and can differ
between different applications. These differences have the greatest impact on line wrapping, which can cause columns of
text to have different heights in different applications!
In order for the text to look similar in different programs, the formatting should be as simple as possible or omitted
altogether.

Prolog code:

import ezdxf

doc = ezdxf.new("R2007", setup=True)
msp = doc.modelspace()

lorem_ipsum = """

(continues on next page)

806 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.
"""

Adding a MTEXT entity

The MTEXT entity can be added to any layout (modelspace, paperspace or block) by the add_mtext() function.

store MTEXT entity for additional manipulations
mtext = msp.add_mtext(lorem_ipsum, dxfattribs={"style": "OpenSans"})

This adds a MTEXT entity with text style “OpenSans”. The MTEXT content can be accessed by the text attribute, this
attribute can be edited like any Python string:

mtext.text += "Append additional text to the MTEXT entity."
even shorter with __iadd__() support:
mtext += "Append additional text to the MTEXT entity."

The MText entity has an alias MText.dxf.text for the MText.text attribute for compatibility to the Text entity.

Important: Line endings “\n” will be replaced by the MTEXT line endings “\P” at DXF export, but not vice versa “\P”
by “\n” at DXF file loading.

9.10. Tutorials 807

ezdxf Documentation, Release 1.3.2

Text placement

The location of the MTEXT entity is defined by the MText.dxf.insert and the MText.dxf.
attachment_point attributes in WCS coordinates. The attachment_point defines the text alignment
relative to the insert location, default value is 1.
Attachment point constants defined in ezdxf.lldxf.const:

MText.dxf.attachment_point Value
MTEXT_TOP_LEFT 1
MTEXT_TOP_CENTER 2
MTEXT_TOP_RIGHT 3
MTEXT_MIDDLE_LEFT 4
MTEXT_MIDDLE_CENTER 5
MTEXT_MIDDLE_RIGHT 6
MTEXT_BOTTOM_LEFT 7
MTEXT_BOTTOM_CENTER 8
MTEXT_BOTTOM_RIGHT 9

The MTEXT entity has a method for setting insert, attachment_point and rotation attributes by one call:
set_location()

Character height

The character height is defined by the DXF attribute MText.dxf.char_height in drawing units, which has also
consequences for the line spacing of the MTEXT entity:

mtext.dxf.char_height = 0.5

The character height can be changed inline, see also MTEXT formatting and MText Inline Codes.

Text rotation (direction)

The MText.dxf.rotation attribute defines the text rotation as angle between the x-axis and the horizontal direction
of the text in degrees. The MText.dxf.text_direction attribute defines the horizontal direction of MTEXT as
vector in WCS. Both attributes can be present at the same entity, in this case the MText.dxf.text_direction
attribute has the higher priority.
The MTEXT entity has two methods to get/set rotation: get_rotation() returns the rotation angle in degrees in-
dependent from definition as angle or direction, and set_rotation() set the rotation attribute and removes the
text_direction attribute if present.

808 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Defining a wrapping border

The wrapping border limits the text width and forces a line break for text beyond this border. Without attribute dxf.
width (or setting 0) the lines are wrapped only at the regular line endings “ \P” or “\n”, setting the reference column
width forces additional line wrappings at the given width. The text height can not be limited, the text always occupies as
much space as needed.

mtext.dxf.width = 60

MTEXT formatting

MTEXT supports inline formatting by special codes: MText Inline Codes

mtext.text = "{\\C1;red text} - {\\C3;green text} - {\\C5;blue text}"

See also the support class MTextEditor.

9.10. Tutorials 809

ezdxf Documentation, Release 1.3.2

Stacked text

MTEXT supports stacked text:

the space ' ' in front of 'Lower' and the ';' behind 'Lower' are necessary
combined with vertical center alignment
mtext.text = "\\A1;\\SUpper^ Lower; - \\SUpper/ Lower;} - \\SUpper# Lower;"

See also the support class MTextEditor.

Background color (filling)

The MTEXT entity can have a background filling:
• AutoCAD Color Index (ACI)

• true color value as (r, g, b) tuple
• color name as string, use special name 'canvas' to use the canvas background color

Because of the complex dependencies ezdxf provides a method to set all required DXF attributes at once:

mtext.set_bg_color(2, scale=1.5)

The parameter scale determines howmuch border there is around the text, the value is based on the text height, and should
be in the range of 1 - 5, where 1 fits exact the MTEXT entity.

810 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MTextEditor

Warning: The MTextEditor assembles just the inline code, which has to be parsed and rendered by the target
CAD application, ezdxf has no influence to that result.
Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not work across different
CAD applications and keep the formatting in a logic manner like, do not change paragraph properties in the middle
of a paragraph.
There is no official documentation for the inline codes!

The MTextEditor class provides a floating interface to build MText content in an easy way.
This example only shows the connection between MText and the MTextEditor, and shows no additional features to
the first example of this tutorial:

9.10. Tutorials 811

ezdxf Documentation, Release 1.3.2

Init Editor

import ezdxf
from ezdxf.tools.text import MTextEditor

doc = ezdxf.new("R2007", setup=True)
msp = doc.modelspace()

lorem_ipsum = """
Lorem ipsum dolor sit amet, consectetur adipiscing elit, ... see prolog code
"""

create a new editor object with an initial text:
editor = MTextEditor(lorem_ipsum)

get the MTEXT content string from the editor by the str() function:
mtext = msp.add_mtext(str(editor), dxfattribs={"style": "OpenSans"})

Tutorial Prolog:

use constants defined in MTextEditor:
NP = MTextEditor.NEW_PARAGRAPH

ATTRIBS = {
"char_height": 0.7,
"style": "OpenSans",
"width": 10,

}
editor = MTextEditor("using colors:" + NP)

Set Text Color

There are three ways to change the color inline:
• by color name “red”, “green”, “blue”, “yellow”, “cyan”, “magenta”, “white”
• by AutoCAD Color Index (ACI)

• by RGB values

RED: set color by name - red, green, blue, yellow, cyan, magenta, white
editor.color("red").append("RED" + NP)
RED: the color stays the same until the next change
editor.append("also RED" + NP)

GREEN: change color by ACI (AutoCAD Color Index)
editor.aci(3).append("GREEN" + NP)

BLUE: change color by RGB tuples
editor.rgb((0, 0, 255)).append("BLUE" + NP)

add the MTEXT entity to the model space:
msp.add_mtext(str(editor), attribs)

812 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Changing Text Height

The MtextEditor.height()method set the text height as absolute value in drawing units (text height = cap height):

attribs = dict(ATTRIBS)
attribs["width"] = 40.0
editor = MTextEditor("changing text height absolute: default height is 0.7" + NP)
doubling the default height = 1.4
editor.height(1.4)
editor.append("text height: 1.4" + NP)
editor.height(3.5).append("text height: 3.5" + NP)
editor.height(0.7).append("back to default height: 0.7" + NP)
msp.add_mtext(str(editor), attribs)

The MtextEditor.scale_height() method set the text height by a relative factor, the MtextEditor object
does not keep track of current text height, you have to do this by yourself. The initial text height is MText.dxf.
char_height:

9.10. Tutorials 813

ezdxf Documentation, Release 1.3.2

attribs = dict(ATTRIBS)
attribs["width"] = 40.0
editor = MTextEditor("changing text height relative: default height is 0.7" + NP)
this is the default text height in the beginning:
current_height = attribs["char_height"]
The text height can only be changed by a factor:
editor.scale_height(2) # scale by 2 = 1.4
keep track of the actual height:
current_height *= 2
editor.append("text height: 1.4" + NP)
to set an absolute height, calculate the required factor:
desired_height = 3.5
factor = desired_height / current_height
editor.scale_height(factor).append("text height: 3.5" + NP)
current_height = desired_height
and back to 0.7
editor.scale_height(0.7 / current_height).append("back to default height: 0.7" + NP)
msp.add_mtext(str(editor), attribs).set_location(insert=location)

Changing Font

The font name for changing MText fonts inline is the font family name! The font family name is the name shown in font
selection widgets in desktop applications: “Arial”, “Times New Roman”, “Comic Sans MS”. The font has to be installed
at the target system, else then CAD default font will be used, in AutoCAD/BricsCAD is this the font defined for the text
style “Standard”.

Important: The DXF/DWG format is not optimal for preserving text layouts across multiple systems, and it’s getting
really bad across different CAD applications.

attribs = dict(ATTRIBS)
attribs["width"] = 15.0
editor = MTextEditor("changing fonts:" + NP)
editor.append("Default: Hello World!" + NP)
editor.append("SimSun: ")
change font in a group to revert back to the default font at the end:
simsun_editor = MTextEditor().font("SimSun").append("�����" + NP)
reverts the font back at the end of the group:
editor.group(str(simsun_editor))
back to default font OpenSans:
editor.append("Times New Roman: ")
change font outside of a group until next font change:
editor.font("Times New Roman").append("Привет мир!" + NP)
If the font does not exist, a replacement font will be used:
editor.font("Does not exist").append("This is the replacement font!")
msp.add_mtext(str(editor), attribs)

814 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Set Paragraph Properties

The paragraph properties are set by the paragraph() method and a ParagraphProperties object, which bun-
dles all paragraph properties in a named tuple.
Each paragraph can have its own properties for:

• indentation arguments:
– indent is the left indentation of the first line
– left is the left side indentation of the paragraph
– right is the right side indentation of the paragraph

• text adjustment: align, by enum MTextParagraphAlignment

– MTextParagraphAlignment.LEFT
– MTextParagraphAlignment.RIGHT
– MTextParagraphAlignment.CENTER
– MTextParagraphAlignment.JUSTIFIED
– MTextParagraphAlignment.DISTRIBUTED

• tabulator stops: tab_stops, a tuple of tabulator stops
Indentation and tabulator stops are multiples of the default MText text height stored in MText.dxf.char_height.
Calculate the drawing units for indentation and tabulator stops, by multiplying the indentation value by the
char_height value.
Mtext paragraphs are separated by new paragraph “\P” characters.

import support classes:
from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment

attribs = dict(ATTRIBS)

(continues on next page)

9.10. Tutorials 815

ezdxf Documentation, Release 1.3.2

(continued from previous page)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor("Indent the first line:" + NP)
props = ParagraphProperties(

indent=1, # indent first line = 1x0.25 drawing units
align=MTextParagraphAlignment.JUSTIFIED

)
editor.paragraph(props)
editor.append(lorem_ipsum)
msp.add_mtext(str(editor), attribs)

The first line indentation “indent” is relative to the “left” indentation.

import support classes:
from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment

attribs = dict(ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor("Indent left paragraph side:" + NP)
indent = 0.7 # 0.7 * 0.25 = 0.175 drawing units
props = ParagraphProperties(

first line indentation is relative to "left", this reverses the
left indentation:
indent=-indent, # first line
indent left paragraph side:
left=indent,
align=MTextParagraphAlignment.JUSTIFIED

)
editor.paragraph(props)
editor.append(" ".join(lorem_ipsum(100)))
msp.add_mtext(str(editor), attribs).set_location(insert=location)

816 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Bullet List

There are no special commands to build bullet list, the list is build of indentation and a tabulator stop. Each list item needs
a marker as an arbitrary string. For more information about paragraph indentation and tabulator stops see also chapter
Set Paragraph Properties.

attribs = dict(ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
bullet = "•" # alt + numpad 7
editor = MTextEditor("Bullet List:" + NP)
editor.bullet_list(

indent=1,
bullets=[bullet] * 3, # each list item needs a marker
content=[

"First item",
"Second item",
" ".join(lorem_ipsum(30)),

])
msp.add_mtext(str(editor), attribs)

9.10. Tutorials 817

ezdxf Documentation, Release 1.3.2

Numbered List

There are no special commands to build numbered list, the list is build of indentation and a tabulator stop. There is no
automatic numbering, but therefore the absolute freedom for using any string as list marker. For more information about
paragraph indentation and tabulator stops see also chapter Set Paragraph Properties.

attribs = dict(ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor("Numbered List:" + NP)
editor.bullet_list(

indent=1,
bullets=["1.", "2.", "3."],
content=[

"First item",
"Second item",
" ".join(lorem_ipsum(30)),

])
msp.add_mtext(str(editor), attribs)

818 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Stacked Text

MText supports stacked text (fractions) as a single inline code, which means it is not possible to change any property
inside the fraction. This example shows a fraction with scaled down text height, placed in a group to revert the text height
afterwards:

editor = MTextEditor("Stacked text:" + NP)

stack = MTextEditor().scale_height(0.6).stack("1", "2", "^")
editor.append("over: ").group(str(stack)).append(NP)

stack = MTextEditor().scale_height(0.6).stack("1", "2", "/")
editor.append("fraction: ").group(str(stack)).append(NP)

stack = MTextEditor().scale_height(0.6).stack("1", "2", "#")
editor.append("slanted: ").group(str(stack)).append(NP)

Additional formatting in numerator and denominator is not supported
by AutoCAD or BricsCAD, switching the color inside the stacked text
to red does not work:
numerator = MTextEditor().color("red").append("1")
stack = MTextEditor().scale_height(0.6).stack(str(numerator), "2", "#")
editor.append("color red: ").group(str(stack)).append(NP)

msp.add_mtext(str(editor), attribs)

See also:
• MTextEditor example code on github.
• Documentation of MTextEditor

9.10. Tutorials 819

https://github.com/mozman/ezdxf/blob/master/examples/entities/mtext_editor.py

ezdxf Documentation, Release 1.3.2

9.10.13 Tutorial for Spline

Background information about B-spline at Wikipedia.

Splines from fit points

Splines can be defined by fit points only, this means the curve passes all given fit points. AutoCAD and BricsCAD
generates required control points and knot values by itself, if only fit points are present.
Create a simple spline:

doc = ezdxf.new("R2000")

fit_points = [(0, 0, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)]
msp = doc.modelspace()
spline = msp.add_spline(fit_points)

Append a fit point to a spline:

fit_points, control_points, knots and weights are list-like containers:
spline.fit_points.append((2250, 2500, 0))

820 Chapter 9. Contents

https://en.wikipedia.org/wiki/B-spline

ezdxf Documentation, Release 1.3.2

You can set additional control points, but if they do not fit the auto-generated AutoCAD values, they will be ignored and
don’t mess around with knot values.

doc = ezdxf.readfile("AutoCAD_generated.dxf")

msp = doc.modelspace()
spline = msp.query("SPLINE").first

fit_points, control_points, knots and weights are list-like objects:
spline.fit_points.append((2250, 2500, 0))

As far as I have tested, this approach works without complaints from AutoCAD, but for the case of problems remove
invalid data from the SPLINE entity:

current control points do not match spline defined by fit points
spline.control_points = []

count of knots is not correct:
count of knots = count of control points + degree + 1
spline.knots = []

same for weights, count of weights == count of control points
spline.weights = []

9.10. Tutorials 821

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 1.3.2

Splines by control points

Creating splines from fit points is the easiest way, but this method is also the least accurate, because a spline is defined by
control points and knot values, which are generated for the case of a definition by fit points, and the worst fact is that for
every given set of fit points exist an infinite number of possible splines as solution.
To ensure the same spline geometry for all CAD applications, the spline has to be defined by control points.
The method add_spline_control_frame() adds a spline passing the given fit points by calculating the
control points by the Global Curve Interpolation algorithm. There is also a low level function ezdxf.math.
global_bspline_interpolation() which calculates the control points from fit points.

msp.add_spline_control_frame(fit_points, method='uniform', dxfattribs={'color': 1})
msp.add_spline_control_frame(fit_points, method='chord', dxfattribs={'color': 3})
msp.add_spline_control_frame(fit_points, method='centripetal', dxfattribs={'color': 5}
↪→)

• black curve: AutoCAD/BricsCAD spline generated from fit points
• red curve: spline curve interpolation, “uniform” method
• green curve: spline curve interpolation, “chord” method
• blue curve: spline curve interpolation, “centripetal” method

Since ezdxf v1.1 the method add_cad_spline_control_frame() calculates the same control points from fit
points as AutoCAD and BricsCAD.

822 Chapter 9. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html

ezdxf Documentation, Release 1.3.2

Open Spline

Add and open (clamped) spline defined by control points with the method add_open_spline(). If no knot values
are given, an open uniform knot vector will be generated. A clamped B-spline starts at the first control point and ends at
the last control point.

control_points = [(0, 0, 0), (1250, 1560, 0), (3130, 610, 0), (2250, 1250, 0)]
msp.add_open_spline(control_points)

Rational Spline

Rational B-splines have a weight for every control point, which can raise or lower the influence of the control point, default
weight = 1, to lower the influence set a weight < 1 to raise the influence set a weight > 1. The count of weights has to be
always equal to the count of control points.
Example to raise the influence of the first control point:

msp.add_rational_spline(control_points, weights=[3, 1, 1, 1])

9.10. Tutorials 823

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node5.html

ezdxf Documentation, Release 1.3.2

Spline Tangents

The tangents of a spline are the directions of the first derivative of the curve:

additional required imports:
from ezdxf.math import Vec3, estimate_tangents
import numpy as np

snip -x-x-x-

fit_points = Vec3.list(
[

(0, 0, 0),
(1000, 600, 0),
(1500, 1200, 0),
(500, 1250, 0),
(0, 0, 0),

]
)
spline = msp.add_spline(fit_points)

draw the curve tangents as red lines:
ct = spline.construction_tool()
for t in np.linspace(0, ct.max_t, 30):

point, derivative = ct.derivative(t, 1)
msp.add_line(point, point + derivative.normalize(200), dxfattribs={"color": 1})

824 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

To get a smooth closed curve the start- and end tangents have to be set manually when the control points are calculated
and they have to point in the same direction:

t0= Vec3(1, -1, 0) # the length (magnitude) of the tangent is not relevant!
spline = msp.add_cad_spline_control_frame(fit_points, tangents=[t0, t0])

9.10. Tutorials 825

ezdxf Documentation, Release 1.3.2

To avoid guess work the function ezdxf.math.estimate_tangents() can be used to estimate the start- and
end tangents of the curve:

tangents = estimate_tangents(fit_points)
linear interpolation of the first and the last tangent:
t0 = tangents[0].lerp(tangents[-1], 0.5)
msp.add_cad_spline_control_frame(fit_points, tangents=[t0, t0])

826 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

It is also possible to add the SPLINE by fit-points and setting the tangents as DXF attributes:

spline = msp.add_spline(fit_points)
spline.dxf.flags = spline.PERIODIC | spline.CLOSED
spline.dxf.start_tangent = t0
spline.dxf.end_tangent = t0

Spline properties

Check if spline is a closed curve or close/open spline, for a closed spline the last point is connected to the first point:

if spline.closed:
this spline is closed
pass

close spline
spline.closed = True

(continues on next page)

9.10. Tutorials 827

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html

ezdxf Documentation, Release 1.3.2

(continued from previous page)
open spline
spline.closed = False

Set start- and end tangent for splines defined by fit points:

spline.dxf.start_tangent = (0, 1, 0)
spline.dxf.end_tangent = (0, 1, 0)

Get data count as stored in DXF attributes:

count = spline.dxf.n_fit_points
count = spline.dxf.n_control_points
count = spline.dxf.n_knots

Get data count from existing data:

count = spline.fit_point_count
count = spline.control_point_count
count = spline.knot_count

9.10.14 Tutorial for Polyface

The Polyface entity represents a 3D mesh build of vertices and faces and is just an extended POLYLINE entity with a
complex VERTEX structure. The Polyface entity was used in DXF R12 and older DXF versions and is still supported
by newer DXF versions. The new Mesh entity stores the same data much more efficient but requires DXF R2000 or
newer. The Polyface entity supports only triangles and quadrilaterals as faces, the Mesh entity supports also n-gons.
Its recommended to use the MeshBuilder objects to create 3D meshes and render them as POLYFACE entities by
the render_polymesh() method into a layout:

import ezdxf
from ezdxf import colors
from ezdxf.gfxattribs import GfxAttribs
from ezdxf.render import forms

cube = forms.cube().scale_uniform(10).subdivide(2)
red = GfxAttribs(color=colors.RED)
green = GfxAttribs(color=colors.GREEN)
blue = GfxAttribs(color=colors.BLUE)

doc = ezdxf.new()
msp = doc.modelspace()

render as MESH entity
cube.render_mesh(msp, dxfattribs=red)
cube.translate(20)

render as POLYFACE a.k.a. POLYLINE entity
cube.render_polyface(msp, dxfattribs=green)
cube.translate(20)

render as a bunch of 3DFACE entities
cube.render_3dfaces(msp, dxfattribs=blue)

doc.saveas("meshes.dxf")

828 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Warning: If the mesh contains n-gons the render methods for POLYFACE and 3DFACES subdivides the n-gons
into triangles, which does not work for concave faces.

The usage of the MeshBuilder object is also recommended for inspecting Polyface entities:
• MeshBuilder.vertices is a sequence of 3D points as ezdxf.math.Vec3 objects
• a face in MeshBuilder.faces is a sequence of indices into the MeshBuilder.vertices sequence

import ezdxf
from ezdxf.render import MeshBuilder

def process(mesh):
vertices is a sequence of 3D points
vertices = mses.vertices
a face is a sequence of indices into the vertices sequence
faces = mesh.faces
...

doc = ezdxf.readfile("meshes.dxf")
msp = doc.modelspace()
for polyline in msp.query("POLYLINE"):

if polyline.is_poly_face_mesh:
mesh = MeshBuilder.from_polyface(polyline)
process(mesh)

See also:
Tutorial for Mesh

9.10. Tutorials 829

ezdxf Documentation, Release 1.3.2

9.10.15 Tutorial for Mesh

The Mesh entity is a 3D object inWCS build up from vertices and faces.
Create a cube mesh by directly accessing the base data structures:

import ezdxf

8 corner vertices
cube_vertices = [

(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),

]

6 cube faces
cube_faces = [

[0, 1, 2, 3],
[4, 5, 6, 7],
[0, 1, 5, 4],
[1, 2, 6, 5],
[3, 2, 6, 7],
[0, 3, 7, 4]

]

MESH requires DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()
mesh = msp.add_mesh()
do not subdivide cube, 0 is the default value
mesh.dxf.subdivision_levels = 0
with mesh.edit_data() as mesh_data:

mesh_data.vertices = cube_vertices
mesh_data.faces = cube_faces

doc.saveas("cube_mesh_1.dxf")

Create a cube mesh by assembling single faces using the edit_data() context manager of the Mesh class and the
helper class MeshData:

import ezdxf

8 corner vertices
p = [

(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),

(continues on next page)

830 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
(0, 1, 1),

]

MESH requires DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()
mesh = msp.add_mesh()

with mesh.edit_data() as mesh_data:
mesh_data.add_face([p[0], p[1], p[2], p[3]])
mesh_data.add_face([p[4], p[5], p[6], p[7]])
mesh_data.add_face([p[0], p[1], p[5], p[4]])
mesh_data.add_face([p[1], p[2], p[6], p[5]])
mesh_data.add_face([p[3], p[2], p[6], p[7]])
mesh_data.add_face([p[0], p[3], p[7], p[4]])
optional call optimize(): minimizes the vertex count
mesh_data.optimize()

doc.saveas("cube_mesh_2.dxf")

Its recommended to use the MeshBuilder objects to create 3D meshes and render them as MESH entities by the
render_mesh() method into a layout:

import ezdxf
from ezdxf import colors
from ezdxf.gfxattribs import GfxAttribs
from ezdxf.render import forms

cube = forms.cube().scale_uniform(10).subdivide(2)
red = GfxAttribs(color=colors.RED)
green = GfxAttribs(color=colors.GREEN)
blue = GfxAttribs(color=colors.BLUE)

doc = ezdxf.new()
msp = doc.modelspace()

render as MESH entity
cube.render_mesh(msp, dxfattribs=red)
cube.translate(20)

render as POLYFACE a.k.a. POLYLINE entity
cube.render_polyface(msp, dxfattribs=green)
cube.translate(20)

render as a bunch of 3DFACE entities
cube.render_3dfaces(msp, dxfattribs=blue)

doc.saveas("meshes.dxf")

9.10. Tutorials 831

ezdxf Documentation, Release 1.3.2

There exist some tools to manage meshes:
• ezdxf.render.MeshBuilder: The MeshBuilder classes are helper tools to manage meshes buildup by
vertices and faces.

• ezdxf.render.MeshTransformer: Same functionality as MeshBuilder but supports inplace transfor-
mation.

• ezdxf.render.MeshDiagnose: A diagnose tool which can be used to analyze and detect errors of Mesh-
Builder objects like topology errors for closed surfaces.

• ezdxf.render.FaceOrientationDetector: A helper class for face orientation and face normal vector
detection

The ezdxf.render.forms module provides function to create basic geometries like cube, cone, sphere and so on
and functions to create meshes from profiles by extrusion, rotation or sweeping.
This example shows how to sweep a gear profile along a helix:

import ezdxf
from ezdxf.render import forms

doc = ezdxf.new()
doc.layers.add("MESH", color=ezdxf.colors.YELLOW)
msp = doc.modelspace()
sweeping a gear-profile
gear = forms.gear(

8, top_width=0.01, bottom_width=0.02, height=0.02, outside_radius=0.1
)
helix = path.helix(radius=2, pitch=1, turns=6)
along a helix spine
sweeping_path = helix.flattening(0.1)
mesh = forms.sweep(gear, sweeping_path, close=True, caps=True)

(continues on next page)

832 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
and render as MESH entity
mesh.render_mesh(msp, dxfattribs={"layer": "MESH"})
doc.saveas("gear_along_helix.dxf")

9.10.16 Tutorial for Hatch

Create hatches with one boundary path

The simplest form of the Hatch entity has one polyline path with only straight lines as boundary path:

import ezdxf

hatch requires DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element
vertex format for the polyline path is: (x, y[, bulge])
there are no bulge values in this example
hatch.paths.add_polyline_path(

[(0, 0), (10, 0), (10, 10), (0, 10)], is_closed=True
)

doc.saveas("solid_hatch_polyline_path.dxf")

But like all polyline entities the polyline path can also have bulge values:

9.10. Tutorials 833

ezdxf Documentation, Release 1.3.2

import ezdxf

hatch requires the DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element
vertex format for the polyline path is: (x, y[, bulge])
bulge value 1 = an arc with diameter=10 (= distance to next vertex * bulge value)
bulge value > 0 ... arc is right of line
bulge value < 0 ... arc is left of line
hatch.paths.add_polyline_path(

[(0, 0, 1), (10, 0), (10, 10, -0.5), (0, 10)], is_closed=True
)

doc.saveas("solid_hatch_polyline_path_with_bulge.dxf")

The most flexible way to define a boundary path is the edge path. An edge path can have multiple edges and each edge
can be one of the following elements:

• line EdgePath.add_line()
• arc EdgePath.add_arc()
• ellipse EdgePath.add_ellipse()
• spline EdgePath.add_spline()

Create a solid hatch with an edge path (ellipse) as boundary path:

import ezdxf

hatch requires the DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()

important: major axis >= minor axis (ratio <= 1.)
minor axis length = major axis length * ratio
msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element
edge_path = hatch.paths.add_edge_path()
each edge path can contain line, arc, ellipse and spline elements
important: major axis >= minor axis (ratio <= 1.)
edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)

doc.saveas("solid_hatch_ellipse.dxf")

834 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Create hatches with multiple boundary paths (islands)

The DXF attribute hatch_style defines the island detection style:

0 nested - altering filled and unfilled areas
1 outer - area between external and outermost path is filled
2 ignore - external path is filled

hatch = msp.add_hatch(
color=1,
dxfattribs={

"hatch_style": ezdxf.const.HATCH_STYLE_NESTED,
0 = nested: ezdxf.const.HATCH_STYLE_NESTED
1 = outer: ezdxf.const.HATCH_STYLE_OUTERMOST
2 = ignore: ezdxf.const.HATCH_STYLE_IGNORE

},
)

The first path has to set flag: 1 = external
flag const.BOUNDARY_PATH_POLYLINE is added (OR) automatically
hatch.paths.add_polyline_path(

[(0, 0), (10, 0), (10, 10), (0, 10)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,

)

This is also the result for all 4 paths and hatch_style set to 2 (ignore).

The second path has to set flag: 16 = outermost
hatch.paths.add_polyline_path(

[(1, 1), (9, 1), (9, 9), (1, 9)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST,

)

This is also the result for all 4 paths and hatch_style set to 1 (outer).

9.10. Tutorials 835

ezdxf Documentation, Release 1.3.2

The third path has to set flag: 0 = default
hatch.paths.add_polyline_path(

[(2, 2), (8, 2), (8, 8), (2, 8)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_DEFAULT,

)

The forth path has to set flag: 0 = default, and so on
hatch.paths.add_polyline_path(

[(3, 3), (7, 3), (7, 7), (3, 7)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_DEFAULT,

)

doc.saveas(OUTDIR / "solid_hatch_islands_04.dxf")

836 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The expected result of combinations of various hatch_style values and paths flags, or the handling of overlapping
paths is not documented by the DXF reference, so don’t ask me, ask Autodesk or just try it by yourself and post your
experience in the forum.

Example for Edge Path Boundary

hatch = msp.add_hatch(color=1)

1. polyline path
hatch.paths.add_polyline_path(

[
(240, 210, 0),
(0, 210, 0),
(0, 0, 0.0),
(240, 0, 0),

],
is_closed=1,
flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,

)
2. edge path
edge_path = hatch.paths.add_edge_path(flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST)
edge_path.add_spline(

control_points=[
(126.658105895725, 177.0823706957212),
(141.5497003747484, 187.8907860433995),
(205.8997365206943, 154.7946313459515),
(113.0168862297068, 117.8189380884978),
(202.9816918983783, 63.17222935389572),
(157.363511042264, 26.4621294342132),
(144.8204003260554, 28.4383294369643),

],
knot_values=[

0.0,
0.0,
0.0,
0.0,
55.20174685732758,
98.33239645153571,
175.1126541251052,
213.2061566683142,
213.2061566683142,
213.2061566683142,
213.2061566683142,

],
)
edge_path.add_arc(

center=(152.6378550678883, 128.3209356351659),
radius=100.1880612627354,
start_angle=94.4752130054052,
end_angle=177.1345242028005,

)
edge_path.add_line(

(52.57506282464041, 123.3124200796114),
(126.658105895725, 177.0823706957212),

)

9.10. Tutorials 837

ezdxf Documentation, Release 1.3.2

Associative Boundary Paths

AHATCH entity can be associative to a base geometry, which means if the base geometry is edited in a CAD application
the HATCH get the same modification. Because ezdxf is not a CAD application, this association is not maintained nor
verified by ezdxf, so if you modify the base geometry afterwards the geometry of the boundary path is not updated and
no verification is done to check if the associated geometry matches the boundary path, this opens many possibilities to
create invalid DXF files: USE WITH CARE.
This example associates a LWPOLYLINE entity to the hatch created from the LWPOLYLINE vertices:

Create base geometry
lwpolyline = msp.add_lwpolyline(

[(0, 0, 0), (10, 0, 0.5), (10, 10, 0), (0, 10, 0)],
format="xyb",
close=True,

)

hatch = msp.add_hatch(color=1)
path = hatch.paths.add_polyline_path(

get path vertices from associated LWPOLYLINE entity
lwpolyline.get_points(format="xyb"),
get closed state also from associated LWPOLYLINE entity
is_closed=lwpolyline.closed,

)

Set association between boundary path and LWPOLYLINE
hatch.associate(path, [lwpolyline])

An EdgePath needs associations to all geometry entities forming the boundary path.

838 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Predefined Hatch Pattern

Use predefined hatch pattern by name:

hatch.set_pattern_fill("ANSI31", scale=0.5)

9.10. Tutorials 839

ezdxf Documentation, Release 1.3.2

840 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Load Hatch Patterns From File

CAD applications store the hatch patterns in pattern files with the file extension .pat. The following script shows how
to load and use these pattern files:

EXAMPLE = """; a pattern file

*SOLID, Solid fill
45, 0,0, 0,.125
*ANSI31, ANSI Iron, Brick, Stone masonry
45, 0,0, 0,.125
*ANSI32, ANSI Steel
45, 0,0, 0,.375
45, .176776695,0, 0,.375
*ANSI33, ANSI Bronze, Brass, Copper
45, 0,0, 0,.25
45, .176776695,0, 0,.25, .125,-.0625
*ANSI34, ANSI Plastic, Rubber
45, 0,0, 0,.75
45, .176776695,0, 0,.75
45, .353553391,0, 0,.75
45, .530330086,0, 0,.75
"""

hatch = msp.add_hatch()
load your pattern file from the file system as string:
with open("pattern_file.pat", "rt") as fp:
EXAMPLE = fp.read()
patterns = pattern.parse(EXAMPLE)

hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0, # the overall rotation of the pattern in degrees
scale=1.0, # overall scaling of the pattern
style=0, # normal hatching style
pattern_type=0, # user-defined
pattern name without the preceding asterisk
definition=patterns["ANSI34"],

)
points = [(0, 0), (10, 0), (10, 10), (0, 10)]
hatch.paths.add_polyline_path(points)
msp.add_lwpolyline(points, close=True, dxfattribs={"color": 1})

See also:
Tutorial for Hatch Pattern Definition

9.10. Tutorials 841

ezdxf Documentation, Release 1.3.2

9.10.17 Tutorial for Hatch Pattern Definition

A hatch pattern consist of one or more hatch lines. A hatch line defines a set of lines which have the same orientation an
the same line pattern. All the lines defined by a hatch line are parallel and have a constant distance to each other. The
origin defines the start point of the hatch line and also the starting point of the line pattern. The direction defines the angle
between theWCS x-axis and the hatch line. The offset is a 2D vector which will be added consecutively the the origin for
each new hatch line. The line pattern has the same format as as the simple linetype pattern (Tutorial for Creating Linetype
Pattern).

Important: The hatch pattern must be defined for a hatch scaling factor of 1.0 and a hatch rotation angle of 0 degrees!

The first example creates a simple pattern of horizontal solid lines with a vertical distance of 0.5 drawing units.

import ezdxf

doc = ezdxf.new("R2010")
msp = doc.modelspace()
hatch = msp.add_hatch()
hatch.set_pattern_fill(

"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
pattern definition as list of:
[angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
line pattern is a solid line
definition=[[0, (0, 0), (0, 0.5), []]],

)
points = [(0, 0), (10, 0), (10, 10), (0, 10)]
hatch.paths.add_polyline_path(points)
msp.add_lwpolyline(points, close=True, dxfattribs={"color": 1})
doc.saveas("user_defined_hatch_pattern.dxf")

842 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The next example shows how the offset value works:

-x-x-x- snip -x-x-x-
hatch = msp.add_hatch()
hatch.set_pattern_fill(

"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
the line pattern is a dashed line: - - - -
the offset is 1 unit vertical and 0.3 units horizontal
[angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
definition=[[0, (0, 0), (0.3, 1), [1, -1]]],

)
-x-x-x- snip -x-x-x-

9.10. Tutorials 843

ezdxf Documentation, Release 1.3.2

The next example combines two parallel hatch lines, the origin defines how the hatch lines are offset from each other:

-x-x-x- snip -x-x-x-
hatch = msp.add_hatch()
hatch.set_pattern_fill(

"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
[angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
definition=[

[0, (0, 0), (0.3, 1), [1, -1]], # dashed line
[0, (0, 0.5), (0, 1), []], # solid line

],
)
-x-x-x- snip -x-x-x-

844 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The next example combines two hatch lines with different angles. The origins can be the same for this example. The
Vec2 class is used to calculate the offset value for a normal distance of 0.7 drawing units between the slanted lines:

from ezdxf.math import Vec2

-x-x-x- snip -x-x-x-
hatch = msp.add_hatch()
offset vector for a normal distance of 0.7 for a 45 deg slanted hatch line
offset = Vec2.from_deg_angle(45 + 90, length=0.7)
hatch.set_pattern_fill(

"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
[angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
definition=[

[0, (0, 0), (0, 1), [1, -1]], # horizontal dashed line
[45, (0, 0), offset, []], # slanted solid line

],
)
-x-x-x- snip -x-x-x-

9.10. Tutorials 845

ezdxf Documentation, Release 1.3.2

9.10.18 Tutorial for Image and ImageDef

This example shows how to use a raster image in a DXF document. Each IMAGE entity requires an associated IM-
AGEDEF entity in the objects section, which stores the filename of the linked image and the size in pixels. Multiple
IMAGE entities can share the same IMAGEDEF entity.

Important: The raster image is NOT embedded in the DXF file!

import ezdxf

The IMAGE entity requires the DXF R2000 format or later.
doc = ezdxf.new("R2000")

The IMAGEDEF entity is like a block definition, it just defines the image.
my_image_def = doc.add_image_def(

filename="mycat.jpg", size_in_pixel=(640, 360)
)

msp = doc.modelspace()
The IMAGE entity is like the INSERT entity, it's just an image reference,
and there can be multiple references to the same picture in a DXF document.

1st image reference
(continues on next page)

846 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
msp.add_image(

insert=(2, 1),
size_in_units=(6.4, 3.6),
image_def=my_image_def,
rotation=0

)
2nd image reference
msp.add_image(

insert=(4, 5),
size_in_units=(3.2, 1.8),
image_def=my_image_def,
rotation=30

)

Get existing image definitions from the OBJECTS section:
image_defs = doc.objects.query("IMAGEDEF")

doc.saveas("dxf_with_cat.dxf")

9.10.19 Tutorial for Underlay and UnderlayDefinition

This example shows hot to insert a a PDF, DWF, DWFx or DGN file as drawing underlay. Each UNDERLAY entity
requires an associated UNDERLAYDEF entity in the objects section, which stores the filename of the linked document
and the parameters of the underlay. Multiple UNDERLAY entities can share the same UNDERLAYDEF entity.

Important: The underlay file is NOT embedded into the DXF file:

import ezdxf

doc = ezdxf.new('AC1015') # underlay requires the DXF R2000 format or later
my_underlay_def = doc.add_underlay_def(filename='my_underlay.pdf', name='1')
The (PDF)DEFINITION entity is like a block definition, it just defines the underlay
'name' is misleading, because it defines the page/sheet to be displayed
PDF: name is the page number to display
DGN: name='default' ???
DWF: ????

msp = doc.modelspace()
add first underlay
msp.add_underlay(my_underlay_def, insert=(2, 1, 0), scale=0.05)
The (PDF)UNDERLAY entity is like the INSERT entity, it creates an underlay␣
↪→reference,
and there can be multiple references to the same underlay in a drawing.

msp.add_underlay(my_underlay_def, insert=(4, 5, 0), scale=.5, rotation=30)

get existing underlay definitions, Important: UNDERLAYDEFs resides in the objects␣
↪→section
pdf_defs = doc.objects.query('PDFDEFINITION') # get all pdf underlay defs in drawing

doc.saveas("dxf_with_underlay.dxf")

9.10. Tutorials 847

ezdxf Documentation, Release 1.3.2

9.10.20 Tutorial for MultiLeader

A multileader object typically consists of an arrowhead, a horizontal landing (a.k.a. “dogleg”), a leader line or curve, and
either a MTEXT object or a BLOCK.
Factory methods of the BaseLayout class to create new MultiLeader entities:

• add_multileader_mtext()

• add_multileader_block()

Because of the complexity of the MULTILEADER entity, the factory method add_multileader_mtext()
returns a MultiLeaderMTextBuilder instance to build a new entity and the factory method
add_multileader_block() returns a MultiLeaderBlockBuilder instance.
Due of the lack of good documentation it’s not possible to support all combinations of MULTILEADER properties with
decent quality, so stick to recipes and hints shown in this tutorial to get usable results otherwise, you will enter uncharted
territory.
The rendering result of the MULTILEADER entity is highly dependent on the CAD application. The MULTILEADER
entity does not have a pre-rendered anonymous block of DXF primitives like all DIMENSION entities, so results may vary
from CAD application to CAD application. The general support for this entity is only good in Autodesk products other
CAD applications often struggle when rendering MULTILEADERS, even my preferred testing application BricsCAD
has rendering issues.

Important: MULTILEADER support has flaws in many CAD applications except Autodesk products!

See also:
• ezdxf.render.MultiLeaderBuilder classes
• ezdxf.entities.MultiLeader class
• ezdxf.entities.MLeaderStyle class
• ezdxf.tools.text.MTextEditor class
• MULTILEADER Internals

MTEXT Quick Draw

Full Python script: mtext_quick_leader.py
The quick_leader()method of a MTEXT - MULTILEADER entity constructs the geometry parameters in reverse
manner, starting from a given target point:
DXF document setup:

doc = ezdxf.new(setup=True)
Create a new custom MLEADERSTYLE:
mleaderstyle = doc.mleader_styles.duplicate_entry("Standard", "EZDXF")
The required TEXT style "OpenSans" was created by ezdxf.new() because setup is␣

↪→True:
mleaderstyle.set_mtext_style("OpenSans")
msp = doc.modelspace()

Draw a red circle to mark the target point:

848 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/mtext_quick_leader.py

ezdxf Documentation, Release 1.3.2

target_point = Vec2(40, 15)
msp.add_circle(

target_point, radius=0.5, dxfattribs=GfxAttribs(color=colors.RED)
)

Create four horizontal placed MULTILEADER entities pointing at the target point, the first segment of the leader line is
determined by an angle in this example pointing away from the target point:

for angle in [45, 135, 225, -45]:
ml_builder = msp.add_multileader_mtext("EZDXF")
ml_builder.quick_leader(

f"angle={angle}°\n2nd text line",
target=target_point,
segment1=Vec2.from_deg_angle(angle, 14),

)

The content is automatically aligned to the end of the leader line. The first segment is a relative vector to the target point
and the optional second segment vector is relative to the end of the first segment. The default connection type is horizontal
but can be changed to vertical:
A smaller text size is required:

mleaderstyle = doc.mleader_styles.duplicate_entry("Standard", "EZDXF")
mleaderstyle.set_mtext_style("OpenSans")
mleaderstyle.dxf.char_height = 2.0 # set the default char height of MTEXT

Adding vertical placed MULTILEADER entities:

for angle in [45, 135, 225, -45]:
ml_builder = msp.add_multileader_mtext("EZDXF")
ml_builder.quick_leader(

f"angle={angle}°\n2nd text line",
target=target_point,
segment1=Vec2.from_deg_angle(angle, 14),
connection_type=mleader.VerticalConnection.center_overline,

)

This example already shows the limitation caused by different text renderings in various CAD applications. The ezdxf
text measurement by matplotlib is different to AutoCAD and BricsCAD and the result is a misalignment of the overline
and the leader line.
The DXF file shown in BricsCAD:

9.10. Tutorials 849

ezdxf Documentation, Release 1.3.2

The same DXF file shown with the ezdxf view command (drawing add-on):

850 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

My advice is to avoid vertical placed MULTILEADER entities at all and for horizontal placed MULTILEADER entities
avoid styles including an “underline” or an “overline”.
The quick_leader() method is not very customizable for ease of use, but follows the settings of the associated
MLeaderStyle.
The following sections show how to have more control when adding MULTILEADER entities.

9.10. Tutorials 851

ezdxf Documentation, Release 1.3.2

Create MTEXT Content

Full Python script: mtext_content.py
This section shows how to create a MULTILEADER entity with MTEXT content the manual way with full control over
all settings.
For good results the MTEXT alignment should match the leader connection side, e.g. if you attach leaders to the left side
also align the MTEXT to the left side, for leaders attached at the right side, align the MTEXT to the right side and if you
attach leaders at both sides one side will fit better than the other or maybe a center aligned MTEXT is a good solution,
for further details see section MTEXT Alignment.
The first example uses the default connection type of the MLEADERSTYLE “Standard” which is “middle of the top line”
for left and right attached leaders. The render UCS for this example is the WCS to keep things simple.
Create a new MULTILEADER entity.

ml_builder = msp.add_multileader_mtext("Standard")

Set MTEXT content, text style and alignment.

ml_builder.set_content(
"Line1\nLine2",
style="OpenSans",
alignment=mleader.TextAlignment.left, # set MTEXT alignment!

)

Add the first leader on the left side. The leader points always to the first given vertex and all vertices are given in render
UCS coordinates (= WCS in this example).

ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)])

More than one vertex per leader can be used:

ml_builder.add_leader_line(
mleader.ConnectionSide.left,
[Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)],

)

The insert point of the build() method is the alignment point for the MTEXT content.

ml_builder.build(insert=Vec2(5, 0))

The “dogleg” settings are defined by the MLEADERSTYLE “Standard”.

852 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/mtext_content.py

ezdxf Documentation, Release 1.3.2

This example shows a leader attached to the right side and the MTEXT aligned to the right side.

ml_builder = msp.add_multileader_mtext("Standard")
ml_builder.set_content(

"Line1\nLine2",
style="OpenSans",
alignment=mleader.TextAlignment.right, # set MTEXT alignment!

)
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)])
ml_builder.build(insert=Vec2(15, 0))

9.10. Tutorials 853

ezdxf Documentation, Release 1.3.2

This example shows two leaders attached to both sides and the MTEXT aligned to the left side, which shows that the right
landing gap (space between text and start of vertex) is bigger than the gap on the left size. This is due to the different text
size calculations from AutoCAD/BricsCAD and Matplotlib. The longer the text, the greater the error.

ml_builder = msp.add_multileader_mtext("Standard")
ml_builder.set_content(

"Line1\nLine1",
style="OpenSans",
alignment=mleader.TextAlignment.left, # set MTEXT alignment!

)
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)])
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)])
ml_builder.build(insert=Vec2(5, 0))

A centered MTEXT alignment gives a more even result.

ml_builder = msp.add_multileader_mtext("Standard")
ml_builder.set_content(

"First Line\n2. Line",
style="OpenSans",
alignment=mleader.TextAlignment.center, # set MTEXT alignment!

(continues on next page)

854 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
)
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)])
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)])
ml_builder.build(insert=Vec2(10, 0))

But even this has its disadvantages, the attachment calculation is always based on the bounding box of theMTEXT content.

MTEXT Connection Types

There are four connection sides defined by the enum ezdxf.render.ConnectionSide:
• left
• right
• top
• bottom

The MultiLeader entity supports as the name says multiple leader lines, but all have to have a horizontal (left/right)
connection side or a vertical (top/bottom) connection side, it’s not possible to mix left/right and top/bottom connection
sides. This is determined by the DXF format.
There are different connection types available for the horizontal and the vertical connection sides. All leaders connecting
to the same side have the same connection type. The horizontal connection sides support following connection types,
defined by the enum ezdxf.render.HorizontalConnection:

• by_style
• top_of_top_line
• middle_of_top_line

9.10. Tutorials 855

ezdxf Documentation, Release 1.3.2

• middle_of_text
• middle_of_bottom_line
• bottom_of_bottom_line
• bottom_of_bottom_line_underline (not recommended)
• bottom_of_top_line_underline (not recommended)
• bottom_of_top_line
• bottom_of_top_line_underline_all (not recommended)

The vertical connection sides support following connection types, defined by the enum ezdxf.render.
VerticalConnection:

• by_style
• center
• center_overline (not recommended)

The connection type for each side can be set by the method set_connection_types(), the default for all sides is
by_style:

ml_builder.set_connection_types(
left=mleader.HorizontalConnection.middle_of_top_line,
right=mleader.HorizontalConnection.middle_of_bottom_line,

)

Hint: As shown in the quick draw section using connection types including underlines or overlines do not render well
in AutoCAD/BricsCAD because of the different text measurement of matplotlib, therefore it’s not recommended to use
any of these connection types when creating MULTILEADERS by ezdxf.

MTEXT Alignment

In contrast to the standalone MTEXT entity supports the MTEXT content entity only three text alignments defined by the
enum ezdxf.render.TextAlignment.

• left
• center
• right

856 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The MTEXT alignment is set as argument alignment of the set_content() method and the alignment point is the
insert point of the build() method.

Create BLOCK Content

Full Python script: block_content.py
This section shows how to create a MULTILEADER entity with BLOCK content the manual way with full control over
all settings.
The BLOCK content consist of a BLOCK layout and optional ATTDEF entities which defines the location and DXF
attributes of dynamically created ATTRIB entities.
Create the BLOCK content, the full create_square_block() function can be found in the block_content.py script.

block = create_square_block(
doc, size=8.0, margin=0.25, base_point=base_point

)

Create the MULTILEADER and set the content:

ml_builder = msp.add_multileader_block(style="Standard")
ml_builder.set_content(

name=block.name, alignment=mleader.BlockAlignment.insertion_point
)

Set the BLOCK attribute content as text:

ml_builder.set_attribute("ONE", "Data1")
ml_builder.set_attribute("TWO", "Data2")

Add some leader lines to the left and right side of the BLOCK:
Construction plane of the entity is defined by a render UCS. The leader lines vertices are expected in render UCS coordi-
nates, which means relative to the UCS origin and this example shows the simple case where the UCS is the WCS which
is also the default setting.

ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(x2, y1)])
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(x2, y2)])
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(x1, y1)])
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(x1, y2)])

Last step is to build the final MULTILEADER entity. This example uses the alignment type insertion_point where the
insert point of the build() method is the base point of the BLOCK:

9.10. Tutorials 857

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/block_content.py
https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/mleader/block_content.py

ezdxf Documentation, Release 1.3.2

ml_builder.build(insert=Vec2(5, 2), rotation=30)

The result is shown in BricsCAD as expected, although BricsCAD shows “Center extents” as attachment type in the
properties dialog instead of the correct attachment type “Insertion point”.

BLOCK Connection Types

There are four connection sides defined by the enum ezdxf.render.ConnectionSide:
• left
• right
• top
• bottom

The connection point for leader lines is always the center of the side of the block bounding box the leader is connected
to and has the same limitation as for the MTEXT content, it’s not possible to mix the connection sides left/right and
top/bottom.
The connection side is set when adding the leader line by the add_leader_line() method.
Unfortunately BricsCAD has an error in version 22.2.03 and renders all connection types as left/right, this is top/bottom
connection shown in Autodesk TrueView 2022:

858 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The top/bottom connection type does not support the “dogleg” feature.

BLOCK Alignment

There are two alignments types, defined by the enum ezdxf.render.BlockAlignment

• center_extents
• insertion_point

The alignment is set by the set_content() method.
The alignment type center_extent inserts the BLOCK with the center of the bounding box at the insert point of the
build() method. The insert point is (5, 2) in this example:

9.10. Tutorials 859

ezdxf Documentation, Release 1.3.2

The same MULTILEADER with alignment type insert_point:

860 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

BLOCK Scaling

The BLOCK content can be scaled independently from the overall scaling of the MULTILEADER entity:
The block scaling factor is set by the set_content() method:

ml_builder.set_content(
name=block.name, scale=2.0, alignment=mleader.BlockAlignment.center_extents

)

This is the first example with a block scaling factor of 2. The BLOCK and the attached ATTRIB entities are scaled but
not the arrows.

9.10. Tutorials 861

ezdxf Documentation, Release 1.3.2

BLOCK Rotation

The rotation around the render UCS z-axis in degrees is applied by the build() method:

ml_builder.build(insert=Vec2(5, 2), rotation=30)

This is the first example with a rotation of 30 degrees. The BLOCK, the attached ATTRIB entities and the last connection
lines (“dogleg”) are rotated.

862 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

BLOCK Attributes

BLOCK attributes are defined as ATTDEF entities in the BLOCK layout. This ATTDEF entities will be replaced by
ATTRIB entities at the rendering process of the CAD application. Only the text content and the text width factor can be
changed for eachMULTILEADER entity individually by the set_attribute()method. The ATTDEF is addressed
by it’s DXF tag attribute:

ml_builder.set_attribute("ONE", "Data1")
ml_builder.set_attribute("TWO", "Data2")

9.10. Tutorials 863

ezdxf Documentation, Release 1.3.2

Leader Properties

“Dogleg” Properties

The “dogleg” is the last line segment from the last leader vertex to the MULTILEADER content for polyline leaders.

The length of the dogleg and the landing gap size is set by the set_connection_properties().

Polyline Leader

A polygon leader line has only straight line segments and is added by the add_leader_line():

ml_builder.add_leader_line(
mleader.ConnectionSide.left,
[Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)],

)

864 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

All leader line vertices have render UCS coordinates and the start- and end-vertex of the “dogleg” is calculated automat-
ically.

Spline Leader

A spline leader line has a single curved line as leader line and is also added by the add_leader_line(). This is
spline leader has the same vertices as the previous created polyline leader:

ml_builder.set_leader_properties(leader_type=mleader.LeaderType.splines)
ml_builder.add_leader_line(

mleader.ConnectionSide.left,
[Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)],

)

9.10. Tutorials 865

ezdxf Documentation, Release 1.3.2

The spline leader has no “dogleg” and spline leaders and polyline leaders can not be mixed in a single MULTILEADER
entity.
The leader type is set by the set_leader_properties() method.
The LeaderType enum:

• none
• straight_lines
• splines

Line Styling

The leader color, linetype and lineweight is set by the set_leader_properties() method:

ml_builder.set_leader_properties(
color=colors.MAGENTA,
linetype="DASHEDX2",
lineweight=70,

)

866 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

All leader lines have the same properties.

Arrowheads

The arrow head is set by the set_arrow_properties() method:

from ezdxf.render import ARROWS
ml_builder.set_arrow_properties(name=ARROWS.closed_blank, size=8.0)

All leader lines have the same arrow head and size. The available arrow heads are defined in the ARROWS object.

9.10. Tutorials 867

ezdxf Documentation, Release 1.3.2

Overall Scaling

The overall scaling has to be applied by the set_overall_scaling() method and scales the MTEXT or BLOCK
content and the arrows.

Setup MLEADERSTYLE

The MLeaderStyle stores many of the MULTILEADER settings but most of them are copied to the MULTILINE
entity at initialization. So changing the MLEADERSTYLE style afterwards has little to no effect for existing MULTI-
LEADER entities.
Create a new MLEADERSTYLE called “MY_STYLE” and set the MTEXT style to “OpenSans”:

my_style = doc.mleader_styles.duplicate_entry("Standard", "MY_STYLE")
my_style.set_mtext_style("OpenSans")

The style for a MULTILEADER is set at the add_multileader_mtext() and add_multileader_block()
factory methods.

9.10.21 Tutorial for Viewports in Paperspace

This tutorial is based on the example script viewports_in_paperspace.py. The script creates DXF files for the version R12
and for R2000+, but the export for DXF R12 has a wrong papersize in BricsCAD and wrong margins in Autodesk DWG
Trueview. I don’t know why this happens and I don’t waste my time to fix this.

Important: If you need paperspace layouts use DXF version R2000 or newer because the export of the page dimensions
does not work for DXF R12!

The scripts creates three flat geometries in the xy-plane of theWCS and a 3D mesh as content of the modelspace:

868 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Page Setup

The paperspace layout feature lacks documentation in the DXF reference, there is no information in practice on how it is
used, so most of the information here is assumptions gathered through trail and error.
The page_setup() method defines the properties of the paper sheet itself. The units of the modelspace and the
paperspace are not related and can even have different unit systems (imperial, meters), but to keep things simple it’s
recommended to use the same unit system for both spaces.

layout.page_setup(size=(24, 18), margins=(1, 1, 1, 1), units="inch")

The size argument defines the overall paper size in rotation mode 0, it seems to be the best practice to define the paper
extents in landscape mode and rotate the paper by the rotate argument afterwards.
Choices for the rotation argument:

9.10. Tutorials 869

ezdxf Documentation, Release 1.3.2

0 no rotation
1 90 degrees counter-clockwise
2 upside-down
3 90 degrees clockwise

The scale argument reflects the relationship between paper unit and drawing unit in paperspace. It’s recommended to let
this scale at the default value of 1:1 and draw lines and text in paperspace with the same units as you defined the paper
size.
See also:

• AutoCAD: About Plotting and About Setting the Plot Scale
• BricsCAD: General Procedure for Printing

Drawing in Paperspace

You can add DXF entities to the paperspace like to any other layout space. The coordinate origin (0, 0) is in the left bottom
corner of the canvas which is the paper size minus the margins. You can draw beyond this limits but CAD applications
may not print that content.

Hint: By writing this tutorial I noticed that changing the printer/plotter and the paper size does shift the layout content,
because all paper sizes are defined without margins. Maybe it’s preferable to set all margins to zero.
I added the helper method page_setup() to the Drawing class and an example simple_page_setup.py how to use
it.

Adding Viewports

The Viewport entity is a window to the modelspace to display the content of the modelspace in paperspace with an
arbitrary scaling and rotation. The VIEWPORT entity will be added by the factory method add_viewport(), the
center argument defines the center and the size argument defines the width and height of the of the VIEWPORT in
paperspace. The source of the modelspace to display is defined by the arguments view_center_point and view_height.

870 Chapter 9. Contents

https://help.autodesk.com/view/ACD/2018/ENU/?guid=GUID-2DB9EB8C-767C-4C91-B0A3-FFFEC4C5863A
https://help.autodesk.com/view/ACD/2018/ENU/?guid=GUID-89604826-0B55-4994-8214-1CA93FA66985
https://help.bricsys.com/document/_guides--BCAD_printing_and_plotting--GD_generalprocedureforprinting/V23/EN_US?id=165079156041
https://github.com/mozman/ezdxf/blob/master/examples/simple_page_setup.py

ezdxf Documentation, Release 1.3.2

Scaling Factor

The scaling factor of the VIEWPORT is not an explicit value, the factor is defined by the relation of the VIEWPORT
height of the size argument and the view_height argument.
If both values are equal the scaling is 1:1

paperspace.add_viewport(
center=(14.5, 2.5),
size=(5, 5),
view_center_point=(12.5, 7.5),
view_height=5,

)

If the view_height is 5x larger than the VIEWPORT height the scaling is 1:5

paperspace.add_viewport(
center=(8.5, 2.5),
size=(5, 5),
view_center_point=(10, 5),
view_height=25,

)

9.10. Tutorials 871

ezdxf Documentation, Release 1.3.2

View Direction

The default view direction is the top down view, but can be changed to any view by the attributes view_target_point and
view_direction_vector of the dxf namespace.

vp = paperspace.add_viewport(
center=(16, 10), size=(4, 4), view_center_point=(0, 0), view_height=30

)
vp.dxf.view_target_point = (40, 40, 0)
vp.dxf.view_direction_vector = (-1, -1, 1)

Viewport Frame

The VIEWPORT frame (borderlines) are shown in paperspace by default. The VIEWPORT entity does not have an
attribute to change this. The visibility of the VIEWPORT frame is controlled by the layer assigned to the VIEWPORT
entity which is the layer “VIEWPORTS” by default in ezdxf. Turning off this layer hides the frames of the VIEWPORT
entities on this layer, to do that the layer “VIEWPORTS” have to be created by the library user:

vp_layer = doc.layers.add("VIEWPORTS")
vp_layer.off()

Freeze Layers

Each VIEWPORT can have individual frozen layers, which means the layers are not visible in this VIEWPORT. To freeze
layers in a VIEWPORT assign the names of the frozen layers as a list-like object to the frozen_layers attribute of
the VIEWPORT entity:

vp.frozen_layers = ["Layer0", "Layer1"]

Important: AutoCAD and BricsCAD do not crash if the layer names do not have layer table entries and the layer
names are case insensitive as all table names.

See also:
• Basic concept of Layers
• Layer

Override Layer Properties

Each VIEWPORT can override layer properties individually. These overrides are stored in the Layer entity and ref-
erenced by the handle of the VIEWPORT. This procedure is a bit more complex and shown in the example file view-
ports_override_layer_attributes.py.

1. get the Layer object
2. get the LayerOverrides object from the layer
3. override the properties of the VIEWPORT
4. commit changes

872 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/viewports_override_layer_attributes.py
https://github.com/mozman/ezdxf/blob/master/examples/viewports_override_layer_attributes.py

ezdxf Documentation, Release 1.3.2

layer = doc.layers.get("Layer0")
override = layer.get_vp_overrides()
override.set_linetype(vp.dxf.handle, "DASHED")
override.commit()

Supported property overrides:
• ACI color
• true color
• transparency
• linetype
• lineweight

See also:
• Basic concept of Layers
• Basic concept of AutoCAD Color Index (ACI)

• Basic concept of True Color
• Basic concept of Transparency
• Basic concept of Linetypes
• Basic concept of Lineweights

• Layer

• LayerOverrides

9.10.22 Tutorial for OCS/UCS Usage

For OCS/UCS usage is a basic understanding of vector math required, for a brush up, watch the YouTube tutorials of
3Blue1Brown about Linear Algebra.
Second read the Coordinate Systems introduction please.
See also:
The free online book 3D Math Primer for Graphics and Game Development is a very good resource for learning vector
math and other graphic related topics, it is easy to read for beginners and especially targeted to programmers.
For WCS there is not much to say as, it is what it is: the main world coordinate system, and a drawing unit can have any
real world unit you want. Autodesk added some mechanism to define a scale for dimension and text entities, but because
I am not an AutoCAD user, I am not familiar with it, and further more I think this is more an AutoCAD topic than a
DXF topic.

9.10. Tutorials 873

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://gamemath.com/

ezdxf Documentation, Release 1.3.2

Object Coordinate System (OCS)

The OCS is used to place planar 2D entities in 3D space. ALL points of a planar entity lay in the same plane, this is also
true if the plane is located in 3D space by an OCS. There are three basic DXF attributes that gives a 2D entity its spatial
form.

Extrusion

The extrusion vector defines the OCS, it is a normal vector to the base plane of a planar entity. This base plane is always
located in the origin of the WCS. But there are some entities like Ellipse, which have an extrusion vector, but do
not establish an OCS. For this entities the extrusion vector defines only the extrusion direction and thickness defines the
extrusion distance, but all other points and directions in WCS.

Elevation

The elevation value defines the z-axis value for all points of a planar entity, this is an OCS value, and defines the distance
of the entity plane from the base plane.
This value exists only in output from DXF versions prior to R11 as separated DXF attribute (group code 38). In DXF
R12 and later, the elevation value is supplied as z-axis value of each point. But as always in DXF, this simple rule does not
apply to all entities: LWPolyline and Hatch have an DXF attribute elevation as a 3D point, where the z-values
of this point is the elevation height and the x-value and the y-value are 0.

Thickness

Defines the extrusion distance for an entity.

Note: There is a new edition of this tutorial using UCS based transformation, which are available in ezdxf v0.11 and
later: Tutorial for UCS Based Transformations

This edition shows the hard way to accomplish the transformations by low level operations.

Placing 2D Circle in 3D Space

The colors of the system axis follow the AutoCAD standard:
• red is x-axis
• green is y-axis
• blue is z-axis

import ezdxf
from ezdxf.math import OCS

doc = ezdxf.new('R2010')
msp = doc.modelspace()

For this example the OCS is rotated around x-axis about 45 degree
OCS z-axis: x=0, y=1, z=1
extrusion vector must not normalized here

(continues on next page)

874 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
ocs = OCS((0, 1, 1))
msp.add_circle(

You can place the 2D circle in 3D space
but you have to convert WCS into OCS
center=ocs.from_wcs((0, 2, 2)),
center in OCS: (0.0, 0.0, 2.82842712474619)
radius=1,
dxfattribs={

here the extrusion vector should be normalized,
which is granted by using the ocs.uz
'extrusion': ocs.uz,
'color': 1,

})
mark center point of circle in WCS
msp.add_point((0, 2, 2), dxfattribs={'color': 1})

The following image shows the 2D circle in 3D space in AutoCAD Left and Front view. The blue line shows the OCS
z-axis (extrusion direction), elevation is the distance from the origin to the center of the circle in this case 2.828, and you
see that the x- and y-axis of the OCS and the WCS are not aligned.

9.10. Tutorials 875

ezdxf Documentation, Release 1.3.2

Placing LWPolyline in 3D Space

For simplicity of calculation I use the UCS class in this example to place a 2D pentagon in 3D space.

The center of the pentagon should be (0, 2, 2), and the shape is
rotated around x-axis about 45 degree, to accomplish this I use an
UCS with z-axis (0, 1, 1) and an x-axis parallel to WCS x-axis.
ucs = UCS(

origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x-axis parallel to WCS x-axis
uz=(0, 1, 1), # z-axis

)
calculating corner points in local (UCS) coordinates
points = [Vec3.from_deg_angle((360 / 5) * n) for n in range(5)]
converting UCS into OCS coordinates
ocs_points = list(ucs.points_to_ocs(points))

LWPOLYLINE accepts only 2D points and has an separated DXF attribute elevation.
All points have the same z-axis (elevation) in OCS!
elevation = ocs_points[0].z

msp.add_lwpolyline(
points=ocs_points,
format='xy', # ignore z-axis
close=True,
dxfattribs={

'elevation': elevation,
'extrusion': ucs.uz,
'color': 1,

})

The following image shows the 2D pentagon in 3D space in AutoCAD Left, Front and Top view. The three lines from
the center of the pentagon show the UCS, the three colored lines in the origin show the OCS, the white lines in the origin
show the WCS.
The z-axis of the UCS and the OCS pointing in the same direction (extrusion direction), and the x-axis of the UCS and

876 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

the WCS pointing also in the same direction. The elevation is the distance from the origin to the center of the pentagon
and all points of the pentagon have the same elevation, and you see that the y-axis of the UCS, the OCS and the WCS are
not aligned.

Using UCS to Place 3D Polyline

It is much simpler to use a 3D Polyline to create the 3D pentagon. The UCS class is handy for this example and all
kind of 3D operations.

Using an UCS simplifies 3D operations, but UCS definition can happen later
calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians(360 / 5)
corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]

(continues on next page)

9.10. Tutorials 877

ezdxf Documentation, Release 1.3.2

(continued from previous page)
let's do some transformations
tmatrix = Matrix44.chain(# creating a transformation matrix

Matrix44.z_rotate(math.radians(15)), # 1. rotation around z-axis
Matrix44.translate(0, .333, .333), # 2. translation

)
transformed_corners_ucs = tmatrix.transform_vertices(corners_ucs)

transform UCS into WCS
ucs = UCS(

origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x-axis parallel to WCS x-axis
uz=(0, 1, 1), # z-axis

)
corners_wcs = list(ucs.points_to_wcs(transformed_corners_ucs))

msp.add_polyline3d(
points=corners_wcs,
close=True,

)

add lines from center to corners
center_wcs = ucs.to_wcs((0, .333, .333))
for corner in corners_wcs:

msp.add_line(center_wcs, corner, dxfattribs={'color': 1})

ucs.render_axis(msp)

878 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Placing 2D Text in 3D Space

The problem of placing text in 3D space is the text rotation, which is always counter clockwise around the OCS z-axis,
and 0 degree is the direction of the positive OCS x-axis, and the OCS x-axis is calculated by the Arbitrary Axis Algorithm.
Calculate the OCS rotation angle by converting the TEXT rotation angle (in UCS orWCS) into a vector or begin with text
direction as vector, transform this direction vector into OCS and convert the OCS vector back into an angle in the OCS xy-
plane (see example), this procedure is available asUCS.to_ocs_angle_deg() orUCS.to_ocs_angle_rad().
AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.

Thickness for text works only with shx fonts not with true type fonts
doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'})

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
calculation of text direction as angle in OCS:
convert text rotation in degree into a vector in UCS
text_direction = Vec3.from_deg_angle(-45)
transform vector into OCS and get angle of vector in xy-plane
rotation = ucs.to_ocs(text_direction).angle_deg

text = msp.add_text(
text="TEXT",
dxfattribs={

text rotation angle in degrees in OCS
'rotation': rotation,
'extrusion': ucs.uz,
'thickness': .333,
'color': 1,
'style': 'TXT',

})
set text position in OCS
text.set_pos(ucs.to_ocs((0, 0, 0)), align='MIDDLE_CENTER')

9.10. Tutorials 879

ezdxf Documentation, Release 1.3.2

Hint: For calculating OCS angles from an UCS, be aware that 2D entities, like TEXT or ARC, are placed parallel to
the xy-plane of the UCS.

Placing 2D Arc in 3D Space

Here we have the same problem as for placing text, you need the start- and end angle of the arc in degrees in the OCS,
and this example also shows a shortcut for calculating the OCS angles.

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
msp.add_arc(

center=ucs.to_ocs((0, 0)),
radius=1,
start_angle=ucs.to_ocs_angle_deg(45),
end_angle=ucs.to_ocs_angle_deg(270),
dxfattribs={

'extrusion': ucs.uz,
'color': 1,

})
center = ucs.to_wcs((0, 0))
msp.add_line(

start=center,
end=ucs.to_wcs(Vec3.from_deg_angle(45)),
dxfattribs={'color': 1},

)
msp.add_line(

start=center,
end=ucs.to_wcs(Vec3.from_deg_angle(270)),
dxfattribs={'color': 1},

)

880 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Placing Block References in 3D Space

Despite the fact that block references (Insert) can contain true 3D entities like Line or Mesh, the Insert entity
uses the same placing principe as Text or Arc shown in the previous chapters.
Placement by OCS coordinates and rotation about the OCS z-axis, can be achieved the sameway as for generic 2D entities.
The DXF attribute Insert.dxf.rotation rotates a block reference around the block z-axis, which is located in
the Block.dxf.base_point. To rotate the block reference around the WCS x-axis, a transformation of the block
z-axis into the WCS x-axis is required by rotating the block z-axis 90 degree counter-clockwise around y-axis by using
an UCS:
This is just an excerpt of the important parts, see the whole code of insert.py at github.

9.10. Tutorials 881

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/ocs/insert.py

ezdxf Documentation, Release 1.3.2

rotate UCS around an arbitrary axis:
def ucs_rotation(ucs: UCS, axis: Vec3, angle: float):

new in ezdxf v0.11: UCS.rotate(axis, angle)
t = Matrix44.axis_rotate(axis, math.radians(angle))
ux, uy, uz = t.transform_vertices([ucs.ux, ucs.uy, ucs.uz])
return UCS(origin=ucs.origin, ux=ux, uy=uy, uz=uz)

doc = ezdxf.new('R2010', setup=True)
blk = doc.blocks.new('CSYS')
setup_csys(blk)
msp = doc.modelspace()

ucs = ucs_rotation(UCS(), axis=Y_AXIS, angle=90)
transform insert location to OCS
insert = ucs.to_ocs((0, 0, 0))
rotation angle about the z-axis (= WCS x-axis)
rotation = ucs.to_ocs_angle_deg(15)
msp.add_blockref('CSYS', insert, dxfattribs={

'extrusion': ucs.uz,
'rotation': rotation,

})

882 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

To rotate a block reference around another axis than the block z-axis, you have to find the rotated z-axis (extrusion vector)
of the rotated block reference, following example rotates the block reference around the block x-axis by 15 degrees:

t is a transformation matrix to rotate 15 degree around the x-axis
t = Matrix44.axis_rotate(axis=X_AXIS, angle=math.radians(15))
transform block z-axis into new UCS z-axis (= extrusion vector)
uz = Vec3(t.transform(Z_AXIS))
create new UCS at the insertion point, because we are rotating around the x-axis,
ux is the same as the WCS x-axis and uz is the rotated z-axis.
ucs = UCS(origin=(1, 2, 0), ux=X_AXIS, uz=uz)
transform insert location to OCS, block base_point=(0, 0, 0)
insert = ucs.to_ocs((0, 0, 0))
for this case a rotation around the z-axis is not required
rotation = 0
blockref = msp.add_blockref('CSYS', insert, dxfattribs={

'extrusion': ucs.uz,
'rotation': rotation,

})

9.10. Tutorials 883

ezdxf Documentation, Release 1.3.2

The next example shows how to translate a block references with an already established OCS:

translate a block references with an established OCS
translation = Vec3(-3, -1, 1)
get established OCS
ocs = blockref.ocs()
get insert location in WCS
actual_wcs_location = ocs.to_wcs(blockref.dxf.insert)
translate location
new_wcs_location = actual_wcs_location + translation
convert WCS location to OCS location
blockref.dxf.insert = ocs.from_wcs(new_wcs_location)

Setting a new insert location is the same procedure without adding a translation vector, just transform the new insert
location into the OCS.

884 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle
is -90 degrees. First transform block y-axis (rotation axis) and block z-axis (extrusion vector) from OCS into WCS:

rotate a block references with an established OCS around the block y-axis about 90␣
↪→degree
ocs = blockref.ocs()
convert block y-axis (= rotation axis) into WCS vector
rotation_axis = ocs.to_wcs((0, 1, 0))
convert local z-axis (=extrusion vector) into WCS vector
local_z_axis = ocs.to_wcs((0, 0, 1))

Build transformation matrix and transform extrusion vector and build new UCS:

build transformation matrix
t = Matrix44.axis_rotate(axis=rotation_axis, angle=math.radians(-90))
uz = t.transform(local_z_axis)

(continues on next page)

9.10. Tutorials 885

ezdxf Documentation, Release 1.3.2

(continued from previous page)
uy = rotation_axis
the block reference origin stays at the same location, no rotation needed
wcs_insert = ocs.to_wcs(blockref.dxf.insert)
build new UCS to convert WCS locations and angles into OCS
ucs = UCS(origin=wcs_insert, uy=uy, uz=uz)

Set new OCS attributes, we also have to set the rotation attribute even though we do not rotate the block reference around
the local z-axis, the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted:

set new OCS
blockref.dxf.extrusion = ucs.uz
set new insert
blockref.dxf.insert = ucs.to_ocs((0, 0, 0))
set new rotation: we do not rotate the block reference around the local z-axis,
but the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted
blockref.dxf.rotation = ucs.to_ocs_angle_deg(0)

886 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

And here is the point, where my math knowledge ends, for more advanced CAD operation you have to look elsewhere.

9.10.23 Tutorial for UCS Based Transformations

The ezdxf version v0.13 introduced a transformation interface for DXF primitives, which makes working with OCS/UCS
much easier. This is a new edition of the Tutorial for OCS/UCS Usage. Please read the old tutorial for the basics about
the OCS.
For this tutorial we don’t have to worry about the OCS and the extrusion vector, this is done automatically by the trans-
form() method of each DXF entity.

Placing 2D Circle in 3D Space

To recreate the situation of the old tutorial instantiate a newUCS and rotate it around the local x-axis. UseUCS coordinates
to place the 2D CIRCLE in 3D space and transform the UCS coordinates to the WCS.

import math
import ezdxf
from ezdxf.math import UCS

doc = ezdxf.new('R2010')
msp = doc.modelspace()

ucs = UCS() # New default UCS
All rotation angles in radians, and rotation
methods always return a new UCS.
ucs = ucs.rotate_local_x(math.radians(-45))
circle = msp.add_circle(

Use UCS coordinates to place the 2d circle in 3d space
center=(0, 0, 2),
radius=1,
dxfattribs={'color': 1}

)
circle.transform(ucs.matrix)

(continues on next page)

9.10. Tutorials 887

ezdxf Documentation, Release 1.3.2

(continued from previous page)

mark center point of circle in WCS
msp.add_point((0, 0, 2), dxfattribs={'color': 1}).transform(ucs.matrix)

888 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Placing LWPolyline in 3D Space

Simplified LWPOLYLINE example:

The center of the pentagon should be (0, 2, 2), and the shape is
rotated around x-axis about -45 degree
ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))

msp.add_lwpolyline(
calculating corner points in UCS coordinates
points=(Vec3.from_deg_angle((360 / 5) * n) for n in range(5)),
format='xy', # ignore z-axis
close=True,
dxfattribs={

'color': 1,
}

).transform(ucs.matrix)

The 2D pentagon in 3D space in BricsCAD Left and Front view.

9.10. Tutorials 889

ezdxf Documentation, Release 1.3.2

Using UCS to Place 3D Polyline

Simplified POLYLINE example: Using a first UCS to transform the POLYLINE and a second UCS to place the POLY-
LINE in 3D space.

using an UCS simplifies 3D operations, but UCS definition can happen later
calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians(360 / 5)
corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]

let's do some transformations by UCS
transformation_ucs = UCS().rotate_local_z(math.radians(15)) # 1. rotation around z-
↪→axis
transformation_ucs.shift((0, .333, .333)) # 2. translation (inplace)
corners_ucs = list(transformation_ucs.points_to_wcs(corners_ucs))

location_ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))
msp.add_polyline3d(

points=corners_ucs,
close=True,
dxfattribs={

'color': 1,
}

).transform(location_ucs.matrix)

Add lines from the center of the POLYLINE to the corners
center_ucs = transformation_ucs.to_wcs((0, 0, 0))
for corner in corners_ucs:

msp.add_line(
center_ucs, corner, dxfattribs={'color': 1}

).transform(location_ucs.matrix)

890 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Placing 2D Text in 3D Space

The problem with the text rotation in the old tutorial disappears with the new UCS based transformation method:
AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.

thickness for text works only with shx fonts not with true type fonts
doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'})

ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))
text = msp.add_text(

text="TEXT",
dxfattribs={

text rotation angle in degrees in UCS
'rotation': -45,
'thickness': .333,
'color': 1,
'style': 'TXT',

}
)
set text position in UCS
text.set_pos((0, 0, 0), align='MIDDLE_CENTER')
text.transform(ucs.matrix)

9.10. Tutorials 891

ezdxf Documentation, Release 1.3.2

Placing 2D Arc in 3D Space

Same as for the text example, OCS angle transformation can be ignored:

ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))

CENTER = (0, 0)
START_ANGLE = 45
END_ANGLE = 270

msp.add_arc(
center=CENTER,
radius=1,
start_angle=START_ANGLE,
end_angle=END_ANGLE,
dxfattribs={'color': 6},

).transform(ucs.matrix)

(continues on next page)

892 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
msp.add_line(

start=CENTER,
end=Vec3.from_deg_angle(START_ANGLE),
dxfattribs={'color': 6},

).transform(ucs.matrix)

msp.add_line(
start=CENTER,
end=Vec3.from_deg_angle(END_ANGLE),
dxfattribs={'color': 6},

).transform(ucs.matrix)

9.10. Tutorials 893

ezdxf Documentation, Release 1.3.2

Placing Block References in 3D Space

Despite the fact that block references (INSERT) can contain true 3D entities like LINE or MESH, the INSERT entity
uses the same placing principe as TEXT or ARC shown in the previous sections.
To rotate the block reference 15 degrees around the WCS x-axis, we place the block reference in the origin of the UCS,
and rotate the UCS 90 degrees around its local y-axis, to align the UCS z-axis with the WCS x-axis:
This is just an excerpt of the important parts, see the whole code of insert.py at github.

doc = ezdxf.new('R2010', setup=True)
blk = doc.blocks.new('CSYS')
setup_csys(blk)
msp = doc.modelspace()

ucs = UCS().rotate_local_y(angle=math.radians(90))
msp.add_blockref(

'CSYS',
insert=(0, 0),
rotation around the block z-axis (= WCS x-axis)
dxfattribs={'rotation': 15},

).transform(ucs.matrix)

894 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/ucs/insert.py

ezdxf Documentation, Release 1.3.2

A more simple approach is to ignore the rotate attribute at all and just rotate the UCS. To rotate a block reference
around any axis rather than the block z-axis, rotate the UCS into the desired position. The following example rotates the
block reference around the block x-axis by 15 degrees:

ucs = UCS(origin=(1, 2, 0)).rotate_local_x(math.radians(15))
blockref = msp.add_blockref('CSYS', insert=(0, 0, 0))
blockref.transform(ucs.matrix)

9.10. Tutorials 895

ezdxf Documentation, Release 1.3.2

The next example shows how to translate a block references with an already established OCS:

New UCS at the translated location, axis aligned to the WCS
ucs = UCS((-3, -1, 1))
Transform an already placed block reference, including
the transformation of the established OCS.
blockref.transform(ucs.matrix)

896 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle
is -90 degrees. The idea is to create an UCS in the origin of the already placed block reference, UCS axis aligned to the
block axis and resetting the block reference parameters for a new WCS transformation.

Get UCS at the block reference insert location, UCS axis aligned
to the block axis.
ucs = blockref.ucs()
Rotate UCS around the local y-axis.
ucs = ucs.rotate_local_y(math.radians(-90))

Reset block reference parameters, this places the block reference in the UCS origin and aligns the block axis to the UCS
axis, now we do a new transformation from UCS to WCS:

Reset block reference parameters to place block reference in
UCS origin, without any rotation and OCS.
blockref.reset_transformation()

Transform block reference from UCS to WCS
blockref.transform(ucs.matrix)

9.10. Tutorials 897

ezdxf Documentation, Release 1.3.2

9.10.24 Tutorial for Linear Dimensions

The Dimension entity is the generic entity for all dimension types, but unfortunately AutoCAD is not willing to show
a dimension line defined only by this dimension entity, it also needs an anonymous block which contains the dimension
line shape constructed by DXF primitives like LINE and TEXT entities, this representation is called the dimension line
rendering in this documentation, beside the fact that this is not a real graphical rendering. BricsCAD is a much more
friendly CAD application, which do show the dimension entity without the graphical rendering as block, which was very
useful for testing, because there is no documentation how to apply all the dimension style variables (more than 80). This
seems to be the reason why dimension lines are rendered so differently by many CAD application.
Don’t expect to get the same rendering results by ezdxf as you get from AutoCAD. Ezdxf tries to be as close to the results
rendered by BricsCAD, but it is not possible to implement all the various combinations of dimension style parameters,
which often affect one another.

898 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Text rendering is another problem, because ezdxf has no real rendering engine. Some font properties, like the real text
width, which is only available to ezdxf if the Matplotlib package is installed and this value may also vary slightly for
different CAD applications. Without access to theMatplotlib package the text properties in ezdxf are based on an abstract
monospaced font and are bigger than required by true type fonts.
Not all DIMENSION and DIMSTYLE features are supported by all DXF versions, especially DXF R12 does not support
many features, but in this case the required rendering of dimension lines is an advantage, because if the application just
shows the rendered block, all features which can be used in DXF R12 will be displayed, but these features will disappear
if the dimension line will be edited in the CAD application. Ezdxf writes only the supported DIMVARS of the used DXF
version to avoid invalid DXF files. So it is not that critical to know all the supported features of a DXF version, except for
limits and tolerances, ezdxf uses the advanced features of the MTEXT entity to create limits and tolerances and therefore
they are not supported (displayed) in DXF R12 files.
See also:

• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_linear.py shows examples for linear dimensions.

Horizontal Dimension

import ezdxf

Create a DXF R2010 document:
Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new("R2010", setup=True)

Add new dimension entities to the modelspace:
msp = doc.modelspace()

Add a LINE entity for visualization, not required to create the DIMENSION
entity:
msp.add_line((0, 0), (3, 0))

Add a horizontal linear DIMENSION entity:
dim = msp.add_linear_dim(

base=(3, 2), # location of the dimension line
p1=(0, 0), # 1st measurement point
p2=(3, 0), # 2nd measurement point
dimstyle="EZDXF", # default dimension style

)

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding
the entity and the rendering call.
dim.render()
doc.saveas("dim_linear_horiz.dxf")

9.10. Tutorials 899

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_linear.py

ezdxf Documentation, Release 1.3.2

The example above creates a horizontal Dimension entity. The default dimension style “EZDXF” is defined as:
• 1 drawing unit = 1m
• measurement text height = 0.25 (drawing scale = 1:100)
• the length factor dimlfac = 100, which creates a measurement text in cm.
• arrow is “ARCHTICK”, arrow size dimasz = 0.175

Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save()
or saveas() (e.g. dimension style setup was not initiated).
The base point defines the location of the dimension line, ezdxf accepts any point on the dimension line, the point p1
defines the start point of the first extension line, which also defines the first measurement point and the point p2 defines
the start point of the second extension line, which also defines the second measurement point.
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity
is stored as attribute dim.dimension.

900 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Vertical and Rotated Dimension

Argument angle defines the angle of the dimension line in relation to the x-axis of the WCS or UCS, measurement is the
distance between first and second measurement point in direction of angle.

assignment to dim is not necessary, if no additional processing happens
msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0), angle=-30).render()
doc.saveas("dim_linear_rotated.dxf")

For a vertical dimension set argument angle to 90 degree, but in this example the vertical distance would be 0.

Aligned Dimension

An aligned dimension line is parallel to the line defined by the definition points p1 and p2. The placement of the dimension
line is defined by the argument distance, which is the distance between the definition line and the dimension line. The
distance of the dimension line is orthogonal to the base line in counter clockwise orientation.

msp.add_line((0, 2), (3, 0))
dim = msp.add_aligned_dim(p1=(0, 2), p2=(3, 0), distance=1)
doc.saveas("dim_linear_aligned.dxf")

9.10. Tutorials 901

ezdxf Documentation, Release 1.3.2

Dimension Style Override

Many dimension styling options are defined by the associated DimStyle entity. But often you wanna change just a few
settings without creating a new dimension style, therefore the DXF format has a protocol to store this changed settings
in the dimension entity itself. This protocol is supported by ezdxf and every factory function which creates dimension
entities supports the override argument. This override argument is a simple Python dictionary (e.g. override =
{"dimtad": 4}, place measurement text below dimension line).
The overriding protocol is managed by the DimStyleOverride object, which is returned by the most dimension
factory functions.

902 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Placing Measurement Text

The default location of the measurement text depends on various DimStyle parameters and is applied if no user defined
text location is defined.

Default Text Locations

“Horizontal direction” means in direction of the dimension line and “vertical direction” means perpendicular to the di-
mension line direction.
The “horizontal” location of the measurement text is defined by dimjust:

0 Center of dimension line
1 Left side of the dimension line, near first extension line
2 Right side of the dimension line, near second extension line
3 Over first extension line
4 Over second extension line

msp.add_linear_dim(
base=(3, 2), p1=(0, 0), p2=(3, 0), override={"dimjust": 1}

).render()

The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:

0 Center, it is possible to adjust the vertical location by dimtvp
1 Above
2 Outside, handled like Above by ezdxf
3 JIS, handled like Above by ezdxf
4 Below

msp.add_linear_dim(
base=(3, 2), p1=(0, 0), p2=(3, 0), override={"dimtad": 4}

).render()

9.10. Tutorials 903

ezdxf Documentation, Release 1.3.2

The distance between text and dimension line is defined by dimgap.
The DimStyleOverride object has a method set_text_align() to set the default text location in an easy way,
this is also the reason for the 2 step creation process of dimension entities:

dim = msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0))
dim.set_text_align(halign="left", valign="center")
dim.render()

halign “left”, “right”, “center”, “above1”, “above2”
valign “above”, “center”, “below”

Run function example_for_all_text_placings_R2007() in the example script dimension_linear.py to cre-
ate a DXF file with all text placings supported by ezdxf.

User Defined Text Locations

Beside the default location, it is possible to locate the measurement text freely.

Location Relative to Origin

The user defined text location can be set by the argument location in most dimension factory functions and always refer-
ences the midpoint of the measurement text:

msp.add_linear_dim(
base=(3, 2), p1=(3, 0), p2=(6, 0), location=(4, 4)

).render()

904 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_linear.py

ezdxf Documentation, Release 1.3.2

The location is relative to the origin of the active coordinate system or WCS if no UCS is defined in the render()
method, the user defined location can also be set by user_location_override().

Location Relative to Center of Dimension Line

The method set_location() has additional features for linear dimensions. Argument leader = True adds a simple
leader from the measurement text to the center of the dimension line and argument relative = True places the measure-
ment text relative to the center of the dimension line.

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_location(location=(-1, 1), leader=True, relative=True)
dim.render()

9.10. Tutorials 905

ezdxf Documentation, Release 1.3.2

Location Relative to Default Location

The method shift_text() shifts the measurement text away from the default text location. The shifting directions
are aligned to the text direction, which is the direction of the dimension line in most cases, dh (for delta horizontal) shifts
the text parallel to the text direction, dv (for delta vertical) shifts the text perpendicular to the text direction. This method
does not support leaders.

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.shift_text(dh=1, dv=1)
dim.render()

906 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Overriding Text Rotation

All factory methods supporting the argument text_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).

Measurement Text Formatting and Styling

Text Properties

DIMVAR Description
dimtxsty Specifies the text style of the dimension as Textstyle name.
dimtxt Text height in drawing units.
dimclrt Measurement text color as AutoCAD Color Index (ACI).

msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={

"dimtxsty": "Standard",
"dimtxt": 0.35,
"dimclrt": 1,

}
).render()

Background Filling

Background fillings are supported since DXF R2007, and ezdxf uses the MTEXT entity to implement this feature, so
setting background filling in DXF R12 has no effect. The DIMVAR dimtfill defines the kind of background filling
and the DIMVAR dimtfillclr defines the fill color.

DIMVAR Description
dimtfill Enables background filling if bigger than 0
dimtfillclr Fill color as AutoCAD Color Index (ACI), if dimtfill is 2

9.10. Tutorials 907

ezdxf Documentation, Release 1.3.2

dimtfill Description
0 disabled
1 canvas color
2 color defined by dimtfillclr

msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={

"dimtfill": 2,
"dimtfillclr": 1,

}
).render()

Text Formatting

• decimal places: dimdec defines the number of decimal places displayed for the primary units of a dimension.
(DXF R2000)

• decimal point character: dimdsep defines the decimal point as ASCII code, get the ASCII code by ord('.')
• rounding: dimrnd, rounds all dimensioning distances to the specified value, for instance, if dimrnd is set to
0.25, all distances round to the nearest 0.25 unit. If dimrnd is set to 1.0, all distances round to the nearest integer.
For more information look at the documentation of the ezdxf.math.xround() function.

• zero trimming: dimzin, ezdxf supports only a subset of values:
– 4 to suppress leading zeros
– 8 to suppress trailing zeros
– 12 as the combination of both

• measurement factor: scale measurement by factor dimlfac, e.g. to get the dimensioning text in cm for a DXF
file where 1 drawing unit represents 1m, set dimlfac to 100.

• text template: dimpost, “<>” represents the measurement text, e.g. “~<>cm” produces “~300cm” for measure-
ment in previous example.

To set this values the ezdxf.entities.DimStyle.set_text_format() and ezdxf.entities.
DimStyleOverride.set_text_format() methods are very recommended.

908 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Overriding Measurement Text

This feature allows overriding the real measurement text by a custom measurement text, the text is stored as string in
the Dimension entity as attribute text. Special values of the text attribute are: one space “ “ to suppress the
measurement text at all, an empty string “” or “<>” to display the real measurement.
All factory functions have an explicit text argument, which always replaces the text value in the dxfattribs dict.

msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0), text=">1m").render()

Dimension Line Properties

The dimension line color is defined by the DIMVARdimclrd asAutoCADColor Index (ACI),dimclrd and also defines
the color of the arrows. The linetype is defined by dimltype and requires DXF R2007. The lineweight is defined by
dimlwd and requires DXF R2000, see also the lineweight reference for valid values. The dimdle is the extension
of the dimension line beyond the extension lines, this dimension line extension is not supported for all arrows.

DIMVAR Description
dimclrd dimension line and arrows color as AutoCAD Color Index (ACI)
dimltype linetype of dimension line
dimlwd line weight of dimension line
dimdle extension of dimension line in drawing units

msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={

"dimclrd": 1, # red
"dimdle": 0.25,
"dimltype": "DASHED2",
"dimlwd": 35, # 0.35mm line weight

}
).render()

9.10. Tutorials 909

ezdxf Documentation, Release 1.3.2

DimStyleOverride() method:

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_dimline_format(

color=1, linetype="DASHED2", lineweight=35, extension=0.25
)
dim.render()

Extension Line Properties

The extension line color is defined by the DIMVAR dimclre as AutoCAD Color Index (ACI). The linetype for the first
and the second extension line is defined by dimltex1 and dimltex2 and requires DXF R2007. The lineweight is
defined by dimlwe and required DXF R2000, see also the lineweight reference for valid values.
The dimexe is the extension of the extension line beyond the dimension line, and dimexo defines the offset of the
extension line from the measurement point.

DIMVAR Description
dimclre extension line color as AutoCAD Color Index (ACI)
dimltex1 linetype of first extension line
dimltex2 linetype of second extension line
dimlwe line weight of extension line
dimexe extension beyond dimension line in drawing units
dimexo offset of extension line from measurement point
dimfxlon set to 1 to enable fixed length extension line
dimfxl length of fixed length extension line in drawing units
dimse1 suppress first extension line if 1
dimse2 suppress second extension line if 1

msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={

"dimclre": 1, # red
"dimltex1": "DASHED2",
"dimltex2": "CENTER2",

(continues on next page)

910 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
"dimlwe": 35, # 0.35mm line weight
"dimexe": 0.3, # length above dimension line
"dimexo": 0.1, # offset from measurement point

}
).render()

DimStyleOverride() methods:

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_extline_format(color=1, lineweight=35, extension=0.3, offset=0.1)
dim.set_extline1(linetype="DASHED2")
dim.set_extline2(linetype="CENTER2")
dim.render()

Fixed length extension lines are supported in DXF R2007, set dimfxlon to 1 and dimfxl defines the length of the
extension line starting at the dimension line.

msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={

"dimfxlon": 1, # fixed length extension lines
"dimexe": 0.2, # length above dimension line

(continues on next page)

9.10. Tutorials 911

ezdxf Documentation, Release 1.3.2

(continued from previous page)
"dimfxl": 0.4, # length below dimension line

}
).render()

DimStyleOverride() method:

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_extline_format(extension=0.2, fixed_length=0.4)
dim.render()

To suppress extension lines set dimse1 to 1 to suppress the first extension line and dimse2 to 1 to suppress the second
extension line.

msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={

"dimse1": 1, # suppress first extension line
"dimse2": 1, # suppress second extension line
"dimblk": ezdxf.ARROWS.closed_filled, # arrows just looks better

}
).render()

DimStyleOverride() methods:

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_arrows(blk=ezdxf.ARROWS.closed_filled)
dim.set_extline1(disable=True)

(continues on next page)

912 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
dim.set_extline2(disable=True)
dim.render()

Arrows

“Arrows” mark then beginning and the end of a dimension line, and most of them do not look like arrows.
DXF distinguish between the simple tick (a slanted line) and arrows as blocks.
To use a simple tick as “arrow” set dimtsz to a value greater than 0, this also disables arrow blocks as side effect:

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_tick(size=0.25)
dim.render()

Ezdxf uses the “ARCHTICK” block at double size to render the tick (AutoCAD and BricsCad just draw a simple line),
so there is no advantage of using the tick instead of an arrow.
Using arrows:

dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_arrow(blk="OPEN_30", size=0.25)
dim.render()

DIMVAR Description
dimtsz tick size in drawing units, set to 0 to use arrows
dimblk set both arrow block names at once
dimblk1 first arrow block name
dimblk2 second arrow block name
dimasz arrow size in drawing units

msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={

"dimtsz": 0, # set tick size to 0 to enable arrow usage
"dimasz": 0.25, # arrow size in drawing units
"dimblk": "OPEN_30", # arrow block name

}
).render()

The dimension line extension (dimdle) works only for a few arrow blocks and the simple tick:
• “ARCHTICK”
• “OBLIQUE”
• “NONE”
• “SMALL”
• “DOTSMALL”
• “INTEGRAL”

9.10. Tutorials 913

ezdxf Documentation, Release 1.3.2

Arrow Shapes

Arrow Names

The arrow names are stored as attributes in the ezdxf.ARROWS object.

914 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

closed_filled “” (empty string)
dot “DOT”
dot_small “DOTSMALL”
dot_blank “DOTBLANK”
origin_indicator “ORIGIN”
origin_indicator_2 “ORIGIN2”
open “OPEN”
right_angle “OPEN90”
open_30 “OPEN30”
closed “CLOSED”
dot_smallblank “SMALL”
none “NONE”
oblique “OBLIQUE”
box_filled “BOXFILLED”
box “BOXBLANK”
closed_blank “CLOSEDBLANK”
datum_triangle_filled “DATUMFILLED”
datum_triangle “DATUMBLANK”
integral “INTEGRAL”
architectural_tick “ARCHTICK”
ez_arrow “EZ_ARROW”
ez_arrow_blank “EZ_ARROW_BLANK”
ez_arrow_filled “EZ_ARROW_FILLED”

Tolerances and Limits

The tolerances and limits features are implemented by using inline codes for the MText entity, therefore DXF R2000 is
required. It is not possible to use both tolerances and limits at the same time.

Tolerances

Geometrical tolerances are shown as additional text appended to the measurement text. It is recommend to use
set_tolerance() method in DimStyleOverride or DimStyle.
The attribute dimtp defines the upper tolerance value, dimtm defines the lower tolerance value if present, else the lower
tolerance value is the same as the upper tolerance value. Tolerance values are shown as given!
Same upper and lower tolerance value:

dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0))
dim.set_tolerance(.1, hfactor=.4, align="top", dec=2)
dim.render()

9.10. Tutorials 915

ezdxf Documentation, Release 1.3.2

Different upper and lower tolerance values:

dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0))
dim.set_tolerance(upper=.1, lower=.15, hfactor=.4, align="middle", dec=2)
dim.render()

The attribute dimtfac specifies a scale factor for the text height of limits and tolerance values relative to the dimension
text height, as set by dimtxt. For example, if dimtfac is set to 1.0, the text height of fractions and tolerances is the
same height as the dimension text. If dimtxt is set to 0.75, the text height of limits and tolerances is three-quarters the
size of dimension text.
Vertical justification for tolerances is specified by dimtolj:

dimtolj Description
0 Align with bottom line of dimension text
1 Align vertical centered to dimension text
2 Align with top line of dimension text

916 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DIM-
VAR

Description

dim-
tol

set to 1 to enable tolerances

dimtp set the maximum (or upper) tolerance limit for dimension text
dimtm set the minimum (or lower) tolerance limit for dimension text
dimt-
fac

specifies a scale factor for the text height of limits and tolerance values relative to the dimension text height,
as set by dimtxt.

dimtzin 4 to suppress leading zeros, 8 to suppress trailing zeros or 12 to suppress both, like dimzin for dimension
text, see also Text Formatting

dim-
tolj

set the vertical justification for tolerance values relative to the nominal dimension text.

dimt-
dec

set the number of decimal places to display in tolerance values

Limits

The geometrical limits are shown as upper and lower measurement limit and replaces the usual measurement text. It is
recommend to use set_limits() method in DimStyleOverride or DimStyle.
For limits the tolerance values are drawing units scaled by measurement factor dimlfac, the upper limit is scaled
measurement value + dimtp and the lower limit is scaled measurement value - dimtm.
The attributes dimtfac, dimtzin and dimtdec have the same meaning for limits as for tolerances.

dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0))
dim.set_limits(upper=.1, lower=.15, hfactor=.4, dec=2)
dim.render()

DIMVAR Description
dimlim set to 1 to enable limits

9.10. Tutorials 917

ezdxf Documentation, Release 1.3.2

Alternative Units

Alternative units are not supported.

9.10.25 Tutorial for Radius Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

import ezdxf

DXF R2010 drawing, official DXF version name: 'AC1024',
setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)

msp = doc.modelspace() # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
add default radius dimension, measurement text is located outside
dim = msp.add_radius_dim(

center=(0, 0), radius=3, angle=45, dimstyle="EZ_RADIUS"
)
necessary second step, to create the BLOCK entity with the dimension geometry.
dim.render()
doc.saveas("radius_dimension.dxf")

The example above creates a 45 degrees slanted radius Dimension entity, the default dimension style “EZ_RADIUS”
is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100, which creates a measurement text
in cm, the default location for the measurement text is outside of the circle.
The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle
radius, which is also the measurement, and angle defines the slope of the dimension line, it is also possible to define the
circle by a measurement point mpoint on the circle.
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity
is stored as dim.dimension.

Placing Measurement Text

There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:

• 1 drawing unit = 1m
• scale 1:100
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the
radial dimension there are less features implemented than for the linear dimension because of the lack of good documen-
tation.

918 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

See also:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_radius.py shows examples for radius dimensions.

Default Text Locations Outside

Advanced “EZ_RADIUS” settings for placing the text outside of the circle:

tmove 1 = add a leader when dimension text is moved, this is the best setting for text outside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dim-
tad

1 = place the text vertical above the dimension line

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS"

)
dim.render() # always required, but not shown in the following examples

To force text outside horizontal set dimtoh to 1:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}

)

9.10. Tutorials 919

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_radius.py

ezdxf Documentation, Release 1.3.2

Default Text Locations Inside

DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location.
The basic DIMSTYLE “EZ_RADIUS_INSIDE” settings are:

• 1 drawing unit = 1m
• scale 1:100, length_factor is 100 which creates
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25

Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:

tmove 0 =moves the dimension line with dimension text, this is the best setting for text inside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dimtix1 = force text inside
di-
mat-
fit

0 = force text inside, required by BricsCAD and AutoCAD

dim-
tad

0 = center text vertical, BricsCAD and AutoCAD always create a vertical centered text, ezdxf let you choose
the vertical placement (above, below, center), but editing the DIMENSION in BricsCAD or AutoCAD will
reset text to center placement.

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE"

)

920 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

To force text inside horizontal set dimtih to 1:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}

)

9.10. Tutorials 921

ezdxf Documentation, Release 1.3.2

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location. This location
also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not
necessary to force text inside (dimtix=1), because the location of the text is explicit given, therefore the DIMSTYLE
“EZ_RADIUS” can be used for all this examples.
User defined location outside of the circle:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS"

)

User defined location outside of the circle and forced horizontal text:

922 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}

)

User defined location inside of the circle:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS"

)

9.10. Tutorials 923

ezdxf Documentation, Release 1.3.2

User defined location inside of the circle and forced horizontal text:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS",
override={"dimtih": 1},

)

Center Mark/Lines

Center mark/lines are controlled by dimcen, default value is 0 for predefined dimstyles “EZ_RADIUS” and
“EZ_RADIUS_INSIDE”:

0 Center mark is off
>0 Create center mark of given size
<0 Create center lines

dim = msp.add_radius_dim(
center=(0, 0),

(continues on next page)

924 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS",
override={"dimcen": 0.25},

)

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

9.10.26 Tutorial for Diameter Dimensions

Please read the Tutorial for Radius Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

This is a repetition of the radius tutorial, just with diameter dimensions.

import ezdxf

setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)

msp = doc.modelspace() # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
add default diameter dimension, measurement text is located outside
dim = msp.add_diameter_dim(

center=(0, 0),
radius=3,
angle=45,

(continues on next page)

9.10. Tutorials 925

ezdxf Documentation, Release 1.3.2

(continued from previous page)
dimstyle="EZ_RADIUS"

)
dim.render()
doc.saveas("diameter_dimension.dxf")

The example above creates a 45 degrees slanted diameter Dimension entity, the default dimension style “EZ_RADIUS”
(same as for radius dimensions) is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100,
which creates a measurement text in cm, the default location for the measurement text is outside of the circle.
The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle
radius and angle defines the slope of the dimension line, it is also possible to define the circle by a measurement point
mpoint on the circle.
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity
is stored as dim.dimension.

Placing Measurement Text

There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:

• 1 drawing unit = 1m
• scale 1:100
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for
the diameter dimension there are less features implemented than for the linear dimension because of the lack of good
documentation.

See also:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_diameter.py shows examples for radius dimensions.

Default Text Locations Outside

“EZ_RADIUS” default settings for to place text outside:

tmove 1 = add a leader when dimension text is moved, this is the best setting for text outside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dim-
tad

1 = place the text vertical above the dimension line

926 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_diameter.py

ezdxf Documentation, Release 1.3.2

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS"

)
dim.render() # always required, but not shown in the following examples

To force text outside horizontal set dimtoh to 1:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}

)

9.10. Tutorials 927

ezdxf Documentation, Release 1.3.2

Default Text Locations Inside

DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location.
The basic DIMSTYLE settings are:

• 1 drawing unit = 1m
• scale 1:100, length_factor is 100 which creates
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25

Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:

tmove 0 =moves the dimension line with dimension text, this is the best setting for text inside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dimtix1 = force text inside
di-
mat-
fit

0 = force text inside, required by BricsCAD and AutoCAD

dim-
tad

0 = center text vertical, BricsCAD and AutoCAD always create a vertical centered text, ezdxf let you choose
the vertical placement (above, below, center), but editing the DIMENSION in BricsCAD or AutoCAD will
reset text to center placement.

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE"

)

To force text inside horizontal set dimtih to 1:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}

)

928 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location. This location
also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not
necessary to force text inside (dimtix=1), because the location of the text is explicit given, therefore the DIMSTYLE
“EZ_RADIUS” can be used for all this examples.
User defined location outside of the circle:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS"

)

9.10. Tutorials 929

ezdxf Documentation, Release 1.3.2

User defined location outside of the circle and forced horizontal text:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}

)

User defined location inside of the circle:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS"

)

930 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

User defined location inside of the circle and forced horizontal text:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS",
override={"dimtih": 1},

)

Center Mark/Lines

See Radius Dimension Tutorial: Center Mark/Lines

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

9.10. Tutorials 931

ezdxf Documentation, Release 1.3.2

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

9.10.27 Tutorial for Angular Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Dimension Style “EZ_CURVED”

All factory methods to create angular dimensions uses the dimension style “EZ_CURVED” for curved dimension lines
which is defined as:

• angle unit is decimal degrees, dimaunit = 0
• measurement text height = 0.25 (drawing scale = 1:100)
• measurement text location is above the dimension line
• closed filled arrow and arrow size dimasz = 0.25
• dimazin = 2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)

This DIMENSION style only exist if the argument setup is True for creating a new DXF document by ezdxf.new().
Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save()
or saveas() (e.g. dimension style setup was not initiated).
Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:

import ezdxf
from ezdxf.tools.standards import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing(doc, topics="all")

Factory Methods to Create Angular Dimensions

Defined by Center, Radius and Angles

The first example shows an angular dimension defined by the center point, radius, start- and end angles:

import ezdxf

Create a DXF R2010 document:
Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new("R2010", setup=True)

Add new entities to the modelspace:
msp = doc.modelspace()

Add an angular DIMENSION defined by the center point, start- and end angles,

(continues on next page)

932 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
the measurement text is placed at the default location above the dimension
line:
dim = msp.add_angular_dim_cra(

center=(5, 5), # center point of the angle
radius= 7, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees
end_angle=120, # end angle in degrees
distance=3, # distance from start of the extension lines to the dimension line
dimstyle="EZ_CURVED", # default angular dimension style

)

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding
the entity and the rendering call.
dim.render()
doc.saveas("angular_dimension_cra.dxf")

The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity
is stored as dim.dimension.

9.10. Tutorials 933

ezdxf Documentation, Release 1.3.2

Angle by 2 Lines

The next example shows an angular dimension for an angle defined by two lines:

import ezdxf

doc = ezdxf.new(setup=True)
msp = doc.modelspace()

Setup the geometric parameters for the DIMENSION entity:
base = (5.8833, -6.3408) # location of the dimension line
p1 = (2.0101, -7.5156) # start point of 1st leg
p2 = (2.7865, -10.4133) # end point of 1st leg
p3 = (6.7054, -7.5156) # start point of 2nd leg
p4 = (5.9289, -10.4133) # end point of 2nd leg

Draw the lines for visualization, not required to create the
DIMENSION entity:
msp.add_line(p1, p2)
msp.add_line(p3, p4)

Add an angular DIMENSION defined by two lines, the measurement text is
placed at the default location above the dimension line:
dim = msp.add_angular_dim_2l(

base=base, # defines the location of the dimension line
line1=(p1, p2), # start leg of the angle
line2=(p3, p4), # end leg of the angle
dimstyle="EZ_CURVED", # default angular dimension style

)

Necessary second step to create the dimension line geometry:
dim.render()
doc.saveas("angular_dimension_2l.dxf")

The example above creates an angular Dimension entity to measures the angle between two lines (line1 and line2).
The base point defines the location of the dimension line (arc), any point on the dimension line is valid. The points p1 and
p2 define the first leg of the angle, p1 also defines the start point of the first extension line. The points p3 and p4 define
the second leg of the angle and point p3 also defines the start point of the second extension line.
The measurement of the DIMENSION entity is the angle enclosed by the first and the second leg and where the dimension
line passes the base point.

934 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Angle by 3 Points

The next example shows an angular dimension defined by three points, a center point and the two end points of the angle
legs:

import ezdxf

doc = ezdxf.new(setup=True)
msp = doc.modelspace()

msp.add_angular_dim_3p(
base=(0, 7), # location of the dimension line
center=(0, 0), # center point
p1=(-3, 5), # end point of 1st leg = start angle
p2=(3, 5), # end point of 2nd leg = end angle

).render()

9.10. Tutorials 935

ezdxf Documentation, Release 1.3.2

Angle from ConstructionArc

The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.
Add an angular dimension to an ARC entity:

import ezdxf

doc = ezdxf.new(setup=True)
msp = doc.modelspace()

arc = msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,

(continues on next page)

936 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
end_angle = 120,

)
msp.add_angular_dim_arc(

arc.construction_tool(),
distance=2,

).render()

Placing Measurement Text

The default location of the measurement text depends on various DimStyle parameters and is applied if no user defined
text location is defined.

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for
the angular dimension there are less features implemented than for the linear dimension because of the lack of good
documentation.

See also:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_angular.py shows examples for angular dimensions.

9.10. Tutorials 937

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_angular.py

ezdxf Documentation, Release 1.3.2

Default Text Locations

The DIMSTYLE “EZ_CURVED” places the measurement text in the center of the angle above the dimension line. The
first examples above show the measurement text at the default text location.
The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this
angle is manually overridden.
The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:

0 Center, it is possible to adjust the vertical location by dimtvp
1 Above
2 Outside, handled like Above by ezdxf
3 JIS, handled like Above by ezdxf
4 Below

msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={

"dimtad": 1, # 0=center; 1=above; 4=below;
},

).render()

938 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t
sufficient. This overrides the dimtad value by 1 (“above”). Ezdxf follows its own rules, ignores the dimatfit attribute
and works similar to dimatfit = 1, move arrows first, then text:

9.10. Tutorials 939

ezdxf Documentation, Release 1.3.2

Shift Text From Default Location

The method shift_text() shifts the measurement text away from the default location. The shifting direction is
aligned to the text rotation of the default measurement text.

dim = msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,

)
shift text from default text location:
dim.shift_text(0.5, 1.0)
dim.render()

This is just a rendering effect, editing the dimension line in a CAD application resets the text to the default location.

940 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location.
The coordinates of user locations are located in the rendering UCS and the default rendering UCS is theWCS.

Absolute User Location

Absolute placing of the measurement text means relative to the origin of the render UCS. The user location is stored in
the DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location.
This location also determines the rotation of the measurement text.

dim = msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
location=(5, 8), # user defined measurement text location

)
dim.render()

9.10. Tutorials 941

ezdxf Documentation, Release 1.3.2

Relative User Location

Relative placing of the measurement text means relative to the middle of the dimension line. This is only possible by
calling the set_location() method, and the argument relative has to be True. The user location is stored in the
DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location. This
location also determines the rotation of the measurement text.

dim = msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,

)
dim.set_location((1, 2), relative=True)
dim.render()

942 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Adding a Leader

The method set_location() has the option to add a leader line to the measurement text. This also aligns the text
rotation to the render UCS x-axis, this means in the default case the measurement text is horizontal. The leader line can
be “below” the text or start at the “left” or “right” center of the text, this location is defined by the dimtad attribute, 0
means “center” and any value != 0 means “below”.

for dimtad, x in [(0, 0), (4, 6)]:
dim = msp.add_angular_dim_cra(

center=(3 + x, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={"dimtad": dimtad} # "center" == 0; "below" != 0;

)
dim.set_location((1, 2), relative=True, leader=True)
dim.render()

9.10. Tutorials 943

ezdxf Documentation, Release 1.3.2

Advanced version which calculates the relative text location: The user location vector has a length 2 and the orientation
is defined by center_angle pointing away from the center of the angle.

import ezdxf
from ezdxf.math import Vec3

doc = ezdxf.new(setup=True)
msp = doc.modelspace()
for dimtad, y, leader in [

[0, 0, False],
[0, 7, True],
[4, 14, True],

]:
for x, center_angle in [

(0, 0), (7, 45), (14, 90), (21, 135), (26, 225), (29, 270)
]:

dim = msp.add_angular_dim_cra(
center=(x, y),
radius=3.0,
distance=1.0,
start_angle=center_angle - 15.0,
end_angle=center_angle + 15.0,
override={"dimtad": dimtad},

)
The user location is relative to the center of the dimension line:
usr_location = Vec3.from_deg_angle(angle=center_angle, length=2.0)
dim.set_location(usr_location, leader=leader, relative=True)
dim.render()

944 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Overriding Text Rotation

All factory methods supporting the argument text_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).
This example uses a relative text location without a leader and forces the text rotation to 90 degrees:

for x, center_angle in [(7, 45), (14, 90), (21, 135)]:
dim = msp.add_angular_dim_cra(

center=(x, 0),
radius=3.0,
distance=1.0,
start_angle=center_angle - 15.0,
end_angle=center_angle + 15.0,
text_rotation=90, # vertical text

)

(continues on next page)

9.10. Tutorials 945

ezdxf Documentation, Release 1.3.2

(continued from previous page)
usr_location = Vec3.from_deg_angle(angle=center_angle, length=1.0)
dim.set_location(usr_location, leader=False, relative=True)
dim.render()

Angular Units

Angular units are set by dimaunit:

0 Decimal degrees
1 Degrees/Minutes/Seconds, dimadec controls the shown

precision
• dimadec=0: 30°
• dimadec=2: 30°35’
• dimadec=4: 30°35’25”
• dimadec=7: 30°35’25.15”

2 Grad
3 Radians

d1 = 15
d2 = 15.59031944
for x, (dimaunit, dimadec) in enumerate(

[
(0, 4),
(1, 7),
(2, 4),
(3, 4),

]
):

dim = msp.add_angular_dim_cra(
center=(x * 4.0, 0.0),
radius=3.0,
distance=1.0,
start_angle=90.0 - d1,

(continues on next page)

946 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
end_angle=90.0 + d2,
override={

"dimaunit": dimaunit,
"dimadec": dimadec,

},
)
dim.render()

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

9.10.28 Tutorial for Arc Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t. This is a repetition of the Tutorial for Angular
Dimensions, because ezdxf reuses the angular dimension to render arc dimensions. This approach is very different to
CAD applications, but also much less work.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE variables,
so the rendering results are very different from CAD applications.

9.10. Tutorials 947

ezdxf Documentation, Release 1.3.2

Dimension Style “EZ_CURVED”

All factory methods to create arc dimensions uses the dimension style “EZ_CURVED” for curved dimension lines which
is defined as:

• angle unit is decimal degrees, dimaunit = 0
• measurement text height = 0.25 (drawing scale = 1:100)
• measurement text location is above the dimension line
• closed filled arrow and arrow size dimasz = 0.25
• dimzin = 2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)
• dimarcsym = 2, disables the arc symbol, 0 renders only an open round bracket “(” in front of the text and 1 for
arc symbol above the text is not supported, renders like disabled

For more information go to: Dimension Style “EZ_CURVED”

Factory Methods to Create Arc Dimensions

Defined by Center, Radius and Angles

The first example shows an arc dimension defined by the center point, radius, start- and end angles:

import ezdxf

Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new(setup=True)

Add new entities to the modelspace:
msp = doc.modelspace()

Add an arc DIMENSION defined by the center point, start- and end angles,
the measurement text is placed at the default location above the dimension
line:
dim = msp.add_arc_dim_cra(

center=(5, 5), # center point of the angle
radius=5, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees
end_angle=120, # end angle in degrees
distance=2, # distance from start of the extension lines to the dimension line
dimstyle="EZ_CURVED", # default angular dimension style

)

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding
the entity and the rendering call.
dim.render()
doc.saveas("arc_dimension_cra.dxf")

The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity
is stored as dim.dimension.

948 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Arc by 3 Points

The next example shows an angular dimension defined by three points, a center point and the two end points of the angle
legs, the first point defines the radius, the second point defines only the end angle, the distance from the center point is
not relevant:

import ezdxf

doc = ezdxf.new(setup=True)
msp = doc.modelspace()

msp.add_arc_dim_3p(
base=(0, 7), # location of the dimension line
center=(0, 0), # center point
p1=(2.5, 4.330127018922193), # 1st point of arc defines start angle and radius
p2=(-2.5, 4.330127018922194), # 2nd point defines the end angle

).render()

9.10. Tutorials 949

ezdxf Documentation, Release 1.3.2

Angle from ConstructionArc

The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.
Add an angular dimension to an ARC entity:

import ezdxf

doc = ezdxf.new(setup=True)
msp = doc.modelspace()

arc = msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,
end_angle = 120,

(continues on next page)

950 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
)
msp.add_arc_dim_arc(

arc.construction_tool(),
distance=2,

).render()

Placing Measurement Text

The default location of the measurement text depends on various DimStyle parameters and is applied if no user defined
text location is defined.

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the arc
dimension there are less features implemented than for the linear dimension because of the lack of good documentation.
If the arc symbol is enabled (dimarcsym = 0) only an open round bracket “(” is rendered in front of the measurement
text!

See also:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_arc.py shows examples for angular dimensions.

Default Text Locations

The DIMSTYLE “EZ_CURVED” places the measurement text in the center of the angle above the dimension line. The
first examples above show the measurement text at the default text location.
The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this
angle is manually overridden.
Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t
sufficient.
For more information go to: Default Text Locations

Shift Text From Default Location

The method shift_text() shifts the measurement text away from the default location. The shifting direction is
aligned to the text rotation of the default measurement text.
For more information go to: Shift Text From Default Location

9.10. Tutorials 951

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_arc.py

ezdxf Documentation, Release 1.3.2

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location.
The coordinates of user locations are located in the rendering UCS and the default rendering UCS is theWCS.
For more information go to: User Defined Text Locations

Absolute User Location

Absolute placing of the measurement text means relative to the origin of the render UCS.
For more information go to: User Defined Text Locations

Relative User Location

Relative placing of the measurement text means relative to the middle of the dimension line.
For more information go to: User Defined Text Locations

Adding a Leader

Add a leader line to the measurement text and set the text rotation to “horizontal”.
For more information go to: User Defined Text Locations

Overriding Text Rotation

All factory methods supporting the argument text_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).
For more information go to: User Defined Text Locations

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Text Rotation

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

952 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

9.10.29 Tutorial for Ordinate Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Local Coordinate System

Ordinate dimensioning is used when the x- and the y-coordinates from a location (feature), are the only dimensions
necessary. The dimensions to each feature, originate from one datum location, called “origin” in this tutorial.
The local coordinate system (LCS) in which the measurement is done, is defined by the origin and the rotation angle
around the z-axis in the rendering UCS, which is theWCS by default.

Factory Methods to Create Ordinate Dimensions

All factory methods for creating ordinate dimensions expect global coordinates to define the feature location.

Global Feature Location

The first example shows ordinate dimensions defined in the render UCS, in this example the WCS, this is how the DI-
MENSION entity expects the coordinates of the feature location:

import ezdxf
from ezdxf.math import Vec3
from ezdxf.render import forms

Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new(setup=True)

Add new entities to the modelspace:
msp = doc.modelspace()
Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3)
origin = Vec3(2, 3)
msp.add_lwpolyline(

forms.translate(forms.box(4, 2.5), origin),
close=True

)

Add an x-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_x_dim(

lower left corner
feature_location=origin + (0, 0), # feature location in the WCS
offset=(0, -2), # end of leader, relative to the feature location
origin=origin,

).render()
msp.add_ordinate_x_dim(

(continues on next page)

9.10. Tutorials 953

ezdxf Documentation, Release 1.3.2

(continued from previous page)
lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(0, -2),
origin=origin,

).render()

Add an y-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_y_dim(

lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(2, 0),
origin=origin,

).render()
msp.add_ordinate_y_dim(

upper right corner
feature_location=origin + (4, 2.5), # feature location in the WCS
offset=(2, 0),
origin=origin,

).render()

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding
the entity and the rendering call.
doc.saveas("ord_global_features.dxf")

The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the dimension entity
is stored as dim.dimension.

954 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Local Feature Location

The previous examples shows that the calculation of the global feature location is cumbersome and it gets even more
complicated for a rotated LCS.
This example shows how to use a render UCS for using locale coordinates to define the feature locations:

import ezdxf
from ezdxf.math import Vec3, UCS
from ezdxf.render import forms

doc = ezdxf.new(setup=True)
msp = doc.modelspace()

Create a special DIMSTYLE for "vertical" centered measurement text:
dimstyle = doc.dimstyles.duplicate_entry("EZDXF", "ORD_CENTER")
dimstyle.dxf.dimtad = 0 # "vertical" centered measurement text

Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3),
rotated about 30 degrees:
origin = Vec3(2, 3)
msp.add_lwpolyline(

forms.translate(forms.rotate(forms.box(4, 2.5), 30), origin),
close=True

)

Define the rotated local render UCS.
The origin is the lower-left corner of the rectangle and the axis are
aligned to the rectangle edges:
The y-axis "uy" is calculated automatically by the right-hand rule.
ucs = UCS(origin, ux=Vec3.from_deg_angle(30), uz=(0, 0, 1))

Add a x-type ordinate DIMENSION with local feature locations:
the origin is now the origin of the UCS, which is (0, 0) the default value of
"origin" and the feature coordinates are located in the UCS:
msp.add_ordinate_x_dim(

lower left corner
feature_location=(0, 0), # feature location in the UCS
offset=(0.25, -2), # # leader with a "knee"
dimstyle="ORD_CENTER",

).render(ucs=ucs) # Important when using a render UCS!
msp.add_ordinate_x_dim(

lower right corner
feature_location=(4, 0), # feature location in the UCS
offset=(0.25, -2), # leader with a "knee"
dimstyle="ORD_CENTER",

).render(ucs=ucs) # Important when using a render UCS!

Add a y-type ordinate DIMENSION with local feature coordinates:
msp.add_ordinate_y_dim(

lower right corner
feature_location=(4, 0), # feature location in the UCS
offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",

).render(ucs=ucs) # Important when using a render UCS!
msp.add_ordinate_y_dim(

upper right corner
feature_location=(4, 2.5), # feature location in the UCS

(continues on next page)

9.10. Tutorials 955

ezdxf Documentation, Release 1.3.2

(continued from previous page)
offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",

).render(ucs=ucs) # Important when using a render UCS!
doc.saveas("ord_local_features.dxf")

Placing Measurement Text

The ezdxf ordinate DIMENSION renderer places the measurement text always at the default location, because the location
of the leader end point is given by the argument offset in the factory methods, which provides a flexible way to place the
measurement text, overriding the text location by an explicit user location is not supported, also the user text rotation is
not supported, the text is always aligned to the local coordinate system x- and y-axis.
See also:

• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

• Source code file standards.py shows how to create your own DIMSTYLES.

956 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py

ezdxf Documentation, Release 1.3.2

• The Script dimension_ordinate.py shows examples for angular dimensions.

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Text Rotation

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

9.10.30 Tutorial for the Geo Add-on

This tutorial shows how to load a GPS track into a geo located DXF file and also the inverse operation, exporting geo
located DXF entities as GeoJSON files.
Please read the section Intended Usage in the documentation of the ezdxf.addons.geo module first.

Warning: TO ALL BEGINNERS!
If you are just learning to work with geospatial data, using DXF files is not the way to go! DXF is not the first choice
for storing data for spatial data analysts. If you run into problems I cannot help you as I am just learning myself.

The complete source code and test data for this tutorial are available in the github repository:
https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo

Setup Geo Location Reference

The first step is setting up the geo location reference, which is not doable with ezdxf yet - this feature may come in
the future - but for now you have to use a CAD application to do this. If the DXF file has no geo location reference
the projected 2D coordinates are most likely far away from the WCS origin (0, 0), use the CAD command “ZOOM
EXTENDS” to find the data.

Load GPX Data

The GPX format stores GPS data in a XML format, use the ElementTree class to load the data:

def load_gpx_track(p: Path) -> Iterable[Tuple[float, float]]:
"""Load all track points from all track segments at once."""
gpx = ET.parse(p)
root = gpx.getroot()
for track_point in root.findall(".//gpx:trkpt", GPX_NS):

data = track_point.attrib
Elevation is not supported by the geo add-on.
yield float(data["lon"]), float(data["lat"])

9.10. Tutorials 957

https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_ordinate.py
https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo

ezdxf Documentation, Release 1.3.2

The loaded GPS data has a WSG84 EPSG:4326 projection as longitude and latitude in decimal degrees. The next step is
to create a GeoProxy object from this data, the GeoProxy.parse() method accepts a __geo_interface__
mapping or a Python object with a __geo_interface__ attribute/property. In this case as simple “LineString” object
for all GPS points is sufficient:

def add_gpx_track(msp, track_data, layer: str):
geo_mapping = {

"type": "LineString",
"coordinates": track_data,

}
geo_track = geo.GeoProxy.parse(geo_mapping)

Transform the data from the polar representation EPSG:4326 into a 2D cartesian map representation EPSG:3395 called
“World Mercator”, this is the only projection supported by the add-on, without the need to write a custom transformation
function:

geo_track.globe_to_map()

The data is now transformed into 2D cartesian coordinates in meters and most likely far away from origin (0, 0), the data
stored in the GEODATA entity helps to transform the data into the DXF WCS in modelspace units, if the DXF file has
no geo location reference you have to stick with the large coordinates:

Load geo data information from the DXF file:
geo_data = msp.get_geodata()
if geo_data:

Get the transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation()

else:
Identity matrix for DXF files without a geo location reference:
m = Matrix44()
epsg = 3395

Check for compatible projection:
if epsg == 3395:

Transform CRS coordinates into DXF WCS:
geo_track.crs_to_wcs(m)
Create DXF entities (LWPOLYLINE)
for entity in geo_track.to_dxf_entities(dxfattribs={"layer": layer}):

Add entity to the modelspace:
msp.add_entity(entity)

else:
print(f"Incompatible CRS EPSG:{epsg}")

We are ready to save the final DXF file:

doc.saveas(str(out_path))

In BricsCAD the result looks like this, the underlying images were added by the BricsCAD command MAPCONNECT
and such a feature is not planned for the add-on:

958 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Export DXF Entities as GeoJSON

This will only work with a proper geo location reference, the code shown accepts also WCS data from DXF files without
a GEODATA object, but the result is just unusable - but in valid GeoJSON notation.
First get epsg code and the CRS transformation matrix:

Get the geo location information from the DXF file:
geo_data = msp.get_geodata()
if geo_data:

Get transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation()

else:
Identity matrix for DXF files without geo reference data:
m = Matrix44()

Query the DXF entities to export:

for track in msp.query("LWPOLYLINE"):
export_geojson(track, m)

9.10. Tutorials 959

ezdxf Documentation, Release 1.3.2

Create a GeoProxy object from the DXF entity:

def export_geojson(entity, m):
Convert DXF entity into a GeoProxy object:
geo_proxy = geo.proxy(entity)

Transform DXF WCS coordinates in modelspace units into the CRS coordinate system by the transformation matrix m:

Transform DXF WCS coordinates into CRS coordinates:
geo_proxy.wcs_to_crs(m)

The next step assumes a EPSG:3395 projection, everything else needs a custom transformation function:

Transform 2D map projection EPSG:3395 into globe (polar)
representation EPSG:4326
geo_proxy.map_to_globe()

Use the json module from the Python standard library to write the GeoJSON data, provided by the GeoProxy.
__geo_interface__ property:

Export GeoJSON data:
name = entity.dxf.layer + ".geojson"
with open(TRACK_DATA / name, "wt", encoding="utf8") as fp:

json.dump(geo_proxy.__geo_interface__, fp, indent=2)

The content of the GeoJSON file looks like this:

{
"type": "LineString",
"coordinates": [
[

15.430999,
47.06503

],
[

15.431039,
47.064797

],
[

15.431206,
47.064582

],
[

15.431283,
47.064342

],
...

}

960 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Custom Transformation Function

This sections shows how to use the GDAL package to write a custom transformation function. The example reimplements
the builtin transformation from unprojected WGS84 coordinates to 2D map coordinates EPSG:3395 “World Mercator”:

from osgeo import osr
from ezdxf.math import Vec3

GPS track in WGS84, load_gpx_track() code see above
gpx_points = list(load_gpx_track('track1.gpx'))

Create source coordinate system:
src_datum = osr.SpatialReference()
src_datum.SetWellKnownGeoCS('WGS84')

Create target coordinate system:
target_datum = osr.SpatialReference()
target_datum.SetWellKnownGeoCS('EPSG:3395')

Create transformation object:
ct = osr.CoordinateTransform(src_datum, target_datum)

Create GeoProxy() object:
geo_proxy = GeoProxy.parse({

'type': 'LineString',
'coordinates': gpx_points

})

Apply a custom transformation function to all coordinates:
geo_proxy.apply(lambda v: Vec3(ct.TransformPoint(v.x, v.y)))

The same example with the pyproj package:

from pyproj import Transformer
from ezdxf.math import Vec3

GPS track in WGS84, load_gpx_track() code see above
gpx_points = list(load_gpx_track('track1.gpx'))

Create transformation object:
ct = Transformer.from_crs('EPSG:4326', 'EPSG:3395')

Create GeoProxy() object:
geo_proxy = GeoProxy.parse({

'type': 'LineString',
'coordinates': gpx_points

})

Apply a custom transformation function to all coordinates:
geo_proxy.apply(lambda v: Vec3(ct.transform(v.x, v.y)))

9.10. Tutorials 961

ezdxf Documentation, Release 1.3.2

Polygon Validation by Shapely

Ezdxf tries to avoid to create invalid polygons from HATCH entities like a hole in another hole, but not all problems are
detected by ezdxf, especially overlapping polygons. For a reliable and robust result use the Shapely package to check for
valid polygons:

import ezdxf
from ezdxf.addons import geo
from shapely.geometry import shape

Load DXF document including HATCH entities.
doc = ezdxf.readfile('hatch.dxf')
msp = doc.modelspace()

Test a single entity
Get the first DXF hatch entity:
hatch_entity = msp.query('HATCH').first

Create GeoProxy() object:
hatch_proxy = geo.proxy(hatch_entity)

Shapely supports the __geo_interface__
shapely_polygon = shape(hatch_proxy)

if shapely_polygon.is_valid:
...

else:
print(f'Invalid Polygon from {str(hatch_entity)}.')

Remove invalid entities by a filter function
def validate(geo_proxy: geo.GeoProxy) -> bool:

Multi-entities are divided into single entities:
e.g. MultiPolygon is verified as multiple single Polygon entities.
if geo_proxy.geotype == 'Polygon':

return shape(geo_proxy).is_valid
return True

The gfilter() function let only pass compatible DXF entities
msp_proxy = geo.GeoProxy.from_dxf_entities(geo.gfilter(msp))

remove all mappings for which validate() returns False
msp_proxy.filter(validate)

Interface to GDAL/OGR

The GDAL/OGR package has no direct support for the __geo_interface__, but has builtin support for the GeoJ-
SON format:

from osgeo import ogr
from ezdxf.addons import geo
from ezdxf.render import random_2d_path
import json

p = geo.GeoProxy({'type': 'LineString', 'coordinates': list(random_2d_path(20))})
Create a GeoJSON string from the __geo_interface__ object by the json
module and feed the result into ogr:

(continues on next page)

962 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
line_string = ogr.CreateGeometryFromJson(json.dumps(p.__geo_interface__))

Parse the GeoJSON string from ogr by the json module and feed the result
into a GeoProxy() object:
p2 = geo.GeoProxy.parse(json.loads(line_string.ExportToJson()))

9.10.31 Storing Custom Data in DXF Files

This tutorial describes how to store custom data in DXF files using standard DXF features.
Saving data in comments is not covered in this section, because comments are not a reliable way to store information in
DXF files and ezdxf does not support adding comments to DXF files. Comments are also ignored by ezdxf and many
other DXF libraries when loading DXF files, but there is a ezdxf.comments module to load comments from DXF
files.
The DXF data format is a very versatile and flexible data format and supports various ways to store custom data. This
starts by setting special header variables, storing XData, AppData and extension dictionaries in DXF entities and objects,
storing XRecords in the OBJECTS section and ends by using proxy entities or even extending the DXF format by user
defined entities and objects.
This is the common prolog for all Python code examples shown in this tutorial:

import ezdxf

doc = ezdxf.new()
msp = doc.modelspace()

Retrieving User Data

Retrieving the is a simple task by ezdxf, but often not possible in CAD applications without using the scripting features
(AutoLISP) or even the SDK.

AutoLISP Resources

• Autodesk Developer Documentation
• AfraLISP
• Lee Mac Programming

Warning: I have no experience with AutoLISP so far and I created this scripts for AutoLISP while writing this
tutorial. There may be better ways to accomplish these tasks, and feedback on this is very welcome. Everything is
tested with BricsCAD and should also work with the full version of AutoCAD.

9.10. Tutorials 963

http://help.autodesk.com/view/OARX/2018/ENU/
https://www.afralisp.net/index.php
http://www.lee-mac.com

ezdxf Documentation, Release 1.3.2

Header Section

The HEADER section has tow ways to store custom data.

Predefined User Variables

There are ten predefined user variables, five 16-bit integer variables called $USERI1 up to $USERI5 and five floating
point variables (reals) called $USERR1 up to $USERR5. This is very limited and the data maybe will be overwritten by
the next application which opens and saves the DXF file. Advantage of this methods is, it works for all supported DXF
versions starting at R12.
Settings the data:

doc.header["$USERI1"] = 4711
doc.header["$USERR1"] = 3.141592

Getting the data by ezdxf:

i1 = doc.header["$USERI1"]
r1 = doc.header["$USERR1"]

Getting the data in BricsCAD at the command line:

: USERI1
New current value for USERI1 (-32768 to 32767) <4711>:

Getting the data by AutoLISP:

: (getvar 'USERI1)
4711

Setting the value by AutoLISP:

: (setvar 'USERI1 1234)
1234

Custom Document Properties

This method defines custom document properties, but requires at least DXF R2004. The custom document properties are
stored in a CustomVars instance in the custom_vars attribute of the HeaderSection object and supports only
string values.
Settings the data:

doc.header.custom_vars.append("MyFirstVar", "First Value")

Getting the data by ezdxf:

my_first_var = doc.header.custom_vars.get("MyFirstVar", "Default Value")

The document property MyFirstVar is available in BricsCAD as FIELD variable:

964 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

AutoLISP script for getting the custom document properties:

(defun C:CUSTOMDOCPROPS (/ Info Num Index Custom)
(vl-load-com)
(setq acadObject (vlax-get-acad-object))
(setq acadDocument (vla-get-ActiveDocument acadObject))

;;Get the SummaryInfo
(setq Info (vlax-get-Property acadDocument 'SummaryInfo))
(setq Num (vla-NumCustomInfo Info))
(setq Index 0)
(repeat Num
(vla-getCustomByIndex Info Index 'ID 'Value)
(setq Custom (cons (cons ID Value) Custom))
(setq Index (1+ Index))

) ;repeat

(if Custom (reverse Custom))
)

Running the script in BricsCAD:

9.10. Tutorials 965

ezdxf Documentation, Release 1.3.2

: (load "customdocprops.lsp")
C:CUSTOMDOCPROPS
: CUSTOMDOCPROPS
(("MyFirstVar" . "First Value"))

Meta Data

Starting with version v0.16.4 ezdxf stores some meta data in the DXF file and the AppID EZDXF will be created. Two
entries will be added to the MetaData instance, the CREATED_BY_EZDXF for DXF documents created by ezdxf and
the entry WRITTEN_BY_EZDXF if the DXF document will be saved by ezdxf. The marker string looks like this "0.
17b0 @ 2021-09-18T05:14:37.921826+00:00" and contains the ezdxf version and an UTC timestamp in
ISO format.
You can add your own data to the MetaData instance as a string with a maximum of 254 characters and choose a good
name which may never be used by ezdxf in the future.

metadata = doc.ezdxf_metadata()
metadata["MY_UNIQUE_KEY"] = "my additional meta data"

print(metadata.get("CREATED_BY_EZDXF"))
print(metadata.get("MY_UNIQUE_KEY"))

The data is stored as XDATA in then BLOCK entity of the model space for DXF R12 and for DXF R2000 and later as
a DXF Dictionary in the root dictionary by the key EZDXF_META. See following chapters for accessing such data
by AutoLISP.

XDATA

Extended Data (XDATA) is a way to attach arbitrary data to DXF entities. Each application needs a unique AppID
registered in the AppID table to add XDATA to an entity. The AppID ACAD is reserved and by using ezdxf the AppID
EZDXF is also registered automatically. The total size of XDATA for a single DXF entity is limited to 16kB for AutoCAD.
XDATA is supported by all DXF versions and is accessible by AutoLISP.
The valid group codes for extended data are limited to the following values, see also the internals of Extended Data:

Group Code Description
1000 Strings up to 255 bytes long
1001 (fixed) Registered application name up to 31 bytes long
1002 (fixed) An extended data control string '{' or '}'
1004 Binary data
1005 Database Handle of entities in the drawing database
1010 3D point, in the order X, Y, Z that will not be modified at any transformation of the entity
1011 A WCS point that is moved, scaled, rotated and mirrored along with the entity
1012 A WCS displacement that is scaled, rotated and mirrored along with the entity, but not moved
1013 A WCS direction that is rotated and mirrored along with the entity but not moved and scaled.
1040 A real value
1041 Distance, a real value that is scaled along with the entity
1042 Scale Factor, a real value that is scaled along with the entity
1070 A 16-bit integer (signed or unsigned)
1071 A 32-bit signed (long) integer

Group codes are not unique in the XDATA section and can be repeated, therefore tag order matters.

966 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add(APPID)

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

setting the data
line.set_xdata(APPID, [

basic types
(1000, "custom text"),
(1040, 3.141592),
(1070, 4711), # 16bit
(1071, 1_048_576), # 32bit
points and vectors
(1010, (10, 20, 30)),
(1011, (11, 21, 31)),
(1012, (12, 22, 32)),
(1013, (13, 23, 33)),
scaled distances and factors
(1041, 10),
(1042, 10),

])

getting the data
if line.has_xdata(APPID):

tags = line.get_xdata(APPID)
print(f"{str(line)} has {len(tags)} tags of XDATA for AppID {APPID!r}")
for tag in tags:

print(tag)

AutoLISP script for getting XDATA for AppID YOUR_UNIQUE_ID:

(defun C:SHOWXDATA (/ entity_list xdata_list)
(setq entity_list (entget (car (entsel)) '("YOUR_UNIQUE_ID")))
(setq xdata_list (assoc -3 entity_list))
(car (cdr xdata_list))

)

Script output:

: SHOWXDATA
Select entity: ("YOUR_UNIQUE_ID" (1000 . "custom text") (1040 . 3.141592) ...

See also:
• AfraLISP XDATA tutorial
• Extended Data (XDATA) Reference

9.10. Tutorials 967

https://www.afralisp.net/autolisp/tutorials/extended-entity-data-part-1.php

ezdxf Documentation, Release 1.3.2

XDATA Helper Classes

The XDataUserList and XDataUserDict are helper classes to manage XDATA content in a simple way.
Both classes store the Python types int, float and str and the ezdxf type Vec3. As the names suggests has the
XDataUserList a list-like interface and the XDataUserDict a dict-like interface. This classes can not contain
additional container types, but multiple lists and/or dicts can be stored in the same XDATA section for the same AppID.
These helper classes uses a fixed group code for each data type:

1001 strings (max. 255 chars)
1040 floats
1071 32-bit ints
1010 Vec3

Additional required imports for these examples:

from ezdxf.math import Vec3
from ezdxf.entities.xdata import XDataUserDict, XDataUserList

Example for XDataUserDict:
Each XDataUserDict has a unique name, the default name is “DefaultDict” and the default AppID is EZDXF. If you
use your own AppID, don’t forget to create the requited AppID table entry like doc.appids.new("MyAppID"),
otherwise AutoCAD will not open the DXF file.

doc = ezdxf.new()
msp = doc.modelspace()
line = msp.add_line((0, 0), (1, 0))

with XDataUserDict.entity(line) as user_dict:
user_dict["CreatedBy"] = "mozman"
user_dict["Float"] = 3.1415
user_dict["Int"] = 4711
user_dict["Point"] = Vec3(1, 2, 3)

If you modify the content of without using the context manager entity(), you have to call commit() by yourself,
to transfer the modified data back into the XDATA section.
Getting the data back from an entity:

with XDataUserDict.entity(line) as user_dict:
print(user_dict)
acts like any other dict()
storage = dict(user_dict)

Example for XDataUserList:
This example stores the data in a XDataUserList named “AppendedPoints”, the default name is “DefaultList” and
the default AppID is EZDXF.

with XDataUserList.entity(line, name="AppendedPoints") as user_list:
user_list.append(Vec3(1, 0, 0))
user_list.append(Vec3(0, 1, 0))
user_list.append(Vec3(0, 0, 1))

Now the content of both classes are stored in the same XDATA section for AppID EZDXF. The XDataUserDict is
stored by the name “DefaultDict” and the XDataUserList is stored by the name “AppendedPoints”.

968 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Getting the data back from an entity:

with XDataUserList.entity(line, name="AppendedPoints") as user_list:
print(user_list)
storage = list(user_list)

print(f"Copy of XDataUserList: {storage}")

See also:
• XDataUserList class
• XDataUserDict class

Extension Dictionaries

Extension dictionaries are another way to attach custom data to any DXF entity. This method requires DXF R13/14 or
later. I will use the short term XDICT for extension dictionaries in this tutorial.
The Extension Dictionary is a regular DXF Dictionary which can store (key, value) pairs where the key is a string and
the value is a DXF object from the OBJECTS section. The usual objects to store custom data are DictionaryVar to
store simple strings and XRecord to store complex data.
Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity!
This example shows how to manage the XDICT and to store simple strings as DictionaryVar objects in the XDICT,
to store more complex data go to the next section XRecord.

1. Get or create the XDICT for an entity:

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

if line.has_extension_dict:
get the extension dictionary
xdict = line.get_extension_dict()

else:
create a new extension dictionary
xdict = line.new_extension_dict()

2. Add strings as DictionaryVar objects to the XDICT. No AppIDs required, but existing keys will be overridden,
so be careful by choosing your keys:

xdict.add_dictionary_var("DATA1", "Your custom data string 1")
xdict.add_dictionary_var("DATA2", "Your custom data string 2")

3. Retrieve the strings from the XDICT as DictionaryVar objects:

print(f"DATA1 is '{xdict['DATA1'].value}'")
print(f"DATA2 is '{xdict['DATA2'].value}'")

The AutoLISP access to DICTIONARIES is possible, but it gets complex and I’m only referring to the AfraLISP Dic-
tionaries and XRecords tutorial.
See also:

• AfraLISP Dictionaries and XRecords Tutorial
• Extension Dictionary Reference

9.10. Tutorials 969

https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php

ezdxf Documentation, Release 1.3.2

• DXF Dictionary Reference
• DictionaryVar Reference

XRecord

The XRecord object can store arbitrary data like the XDATA section, but is not limited by size and can use all group
codes in the range from 1 to 369 for DXF Tags. The XRecord can be referenced by any DXF Dictionary, other
XRecord objects (tricky ownership!), the XDATA section (store handle by group code 1005) or any other DXF object
by adding the XRecord object to the Extension Dictionary of the DXF entity.
It is recommend to follow the DXF reference to assign appropriate group codes to DXF Tags. My recommendation is
shown in the table below, but all group codes from 1 to 369 are valid. I advice against using the group codes 100 and 102
(structure tags) to avoid confusing generic tag loaders. Unfortunately, Autodesk doesn’t like general rules and uses DXF
format exceptions everywhere.

1 strings (max. 2049 chars)
2 structure tags as strings like "{" and "}"
10 points and vectors
40 floats
90 integers
330 handles

Group codes are not unique in XRecord and can be repeated, therefore tag order matters.
This example shows how to attach a XRecord object to a LINE entity by Extension Dictionary:

line = msp.add_line((0, 0), (1, 0))
line2 = msp.add_line((0, 2), (1, 2))

if line.has_extension_dict:
xdict = line.get_extension_dict()

else:
xdict = line.new_extension_dict()

xrecord = xdict.add_xrecord("DATA1")
xrecord.reset([

(1, "text1"), # string
(40, 3.141592), # float
(90, 256), # 32-bit int
(10, (1, 2, 0)), # points and vectors
(330, line2.dxf.handle) # handles

])

print(xrecord.tags)

Script output:

[DXFTag(1, 'text1'),
DXFTag(40, 3.141592),
DXFTag(90, 256),
DXFVertex(10, (1.0, 2.0, 0.0)),
DXFTag(330, '30')]

Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity! To
react to entity modifications by a CAD applications it is possible to write event handlers by AutoLISP, see the AfraLISP

970 Chapter 9. Contents

https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php

ezdxf Documentation, Release 1.3.2

Reactors Tutorial for more information. This is very advanced stuff!
See also:

• AfraLISP Dictionaries and XRecords Tutorial
• AfraLISP Reactors Tutorial
• XRecord Reference
• helper functions: ezdxf.lldxf.types.dxftag() and ezdxf.lldxf.types.
tuples_to_tags()

XRecord Helper Classes

The UserRecord and BinaryRecord are helper classes to manage XRECORD content in a simple way. The
UserRecord manages the data as plain Python types: dict, list, int, float, str and the ezdxf types Vec2
and Vec3. The top level type for the UserRecord.data attribute has to be a list. The BinaryRecord stores
arbitrary binary data as BLOB. These helper classes uses fixed group codes to manage the data in XRECORD, you have
no choice to change them.
Additional required imports for these examples:

from pprint import pprint
import ezdxf
from ezdxf.math import Vec3
from ezdxf.urecord import UserRecord, BinaryRecord
from ezdxf.entities import XRecord
import zlib

Example 1: Store entity specific data in the Extension Dictionary:

line = msp.add_line((0, 0), (1, 0))
xdict = line.new_extension_dict()
xrecord = xdict.add_xrecord("MyData")

with UserRecord(xrecord) as user_record:
user_record.data = [# top level has to be a list!

"MyString",
4711,
3.1415,
Vec3(1, 2, 3),
{

"MyIntList": [1, 2, 3],
"MyFloatList": [4.5, 5.6, 7.8],

},
]

Example 1: Get entity specific data back from the Extension Dictionary:

if line.has_extension_dict:
xdict = line.get_extension_dict()
xrecord = xdict.get("MyData")
if isinstance(xrecord, XRecord):

user_record = UserRecord(xrecord)
pprint(user_record.data)

If you modify the content of UserRecord.data without using the context manager, you have to call commit() by
yourself, to store the modified data back into the XRECORD.

9.10. Tutorials 971

https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://en.wikipedia.org/wiki/Binary_large_object

ezdxf Documentation, Release 1.3.2

Example 2: Store arbitrary data in DICTIONARY objects. The XRECORD is stored in the named DICTIONARY,
called rootdict in ezdxf. This DICTIONARY is the root entity for the tree-like data structure stored in the OBJECTS
section, see also the documentation of the ezdxf.sections.objects module.

Get the existing DICTIONARY object or create a new DICTIONARY object:
my_dict = doc.objects.rootdict.get_required_dict("MyDict")

Create a new XRECORD object, the DICTIONARY object is the owner of this
new XRECORD:
xrecord = my_dict.add_xrecord("MyData")

This example creates the user record without the context manager.
user_record = UserRecord(xrecord)

Store user data:
user_record.data = [

"Just another user record",
4711,
3.1415,

]
Store user data in associated XRECORD:
user_record.commit()

Example 2: Get user data back from the DICTIONARY object

my_dict = doc.rootdict.get_required_dict("MyDict")
entity = my_dict["MyData"]
if isinstance(entity, XRecord):

user_record = UserRecord(entity)
pprint(user_record.data)

Example 3: Store arbitrary binary data

my_dict = doc.rootdict.get_required_dict("MyDict")
xrecord = my_dict.add_xrecord("MyBinaryData")
with BinaryRecord(xrecord) as binary_record:

The content is stored as hex strings (e.g. ABBAFEFE...) in one or more
group code 310 tags.
A preceding group code 160 tag stores the data size in bytes.
data = b"Store any binary data, even line breaks\r\n" * 20
compress data if required
binary_record.data = zlib.compress(data, level=9)

Example 3: Get binary data back from the DICTIONARY object

entity = my_dict["MyBinaryData"]
if isinstance(entity, XRecord):

binary_record = BinaryRecord(entity)
print("\ncompressed data:")
pprint(binary_record.data)

print("\nuncompressed data:")
pprint(zlib.decompress(binary_record.data))

Hint: Don’t be fooled, the ability to save any binary data such as images, office documents, etc. in the DXF file doesn’t
impress AutoCAD, it simply ignores this data, this data only has a meaning for your application!

972 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

See also:
• urecord module
• UserRecord class
• BinaryRecord class

AppData

Application-Defined Data (AppData) was introduced in DXF R13/14 and is used by AutoCAD internally to store the
handle to the Extension Dictionary and the Reactors in DXF entities. Ezdxf supports these kind of data storage for any
AppID and the data is preserved by AutoCAD and BricsCAD, but I haven’t found a way to access this data by AutoLISP
or even the SDK. So I don’t recommend this feature to store application defined data, because Extended Data (XDATA)
and the Extension Dictionary are well documented and safe ways to attach custom data to entities.

register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add(APPID)

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

setting the data
line.set_app_data(APPID, [(300, "custom text"), (370, 4711), (460, 3.141592)])

getting the data
if line.has_app_data(APPID):

tags = line.get_app_data(APPID)
print(f"{str(line)} has {len(tags)} tags of AppData for AppID {APPID!r}")
for tag in tags:

print(tag)

Printed output:

LINE(#30) has 3 tags of AppData for AppID 'YOUR_UNIQUE_ID'
(300, 'custom text')
(370, 4711)
(460, 3.141592)

9.10.32 Tutorial for External References

• Introduction

• Supported Entities

• Environment Setup

• Attach a DXF File

• Attach a DWG File

• Detach an XREF

• Embed an XREF

• Load Modelspace

9.10. Tutorials 973

ezdxf Documentation, Release 1.3.2

• Load Paperspace

• Write Block

• Conflict Policies

– ConflictPolicy.KEEP

– ConflictPolicy.XREF_PREFIX

– ConflictPolicy.NUM_PREFIX

• Load Table Resources

Introduction

This tutorial uses the ezdxf.xref module to work with external references (XREF).
Attached XREFs are links to the modelspace of a specified drawing file. Changes made to the referenced drawing are
automatically reflected in the current drawing when it’s opened or if the XREF is reloaded.

Important: AutoCAD can only display DWG files as attached XREFs. Any DXF file attached as an XREF to a
DXF document must be converted to DWG in order to be viewed in AutoCAD. Fortunately, other CAD applications are
more cooperative, BricsCAD has no problem displaying DXF files as XREFs.
The drawing add-on included in ezdxf does not display external references at all!

There are some example files included in the examples/xref folder of the repository:
• attach_dxf_dwg_xref.py
• detach_block_as_xref.py
• embed_dxf_dwg_xref.py
• load_table_resources.py

Supported Entities

All operations which move entities between layouts and XREFs copy these entities, therefore only entities which are
copyable can be transferred. The following entities are not copyable:

• All entities which are not documented by the DXF reference.
• ACAD_TABLE
• ACAD_PROXY_ENTITY
• OLE2FRAME
• ACIS based entities: BODY, 3DSOLID, REGION, …
• Custom entities from applications on top of AutoCAD like Map 3D, Civil 3D or Architecture. The vertical inte-
gration stack is not documented by the DXF reference.

Unsupported entities are ignored and do not raise exceptions.

974 Chapter 9. Contents

https://github.com/mozman/ezdxf/tree/master/examples/xref

ezdxf Documentation, Release 1.3.2

Environment Setup

Required imports to follow this tutorial:

import ezdxf
from ezdxf.addons import odafc
from ezdxf.document import Drawing
from ezdxf import xref, units, colors
from ezdxf.render import forms

DXFVERSION = "R2013"

Function to create a simple DXF file as XREF, the insertion point of the XREF is set to (5, 5):

def make_dxf_xref_document(name: str) -> Drawing:
ref_doc = ezdxf.new(DXFVERSION, units=units.M)
ref_doc.layers.add("GEAR", color=colors.YELLOW)
msp = ref_doc.modelspace()
gear = forms.gear(

16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
msp.add_lwpolyline(

forms.translate(gear, (5, 5)), close=True, dxfattribs={"layer": "GEAR"}
)
ref_doc.header["$INSBASE"] = (5, 5, 0)
ref_doc.saveas(name)
return ref_doc

Create the DXF file:

make_dxf_xref_document("xref.dxf")

The XREF looks like this:

9.10. Tutorials 975

ezdxf Documentation, Release 1.3.2

Attach a DXF File

Create a host document to which the XREF will be attached:

host_doc = ezdxf.new(DXFVERSION, units=units.M)

Attach the XREF by the ezdxf.xref.attach() function and save the host DXF file:

xref.attach(host_doc, block_name="dxf_xref", insert=(0, 0), filename="attached_xref.
↪→dxf")
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("attach_host_dxf.dxf")

The attach() function is meant to simply attach an XREF once without any overhead, therefore the attach()
function creates the required block definition automatically and raises an XrefDefinitionError exception if the
block definition already exist. To attach additional XREF references use the method add_blockref():

msp.add_blockref("dxf_xref", insert=another_location)

The attached DXF file in BricsCAD:

976 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Important: AutoCAD can not display DXF files as attached XREFs.

Attach a DWG File

Export the DXF file as DWG by the odafc add-on:

It's not required to save the DXF file!
doc = make_dxf_xref_document("attached_xref.dxf")
try:

odafc.export_dwg(doc, "attached_xref.dwg", replace=True)
except odafc.ODAFCError as e:

print(str(e))

Attach the DWG file by the ezdxf.xref.attach() function and save the host DXF file:

host_doc = ezdxf.new(DXFVERSION, units=units.M)
xref.attach(host_doc, block_name="dwg_xref", filename="attached_xref.dwg", insert=(0,␣
↪→0))
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("attached_dwg.dxf")

Attached DWG file in Autodesk DWG TrueView 2023:

9.10. Tutorials 977

ezdxf Documentation, Release 1.3.2

Detach an XREF

The detach() function writes the content of a block definition into the modelspace of a new DXF document and
convert the block to an external reference (XREF). The new DXF document has to be written/exported by the caller. The
function does not create any block references. These references should already exist and do not need to be changed since
references to blocks and XREFs are the same.

host_doc = ezdxf.new()
make_block(host_doc, "GEAR")
block_layout = host_doc.blocks.get("GEAR")
detached_block_doc = xref.detach(block_layout, xref_filename="detached_gear.dxf")
detached_block_doc.saveas("detached_gear.dxf")
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("detach_host_dxf_xref.dxf")

Important: Save the host document after detaching the block! Detaching a block definition modifies the host document.

The detach() function returns a Drawing instance, so it’s possible to convert the DXF document to DWG by the
odafc add-on if necessary (e.g. for Autodesk products). It’s important that the argument xref_filenamematch the

978 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

filename of the exported DWG file:

host_doc = ezdxf.new()
make_block(host_doc, "GEAR")
block_layout = host_doc.blocks.get("GEAR")
detached_block_doc = xref.detach(block_layout, xref_filename="detached_gear.dwg")
try:

odafc.export_dwg(detached_block_doc, "detached_gear.dwg", replace=True)
except odafc.ODAFCError as e:

print(str(e))
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("detach_host_dwg_xref.dxf")

It’s recommended to clean up the entity database of the host document afterwards:

host_doc.entitydb.purge()

For understanding, this is the make_block() function:

def make_block(doc: Drawing, name: str) -> None:
blk = doc.blocks.new(name, base_point=(5, 5, 0))
doc.layers.add("GEAR", color=colors.YELLOW)
gear = forms.gear(

16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
blk.add_lwpolyline(

forms.translate(gear, (5, 5)), close=True, dxfattribs={"layer": "GEAR"}
)
doc.modelspace().add_blockref(name, (0, 0))

Embed an XREF

The embed() function loads the content of the XREF into the block definition, this is the reverse operation of detaching
an XREF.
For loading the content of DWG files is a loading function required, which loads the DWG file as Drawing document.
The odafc add-on module provides such a function: readfile().
This example embeds the XREF “attached_xref.dwg” of the first example as content of the block definition “GEAR”, the
“attach_host_dwg.dxf” file is the host DXF document:

import ezdxf
from ezdxf.addons import odafc

doc = ezdxf.readfile("attach_host_dwg.dxf")
gear_xref = doc.blocks.get("GEAR")

try:
xref.embed(gear_xref, load_fn=odafc.readfile)

except FileNotFoundError as e:
print(str(e))

The default loading function for DXF files is the ezdxf.readfile() function and doesn’t have to be specified. For
the loading function from the recover module use a lambda function:

import ezdxf
from ezdxf import recover

(continues on next page)

9.10. Tutorials 979

ezdxf Documentation, Release 1.3.2

(continued from previous page)

doc = ezdxf.readfile("attach_host_dxf.dxf")
gear_xref = doc.blocks.get("GEAR")

try:
xref.embed(gear_xref, load_fn=lambda f: recover.readfile(f)[0])

except FileNotFoundError as e:
print(str(e))

Load Modelspace

The ezdxf.xref.load_modelspace() function loads the content of the modelspace of the source document into
a layout of the target document, the modelspace of the target document is the default target layout.

Hint: Use this function to combine multiple existing DXF files. If the goal is just to add new entities to an existing
document, rather load the source document as a template by ezdxf.readfile(), add your content and save the
document as a new DXF file with the saveas() method.

Merge multiple DXF files:

import ezdxf
from ezdxf import colors, transform, xref
from ezdxf.math import Matrix44
from ezdxf.render import forms

def make_gear(name: str) -> None:
doc = ezdxf.new()
doc.layers.add("GEAR", color=colors.YELLOW)
msp = doc.modelspace()
gear = forms.gear(

16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
msp.add_lwpolyline(gear, close=True, dxfattribs={"layer": "GEAR"})
doc.saveas(name)

make_gear("gear.dxf")
merged_doc = ezdxf.new()
for index in range(3):

sdoc = ezdxf.readfile("gear.dxf") # this could be different DXF files
transform.inplace(sdoc.modelspace(), Matrix44.translate(index * 10, 0, 0))
xref.load_modelspace(sdoc, merged_doc)

merged_doc.saveas("merged.dxf")

980 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Load Paperspace

The function ezdxf.xref.load_paperspace() loads a paperspace layout as a new paperspace layout into the
target document. To be clear this function loads only the content of the paperspace layout, the content of the modelspace
isn’t loaded, therefore the loaded VIEWPORT entities show the content of the target modelspace.

Write Block

The function ezdxf.xref.write_block() writes the given entities into the modelspace of a new DXF document,
this document can be, but doesn’t have to be used as an external referenced block.

Conflict Policies

Resources are definitions of layers, linetypes, text-, dimension-, mline- and mleader styles, materials and blocks.
A resource conflict occurs when the source and target documents contain elements such as layers, linetypes, text styles
and so on that share the same name.
Many of the functions shown above support an argument to define the ezdxf.xref.ConflictPolicy, that gives
you the choice how to handle resource name conflicts.

ConflictPolicy.KEEP

Keeps the existing resource name of the target document and ignore the resource from the source document. The loaded
entities from the source document use the resources defined in the target document and may alter their visual appearance,
when the resources are different.

9.10. Tutorials 981

ezdxf Documentation, Release 1.3.2

ConflictPolicy.XREF_PREFIX

This policy handles the resource import like CAD applications by always renaming the loaded resources to
<xref>0<name>, where xref is the name of source document, the 0 part is a number to create a unique resource
name and <name> is the name of the resource itself.

Important: This policy ALWAYS renames the resource, even if the loaded resource doesn’t have a conflict in the target
document.

ConflictPolicy.NUM_PREFIX

This policy renames the loaded resources to 0<name> only if the resource <name> already exists. The 0 prefix is a
number to create a unique resource name and <name> is the name of the resource itself.

Important: This policy renames the resource ONLY when the loaded resource has a conflict in the target document.

Load Table Resources

Resources are definitions of layers, linetypes, text-, dimension-, mline- and mleader styles, materials and blocks.
The Loader class is the low level tool to build a loading operation from simple loading commands. Study the source
code of the xrefmodule, most of loading commands used above are build upon the Loader class. This example shows
how to import layer, linetype, text- and dimension style definitions:

import ezdxf
from ezdxf import xref

sdoc = ezdxf.new(setup=True)
tdoc = ezdxf.new()

The default conflict policy is ConflictPolicy.KEEP
loader = xref.Loader(sdoc, tdoc)

Load all layers:
loader.load_layers([layer.dxf.name for layer in sdoc.layers])

Load specific linetypes:
loader.load_linetypes(["CENTER", "DASHED", "DASHDOT"])

Load specific text style:
loader.load_text_styles(["OpenSans", "LiberationMono"])

Load all DIMENSION styles, this command loads also the dependent text styles:
loader.load_dim_styles([dimstyle.dxf.name for dimstyle in sdoc.dimstyles])

execute all loading commands:
loader.execute()
tdoc.saveas("target.dxf")

982 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/xref.py
https://github.com/mozman/ezdxf/blob/master/src/ezdxf/xref.py

ezdxf Documentation, Release 1.3.2

Note: Loading a layer does not load the entities which do reference this layer, a layer is not an entity container, it’s just
an DXF attribute, see also Basic Concepts: Layers.

9.10.33 Tutorial for Image Export

• Introduction

• Common Basics

– Frontend Configuration

– Page Layout

– Autodetect Page Size

– Scaling Content

– Limit Page Size

• SVG Export

• PDF Export

• PNG Export

• PLT/HPGL2 Export

• DXF Export

• Recorder Backend

Introduction

This tutorial shows how to export DXF content of the modelspace or a paperspace as images by the drawing add-on.
The tutorial covers the new added backends in ezdxf version 1.1:

• ezdxf.addons.drawing.pdf.SVGBackend class for SVG export
• ezdxf.addons.drawing.pymupdf.PyMuPdfBackend class for PDF and PNG export
• ezdxf.addons.drawing.hpgl2.PlotterBackend class for PLT/HPGL2 export
• ezdxf.addons.drawing.dxf.DXFBackend class for flattened DXF export

The tutorial does not cover the MatplotlibBackend and PyQtBackend, for information about these backends
see:

• Howtos for the Drawing Add-on

• FAQs at github: https://github.com/mozman/ezdxf/discussions/550

9.10. Tutorials 983

https://github.com/mozman/ezdxf/discussions/550

ezdxf Documentation, Release 1.3.2

Common Basics

The rendering process is divided into multiple steps. The frontend resolves the DXF properties and breaks down complex
DXF entities into simple drawing primitives which are send to the backend that renders the output format.

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext, svg, layout

def example_doc():
doc = ezdxf.new()
msp = doc.modelspace()
x0, y0, x1, y1 = 0, 0, 10, 10
start = (x0, y0)
end = (x0 + 1, y0)
for color in range(1, 6):

msp.add_lwpolyline(
[start, (x0, y1), (x1, y1), (x1, y0), end], dxfattribs={"color": color}

)
x0 += 1
x1 -= 1
y0 += 1
y1 -= 1
start = end
end = (x0 + 1, y0)

return doc

def export(doc):
msp = doc.modelspace()
1. create the render context
context = RenderContext(doc)
2. create the backend
backend = svg.SVGBackend()
3. create the frontend
frontend = Frontend(context, backend)
4. draw the modelspace
frontend.draw_layout(msp)
5. create an A4 page layout, not required for all backends
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
6. get the SVG rendering as string - this step is backend dependent
svg_string = backend.get_string(page)
with open("output.pdf", "wt", encoding="utf8") as fp:

fp.write(svg_string)

if __name__ == "__main__":
export(example_doc())

The exported SVG shows a spiral centered on an A4 page with a margin of 20mm, notice the background has a dark
color like the usual background of the modelspace:

984 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Frontend Configuration

The Configuration object configures the rendering process. This example changes the background color from dark
grey to white and renders all lines black.
Add the config module to imports:

from ezdxf.addons.drawing import Frontend, RenderContext, svg, layout, config

Create a new configuration and override the background and color policy between the 2nd and the 3rd step:

2. create the backend
backend = svg.SVGBackend()
create a new configuration for a white background and and a black foreground␣

↪→color
cfg = config.Configuration(

background_policy=config.BackgroundPolicy.WHITE,
color_policy=config.ColorPolicy.BLACK,

)
3. create the frontend
frontend = Frontend(context, backend, config=cfg)

The new exported SVG has a white background and all lines are black:

9.10. Tutorials 985

ezdxf Documentation, Release 1.3.2

There are many configuration options:
• LineweightPolicy - relative, absolute or relative fixed lineweight
• LinePolicy - solid or accurate linetypes
• HatchPolicy - normal, ignore, only outlines or always solid fill
• ColorPolicy - color, black, white, monochrome, …
• BackgroundPolicy - default, black, white, off (transparent) and custom
• TextPolicy - filling, outline, ignore, …
• ProxyGraphicPolicy - ignore, show, prefer
• lineweight scaling factor
• minimal lineweight
• max_flattening_distance for curve approximation
• and more …

All configuration options are documented here: Configuration.

986 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Page Layout

The Page object defines the output page for some backends (SVG, PDF, PNG, PLT).
A page is defined by width and height in a given length unit. The supported length units are millimeters (mm), inch (in),
point (1 pt is 1/72 in) and pixels (1 px is 1/96 in).
It’s possible to autodetect the page size from the content or fit the content onto the page. In both cases the margin values
are used to create space between the content and the page borders. The content is centered in the remaining space without
margins.

Important: None of the backends crop the content automatically, the margin values are just calculation values!

Autodetect Page Size

The required page size is auto-detected by setting the width and/or height to 0. By default the scaling factor is 1, so 1
drawing unit is 1 page unit. The content is fit to page by default and the outcome is shown in the previous examples.
This example shows the output when the scale should be 1:1, 1 drawing unit is 1 page unit (mm):

auto-detect page size and 2mm margins on all sides
page = layout.Page(0, 0, layout.Units.mm, margins=layout.Margins.all(2))
scale content by 1, do not fit content to page
svg_string = backend.get_string(

page, settings=layout.Settings(scale=1, fit_page=False)
)

The page has a size of 14x14mm, a content size of 10x10mm and 2mm margins on all sides.

9.10. Tutorials 987

ezdxf Documentation, Release 1.3.2

Scaling Content

Scaling the content by factor 10 means, 10 page units represent 1 drawing unit, which is a scale of 10:1 and only uniform
scaling is supported.

def export_2(doc):
backend = make_backend(doc)
auto-detect page size and 2mm margins on all sides
page = layout.Page(0, 0, layout.Units.mm, margins=layout.Margins.all(2))
scale content by 10, do not fit content to page
svg_string = backend.get_string(

The page has a size of 104x104mm, a content size of 100x100mm and 2mm margins on all sides.

988 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Limit Page Size

The page arguments max_width and max_height can limit the page size in auto-detection mode, e.g. most plotter devices
can only print upto a width of 900mm.
See also:

• Page class
• Margins class
• Settings class

9.10. Tutorials 989

ezdxf Documentation, Release 1.3.2

SVG Export

The steps to export a SVG by the SVGBackend are show in the first example, the configuration of the frontend and the
page setup are shown in the previous sections.

1. Create the render context
2. Create the backend
3. Create and configure the frontend
4. Draw the content
5. Setup the page layout
6. Create the SVG output string

This is the same code as for the first example:

def export(doc):
msp = doc.modelspace()
1. create the render context
context = RenderContext(doc)
2. create the backend
backend = svg.SVGBackend()
3. create the frontend
frontend = Frontend(context, backend)
4. draw the modelspace
frontend.draw_layout(msp)
5. create an A4 page layout, not required for all backends
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
6. get the SVG rendering as string - this step is backend dependent
svg_string = backend.get_string(page)
with open("output.pdf", "wt", encoding="utf8") as fp:

fp.write(svg_string)

The SVG backend flips the coordinates along the y-axis and transforms the content into a compact integer coordinate
space and produces therefore a small file size but therefore the output coordinates are different to the DXF coordinates.

PDF Export

The PDF export requires the the PyMuPdf package to be installed.
The steps to export a PDF are very similar to SVG, except for the PyMuPdfBackend class and the backend returns
bytes and not a string:

1. Create the render context
2. Create the backend
3. Create and configure the frontend
4. Draw the content
5. Setup the page layout
6. Create the SVG output string

Import the pymupdf backend module:

from ezdxf.addons.drawing import Frontend, RenderContext, pymupdf, layout, config

990 Chapter 9. Contents

https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.3.2

The export function:

def export_dark_bg(doc):
msp = doc.modelspace()
1. create the render context
context = RenderContext(doc)
2. create the backend
backend = pymupdf.PyMuPdfBackend()
3. create the frontend
frontend = Frontend(context, backend)
4. draw the modelspace
frontend.draw_layout(msp)
5. create an A4 page layout
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
6. get the PDF rendering as bytes
pdf_bytes = backend.get_pdf_bytes(page)
with open("pdf_dark_bg.pdf", "wb") as fp:

fp.write(pdf_bytes)

The PDF has is dark background for the modelspace by default and color index 7 is white. Create a frontend configuration
and override the BackgroundPolicy to get a white background:

3. create and configure the frontend
cfg = config.Configuration(background_policy=config.BackgroundPolicy.WHITE)
frontend = Frontend(context, backend, config=cfg)

Now the exported PDF has a white background and color index 7 is black:

9.10. Tutorials 991

ezdxf Documentation, Release 1.3.2

PNG Export

The PNG export is done by the PyMuPdfBackend class and differs only in the method to get the PNG data bytes:

6. get the PNG rendering as bytes
png_bytes = backend.get_pixmap_bytes(page, fmt="png", dpi=96)
with open("png_white_bg.png", "wb") as fp:

fp.write(png_bytes)

The pymupdf backend supports multiple image formats:

png Portable Network Graphics
ppm Portable Pixmap (no alpha channel)
pbm Portable Bitmap (no alpha channel)

992 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

PLT/HPGL2 Export

The PlotterBackend creates HPGL/2 plot files for output on raster plotters. The PlotterBackend is designed
to print on white paper, so the background color is always white and color index 7 is black by default.

Warning: The plot files are only tested by the plot file viewer ViewCompanion Standard but not on real hardware -
please use with care and give feedback.

The PLT/HPGL2 export is very similar to the SVG export:

from ezdxf.addons.drawing import Frontend, RenderContext, hpgl2, layout

def export(doc):
msp = doc.modelspace()
1. create the render context
context = RenderContext(doc)
2. create the backend
backend = hpgl2.PlotterBackend()
3. create the frontend
frontend = Frontend(context, backend)
4. draw the modelspace
frontend.draw_layout(msp)
5. create an A4 page layout
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
6. get the HPGL2 rendering as bytes
plt_bytes = backend.get_bytes(page)
with open("output_01.plt", "wb") as fp:

fp.write(plt_bytes)

9.10. Tutorials 993

http://www.softwarecompanions.com/

ezdxf Documentation, Release 1.3.2

The HPGL/2 viewer does not show the margins around the content, but most construction drawings draw the page borders
around the content.
The PlotterBackend has some quality preset methods to get the HPGL/2 data:

• compatible()

• low_quality()

• normal_quality() (default)
• high_quality()

The difference are mostly the floating point precision and the usage of Bézier curves, but the Bézier curves are approx-

994 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

imated by plotter drivers (even by HP drivers), so there is no real quality improvement, but curves need less space than
approximated polylines so the file size is smaller.
Very old plotter may not support Bézier curves and floating point coordinates, for these plotters the compatible()
method exports only polylines and integer coordinates.
Usage:

6. get the HPGL2 rendering as bytes
plt_bytes = backend.high_quality(page)

DXF Export

The DXFBackend exports the content as DXF primitives: POINT, LINE, LWPOLYLINE, SPLINE and HATCH. All
blocks are exploded, text is rendered as filled polygons represented by the HATCH entity and arcs are represented by
SPLINE entities (internal Bèzier curve representation).
This backend was added to convert HPGL/2 files to DXF files, because the hpgl2 add-on reuses the backends of the
drawing add-on for export. Maybe it is useful for other tasks too.
This backend works different than the previous. There is no page setup and everything is rendered into a given layout of
a DXF document:

from ezdxf.addons.drawing import Frontend, RenderContext, dxf

def export(doc):
export_doc = ezdxf.new()
msp = doc.modelspace()
1. create the render context
context = RenderContext(doc)
2. create the backend
backend = dxf.DXFBackend(export_doc.modelspace())
3. create the frontend
frontend = Frontend(context, backend)
4. draw the modelspace
frontend.draw_layout(msp)
5. save or return DXF document
export_doc.saveas("output_01.dxf")

Recorder Backend

The Recorder backend is an intermediate layer to record the drawing commands of the Frontend class. The
Player object can replay this records on any other backend class but also provides some additional features like bound-
ing box detection, content transformation and cropping.
The SVG/PDF/PLT backends use this intermediate layer internally to transform and place the content.

9.10. Tutorials 995

ezdxf Documentation, Release 1.3.2

9.11 Howto

The Howto section show how to accomplish specific tasks with ezdxf in a straight forward way without teaching basics or
internals, if you are looking for more information about the ezdxf internals look at the Reference section or if you want
to learn how to use ezdxf go to the Tutorials section or to the Basic Concepts section.

9.11.1 General Document

General preconditions:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_file.dxf")

except IOError:
print(f"Not a DXF file or a generic I/O error.")
sys.exit(1)

except ezdxf.DXFStructureError:
print(f"Invalid or corrupted DXF file.")
sys.exit(2)

msp = doc.modelspace()

This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or
major flaws look at the ezdxf.recover module.

Load DXF Files with Structure Errors

If you know the files you will process have most likely minor or major flaws, use the ezdxf.recover module:

import sys
from ezdxf import recover

try: # low level structure repair:
doc, auditor = recover.readfile(name)

except IOError:
print(f"Not a DXF file or a generic I/O error.")
sys.exit(1)

except ezdxf.DXFStructureError:
print(f"Invalid or corrupted DXF file: {name}.")
sys.exit(2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:

print(f"Found unrecoverable errors in DXF file: {name}.")
auditor.print_error_report()

For more loading scenarios follow the link: ezdxf.recover

996 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Set/Get Header Variables

ezdxf has an interface to get and set HEADER variables:

doc.header["VarName"] = value
value = doc.header["VarName"]

See also:
HeaderSection and online documentation from Autodesk for available header variables.

Set DXF Drawing Units

The header variable $INSUNITS defines the drawing units for the modelspace and therefore for the DXF document if no
further settings are applied. The most common units are 6 for meters and 1 for inches.
Use this HEADER variables to setup the default units for CAD applications opening the DXF file. This setting is not
relevant for ezdxf API calls, which are unitless for length values and coordinates and decimal degrees for angles (in most
cases).
Sets drawing units:

doc.header["$INSUNITS"] = 6

For more information see section DXF Units.

Explore the DXF File Structure

DXF files are plain text files, you can open this files with every text editor which handles bigger files. But it is not really
easy to get quick the information you want.
Use the DXF structure browser:

Call as executable script from the command line:
ezdxf browse FILE

Call as module on Windows:
py -m ezdxf browse FILE

Call as module on Linux/Mac
python3 -m ezdxf browse FILE

This command requires PySide6 or PyQt5 to be installed. It opens a desktop window with a selection panel for all DXF
entities in the document, and handles int the entity view are links between DXF entities, this simplifies the navigation
between the DXF entities. Read the docs for the Browse command for more information.

9.11. Howto 997

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 1.3.2

998 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Calculate Extents for the Modelspace

Since ezdxf v0.16 exist a ezdxf.bbox module to calculate bounding boxes for DXF entities. This module makes the
extents calculation very easy, but read the documentation for the bbox module to understand its limitations.

import ezdxf
from ezdxf import bbox

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()

extents = bbox.extents(msp)

The returned extents is a ezdxf.math.BoundingBox object.

Set Initial View/Zoom for the Modelspace

To show an arbitrary location of themodelspace centered in the CAD applicationwindow, set the'*Active'VPORT to
this location. The DXF attribute dxf.center defines the location in the modelspace, and the dxf.height specifies
the area of the modelspace to view. Shortcut function:

doc.set_modelspace_vport(height=10, center=(10, 10))

See also:
The ezdxf.zoom module is another way to set the initial modelspace view.
Setting the initial view to the extents of all entities in the modelspace:

import ezdxf
from ezdxf import zoom

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
zoom.extents(msp)

Setting the initial view to the extents of just some entities:

lines = msp.query("LINES")
zoom.objects(lines)

The zoom module also works for paperspace layouts.

Important: The zoom module uses the bbox module to calculate the bounding boxes for DXF entities. Read the
documentation for the bbox module to understand its limitations and the bounding box calculation for large documents
can take a while!

9.11. Howto 999

ezdxf Documentation, Release 1.3.2

Hide the UCS Icon

The visibility of the UCS icon is controlled by the DXF ucs_icon attribute of the VPort entity:
• bit 0: 0=hide, 1=show
• bit 1: 0=display in lower left corner, 1=display at origin

The state of the UCS icon can be set in conjunction with the initial VPort of the model space, this code turns off the
UCS icon:

doc.set_modelspace_vport(10, center=(10, 10), dxfattribs={"ucs_icon": 0})

Alternative: turn off UCS icons for all VPort entries in the active viewport configuration:

for vport in doc.viewports.get_config("*Active"):
vport.dxf.ucs_icon = 0

Show Lineweights in DXF Viewers

By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable $LWDISPLAY
to 1 the DXF viewer should display lineweights, if supported by the viewer.

doc.header["$LWDISPLAY"] = 1

Add ezdxf Resources to Existing DXF Document

Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:

import ezdxf
from ezdxf.tools.standards import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing(doc, topics="all")

Set Logging Level of ezdxf

Set the logging level of the ezdxf package to a higher level to minimize logging messages from ezdxf. At level ERROR
only severe errors will be logged and WARNING, INFO and DEBUG messages will be suppressed:

import logging

logging.getLogger("ezdxf").setLevel(logging.ERROR)

1000 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.11.2 DXF Viewer

A360 Viewer Problems

AutoDesk web service A360 seems to be more picky than the AutoCAD desktop applications, may be it helps to use the
latest DXF version supported by ezdxf, which is DXF R2018 (AC1032) in the year of writing this lines (2018).

DXF Entities Are Not Displayed in the Viewer

ezdxf does not automatically locate the main viewport of the modelspace at the entities, you have to perform the “Zoom
to Extends” command, here in TrueView 2020:

And here in the Autodesk Online Viewer:

9.11. Howto 1001

https://a360.autodesk.com/viewer/

ezdxf Documentation, Release 1.3.2

Add this line to your code to relocate the main viewport, adjust the center (in modelspace coordinates) and the height (in
drawing units) arguments to your needs:

doc.set_modelspace_vport(height=10, center=(0, 0))

Show IMAGES/XREFS on Loading in AutoCAD

If you are adding XREFS and IMAGES with relative paths to existing drawings and they do not show up in AutoCAD
immediately, change theHEADER variable$PROJECTNAME='' to (not really) solve this problem. The ezdxf templates
for DXF R2004 and later have $PROJECTNAME='' as default value.
Thanks to David Booth:

If the filename in the IMAGEDEF contains the full path (absolute in AutoCAD) then it shows on loading,
otherwise it won’t display (reports as unreadable) until you manually reload using XREF manager.
A workaround (to show IMAGES on loading) appears to be to save the full file path in the DXF or save it as
a DWG.

Thanks to Zac Luzader:
Has anyone else noticed that very short simple image file names seem to avoid this problem? Once I ensured
that the image file’s name was short and had no special characters (letters, numbers and underscores only)
the problem seemed to go away. I didn’t rigorously analyze the behavior as its very time consuming.
Also: You can safely put the image in a subdirectory and use a relative path. The name of the subdirectory
does not seem to trigger this problem, provided that the image file name itself is very short and simple.
Also pro tip: The XRef manager exists in DWG TrueView 2023, but access to it is only possible if you have
a completely broken reference. Create a DXF with a reference to a non-existent file, then the error dialog
will let you open the XRef Manager. Once it is open you can pin it and it will be open next time, even if you
have no broken references.

See also:
Discussion on github: Images don’t show in AutoCAD until …

1002 Chapter 9. Contents

https://github.com/worlds6440
https://github.com/luzader
https://github.com/mozman/ezdxf/discussions/845

ezdxf Documentation, Release 1.3.2

Set Initial View/Zoom for the Modelspace

See section “General Document”: Set Initial View/Zoom for the Modelspace

Show Lineweights in DXF Viewers

By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable $LWDISPLAY
to 1 the DXF viewer should display lineweights, if supported by the viewer.

doc.header["$LWDISPLAY"] = 1

9.11.3 DXF Content

General preconditions:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_file.dxf")

except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)

except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file.')
sys.exit(2)

msp = doc.modelspace()

Get/Set Entity Color

The entity color is stored as ACI (AutoCAD Color Index):

aci = entity.dxf.color

Default value is 256 which means BYLAYER:

layer = doc.layers.get(entity.dxf.layer)
aci = layer.get_color()

The special get_color() method is required, because the color attribute Layer.dxf.color is misused as layer
on/off flag, a negative color value means the layer is off.
ACI value 0 means BYBLOCK, which means the color from the block reference (INSERT entity).
Set color as ACI value as int in range [0, 256]:

entity.dxf.color = 1

The ACI value 7 has a special meaning, it is white on dark backgrounds and white on light backgrounds.

9.11. Howto 1003

ezdxf Documentation, Release 1.3.2

Get/Set Entity RGB Color

RGB true color values are supported since DXF R13 (AC1012), the 24-bit RGB value is stored as integer in the DXF
attribute true_color:

24 bit binary value: 0bRRRRRRRRGGGGGGGGBBBBBBBB or hex value: 0xRRGGBB
set true color value to red
entity.dxf.true_color = 0xFF0000

Use the helper functions from the ezdxf.colors module for RGB integer value handling:

from ezdxf import colors

entity.dxf.true_color = colors.rgb2int((0xFF, 0, 0))
r, g, b = colors.int2rgb(entity.dxf.true_color)

The RGB values of the AutoCAD default colors are not officially documented, but an accurate translation table is included
in ezdxf:

Warning: ACI value 256 (BYLAYER) raises an IndexError!
rgb24 = colors.DXF_DEFAULT_COLORS[aci]
print(f"RGB Hex Value: #{rgb24:06X}")
r, g, b = colors.int2rgb(rgb24)
print(f"RGB Channel Values: R={r:02X} G={g:02X} b={b:02X}")

If color and true_color values are set, BricsCAD and AutoCAD use the true_color value as display color for
the entity.

Get/Set True Color as RGB-Tuple

Get/Set the true color value as (r, g, b)-tuple by the rgb property of the DXFGraphic entity:

set true color value to red
entity.rgb = (0xFF, 0, 0)

get true color values
r, g, b = entity.rgb

Get/Set Block Reference Attributes

Block references (Insert) can have attached attributes (Attrib), these are simple text annotations with an associated
tag appended to the block reference.
Iterate over all appended attributes:

get all INSERT entities with entity.dxf.name == "Part12"
blockrefs = msp.query('INSERT[name=="Part12"]')
if len(blockrefs):

entity = blockrefs[0] # process first entity found
for attrib in entity.attribs:

if attrib.dxf.tag == "diameter": # identify attribute by tag
attrib.dxf.text = "17mm" # change attribute content

Get attribute by tag:

1004 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

diameter = entity.get_attrib('diameter')
if diameter is not None:

diameter.dxf.text = "17mm"

Adding XDATA to Entities

Adding XDATA as list of tuples (group code, value) by set_xdata(), overwrites data if already present:

doc.appids.new('YOUR_APPID') # IMPORTANT: create an APP ID entry

circle = msp.add_circle((10, 10), 100)
circle.set_xdata(

'YOUR_APPID',
[

(1000, 'your_web_link.org'),
(1002, '{'),
(1000, 'some text'),
(1002, '{'),
(1071, 1),
(1002, '}'),
(1002, '}')

])

For group code meaning see DXF reference section DXF Group Codes in Numerical Order Reference, valid group codes
are in the range 1000 - 1071.
Method get_xdata() returns the extended data for an entity as Tags object.
See also:
Tutorial: Storing Custom Data in DXF Files

Get Overridden DIMSTYLE Values from DIMENSION

In general the Dimension styling and config attributes are stored in the Dimstyle entity, but every attribute can be
overridden for each DIMENSION entity individually, get overwritten values by the DimstyleOverride object as
shown in the following example:

for dimension in msp.query('DIMENSION'):
dimstyle_override = dimension.override() # requires v0.12
dimtol = dimstyle_override['dimtol']
if dimtol:

print(f'{str(dimension)} has tolerance values:')
dimtp = dimstyle_override['dimtp']
dimtm = dimstyle_override['dimtm']
print(f'Upper tolerance: {dimtp}')
print(f'Lower tolerance: {dimtm}')

The DimstyleOverride object returns the value of the underlying DIMSTYLE objects if the value in DIMENSION
was not overwritten, or None if the value was neither defined in DIMSTYLE nor in DIMENSION.

9.11. Howto 1005

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3F0380A5-1C15-464D-BC66-2C5F094BCFB9

ezdxf Documentation, Release 1.3.2

Override DIMSTYLE Values for DIMENSION

Same as above, the DimstyleOverride object supports also overriding DIMSTYLE values. But just overriding this
values have no effect on the graphical representation of the DIMENSION entity, because CAD applications just show
the associated anonymous block which contains the graphical representation on the DIMENSION entity as simple DXF
entities. Call the render method of the DimstyleOverride object to recreate this graphical representation by
ezdxf, but ezdxf does not support all DIMENSION types and DIMVARS yet, and results will differ from AutoCAD or
BricsCAD renderings.

dimstyle_override = dimension.override()
dimstyle_override.set_tolerance(0.1)

delete associated geometry block
del doc.blocks[dimension.dxf.geometry]

recreate geometry block
dimstyle_override.render()

How to Change the HATCH Pattern Origin Point

This code sets the origin of the first pattern line to the given origin and the origins of all remaining pattern lines relative
to the first pattern line origin.

from ezdxf.entities import Hatch, Pattern
from ezdxf.math import Vec2

def shift_pattern_origin(hatch: Hatch, offset: Vec2):
if isinstance(hatch.pattern, Pattern):

for pattern_line in hatch.pattern.lines:
pattern_line.base_point += offset

def reset_pattern_origin_of_first_pattern_line(hatch: Hatch, origin: Vec2):
if isinstance(hatch.pattern, Pattern) and len(hatch.pattern.lines):

first_pattern_line = hatch.pattern.lines[0]
offset = origin - first_pattern_line.base_point
shift_pattern_origin(hatch, offset)

See also:
• Discussion #769

How to Get the Length of a Spline or Polyline

There exist no analytical function to calculate the length of a B-spline, you have to approximate the curve and calculate
the length of the polyline. The construction tool ezdxf.math.ConstructionPolyline is may be useful for that.

import ezdxf
from ezdxf.math import ConstructionPolyline

doc = ezdxf.new()
msp = doc.modelspace()
fit_points = [(0, 0, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)]

spline = msp.add_spline(fit_points)
Adjust the max. sagitta distance to your needs or run the calculation in a loop

(continues on next page)

1006 Chapter 9. Contents

https://github.com/mozman/ezdxf/discussions/769
https://en.wikipedia.org/wiki/B-spline

ezdxf Documentation, Release 1.3.2

(continued from previous page)
reducing the distance until the difference to the previous run is smaller
than your expected precision:
polyline = ConstructionPolyline(spline.flattening(distance=0.1))
print(f"approximated length = {polyline.length:.2f}")

How to Resolve DXF Properties

Graphical properties of DXF entities (color, lineweight, …) are sometimes hard to resolve because of the complex pos-
sibilities to inherit properties from layers or blocks, or overriding them by ctb files.
The drawing add-on provides the RenderContext class that can be used to resolve properties of entities in the
context of their use:

import ezdxf
from ezdxf.addons.drawing.properties import RenderContext

doc = ezdxf.new()
doc.layers.add("LINE", color=ezdxf.colors.RED)
msp = doc.modelspace()
line = msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "LINE"})

ctx = RenderContext(doc)
ctx.set_current_layout(msp)
print(f"resolved RGB value: {ctx.resolve_color(line)}")

Output:

resolved RGB value: #ff0000

This works in most simple cases, resolving properties of objects in viewports or nested blocks requires additional infor-
mation that is beyond the scope of a simple guide.

How to Find XREF Definitions

XREFs are normal block definitions and can be found in the BLOCKS section:

for block_layout in doc.blocks:
block = block_layout.block # the BLOCK entity
if block.is_xref:

handle_xref(block_layout)
elif block.is_xref_overlay:

handle_xref_overlay(block_layout)

See also:
• documentation of the ezdxf.xref module
• ezdxf.layouts.BlockLayout

9.11. Howto 1007

ezdxf Documentation, Release 1.3.2

How to Find XREF References

An XREF reference is a block reference (INSERT entity) to the block definition of the XREF:

for insert in msp.query("INSERT"):
if insert.is_xref:

handle_xref_reference(insert)
... or get the XREF definition
block_layout = insert.block()
if block_layout is not None:

block = block_layout.block
if block.is_xref:

handle_xref(block_layout)
elif block.is_xref_overlay:

handle_xref_overlay(block_layout)

Like any normal block, an XREF can be inserted multiple times.
See also:

• documentation of the ezdxf.xref module
• ezdxf.layouts.BlockLayout

9.11.4 Fonts

Rendering SHX Fonts

The SHX font format is not documented nor supported by many libraries/packages likeMatplotlib and Qt, therefore only
SHX fonts which have corresponding TTF-fonts can be rendered by these backends. The mapping from/to SHX/TTF
fonts is hard coded in the source code file: fonts.py
Since ezdxf v1.1 is the rendering of SHX fonts supported if the path to these fonts is added to the support_dirs in
the Config Files.

Rebuild Font Manager Cache

If you wanna use new installed fonts which are not included in the current cache file of ezdxf you have to rebuild the cache
file:

import ezdxf
from ezdxf.fonts import fonts

fonts.build_system_font_cache()

or call the ezdxf launcher to do that:

ezdxf --fonts

1008 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/fonts/fonts.py

ezdxf Documentation, Release 1.3.2

9.11.5 Drawing Add-on

This section consolidates the FAQ about the drawing add-on from the github forum.

All Backends

How to Set Background and Foreground Colors

Override the default background and foreground colors. The foreground color is the AutoCAD Color Index (ACI) 7, which
is white/black depending on the background color. If the foreground color is not specified, the foreground color is white
for dark backgrounds and black for light backgrounds. The required color format is a hex string “#RRGGBBAA”.

from ezdxf.addons.drawing.properties import LayoutProperties

-x-x-x snip -x-x-x-

fig: plt.Figure = plt.figure()
ax: plt.Axes = fig.add_axes((0, 0, 1, 1))
ctx = RenderContext(doc)

get the modelspace properties
msp_properties = LayoutProperties.from_layout(msp)

set light gray background color and black foreground color
msp_properties.set_colors("#eaeaea")
out = MatplotlibBackend(ax)

override the layout properties and render the modelspace
Frontend(ctx, out).draw_layout(

msp,
finalize=True,
layout_properties=msp_properties,

)
fig.savefig("image.png")

A light background “#eaeaea” has a black foreground color by default:

9.11. Howto 1009

https://github.com/mozman/ezdxf/discussions/550

ezdxf Documentation, Release 1.3.2

A dark background “#0a0a0a” has a white foreground color by default:

-x-x-x snip -x-x-x-

msp_properties.set_colors("#0a0a0a")

-x-x-x snip -x-x-x-

1010 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

How to Set a Transparent Background Color

The override color include an alpha transparency “#RRGGBBAA” value. An alpha value of “00” is opaque and “ff” is
fully transparent. A transparent background color still defines the foreground color!

Hint: The savefig() function of the matplotlib backend requires the transparent argument to be set to True to
support transparency.

A light and fully transparent background “#eaeaeaff” has a black foreground color by default:

-x-x-x snip -x-x-x-

msp_properties.set_colors("#eaeaeaff")

-x-x-x snip -x-x-x-

fig.savefig("image.png", transparent=True)

9.11. Howto 1011

ezdxf Documentation, Release 1.3.2

A dark and fully transparent background “#0a0a0aff” has a white foreground color by default:

-x-x-x snip -x-x-x-

msp_properties.set_colors("#0a0a0aff")

-x-x-x snip -x-x-x-

fig.savefig("image.png", transparent=True)

1012 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

How to Exclude DXF Entities from Rendering

• If all unwanted entities are on the same layer switch off the layer.
• If the document is not saved later, you can delete the entities or set them invisible.
• Filter the unwanted entities by a filter function.

The argument filter_func of the Frontend.draw_layout() method expects a function which takes a graphical
DXF entity as input and returns True if the entity should be rendered or False to exclude the entity from rendering.
This filter function excludes all DXF entities with an ACI color value of 2:

from ezdxf.entities import DXFGraphic

def my_filter(e: DXFGraphic) -> bool:
return e.dxf.color != 2

-x-x-x snip -x-x-x-

Frontend(ctx, out).draw_layout(msp, finalize=True, filter_func=my_filter)

Important: Not all attributes have a default value if the attribute does not exist. If you are not sure about this, use the
get() method:

9.11. Howto 1013

ezdxf Documentation, Release 1.3.2

def my_filter(e: DXFGraphic) -> bool:
return e.dxf.get("color", 7) != 2

How to Override Properties of DXF Entities

Create a custom Frontend class and override the the override_properties() method:

class MyFrontend(Frontend):
def override_properties(self, entity: DXFGraphic, properties: Properties) -> None:

remove alpha channel from all entities, "#RRGGBBAA"
properties.color = properties.color[:7]

-x-x-x snip -x-x-x-

MyFrontend(ctx, out).draw_layout(msp, finalize=True)

See also:
• ezdxf.addons.drawing.properties.Properties

Matplotlib Backend

See also:
• Matplotlib package: https://matplotlib.org/stable/api/matplotlib_configuration_api.html
• Figure API: https://matplotlib.org/stable/api/figure_api.html
• Axes API: https://matplotlib.org/stable/api/axis_api.html

How to Get the Pixel Coordinates of DXF Entities

See also:
• Source: https://github.com/mozman/ezdxf/discussions/219

Transformation from modelspace coordinates to image coordinates:

import matplotlib.pyplot as plt
from PIL import Image, ImageDraw

import ezdxf
from ezdxf.math import Matrix44
from ezdxf.addons.drawing import RenderContext, Frontend
from ezdxf.addons.drawing.matplotlib import MatplotlibBackend

def get_wcs_to_image_transform(
ax: plt.Axes, image_size: tuple[int, int]

) -> Matrix44:
"""Returns the transformation matrix from modelspace coordinates to image
coordinates.
"""

x1, x2 = ax.get_xlim()

(continues on next page)

1014 Chapter 9. Contents

https://matplotlib.org/stable/api/matplotlib_configuration_api.html
https://matplotlib.org/stable/api/figure_api.html
https://matplotlib.org/stable/api/axis_api.html
https://github.com/mozman/ezdxf/discussions/219

ezdxf Documentation, Release 1.3.2

(continued from previous page)
y1, y2 = ax.get_ylim()
data_width, data_height = x2 - x1, y2 - y1
image_width, image_height = image_size
return (

Matrix44.translate(-x1, -y1, 0)
@ Matrix44.scale(

image_width / data_width, -image_height / data_height, 1.0
)
+1 to counteract the effect of the pixels being flipped in y
@ Matrix44.translate(0, image_height + 1, 0)

)

create the DXF document
doc = ezdxf.new()
msp = doc.modelspace()
msp.add_lwpolyline([(0, 0), (1, 0), (1, 1), (0, 1)], close=True)
msp.add_line((0, 0), (1, 1))

export the pixel image
fig: plt.Figure = plt.figure()
ax: plt.Axes = fig.add_axes([0, 0, 1, 1])
ctx = RenderContext(doc)
out = MatplotlibBackend(ax)
Frontend(ctx, out).draw_layout(msp, finalize=True)
fig.savefig("cad.png")
plt.close(fig)

reload the pixel image by Pillow (PIL)
img = Image.open("cad.png")
draw = ImageDraw.Draw(img)

add some annotations to the pixel image by using modelspace coordinates
m = get_wcs_to_image_transform(ax, img.size)
a, b, c = (

(v.x, v.y) # draw.line() expects tuple[float, float] as coordinates
transform modelspace coordinates to image coordinates
for v in m.transform_vertices([(0.25, 0.75), (0.75, 0.25), (1, 1)])

)
draw.line([a, b, c, a], fill=(255, 0, 0))

show the image by the default image viewer
img.show()

How to Get Modelspace Coordinates from Pixel Coordinates

This is the reverse operation of the previous how-to: How to Get the Pixel Coordinates of DXF Entities

See also:
• Full example script: wcs_to_image_coordinates.py
• Source: https://github.com/mozman/ezdxf/discussions/269

def get_image_to_wcs_transform(
ax: plt.Axes, image_size: tuple[int, int]

) -> Matrix44:

(continues on next page)

9.11. Howto 1015

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/wcs_to_image_coodinates.py
https://github.com/mozman/ezdxf/discussions/269

ezdxf Documentation, Release 1.3.2

(continued from previous page)
m = get_wcs_to_image_transform(ax, image_size)
m.inverse()
return m

-x-x-x snip -x-x-x-

img2wcs = get_image_to_wcs_transform(ax, img.size)
print(f"0.25, 0.75 == {img2wcs.transform(a).round(2)}")
print(f"0.75, 0.25 == {img2wcs.transform(b).round(2)}")
print(f"1.00, 1.00 == {img2wcs.transform(c).round(2)}")

How to Export a Specific Area of the Modelspace

This code exports the specified modelspace area from (5, 3) to (7, 8) as a 2x5 inch PNG image to maintain the aspect
ratio of the source area.
Use case: render only a specific area of the modelspace.
See also:

• Full example script: export_specific_area.py
• Source: https://github.com/mozman/ezdxf/discussions/451

-x-x-x snip -x-x-x-

export the pixel image
fig: plt.Figure = plt.figure()
ax: plt.Axes = fig.add_axes([0, 0, 1, 1])
ctx = RenderContext(doc)
out = MatplotlibBackend(ax)
Frontend(ctx, out).draw_layout(msp, finalize=True)

setting the export area:
xmin, xmax = 5, 7
ymin, ymax = 3, 8
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)

set the output size to get the expected aspect ratio:
fig.set_size_inches(xmax - xmin, ymax - ymin)
fig.savefig("x5y3_to_x7y8.png")
plt.close(fig)

How to Render Without Margins

To remove the empty space at the image borders set the margins of the Axes object to zero:

ax.margins(0)
fig.savefig("image_without_margins.png")
plt.close(fig)

See also:
• Matplotlib docs about margins

1016 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/export_specific_area.py
https://github.com/mozman/ezdxf/discussions/451
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.margins.html

ezdxf Documentation, Release 1.3.2

How to Set the Pixel Count per Drawing Unit

This code exports the modelspace with an extent of 5 x 3 drawing units with 100 pixels per drawing unit as a 500 x 300
pixel image.
Use case: render the content with a fixed number of pixels for a drawing unit, e.g. a drawing unit of 1 inch should be
rendered by 100 pixels.
See also:

• Full example script: export_image_pixel_size.py
• Source: https://github.com/mozman/ezdxf/discussions/357

-x-x-x snip -x-x-x-

def set_pixel_density(fig: plt.Figure, ax: plt.Axes, ppu: int):
"""Argument `ppu` is pixels per drawing unit."""
xmin, xmax = ax.get_xlim()
width = xmax - xmin
ymin, ymax = ax.get_ylim()
height = ymax - ymin
dpi = fig.dpi
width_inch = width * ppu / dpi
height_inch = height * ppu / dpi
fig.set_size_inches(width_inch, height_inch)

-x-x-x snip -x-x-x-

export image with 100 pixels per drawing unit = 500x300 pixels
set_pixel_density(fig, ax, 100)
fig.savefig("box_500x300.png")
plt.close(fig)

How to Export a Specific Image Size in Pixels

This code exports the modelspace with an extent of 5 x 3 drawing units as a 1000 x 600 pixel Image.
Use case: render the content with a fixed image size in pixels.
See also:

• Full example script: export_image_pixel_size.py
• Source: https://github.com/mozman/ezdxf/discussions/357

-x-x-x snip -x-x-x-

def set_pixel_size(fig: plt.Figure, size: tuple[int, int]):
x, y = size
fig.set_size_inches(x / fig.dpi, y / fig.dpi)

-x-x-x snip -x-x-x-

export image with a size of 1000x600 pixels
set_pixel_size(fig, (1000, 600))
fig.savefig("box_1000x600.png")
plt.close(fig)

9.11. Howto 1017

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/export_image_pixel_size.py
https://github.com/mozman/ezdxf/discussions/357
https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/export_image_pixel_size.py
https://github.com/mozman/ezdxf/discussions/357

ezdxf Documentation, Release 1.3.2

How to Set the Page Size in Inches

The page- or image size in inches is set by the set_size_inches() method of the Figure class. The content
within the Axes limits will be scaled to fill the page.
Use case: render the whole content to a PDF document with a specific paper size without worrying about scale.

fig.set_size_inches(8, 11)

How to Render at a Specific Scale

This code exports the modelspace at a specific scale and paper size.
Use case: render the content to a PDF document with a specific paper size and scale, but not all content may be rendered.
See also:

• Full example script: render_to_scale.py
• Source: https://github.com/mozman/ezdxf/discussions/665

-x-x-x snip -x-x-x-

def render_limits(
origin: tuple[float, float],
size_in_inches: tuple[float, float],
scale: float,

) -> tuple[float, float, float, float]:
"""Returns the final render limits in drawing units.

Args:
origin: lower left corner of the modelspace area to render
size_in_inches: paper size in inches
scale: render scale, e.g. scale=100 means 1:100, 1m is

rendered as 0.01m or 1cm on paper

"""
min_x, min_y = origin
max_x = min_x + size_in_inches[0] * scale
max_y = min_y + size_in_inches[1] * scale
return min_x, min_y, max_x, max_y

def export_to_scale(
paper_size: tuple[float, float] = (8.5, 11),
origin: tuple[float, float] = (0, 0),
scale: float = 1,
dpi: int = 300,

):
"""Render the modelspace content with to a specific paper size and scale.

Args:
paper_size: paper size in inches
origin: lower left corner of the modelspace area to render
scale: render scale, e.g. scale=100 means 1:100, 1m is

rendered as 0.01m or 1cm on paper
dpi: pixel density on paper as dots per inch

(continues on next page)

1018 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/render_to_scale.py
https://github.com/mozman/ezdxf/discussions/665

ezdxf Documentation, Release 1.3.2

(continued from previous page)

"""
-x-x-x snip -x-x-x-

ctx = RenderContext(doc)
fig: plt.Figure = plt.figure(dpi=dpi)
ax: plt.Axes = fig.add_axes([0, 0, 1, 1])

disable all margins
ax.margins(0)

get the final render limits in drawing units:
min_x, min_y, max_x, max_y = render_limits(

origin, paper_size, scale
)

ax.set_xlim(min_x, max_x)
ax.set_ylim(min_y, max_y)

out = MatplotlibBackend(ax)
finalizing invokes auto-scaling by default!
Frontend(ctx, out).draw_layout(msp, finalize=False)

set output size in inches:
fig.set_size_inches(paper_size[0], paper_size[1], forward=True)

fig.savefig(f"image_scale_1_{scale}.pdf", dpi=dpi)
plt.close(fig)

How to Control the Line Width

The DXF lineweight attribute defines the line width as absolute width on the output medium (e.g. 25 = 0.25mm)
and therefore depends only on the DPI (dots per inch) setting of the Figure class and the savefig() method.
There are two additional settings in the Configuration class which influences the line width:

• min_lineweight sets the minimum line width in 1/300 inch - a value of 300 is a line width of 1 inch
• lineweight_scaling, multiply the line width by a this factor

The following table shows the line width in pixels for all valid DXF lineweights for a resolution of 72, 100, 200 and 300
dpi:

9.11. Howto 1019

ezdxf Documentation, Release 1.3.2

1020 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

See also:
Discussion: https://github.com/mozman/ezdxf/discussions/797

9.12 FAQ

These are the old FAQ until late 2023, new FAQs will only be added to the Knowledge Graph.

9.12.1 What is the Relationship between ezdxf, dxfwrite and dxfgrabber?

In 2010 I started my first Python package for creating DXF documents called dxfwrite, this package can’t read DXF files
and writes only the DXF R12 (AC1009) version. While dxfwrite works fine, I wanted a more versatile package, that can
read and write DXF files and maybe also supports newer DXF formats than DXF R12.
This was the start of the ezdxf package in 2011, but the progress was so slow, that I created a spin off in 2012 called
dxfgrabber, which implements only the reading part of ezdxf, which I needed for my work and I wasn’t sure if ezdxf will
ever be usable. Luckily in 2014 the first usable version of ezdxf could be released. The ezdxf package has all the features
of dxfwrite and dxfgrabber and much more, but with a different API. So ezdxf is not a drop-in replacement for dxfgrabber
or dxfwrite.
Since ezdxf can do all the things that dxfwrite and dxfgrabber can do, I focused on the development of ezdxf, dxfwrite and
dxfgrabber are in maintenance-only mode and will not get any new features, just bugfixes.
There are no advantages of dxfwrite over ezdxf, dxfwrite has a smaller memory footprint, but the r12writer add-on
does the same job as dxfwrite without any in-memory structures by writing direct to a stream or file and there is also no
advantage of dxfgrabber over ezdxf for ordinary DXF files, the smaller memory footprint of dxfgrabber is not noticeable
and for really big files the iterdxf add-on does a better job.

9.12.2 Imported ezdxf package has no content. (readfile, new)

1. AttributeError: partially initialized module ‘ezdxf’ has no attribute ‘readfile’ (most likely due to a circular import)
Did you name your file/script “ezdxf.py”? This causes problems with circular imports. Renaming your file/script
should solve this issue.

2. AttributeError: module ‘ezdxf’ has no attribute ‘readfile’
This could be a hidden permission error, for more information about this issue read Petr Zemeks article: https:
//blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/

9.12.3 How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?

The BODY, 3DSOLID, SURFACE, REGION and so on, are stored as ACIS data embedded in the DXF file. The
ACIS data is stored as SAT (text) format in the entity itself for DXF R2000-R2010 and as SAB (binary) format in the
ACDSDATA section for DXF R2013+. Ezdxf can read SAT and SAB data, but only write SAT data.
The ACIS data is a proprietary format from Spatial Inc., and there exist no free available documentation or open source
libraries to create or edit SAT or SAB data, and also ezdxf provides no functionality for creating or editing ACIS data.
The ACIS support provided by ezdxf is only useful for users which have access to the ACIS SDK from Spatial Inc..

9.12. FAQ 1021

https://github.com/mozman/ezdxf/discussions/797
https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/
https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/
https://www.spatial.com/products/3d-acis-modeling
https://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 1.3.2

9.12.4 Are OLE/OLE2 entities supported?

TLDR; NO!
The Wikipedia definition of OLE: Object Linking & Embedding (OLE) is a proprietary technology developed by Mi-
crosoft that allows embedding and linking to documents and other objects. For developers, it brought OLE Control
Extension (OCX), a way to develop and use custom user interface elements. On a technical level, an OLE object is any
object that implements the IOleObject interface, possibly along with a wide range of other interfaces, depending on
the object’s needs.
Therefore ezdxf does not support this entities in any way, this only work on Windows and with the required editing
application installed. The binary data stored in the OLE objects cannot be used without the editing application.
In my opinion, using OLE objects in a CAD drawing is a very bad design decision that can and will cause problems opening
these files in the future, even in AutoCAD onWindows when the required editing application is no longer available or the
underlying technology is no longer supported.
All of this is unacceptable for a data storage format that should be accessed for many years or decades (e.g. construction
drawings for buildings or bridges).

9.12.5 Rendering SHX fonts

The SHX font format is not documented nor supported by many libraries/packages likeMatplotlib and Qt, therefore only
SHX fonts which have corresponding TTF-fonts can be rendered by these backends. See also how-tos about Fonts

9.12.6 Drawing Add-on

There is a dedicated how-to section for the Drawing Add-on.

9.12.7 Is the AutoCAD command XYZ available?

TLDR; Would you expect Photoshop features from a JPG library?
The package is designed as an interface to the DXF format and therefore does not offer any advanced features of interactive
CAD applications. First, some tasks are difficult to perform without human guidance, and second, in complex situations,
it’s not that easy to tell a “headless” system what exactly to do, so it’s very likely that not many users would ever use
these features, despite the fact that a lot of time and effort would have to be spent on development, testing and long-term
support.

9.13 Glossary

ACI
AutoCAD Color Index (ACI)

ACIS
The 3D ACIS Modeler (ACIS) is a geometric modeling kernel developed by Spatial Corp. ® (formerly Spatial
Technology) and now part of Dassault Systems. All ACIS based DXF entities store their geometry as SAT or SAB
data. These are not open data formats and a license has to be purchased to get access to their SDK, therefore ezdxf
can not provide any support for creating, processing or transforming of ACIS based DXF entities.

bulge
The Bulge value is used to create arc shaped line segments in Polyline and LWPolyline entities.

1022 Chapter 9. Contents

https://en.wikipedia.org/wiki/Object_Linking_and_Embedding
https://en.wikipedia.org/wiki/ACIS
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 1.3.2

CAD
Computer-Assisted Drafting or Computer-Aided Design

CTB
Color dependent plot style table (ColorDependentPlotStyles)

DWG
Proprietary file format of AutoCAD ®. Documentation for this format is available from the Open Design Alliance
(ODA) at their Downloads section. This documentation is created by reverse engineering therefore not perfect nor
complete.

DXF
Drawing eXchange Format is a file format used by AutoCAD ® to interchange data with other CAD applications.
DXF is a trademark of Autodesk ®. See alsoWhat is DXF?

proxy-graphic
The proxy-graphic is an internal data format to add a graphical representation to DXF entities which are unknown
(custom DXF entities), not documented or very complex so CAD applications can display them without knowledge
about the internal structure of these entities.

raw-color
Raw color value as stored in DWG files, this integer value can represent ACI values as well as and true-color values

reliable CAD application
CAD applications which create valid DXF documents in the meaning and interpretation of Autodesk. See also
What is DXF?

SAB
ACIS file format (Standard ACIS Binary), binary stored data

SAT
ACIS file format (Standard ACIS Text), data stored as ASCII text

STB
Named plot style table (NamedPlotStyles)

true-color
RGB color representation, a combination red, green and blue values to define a color.

9.14 Knowledge Graph

I have started managing notes and documents that are not included in the ezdxf documentation in Logseq in late 2023.
It works like a wiki but does not require a backend server. The Information is edited as Markdown files, which is much
more intuitive than reStructured Text, and the content is stored in local files.
The notes are included in the source code repository on Github in the notes folder.
A published edition of this Knowledge Graph is included on the ezdxf website and is accessible by the link https://ezdxf.
mozman.at/notes.
The Knowledge Graph includes:

• Release Notes of future releases and some versions back
• CHANGELOG
• IDEAS for future releases
• FAQ and the HOWTO sections from this documentation
• all my notes to ezdxf

9.14. Knowledge Graph 1023

https://www.autodesk.com/products/autocad/overview
https://www.opendesign.com/
https://www.opendesign.com/guestfiles
https://www.autodesk.com/products/autocad/overview
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://www.autodesk.com/
https://www.autodesk.com/
https://www.logseq.com/
https://github.com/mozman/ezdxf/tree/master/notes
https://ezdxf.mozman.at/notes
https://ezdxf.mozman.at/notes
https://ezdxf.mozman.at/notes/#/page/release%20notes
https://ezdxf.mozman.at/notes/#/page/changelog
https://ezdxf.mozman.at/notes/#/page/ideas
https://ezdxf.mozman.at/notes/#/page/faq
https://ezdxf.mozman.at/notes/#/page/howto

ezdxf Documentation, Release 1.3.2

• In the future the DXF Internals section from this documentation may also move to the Knowledge Graph.
Logseq’s outline structure is not ideal for all the documents I want to include, but I chose Logseq over Obsidian.md
because it is open source and can publish the knowledge graph as a static website, static in the sense of no server-side
code execution.
This feature is important to me for hosting the content of the Knowledge Graph on the ezdxf` website and cannot be
achieved for free with Obsidian.md.
Logseq is an Electron application that runs on all platforms, with the disadvantage: it’s an Electron application.

9.15 Indices and tables

• genindex
• search

1024 Chapter 9. Contents

https://www.logseq.com/
https://obsidian.md/
https://obsidian.md/
https://www.logseq.com/
https://electronjs.org/
https://electronjs.org/

PYTHON MODULE INDEX

e
ezdxf.acis, 512
ezdxf.acis.api, 512
ezdxf.acis.entities, 516
ezdxf.addons, 97
ezdxf.addons.acadctb, 167
ezdxf.addons.binpacking, 183
ezdxf.addons.drawing, 97
ezdxf.addons.dxf2code, 132
ezdxf.addons.geo, 122
ezdxf.addons.gerber_D6673, 206
ezdxf.addons.hpgl2.api, 153
ezdxf.addons.importer, 128
ezdxf.addons.iterdxf, 134
ezdxf.addons.meshex, 190
ezdxf.addons.odafc, 137
ezdxf.addons.openscad, 193
ezdxf.addons.pycsg, 160
ezdxf.addons.r12export, 140
ezdxf.addons.r12writer, 142
ezdxf.addons.tablepainter, 198
ezdxf.addons.text2path, 148
ezdxf.appsettings, 563
ezdxf.bbox, 524
ezdxf.blkrefs, 435
ezdxf.colors, 437
ezdxf.comments, 564
ezdxf.disassemble, 527
ezdxf.document, 213
ezdxf.entities, 306
ezdxf.entities.appdata, 755
ezdxf.entities.dxfgroups, 304
ezdxf.entities.xdata, 754
ezdxf.entities.xdict, 433
ezdxf.entitydb, 744
ezdxf.enums, 440
ezdxf.fonts.fonts, 556
ezdxf.gfxattribs, 565
ezdxf.groupby, 72
ezdxf.layouts, 274
ezdxf.lldxf.const, 436
ezdxf.lldxf.extendedtags, 750

ezdxf.lldxf.packedtags, 752
ezdxf.lldxf.tags, 748
ezdxf.lldxf.types, 746
ezdxf.math, 446
ezdxf.math.clipping, 502
ezdxf.math.clustering, 504
ezdxf.math.linalg, 505
ezdxf.math.rtree, 510
ezdxf.math.triangulation, 511
ezdxf.options, 623
ezdxf.path, 530
ezdxf.query, 567
ezdxf.r12strict, 225
ezdxf.recover, 221
ezdxf.render, 584
ezdxf.render.arrows, 615
ezdxf.render.forms, 589
ezdxf.render.hatching, 619
ezdxf.render.point, 609
ezdxf.render.trace, 607
ezdxf.reorder, 544
ezdxf.revcloud, 571
ezdxf.sections.blocks, 230
ezdxf.sections.classes, 228
ezdxf.sections.entities, 231
ezdxf.sections.header, 227
ezdxf.sections.objects, 232
ezdxf.sections.table, 235
ezdxf.sections.tables, 229
ezdxf.select, 73
ezdxf.tools.text, 572
ezdxf.tools.text_size, 579
ezdxf.transform, 545
ezdxf.units, 48
ezdxf.upright, 547
ezdxf.urecord, 554
ezdxf.xclip, 580
ezdxf.xref, 90
ezdxf.zoom, 583

g
guide, 757

1025

ezdxf Documentation, Release 1.3.2

1026 Python Module Index

INDEX

Non-alphabetical
__abs__() (ezdxf.math.Vec3 method), 474
__acad__ (ezdxf.render.arrows._Arrows attribute), 615
__add__() (ezdxf.addons.pycsg.CSG method), 166
__add__() (ezdxf.math.linalg.Matrix method), 508
__add__() (ezdxf.math.Vec3 method), 475
__and__() (ezdxf.query.EntityQuery method), 570
__bool__() (ezdxf.math.Vec3 method), 475
__contains__() (ezdxf.document.ezdxf.document.MetaData.MetaData

method), 211
__contains__() (ezdxf.entities.appdata.AppData

method), 756
__contains__() (ezdxf.entities.appdata.Reactors

method), 756
__contains__() (ezdxf.entities.Dictionary method),

411
__contains__() (ezdxf.entities.dxfgroups.DXFGroup

method), 304
__contains__() (ezdxf.entities.dxfgroups.GroupCollection

method), 305
__contains__() (ezdxf.entities.xdata.XData method),

754
__contains__() (ezdxf.entities.xdict.ExtensionDict

method), 433
__contains__() (ezdxf.entitydb.EntityDB method),

744
__contains__() (ezdxf.layouts.BlockLayout method),

303
__contains__() (ezdxf.layouts.Layout method), 299
__contains__() (ezdxf.layouts.Layouts method), 274
__contains__() (ezdxf.sections.blocks.BlocksSection

method), 230
__contains__() (ezdxf.sections.header.HeaderSection

method), 227
__contains__() (ezdxf.sections.objects.ObjectsSection

method), 232
__contains__() (ezdxf.sections.table.Table method),

235
__copy__() (ezdxf.math.Matrix44 method), 468
__copy__() (ezdxf.math.Vec3 method), 473
__deepcopy__() (ezdxf.math.Vec3 method), 473
__delitem__() (ezdxf.addons.acadctb.NamedPlotStyles

method), 169
__delitem__() (ezdxf.document.ezdxf.document.MetaData.MetaData

method), 211
__delitem__() (ezdxf.entities.Dictionary method), 411
__delitem__() (ezdxf.entities.DimStyleOverride

method), 325
__delitem__() (ezdxf.entities.LWPolyline method),

353
__delitem__() (ezdxf.entities.xdata.XDataUserDict

method), 554
__delitem__() (ezdxf.entities.xdata.XDataUserList

method), 552
__delitem__() (ezdxf.entities.xdict.ExtensionDict

method), 433
__delitem__() (ezdxf.entitydb.EntityDB method), 744
__delitem__() (ezdxf.lldxf.packedtags.VertexArray

method), 753
__delitem__() (ezdxf.query.EntityQuery method), 569
__delitem__() (ezdxf.sections.blocks.BlocksSection

method), 230
__delitem__() (ezdxf.sections.header.HeaderSection

method), 227
__eq__() (ezdxf.lldxf.types.DXFTag method), 746
__eq__() (ezdxf.math.linalg.Matrix method), 508
__eq__() (ezdxf.math.Vec3 method), 475
__eq__() (ezdxf.query.EntityQuery method), 569
__ezdxf__ (ezdxf.render.arrows._Arrows attribute), 615
__ge__() (ezdxf.query.EntityQuery method), 569
__geo_interface__ (ezdxf.addons.geo.GeoProxy at-

tribute), 124
__getitem__() (ezdxf.addons.acadctb.ColorDependentPlotStyles

method), 168
__getitem__() (ezdxf.addons.acadctb.NamedPlotStyles

method), 169
__getitem__() (ezdxf.document.ezdxf.document.MetaData.MetaData

method), 211
__getitem__() (ezdxf.entities.Dictionary method), 411
__getitem__() (ezdxf.entities.DimStyleOverride

method), 325
__getitem__() (ezdxf.entities.dxfgroups.DXFGroup

method), 304
__getitem__() (ezdxf.entities.LWPolyline method),

1027

ezdxf Documentation, Release 1.3.2

352
__getitem__() (ezdxf.entities.MeshVertexCache

method), 385
__getitem__() (ezdxf.entities.mline.ezdxf.entities.mline.MLineStyleElements.MLineStyleElements

method), 358
__getitem__() (ezdxf.entities.Polyline method), 382
__getitem__() (ezdxf.entities.xdata.XDataUserDict

method), 553
__getitem__() (ezdxf.entities.xdata.XDataUserList

method), 552
__getitem__() (ezdxf.entities.xdict.ExtensionDict

method), 433
__getitem__() (ezdxf.entitydb.EntityDB method), 744
__getitem__() (ezdxf.entitydb.EntitySpace method),

745
__getitem__() (ezdxf.layouts.BaseLayout method),

276
__getitem__() (ezdxf.lldxf.packedtags.VertexArray

method), 752
__getitem__() (ezdxf.lldxf.types.DXFTag method),

746
__getitem__() (ezdxf.math.ConstructionBox method),

491
__getitem__() (ezdxf.math.linalg.Matrix method),

508
__getitem__() (ezdxf.math.Matrix44 method), 470
__getitem__() (ezdxf.math.Shape2d method), 494
__getitem__() (ezdxf.math.Vec3 method), 473
__getitem__() (ezdxf.query.EntityQuery method), 569
__getitem__() (ezdxf.render.trace.TraceBuilder

method), 607
__getitem__() (ezdxf.sections.blocks.BlocksSection

method), 230
__getitem__() (ezdxf.sections.header.HeaderSection

method), 227
__getitem__() (ezdxf.sections.objects.ObjectsSection

method), 232
__getitem__() (ezdxf.transform.Logger method), 547
__gt__() (ezdxf.query.EntityQuery method), 569
__hash__() (ezdxf.lldxf.types.DXFTag method), 746
__hash__() (ezdxf.math.Matrix44 method), 470
__hash__() (ezdxf.math.Vec3 method), 473
__iadd__() (ezdxf.entities.MText method), 366
__iadd__() (ezdxf.tools.text.MTextEditor method), 573
__imul__() (ezdxf.math.Matrix44 method), 470
__init__() (ezdxf.entities.xdata.XDataUserDict

method), 553
__init__() (ezdxf.entities.xdata.XDataUserList

method), 552
__init__() (ezdxf.render.EulerSpiral method), 588
__init__() (ezdxf.render.R12Spline method), 586
__init__() (ezdxf.render.Spline method), 584
__init__() (ezdxf.urecord.BinaryRecord method), 556
__init__() (ezdxf.urecord.UserRecord method), 555

__iter__() (ezdxf.addons.acadctb.ColorDependentPlotStyles
method), 168

__iter__() (ezdxf.addons.acadctb.NamedPlotStyles
method), 169

__iter__() (ezdxf.addons.geo.GeoProxy method), 125
__iter__() (ezdxf.entities.appdata.Reactors method),

756
__iter__() (ezdxf.entities.dxfgroups.DXFGroup

method), 304
__iter__() (ezdxf.entities.dxfgroups.GroupCollection

method), 305
__iter__() (ezdxf.entities.LWPolyline method), 353
__iter__() (ezdxf.entities.xdata.XDataUserDict

method), 554
__iter__() (ezdxf.entitydb.EntityDB method), 744
__iter__() (ezdxf.entitydb.EntitySpace method), 745
__iter__() (ezdxf.gfxattribs.GfxAttribs method), 566
__iter__() (ezdxf.layouts.BaseLayout method), 276
__iter__() (ezdxf.layouts.Layouts method), 274
__iter__() (ezdxf.lldxf.packedtags.VertexArray

method), 753
__iter__() (ezdxf.lldxf.types.DXFTag method), 746
__iter__() (ezdxf.math.ConstructionBox method), 491
__iter__() (ezdxf.math.Matrix44 method), 470
__iter__() (ezdxf.math.rtree.RTree method), 510
__iter__() (ezdxf.math.Vec3 method), 474
__iter__() (ezdxf.query.EntityQuery method), 570
__iter__() (ezdxf.sections.blocks.BlocksSection

method), 230
__iter__() (ezdxf.sections.entities.EntitySection

method), 231
__iter__() (ezdxf.sections.header.CustomVars

method), 227
__iter__() (ezdxf.sections.objects.ObjectsSection

method), 232
__iter__() (ezdxf.sections.table.Table method), 235
__iter__() (ezdxf.transform.Logger method), 547
__le__() (ezdxf.query.EntityQuery method), 569
__len__() (ezdxf.entities.appdata.AppData method),

756
__len__() (ezdxf.entities.appdata.Reactors method),

756
__len__() (ezdxf.entities.Dictionary method), 411
__len__() (ezdxf.entities.dxfgroups.DXFGroup

method), 304
__len__() (ezdxf.entities.dxfgroups.GroupCollection

method), 305
__len__() (ezdxf.entities.LWPolyline method), 352
__len__() (ezdxf.entities.MLine method), 356
__len__() (ezdxf.entities.mline.ezdxf.entities.mline.MLineStyleElements.MLineStyleElements

method), 358
__len__() (ezdxf.entities.Polyline method), 381
__len__() (ezdxf.entities.xdata.XDataUserDict

method), 553

1028 Index

ezdxf Documentation, Release 1.3.2

__len__() (ezdxf.entities.xdata.XDataUserList method),
552

__len__() (ezdxf.entities.xdict.ExtensionDict method),
433

__len__() (ezdxf.entitydb.EntityDB method), 744
__len__() (ezdxf.entitydb.EntitySpace method), 745
__len__() (ezdxf.layouts.BaseLayout method), 276
__len__() (ezdxf.layouts.Layouts method), 274
__len__() (ezdxf.lldxf.packedtags.VertexArray method),

752
__len__() (ezdxf.math.rtree.RTree method), 510
__len__() (ezdxf.math.Shape2d method), 494
__len__() (ezdxf.math.Vec3 method), 473
__len__() (ezdxf.query.EntityQuery method), 569
__len__() (ezdxf.render.trace.TraceBuilder method),

607
__len__() (ezdxf.sections.entities.EntitySection method),

232
__len__() (ezdxf.sections.header.CustomVars method),

227
__len__() (ezdxf.sections.header.HeaderSection

method), 227
__len__() (ezdxf.sections.objects.ObjectsSection

method), 232
__len__() (ezdxf.sections.table.Table method), 235
__len__() (ezdxf.transform.Logger method), 547
__lt__() (ezdxf.math.Vec3 method), 475
__lt__() (ezdxf.query.EntityQuery method), 569
__mul__() (ezdxf.addons.pycsg.CSG method), 167
__mul__() (ezdxf.math.linalg.Matrix method), 508
__mul__() (ezdxf.math.Matrix44 method), 470
__mul__() (ezdxf.math.Vec3 method), 475
__ne__() (ezdxf.query.EntityQuery method), 569
__neg__() (ezdxf.math.Vec3 method), 475
__or__() (ezdxf.query.EntityQuery method), 570
__radd__() (ezdxf.math.Vec3 method), 475
__repr__() (ezdxf.entities.DXFEntity method), 307
__repr__() (ezdxf.gfxattribs.GfxAttribs method), 566
__repr__() (ezdxf.lldxf.types.DXFTag method), 747
__repr__() (ezdxf.math.ConstructionBox method), 491
__repr__() (ezdxf.math.Matrix44 method), 468
__repr__() (ezdxf.math.Vec3 method), 473
__rmul__() (ezdxf.math.Vec3 method), 475
__rsub__() (ezdxf.math.Vec3 method), 475
__setitem__() (ezdxf.document.ezdxf.document.MetaData.MetaData

method), 211
__setitem__() (ezdxf.entities.Dictionary method), 411
__setitem__() (ezdxf.entities.DimStyleOverride

method), 325
__setitem__() (ezdxf.entities.LWPolyline method),

352
__setitem__() (ezdxf.entities.MeshVertexCache

method), 385

__setitem__() (ezdxf.entities.xdata.XDataUserDict
method), 553

__setitem__() (ezdxf.entities.xdata.XDataUserList
method), 552

__setitem__() (ezdxf.entities.xdict.ExtensionDict
method), 433

__setitem__() (ezdxf.entitydb.EntityDB method), 744
__setitem__() (ezdxf.lldxf.packedtags.VertexArray

method), 753
__setitem__() (ezdxf.math.linalg.Matrix method),

508
__setitem__() (ezdxf.math.Matrix44 method), 470
__setitem__() (ezdxf.query.EntityQuery method), 569
__setitem__() (ezdxf.sections.header.HeaderSection

method), 227
__str__() (ezdxf.addons.binpacking.AbstractPacker

method), 185
__str__() (ezdxf.addons.binpacking.Bin method), 187
__str__() (ezdxf.addons.binpacking.Item method), 188
__str__() (ezdxf.entities.DXFEntity method), 307
__str__() (ezdxf.entities.xdata.XDataUserDict

method), 553
__str__() (ezdxf.entities.xdata.XDataUserList method),

552
__str__() (ezdxf.gfxattribs.GfxAttribs method), 566
__str__() (ezdxf.lldxf.packedtags.VertexArray method),

753
__str__() (ezdxf.lldxf.types.DXFTag method), 747
__str__() (ezdxf.math.ConstructionCircle method), 483
__str__() (ezdxf.math.ConstructionLine method), 482
__str__() (ezdxf.math.ConstructionRay method), 481
__str__() (ezdxf.math.Vec3 method), 473
__str__() (ezdxf.tools.text.MTextEditor method), 573
__str__() (ezdxf.urecord.BinaryRecord method), 556
__str__() (ezdxf.urecord.UserRecord method), 555
__sub__() (ezdxf.addons.pycsg.CSG method), 166
__sub__() (ezdxf.math.linalg.Matrix method), 508
__sub__() (ezdxf.math.Vec3 method), 475
__sub__() (ezdxf.query.EntityQuery method), 570
__truediv__() (ezdxf.math.Vec3 method), 475
__xor__() (ezdxf.query.EntityQuery method), 570
_Arrows (class in ezdxf.render.arrows), 615

A
a (ezdxf.colors.RGBA attribute), 438
abs_tol (ezdxf.render.trace.LinearTrace attribute), 608
abs_tol (ezdxf.render.trace.TraceBuilder attribute), 607
ABSOLUTE (ezdxf.addons.drawing.config.LineweightPolicy

attribute), 116
AbstractFont (class in ezdxf.fonts.fonts), 560
AbstractPacker (class in ezdxf.addons.binpacking),

185
acad_release (ezdxf.document.Drawing attribute), 214
ACADProxyEntity (class in ezdxf.entities), 317

Index 1029

ezdxf Documentation, Release 1.3.2

ACCURATE (ezdxf.addons.drawing.config.LinePolicy at-
tribute), 116

ACI, 1022
ACI (class in ezdxf.enums), 445
aci (ezdxf.addons.acadctb.PlotStyle attribute), 170
ACI (ezdxf.addons.drawing.dxf.ColorMode attribute), 108
ACI (ezdxf.addons.hpgl2.api.ColorMode attribute), 156
aci() (ezdxf.tools.text.MTextEditor method), 574
aci2rgb() (in module ezdxf.colors), 437
ACIS, 1022
acis_data (ezdxf.entities.Body property), 319
AcisEntity (class in ezdxf.acis.entities), 517
AcisException (class in ezdxf.acis.api), 516
active_layout() (ezdxf.document.Drawing method),

218
active_layout() (ezdxf.layouts.Layouts method),

275
actual_measurement (ezdxf.entities.Dimension.dxf

attribute), 323
adaptive_linetype (ezdxf.addons.acadctb.PlotStyle

attribute), 170
add() (ezdxf.addons.openscad.Script method), 195
add() (ezdxf.entities.appdata.AppData method), 756
add() (ezdxf.entities.appdata.Reactors method), 756
add() (ezdxf.entities.Dictionary method), 412
add() (ezdxf.entities.xdata.XData method), 754
add() (ezdxf.entitydb.EntityDB method), 744
add() (ezdxf.entitydb.EntitySpace method), 745
add() (ezdxf.sections.table.AppIDTable method), 238
add() (ezdxf.sections.table.BlockRecordTable method),

239
add() (ezdxf.sections.table.DimStyleTable method), 238
add() (ezdxf.sections.table.LayerTable method), 236
add() (ezdxf.sections.table.LinetypeTable method), 236
add() (ezdxf.sections.table.TextstyleTable method), 237
add() (ezdxf.sections.table.UCSTable method), 238
add() (ezdxf.sections.table.ViewportTable method), 239
add() (ezdxf.sections.table.ViewTable method), 239
add_3dface() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 145
add_3dface() (ezdxf.layouts.BaseLayout method), 280
add_3dsolid() (ezdxf.layouts.BaseLayout method),

299
add_aligned_dim() (ezdxf.layouts.BaseLayout

method), 289
add_angular_dim_2l() (ezdxf.layouts.BaseLayout

method), 293
add_angular_dim_3p() (ezdxf.layouts.BaseLayout

method), 293
add_angular_dim_arc() (ezdxf.layouts.BaseLayout

method), 295
add_angular_dim_cra() (ezdxf.layouts.BaseLayout

method), 294

add_arc() (ezdxf.addons.r12writer.R12FastStreamWriter
method), 145

add_arc() (ezdxf.entities.EdgePath method), 340
add_arc() (ezdxf.layouts.BaseLayout method), 279
add_arc_dim_3p() (ezdxf.layouts.BaseLayout

method), 295
add_arc_dim_arc() (ezdxf.layouts.BaseLayout

method), 297
add_arc_dim_cra() (ezdxf.layouts.BaseLayout

method), 296
add_attdef() (ezdxf.layouts.BaseLayout method), 281
add_attrib() (ezdxf.entities.Insert method), 269
add_auto_attribs() (ezdxf.entities.Insert method),

269
add_auto_blockref() (ezdxf.layouts.BaseLayout

method), 281
add_bezier3p() (in module ezdxf.path), 537
add_bezier4p() (in module ezdxf.path), 537
add_bin() (ezdxf.addons.binpacking.FlatPacker

method), 186
add_bin() (ezdxf.addons.binpacking.Packer method),

186
add_blockref() (ezdxf.layouts.BaseLayout method),

280
add_body() (ezdxf.layouts.BaseLayout method), 298
add_cad_spline_control_frame()

(ezdxf.layouts.BaseLayout method), 285
add_circle() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 144
add_circle() (ezdxf.layouts.BaseLayout method), 279
add_class() (ezdxf.sections.classes.ClassesSection

method), 228
add_diameter_dim() (ezdxf.layouts.BaseLayout

method), 292
add_diameter_dim_2p() (ezdxf.layouts.BaseLayout

method), 292
add_dict_var() (ezdxf.entities.Dictionary method),

412
add_dictionary() (ezdxf.entities.xdict.ExtensionDict

method), 434
add_dictionary() (ezdxf.sections.objects.ObjectsSection

method), 232
add_dictionary_var()

(ezdxf.entities.xdict.ExtensionDict method),
434

add_dictionary_var()
(ezdxf.sections.objects.ObjectsSection method),
233

add_dictionary_with_default()
(ezdxf.sections.objects.ObjectsSection method),
232

add_edge_crease() (ezdxf.entities.MeshData
method), 360

add_edge_path() (ezdxf.entities.BoundaryPaths

1030 Index

ezdxf Documentation, Release 1.3.2

method), 337
add_ellipse() (ezdxf.entities.EdgePath method), 340
add_ellipse() (ezdxf.layouts.BaseLayout method),

279
add_ellipse() (in module ezdxf.path), 537
add_entity() (ezdxf.layouts.BaseLayout method), 277
add_entity() (in module ezdxf.revcloud), 571
add_extruded_surface()

(ezdxf.layouts.BaseLayout method), 299
add_face() (ezdxf.entities.MeshData method), 360
add_face() (ezdxf.render.MeshBuilder method), 597
add_foreign_entity() (ezdxf.layouts.BaseLayout

method), 278
add_geodata() (ezdxf.sections.objects.ObjectsSection

method), 233
add_hatch() (ezdxf.layouts.BaseLayout method), 286
add_helix() (ezdxf.layouts.BaseLayout method), 286
add_image() (ezdxf.layouts.BaseLayout method), 287
add_image_def() (ezdxf.document.Drawing method),

219
add_image_def() (ezdxf.sections.objects.ObjectsSection

method), 233
add_import() (ezdxf.addons.dxf2code.Code method),

134
add_item() (ezdxf.addons.binpacking.FlatPacker

method), 186
add_item() (ezdxf.addons.binpacking.Packer method),

186
add_leader() (ezdxf.layouts.BaseLayout method), 298
add_leader_line()

(ezdxf.render.MultiLeaderBuilder method),
611

add_line() (ezdxf.addons.dxf2code.Code method), 134
add_line() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 144
add_line() (ezdxf.entities.EdgePath method), 340
add_line() (ezdxf.entities.Pattern method), 343
add_line() (ezdxf.layouts.BaseLayout method), 279
add_linear_dim() (ezdxf.layouts.BaseLayout

method), 288
add_lines() (ezdxf.addons.dxf2code.Code method),

134
add_lofted_surface() (ezdxf.layouts.BaseLayout

method), 299
add_lwpolyline() (ezdxf.layouts.BaseLayout

method), 282
add_mesh() (ezdxf.layouts.BaseLayout method), 287
add_mesh() (ezdxf.render.MeshBuilder method), 597
add_mirror() (ezdxf.addons.openscad.Script method),

195
add_mline() (ezdxf.layouts.BaseLayout method), 285
add_mpolygon() (ezdxf.layouts.BaseLayout method),

287
add_mtext() (ezdxf.layouts.BaseLayout method), 283

add_mtext_dynamic_auto_height_columns()
(ezdxf.layouts.BaseLayout method), 284

add_mtext_dynamic_manual_height_columns()
(ezdxf.layouts.BaseLayout method), 283

add_mtext_static_columns()
(ezdxf.layouts.BaseLayout method), 283

add_multi_point_linear_dim()
(ezdxf.layouts.BaseLayout method), 288

add_multileader_block()
(ezdxf.layouts.BaseLayout method), 298

add_multileader_mtext()
(ezdxf.layouts.BaseLayout method), 298

add_multmatrix() (ezdxf.addons.openscad.Script
method), 195

add_new_dict() (ezdxf.entities.Dictionary method),
412

add_open_spline() (ezdxf.layouts.BaseLayout
method), 286

add_ordinate_dim() (ezdxf.layouts.BaseLayout
method), 297

add_ordinate_x_dim() (ezdxf.layouts.BaseLayout
method), 298

add_ordinate_y_dim() (ezdxf.layouts.BaseLayout
method), 298

add_placeholder()
(ezdxf.sections.objects.ObjectsSection method),
233

add_point() (ezdxf.addons.r12writer.R12FastStreamWriter
method), 145

add_point() (ezdxf.layouts.BaseLayout method), 279
add_polyface() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 147
add_polyface() (ezdxf.layouts.BaseLayout method),

282
add_polygon() (ezdxf.addons.openscad.Script

method), 195
add_polyhedron() (ezdxf.addons.openscad.Script

method), 195
add_polyline() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 146
add_polyline2d() (ezdxf.layouts.BaseLayout

method), 281
add_polyline3d() (ezdxf.layouts.BaseLayout

method), 282
add_polyline_2d()

(ezdxf.addons.r12writer.R12FastStreamWriter
method), 146

add_polyline_path()
(ezdxf.entities.BoundaryPaths method), 337

add_polymesh() (ezdxf.addons.r12writer.R12FastStreamWriter
method), 147

add_polymesh() (ezdxf.layouts.BaseLayout method),
282

add_radius_dim() (ezdxf.layouts.BaseLayout

Index 1031

ezdxf Documentation, Release 1.3.2

method), 290
add_radius_dim_2p() (ezdxf.layouts.BaseLayout

method), 291
add_radius_dim_cra() (ezdxf.layouts.BaseLayout

method), 291
add_rational_spline() (ezdxf.layouts.BaseLayout

method), 286
add_ray() (ezdxf.layouts.BaseLayout method), 284
add_region() (ezdxf.layouts.BaseLayout method), 298
add_required_classes()

(ezdxf.sections.classes.ClassesSection method),
228

add_resize() (ezdxf.addons.openscad.Script method),
196

add_revolved_surface()
(ezdxf.layouts.BaseLayout method), 299

add_rotate() (ezdxf.addons.openscad.Script method),
196

add_rotate_about_axis()
(ezdxf.addons.openscad.Script method), 196

add_scale() (ezdxf.addons.openscad.Script method),
196

add_shape() (ezdxf.layouts.BaseLayout method), 282
add_shx() (ezdxf.sections.table.TextstyleTable method),

237
add_solid() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 146
add_solid() (ezdxf.layouts.BaseLayout method), 280
add_spline() (ezdxf.entities.EdgePath method), 341
add_spline() (ezdxf.layouts.BaseLayout method), 285
add_spline() (in module ezdxf.path), 537
add_spline_control_frame()

(ezdxf.layouts.BaseLayout method), 285
add_station() (ezdxf.render.trace.LinearTrace

method), 608
add_surface() (ezdxf.layouts.BaseLayout method),

299
add_swept_surface() (ezdxf.layouts.BaseLayout

method), 299
add_text() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 147
add_text() (ezdxf.layouts.BaseLayout method), 280
add_to_layout() (ezdxf.math.ConstructionArc

method), 487
add_to_layout() (ezdxf.math.ConstructionEllipse

method), 490
add_trace() (ezdxf.layouts.BaseLayout method), 280
add_translate() (ezdxf.addons.openscad.Script

method), 196
add_underlay() (ezdxf.layouts.BaseLayout method),

287
add_underlay_def() (ezdxf.document.Drawing

method), 220
add_underlay_def()

(ezdxf.sections.objects.ObjectsSection method),
233

add_vertices() (ezdxf.render.MeshBuilder method),
597

add_viewport() (ezdxf.layouts.Paperspace method),
302

add_wipeout() (ezdxf.layouts.BaseLayout method),
287

add_xline() (ezdxf.layouts.BaseLayout method), 284
add_xrecord() (ezdxf.entities.Dictionary method), 412
add_xrecord() (ezdxf.entities.xdict.ExtensionDict

method), 434
add_xrecord() (ezdxf.sections.objects.ObjectsSection

method), 234
add_xref_def() (ezdxf.document.Drawing method),

220
adjust_for_background (ezdxf.entities.Underlay

attribute), 403
align_angle (ezdxf.entities.ExtrudedSurface.dxf

attribute), 394
align_angle (ezdxf.entities.SweptSurface.dxf attribute),

396
align_direction (ezdxf.entities.LoftedSurface.dxf at-

tribute), 395
align_point (ezdxf.entities.Text.dxf attribute), 397
align_space (ezdxf.entities.MLeaderStyle.dxf at-

tribute), 419
align_start (ezdxf.entities.ExtrudedSurface.dxf

attribute), 394
align_start (ezdxf.entities.SweptSurface.dxf attribute),

397
ALIGNED (ezdxf.enums.TextEntityAlignment attribute),

440
alignment (ezdxf.entities.MTextData attribute), 376
all() (ezdxf.addons.drawing.layout.Margins class

method), 103
all2() (ezdxf.addons.drawing.layout.Margins class

method), 103
all_columns_plain_text() (ezdxf.entities.MText

method), 366
all_columns_raw_content()

(ezdxf.entities.MText method), 367
all_inside() (ezdxf.math.BoundingBox method), 478
all_inside() (ezdxf.math.BoundingBox2d method),

479
all_reachable (ezdxf.render.FaceOrientationDetector

property), 606
all_to_line_edges()

(ezdxf.entities.BoundaryPaths method), 338
all_to_spline_edges()

(ezdxf.entities.BoundaryPaths method), 338
ambient_light_color_1

(ezdxf.entities.Viewport.dxf attribute), 408
ambient_light_color_2

1032 Index

ezdxf Documentation, Release 1.3.2

(ezdxf.entities.Viewport.dxf attribute), 408
ambient_light_color_3

(ezdxf.entities.Viewport.dxf attribute), 408
angle (ezdxf.entities.Dimension.dxf attribute), 323
angle (ezdxf.entities.PatternLine attribute), 343
angle (ezdxf.entities.Point.dxf attribute), 379
ANGLE (ezdxf.enums.EndCaps attribute), 445
ANGLE (ezdxf.enums.JoinStyle attribute), 446
angle (ezdxf.math.ConstructionBox attribute), 491
angle (ezdxf.math.ConstructionRay attribute), 480
angle (ezdxf.math.Vec3 attribute), 473
angle_about() (ezdxf.math.Vec3 method), 475
angle_between() (ezdxf.math.Vec3 method), 476
angle_deg (ezdxf.math.ConstructionRay attribute), 481
angle_deg (ezdxf.math.Vec3 attribute), 473
angle_span (ezdxf.math.ConstructionArc attribute), 485
angle_unit_name() (in module ezdxf.units), 51
angles() (ezdxf.entities.Arc method), 318
angles() (ezdxf.math.ConstructionArc method), 485
Angstroms (ezdxf.enums.InsertUnits attribute), 443
AngularUnits (class in ezdxf.enums), 444
annotation_handle (ezdxf.entities.Leader.dxf

attribute), 348
annotation_type (ezdxf.entities.Leader.dxf attribute),

348
any_inside() (ezdxf.math.BoundingBox method), 478
any_inside() (ezdxf.math.BoundingBox2d method),

479
app_name (ezdxf.entities.DXFClass.dxf attribute), 229
AppData (class in ezdxf.entities.appdata), 755
appdata (ezdxf.lldxf.extendedtags.ExtendedTags at-

tribute), 750
append() (ezdxf.entities.LWPolyline method), 353
append() (ezdxf.entities.mline.ezdxf.entities.mline.MLineStyleElements.MLineStyleElements

method), 358
append() (ezdxf.entities.MText method), 366
append() (ezdxf.lldxf.packedtags.VertexArray method),

753
append() (ezdxf.math.Shape2d method), 494
append() (ezdxf.render.Bezier method), 587
append() (ezdxf.render.trace.TraceBuilder method), 607
append() (ezdxf.sections.header.CustomVars method),

228
append() (ezdxf.tools.text.MTextEditor method), 573
append_bin() (ezdxf.addons.binpacking.AbstractPacker

method), 186
append_col() (ezdxf.math.linalg.Matrix method), 507
append_face() (ezdxf.acis.entities.Shell method), 519
append_face() (ezdxf.entities.Polyface method), 386
append_faces() (ezdxf.entities.Polyface method), 386
append_formatted_vertices()

(ezdxf.entities.Polyline method), 382
append_item() (ezdxf.addons.binpacking.AbstractPacker

method), 186

append_loop() (ezdxf.acis.entities.Face method), 520
append_lump() (ezdxf.acis.entities.Body method), 518
append_path() (ezdxf.path.Path method), 542
append_points() (ezdxf.entities.LWPolyline method),

353
append_reactor_handle()

(ezdxf.entities.DXFEntity method), 310
append_row() (ezdxf.math.linalg.Matrix method), 507
append_shell() (ezdxf.acis.entities.Lump method),

518
append_vertex() (ezdxf.entities.Polyline method),

382
append_vertices() (ezdxf.entities.Polyline method),

382
AppID (class in ezdxf.entities), 261
appids (ezdxf.document.Drawing attribute), 216
appids (ezdxf.sections.tables.TablesSection attribute), 230
AppIDTable (class in ezdxf.sections.table), 238
apply() (ezdxf.addons.geo.GeoProxy method), 126
apply_construction_tool() (ezdxf.entities.Arc

method), 318
apply_construction_tool()

(ezdxf.entities.Ellipse method), 330
apply_construction_tool() (ezdxf.entities.Spline

method), 392
apply_factor (ezdxf.addons.acadctb.ColorDependentPlotStyles

attribute), 168
apply_factor (ezdxf.addons.acadctb.NamedPlotStyles

attribute), 169
APPROXIMATE (ezdxf.addons.drawing.config.LinePolicy

attribute), 116
approximate() (ezdxf.math.Bezier method), 498
approximate() (ezdxf.math.Bezier3P method), 500
approximate() (ezdxf.math.Bezier4P method), 499
approximate() (ezdxf.math.BSpline method), 496
approximate() (ezdxf.math.EulerSpiral method), 502
approximate() (ezdxf.path.Path method), 542
approximate() (ezdxf.render.R12Spline method), 586
approximated_length() (ezdxf.math.Bezier3P

method), 501
approximated_length() (ezdxf.math.Bezier4P

method), 500
ApproxParamT (class in ezdxf.math), 501
Arc (class in ezdxf.entities), 318
ARC (ezdxf.entities.EdgeType attribute), 341
arc_angle_span_deg() (in module ezdxf.math), 448
arc_angle_span_rad() (in module ezdxf.math), 448
arc_approximation() (ezdxf.math.BSpline static

method), 497
arc_chord_length() (in module ezdxf.math), 448
arc_edges_to_ellipse_edges()

(ezdxf.entities.BoundaryPaths method), 337
arc_length_parameterization

(ezdxf.entities.LoftedSurface.dxf attribute),

Index 1033

ezdxf Documentation, Release 1.3.2

395
arc_segment_count() (in module ezdxf.math), 448
arc_to_bulge() (in module ezdxf.math), 449
ArcDimension (class in ezdxf.entities), 329
ArcEdge (class in ezdxf.entities), 341
Architectural (ezdxf.enums.LengthUnits attribute),

444
architectural_tick (ezdxf.render.arrows._Arrows

attribute), 615
area() (in module ezdxf.math), 448
arrow_head_handle (ezdxf.entities.MLeaderStyle.dxf

attribute), 419
arrow_head_handle (ezdxf.entities.MultiLeader.dxf

attribute), 370
arrow_head_size (ezdxf.entities.MLeaderContext at-

tribute), 374
arrow_head_size (ezdxf.entities.MLeaderStyle.dxf at-

tribute), 419
arrow_head_size (ezdxf.entities.MultiLeader.dxf at-

tribute), 370
arrow_heads (ezdxf.entities.MultiLeader attribute), 373
ArrowHeadData (class in ezdxf.entities), 375
ARROWS (in module ezdxf.render.arrows), 615
ascending() (in module ezdxf.reorder), 544
asdict() (ezdxf.gfxattribs.GfxAttribs method), 566
aspect_ratio (ezdxf.entities.VPort.dxf attribute), 258
assign_layers() (in module ezdxf.addons.geo), 127
associate() (ezdxf.entities.Hatch method), 336
associative (ezdxf.entities.Hatch.dxf attribute), 332
AstronomicalUnits (ezdxf.enums.InsertUnits at-

tribute), 443
AT_LEAST (ezdxf.enums.MTextLineSpacing attribute), 442
attach() (in module ezdxf.xref), 92
attachment_direction (ezdxf.entities.LeaderData

attribute), 375
attachment_point (ezdxf.entities.Dimension.dxf at-

tribute), 323
attachment_point (ezdxf.entities.MText.dxf at-

tribute), 364
attachment_type (ezdxf.entities.MLeaderContext at-

tribute), 374
AttDef (class in ezdxf.entities), 273
attdefs() (ezdxf.layouts.BlockLayout method), 303
Attrib (class in ezdxf.entities), 271
AttribData (class in ezdxf.entities), 375
attribs (ezdxf.entities.Insert attribute), 267
attributes (ezdxf.acis.entities.AcisEntity attribute), 517
audit() (ezdxf.document.Drawing method), 221
audit() (ezdxf.entities.dxfgroups.DXFGroup method),

305
audit() (ezdxf.entities.dxfgroups.GroupCollection

method), 306
AUTO (ezdxf.addons.hpgl2.api.MergeControl attribute), 156
AUTOMATIC (in module ezdxf.addons.acadctb), 172

average_cluster_radius() (in module
ezdxf.math.clustering), 504

average_intra_cluster_distance() (in mod-
ule ezdxf.math.clustering), 504

avg_leaf_size() (ezdxf.math.rtree.RTree method),
510

avg_nn_distance() (ezdxf.math.rtree.RTree
method), 510

avg_spherical_envelope_radius()
(ezdxf.math.rtree.RTree method), 510

axis_base_point (ezdxf.entities.Helix.dxf attribute),
344

axis_point (ezdxf.entities.RevolvedSurface.dxf at-
tribute), 396

axis_rotate() (ezdxf.math.Matrix44 class method),
469

axis_rotate() (in module ezdxf.transform), 546
axis_vector (ezdxf.entities.Helix.dxf attribute), 345
axis_vector (ezdxf.entities.RevolvedSurface.dxf

attribute), 396

B
b (ezdxf.colors.RGB attribute), 438
b (ezdxf.colors.RGBA attribute), 438
back_clip_plane_z_value

(ezdxf.entities.Viewport.dxf attribute), 405
back_clipping (ezdxf.entities.View.dxf attribute), 260
back_clipping (ezdxf.entities.VPort.dxf attribute), 258
back_clipping_plane_distance

(ezdxf.entities.SpatialFilter.dxf attribute), 427
background_color (ezdxf.addons.drawing.properties.ezdxf.addons.drawing.properties.LayoutProperties.LayoutProperties

property), 118
background_handle (ezdxf.entities.View.dxf at-

tribute), 261
background_handle (ezdxf.entities.Viewport.dxf at-

tribute), 408
background_policy

(ezdxf.addons.drawing.config.Configuration
attribute), 113

BackgroundPolicy (class in
ezdxf.addons.drawing.config), 114

backward_faces (ezdxf.render.FaceOrientationDetector
property), 606

balance (ezdxf.render.mesh.EdgeStat attribute), 603
banded_matrix() (in module ezdxf.math.linalg), 506
BandedMatrixLU (class in ezdxf.math.linalg), 509
bank (ezdxf.entities.ExtrudedSurface.dxf attribute), 394
bank (ezdxf.entities.SweptSurface.dxf attribute), 397
base_point (ezdxf.entities.Block.dxf attribute), 265
base_point (ezdxf.entities.MLeaderContext attribute),

374
base_point (ezdxf.entities.PatternLine attribute), 343
base_point (ezdxf.layouts.BlockLayout property), 303

1034 Index

ezdxf Documentation, Release 1.3.2

base_point_set (ezdxf.entities.ExtrudedSurface.dxf
attribute), 394

base_point_set (ezdxf.entities.SweptSurface.dxf at-
tribute), 397

base_ucs_handle (ezdxf.entities.DXFLayout.dxf at-
tribute), 414

base_ucs_handle (ezdxf.entities.View.dxf attribute),
261

BaseLayout (class in ezdxf.layouts), 276
baseline (ezdxf.fonts.fonts.FontMeasurements at-

tribute), 562
baseline_vertices() (ezdxf.tools.text.TextLine

method), 576
basic_transformation() (in module ezdxf.math),

457
bbox (ezdxf.addons.binpacking.Item property), 188
bbox (ezdxf.render.MeshDiagnose property), 604
bbox() (ezdxf.addons.drawing.recorder.Player method),

100
bbox() (ezdxf.addons.hpgl2.api.Player method), 159
bbox() (ezdxf.disassemble.Primitive method), 529
bbox() (ezdxf.path.Path method), 542
bbox() (ezdxf.render.MeshBuilder method), 598
bbox() (in module ezdxf.path), 538
bbox_chained() (in module ezdxf.select), 75
bbox_crosses_fence() (in module ezdxf.select), 75
bbox_inside() (in module ezdxf.select), 74
bbox_outside() (in module ezdxf.select), 74
bbox_overlap() (in module ezdxf.select), 74
best_fit_normal() (in module ezdxf.math), 457
Bezier (class in ezdxf.math), 498
Bezier (class in ezdxf.render), 587
Bezier3P (class in ezdxf.math), 500
Bezier4P (class in ezdxf.math), 499
bezier_decomposition() (ezdxf.math.BSpline

method), 497
bezier_to_bspline() (in module ezdxf.math), 457
bg_color (ezdxf.entities.MTextData attribute), 376
bg_fill (ezdxf.entities.MText.dxf attribute), 365
bg_fill_color (ezdxf.entities.MText.dxf attribute),

365
bg_fill_color_name (ezdxf.entities.MText.dxf

attribute), 365
bg_fill_true_color (ezdxf.entities.MText.dxf

attribute), 365
bg_scale_factor (ezdxf.entities.MTextData attribute),

376
bg_transparency (ezdxf.entities.MTextData attribute),

376
bgcolor (ezdxf.entities.Hatch property), 333
bgcolor (ezdxf.entities.MPolygon property), 361
bigfont (ezdxf.entities.Textstyle.dxf attribute), 247
BIGGER_FIRST (ezdxf.addons.binpacking.PickStrategy

attribute), 189

Bin (class in ezdxf.addons.binpacking), 187
BinaryRecord (class in ezdxf.urecord), 556
bins (ezdxf.addons.binpacking.AbstractPacker attribute),

185
bisectrix() (ezdxf.math.ConstructionRay method),

481
BLACK (ezdxf.addons.drawing.config.BackgroundPolicy

attribute), 114
BLACK (ezdxf.addons.drawing.config.ColorPolicy at-

tribute), 115
BLACK (ezdxf.enums.ACI attribute), 445
black() (in module ezdxf.addons.dxf2code), 132
black_code_str() (ezdxf.addons.dxf2code.Code

method), 133
blend_crease (ezdxf.entities.Mesh.dxf attribute), 359
Block (class in ezdxf.entities), 265
block (ezdxf.entities.MLeaderContext attribute), 374
block (ezdxf.layouts.BlockLayout property), 303
block() (ezdxf.entities.Insert method), 268
block_attribs (ezdxf.entities.MultiLeader attribute),

373
block_cell() (ezdxf.addons.tablepainter.TablePainter

method), 201
block_color (ezdxf.entities.Leader.dxf attribute), 348
block_color (ezdxf.entities.MLeaderStyle.dxf at-

tribute), 419
block_color (ezdxf.entities.MultiLeader.dxf attribute),

370
block_connection_type

(ezdxf.entities.MLeaderStyle.dxf attribute),
419

block_connection_type
(ezdxf.entities.MultiLeader.dxf attribute), 370

block_layout (ezdxf.render.MultiLeaderBlockBuilder
property), 613

block_record_handle (ezdxf.entities.BlockData at-
tribute), 377

block_record_handle
(ezdxf.entities.DXFLayout.dxf attribute), 414

block_record_handle (ezdxf.entities.GeoData.dxf
attribute), 415

block_record_handle
(ezdxf.entities.MLeaderStyle.dxf attribute),
420

block_record_handle
(ezdxf.entities.MultiLeader.dxf attribute), 370

block_records (ezdxf.blkrefs.BlockDefinitionIndex
property), 435

block_records (ezdxf.sections.tables.TablesSection at-
tribute), 230

block_rotation (ezdxf.entities.MLeaderStyle.dxf at-
tribute), 420

block_rotation (ezdxf.entities.MultiLeader.dxf
attribute), 370

Index 1035

ezdxf Documentation, Release 1.3.2

block_scale_vector (ezdxf.entities.MultiLeader.dxf
attribute), 370

block_scale_x (ezdxf.entities.MLeaderStyle.dxf
attribute), 420

block_scale_y (ezdxf.entities.MLeaderStyle.dxf
attribute), 420

block_scale_z (ezdxf.entities.MLeaderStyle.dxf
attribute), 420

block_to_code() (in module ezdxf.addons.dxf2code),
132

BlockAlignment (class in ezdxf.render), 614
BlockCell (class in ezdxf.addons.tablepainter), 203
BlockData (class in ezdxf.entities), 377
BlockDefinitionIndex (class in ezdxf.blkrefs), 435
BlockLayout (class in ezdxf.layouts), 303
BlockRecord (class in ezdxf.entities), 263
BlockRecordTable (class in ezdxf.sections.table), 239
BlockReferenceCounter (class in ezdxf.blkrefs),

435
blocks (ezdxf.addons.dxf2code.Code attribute), 133
blocks (ezdxf.document.Drawing attribute), 215
BlocksSection (class in ezdxf.sections.blocks), 230
BLUE (ezdxf.enums.ACI attribute), 445
Body (class in ezdxf.acis.entities), 518
Body (class in ezdxf.entities), 319
body (ezdxf.acis.entities.Lump attribute), 518
body_from_mesh() (in module ezdxf.acis.api), 515
boolean_operation() (in module

ezdxf.addons.openscad), 195
border_lines() (ezdxf.math.ConstructionBox

method), 492
BorderStyle (class in ezdxf.addons.tablepainter), 205
bottom (ezdxf.addons.drawing.layout.Margins attribute),

103
BOTTOM (ezdxf.enums.MTextLineAlignment attribute), 442
bottom (ezdxf.fonts.fonts.FontMeasurements property),

562
bottom (ezdxf.render.ConnectionSide attribute), 614
bottom_attachment (ezdxf.entities.MLeaderContext

attribute), 374
BOTTOM_CENTER (ezdxf.addons.drawing.layout.PageAlignment

attribute), 103
BOTTOM_CENTER (ezdxf.enums.MTextEntityAlignment

attribute), 441
BOTTOM_CENTER (ezdxf.enums.TextEntityAlignment at-

tribute), 441
BOTTOM_LEFT (ezdxf.addons.drawing.layout.PageAlignment

attribute), 103
BOTTOM_LEFT (ezdxf.enums.MTextEntityAlignment at-

tribute), 441
BOTTOM_LEFT (ezdxf.enums.TextEntityAlignment at-

tribute), 440
bottom_margin (ezdxf.entities.PlotSettings.dxf at-

tribute), 423

bottom_of_bottom_line
(ezdxf.render.HorizontalConnection attribute),
614

bottom_of_bottom_line_underline
(ezdxf.render.HorizontalConnection attribute),
614

bottom_of_top_line
(ezdxf.render.HorizontalConnection attribute),
614

bottom_of_top_line_underline
(ezdxf.render.HorizontalConnection attribute),
614

bottom_of_top_line_underline_all
(ezdxf.render.HorizontalConnection attribute),
614

BOTTOM_RIGHT (ezdxf.addons.drawing.layout.PageAlignment
attribute), 103

BOTTOM_RIGHT (ezdxf.enums.MTextEntityAlignment at-
tribute), 441

BOTTOM_RIGHT (ezdxf.enums.TextEntityAlignment
attribute), 441

boundary_path (ezdxf.entities.Image attribute), 347
boundary_path (ezdxf.entities.Underlay attribute), 403
boundary_path_wcs() (ezdxf.entities.Image

method), 347
boundary_vertices (ezdxf.entities.SpatialFilter prop-

erty), 427
BoundaryPaths (class in ezdxf.entities), 337
BoundaryPathType (class in ezdxf.entities), 338
bounding_box (ezdxf.math.ConstructionArc attribute),

485
bounding_box (ezdxf.math.ConstructionBox attribute),

491
bounding_box (ezdxf.math.ConstructionCircle at-

tribute), 483
bounding_box (ezdxf.math.ConstructionLine attribute),

482
bounding_box (ezdxf.math.Shape2d attribute), 493
BoundingBox (class in ezdxf.math), 477
BoundingBox2d (class in ezdxf.math), 479
bounds (ezdxf.acis.entities.Curve attribute), 523
Box (class in ezdxf.addons.binpacking), 187
box (ezdxf.render.arrows._Arrows attribute), 617
box() (in module ezdxf.render.forms), 590
box_fill_scale (ezdxf.entities.MText.dxf attribute),

365
box_filled (ezdxf.render.arrows._Arrows attribute),

617
break_gap_size (ezdxf.entities.MLeaderStyle.dxf at-

tribute), 420
breaks (ezdxf.entities.LeaderData attribute), 375
breaks (ezdxf.entities.LeaderLine attribute), 375
brightness (ezdxf.entities.Image.dxf attribute), 346
BSpline (class in ezdxf.math), 495

1036 Index

ezdxf Documentation, Release 1.3.2

bspline() (ezdxf.math.EulerSpiral method), 502
build() (ezdxf.render.MultiLeaderBuilder method), 611
build_system_font_cache() (in module

ezdxf.fonts.fonts), 559
bulge, 1022
bulge (ezdxf.entities.Vertex.dxf attribute), 383
bulge_3_points() (in module ezdxf.math), 450
bulge_center() (in module ezdxf.math), 450
bulge_from_arc_angle() (in module ezdxf.math),

451
bulge_from_radius_and_chord() (in module

ezdxf.math), 451
bulge_radius() (in module ezdxf.math), 450
bulge_to_arc() (in module ezdxf.math), 450
bullet_list() (ezdxf.tools.text.MTextEditor method),

574
by_handle() (ezdxf.blkrefs.BlockDefinitionIndex

method), 435
by_handle() (ezdxf.blkrefs.BlockReferenceCounter

method), 435
by_name() (ezdxf.blkrefs.BlockDefinitionIndex method),

435
by_name() (ezdxf.blkrefs.BlockReferenceCounter

method), 435
BY_STYLE (ezdxf.enums.MTextFlowDirection attribute),

442
by_style (ezdxf.render.HorizontalConnection attribute),

614
by_style (ezdxf.render.VerticalConnection attribute),

614
BYBLOCK (ezdxf.enums.ACI attribute), 445
BYLAYER (ezdxf.enums.ACI attribute), 445
BYOBJECT (ezdxf.enums.ACI attribute), 445
bytes_to_hexstr() (in module ezdxf.tools), 738

C
Cache (class in ezdxf.bbox), 526
CAD, 1023
calendardate() (in module ezdxf.tools), 737
camera_plottable (ezdxf.entities.View.dxf attribute),

261
can_explode (ezdxf.layouts.BlockLayout property), 303
CANVAS (ezdxf.enums.MTextBackgroundColor attribute),

443
cap_height (ezdxf.fonts.fonts.FontMeasurements

attribute), 562
cap_height (ezdxf.tools.text_size.ezdxf.tools.text_size.TextSize

attribute), 579
cap_top (ezdxf.fonts.fonts.FontMeasurements property),

562
caret_decode() (in module ezdxf.tools.text), 577
ccw (ezdxf.entities.ArcEdge attribute), 342
ccw (ezdxf.entities.EllipseEdge attribute), 342
Cell (class in ezdxf.addons.tablepainter), 202

CellStyle (class in ezdxf.addons.tablepainter), 203
center (ezdxf.entities.Arc.dxf attribute), 318
center (ezdxf.entities.ArcEdge attribute), 342
center (ezdxf.entities.Circle.dxf attribute), 320
center (ezdxf.entities.Ellipse.dxf attribute), 330
center (ezdxf.entities.Viewport.dxf attribute), 405
center (ezdxf.entities.VPort.dxf attribute), 258
CENTER (ezdxf.enums.MTextParagraphAlignment at-

tribute), 441
CENTER (ezdxf.enums.TextEntityAlignment attribute), 440
center (ezdxf.math.BoundingBox property), 478
center (ezdxf.math.BoundingBox2d property), 479
center (ezdxf.math.ConstructionArc attribute), 485
center (ezdxf.math.ConstructionBox attribute), 491
center (ezdxf.math.ConstructionCircle attribute), 483
center (ezdxf.math.ConstructionEllipse attribute), 489
center (ezdxf.render.TextAlignment attribute), 614
center (ezdxf.render.VerticalConnection attribute), 614
CENTER (ezdxf.tools.text.ezdxf.lldxf.const.MTextParagraphAlignment

attribute), 576
center() (in module ezdxf.zoom), 583
center_extents (ezdxf.render.BlockAlignment

attribute), 614
center_overline (ezdxf.render.VerticalConnection

attribute), 614
center_point (ezdxf.entities.View.dxf attribute), 260
centered (ezdxf.entities.Gradient attribute), 344
Centimeters (ezdxf.enums.InsertUnits attribute), 443
centroid() (ezdxf.render.MeshDiagnose method), 605
chain() (ezdxf.math.Matrix44 static method), 470
chain_layouts_and_blocks()

(ezdxf.document.Drawing method), 220
chamfer() (in module ezdxf.path), 538
chamfer2() (in module ezdxf.path), 538
char_height (ezdxf.entities.MLeaderContext attribute),

374
char_height (ezdxf.entities.MLeaderStyle.dxf at-

tribute), 420
char_height (ezdxf.entities.MText.dxf attribute), 364
char_tracking_factor()

(ezdxf.tools.text.MTextEditor method), 573
Circle (class in ezdxf.entities), 320
Circle (class in ezdxf.select), 75
circle() (in module ezdxf.render.forms), 590
circle_approximation_count

(ezdxf.addons.drawing.config.Configuration
attribute), 113

circle_center() (ezdxf.math.EulerSpiral method),
502

circle_zoom (ezdxf.entities.Viewport.dxf attribute), 405
circle_zoom (ezdxf.entities.VPort.dxf attribute), 259
circumcircle_radius (ezdxf.math.ConstructionBox

attribute), 491

Index 1037

ezdxf Documentation, Release 1.3.2

class_id (ezdxf.entities.ExtrudedSurface.dxf attribute),
394

class_id (ezdxf.entities.RevolvedSurface.dxf attribute),
396

class_version (ezdxf.entities.ImageDef.dxf attribute),
418

class_version (ezdxf.entities.ImageDefReactor.dxf
attribute), 419

classes (ezdxf.document.Drawing attribute), 215
classes (ezdxf.sections.classes.ClassesSection attribute),

228
ClassesSection (class in ezdxf.sections.classes), 228
classify_faces() (ezdxf.render.FaceOrientationDetector

method), 606
clean() (in module ezdxf.r12strict), 226
clear() (ezdxf.entities.BoundaryPaths method), 338
clear() (ezdxf.entities.Dictionary method), 412
clear() (ezdxf.entities.dxfgroups.DXFGroup method),

305
clear() (ezdxf.entities.dxfgroups.GroupCollection

method), 306
clear() (ezdxf.entities.EdgePath method), 339
clear() (ezdxf.entities.LWPolyline method), 353
clear() (ezdxf.entities.MLine method), 356
clear() (ezdxf.entities.Pattern method), 343
clear() (ezdxf.entities.PolylinePath method), 339
clear() (ezdxf.entities.XRecord method), 430
clear() (ezdxf.entitydb.EntitySpace method), 745
clear() (ezdxf.lldxf.packedtags.TagList method), 752
clear() (ezdxf.lldxf.packedtags.VertexArray method),

753
clear() (ezdxf.sections.header.CustomVars method),

227
clear() (ezdxf.tools.text.MTextEditor method), 573
clip_line() (ezdxf.math.clipping.ClippingRect2d

method), 503
clip_line() (ezdxf.math.clipping.ConcaveClippingPolygon2d

method), 503
clip_line() (ezdxf.math.clipping.ConvexClippingPolygon2d

method), 503
clip_line() (ezdxf.math.clipping.InvertedClippingPolygon2d

method), 504
clip_mode (ezdxf.entities.Image.dxf attribute), 346
clip_polygon() (ezdxf.math.clipping.ClippingRect2d

method), 503
clip_polygon() (ezdxf.math.clipping.ConcaveClippingPolygon2d

method), 503
clip_polygon() (ezdxf.math.clipping.ConvexClippingPolygon2d

method), 503
clip_polygon() (ezdxf.math.clipping.InvertedClippingPolygon2d

method), 504
clip_polyline() (ezdxf.math.clipping.ClippingRect2d

method), 503
clip_polyline() (ezdxf.math.clipping.ConcaveClippingPolygon2d

method), 503
clip_polyline() (ezdxf.math.clipping.ConvexClippingPolygon2d

method), 503
clip_polyline() (ezdxf.math.clipping.InvertedClippingPolygon2d

method), 504
clipping (ezdxf.entities.Image.dxf attribute), 346
clipping (ezdxf.entities.Underlay attribute), 403
clipping_boundary_handle

(ezdxf.entities.Viewport.dxf attribute), 406
clipping_boundary_type (ezdxf.entities.Image.dxf

attribute), 346
clipping_rect() (ezdxf.entities.Viewport method),

408
clipping_rect_corners() (ezdxf.entities.Viewport

method), 408
ClippingPath (class in ezdxf.xclip), 582
ClippingRect2d (class in ezdxf.math.clipping), 503
clockwise() (ezdxf.path.Path method), 543
clone() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 750
clone() (ezdxf.lldxf.packedtags.TagList method), 752
clone() (ezdxf.lldxf.packedtags.VertexArray method),

753
clone() (ezdxf.lldxf.types.DXFTag method), 747
clone() (ezdxf.path.Path method), 543
cloning (ezdxf.entities.Dictionary.dxf attribute), 411
cloning (ezdxf.entities.XRecord.dxf attribute), 430
close() (ezdxf.addons.iterdxf.IterDXF method), 136
close() (ezdxf.addons.iterdxf.IterDXFWriter method),

137
close() (ezdxf.addons.r12writer.R12FastStreamWriter

method), 144
close() (ezdxf.entities.LWPolyline method), 352
close() (ezdxf.entities.MLine method), 356
close() (ezdxf.entities.Polyline method), 381
close() (ezdxf.path.Path method), 543
close() (ezdxf.render.trace.TraceBuilder method), 607
close_sub_path() (ezdxf.path.Path method), 543
close_to_axis (ezdxf.entities.RevolvedSurface.dxf at-

tribute), 396
closed (ezdxf.entities.LWPolyline property), 352
closed (ezdxf.entities.Spline attribute), 391
closed (ezdxf.render.arrows._Arrows attribute), 616
closed_blank (ezdxf.render.arrows._Arrows attribute),

617
closed_filled (ezdxf.render.arrows._Arrows at-

tribute), 615
CLOSED_SHELL (ezdxf.addons.meshex.IfcEntityType at-

tribute), 193
closed_surfaces (ezdxf.entities.LoftedSurface.dxf at-

tribute), 395
closed_uniform_bspline() (in module

ezdxf.math), 457
closest_point() (in module ezdxf.math), 446

1038 Index

ezdxf Documentation, Release 1.3.2

cm (ezdxf.addons.drawing.layout.Units attribute), 105
Code (class in ezdxf.addons.dxf2code), 133
code (ezdxf.addons.dxf2code.Code attribute), 133
code (ezdxf.lldxf.types.DXFTag attribute), 746
code_str() (ezdxf.addons.dxf2code.Code method), 133
Coedge (class in ezdxf.acis.entities), 521
coedge (ezdxf.acis.entities.Edge attribute), 521
coedge (ezdxf.acis.entities.Loop attribute), 520
coedges() (ezdxf.acis.entities.Loop method), 520
col() (ezdxf.math.linalg.Matrix method), 507
collect_consecutive_tags()

(ezdxf.lldxf.tags.Tags method), 749
COLLINEAR (ezdxf.render.hatching.IntersectionType at-

tribute), 622
COLOR (ezdxf.addons.drawing.config.ColorPolicy at-

tribute), 114
color (ezdxf.addons.drawing.properties.Properties

attribute), 117
color (ezdxf.entities.BlockData attribute), 377
color (ezdxf.entities.DXFGraphic.dxf attribute), 313
color (ezdxf.entities.ezdxf.entities.mline.MLineStyleElement

attribute), 358
color (ezdxf.entities.Layer attribute), 241
color (ezdxf.entities.Layer.dxf attribute), 240
color (ezdxf.entities.LeaderLine attribute), 375
color (ezdxf.entities.MTextData attribute), 376
color (ezdxf.entities.Sun.dxf attribute), 428
COLOR (ezdxf.enums.MTextBackgroundColor attribute),

442
color (ezdxf.gfxattribs.GfxAttribs property), 566
color() (ezdxf.tools.text.MTextEditor method), 574
color1 (ezdxf.entities.Gradient attribute), 344
color2 (ezdxf.entities.Gradient attribute), 344
color_name (ezdxf.entities.DXFGraphic.dxf attribute),

314
COLOR_NEGATIVE (ezdxf.addons.drawing.config.ColorPolicy

attribute), 114
color_policy (ezdxf.addons.drawing.config.Configuration

attribute), 113
COLOR_SWAP_BW (ezdxf.addons.drawing.config.ColorPolicy

attribute), 114
ColorDependentPlotStyles (class in

ezdxf.addons.acadctb), 168
ColorMode (class in ezdxf.addons.drawing.dxf), 108
ColorMode (class in ezdxf.addons.hpgl2.api), 156
ColorPolicy (class in ezdxf.addons.drawing.config),

114
cols() (ezdxf.math.linalg.Matrix method), 507
column_count (ezdxf.entities.Insert.dxf attribute), 267
column_count (ezdxf.tools.text_size.ezdxf.tools.text_size.MTextSize

attribute), 580
column_flow_reversed (ezdxf.entities.MTextData

attribute), 377

column_gutter_width (ezdxf.entities.MTextData at-
tribute), 377

column_heights (ezdxf.tools.text_size.ezdxf.tools.text_size.MTextSize
attribute), 580

column_sizes (ezdxf.entities.MTextData attribute), 377
column_spacing (ezdxf.entities.Insert.dxf attribute),

267
column_type (ezdxf.entities.MTextData attribute), 377
column_width (ezdxf.entities.MTextData attribute), 377
column_width (ezdxf.tools.text_size.ezdxf.tools.text_size.MTextSize

attribute), 579
columns() (ezdxf.math.Matrix44 method), 470
commit() (ezdxf.entities.DimStyleOverride method), 325
commit() (ezdxf.entities.LayerOverrides method), 243
commit() (ezdxf.entities.xdata.XDataUserDict method),

554
commit() (ezdxf.entities.xdata.XDataUserList method),

552
commit() (ezdxf.urecord.BinaryRecord method), 556
commit() (ezdxf.urecord.UserRecord method), 555
compact_banded_matrix() (in module

ezdxf.math.linalg), 506
compatible() (ezdxf.addons.drawing.hpgl2.PlotterBackend

method), 107
ConcaveClippingPolygon2d (class in

ezdxf.math.clipping), 503
cone() (in module ezdxf.render.forms), 592
cone_2p() (in module ezdxf.render.forms), 593
Configuration (class in ezdxf.addons.drawing.config),

110
ConflictPolicy (class in ezdxf.xref), 95
ConnectionSide (class in ezdxf.render), 613
const_width (ezdxf.entities.LWPolyline.dxf attribute),

352
constrain (ezdxf.entities.Helix.dxf attribute), 345
construction_tool() (ezdxf.entities.Arc method),

318
construction_tool() (ezdxf.entities.Ellipse

method), 330
construction_tool() (ezdxf.entities.Spline method),

392
ConstructionArc (class in ezdxf.math), 485
ConstructionBox (class in ezdxf.math), 491
ConstructionCircle (class in ezdxf.math), 483
ConstructionEllipse (class in ezdxf.math), 488
ConstructionLine (class in ezdxf.math), 481
ConstructionPolyline (class in ezdxf.math), 492
ConstructionRay (class in ezdxf.math), 480
containment (ezdxf.acis.entities.Face attribute), 520
contains() (ezdxf.math.BoundingBox method), 478
contains() (ezdxf.math.BoundingBox2d method), 480
contains() (ezdxf.math.rtree.RTree method), 510
content_rotation (ezdxf.addons.drawing.layout.Settings

attribute), 103

Index 1039

ezdxf Documentation, Release 1.3.2

content_type (ezdxf.entities.MLeaderStyle.dxf at-
tribute), 420

content_type (ezdxf.entities.MultiLeader.dxf at-
tribute), 370

context (ezdxf.entities.MultiLeader attribute), 373
context (ezdxf.render.MultiLeaderBuilder property), 610
contrast (ezdxf.entities.Image.dxf attribute), 346
contrast (ezdxf.entities.Underlay.dxf attribute), 403
control_point_count() (ezdxf.entities.Spline

method), 392
control_point_tolerance

(ezdxf.entities.Spline.dxf attribute), 391
control_points (ezdxf.entities.Spline attribute), 391
control_points (ezdxf.entities.SplineEdge attribute),

343
control_points (ezdxf.math.Bezier attribute), 498
control_points (ezdxf.math.Bezier3P attribute), 500
control_points (ezdxf.math.Bezier4P attribute), 499
control_points (ezdxf.math.BSpline property), 495
control_vertices() (ezdxf.path.Path method), 543
conversion_factor() (in module ezdxf.units), 51
convert() (in module ezdxf.addons.odafc), 139
convert() (in module ezdxf.addons.r12export), 142
convex_hull() (ezdxf.math.Shape2d method), 494
convex_hull_2d() (in module ezdxf.math), 451
ConvexClippingPolygon2d (class in

ezdxf.math.clipping), 503
convexity (ezdxf.acis.entities.Edge attribute), 522
coordinate_projection_radius

(ezdxf.entities.GeoData.dxf attribute), 416
coordinate_system_definition

(ezdxf.entities.GeoData attribute), 416
coordinate_type (ezdxf.entities.GeoData.dxf at-

tribute), 415
copies() (in module ezdxf.transform), 545
copy() (ezdxf.addons.binpacking.Bin method), 187
copy() (ezdxf.addons.binpacking.Item method), 188
copy() (ezdxf.addons.drawing.recorder.Player method),

100
copy() (ezdxf.addons.geo.GeoProxy method), 125
copy() (ezdxf.addons.hpgl2.api.Player method), 158
copy() (ezdxf.math.Matrix44 method), 468
copy() (ezdxf.math.Plane method), 477
copy() (ezdxf.math.UCS method), 465
copy() (ezdxf.math.Vec3 method), 473
copy() (ezdxf.render.MeshBuilder method), 598
COPY_NOT_SUPPORTED (ezdxf.transform.Error at-

tribute), 546
copy_to_header() (ezdxf.entities.DimStyle method),

255
copy_to_layout() (ezdxf.entities.DXFGraphic

method), 311
corner_vertices() (ezdxf.tools.text.TextLine

method), 576

corners (ezdxf.math.ConstructionBox attribute), 491
count (ezdxf.entities.LWPolyline.dxf attribute), 352
count (ezdxf.entities.MLine.dxf attribute), 355
count (ezdxf.math.BSpline property), 495
count (ezdxf.render.FaceOrientationDetector property),

606
count (ezdxf.render.mesh.EdgeStat attribute), 603
count() (ezdxf.entities.Dictionary method), 411
count_boundary_points (ezdxf.entities.Image.dxf

attribute), 346
counter_clockwise() (ezdxf.path.Path method),

543
cpp_class_name (ezdxf.entities.DXFClass.dxf at-

tribute), 228
creases (ezdxf.entities.Mesh attribute), 359
crop_at_margins (ezdxf.addons.drawing.layout.Settings

attribute), 104
crop_rect() (ezdxf.addons.drawing.recorder.Player

method), 100
cross() (ezdxf.math.Vec3 method), 475
CROSS_HATCHING (ezdxf.addons.hpgl2.properties.FillType

attribute), 160
crs_to_wcs() (ezdxf.addons.geo.GeoProxy method),

126
CSG (class in ezdxf.addons.pycsg), 165
CTB, 1023
cube() (in module ezdxf.render.forms), 592
cube_vertices() (ezdxf.math.BoundingBox method),

479
cubes() (ezdxf.addons.MengerSponge method), 176
cubic_bezier_approximation()

(ezdxf.math.BSpline method), 497
cubic_bezier_bbox() (in module ezdxf.math), 457
cubic_bezier_from_3p() (in module ezdxf.math),

457
cubic_bezier_from_arc() (in module

ezdxf.math), 457
cubic_bezier_from_ellipse() (in module

ezdxf.math), 458
cubic_bezier_interpolation() (in module

ezdxf.math), 458
current_style_sheet (ezdxf.entities.PlotSettings.dxf

attribute), 425
Curve (class in ezdxf.acis.entities), 523
curve (ezdxf.acis.entities.Edge attribute), 521
curve3_to() (ezdxf.path.Path method), 543
curve4_to() (ezdxf.path.Path method), 543
CurvedTrace (class in ezdxf.render.trace), 608
CUSTOM (ezdxf.addons.drawing.config.BackgroundPolicy

attribute), 114
CUSTOM (ezdxf.addons.drawing.config.ColorPolicy at-

tribute), 115
custom_bg_color (ezdxf.addons.drawing.config.Configuration

attribute), 113

1040 Index

ezdxf Documentation, Release 1.3.2

custom_fg_color (ezdxf.addons.drawing.config.Configuration
attribute), 113

custom_lineweight_display_units
(ezdxf.addons.acadctb.ColorDependentPlotStyles
attribute), 168

custom_lineweight_display_units
(ezdxf.addons.acadctb.NamedPlotStyles at-
tribute), 169

custom_vars (ezdxf.sections.header.HeaderSection at-
tribute), 227

CustomCell (class in ezdxf.addons.tablepainter), 203
CustomJSONBackend (class in

ezdxf.addons.drawing.json), 110
CustomVars (class in ezdxf.sections.header), 227
CYAN (ezdxf.enums.ACI attribute), 445
cylinder() (in module ezdxf.render.forms), 593
cylinder_2p() (in module ezdxf.render.forms), 593

D
dash_length_items (ezdxf.entities.PatternLine

attribute), 344
data (ezdxf.urecord.BinaryRecord attribute), 556
data (ezdxf.urecord.UserRecord attribute), 555
data() (ezdxf.math.ConstructionPolyline method), 493
datum_triangle (ezdxf.render.arrows._Arrows

attribute), 618
datum_triangle_filled

(ezdxf.render.arrows._Arrows attribute), 618
daylight_savings_time (ezdxf.entities.Sun.dxf at-

tribute), 428
dbscan() (in module ezdxf.math.clustering), 504
dd2dms() (in module ezdxf.addons.geo), 127
Decameters (ezdxf.enums.InsertUnits attribute), 443
Decimal (ezdxf.enums.LengthUnits attribute), 444
DecimalDegrees (ezdxf.enums.AngularUnits attribute),

444
Decimeters (ezdxf.enums.InsertUnits attribute), 443
decode() (in module ezdxf.tools.crypt), 738
decode_base64() (in module ezdxf), 209
decode_dxf_unicode() (in module ezdxf), 738
decode_raw_color() (in module ezdxf.colors), 437
decode_raw_color_int() (in module ezdxf.colors),

437
DEFAULT (ezdxf.addons.drawing.config.BackgroundPolicy

attribute), 114
default (ezdxf.entities.DictionaryWithDefault.dxf

attribute), 413
DEFAULT (ezdxf.enums.MTextParagraphAlignment

attribute), 441
DEFAULT (ezdxf.tools.text.ezdxf.lldxf.const.MTextParagraphAlignment

attribute), 576
default_color (ezdxf.addons.drawing.properties.ezdxf.addons.drawing.properties.LayoutProperties.LayoutProperties

property), 118

default_content (ezdxf.entities.MTextData attribute),
376

default_dimension_text_style (in module
ezdxf.options), 626

default_end_width (ezdxf.entities.Polyline.dxf at-
tribute), 380

default_lighting_flag
(ezdxf.entities.Viewport.dxf attribute), 408

default_lighting_style
(ezdxf.entities.Viewport.dxf attribute), 408

default_paths() (ezdxf.entities.BoundaryPaths
method), 337

default_start_width (ezdxf.entities.Polyline.dxf at-
tribute), 380

default_text_content
(ezdxf.entities.MLeaderStyle.dxf attribute),
420

define() (in module ezdxf.xref), 92
defined_height (ezdxf.entities.MTextData attribute),

376
defpoint (ezdxf.entities.Dimension.dxf attribute), 322
defpoint2 (ezdxf.entities.ArcDimension.dxf attribute),

329
defpoint2 (ezdxf.entities.Dimension.dxf attribute), 322
defpoint3 (ezdxf.entities.ArcDimension.dxf attribute),

329
defpoint3 (ezdxf.entities.Dimension.dxf attribute), 322
defpoint4 (ezdxf.entities.ArcDimension.dxf attribute),

329
defpoint4 (ezdxf.entities.Dimension.dxf attribute), 322
defpoint5 (ezdxf.entities.Dimension.dxf attribute), 323
degree (ezdxf.entities.Spline.dxf attribute), 391
degree (ezdxf.entities.SplineEdge attribute), 342
degree (ezdxf.math.BSpline property), 495
DegreesMinutesSeconds

(ezdxf.enums.AngularUnits attribute), 444
del_dxf_attrib() (ezdxf.entities.DXFEntity method),

308
delete() (ezdxf.entities.dxfgroups.GroupCollection

method), 306
delete() (ezdxf.layouts.Layouts method), 275
delete_all_attribs() (ezdxf.entities.Insert

method), 269
delete_all_blocks()

(ezdxf.sections.blocks.BlocksSection method),
231

delete_all_entities() (ezdxf.layouts.BaseLayout
method), 276

delete_attrib() (ezdxf.entities.Insert method), 269
delete_block() (ezdxf.sections.blocks.BlocksSection

method), 231
delete_config() (ezdxf.sections.table.ViewportTable

method), 239
delete_default_config_files() (in module

Index 1041

ezdxf Documentation, Release 1.3.2

ezdxf.options), 626
delete_entity() (ezdxf.layouts.BaseLayout method),

276
delete_layout() (ezdxf.document.Drawing method),

219
DenseHatchingLinesError (class in

ezdxf.render.hatching), 623
depth (ezdxf.addons.binpacking.Bin attribute), 187
depth (ezdxf.addons.binpacking.Item attribute), 188
derivative() (ezdxf.math.Bezier method), 499
derivative() (ezdxf.math.BSpline method), 496
derivatives() (ezdxf.math.Bezier method), 499
derivatives() (ezdxf.math.BSpline method), 497
descender_height (ezdxf.fonts.fonts.FontMeasurements

attribute), 562
descending() (in module ezdxf.reorder), 544
description (ezdxf.addons.acadctb.ColorDependentPlotStyles

attribute), 168
description (ezdxf.addons.acadctb.NamedPlotStyles

attribute), 169
description (ezdxf.addons.acadctb.PlotStyle attribute),

170
description (ezdxf.entities.dxfgroups.DXFGroup.dxf

attribute), 304
description (ezdxf.entities.Layer attribute), 241
description (ezdxf.entities.Linetype.dxf attribute), 248
description (ezdxf.entities.MLineStyle.dxf attribute),

357
design_point (ezdxf.entities.GeoData.dxf attribute),

415
destroy() (ezdxf.entities.xdict.ExtensionDict method),

434
detach() (in module ezdxf.xref), 93
detect_banded_matrix() (in module

ezdxf.math.linalg), 506
detection_point_in_circle()

(ezdxf.select.PlanarSearchIndex method),
76

detection_point_in_rect()
(ezdxf.select.PlanarSearchIndex method),
76

detection_points()
(ezdxf.select.PlanarSearchIndex method),
76

determinant() (ezdxf.math.linalg.Matrix method),
507

determinant() (ezdxf.math.Matrix44 method), 471
DgnDefinition (class in ezdxf.entities), 430
DgnUnderlay (class in ezdxf.entities), 404
DHW (ezdxf.addons.binpacking.RotationType attribute), 189
diag() (ezdxf.math.linalg.Matrix method), 507
diagnose() (ezdxf.render.MeshBuilder method), 598
Dictionary (class in ezdxf.entities), 411
DictionaryVar (class in ezdxf.entities), 413

DictionaryWithDefault (class in ezdxf.entities),
413

DIFFERENCE (in module ezdxf.addons.openscad), 197
difference() (ezdxf.query.EntityQuery method), 571
dimadec (ezdxf.entities.DimStyle.dxf attribute), 252
dimalt (ezdxf.entities.DimStyle.dxf attribute), 252
dimaltd (ezdxf.entities.DimStyle.dxf attribute), 252
dimaltf (ezdxf.entities.DimStyle.dxf attribute), 250
dimaltrnd (ezdxf.entities.DimStyle.dxf attribute), 251
dimalttd (ezdxf.entities.DimStyle.dxf attribute), 252
dimalttz (ezdxf.entities.DimStyle.dxf attribute), 253
dimaltu (ezdxf.entities.DimStyle.dxf attribute), 252
dimaltz (ezdxf.entities.DimStyle.dxf attribute), 253
dimapost (ezdxf.entities.DimStyle.dxf attribute), 249
dimarcsym (ezdxf.entities.DimStyle.dxf attribute), 255
dimasz (ezdxf.entities.DimStyle.dxf attribute), 250
dimatfit (ezdxf.entities.DimStyle.dxf attribute), 253
dimaunit (ezdxf.entities.DimStyle.dxf attribute), 252
dimazin (ezdxf.entities.DimStyle.dxf attribute), 251
dimblk (ezdxf.entities.DimStyle.dxf attribute), 250
dimblk1 (ezdxf.entities.DimStyle.dxf attribute), 250
dimblk1_handle (ezdxf.entities.DimStyle.dxf attribute),

254
dimblk2 (ezdxf.entities.DimStyle.dxf attribute), 250
dimblk2_handle (ezdxf.entities.DimStyle.dxf attribute),

254
dimblk_handle (ezdxf.entities.DimStyle.dxf attribute),

254
dimcen (ezdxf.entities.DimStyle.dxf attribute), 250
dimclrd (ezdxf.entities.DimStyle.dxf attribute), 252
dimclre (ezdxf.entities.DimStyle.dxf attribute), 252
dimclrt (ezdxf.entities.DimStyle.dxf attribute), 252
dimdec (ezdxf.entities.DimStyle.dxf attribute), 252
dimdle (ezdxf.entities.DimStyle.dxf attribute), 250
dimdli (ezdxf.entities.DimStyle.dxf attribute), 250
dimdsep (ezdxf.entities.DimStyle.dxf attribute), 253
Dimension (class in ezdxf.entities), 321
dimension (ezdxf.entities.DimStyleOverride attribute),

325
dimexe (ezdxf.entities.DimStyle.dxf attribute), 250
dimexo (ezdxf.entities.DimStyle.dxf attribute), 250
dimfit (ezdxf.entities.DimStyle.dxf attribute), 253
dimfrac (ezdxf.entities.DimStyle.dxf attribute), 252
dimfxl (ezdxf.entities.DimStyle.dxf attribute), 255
dimfxlon (ezdxf.entities.DimStyle.dxf attribute), 254
dimgap (ezdxf.entities.DimStyle.dxf attribute), 251
dimjust (ezdxf.entities.DimStyle.dxf attribute), 253
dimldrblk (ezdxf.entities.DimStyle.dxf attribute), 254
dimldrblk_handle (ezdxf.entities.DimStyle.dxf

attribute), 254
dimlex1_handle (ezdxf.entities.DimStyle.dxf attribute),

254
dimlex2_handle (ezdxf.entities.DimStyle.dxf attribute),

254

1042 Index

ezdxf Documentation, Release 1.3.2

dimlfac (ezdxf.entities.DimStyle.dxf attribute), 250
dimlim (ezdxf.entities.DimStyle.dxf attribute), 251
dimltex1 (ezdxf.entities.DimStyle.dxf attribute), 254
dimltex2 (ezdxf.entities.DimStyle.dxf attribute), 254
dimltype (ezdxf.entities.DimStyle.dxf attribute), 254
dimltype_handle (ezdxf.entities.DimStyle.dxf at-

tribute), 254
dimlunit (ezdxf.entities.DimStyle.dxf attribute), 252
dimlwd (ezdxf.entities.DimStyle.dxf attribute), 254
dimlwe (ezdxf.entities.DimStyle.dxf attribute), 254
dimpost (ezdxf.entities.DimStyle.dxf attribute), 249
dimrnd (ezdxf.entities.DimStyle.dxf attribute), 250
dimsah (ezdxf.entities.DimStyle.dxf attribute), 252
dimscale (ezdxf.entities.DimStyle.dxf attribute), 250
dimsd1 (ezdxf.entities.DimStyle.dxf attribute), 253
dimsd2 (ezdxf.entities.DimStyle.dxf attribute), 253
dimse1 (ezdxf.entities.DimStyle.dxf attribute), 251
dimse2 (ezdxf.entities.DimStyle.dxf attribute), 251
dimsoxd (ezdxf.entities.DimStyle.dxf attribute), 252
DimStyle (class in ezdxf.entities), 249
dimstyle (ezdxf.entities.Dimension.dxf attribute), 322
dimstyle (ezdxf.entities.DimStyleOverride attribute), 325
dimstyle (ezdxf.entities.Leader.dxf attribute), 348
dimstyle_attribs (ezdxf.entities.DimStyleOverride

attribute), 325
DimStyleOverride (class in ezdxf.entities), 325
dimstyles (ezdxf.addons.dxf2code.Code attribute), 133
dimstyles (ezdxf.document.Drawing attribute), 216
dimstyles (ezdxf.sections.tables.TablesSection attribute),

230
DimStyleTable (class in ezdxf.sections.table), 238
dimtad (ezdxf.entities.DimStyle.dxf attribute), 251
dimtdec (ezdxf.entities.DimStyle.dxf attribute), 252
dimtfac (ezdxf.entities.DimStyle.dxf attribute), 250
dimtfill (ezdxf.entities.DimStyle.dxf attribute), 255
dimtfillclr (ezdxf.entities.DimStyle.dxf attribute), 255
dimtih (ezdxf.entities.DimStyle.dxf attribute), 251
dimtix (ezdxf.entities.DimStyle.dxf attribute), 252
dimtm (ezdxf.entities.DimStyle.dxf attribute), 250
dimtmove (ezdxf.entities.DimStyle.dxf attribute), 253
dimtofl (ezdxf.entities.DimStyle.dxf attribute), 252
dimtoh (ezdxf.entities.DimStyle.dxf attribute), 251
dimtol (ezdxf.entities.DimStyle.dxf attribute), 251
dimtolj (ezdxf.entities.DimStyle.dxf attribute), 253
dimtp (ezdxf.entities.DimStyle.dxf attribute), 250
dimtsz (ezdxf.entities.DimStyle.dxf attribute), 250
dimtvp (ezdxf.entities.DimStyle.dxf attribute), 250
dimtxsty (ezdxf.entities.DimStyle.dxf attribute), 254
dimtxsty_handle (ezdxf.entities.DimStyle.dxf at-

tribute), 254
dimtxt (ezdxf.entities.DimStyle.dxf attribute), 250
dimtype (ezdxf.entities.ArcDimension attribute), 329
dimtype (ezdxf.entities.Dimension property), 324
dimtype (ezdxf.entities.Dimension.dxf attribute), 322

dimtzin (ezdxf.entities.DimStyle.dxf attribute), 253
dimunit (ezdxf.entities.DimStyle.dxf attribute), 252
dimupt (ezdxf.entities.DimStyle.dxf attribute), 253
dimzin (ezdxf.entities.DimStyle.dxf attribute), 251
direction (ezdxf.acis.entities.StraightCurve attribute),

523
direction (ezdxf.math.ConstructionRay attribute), 480
direction_from_wcs() (ezdxf.math.UCS method),

465
direction_point (ezdxf.entities.View.dxf attribute),

260
direction_point (ezdxf.entities.VPort.dxf attribute),

258
direction_to_wcs() (ezdxf.math.UCS method), 465
DISABLE (ezdxf.enums.SortEntities attribute), 444
disable_c_ext (in module ezdxf.options), 629
disable_clipping() (ezdxf.xclip.XClip method),

581
disable_commands()

(ezdxf.addons.hpgl2.api.Interpreter method),
157

discard() (ezdxf.document.ezdxf.document.MetaData.MetaData
method), 211

discard() (ezdxf.entities.appdata.AppData method),
756

discard() (ezdxf.entities.appdata.Reactors method),
757

discard() (ezdxf.entities.Dictionary method), 412
discard() (ezdxf.entities.LayerOverrides method), 244
discard() (ezdxf.entities.xdata.XData method), 754
discard() (ezdxf.entities.xdata.XDataUserDict

method), 554
discard() (ezdxf.entities.xdict.ExtensionDict method),

434
discard_app_data() (ezdxf.entities.DXFEntity

method), 309
discard_clipping_path() (ezdxf.xclip.XClip

method), 582
discard_empty_extension_dict()

(ezdxf.entities.DXFEntity method), 308
discard_extended_font_data()

(ezdxf.entities.Textstyle method), 247
discard_extension_dict()

(ezdxf.entities.DXFEntity method), 308
discard_reactor_handle()

(ezdxf.entities.DXFEntity method), 310
discard_shx() (ezdxf.sections.table.TextstyleTable

method), 237
discard_xdata() (ezdxf.entities.DXFEntity method),

309
discard_xdata_list() (ezdxf.entities.DXFEntity

method), 310
discard_xlist() (ezdxf.entities.xdata.XData

method), 755

Index 1043

ezdxf Documentation, Release 1.3.2

DISPLAY (ezdxf.addons.drawing.config.ImagePolicy at-
tribute), 115

distance (ezdxf.render.hatching.Line attribute), 622
distance() (ezdxf.math.ApproxParamT method), 501
distance() (ezdxf.math.EulerSpiral method), 502
distance() (ezdxf.math.Vec3 method), 475
distance_from_origin (ezdxf.math.Plane at-

tribute), 477
distance_point_line_2d() (in module

ezdxf.math), 451
distance_point_line_3d() (in module

ezdxf.math), 458
distance_to() (ezdxf.math.Plane method), 477
DISTRIBUTED (ezdxf.enums.MTextParagraphAlignment

attribute), 441
DISTRIBUTED (ezdxf.tools.text.ezdxf.lldxf.const.MTextParagraphAlignment

attribute), 576
dithering (ezdxf.addons.acadctb.PlotStyle attribute),

171
divide() (ezdxf.math.ConstructionPolylinemethod), 493
divide_by_length()

(ezdxf.math.ConstructionPolyline method),
493

dms2dd() (in module ezdxf.addons.geo), 127
doc (ezdxf.entities.DXFEntity attribute), 307
dogleg_length (ezdxf.entities.LeaderData attribute),

375
dogleg_length (ezdxf.entities.MLeaderStyle.dxf

attribute), 420
dogleg_length (ezdxf.entities.MultiLeader.dxf at-

tribute), 370
dogleg_vector (ezdxf.entities.LeaderData attribute),

375
dot (ezdxf.render.arrows._Arrows attribute), 615
dot() (ezdxf.math.Vec3 method), 475
dot_blank (ezdxf.render.arrows._Arrows attribute), 615
dot_small (ezdxf.render.arrows._Arrows attribute), 615
dot_smallblank (ezdxf.render.arrows._Arrows

attribute), 617
double_sided (ezdxf.acis.entities.Face attribute), 520
draft_angle (ezdxf.entities.ExtrudedSurface.dxf

attribute), 394
draft_angle (ezdxf.entities.RevolvedSurface.dxf

attribute), 396
draft_angle (ezdxf.entities.SweptSurface.dxf attribute),

396
draft_end_distance

(ezdxf.entities.ExtrudedSurface.dxf attribute),
394

draft_end_distance
(ezdxf.entities.SweptSurface.dxf attribute),
396

draft_start_distance
(ezdxf.entities.ExtrudedSurface.dxf attribute),

394
draft_start_distance (ezdxf.entities.SweptSurface

attribute), 396
draw_layout() (ezdxf.addons.drawing.frontend.Frontend

method), 121
draw_leader_order_type

(ezdxf.entities.MLeaderStyle.dxf attribute),
420

draw_mleader_order_type
(ezdxf.entities.MLeaderStyle.dxf attribute),
420

draw_paths() (ezdxf.addons.hpgl2.api.Recorder
method), 158

draw_polyline() (ezdxf.addons.hpgl2.api.Recorder
method), 158

draw_viewports_first() (ezdxf.layouts.Layout
method), 301

Drawing (class in ezdxf.document), 214
DTYPE (ezdxf.lldxf.packedtags.TagArray attribute), 752
duplicate_entry() (ezdxf.sections.table.Table

method), 235
DwfDefinition (class in ezdxf.entities), 429
DwfUnderlay (class in ezdxf.entities), 404
DWG, 1023
DWH (ezdxf.addons.binpacking.RotationType attribute), 189
DXF, 1023
dxf (ezdxf.entities.DXFEntity attribute), 306
dxf (ezdxf.layouts.BlockLayout property), 303
dxf (ezdxf.layouts.Layout attribute), 299
dxf_entities() (in module ezdxf.addons.geo), 123
dxf_info() (in module ezdxf.xref), 93
dxfattribs() (ezdxf.entities.DXFEntity method), 308
dxfattribs() (ezdxf.math.ConstructionEllipse

method), 490
DXFAttributeError (class in ezdxf.lldxf.const), 436
DXFBackend (class in ezdxf.addons.drawing.dxf), 108
DXFBinaryTag (class in ezdxf.lldxf.types), 747
DXFBlockInUseError (class in ezdxf.lldxf.const), 436
DXFClass (class in ezdxf.entities), 228
DXFEntity (class in ezdxf.entities), 306
DXFError (class in ezdxf.lldxf.const), 436
DXFGraphic (class in ezdxf.entities), 311
DXFGroup (class in ezdxf.entities.dxfgroups), 304
DXFIndexError (class in ezdxf.lldxf.const), 436
DXFInvalidLineType (class in ezdxf.lldxf.const), 436
DXFKeyError (class in ezdxf.lldxf.const), 436
DXFLayout (class in ezdxf.entities), 413
DXFObject (class in ezdxf.entities), 415
dxfstr() (ezdxf.lldxf.types.DXFBinaryTagmethod), 747
dxfstr() (ezdxf.lldxf.types.DXFTag method), 747
dxfstr() (ezdxf.lldxf.types.DXFVertex method), 747
DXFStructureError (class in ezdxf.lldxf.const), 436
DXFTableEntryError (class in ezdxf.lldxf.const), 436
DXFTag (class in ezdxf.lldxf.types), 746

1044 Index

ezdxf Documentation, Release 1.3.2

dxftag() (in module ezdxf.lldxf.types), 746
dxftags() (ezdxf.lldxf.types.DXFVertex method), 747
dxftype() (ezdxf.entities.DXFEntity method), 307
dxftype() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 750
dxftype() (ezdxf.lldxf.tags.Tags method), 748
DXFTypeError (class in ezdxf.lldxf.const), 436
DXFUndefinedBlockError (class in

ezdxf.lldxf.const), 436
DXFValueError (class in ezdxf.lldxf.const), 436
dxfversion (ezdxf.document.Drawing attribute), 214
DXFVersionError (class in ezdxf.lldxf.const), 436
DXFVertex (class in ezdxf.lldxf.types), 747

E
Edge (class in ezdxf.acis.entities), 521
edge (ezdxf.acis.entities.Coedge attribute), 521
edge (ezdxf.acis.entities.Vertex attribute), 522
EDGE (ezdxf.entities.BoundaryPathType attribute), 338
edge_crease_values (ezdxf.entities.MeshData

attribute), 360
edge_stats (ezdxf.render.MeshDiagnose property), 604
edge_to_polyline_paths()

(ezdxf.entities.BoundaryPaths method), 337
EdgePath (class in ezdxf.entities), 339
edges (ezdxf.entities.EdgePath attribute), 339
edges (ezdxf.entities.Mesh attribute), 359
edges (ezdxf.entities.MeshData attribute), 359
EdgeStat (class in ezdxf.render.mesh), 603
EdgeType (class in ezdxf.entities), 341
edit_data() (ezdxf.entities.dxfgroups.DXFGroup

method), 304
edit_data() (ezdxf.entities.Mesh method), 359
elements (ezdxf.entities.ezdxf.entities.mline.MLineStyleElements

attribute), 358
elements (ezdxf.entities.MLineStyle attribute), 358
elevation (ezdxf.entities.DXFLayout.dxf attribute), 414
elevation (ezdxf.entities.Hatch.dxf attribute), 333
elevation (ezdxf.entities.LWPolyline.dxf attribute), 352
elevation (ezdxf.entities.MPolygon.dxf attribute), 361
elevation (ezdxf.entities.Polyline.dxf attribute), 380
elevation (ezdxf.entities.View.dxf attribute), 261
elevation (ezdxf.entities.Viewport.dxf attribute), 407
Ellipse (class in ezdxf.entities), 330
ELLIPSE (ezdxf.entities.EdgeType attribute), 341
ellipse() (in module ezdxf.render.forms), 590
ellipse_approximation() (ezdxf.math.BSpline

static method), 497
ellipse_edges_to_spline_edges()

(ezdxf.entities.BoundaryPaths method), 338
ellipse_param_span() (in module ezdxf.math), 448
EllipseEdge (class in ezdxf.entities), 342
elliptic_transformation() (in module

ezdxf.path), 540

embed() (in module ezdxf.xref), 93
embed_mtext() (ezdxf.entities.AttDef method), 274
embed_mtext() (ezdxf.entities.Attrib method), 272
embedded_objects (ezdxf.lldxf.extendedtags.ExtendedTags

attribute), 750
Empty-Path, 530
EmptyDrawing (class in ezdxf.addons.hpgl2.api), 160
enable_clipping() (ezdxf.xclip.XClip method), 581
encode() (ezdxf.document.Drawing method), 217
encode() (in module ezdxf.tools.crypt), 738
encode_base64() (ezdxf.document.Drawing method),

217
encode_raw_color() (in module ezdxf.colors), 437
encoding (ezdxf.document.Drawing attribute), 214
end (ezdxf.entities.Line.dxf attribute), 350
end (ezdxf.entities.LineEdge attribute), 341
end (ezdxf.math.ConstructionEllipse attribute), 489
end (ezdxf.math.ConstructionLine attribute), 481
end (ezdxf.path.Path property), 542
END (ezdxf.render.hatching.IntersectionType attribute), 622
end (ezdxf.render.hatching.Line attribute), 622
end_angle (ezdxf.entities.ArcDimension.dxf attribute),

329
end_angle (ezdxf.entities.Arc.dxf attribute), 318
end_angle (ezdxf.entities.ArcEdge attribute), 342
end_angle (ezdxf.entities.EllipseEdge attribute), 342
end_angle (ezdxf.entities.MLineStyle.dxf attribute), 358
end_angle (ezdxf.math.ConstructionArc attribute), 485
end_angle_rad (ezdxf.math.ConstructionArc attribute),

485
end_caps (ezdxf.entities.MLine property), 356
end_draft_angle (ezdxf.entities.LoftedSurface.dxf at-

tribute), 395
end_draft_distance

(ezdxf.entities.RevolvedSurface.dxf attribute),
396

end_draft_magnitude
(ezdxf.entities.LoftedSurface.dxf attribute),
395

end_param (ezdxf.acis.entities.Edge attribute), 521
end_param (ezdxf.entities.Ellipse.dxf attribute), 330
end_point (ezdxf.entities.Arc attribute), 318
end_point (ezdxf.entities.Ellipse attribute), 330
end_point (ezdxf.math.ConstructionArc attribute), 485
end_point (ezdxf.math.ConstructionEllipse attribute),

489
end_style (ezdxf.addons.acadctb.PlotStyle attribute),

171
end_tangent (ezdxf.entities.Spline.dxf attribute), 391
end_tangent (ezdxf.entities.SplineEdge attribute), 343
end_vertex (ezdxf.acis.entities.Edge attribute), 521
end_width (ezdxf.entities.Vertex.dxf attribute), 383
EndBlk (class in ezdxf.entities), 266
endblk (ezdxf.layouts.BlockLayout property), 303

Index 1045

ezdxf Documentation, Release 1.3.2

EndCaps (class in ezdxf.enums), 445
Engineering (ezdxf.enums.LengthUnits attribute), 444
entities (ezdxf.document.Drawing attribute), 215
entities_in_redraw_order()

(ezdxf.layouts.BaseLayout method), 277
entities_to_code() (in module

ezdxf.addons.dxf2code), 132
entity (ezdxf.disassemble.Primitive attribute), 528
entity (ezdxf.transform.Logger.Entry attribute), 547
entity() (ezdxf.entities.xdata.XDataUserDict class

method), 554
entity() (ezdxf.entities.xdata.XDataUserList class

method), 552
EntityDB (class in ezdxf.entitydb), 744
EntityQuery (class in ezdxf.query), 569
EntitySection (class in ezdxf.sections.entities), 231
EntitySpace (class in ezdxf.entitydb), 745
Envelope (class in ezdxf.addons.binpacking), 188
Error (class in ezdxf.transform), 546
error (ezdxf.transform.Logger.Entry attribute), 547
errors (ezdxf.addons.hpgl2.api.Interpreter attribute), 157
estimate_end_tangent_magnitude() (in mod-

ule ezdxf.math), 458
estimate_face_normals_direction()

(ezdxf.render.MeshDiagnose method), 605
estimate_mtext_content_extents() (in mod-

ule ezdxf.tools.text), 577
estimate_mtext_extents() (in module

ezdxf.tools.text), 577
estimate_mtext_extents() (in module

ezdxf.tools.text_size), 580
estimate_tangents() (in module ezdxf.math), 458
euler_characteristic

(ezdxf.render.MeshDiagnose property), 604
euler_spiral() (in module ezdxf.render.forms), 590
EulerSpiral (class in ezdxf.math), 502
EulerSpiral (class in ezdxf.render), 588
evaluate() (ezdxf.acis.entities.Curve method), 523
evaluate() (ezdxf.acis.entities.Surface method), 522
EVEN_ODD (ezdxf.addons.hpgl2.properties.FillMethod at-

tribute), 160
EXACT (ezdxf.enums.MTextLineSpacing attribute), 442
example_func() (in module guide), 757
example_method() (guide.ExampleCls method), 757
ExampleCls (class in guide), 757
execute() (ezdxf.xref.Loader method), 97
expand() (ezdxf.math.ConstructionBox method), 492
explode (ezdxf.entities.BlockRecord.dxf attribute), 263
explode() (ezdxf.addons.MTextExplode method), 152
explode() (ezdxf.entities.ACADProxyEntity method),

317
explode() (ezdxf.entities.Dimension method), 324
explode() (ezdxf.entities.Insert method), 270
explode() (ezdxf.entities.Leader method), 349

explode() (ezdxf.entities.LWPolyline method), 354
explode() (ezdxf.entities.MLine method), 357
explode() (ezdxf.entities.MultiLeader method), 373
explode() (ezdxf.entities.Polyline method), 383
explode() (in module ezdxf.addons.text2path), 151
explore() (in module ezdxf.recover), 225
export() (ezdxf.addons.iterdxf.IterDXF method), 136
export_dwg() (in module ezdxf.addons.odafc), 139
export_dxf() (ezdxf.lldxf.packedtags.VertexArray

method), 753
export_dxf() (in module ezdxf.acis.api), 513
export_file() (in module

ezdxf.addons.gerber_D6673), 206
export_ifcZIP() (in module ezdxf.addons.meshex),

192
export_json_tags() (in module ezdxf.document),

213
export_sab() (in module ezdxf.acis.api), 513
export_sat() (in module ezdxf.acis.api), 513
export_stream() (in module

ezdxf.addons.gerber_D6673), 206
ExportError (class in ezdxf.acis.api), 516
extend() (ezdxf.entities.dxfgroups.DXFGroup method),

305
extend() (ezdxf.entities.MLine method), 356
extend() (ezdxf.entities.XRecord method), 431
extend() (ezdxf.entitydb.EntitySpace method), 745
extend() (ezdxf.lldxf.packedtags.VertexArray method),

753
extend() (ezdxf.math.BoundingBox method), 478
extend() (ezdxf.math.BoundingBox2d method), 480
extend() (ezdxf.math.Shape2d method), 494
extend() (ezdxf.query.EntityQuery method), 570
extend_multi_path() (ezdxf.path.Path method),

543
ExtendedTags (class in ezdxf.lldxf.extendedtags), 750
ExtensionDict (class in ezdxf.entities.xdict), 433
extents (ezdxf.render.MultiLeaderBlockBuilder prop-

erty), 613
extents() (in module ezdxf.bbox), 524
extents() (in module ezdxf.zoom), 584
external_paths() (ezdxf.entities.BoundaryPaths

method), 337
extmax (ezdxf.entities.DXFLayout.dxf attribute), 414
extmax (ezdxf.math.BoundingBox attribute), 477
extmax (ezdxf.math.BoundingBox2d attribute), 479
extmin (ezdxf.entities.DXFLayout.dxf attribute), 414
extmin (ezdxf.math.BoundingBox attribute), 477
extmin (ezdxf.math.BoundingBox2d attribute), 479
extrude() (in module ezdxf.render.forms), 595
extrude_twist_scale() (in module

ezdxf.render.forms), 595
ExtrudedSurface (class in ezdxf.entities), 393
extrusion (ezdxf.entities.BlockData attribute), 377

1046 Index

ezdxf Documentation, Release 1.3.2

extrusion (ezdxf.entities.DXFGraphic.dxf attribute),
313

extrusion (ezdxf.entities.Line.dxf attribute), 350
extrusion (ezdxf.entities.MLine.dxf attribute), 356
extrusion (ezdxf.entities.MTextData attribute), 376
extrusion (ezdxf.entities.SpatialFilter.dxf attribute), 427
extrusion (ezdxf.entities.Underlay.dxf attribute), 402
extrusion (ezdxf.math.ConstructionEllipse attribute),

489
ez_arrow (ezdxf.render.arrows._Arrows attribute), 618
ez_arrow_blank (ezdxf.render.arrows._Arrows

attribute), 618
ez_arrow_filled (ezdxf.render.arrows._Arrows at-

tribute), 618
ezdxf_metadata() (ezdxf.document.Drawing

method), 221
ezdxf.acis

module, 512
ezdxf.acis.api

module, 512
ezdxf.acis.entities

module, 516
ezdxf.addons

module, 97
ezdxf.addons.acadctb

module, 167
ezdxf.addons.binpacking

module, 183
ezdxf.addons.drawing

module, 97
ezdxf.addons.drawing.backend.Backend

(class in ezdxf.addons.drawing), 121
ezdxf.addons.drawing.backend.BackendInterface

(class in ezdxf.addons.drawing), 121
ezdxf.addons.drawing.properties.LayerProperties

(class in ezdxf.addons.drawing), 118
ezdxf.addons.drawing.properties.LayoutProperties

(class in ezdxf.addons.drawing), 118
ezdxf.addons.dxf2code

module, 131
ezdxf.addons.geo

module, 122
ezdxf.addons.gerber_D6673

module, 206
ezdxf.addons.hpgl2.api

module, 153
ezdxf.addons.importer

module, 128
ezdxf.addons.iterdxf

module, 134
ezdxf.addons.meshex

module, 190
ezdxf.addons.odafc

module, 137

ezdxf.addons.openscad
module, 193

ezdxf.addons.pycsg
module, 160

ezdxf.addons.r12export
module, 140

ezdxf.addons.r12writer
module, 142

ezdxf.addons.tablepainter
module, 198

ezdxf.addons.text2path
module, 148

ezdxf.appsettings
module, 563

ezdxf.bbox
module, 524

ezdxf.blkrefs
module, 435

ezdxf.colors
module, 437

ezdxf.comments
module, 564

ezdxf.disassemble
module, 527

ezdxf.document
module, 213

ezdxf.document.MetaData (built-in class), 211
ezdxf.entities

module, 306
ezdxf.entities.appdata

module, 755
ezdxf.entities.dxfgroups

module, 304
ezdxf.entities.mline.MLineStyleElement

(class in ezdxf.entities), 358
ezdxf.entities.mline.MLineStyleElements

(class in ezdxf.entities), 358
ezdxf.entities.xdata

module, 754
ezdxf.entities.xdict

module, 433
ezdxf.entitydb

module, 744
ezdxf.enums

module, 440
ezdxf.fonts.fonts

module, 556
ezdxf.gfxattribs

module, 565
ezdxf.groupby

module, 72
ezdxf.layouts

module, 274
ezdxf.lldxf.const

Index 1047

ezdxf Documentation, Release 1.3.2

module, 436
ezdxf.lldxf.const.MTextParagraphAlignment

(class in ezdxf.tools.text), 575
ezdxf.lldxf.extendedtags

module, 750
ezdxf.lldxf.packedtags

module, 752
ezdxf.lldxf.tags

module, 748
ezdxf.lldxf.types

module, 746
ezdxf.math

module, 446
ezdxf.math.clipping

module, 502
ezdxf.math.clustering

module, 504
ezdxf.math.linalg

module, 505
ezdxf.math.rtree

module, 509
ezdxf.math.triangulation

module, 510
ezdxf.options

module, 623
ezdxf.path

module, 529
ezdxf.query

module, 567
ezdxf.r12strict

module, 225
ezdxf.recover

module, 221
ezdxf.render

module, 584
ezdxf.render.arrows

module, 615
ezdxf.render.forms

module, 589
ezdxf.render.hatching

module, 619
ezdxf.render.point

module, 609
ezdxf.render.trace

module, 606
ezdxf.reorder

module, 544
ezdxf.revcloud

module, 571
ezdxf.sections.blocks

module, 230
ezdxf.sections.classes

module, 228
ezdxf.sections.entities

module, 231
ezdxf.sections.header

module, 227
ezdxf.sections.objects

module, 232
ezdxf.sections.table

module, 235
ezdxf.sections.tables

module, 229
ezdxf.select

module, 73
ezdxf.tools.text

module, 572
ezdxf.tools.text_size

module, 579
ezdxf.tools.text_size.MTextSize (class in

ezdxf.tools.text_size), 579
ezdxf.tools.text_size.TextSize (class in

ezdxf.tools.text_size), 579
ezdxf.transform

module, 544
ezdxf.units

module, 48
ezdxf.upright

module, 547
ezdxf.urecord

module, 554
ezdxf.xclip

module, 580
ezdxf.xref

module, 90
ezdxf.zoom

module, 583

F
Face (class in ezdxf.acis.entities), 519
face (ezdxf.acis.entities.Loop attribute), 520
face (ezdxf.acis.entities.Shell attribute), 519
Face3d (class in ezdxf.entities), 315
face_normals (ezdxf.render.MeshDiagnose property),

604
face_normals() (ezdxf.render.MeshBuilder method),

598
face_orientation_detector()

(ezdxf.render.MeshBuilder method), 598
FaceOrientationDetector (class in ezdxf.render),

606
faces (ezdxf.entities.GeoData attribute), 416
faces (ezdxf.entities.Mesh attribute), 359
faces (ezdxf.entities.MeshData attribute), 359
faces (ezdxf.render.MeshBuilder attribute), 597
faces (ezdxf.render.MeshDiagnose property), 604
faces() (ezdxf.acis.entities.Shell method), 519
faces() (ezdxf.entities.Polyface method), 386

1048 Index

ezdxf Documentation, Release 1.3.2

faces() (ezdxf.render.trace.CurvedTrace method), 608
faces() (ezdxf.render.trace.LinearTrace method), 608
faces() (ezdxf.render.trace.TraceBuilder method), 607
faces_as_vertices() (ezdxf.render.MeshBuilder

method), 598
faces_wcs() (ezdxf.render.trace.TraceBuilder method),

607
fade (ezdxf.entities.Image.dxf attribute), 346
fade (ezdxf.entities.Underlay.dxf attribute), 403
family (ezdxf.fonts.fonts.FontFace attribute), 562
fast_2d_transform() (ezdxf.math.Matrix44

method), 471
fast_plain_mtext() (in module ezdxf.tools.text),

578
fast_zoom (ezdxf.entities.VPort.dxf attribute), 259
Feet (ezdxf.enums.InsertUnits attribute), 443
field_length (ezdxf.entities.AttDef.dxf attribute), 273
filename (ezdxf.document.Drawing attribute), 215
filename (ezdxf.entities.ImageDef.dxf attribute), 418
filename (ezdxf.entities.UnderlayDefinition.dxf at-

tribute), 429
filename (ezdxf.fonts.fonts.FontFace attribute), 562
fill_color (ezdxf.entities.MLineStyle.dxf attribute),

357
fill_hatch_line_angle

(ezdxf.addons.hpgl2.properties.Properties at-
tribute), 159

fill_hatch_line_spacing
(ezdxf.addons.hpgl2.properties.Properties at-
tribute), 159

fill_method (ezdxf.addons.hpgl2.properties.Properties
attribute), 159

fill_params (ezdxf.entities.MLineVertex attribute), 357
fill_shading_density

(ezdxf.addons.hpgl2.properties.Properties at-
tribute), 159

fill_style (ezdxf.addons.acadctb.PlotStyle attribute),
171

fill_type (ezdxf.addons.hpgl2.properties.Properties at-
tribute), 159

fillet() (in module ezdxf.path), 538
FILLING (ezdxf.addons.drawing.config.TextPolicy

attribute), 117
filling (ezdxf.addons.drawing.properties.Properties at-

tribute), 118
FillMethod (class in ezdxf.addons.hpgl2.properties),

160
FillType (class in ezdxf.addons.hpgl2.properties), 159
filter() (ezdxf.addons.geo.GeoProxy method), 126
filter() (ezdxf.lldxf.tags.Tags method), 749
filter() (ezdxf.query.EntityQuery method), 570
filter_invalid_xdata_group_codes (in mod-

ule ezdxf.options), 628
finalize() (ezdxf.addons.importer.Importer method),

129
finalize() (ezdxf.addons.MTextExplode method), 152
find_all() (ezdxf.lldxf.tags.Tags method), 749
find_best_match() (in module ezdxf.fonts.fonts),

559
find_font_face() (in module ezdxf.fonts.fonts), 558
find_font_file_name() (in module

ezdxf.fonts.fonts), 559
find_shx() (ezdxf.sections.table.TextstyleTable

method), 237
first (ezdxf.query.EntityQuery attribute), 569
first_segment_angle_constraint

(ezdxf.entities.MLeaderStyle.dxf attribute),
420

FIT (ezdxf.enums.TextEntityAlignment attribute), 440
fit_length() (ezdxf.entities.Text method), 399
fit_page (ezdxf.addons.drawing.layout.Settings at-

tribute), 103
fit_paths_into_box() (in module ezdxf.path), 538
fit_point_count() (ezdxf.entities.Spline method),

392
fit_points (ezdxf.entities.Spline attribute), 392
fit_points (ezdxf.entities.SplineEdge attribute), 343
fit_points_to_cad_cv() (in module ezdxf.math),

459
fit_points_to_cubic_bezier() (in module

ezdxf.math), 459
fit_tolerance (ezdxf.entities.Spline.dxf attribute), 391
fixed_stroke_width

(ezdxf.addons.drawing.layout.Settings attribute),
104

flag (guide.ExampleCls attribute), 757
flags (ezdxf.entities.AppID.dxf attribute), 262
flags (ezdxf.entities.Block.dxf attribute), 265
flags (ezdxf.entities.Body.dxf attribute), 319
flags (ezdxf.entities.DimStyle.dxf attribute), 249
flags (ezdxf.entities.DXFClass.dxf attribute), 229
flags (ezdxf.entities.Image.dxf attribute), 346
flags (ezdxf.entities.Layer.dxf attribute), 240
flags (ezdxf.entities.LWPolyline.dxf attribute), 352
flags (ezdxf.entities.MLine.dxf attribute), 355
flags (ezdxf.entities.MLineStyle.dxf attribute), 357
flags (ezdxf.entities.Polyline.dxf attribute), 380
flags (ezdxf.entities.Spline.dxf attribute), 391
flags (ezdxf.entities.Textstyle.dxf attribute), 246
flags (ezdxf.entities.UCSTableEntry.dxf attribute), 262
flags (ezdxf.entities.Underlay.dxf attribute), 403
flags (ezdxf.entities.Vertex.dxf attribute), 383
flags (ezdxf.entities.View.dxf attribute), 259
flags (ezdxf.entities.Viewport.dxf attribute), 406
flags (ezdxf.entities.VPort.dxf attribute), 258
FLAT (ezdxf.enums.JoinStyle attribute), 446
FlatItem (class in ezdxf.addons.binpacking), 189
FlatPacker (class in ezdxf.addons.binpacking), 186

Index 1049

ezdxf Documentation, Release 1.3.2

flatten_subclasses()
(ezdxf.lldxf.extendedtags.ExtendedTags method),
751

flattening() (ezdxf.entities.Arc method), 318
flattening() (ezdxf.entities.Circle method), 320
flattening() (ezdxf.entities.Ellipse method), 331
flattening() (ezdxf.entities.Spline method), 392
flattening() (ezdxf.math.Bezier method), 498
flattening() (ezdxf.math.Bezier3P method), 500
flattening() (ezdxf.math.Bezier4P method), 499
flattening() (ezdxf.math.BSpline method), 496
flattening() (ezdxf.math.ConstructionCircle method),

483
flattening() (ezdxf.math.ConstructionEllipse

method), 489
flattening() (ezdxf.path.Path method), 543
flip_normals() (ezdxf.render.MeshBuilder method),

598
float2transparency() (in module ezdxf.colors),

437
flow_direction (ezdxf.entities.MTextData attribute),

376
flow_direction (ezdxf.entities.MText.dxf attribute),

364
font (ezdxf.addons.drawing.properties.Properties at-

tribute), 118
font (ezdxf.entities.Textstyle.dxf attribute), 247
font() (ezdxf.tools.text.MTextEditor method), 573
font_measurements() (ezdxf.tools.text.TextLine

method), 576
font_name() (ezdxf.entities.Text method), 399
font_render_type (ezdxf.fonts.fonts.AbstractFont at-

tribute), 560
FontFace (class in ezdxf.fonts.fonts), 562
FontMeasurements (class in ezdxf.fonts.fonts), 562
FontRenderType (class in ezdxf.fonts.fonts), 561
format() (ezdxf.entities.Vertex method), 384
forward_faces (ezdxf.render.FaceOrientationDetector

property), 606
Fractional (ezdxf.enums.LengthUnits attribute), 444
frame() (ezdxf.addons.tablepainter.TablePainter

method), 202
freeze() (ezdxf.entities.Layer method), 241
freeze() (ezdxf.entities.Viewport method), 408
freeze() (ezdxf.math.linalg.Matrix method), 507
from_2p_angle() (ezdxf.math.ConstructionArc class

method), 486
from_2p_radius() (ezdxf.math.ConstructionArc class

method), 486
from_3p() (ezdxf.math.ConstructionArc class method),

487
from_3p() (ezdxf.math.ConstructionCircle static

method), 483
from_3p() (ezdxf.math.Plane class method), 477

from_angle() (ezdxf.math.Vec3 class method), 474
from_arc() (ezdxf.entities.Ellipse class method), 331
from_arc() (ezdxf.entities.Spline class method), 393
from_arc() (ezdxf.math.BSpline static method), 497
from_arc() (ezdxf.math.ConstructionEllipse class

method), 490
from_arc() (ezdxf.render.trace.CurvedTrace class

method), 609
from_builder() (ezdxf.render.MeshBuilder class

method), 598
from_deg_angle() (ezdxf.math.Vec3 class method),

474
from_dict() (ezdxf.gfxattribs.GfxAttribs class method),

567
from_dxf_entities() (ezdxf.addons.geo.GeoProxy

class method), 124
from_dxf_layout()

(ezdxf.addons.drawing.layout.Page class
method), 102

from_ellipse() (ezdxf.math.BSpline static method),
497

from_entity() (ezdxf.gfxattribs.GfxAttribs class
method), 567

from_file() (in module ezdxf.comments), 564
from_fit_points() (ezdxf.math.BSpline static

method), 497
from_floats() (ezdxf.colors.RGB class method), 438
from_floats() (ezdxf.colors.RGBA class method), 439
from_hatch() (in module ezdxf.path), 531
from_hex() (ezdxf.colors.RGB class method), 438
from_hex() (ezdxf.colors.RGBA class method), 439
from_mesh() (ezdxf.render.MeshBuilder class method),

598
from_points() (ezdxf.math.ConstructionBox class

method), 491
from_polyface() (ezdxf.render.MeshBuilder class

method), 598
from_polyline() (ezdxf.render.trace.TraceBuilder

class method), 607
from_profiles_linear() (in module

ezdxf.render.forms), 595
from_profiles_spline() (in module

ezdxf.render.forms), 596
from_spline() (ezdxf.render.trace.CurvedTrace class

method), 609
from_stream() (in module ezdxf.comments), 564
from_tags() (ezdxf.lldxf.packedtags.TagList class

method), 752
from_tags() (ezdxf.lldxf.packedtags.VertexArray class

method), 753
from_text() (ezdxf.lldxf.extendedtags.ExtendedTags

class method), 751
from_text() (ezdxf.lldxf.tags.Tags class method), 748
from_vector() (ezdxf.math.Plane class method), 477

1050 Index

ezdxf Documentation, Release 1.3.2

from_vertices() (in module ezdxf.path), 531
from_wcs() (ezdxf.math.OCS method), 464
from_wcs() (ezdxf.math.UCS method), 465
from_x_axis_and_point_in_xy()

(ezdxf.math.UCS static method), 466
from_x_axis_and_point_in_xz()

(ezdxf.math.UCS static method), 467
from_y_axis_and_point_in_xy()

(ezdxf.math.UCS static method), 467
from_y_axis_and_point_in_yz()

(ezdxf.math.UCS static method), 467
from_z_axis_and_point_in_xz()

(ezdxf.math.UCS static method), 467
from_z_axis_and_point_in_yz()

(ezdxf.math.UCS static method), 467
front_clip_plane_z_value

(ezdxf.entities.Viewport.dxf attribute), 405
front_clipping (ezdxf.entities.View.dxf attribute),

260
front_clipping (ezdxf.entities.VPort.dxf attribute),

258
front_clipping_plane_distance

(ezdxf.entities.SpatialFilter.dxf attribute), 427
Frontend (class in ezdxf.addons.drawing.frontend), 120
frozen_layers (ezdxf.entities.Viewport attribute), 408

G
g (ezdxf.colors.RGB attribute), 437
g (ezdxf.colors.RGBA attribute), 438
gear() (in module ezdxf.path), 540
gear() (in module ezdxf.render.forms), 591
generate() (ezdxf.math.Vec3 class method), 474
generate_geometry() (ezdxf.entities.MLine

method), 356
generation_flags (ezdxf.entities.Textstyle.dxf

attribute), 247
geo_rss_tag (ezdxf.entities.GeoData.dxf attribute), 416
GeoData (class in ezdxf.entities), 415
GeoJSONBackend (class in ezdxf.addons.drawing.json),

109
GeoJSONBackend.make_world_mercator_to_gps_function()

(in module ezdxf.addons.drawing.json), 109
GeoJSONBackend.no_transform() (in module

ezdxf.addons.drawing.json), 109
GeoJSONBackend.properties_maker() (in

module ezdxf.addons.drawing.json), 109
GeoMapping (in module ezdxf.addons.geo), 127
geometry (ezdxf.entities.Dimension.dxf attribute), 321
GeoProxy (class in ezdxf.addons.geo), 124
geotype (ezdxf.addons.geo.GeoProxy attribute), 124
get() (ezdxf.document.ezdxf.document.MetaData.MetaData

method), 211
get() (ezdxf.entities.appdata.AppData method), 756
get() (ezdxf.entities.appdata.Reactors method), 756

get() (ezdxf.entities.Dictionary method), 412
get() (ezdxf.entities.DictionaryWithDefault method), 413
get() (ezdxf.entities.DimStyleOverride method), 325
get() (ezdxf.entities.dxfgroups.GroupCollection method),

305
get() (ezdxf.entities.xdata.XData method), 754
get() (ezdxf.entities.xdict.ExtensionDict method), 433
get() (ezdxf.entitydb.EntityDB method), 744
get() (ezdxf.layouts.Layouts method), 274
get() (ezdxf.sections.blocks.BlocksSection method), 230
get() (ezdxf.sections.classes.ClassesSection method), 228
get() (ezdxf.sections.header.CustomVars method), 228
get() (ezdxf.sections.header.HeaderSection method), 227
get() (ezdxf.sections.table.Table method), 235
get() (in module ezdxf.options), 625
get_abs_filepath (ezdxf.document.Drawing at-

tribute), 216
get_align_enum() (ezdxf.entities.Text method), 399
get_app_data() (ezdxf.entities.DXFEntity method),

308
get_app_data() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 751
get_app_data_content()

(ezdxf.lldxf.extendedtags.ExtendedTags method),
751

get_arrow_names() (ezdxf.entities.DimStyleOverride
method), 325

get_aspect_ratio() (ezdxf.entities.Viewport
method), 409

get_attdef() (ezdxf.layouts.BlockLayout method),
303

get_attdef_text() (ezdxf.layouts.BlockLayout
method), 304

get_attrib() (ezdxf.entities.Insert method), 268
get_attrib_text() (ezdxf.entities.Insert method),

268
get_block_clipping_path() (ezdxf.xclip.XClip

method), 582
get_block_content() (ezdxf.entities.MultiLeader

method), 373
get_bool() (in module ezdxf.options), 625
get_bytes() (ezdxf.addons.drawing.hpgl2.PlotterBackend

method), 107
get_capacity() (ezdxf.addons.binpacking.AbstractPacker

method), 186
get_capacity() (ezdxf.addons.binpacking.Bin

method), 187
get_cell() (ezdxf.addons.tablepainter.TablePainter

method), 201
get_cell_style() (ezdxf.addons.tablepainter.TablePainter

method), 202
get_col() (ezdxf.math.Matrix44 method), 468
get_color() (ezdxf.entities.Layer method), 242
get_color() (ezdxf.entities.LayerOverrides method),

Index 1051

ezdxf Documentation, Release 1.3.2

243
get_config() (ezdxf.sections.table.ViewportTable

method), 239
get_crs() (ezdxf.entities.GeoData method), 417
get_crs_transformation()

(ezdxf.entities.GeoData method), 417
get_default_border_style()

(ezdxf.addons.tablepainter.CellStyle static
method), 204

get_dim_style() (ezdxf.entities.Dimension method),
324

get_dimension() (ezdxf.addons.binpacking.Item
method), 188

get_dxf_attrib() (ezdxf.entities.DXFEntity method),
307

get_entity_font_face() (in module
ezdxf.fonts.fonts), 559

get_extended_font_data()
(ezdxf.entities.Textstyle method), 247

get_extension_dict() (ezdxf.entities.DXFEntity
method), 308

get_extension_dict() (ezdxf.layouts.BaseLayout
method), 276

get_face_normal() (ezdxf.render.MeshBuilder
method), 598

get_face_vertices() (ezdxf.render.MeshBuilder
method), 598

get_fill_ratio() (ezdxf.addons.binpacking.AbstractPacker
method), 186

get_fill_ratio() (ezdxf.addons.binpacking.Bin
method), 187

get_first_tag() (ezdxf.lldxf.tags.Tags method), 748
get_first_value() (ezdxf.lldxf.tags.Tags method),

748
get_flag_state() (ezdxf.entities.DXFEntity method),

308
get_float() (in module ezdxf.options), 626
get_font_face() (in module ezdxf.fonts.fonts), 558
get_font_measurements() (in module

ezdxf.fonts.fonts), 559
get_geodata() (ezdxf.layouts.Modelspace method),

301
get_geometry_block() (ezdxf.entities.Dimension

method), 324
get_handle() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 750
get_handle() (ezdxf.lldxf.tags.Tags method), 748
get_hyperlink() (ezdxf.entities.DXFGraphic

method), 312
get_int() (in module ezdxf.options), 625
get_json_data() (ezdxf.addons.drawing.json.CustomJSONBackend

method), 110
get_json_data() (ezdxf.addons.drawing.json.GeoJSONBackend

method), 109

get_layout() (ezdxf.entities.DXFGraphic method),
311

get_layout_for_entity() (ezdxf.layouts.Layouts
method), 275

get_linetype() (ezdxf.entities.LayerOverrides
method), 244

get_lineweight() (ezdxf.addons.acadctb.ColorDependentPlotStyles
method), 168

get_lineweight() (ezdxf.addons.acadctb.NamedPlotStyles
method), 169

get_lineweight() (ezdxf.entities.LayerOverrides
method), 244

get_lineweight_index()
(ezdxf.addons.acadctb.ColorDependentPlotStyles
method), 168

get_lineweight_index()
(ezdxf.addons.acadctb.NamedPlotStyles
method), 169

get_locations() (ezdxf.entities.MLine method), 356
get_margin_rect()

(ezdxf.addons.drawing.layout.Page method),
102

get_measurement() (ezdxf.entities.Dimension
method), 324

get_mesh_vertex() (ezdxf.entities.Polymesh
method), 384

get_mesh_vertex_cache()
(ezdxf.entities.Polymesh method), 385

get_mode() (ezdxf.entities.Polyline method), 381
get_modelspace_limits() (ezdxf.entities.Viewport

method), 409
get_mtext_content() (ezdxf.entities.MultiLeader

method), 373
get_paper_limits() (ezdxf.layouts.Paperspace

method), 303
get_pdf_bytes() (ezdxf.addons.drawing.pymupdf.PyMuPdfBackend

method), 105
get_pixmap_bytes()

(ezdxf.addons.drawing.pymupdf.PyMuPdfBackend
method), 106

get_placement() (ezdxf.entities.Text method), 399
get_points() (ezdxf.entities.LWPolyline method), 353
get_reactors() (ezdxf.entities.DXFEntity method),

310
get_redraw_order() (ezdxf.layouts.BaseLayout

method), 277
get_required_dict() (ezdxf.entities.Dictionary

method), 412
get_rgb() (ezdxf.entities.LayerOverrides method), 243
get_rotation() (ezdxf.entities.MText method), 366
get_row() (ezdxf.math.Matrix44 method), 468
get_scale() (ezdxf.entities.Viewport method), 409
get_shx() (ezdxf.sections.table.TextstyleTable method),

237

1052 Index

ezdxf Documentation, Release 1.3.2

get_spatial_filter() (ezdxf.xclip.XClip method),
582

get_string() (ezdxf.addons.drawing.json.CustomJSONBackend
method), 110

get_string() (ezdxf.addons.drawing.json.GeoJSONBackend
method), 109

get_string() (ezdxf.addons.openscad.Script method),
196

get_subclass() (ezdxf.lldxf.extendedtags.ExtendedTags
method), 751

get_table_lineweight()
(ezdxf.addons.acadctb.ColorDependentPlotStyles
method), 168

get_table_lineweight()
(ezdxf.addons.acadctb.NamedPlotStyles
method), 169

get_text_direction() (ezdxf.entities.MText
method), 366

get_total_volume()
(ezdxf.addons.binpacking.AbstractPacker
method), 186

get_total_volume() (ezdxf.addons.binpacking.Bin
method), 187

get_total_weight()
(ezdxf.addons.binpacking.AbstractPacker
method), 186

get_total_weight() (ezdxf.addons.binpacking.Bin
method), 187

get_transformation()
(ezdxf.addons.binpacking.Item method), 188

get_transformation_matrix()
(ezdxf.entities.Viewport method), 409

get_transparency() (ezdxf.entities.LayerOverrides
method), 243

get_underlay_def() (ezdxf.entities.Underlay
method), 403

get_volume() (ezdxf.addons.binpacking.Item method),
188

get_vp_overrides() (ezdxf.entities.Layer method),
242

get_wcs_clipping_path() (ezdxf.xclip.XClip
method), 582

get_xclip_frame_policy() (ezdxf.xclip.XClip
method), 582

get_xdata() (ezdxf.entities.DXFEntity method), 309
get_xdata() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 751
get_xdata_list() (ezdxf.entities.DXFEntity method),

309
get_xlist() (ezdxf.entities.xdata.XData method), 754
gfilter() (in module ezdxf.addons.geo), 124
GfxAttribs (class in ezdxf.gfxattribs), 565
Gigameters (ezdxf.enums.InsertUnits attribute), 443
global_bspline_interpolation() (in module

ezdxf.math), 459
globe_to_map() (ezdxf.addons.geo.GeoProxy

method), 126
gps_to_world_mercator() (in module

ezdxf.math), 449
Grad (ezdxf.enums.AngularUnits attribute), 444
Gradient (class in ezdxf.entities), 344
gradient (ezdxf.entities.Hatch attribute), 333
gradient (ezdxf.entities.MPolygon attribute), 361
graphic_properties() (ezdxf.entities.DXFGraphic

method), 312
GRAY (ezdxf.enums.ACI attribute), 445
grayscale (ezdxf.addons.acadctb.PlotStyle attribute),

171
GREEN (ezdxf.enums.ACI attribute), 445
greiner_hormann_difference() (in module

ezdxf.math.clipping), 502
greiner_hormann_intersection() (in module

ezdxf.math.clipping), 502
greiner_hormann_union() (in module

ezdxf.math.clipping), 502
grid() (ezdxf.entities.Insert method), 268
grid_frequency (ezdxf.entities.Viewport.dxf at-

tribute), 407
grid_on (ezdxf.entities.VPort.dxf attribute), 259
grid_spacing (ezdxf.entities.Viewport.dxf attribute),

405
grid_spacing (ezdxf.entities.VPort.dxf attribute), 258
group() (ezdxf.tools.text.MTextEditor method), 574
group_tags() (in module ezdxf.lldxf.tags), 750
groupby() (ezdxf.document.Drawing method), 217
groupby() (ezdxf.layouts.BaseLayout method), 277
groupby() (ezdxf.query.EntityQuery method), 570
groupby() (in module ezdxf.groupby), 72
GroupCollection (class in ezdxf.entities.dxfgroups),

305
groups (ezdxf.document.Drawing attribute), 215
groups() (ezdxf.entities.dxfgroups.GroupCollection

method), 305
grow() (ezdxf.math.BoundingBox method), 479
guid() (in module ezdxf.tools), 737
guide

module, 757
gutter_width (ezdxf.tools.text_size.ezdxf.tools.text_size.MTextSize

attribute), 579

H
halign (ezdxf.entities.Text.dxf attribute), 398
handedness (ezdxf.entities.Helix.dxf attribute), 345
handle (ezdxf.entities.ArrowHeadData attribute), 375
handle (ezdxf.entities.AttribData attribute), 375
handle (ezdxf.entities.Block.dxf attribute), 265
handle (ezdxf.entities.DXFEntity.dxf attribute), 306
handle (ezdxf.entities.EndBlk.dxf attribute), 266

Index 1053

ezdxf Documentation, Release 1.3.2

handle (ezdxf.entities.Layer.dxf attribute), 240
handle (ezdxf.entities.Textstyle.dxf attribute), 246
handle (ezdxf.urecord.BinaryRecord property), 556
handle (ezdxf.urecord.UserRecord property), 555
handles() (ezdxf.entities.dxfgroups.DXFGroup

method), 304
hard_owned (ezdxf.entities.Dictionary.dxf attribute), 411
has_app_data() (ezdxf.entities.DXFEntity method),

308
has_app_data() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 751
has_arc (ezdxf.entities.LWPolyline property), 352
has_arc (ezdxf.entities.Polyline attribute), 381
has_arrowhead (ezdxf.entities.Leader.dxf attribute),

348
has_attdef() (ezdxf.layouts.BlockLayout method),

303
has_attrib() (ezdxf.entities.Insert method), 268
has_back_clipping_plane

(ezdxf.entities.SpatialFilter.dxf attribute), 427
has_bg_fill (ezdxf.entities.MTextData attribute), 377
has_binary_data (ezdxf.entities.Body property), 319
has_block_content (ezdxf.entities.MultiLeader prop-

erty), 373
has_block_rotation

(ezdxf.entities.MLeaderStyle.dxf attribute),
420

has_block_scaling (ezdxf.entities.MLeaderStyle.dxf
attribute), 420

has_clipping_path (ezdxf.xclip.XClip property), 581
has_clockwise_orientation() (ezdxf.path.Path

method), 543
has_curves (ezdxf.path.Path property), 542
has_dark_background

(ezdxf.addons.drawing.properties.ezdxf.addons.drawing.properties.LayoutProperties.LayoutProperties
property), 118

has_data (ezdxf.bbox.Cache attribute), 526
has_data (ezdxf.math.BoundingBox property), 478
has_data (ezdxf.math.BoundingBox2d property), 479
has_dogleg (ezdxf.entities.MLeaderStyle.dxf attribute),

420
has_dogleg (ezdxf.entities.MultiLeader.dxf attribute),

370
has_dogleg_vector (ezdxf.entities.LeaderData at-

tribute), 375
has_dxf_attrib() (ezdxf.entities.DXFEntity method),

307
has_dxf_unicode() (in module ezdxf), 738
has_embedded_mtext_entity

(ezdxf.entities.AttDef property), 273
has_embedded_mtext_entity (ezdxf.entities.Attrib

property), 272
has_embedded_objects() (ezdxf.lldxf.tags.Tags

method), 748

has_entry() (ezdxf.sections.table.Table method), 235
has_extended_clipping_path

(ezdxf.entities.Viewport attribute), 408
has_extended_font_data (ezdxf.entities.Textstyle

property), 247
has_extension_dict (ezdxf.entities.DXFEntity at-

tribute), 308
has_front_clipping_plane

(ezdxf.entities.SpatialFilter.dxf attribute), 427
has_gradient_data (ezdxf.entities.Hatch property),

333
has_gradient_data (ezdxf.entities.MPolygon prop-

erty), 361
has_handle() (ezdxf.blkrefs.BlockDefinitionIndex

method), 435
has_handle() (ezdxf.entitydb.EntitySpace method),

745
has_hookline (ezdxf.entities.Leader.dxf attribute), 348
has_hyperlink() (ezdxf.entities.DXFGraphic

method), 312
has_intersection() (ezdxf.math.BoundingBox

method), 478
has_intersection() (ezdxf.math.BoundingBox2d

method), 479
has_intersection() (ezdxf.math.ConstructionLine

method), 482
has_landing (ezdxf.entities.MLeaderStyle.dxf at-

tribute), 421
has_landing (ezdxf.entities.MultiLeader.dxf attribute),

370
has_last_leader_line (ezdxf.entities.LeaderData

attribute), 375
has_leader (ezdxf.entities.ArcDimension.dxf attribute),

329
has_lines (ezdxf.path.Path property), 542
has_matrix_2d_stretching() (in module

ezdxf.math), 448
has_matrix_3d_stretching() (in module

ezdxf.math), 448
has_mtext_content (ezdxf.entities.MultiLeader prop-

erty), 373
has_name() (ezdxf.blkrefs.BlockDefinitionIndex

method), 435
has_non_planar_faces()

(ezdxf.render.MeshDiagnose method), 605
has_overlap() (ezdxf.math.BoundingBox method),

478
has_overlap() (ezdxf.math.BoundingBox2d method),

480
has_overrides() (ezdxf.entities.LayerOverrides

method), 243
has_pattern_fill (ezdxf.entities.Hatch property),

333
has_pattern_fill (ezdxf.entities.MPolygon prop-

1054 Index

ezdxf Documentation, Release 1.3.2

erty), 361
has_reactors() (ezdxf.entities.DXFEntity method),

310
has_scaling (ezdxf.entities.Insert attribute), 267
has_solid_fill (ezdxf.entities.Hatch property), 333
has_solid_fill (ezdxf.entities.MPolygon property),

361
has_source_block_reference

(ezdxf.entities.DXFEntity property), 307
has_sub_paths (ezdxf.path.Path property), 542
has_tag() (ezdxf.lldxf.tags.Tags method), 748
has_tag() (ezdxf.sections.header.CustomVars method),

228
has_text_frame (ezdxf.entities.MultiLeader.dxf

attribute), 370
has_uniform_face_normals

(ezdxf.render.FaceOrientationDetector prop-
erty), 606

has_uniform_scaling (ezdxf.entities.Insert at-
tribute), 268

has_width (ezdxf.entities.LWPolyline property), 352
has_width (ezdxf.entities.Polyline attribute), 381
has_xdata() (ezdxf.entities.DXFEntity method), 309
has_xdata() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 751
has_xdata_list() (ezdxf.entities.DXFEntity method),

309
has_xlist() (ezdxf.entities.xdata.XData method), 754
Hatch (class in ezdxf.entities), 332
HATCH (ezdxf.addons.geo.PolygonConversion attribute),

127
HATCH_AND_POLYLINE

(ezdxf.addons.geo.PolygonConversion attribute),
127

hatch_boundary_paths() (in module
ezdxf.render.hatching), 623

hatch_entity() (in module ezdxf.render.hatching),
619

hatch_line() (ezdxf.render.hatching.HatchBaseLine
method), 621

hatch_line_distances() (in module
ezdxf.render.hatching), 623

hatch_paths() (in module ezdxf.render.hatching), 620
hatch_policy (ezdxf.addons.drawing.config.Configuration

attribute), 112
hatch_polygons() (in module ezdxf.render.hatching),

619
hatch_style (ezdxf.entities.Hatch.dxf attribute), 332
HatchBaseLine (class in ezdxf.render.hatching), 620
HATCHING (ezdxf.addons.hpgl2.properties.FillType

attribute), 160
hatching_timeout (ezdxf.addons.drawing.config.Configuration

attribute), 113
HatchingError (class in ezdxf.render.hatching), 623

HatchLine (class in ezdxf.render.hatching), 621
HatchLineDirectionError (class in

ezdxf.render.hatching), 623
HatchPolicy (class in ezdxf.addons.drawing.config),

115
have_bezier_curves_g1_continuity() (in

module ezdxf.math), 460
have_close_control_vertices() (in module

ezdxf.path), 539
HDW (ezdxf.addons.binpacking.RotationType attribute), 189
header (ezdxf.document.Drawing attribute), 215
HeaderSection (class in ezdxf.sections.header), 227
Hectometers (ezdxf.enums.InsertUnits attribute), 443
height (ezdxf.addons.binpacking.Bin attribute), 187
height (ezdxf.addons.binpacking.Item attribute), 188
height (ezdxf.addons.drawing.layout.Page attribute), 101
height (ezdxf.entities.Text.dxf attribute), 398
height (ezdxf.entities.Textstyle.dxf attribute), 246
height (ezdxf.entities.View.dxf attribute), 260
height (ezdxf.entities.Viewport.dxf attribute), 405
height (ezdxf.entities.VPort.dxf attribute), 258
height (ezdxf.math.ConstructionBox attribute), 491
height (ezdxf.tools.text.TextLine property), 576
height() (ezdxf.tools.text.MTextEditor method), 573
Helix (class in ezdxf.entities), 344
helix() (in module ezdxf.path), 540
helix() (in module ezdxf.render.forms), 594
high_quality() (ezdxf.addons.drawing.hpgl2.PlotterBackend

method), 107
history_handle (ezdxf.entities.Solid3d.dxf attribute),

316
hits (ezdxf.bbox.Cache attribute), 526
hookline_direction (ezdxf.entities.Leader.dxf at-

tribute), 348
horizontal_direction

(ezdxf.entities.Dimension.dxf attribute), 324
horizontal_direction (ezdxf.entities.Leader..dxf

attribute), 348
horizontal_unit_scale

(ezdxf.entities.GeoData.dxf attribute), 416
horizontal_units (ezdxf.entities.GeoData.dxf

attribute), 416
HorizontalConnection (class in ezdxf.render), 614
hpgl2_commands() (in module

ezdxf.addons.hpgl2.api), 156
Hpgl2DataNotFound (class in

ezdxf.addons.hpgl2.api), 160
Hpgl2Error (class in ezdxf.addons.hpgl2.api), 160
HWD (ezdxf.addons.binpacking.RotationType attribute), 189

I
id (ezdxf.acis.entities.AcisEntity attribute), 517
id (ezdxf.entities.Viewport.dxf attribute), 405

Index 1055

ezdxf Documentation, Release 1.3.2

identity() (ezdxf.math.linalg.Matrix class method),
507

ifc4_dumps() (in module ezdxf.addons.meshex), 192
IfcEntityType (class in ezdxf.addons.meshex), 193
IGNORE (ezdxf.addons.drawing.config.HatchPolicy

attribute), 115
IGNORE (ezdxf.addons.drawing.config.ImagePolicy

attribute), 115
IGNORE (ezdxf.addons.drawing.config.ProxyGraphicPolicy

attribute), 116
IGNORE (ezdxf.addons.drawing.config.TextPolicy at-

tribute), 117
Image (class in ezdxf.entities), 345
image_def (ezdxf.entities.Image attribute), 347
image_def_handle (ezdxf.entities.Image.dxf at-

tribute), 346
image_handle (ezdxf.entities.ImageDefReactor.dxf at-

tribute), 419
image_policy (ezdxf.addons.drawing.config.Configuration

attribute), 113
image_size (ezdxf.entities.ImageDef.dxf attribute), 418
image_size (ezdxf.entities.Image.dxf attribute), 346
ImageDef (class in ezdxf.entities), 418
ImageDefReactor (class in ezdxf.entities), 419
ImagePolicy (class in ezdxf.addons.drawing.config),

115
Imperial (ezdxf.enums.Measurement attribute), 444
import_block() (ezdxf.addons.importer.Importer

method), 129
import_blocks() (ezdxf.addons.importer.Importer

method), 129
import_entities() (ezdxf.addons.importer.Importer

method), 130
import_entity() (ezdxf.addons.importer.Importer

method), 130
import_modelspace()

(ezdxf.addons.importer.Importer method),
130

import_paperspace_layout()
(ezdxf.addons.importer.Importer method),
130

import_paperspace_layouts()
(ezdxf.addons.importer.Importer method),
131

import_shape_files()
(ezdxf.addons.importer.Importer method),
131

import_str() (ezdxf.addons.dxf2code.Code method),
133

import_table() (ezdxf.addons.importer.Importer
method), 131

import_tables() (ezdxf.addons.importer.Importer
method), 131

Importer (class in ezdxf.addons.importer), 129

imports (ezdxf.addons.dxf2code.Code attribute), 133
inch (ezdxf.addons.drawing.layout.Units attribute), 105
Inches (ezdxf.enums.InsertUnits attribute), 443
incircle_radius (ezdxf.math.ConstructionBox

attribute), 491
index (ezdxf.addons.acadctb.PlotStyle attribute), 170
index (ezdxf.entities.ArrowHeadData attribute), 375
index (ezdxf.entities.AttribData attribute), 375
index (ezdxf.entities.LeaderData attribute), 375
index (ezdxf.entities.LeaderLine attribute), 375
index (ezdxf.math.linalg.BandedMatrixLU attribute), 509
index_at() (ezdxf.math.ConstructionPolyline method),

493
infinite_line_length

(ezdxf.addons.drawing.config.Configuration
attribute), 112

inplace() (in module ezdxf.transform), 545
Insert (class in ezdxf.entities), 267
insert (ezdxf.entities.BlockData attribute), 377
insert (ezdxf.entities.Dimension.dxf attribute), 323
insert (ezdxf.entities.Image.dxf attribute), 345
insert (ezdxf.entities.Insert.dxf attribute), 267
insert (ezdxf.entities.MTextData attribute), 376
insert (ezdxf.entities.MText.dxf attribute), 364
insert (ezdxf.entities.Shape.dxf attribute), 387
insert (ezdxf.entities.Text.dxf attribute), 397
insert (ezdxf.entities.Underlay.dxf attribute), 402
insert() (ezdxf.entities.LWPolyline method), 353
insert() (ezdxf.lldxf.packedtags.VertexArray method),

753
insert_arrow() (ezdxf.render.arrows._Arrows

method), 619
insert_base (ezdxf.entities.DXFLayout.dxf attribute),

414
insert_knot() (ezdxf.math.BSpline method), 497
INSERT_TRANSFORMATION_ERROR

(ezdxf.transform.Error attribute), 546
insert_vertices() (ezdxf.entities.Polyline method),

382
insertion_point (ezdxf.render.BlockAlignment at-

tribute), 614
InsertUnits (class in ezdxf.enums), 443
inside() (ezdxf.math.BoundingBox method), 478
inside() (ezdxf.math.BoundingBox2d method), 479
inside() (ezdxf.math.ConstructionCircle method), 483
inside_bounding_box()

(ezdxf.math.ConstructionLine method), 482
instance_count (ezdxf.entities.DXFClass.dxf at-

tribute), 229
int2rgb() (in module ezdxf.colors), 437
integral (ezdxf.render.arrows._Arrows attribute), 618
intensity (ezdxf.entities.Sun.dxf attribute), 428
Interpreter (class in ezdxf.addons.hpgl2.api), 157
intersect() (ezdxf.addons.pycsg.CSG method), 166

1056 Index

ezdxf Documentation, Release 1.3.2

intersect() (ezdxf.math.ConstructionBox method),
492

intersect() (ezdxf.math.ConstructionLine method),
482

intersect() (ezdxf.math.ConstructionRay method),
481

intersect_arc() (ezdxf.math.ConstructionArc
method), 488

intersect_circle() (ezdxf.math.ConstructionArc
method), 488

intersect_circle() (ezdxf.math.ConstructionCircle
method), 484

intersect_cubic_bezier_curve()
(ezdxf.render.hatching.HatchLine method),
621

intersect_line() (ezdxf.math.ConstructionArc
method), 487

intersect_line() (ezdxf.math.ConstructionCircle
method), 484

intersect_line() (ezdxf.math.Plane method), 477
intersect_line() (ezdxf.render.hatching.HatchLine

method), 621
intersect_polylines_2d() (in module

ezdxf.math), 452
intersect_polylines_3d() (in module

ezdxf.math), 460
intersect_ray() (ezdxf.math.ConstructionArc

method), 487
intersect_ray() (ezdxf.math.ConstructionCircle

method), 483
intersect_ray() (ezdxf.math.Plane method), 477
Intersection (class in ezdxf.render.hatching), 622
INTERSECTION (in module ezdxf.addons.openscad), 197
intersection() (ezdxf.math.BoundingBox method),

478
intersection() (ezdxf.math.BoundingBox2d

method), 480
intersection() (ezdxf.query.EntityQuery method),

570
intersection_line_line_2d() (in module

ezdxf.math), 452
intersection_line_line_3d() (in module

ezdxf.math), 460
intersection_line_polygon_3d() (in module

ezdxf.math), 461
intersection_ray_polygon_3d() (in module

ezdxf.math), 461
intersection_ray_ray_3d() (in module

ezdxf.math), 461
IntersectionType (class in ezdxf.render.hatching),

622
invalidate() (ezdxf.bbox.Cache method), 527
InvalidLinkStructure (class in ezdxf.acis.api), 516
inverse() (ezdxf.addons.pycsg.CSG method), 167

inverse() (ezdxf.math.linalg.Matrix method), 507
inverse() (ezdxf.math.Matrix44 method), 471
inverse_insert_matrix (ezdxf.entities.SpatialFilter

property), 427
inverted_clip (ezdxf.xclip.ClippingPath attribute),

582
inverted_clip_compare (ezdxf.xclip.ClippingPath

attribute), 583
InvertedClippingPolygon2d (class in

ezdxf.math.clipping), 503
invisible (ezdxf.entities.DXFGraphic.dxf attribute),

313
invisible_edges (ezdxf.entities.Face3d.dxf attribute),

316
is_2d_polyline (ezdxf.entities.Polyline attribute), 381
is_2d_polyline_vertex (ezdxf.entities.Vertex at-

tribute), 384
is_3d_polyline (ezdxf.entities.Polyline attribute), 381
is_3d_polyline_vertex (ezdxf.entities.Vertex at-

tribute), 384
is_acad_arrow() (ezdxf.render.arrows._Arrows

method), 619
is_active_paperspace (ezdxf.entities.BlockRecord

property), 264
is_active_paperspace (ezdxf.layouts.BaseLayout

attribute), 276
is_alive (ezdxf.entities.DXFEntity property), 307
is_alive (ezdxf.entities.xdict.ExtensionDict property),

433
is_alive (ezdxf.layouts.BaseLayout attribute), 276
is_an_entity (ezdxf.entities.DXFClass.dxf attribute),

229
is_annotative (ezdxf.entities.MLeaderStyle.dxf

attribute), 421
is_annotative (ezdxf.entities.MultiLeader.dxf at-

tribute), 370
is_anonymous (ezdxf.entities.Block attribute), 266
is_any_corner_inside()

(ezdxf.math.ConstructionBox method), 492
is_any_layout (ezdxf.entities.BlockRecord property),

264
is_any_layout (ezdxf.layouts.BaseLayout attribute),

276
is_any_paperspace (ezdxf.entities.BlockRecord

property), 264
is_any_paperspace (ezdxf.layouts.BaseLayout at-

tribute), 276
is_axes_aligned_rectangle_2d() (in module

ezdxf.math), 452
is_backward (ezdxf.entities.Text property), 398
is_backward (ezdxf.entities.Textstyle property), 246
is_block_layout (ezdxf.entities.BlockRecord prop-

erty), 264
is_block_layout (ezdxf.layouts.BaseLayout at-

Index 1057

ezdxf Documentation, Release 1.3.2

tribute), 276
is_bold (ezdxf.fonts.fonts.FontFace property), 562
is_bound (ezdxf.entities.DXFEntity property), 307
is_cartesian (ezdxf.math.Matrix44 property), 471
is_cartesian (ezdxf.math.UCS attribute), 465
is_clamped (ezdxf.math.BSpline property), 496
is_clipping_enabled

(ezdxf.entities.SpatialFilter.dxf attribute), 427
is_clipping_enabled (ezdxf.xclip.XClip property),

581
is_closed (ezdxf.entities.LWPolyline property), 352
is_closed (ezdxf.entities.MLine property), 356
is_closed (ezdxf.entities.Polyline attribute), 381
is_closed (ezdxf.entities.PolylinePath attribute), 339
is_closed (ezdxf.math.ConstructionPolyline property),

493
is_closed (ezdxf.path.Path property), 542
is_closed_surface

(ezdxf.render.FaceOrientationDetector prop-
erty), 606

is_closed_surface (ezdxf.render.MeshDiagnose
property), 604

is_const (ezdxf.entities.AttDef property), 273
is_const (ezdxf.entities.Attrib property), 271
is_convex_polygon_2d() (in module ezdxf.math),

452
is_coplanar_plane() (ezdxf.math.Plane method),

477
is_coplanar_vertex() (ezdxf.math.Plane method),

477
is_copy (ezdxf.entities.DXFEntity property), 307
is_dimensional_constraint

(ezdxf.entities.Dimension property), 324
is_edge_balance_broken

(ezdxf.render.MeshDiagnose property), 604
is_empty (ezdxf.addons.binpacking.Bin property), 187
is_empty (ezdxf.disassemble.Primitive property), 529
is_empty (ezdxf.math.BoundingBox property), 478
is_empty (ezdxf.math.BoundingBox2d property), 479
is_ezdxf_arrow() (ezdxf.render.arrows._Arrows

method), 619
is_face_record (ezdxf.entities.Vertex attribute), 384
is_frozen() (ezdxf.entities.Layer method), 241
is_frozen() (ezdxf.entities.Viewport method), 408
is_hard_owner (ezdxf.entities.Dictionary attribute),

411
is_horizontal (ezdxf.math.ConstructionLine at-

tribute), 482
is_horizontal (ezdxf.math.ConstructionRay at-

tribute), 481
is_inside() (ezdxf.math.clipping.ClippingRect2d

method), 503
is_inside() (ezdxf.math.clipping.ConcaveClippingPolygon2d

method), 503

is_inside() (ezdxf.math.clipping.ConvexClippingPolygon2d
method), 503

is_inside() (ezdxf.math.clipping.InvertedClippingPolygon2d
method), 504

is_inside() (ezdxf.math.ConstructionBox method),
492

is_installed() (in module ezdxf.addons.odafc), 139
is_installed() (in module ezdxf.addons.openscad),

195
is_inverted_clip (ezdxf.xclip.ClippingPath at-

tribute), 583
is_inverted_clip (ezdxf.xclip.XClip property), 581
is_invisible (ezdxf.entities.AttDef property), 273
is_invisible (ezdxf.entities.Attrib property), 271
is_italic (ezdxf.fonts.fonts.FontFace property), 562
is_landscape (ezdxf.addons.drawing.layout.Page

property), 102
is_layout_block (ezdxf.entities.Block attribute), 266
is_locked() (ezdxf.entities.Layer method), 241
is_m_closed (ezdxf.entities.Polyline attribute), 381
is_manifold (ezdxf.render.FaceOrientationDetector at-

tribute), 606
is_manifold (ezdxf.render.MeshDiagnose property),

604
is_modelspace (ezdxf.entities.BlockRecord property),

264
is_modelspace (ezdxf.layouts.BaseLayout attribute),

276
is_n_closed (ezdxf.entities.Polyline attribute), 381
is_none (ezdxf.acis.entities.AcisEntity attribute), 517
is_null (ezdxf.math.Vec3 attribute), 473
is_oblique (ezdxf.fonts.fonts.FontFace property), 562
is_off() (ezdxf.entities.Layer method), 242
is_on() (ezdxf.entities.Layer method), 242
is_orthogonal (ezdxf.math.Matrix44 property), 471
is_overlapping() (ezdxf.math.ConstructionBox

method), 492
is_packed (ezdxf.addons.binpacking.AbstractPacker

property), 185
is_parallel() (ezdxf.math.ConstructionRay method),

481
is_parallel() (ezdxf.math.Vec3 method), 474
is_partial (ezdxf.entities.ArcDimension.dxf attribute),

329
is_planar_face() (in module ezdxf.math), 461
is_point_in_polygon_2d() (in module

ezdxf.math), 452
is_point_left_of_line()

(ezdxf.math.ConstructionLine method), 482
is_point_left_of_line() (in module

ezdxf.math), 453
is_point_on_line_2d() (in module ezdxf.math),

453
is_poly_face_mesh (ezdxf.entities.Polyline attribute),

1058 Index

ezdxf Documentation, Release 1.3.2

381
is_poly_face_mesh_vertex (ezdxf.entities.Vertex

attribute), 384
is_polygon_mesh (ezdxf.entities.Polyline attribute),

381
is_polygon_mesh_vertex (ezdxf.entities.Vertex at-

tribute), 384
is_portrait (ezdxf.addons.drawing.layout.Page prop-

erty), 102
is_preset (ezdxf.entities.AttDef property), 273
is_preset (ezdxf.entities.Attrib property), 271
is_rational (ezdxf.math.BSpline property), 496
is_reference_face_pointing_outwards()

(ezdxf.render.FaceOrientationDetector method),
606

is_revcloud() (in module ezdxf.revcloud), 571
is_shape_file (ezdxf.entities.Textstyle property), 246
is_single_mesh (ezdxf.render.FaceOrientationDetector

property), 606
is_started (ezdxf.render.trace.LinearTrace attribute),

608
is_supported_dxf_attrib()

(ezdxf.entities.DXFEntity method), 307
is_text_direction_negative

(ezdxf.entities.MultiLeader.dxf attribute), 371
is_text_vertical_stacked() (in module

ezdxf.tools.text), 578
is_transparency_by_block

(ezdxf.entities.DXFGraphic property), 311
is_transparency_by_layer

(ezdxf.entities.DXFGraphic property), 311
is_upside_down (ezdxf.entities.Text property), 398
is_upside_down (ezdxf.entities.Textstyle property), 246
is_upside_down_text_angle() (in module

ezdxf.tools.text), 578
is_verify (ezdxf.entities.AttDef property), 273
is_verify (ezdxf.entities.Attrib property), 271
is_vertical (ezdxf.math.ConstructionLine attribute),

482
is_vertical (ezdxf.math.ConstructionRay attribute),

481
is_vertical_stacked (ezdxf.entities.Textstyle prop-

erty), 246
is_virtual (ezdxf.entities.DXFEntity property), 307
is_visible (ezdxf.addons.drawing.ezdxf.addons.drawing.properties.LayerProperties

attribute), 118
is_visible (ezdxf.addons.drawing.properties.Properties

attribute), 118
is_visible (ezdxf.addons.drawing.recorder.Override

attribute), 101
is_xref (ezdxf.entities.Block attribute), 266
is_xref (ezdxf.entities.BlockRecord property), 264
is_xref_overlay (ezdxf.entities.Block attribute), 266
isclose() (ezdxf.math.linalg.Matrix method), 507

isclose() (ezdxf.math.Vec3 method), 474
Item (class in ezdxf.addons.binpacking), 188
items (ezdxf.addons.binpacking.AbstractPacker at-

tribute), 185
items (ezdxf.entities.Linetype.dxf attribute), 248
items() (ezdxf.entities.Dictionary method), 411
items() (ezdxf.entities.xdict.ExtensionDict method), 434
items() (ezdxf.entitydb.EntityDB method), 744
items() (ezdxf.gfxattribs.GfxAttribs method), 566
IterDXF (class in ezdxf.addons.iterdxf), 136
IterDXFWriter (class in ezdxf.addons.iterdxf), 137

J
join_style (ezdxf.addons.acadctb.PlotStyle attribute),

171
JoinStyle (class in ezdxf.enums), 446
julian_day (ezdxf.entities.Sun.dxf attribute), 428
juliandate() (in module ezdxf.tools), 737
justification (ezdxf.entities.MLine.dxf attribute),

355
JUSTIFIED (ezdxf.enums.MTextParagraphAlignment at-

tribute), 441
JUSTIFIED (ezdxf.tools.text.ezdxf.lldxf.const.MTextParagraphAlignment

attribute), 576

K
k_means() (in module ezdxf.math.clustering), 504
KEEP (ezdxf.xref.ConflictPolicy attribute), 95
key (ezdxf.entities.DXFClass attribute), 229
key() (ezdxf.sections.table.Table static method), 235
keys() (ezdxf.entities.Dictionary method), 411
keys() (ezdxf.entities.xdict.ExtensionDict method), 434
keys() (ezdxf.entitydb.EntityDB method), 744
Kilometers (ezdxf.enums.InsertUnits attribute), 443
Kind (class in ezdxf.addons.text2path), 150
knot_count() (ezdxf.entities.Spline method), 392
knot_refinement() (ezdxf.math.BSpline method),

497
knot_tolerance (ezdxf.entities.Spline.dxf attribute),

391
knot_values (ezdxf.entities.SplineEdge attribute), 343
knots (ezdxf.entities.Spline attribute), 392
knots() (ezdxf.math.BSpline method), 496

L
landing_gap_size (ezdxf.entities.MLeaderContext at-

tribute), 374
landing_gap_size (ezdxf.entities.MLeaderStyle.dxf

attribute), 421
last (ezdxf.query.EntityQuery attribute), 569
last_height (ezdxf.entities.Textstyle.dxf attribute), 247
last_leader_point (ezdxf.entities.LeaderData at-

tribute), 375
Layer (class in ezdxf.entities), 240

Index 1059

ezdxf Documentation, Release 1.3.2

layer (ezdxf.addons.drawing.ezdxf.addons.drawing.properties.LayerProperties
attribute), 118

layer (ezdxf.addons.drawing.properties.Properties
attribute), 118

layer (ezdxf.entities.Block.dxf attribute), 265
layer (ezdxf.entities.DXFGraphic.dxf attribute), 313
layer (ezdxf.entities.EndBlk.dxf attribute), 266
layer (ezdxf.gfxattribs.GfxAttribs property), 566
LayerOverrides (class in ezdxf.entities), 243
layers (ezdxf.addons.dxf2code.Code attribute), 133
layers (ezdxf.document.Drawing attribute), 215
layers (ezdxf.sections.tables.TablesSection attribute), 229
LayerTable (class in ezdxf.sections.table), 236
Layout (class in ezdxf.layouts), 299
layout (ezdxf.entities.BlockRecord.dxf attribute), 263
layout() (ezdxf.document.Drawing method), 218
layout_flags (ezdxf.entities.DXFLayout.dxf attribute),

414
layout_names() (ezdxf.document.Drawing method),

218
layout_names_in_taborder()

(ezdxf.document.Drawing method), 218
Layouts (class in ezdxf.layouts), 274
layouts (ezdxf.document.Drawing attribute), 215
layouts_and_blocks() (ezdxf.document.Drawing

method), 220
Leader (class in ezdxf.entities), 347
leader_extend_to_text

(ezdxf.entities.MultiLeader.dxf attribute), 371
leader_length (ezdxf.entities.Dimension.dxf at-

tribute), 323
leader_line_color (ezdxf.entities.MLeaderStyle.dxf

attribute), 421
leader_line_color (ezdxf.entities.MultiLeader.dxf

attribute), 371
leader_linetype_handle

(ezdxf.entities.MLeaderStyle.dxf attribute),
421

leader_linetype_handle
(ezdxf.entities.MultiLeader.dxf attribute), 371

leader_lineweight (ezdxf.entities.MLeaderStyle.dxf
attribute), 421

leader_lineweight (ezdxf.entities.MultiLeader.dxf
attribute), 371

leader_offset_annotation_placement
(ezdxf.entities.Leader.dxf attribute), 349

leader_offset_block_ref
(ezdxf.entities.Leader.dxf attribute), 349

leader_point1 (ezdxf.entities.ArcDimension.dxf at-
tribute), 329

leader_point2 (ezdxf.entities.ArcDimension.dxf at-
tribute), 329

leader_type (ezdxf.entities.MLeaderStyle.dxf at-
tribute), 421

leader_type (ezdxf.entities.MultiLeader.dxf attribute),
371

LeaderData (class in ezdxf.entities), 374
LeaderLine (class in ezdxf.entities), 375
leaders (ezdxf.entities.MLeaderContext attribute), 374
LeaderType (class in ezdxf.render), 613
leading() (in module ezdxf.tools.text), 578
left (ezdxf.addons.drawing.layout.Margins attribute),

102
LEFT (ezdxf.enums.MTextParagraphAlignment attribute),

441
LEFT (ezdxf.enums.TextEntityAlignment attribute), 440
left (ezdxf.render.ConnectionSide attribute), 613
left (ezdxf.render.TextAlignment attribute), 614
LEFT (ezdxf.tools.text.ezdxf.lldxf.const.MTextParagraphAlignment

attribute), 576
left_attachment (ezdxf.entities.MLeaderContext at-

tribute), 374
left_margin (ezdxf.entities.PlotSettings.dxf attribute),

423
LEFT_TO_RIGHT (ezdxf.enums.MTextFlowDirection at-

tribute), 442
legacy_repair() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 750
length (ezdxf.entities.Linetype.dxf attribute), 248
length (ezdxf.math.ConstructionPolyline property), 493
length() (ezdxf.math.ConstructionLine method), 482
LengthUnits (class in ezdxf.enums), 444
lens_length (ezdxf.entities.View.dxf attribute), 260
lens_length (ezdxf.entities.VPort.dxf attribute), 258
lerp() (ezdxf.math.Vec3 method), 474
LibreCadFont (class in ezdxf.fonts.fonts), 560
LIGHT_GRAY (ezdxf.enums.ACI attribute), 445
Lightyears (ezdxf.enums.InsertUnits attribute), 443
limmax (ezdxf.entities.DXFLayout.dxf attribute), 414
limmin (ezdxf.entities.DXFLayout.dxf attribute), 414
Line (class in ezdxf.entities), 349
Line (class in ezdxf.render.hatching), 622
LINE (ezdxf.entities.EdgeType attribute), 341
line_direction (ezdxf.entities.MLineVertex attribute),

357
line_params (ezdxf.entities.MLineVertex attribute), 357
line_policy (ezdxf.addons.drawing.config.Configuration

attribute), 112
line_spacing_factor (ezdxf.entities.Dimension.dxf

attribute), 323
line_spacing_factor (ezdxf.entities.MTextData at-

tribute), 376
line_spacing_factor (ezdxf.entities.MText.dxf at-

tribute), 365
line_spacing_style (ezdxf.entities.Dimension.dxf

attribute), 323
line_spacing_style (ezdxf.entities.MTextData at-

tribute), 376

1060 Index

ezdxf Documentation, Release 1.3.2

line_spacing_style (ezdxf.entities.MText.dxf
attribute), 365

line_to() (ezdxf.path.Path method), 544
linear_vertex_spacing() (in module

ezdxf.math), 461
LinearTrace (class in ezdxf.render.trace), 608
LineEdge (class in ezdxf.entities), 341
linepattern_size (ezdxf.addons.acadctb.PlotStyle

attribute), 170
LinePolicy (class in ezdxf.addons.drawing.config), 116
lines (ezdxf.entities.LeaderData attribute), 375
lines (ezdxf.entities.Pattern attribute), 343
lines_to_curve3() (in module ezdxf.path), 539
lines_to_curve4() (in module ezdxf.path), 539
Linetype (class in ezdxf.entities), 248
linetype (ezdxf.addons.acadctb.PlotStyle attribute), 170
linetype (ezdxf.entities.DXFGraphic.dxf attribute), 313
linetype (ezdxf.entities.ezdxf.entities.mline.MLineStyleElement

attribute), 358
linetype (ezdxf.entities.Layer.dxf attribute), 240
linetype (ezdxf.gfxattribs.GfxAttribs property), 566
linetype_name (ezdxf.addons.drawing.properties.Properties

attribute), 117
linetype_pattern (ezdxf.addons.drawing.properties.Properties

attribute), 117
linetype_scale (ezdxf.addons.drawing.properties.Properties

attribute), 117
linetypes (ezdxf.addons.dxf2code.Code attribute), 133
linetypes (ezdxf.document.Drawing attribute), 216
linetypes (ezdxf.sections.tables.TablesSection attribute),

229
LinetypeTable (class in ezdxf.sections.table), 236
lineweight (ezdxf.addons.acadctb.PlotStyle attribute),

170
lineweight (ezdxf.addons.drawing.properties.Properties

attribute), 117
lineweight (ezdxf.entities.DXFGraphic.dxf attribute),

313
lineweight (ezdxf.entities.Layer.dxf attribute), 241
lineweight (ezdxf.gfxattribs.GfxAttribs property), 566
lineweight_policy

(ezdxf.addons.drawing.config.Configuration
attribute), 113

lineweight_scaling
(ezdxf.addons.drawing.config.Configuration
attribute), 112

LineweightPolicy (class in
ezdxf.addons.drawing.config), 116

lineweights (ezdxf.addons.acadctb.ColorDependentPlotStyles
attribute), 168

lineweights (ezdxf.addons.acadctb.NamedPlotStyles
attribute), 169

link_dxf_object() (ezdxf.entities.Dictionary
method), 412

link_dxf_object()
(ezdxf.entities.xdict.ExtensionDict method),
434

list() (ezdxf.math.Vec3 class method), 474
live_selection_handle (ezdxf.entities.View.dxf

attribute), 261
load() (in module ezdxf.acis.api), 513
load() (in module ezdxf.addons.acadctb), 167
load() (in module ezdxf.fonts.fonts), 559
load_block_layout() (ezdxf.xref.Loader method),

96
load_block_layout_into() (ezdxf.xref.Loader

method), 96
load_dim_styles() (ezdxf.xref.Loader method), 96
load_dxf() (in module ezdxf.acis.api), 512
load_from_header() (ezdxf.gfxattribs.GfxAttribs

class method), 566
load_json_tags() (in module ezdxf.document), 213
load_layers() (ezdxf.xref.Loader method), 96
load_linetypes() (ezdxf.xref.Loader method), 96
load_materials() (ezdxf.xref.Loader method), 97
load_mleader_styles() (ezdxf.xref.Loader

method), 97
load_mline_styles() (ezdxf.xref.Loader method),

96
load_modelspace() (ezdxf.xref.Loader method), 95
load_modelspace() (in module ezdxf.xref), 94
load_paperspace() (in module ezdxf.xref), 94
load_paperspace_layout() (ezdxf.xref.Loader

method), 95
load_paperspace_layout_into()

(ezdxf.xref.Loader method), 96
load_proxy_graphics (in module ezdxf.options),

627
load_text_styles() (ezdxf.xref.Loader method), 96
loaded (ezdxf.entities.ImageDef.dxf attribute), 418
loaded_config_files (in module ezdxf.options),

626
Loader (class in ezdxf.xref), 95
local_cubic_bspline_interpolation() (in

module ezdxf.math), 461
location (ezdxf.acis.entities.Point attribute), 523
location (ezdxf.entities.MLineVertex attribute), 357
location (ezdxf.entities.Point.dxf attribute), 378
location (ezdxf.entities.Vertex.dxf attribute), 383
location (ezdxf.math.ConstructionRay attribute), 480
lock() (ezdxf.entities.Layer method), 241
LoftedSurface (class in ezdxf.entities), 395
log_message() (ezdxf.addons.drawing.frontend.Frontend

method), 120
log_unprocessed_tags (in module ezdxf.options),

628
Logger (class in ezdxf.transform), 546
Logger.Entry (class in ezdxf.transform), 546

Index 1061

ezdxf Documentation, Release 1.3.2

Loop (class in ezdxf.acis.entities), 520
loop (ezdxf.acis.entities.Coedge attribute), 521
loop (ezdxf.acis.entities.Face attribute), 519
loops() (ezdxf.acis.entities.Face method), 520
low_quality() (ezdxf.addons.drawing.hpgl2.PlotterBackend

method), 107
lower (ezdxf.math.linalg.BandedMatrixLU attribute), 509
lower_left (ezdxf.entities.VPort.dxf attribute), 258
ltscale (ezdxf.entities.DXFGraphic.dxf attribute), 313
ltscale (ezdxf.gfxattribs.GfxAttribs property), 566
luminance (ezdxf.addons.drawing.properties.Properties

attribute), 117
LUMINANCE (ezdxf.addons.hpgl2.api.MergeControl

attribute), 156
luminance (ezdxf.colors.RGB property), 438
luminance (ezdxf.colors.RGBA property), 438
luminance() (in module ezdxf.colors), 437
Lump (class in ezdxf.acis.entities), 518
lump (ezdxf.acis.entities.Body attribute), 518
lump (ezdxf.acis.entities.Shell attribute), 519
lumps() (ezdxf.acis.entities.Body method), 518
LWPolyline (class in ezdxf.entities), 352

M
m1 (ezdxf.math.linalg.BandedMatrixLU attribute), 509
m2 (ezdxf.math.linalg.BandedMatrixLU attribute), 509
m_close() (ezdxf.entities.Polyline method), 381
m_count (ezdxf.entities.Polyline.dxf attribute), 380
m_smooth_density (ezdxf.entities.Polyline.dxf at-

tribute), 380
MAGENTA (ezdxf.enums.ACI attribute), 445
magnitude (ezdxf.math.Vec3 attribute), 473
magnitude_square (ezdxf.math.Vec3 attribute), 473
magnitude_xy (ezdxf.math.Vec3 attribute), 473
main_axis_points()

(ezdxf.math.ConstructionEllipse method), 490
main_viewport() (ezdxf.layouts.Paperspace method),

302
major_axis (ezdxf.entities.Ellipse.dxf attribute), 330
major_axis (ezdxf.math.ConstructionEllipse attribute),

489
major_axis_vector (ezdxf.entities.EllipseEdge

attribute), 342
make_acad_compatible() (in module

ezdxf.r12strict), 226
make_font() (ezdxf.entities.Textstyle method), 247
make_font() (in module ezdxf.fonts.fonts), 558
make_hatches_from_str() (in module

ezdxf.addons.text2path), 150
make_path() (in module ezdxf.path), 531
make_path_from_entity() (in module

ezdxf.addons.text2path), 151
make_path_from_str() (in module

ezdxf.addons.text2path), 149

make_paths_from_entity() (in module
ezdxf.addons.text2path), 151

make_paths_from_str() (in module
ezdxf.addons.text2path), 149

make_primitive() (in module ezdxf.disassemble),
528

map_to_globe() (ezdxf.addons.geo.GeoProxy
method), 126

mapbox_earcut_2d() (in module
ezdxf.math.triangulation), 511

mapbox_earcut_3d() (in module
ezdxf.math.triangulation), 511

Margins (class in ezdxf.addons.drawing.layout), 102
margins (ezdxf.addons.drawing.layout.Page attribute),

102
match() (ezdxf.query.EntityQuery method), 569
material_handle (ezdxf.entities.Layer.dxf attribute),

241
materials (ezdxf.document.Drawing attribute), 216
MatplotlibBackend (class in

ezdxf.addons.drawing.matplotlib), 98
Matrix (class in ezdxf.math.linalg), 506
matrix (ezdxf.acis.entities.Transform attribute), 517
matrix (ezdxf.math.linalg.Matrix attribute), 507
Matrix44 (class in ezdxf.math), 468
matrix44() (ezdxf.entities.Insert method), 271
max_flattening_distance

(ezdxf.addons.drawing.config.Configuration
attribute), 112

max_flattening_distance
(ezdxf.disassemble.Primitive attribute), 528

max_height (ezdxf.addons.drawing.layout.Page at-
tribute), 102

max_leader_segments_points
(ezdxf.entities.MLeaderStyle.dxf attribute),
421

max_stroke_width (ezdxf.addons.drawing.layout.Settings
attribute), 104

max_t (ezdxf.math.ApproxParamT property), 501
max_t (ezdxf.math.BSpline property), 496
max_weight (ezdxf.addons.binpacking.Bin attribute),

187
max_width (ezdxf.addons.drawing.layout.Page at-

tribute), 102
mcount (ezdxf.entities.Insert attribute), 268
Measurement (class in ezdxf.enums), 444
measurement (ezdxf.addons.drawing.config.Configuration

attribute), 111
measurement (ezdxf.fonts.fonts.AbstractFont attribute),

560
MengerSponge (class in ezdxf.addons), 176
merge() (ezdxf.addons.dxf2code.Code method), 134
merge_coplanar_faces()

(ezdxf.render.MeshBuilder method), 598

1062 Index

ezdxf Documentation, Release 1.3.2

MergeControl (class in ezdxf.addons.hpgl2.api), 156
Mesh (class in ezdxf.entities), 359
mesh (ezdxf.disassemble.Primitive property), 529
mesh() (ezdxf.addons.MengerSponge method), 176
mesh() (ezdxf.addons.pycsg.CSG method), 166
mesh() (ezdxf.addons.SierpinskyPyramid method), 181
mesh_faces_count (ezdxf.entities.GeoData.dxf

attribute), 416
mesh_from_body() (in module ezdxf.acis.api), 514
mesh_tessellation() (ezdxf.render.MeshBuilder

method), 599
MeshAverageVertexMerger (class in ezdxf.render),

603
MeshBuilder (class in ezdxf.render), 597
MeshData (class in ezdxf.entities), 359
MeshDiagnose (class in ezdxf.render), 604
MeshTransformer (class in ezdxf.render), 601
MeshVertexCache (class in ezdxf.entities), 385
MeshVertexMerger (class in ezdxf.render), 603
messages() (ezdxf.transform.Logger method), 547
Meters (ezdxf.enums.InsertUnits attribute), 443
Metric (ezdxf.enums.Measurement attribute), 444
Microinches (ezdxf.enums.InsertUnits attribute), 443
Microns (ezdxf.enums.InsertUnits attribute), 443
MIDDLE (ezdxf.enums.MTextLineAlignment attribute), 442
MIDDLE (ezdxf.enums.TextEntityAlignment attribute), 440
MIDDLE_CENTER (ezdxf.addons.drawing.layout.PageAlignment

attribute), 103
MIDDLE_CENTER (ezdxf.enums.MTextEntityAlignment

attribute), 441
MIDDLE_CENTER (ezdxf.enums.TextEntityAlignment at-

tribute), 441
MIDDLE_LEFT (ezdxf.addons.drawing.layout.PageAlignment

attribute), 103
MIDDLE_LEFT (ezdxf.enums.MTextEntityAlignment at-

tribute), 441
MIDDLE_LEFT (ezdxf.enums.TextEntityAlignment at-

tribute), 441
middle_of_bottom_line

(ezdxf.render.HorizontalConnection attribute),
614

middle_of_text (ezdxf.render.HorizontalConnection
attribute), 614

middle_of_top_line
(ezdxf.render.HorizontalConnection attribute),
614

MIDDLE_RIGHT (ezdxf.addons.drawing.layout.PageAlignment
attribute), 103

MIDDLE_RIGHT (ezdxf.enums.MTextEntityAlignment at-
tribute), 441

MIDDLE_RIGHT (ezdxf.enums.TextEntityAlignment
attribute), 441

midpoint() (ezdxf.math.ConstructionLine method), 482
Miles (ezdxf.enums.InsertUnits attribute), 443

Millimeters (ezdxf.enums.InsertUnits attribute), 443
Mils (ezdxf.enums.InsertUnits attribute), 443
min_dash_length (ezdxf.addons.drawing.config.Configuration

attribute), 112
min_hatch_line_distance

(ezdxf.addons.drawing.config.Configuration
attribute), 113

min_lineweight (ezdxf.addons.drawing.config.Configuration
attribute), 112

MIN_SCALING_FACTOR (in module ezdxf.transform),
546

min_stroke_width (ezdxf.addons.drawing.layout.Settings
attribute), 104

minor_axis (ezdxf.entities.Ellipse attribute), 330
minor_axis (ezdxf.math.ConstructionEllipse attribute),

489
minor_axis_length (ezdxf.entities.EllipseEdge

attribute), 342
misses (ezdxf.bbox.Cache attribute), 526
MISSING (ezdxf.addons.drawing.config.ImagePolicy at-

tribute), 115
miter_direction (ezdxf.entities.MLineVertex at-

tribute), 357
mleader_styles (ezdxf.document.Drawing attribute),

216
MLeaderContext (class in ezdxf.entities), 373
MLeaderStyle (class in ezdxf.entities), 419
MLine (class in ezdxf.entities), 355
mline_styles (ezdxf.document.Drawing attribute), 216
MLineStyle (class in ezdxf.entities), 357
MLineVertex (class in ezdxf.entities), 357
mm (ezdxf.addons.drawing.layout.Units attribute), 105
model_type() (ezdxf.layouts.Layout method), 301
Modelspace (class in ezdxf.layouts), 301
MODELSPACE (ezdxf.addons.drawing.config.BackgroundPolicy

attribute), 114
modelspace() (ezdxf.addons.iterdxf.IterDXF method),

136
modelspace() (ezdxf.document.Drawing method), 218
modelspace() (ezdxf.layouts.Layouts method), 274
modelspace() (in module ezdxf.addons.iterdxf), 135
module

ezdxf.acis, 512
ezdxf.acis.api, 512
ezdxf.acis.entities, 516
ezdxf.addons, 97
ezdxf.addons.acadctb, 167
ezdxf.addons.binpacking, 183
ezdxf.addons.drawing, 97
ezdxf.addons.dxf2code, 131
ezdxf.addons.geo, 122
ezdxf.addons.gerber_D6673, 206
ezdxf.addons.hpgl2.api, 153
ezdxf.addons.importer, 128

Index 1063

ezdxf Documentation, Release 1.3.2

ezdxf.addons.iterdxf, 134
ezdxf.addons.meshex, 190
ezdxf.addons.odafc, 137
ezdxf.addons.openscad, 193
ezdxf.addons.pycsg, 160
ezdxf.addons.r12export, 140
ezdxf.addons.r12writer, 142
ezdxf.addons.tablepainter, 198
ezdxf.addons.text2path, 148
ezdxf.appsettings, 563
ezdxf.bbox, 524
ezdxf.blkrefs, 435
ezdxf.colors, 437
ezdxf.comments, 564
ezdxf.disassemble, 527
ezdxf.document, 213
ezdxf.entities, 306
ezdxf.entities.appdata, 755
ezdxf.entities.dxfgroups, 304
ezdxf.entities.xdata, 754
ezdxf.entities.xdict, 433
ezdxf.entitydb, 744
ezdxf.enums, 440
ezdxf.fonts.fonts, 556
ezdxf.gfxattribs, 565
ezdxf.groupby, 72
ezdxf.layouts, 274
ezdxf.lldxf.const, 436
ezdxf.lldxf.extendedtags, 750
ezdxf.lldxf.packedtags, 752
ezdxf.lldxf.tags, 748
ezdxf.lldxf.types, 746
ezdxf.math, 446
ezdxf.math.clipping, 502
ezdxf.math.clustering, 504
ezdxf.math.linalg, 505
ezdxf.math.rtree, 509
ezdxf.math.triangulation, 510
ezdxf.options, 623
ezdxf.path, 529
ezdxf.query, 567
ezdxf.r12strict, 225
ezdxf.recover, 221
ezdxf.render, 584
ezdxf.render.arrows, 615
ezdxf.render.forms, 589
ezdxf.render.hatching, 619
ezdxf.render.point, 609
ezdxf.render.trace, 606
ezdxf.reorder, 544
ezdxf.revcloud, 571
ezdxf.sections.blocks, 230
ezdxf.sections.classes, 228
ezdxf.sections.entities, 231

ezdxf.sections.header, 227
ezdxf.sections.objects, 232
ezdxf.sections.table, 235
ezdxf.sections.tables, 229
ezdxf.select, 73
ezdxf.tools.text, 572
ezdxf.tools.text_size, 579
ezdxf.transform, 544
ezdxf.units, 48
ezdxf.upright, 547
ezdxf.urecord, 554
ezdxf.xclip, 580
ezdxf.xref, 90
ezdxf.zoom, 583
guide, 757

MONOCHROME (ezdxf.addons.drawing.config.ColorPolicy
attribute), 114

monochrome (ezdxf.entities.Underlay attribute), 403
MONOCHROME_DARK_BG

(ezdxf.addons.drawing.config.ColorPolicy
attribute), 114

MONOCHROME_LIGHT_BG
(ezdxf.addons.drawing.config.ColorPolicy
attribute), 115

MonospaceFont (class in ezdxf.fonts.fonts), 560
move_to() (ezdxf.path.Path method), 544
move_to_layout() (ezdxf.entities.DXFGraphic

method), 311
move_to_layout() (ezdxf.layouts.BaseLayout

method), 277
moveto() (ezdxf.math.UCS method), 466
MPolygon (class in ezdxf.entities), 360
MPOLYGON (ezdxf.addons.geo.PolygonConversion at-

tribute), 127
msg (ezdxf.transform.Logger.Entry attribute), 547
MSLIDE (ezdxf.enums.SortEntities attribute), 444
MText (class in ezdxf.entities), 364
mtext (ezdxf.entities.MLeaderContext attribute), 374
mtext_size() (in module ezdxf.tools.text_size), 580
MTextBackgroundColor (class in ezdxf.enums), 442
MTextData (class in ezdxf.entities), 376
MTextEditor (class in ezdxf.tools.text), 572
MTextEntityAlignment (class in ezdxf.enums), 441
MTextExplode (class in ezdxf.addons), 152
MTextFlowDirection (class in ezdxf.enums), 442
MTextLineAlignment (class in ezdxf.enums), 442
MTextLineSpacing (class in ezdxf.enums), 442
MTextParagraphAlignment (class in ezdxf.enums),

441
MTextStroke (class in ezdxf.enums), 442
MTextSurrogate (class in ezdxf.addons), 205
Multi-Path, 531
multi_flat() (in module ezdxf.bbox), 524
multi_insert() (ezdxf.entities.Insert method), 270

1064 Index

ezdxf Documentation, Release 1.3.2

multi_recursive() (in module ezdxf.bbox), 524
MultiLeader (class in ezdxf.entities), 370
multileader (ezdxf.render.MultiLeaderBuilder prop-

erty), 610
MultiLeaderBlockBuilder (class in ezdxf.render),

613
MultiLeaderBuilder (class in ezdxf.render), 610
MultiLeaderMTextBuilder (class in ezdxf.render),

612

N
n_close() (ezdxf.entities.Polyline method), 381
n_control_points (ezdxf.entities.Spline.dxf at-

tribute), 391
n_count (ezdxf.entities.Polyline.dxf attribute), 380
n_edges (ezdxf.render.MeshDiagnose property), 604
n_faces (ezdxf.render.MeshDiagnose property), 605
n_fit_points (ezdxf.entities.Spline.dxf attribute), 391
n_knots (ezdxf.entities.Spline.dxf attribute), 391
n_seed_points (ezdxf.entities.Hatch.dxf attribute), 333
n_smooth_density (ezdxf.entities.Polyline.dxf at-

tribute), 380
n_vertices (ezdxf.render.MeshDiagnose property), 605
name (ezdxf.addons.binpacking.Bin attribute), 187
name (ezdxf.addons.drawing.ezdxf.addons.drawing.properties.LayoutProperties

attribute), 118
name (ezdxf.entities.AppID.dxf attribute), 262
name (ezdxf.entities.Block.dxf attribute), 265
name (ezdxf.entities.BlockRecord.dxf attribute), 263
name (ezdxf.entities.DimStyle.dxf attribute), 249
name (ezdxf.entities.DXFClass.dxf attribute), 228
name (ezdxf.entities.DXFLayout.dxf attribute), 413
name (ezdxf.entities.Insert.dxf attribute), 267
name (ezdxf.entities.Layer.dxf attribute), 240
name (ezdxf.entities.Linetype.dxf attribute), 248
name (ezdxf.entities.MLeaderStyle.dxf attribute), 421
name (ezdxf.entities.MLineStyle.dxf attribute), 357
name (ezdxf.entities.Shape.dxf attribute), 387
name (ezdxf.entities.Textstyle.dxf attribute), 246
name (ezdxf.entities.UCSTableEntry.dxf attribute), 262
name (ezdxf.entities.UnderlayDefinition.dxf attribute), 429
name (ezdxf.entities.View.dxf attribute), 259
name (ezdxf.entities.VPort.dxf attribute), 258
name (ezdxf.fonts.fonts.AbstractFont attribute), 560
name (ezdxf.layouts.BlockLayout property), 303
name (ezdxf.layouts.Layout attribute), 299
name (ezdxf.layouts.Modelspace attribute), 301
name (ezdxf.layouts.Paperspace attribute), 301
name (ezdxf.urecord.UserRecord attribute), 555
NamedPlotStyles (class in ezdxf.addons.acadctb),

169
names() (ezdxf.layouts.Layouts method), 274
names_in_taborder() (ezdxf.layouts.Layouts

method), 274

Nanometers (ezdxf.enums.InsertUnits attribute), 443
ncols (ezdxf.math.linalg.Matrix attribute), 507
nearest_neighbor() (ezdxf.math.rtree.RTree

method), 510
new() (ezdxf.entities.dxfgroups.GroupCollection method),

306
new() (ezdxf.layouts.Layouts method), 274
new() (ezdxf.sections.blocks.BlocksSection method), 230
new() (ezdxf.sections.table.Table method), 235
new() (in module ezdxf), 207
new() (in module ezdxf.query), 568
new_anonymous_block()

(ezdxf.sections.blocks.BlocksSection method),
230

new_app_data() (ezdxf.lldxf.extendedtags.ExtendedTags
method), 751

new_border_style()
(ezdxf.addons.tablepainter.TablePainter static
method), 202

new_cell_style() (ezdxf.addons.tablepainter.TablePainter
method), 202

new_ctb() (in module ezdxf.addons.acadctb), 167
new_extension_dict() (ezdxf.entities.DXFEntity

method), 308
new_geodata() (ezdxf.layouts.Modelspace method),

301
new_layout() (ezdxf.document.Drawing method), 218
new_stb() (in module ezdxf.addons.acadctb), 167
new_style() (ezdxf.addons.acadctb.ColorDependentPlotStyles

method), 168
new_style() (ezdxf.addons.acadctb.NamedPlotStyles

method), 169
new_trashcan() (ezdxf.entitydb.EntityDB method),

745
new_xdata() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 751
next_coedge (ezdxf.acis.entities.Coedge attribute), 521
next_face (ezdxf.acis.entities.Face attribute), 519
next_handle() (ezdxf.entitydb.EntityDB method), 744
next_loop (ezdxf.acis.entities.Loop attribute), 520
next_lump (ezdxf.acis.entities.Lump attribute), 518
next_shell (ezdxf.acis.entities.Shell attribute), 519
ngon() (in module ezdxf.path), 541
ngon() (in module ezdxf.render.forms), 591
no_twist (ezdxf.entities.LoftedSurface.dxf attribute),

395
noclass (ezdxf.lldxf.extendedtags.ExtendedTags at-

tribute), 750
NON_UNIFORM_SCALING_ERROR

(ezdxf.transform.Error attribute), 546
NONE (ezdxf.addons.hpgl2.api.MergeControl attribute), 156
NONE (ezdxf.addons.hpgl2.properties.FillType attribute),

159
NONE (ezdxf.enums.EndCaps attribute), 445

Index 1065

ezdxf Documentation, Release 1.3.2

NONE (ezdxf.enums.JoinStyle attribute), 446
none (ezdxf.render.arrows._Arrows attribute), 617
NONE (ezdxf.render.hatching.IntersectionType attribute),

622
none (ezdxf.render.LeaderType attribute), 613
NONE (ezdxf.transform.Error attribute), 546
NONE_REF (in module ezdxf.acis.entities), 517
NONE_TAG (in module ezdxf.lldxf.types), 748
NONE_ZERO_WINDING

(ezdxf.addons.hpgl2.properties.FillMethod
attribute), 160

normal (ezdxf.acis.entities.Plane attribute), 522
NORMAL (ezdxf.addons.drawing.config.HatchPolicy

attribute), 115
normal (ezdxf.math.Plane attribute), 477
normal_quality() (ezdxf.addons.drawing.hpgl2.PlotterBackend

method), 107
normal_vector (ezdxf.entities.Leader.dxf attribute),

348
normal_vector_3p() (in module ezdxf.math), 462
normalize() (ezdxf.math.Vec3 method), 474
normalize_faces() (ezdxf.render.MeshBuilder

method), 599
normalize_text_angle() (in module ezdxf.tools),

738
north_direction (ezdxf.entities.GeoData.dxf at-

tribute), 415
not_implemented_commands

(ezdxf.addons.hpgl2.api.Interpreter attribute),
157

nrows (ezdxf.math.linalg.BandedMatrixLU attribute), 509
nrows (ezdxf.math.linalg.Matrix attribute), 507
NULLVEC (in module ezdxf.math), 476
NUM_PREFIX (ezdxf.xref.ConflictPolicy attribute), 95
NumpySolver (class in ezdxf.math.linalg), 508

O
obj_dumps() (in module ezdxf.addons.meshex), 192
obj_loads() (in module ezdxf.addons.meshex), 191
obj_readfile() (in module ezdxf.addons.meshex),

191
OBJECT_COLOR (in module ezdxf.addons.acadctb), 172
OBJECT_COLOR2 (in module ezdxf.addons.acadctb), 172
OBJECT_LINETYPE (in module ezdxf.addons.acadctb),

172
OBJECT_LINEWEIGHT (in module

ezdxf.addons.acadctb), 172
objects (ezdxf.document.Drawing attribute), 215
objects() (in module ezdxf.zoom), 583
ObjectsSection (class in ezdxf.sections.objects), 232
oblique (ezdxf.entities.Shape.dxf attribute), 388
oblique (ezdxf.entities.Text.dxf attribute), 398
oblique (ezdxf.entities.Textstyle.dxf attribute), 247
oblique (ezdxf.render.arrows._Arrows attribute), 617

oblique() (ezdxf.tools.text.MTextEditor method), 573
oblique_angle (ezdxf.entities.Dimension.dxf at-

tribute), 324
observation_from_tag (ezdxf.entities.GeoData.dxf

attribute), 416
observation_to_tag (ezdxf.entities.GeoData.dxf at-

tribute), 416
OCS (class in ezdxf.math), 464
ocs() (ezdxf.entities.DXFGraphic method), 311
OFF (ezdxf.addons.drawing.config.BackgroundPolicy at-

tribute), 114
OFF (ezdxf.enums.MTextBackgroundColor attribute), 442
off() (ezdxf.entities.Layer method), 242
off_dumps() (in module ezdxf.addons.meshex), 192
off_loads() (in module ezdxf.addons.meshex), 191
off_readfile() (in module ezdxf.addons.meshex),

191
offset (ezdxf.entities.ezdxf.entities.mline.MLineStyleElement

attribute), 358
offset (ezdxf.entities.PatternLine attribute), 343
offset() (ezdxf.math.Shape2d method), 494
offset_vertices_2d() (in module ezdxf.math), 453
on (ezdxf.entities.Underlay attribute), 403
on() (ezdxf.entities.Layer method), 242
one_color (ezdxf.entities.Gradient attribute), 344
open (ezdxf.render.arrows._Arrows attribute), 616
open_30 (ezdxf.render.arrows._Arrows attribute), 616
open_faces() (ezdxf.render.MeshBuilder method), 599
OPEN_SHELL (ezdxf.addons.meshex.IfcEntityType

attribute), 193
open_uniform_bspline() (in module ezdxf.math),

462
open_uniform_knot_vector() (in module

ezdxf.math), 447
opendxf() (in module ezdxf.addons.iterdxf), 135
optimize() (ezdxf.entities.MeshData method), 360
optimize() (ezdxf.entities.Polyface method), 386
optimize_vertices() (ezdxf.render.MeshBuilder

method), 599
order (ezdxf.math.BSpline property), 495
origin (ezdxf.acis.entities.Plane attribute), 522
origin (ezdxf.acis.entities.StraightCurve attribute), 523
origin (ezdxf.entities.SpatialFilter.dxf attribute), 427
origin (ezdxf.entities.UCSTableEntry.dxf attribute), 262
origin_indicator (ezdxf.render.arrows._Arrows at-

tribute), 616
origin_indicator_2 (ezdxf.render.arrows._Arrows

attribute), 616
origin_of_copy (ezdxf.entities.DXFEntity property),

307
orthogonal() (ezdxf.math.ConstructionRay method),

481
orthogonal() (ezdxf.math.Vec3 method), 474

1066 Index

ezdxf Documentation, Release 1.3.2

outermost_paths() (ezdxf.entities.BoundaryPaths
method), 337

OUTLINE (ezdxf.addons.drawing.config.TextPolicy
attribute), 117

OUTLINE (ezdxf.fonts.fonts.FontRenderType attribute),
561

output_coordinate_space
(ezdxf.addons.drawing.layout.Settings attribute),
104

output_encoding (ezdxf.document.Drawing at-
tribute), 215

OVERLINE (ezdxf.enums.MTextStroke attribute), 442
overline() (ezdxf.tools.text.MTextEditor method), 574
Override (class in ezdxf.addons.drawing.recorder), 101
override() (ezdxf.entities.Dimension method), 324
override_properties()

(ezdxf.addons.drawing.frontend.Frontend
method), 120

overwrite_property_value
(ezdxf.entities.MLeaderStyle.dxf attribute),
421

owner (ezdxf.entities.AppID.dxf attribute), 261
owner (ezdxf.entities.Block.dxf attribute), 265
owner (ezdxf.entities.BlockRecord.dxf attribute), 263
owner (ezdxf.entities.DimStyle.dxf attribute), 249
owner (ezdxf.entities.DXFEntity.dxf attribute), 307
owner (ezdxf.entities.EndBlk.dxf attribute), 266
owner (ezdxf.entities.Layer.dxf attribute), 240
owner (ezdxf.entities.Linetype.dxf attribute), 248
owner (ezdxf.entities.Textstyle.dxf attribute), 246
owner (ezdxf.entities.UCSTableEntry.dxf attribute), 262
owner (ezdxf.entities.View.dxf attribute), 259
owner (ezdxf.entities.VPort.dxf attribute), 258

P
p0 (ezdxf.render.hatching.Intersection attribute), 622
p1 (ezdxf.render.hatching.Intersection attribute), 622
pack() (ezdxf.addons.binpacking.AbstractPacker

method), 186
Packer (class in ezdxf.addons.binpacking), 186
Page (class in ezdxf.addons.drawing.layout), 101
page_alignment (ezdxf.addons.drawing.layout.Settings

attribute), 104
page_setup() (ezdxf.document.Drawing method), 218
page_setup() (ezdxf.layouts.Paperspace method), 301
page_setup_name (ezdxf.entities.PlotSettings.dxf at-

tribute), 423
PageAlignment (class in ezdxf.addons.drawing.layout),

103
paper_height (ezdxf.entities.PlotSettings.dxf attribute),

424
paper_image_origin_x

(ezdxf.entities.PlotSettings.dxf attribute), 426

paper_image_origin_y
(ezdxf.entities.PlotSettings.dxf attribute), 426

paper_size (ezdxf.entities.PlotSettings.dxf attribute),
423

paper_width (ezdxf.entities.PlotSettings.dxf attribute),
424

Paperspace (class in ezdxf.layouts), 301
PAPERSPACE (ezdxf.addons.drawing.config.BackgroundPolicy

attribute), 114
paperspace (ezdxf.entities.DXFGraphic.dxf attribute),

313
paperspace() (ezdxf.document.Drawing method), 218
paragraph() (ezdxf.tools.text.MTextEditor method),

574
ParagraphProperties (class in ezdxf.tools.text), 575
param_span (ezdxf.math.ConstructionEllipse property),

489
param_t() (ezdxf.math.ApproxParamT method), 501
params() (ezdxf.entities.Ellipse method), 331
params() (ezdxf.math.Bezier method), 498
params() (ezdxf.math.BSpline method), 496
params() (ezdxf.math.ConstructionEllipse method), 489
params_from_vertices()

(ezdxf.math.ConstructionEllipse method), 490
parse() (ezdxf.addons.geo.GeoProxy class method), 124
Parsecs (ezdxf.enums.InsertUnits attribute), 443
ParsingError (class in ezdxf.acis.api), 516
partner_coedge (ezdxf.acis.entities.Coedge attribute),

521
Path (class in ezdxf.path), 542
path (ezdxf.disassemble.Primitive property), 528
path_entity_id (ezdxf.entities.SweptSurface.dxf at-

tribute), 396
path_entity_transform_computed

(ezdxf.entities.ExtrudedSurface.dxf attribute),
394

path_entity_transform_computed
(ezdxf.entities.SweptSurface.dxf attribute),
397

path_entity_transformation_matrix
(ezdxf.entities.ExtrudedSurface attribute), 394

path_entity_transformation_matrix()
(ezdxf.entities.SweptSurface method), 397

path_type (ezdxf.entities.Leader.dxf attribute), 348
path_type_flags (ezdxf.entities.EdgePath attribute),

339
path_type_flags (ezdxf.entities.PolylinePath at-

tribute), 338
paths (ezdxf.entities.BoundaryPaths attribute), 337
paths (ezdxf.entities.Hatch attribute), 333
paths (ezdxf.entities.MPolygon attribute), 361
Pattern (class in ezdxf.acis.entities), 518
Pattern (class in ezdxf.entities), 343
pattern (ezdxf.acis.entities.Body attribute), 518

Index 1067

ezdxf Documentation, Release 1.3.2

pattern (ezdxf.entities.Hatch attribute), 333
pattern (ezdxf.entities.MPolygon attribute), 361
pattern_angle (ezdxf.entities.Hatch.dxf attribute), 333
pattern_angle (ezdxf.entities.MPolygon.dxf attribute),

361
pattern_baselines() (in module

ezdxf.render.hatching), 623
pattern_double (ezdxf.entities.Hatch.dxf attribute),

333
pattern_double (ezdxf.entities.MPolygon.dxf at-

tribute), 361
pattern_name (ezdxf.entities.Hatch.dxf attribute), 332
pattern_name (ezdxf.entities.MPolygon.dxf attribute),

361
pattern_renderer()

(ezdxf.render.hatching.HatchBaseLine method),
621

pattern_scale (ezdxf.entities.Hatch.dxf attribute), 333
pattern_scale (ezdxf.entities.MPolygon.dxf attribute),

361
pattern_type (ezdxf.entities.Hatch.dxf attribute), 333
pattern_type (ezdxf.entities.MPolygon.dxf attribute),

361
PatternLine (class in ezdxf.entities), 343
PatternRenderer (class in ezdxf.render.hatching),

621
payload (ezdxf.addons.binpacking.Item attribute), 188
PCurve (class in ezdxf.acis.entities), 523
pcurve (ezdxf.acis.entities.Coedge attribute), 521
PdfDefinition (class in ezdxf.entities), 429
PdfUnderlay (class in ezdxf.entities), 404
pdmode (ezdxf.addons.drawing.config.Configuration at-

tribute), 111
pdsize (ezdxf.addons.drawing.config.Configuration at-

tribute), 111
pen_color (ezdxf.addons.hpgl2.properties.Properties at-

tribute), 159
pen_index (ezdxf.addons.hpgl2.properties.Properties at-

tribute), 159
pen_width (ezdxf.addons.hpgl2.properties.Properties at-

tribute), 159
periodic (ezdxf.entities.SplineEdge attribute), 342
perspective_lens_length

(ezdxf.entities.Viewport.dxf attribute), 405
perspective_projection() (ezdxf.math.Matrix44

class method), 469
perspective_projection_fov()

(ezdxf.math.Matrix44 class method), 469
physical_pen_number

(ezdxf.addons.acadctb.PlotStyle attribute),
170

PickStrategy (class in ezdxf.addons.binpacking), 189
pixel_boundary_path() (ezdxf.entities.Image

method), 347

pixel_size (ezdxf.entities.ImageDef.dxf attribute), 418
place() (ezdxf.entities.Insert method), 268
Placeholder (class in ezdxf.entities), 423
plain_mtext() (ezdxf.entities.AttDef method), 273
plain_mtext() (ezdxf.entities.Attrib method), 272
plain_mtext() (in module ezdxf.tools.text), 578
plain_text() (ezdxf.entities.MText method), 366
plain_text() (ezdxf.entities.Text method), 399
plain_text() (in module ezdxf.tools.text), 578
PlanarSearchIndex (class in ezdxf.select), 76
Plane (class in ezdxf.acis.entities), 522
Plane (class in ezdxf.math), 477
plane_normal_lofting_type

(ezdxf.entities.LoftedSurface.dxf attribute),
395

plane_normal_reversed
(ezdxf.entities.MLeaderContext attribute), 374

plane_origin (ezdxf.entities.MLeaderContext at-
tribute), 374

plane_x_axis (ezdxf.entities.MLeaderContext at-
tribute), 374

plane_y_axis (ezdxf.entities.MLeaderContext at-
tribute), 374

Player (class in ezdxf.addons.drawing.recorder), 100
Player (class in ezdxf.addons.hpgl2.api), 158
player() (ezdxf.addons.drawing.recorder.Recorder

method), 100
player() (ezdxf.addons.hpgl2.api.Recorder method),

158
plot (ezdxf.entities.Layer.dxf attribute), 240
PLOT (ezdxf.enums.SortEntities attribute), 445
plot_centered() (ezdxf.layouts.Layout method), 300
plot_configuration_file

(ezdxf.entities.PlotSettings.dxf attribute), 423
plot_flags_initializing()

(ezdxf.layouts.Layout method), 301
plot_hidden() (ezdxf.layouts.Layout method), 300
plot_layout_flags (ezdxf.entities.PlotSettings.dxf

attribute), 424
plot_origin_x_offset

(ezdxf.entities.PlotSettings.dxf attribute), 424
plot_origin_y_offset

(ezdxf.entities.PlotSettings.dxf attribute), 424
plot_paper_units (ezdxf.entities.PlotSettings.dxf at-

tribute), 424
plot_rotation (ezdxf.entities.PlotSettings.dxf at-

tribute), 425
plot_style_name (ezdxf.entities.Viewport.dxf at-

tribute), 406
plot_type (ezdxf.entities.PlotSettings.dxf attribute), 425
plot_view_name (ezdxf.entities.PlotSettings.dxf

attribute), 423
plot_viewport_borders() (ezdxf.layouts.Layout

method), 300

1068 Index

ezdxf Documentation, Release 1.3.2

plot_window_x1 (ezdxf.entities.PlotSettings.dxf
attribute), 424

plot_window_x2 (ezdxf.entities.PlotSettings.dxf
attribute), 424

plot_window_y1 (ezdxf.entities.PlotSettings.dxf
attribute), 424

plot_window_y2 (ezdxf.entities.PlotSettings.dxf
attribute), 424

PlotSettings (class in ezdxf.entities), 423
PlotStyle (class in ezdxf.addons.acadctb), 170
plotstyle_handle (ezdxf.entities.Layer.dxf attribute),

241
Plotter (class in ezdxf.addons.hpgl2.api), 157
PlotterBackend (class in

ezdxf.addons.drawing.hpgl2), 107
ply_dumpb() (in module ezdxf.addons.meshex), 192
Point (class in ezdxf.acis.entities), 523
Point (class in ezdxf.entities), 378
point (ezdxf.acis.entities.Vertex attribute), 522
point() (ezdxf.math.Bezier method), 499
point() (ezdxf.math.Bezier3P method), 501
point() (ezdxf.math.Bezier4P method), 500
point() (ezdxf.math.BSpline method), 496
point() (ezdxf.math.EulerSpiral method), 502
point_at() (ezdxf.math.ConstructionCircle method),

483
point_in_bbox() (in module ezdxf.select), 75
point_to_line_relation() (in module

ezdxf.math), 455
points() (ezdxf.entities.LWPolyline method), 354
points() (ezdxf.entities.Polyline method), 382
points() (ezdxf.math.Bezier method), 499
points() (ezdxf.math.BSpline method), 496
points() (in module ezdxf.revcloud), 571
points_from_wcs() (ezdxf.math.OCS method), 464
points_from_wcs() (ezdxf.math.UCS method), 465
points_in_bbox() (ezdxf.math.rtree.RTree method),

510
points_in_sphere() (ezdxf.math.rtree.RTree

method), 510
points_to_ocs() (ezdxf.math.UCS method), 465
points_to_wcs() (ezdxf.math.OCS method), 464
points_to_wcs() (ezdxf.math.UCS method), 465
Polyface (class in ezdxf.entities), 385
Polygon (class in ezdxf.select), 76
POLYGON_FACE_SET (ezdxf.addons.meshex.IfcEntityType

attribute), 193
polygonal_fillet() (in module ezdxf.path), 539
PolygonConversion (class in ezdxf.addons.geo), 127
Polyline (class in ezdxf.entities), 379
POLYLINE (ezdxf.addons.geo.PolygonConversion at-

tribute), 127
POLYLINE (ezdxf.entities.BoundaryPathType attribute),

338

polyline (ezdxf.math.ApproxParamT property), 501
polyline_to_edge_paths()

(ezdxf.entities.BoundaryPaths method), 337
PolylinePath (class in ezdxf.entities), 338
Polymesh (class in ezdxf.entities), 384
pop() (ezdxf.entities.DimStyleOverride method), 325
pop_property_override_function()

(ezdxf.addons.drawing.frontend.Frontend
method), 121

pop_tags() (ezdxf.lldxf.tags.Tags method), 750
position (ezdxf.addons.binpacking.Item property), 188
PostProcessFunc (in module ezdxf.addons.geo), 127
POSTSCRIPT (ezdxf.enums.SortEntities attribute), 445
PREFER (ezdxf.addons.drawing.config.ProxyGraphicPolicy

attribute), 117
preserve_proxy_graphics() (in module

ezdxf.options), 626
prev_coedge (ezdxf.acis.entities.Coedge attribute), 521
prev_plot_init() (ezdxf.layouts.Layout method),

301
Primitive (class in ezdxf.disassemble), 528
print() (in module ezdxf.options), 626
print_lineweights() (ezdxf.layouts.Layout

method), 301
project() (ezdxf.math.Vec3 method), 474
prompt (ezdxf.entities.AttDef.dxf attribute), 273
Properties (class in ezdxf.addons.drawing.properties),

117
Properties (class in ezdxf.addons.hpgl2.properties),

159
properties (ezdxf.addons.drawing.recorder.Override

attribute), 101
properties (ezdxf.sections.header.CustomVars at-

tribute), 227
property_override_flags

(ezdxf.entities.MultiLeader.dxf attribute), 371
PROXY (ezdxf.addons.drawing.config.ImagePolicy at-

tribute), 115
proxy() (in module ezdxf.addons.geo), 123
proxy-graphic, 1023
proxy_graphic_policy

(ezdxf.addons.drawing.config.Configuration
attribute), 112

ProxyGraphicPolicy (class in
ezdxf.addons.drawing.config), 116

pt (ezdxf.addons.drawing.layout.Units attribute), 105
purge() (ezdxf.entitydb.EntityDB method), 745
purge() (ezdxf.entitydb.EntitySpace method), 745
purge() (ezdxf.layouts.BaseLayout method), 277
purge() (ezdxf.query.EntityQuery method), 570
push_property_override_function()

(ezdxf.addons.drawing.frontend.Frontend
method), 120

put_item() (ezdxf.addons.binpacking.Bin method), 187

Index 1069

ezdxf Documentation, Release 1.3.2

px (ezdxf.addons.drawing.layout.Units attribute), 105
PyMuPdfBackend (class in

ezdxf.addons.drawing.pymupdf), 105
PyQtBackend (class in ezdxf.addons.drawing.pyqt), 100
pyramids() (ezdxf.addons.SierpinskyPyramid method),

181

Q
qsave() (in module ezdxf.addons.drawing.matplotlib), 99
quadratic_bezier_bbox() (in module

ezdxf.math), 462
quadratic_bezier_from_3p() (in module

ezdxf.math), 462
quadratic_to_cubic_bezier() (in module

ezdxf.math), 462
query() (ezdxf.document.Drawing method), 217
query() (ezdxf.entitydb.EntityDB method), 745
query() (ezdxf.layouts.BaseLayout method), 277
query() (ezdxf.query.EntityQuery method), 570
query() (ezdxf.sections.objects.ObjectsSection method),

232
quick_leader() (ezdxf.render.MultiLeaderMTextBuilder

method), 612

R
r (ezdxf.colors.RGB attribute), 437
r (ezdxf.colors.RGBA attribute), 438
R12FastStreamWriter (class in

ezdxf.addons.r12writer), 144
R12NameTranslator (class in ezdxf.r12strict), 226
R12Spline (class in ezdxf.render), 586
r12writer() (in module ezdxf.addons.r12writer), 144
Radians (ezdxf.enums.AngularUnits attribute), 444
radius (ezdxf.entities.Arc.dxf attribute), 318
radius (ezdxf.entities.ArcEdge attribute), 342
radius (ezdxf.entities.Circle.dxf attribute), 320
radius (ezdxf.entities.EllipseEdge attribute), 342
radius (ezdxf.entities.Helix.dxf attribute), 345
radius (ezdxf.math.ConstructionArc attribute), 485
radius (ezdxf.math.ConstructionCircle attribute), 483
radius() (ezdxf.math.EulerSpiral method), 502
random_2d_path() (in module ezdxf.render), 588
random_3d_path() (in module ezdxf.render), 589
ratio (ezdxf.entities.Ellipse.dxf attribute), 330
ratio (ezdxf.math.ConstructionEllipse attribute), 489
rational (ezdxf.entities.SplineEdge attribute), 342
rational_bspline_from_arc() (in module

ezdxf.math), 462
rational_bspline_from_ellipse() (in module

ezdxf.math), 463
raw-color, 1023
Ray (class in ezdxf.entities), 386
ray (ezdxf.math.ConstructionLine attribute), 482
Reactors (class in ezdxf.entities.appdata), 756

read() (in module ezdxf), 208
read() (in module ezdxf.recover), 224
read_file() (in module ezdxf.options), 626
readfile() (in module ezdxf), 208
readfile() (in module ezdxf.addons.odafc), 139
readfile() (in module ezdxf.recover), 224
readzip() (in module ezdxf), 209
rebuild() (ezdxf.blkrefs.BlockDefinitionIndex method),

435
Recorder (class in ezdxf.addons.drawing.recorder), 100
Recorder (class in ezdxf.addons.hpgl2.api), 158
recordings() (ezdxf.addons.drawing.recorder.Player

method), 101
recordings() (ezdxf.addons.hpgl2.api.Playermethod),

158
recreate_source_layout()

(ezdxf.addons.importer.Importer method),
131

RECT (ezdxf.addons.drawing.config.ImagePolicy attribute),
115

rect() (in module ezdxf.path), 541
rect_vertices() (ezdxf.math.BoundingBox method),

479
rect_vertices() (ezdxf.math.BoundingBox2d

method), 480
recursive_decompose() (in module

ezdxf.disassemble), 527
RED (ezdxf.enums.ACI attribute), 445
REDRAW (ezdxf.enums.SortEntities attribute), 444
ref_vp_object_1 (ezdxf.entities.Viewport.dxf at-

tribute), 408
ref_vp_object_2 (ezdxf.entities.Viewport.dxf at-

tribute), 408
ref_vp_object_3 (ezdxf.entities.Viewport.dxf at-

tribute), 408
ref_vp_object_4 (ezdxf.entities.Viewport.dxf at-

tribute), 408
reference_point (ezdxf.entities.GeoData.dxf at-

tribute), 415
reference_vector_for_controlling_twist

(ezdxf.entities.ExtrudedSurface.dxf attribute),
394

reference_vector_for_controlling_twist
(ezdxf.entities.SweptSurface.dxf attribute), 397

REGEN (ezdxf.enums.SortEntities attribute), 445
Region (class in ezdxf.entities), 387
register() (ezdxf.sections.classes.ClassesSection

method), 228
REGULAR (ezdxf.render.hatching.IntersectionType at-

tribute), 622
RELATIVE (ezdxf.addons.drawing.config.LineweightPolicy

attribute), 116
RELATIVE_FIXED (ezdxf.addons.drawing.config.LineweightPolicy

attribute), 116

1070 Index

ezdxf Documentation, Release 1.3.2

reliable CAD application, 1023
remove() (ezdxf.entities.Dictionary method), 412
remove() (ezdxf.entitydb.EntitySpace method), 745
remove() (ezdxf.query.EntityQuery method), 570
remove() (ezdxf.sections.header.CustomVars method),

228
remove() (ezdxf.sections.table.Table method), 235
remove_association() (ezdxf.entities.Hatch

method), 336
remove_tags() (ezdxf.lldxf.tags.Tags method), 749
remove_tags_except() (ezdxf.lldxf.tags.Tags

method), 749
rename() (ezdxf.entities.Layer method), 242
rename() (ezdxf.layouts.Layouts method), 275
rename_block() (ezdxf.sections.blocks.BlocksSection

method), 231
render() (ezdxf.addons.MengerSponge method), 176
render() (ezdxf.addons.MTextSurrogate method), 206
render() (ezdxf.addons.SierpinskyPyramid method),

181
render() (ezdxf.addons.tablepainter.CustomCell

method), 203
render() (ezdxf.addons.tablepainter.TablePainter

method), 202
render() (ezdxf.entities.Dimension method), 324
render() (ezdxf.entities.DimStyleOverride method), 328
render() (ezdxf.render.Bezier method), 587
render() (ezdxf.render.hatching.PatternRenderer

method), 622
render() (ezdxf.render.R12Spline method), 586
render_3dfaces() (ezdxf.render.MeshBuilder

method), 599
render_3dsolid() (ezdxf.render.MeshBuilder

method), 599
render_arrow() (ezdxf.render.arrows._Arrows

method), 619
render_as_fit_points() (ezdxf.render.Spline

method), 584
render_axis() (ezdxf.math.OCS method), 464
render_axis() (ezdxf.math.UCS method), 467
render_closed_bspline() (ezdxf.render.Spline

method), 585
render_closed_rbspline() (ezdxf.render.Spline

method), 586
render_hatches() (in module ezdxf.path), 532
render_lines() (in module ezdxf.path), 532
render_lwpolylines() (in module ezdxf.path), 532
render_mesh() (ezdxf.render.MeshBuilder method),

600
render_mode (ezdxf.entities.View.dxf attribute), 260
render_mode (ezdxf.entities.Viewport.dxf attribute), 407
render_mpolygons() (in module ezdxf.path), 533
render_normals() (ezdxf.render.MeshBuilder

method), 600

render_open_bspline() (ezdxf.render.Spline
method), 585

render_open_rbspline() (ezdxf.render.Spline
method), 585

render_polyface() (ezdxf.render.MeshBuilder
method), 600

render_polyline() (ezdxf.render.EulerSpiral
method), 588

render_polylines2d() (in module ezdxf.path), 533
render_polylines3d() (in module ezdxf.path), 533
render_spline() (ezdxf.render.EulerSpiral method),

588
render_splines_and_polylines() (in module

ezdxf.path), 534
render_uniform_bspline() (ezdxf.render.Spline

method), 585
render_uniform_rbspline() (ezdxf.render.Spline

method), 585
RenderContext (class in

ezdxf.addons.drawing.properties), 119
rendering_paths() (ezdxf.entities.BoundaryPaths

method), 337
replace() (ezdxf.math.Vec3 method), 474
replace() (ezdxf.sections.header.CustomVars method),

228
REPLACE_FILL (ezdxf.addons.drawing.config.TextPolicy

attribute), 117
replace_handle() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 750
replace_handle() (ezdxf.lldxf.tags.Tags method),

748
REPLACE_RECT (ezdxf.addons.drawing.config.TextPolicy

attribute), 117
replace_xdata_list() (ezdxf.entities.DXFEntity

method), 310
replace_xlist() (ezdxf.entities.xdata.XData

method), 755
replay() (ezdxf.addons.drawing.recorder.Player

method), 101
replay() (ezdxf.addons.hpgl2.api.Player method), 159
required_knot_values() (in module ezdxf.math),

447
reset() (ezdxf.addons.binpacking.Bin method), 187
reset() (ezdxf.entities.XRecord method), 431
reset() (ezdxf.r12strict.R12NameTranslator method),

226
reset() (in module ezdxf.options), 626
reset_boundary_path() (ezdxf.entities.Image

method), 347
reset_boundary_path() (ezdxf.entities.Underlay

method), 403
reset_extents() (ezdxf.layouts.Layout method), 299
reset_fingerprint_guid()

(ezdxf.document.Drawing method), 220

Index 1071

ezdxf Documentation, Release 1.3.2

reset_limits() (ezdxf.layouts.Layout method), 300
reset_main_viewport() (ezdxf.layouts.Paperspace

method), 302
reset_paper_limits() (ezdxf.layouts.Paperspace

method), 303
reset_transformation() (ezdxf.entities.Insert

method), 271
reset_version_guid() (ezdxf.document.Drawing

method), 221
reset_viewports() (ezdxf.layouts.Paperspace

method), 302
reset_wcs() (ezdxf.entities.VPort method), 259
reset_wcs() (ezdxf.sections.header.HeaderSection

method), 227
reshape() (ezdxf.math.linalg.Matrix static method), 507
resolution_units (ezdxf.entities.ImageDef.dxf at-

tribute), 418
resolve_aci_color()

(ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_all() (ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_color() (ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_fill_color()
(ezdxf.addons.hpgl2.properties.Properties
method), 159

resolve_filling()
(ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_font() (ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_layer() (ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_layer_properties()
(ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_linetype()
(ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_lineweight()
(ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_pen_color()
(ezdxf.addons.hpgl2.properties.Properties
method), 159

resolve_units() (ezdxf.addons.drawing.properties.RenderContext
method), 119

resolve_visible()
(ezdxf.addons.drawing.properties.RenderContext
method), 119

restore_wcs() (in module ezdxf.appsettings), 564
reverse() (ezdxf.math.Bezier method), 498
reverse() (ezdxf.math.Bezier3P method), 500

reverse() (ezdxf.math.Bezier4P method), 499
reverse() (ezdxf.math.BSpline method), 496
reverse_v (ezdxf.acis.entities.Plane attribute), 523
reversed() (ezdxf.math.Vec3 method), 474
reversed() (ezdxf.path.Path method), 544
revolve_angle (ezdxf.entities.RevolvedSurface.dxf at-

tribute), 396
RevolvedSurface (class in ezdxf.entities), 395
RGB (class in ezdxf.colors), 437
RGB (ezdxf.addons.drawing.dxf.ColorMode attribute), 108
rgb (ezdxf.addons.drawing.properties.Properties attribute),

117
RGB (ezdxf.addons.hpgl2.api.ColorMode attribute), 156
rgb (ezdxf.entities.DXFGraphic attribute), 311
rgb (ezdxf.entities.Layer attribute), 241
rgb (ezdxf.gfxattribs.GfxAttribs property), 566
rgb() (ezdxf.tools.text.MTextEditor method), 574
rgb2int() (in module ezdxf.colors), 437
RGBA (class in ezdxf.colors), 438
right (ezdxf.addons.drawing.layout.Margins attribute),

103
RIGHT (ezdxf.enums.MTextParagraphAlignment attribute),

441
RIGHT (ezdxf.enums.TextEntityAlignment attribute), 440
right (ezdxf.render.ConnectionSide attribute), 613
right (ezdxf.render.TextAlignment attribute), 614
RIGHT (ezdxf.tools.text.ezdxf.lldxf.const.MTextParagraphAlignment

attribute), 576
right_angle (ezdxf.render.arrows._Arrows attribute),

616
right_attachment (ezdxf.entities.MLeaderContext at-

tribute), 374
right_margin (ezdxf.entities.PlotSettings.dxf attribute),

423
rootdict (ezdxf.document.Drawing attribute), 215
rootdict (ezdxf.sections.objects.ObjectsSection attribute),

232
rotate() (ezdxf.math.ConstructionBox method), 492
rotate() (ezdxf.math.Shape2d method), 494
rotate() (ezdxf.math.UCS method), 466
rotate() (ezdxf.math.Vec3 method), 476
rotate_axis() (ezdxf.entities.DXFGraphic method),

312
rotate_axis() (ezdxf.render.MeshTransformer

method), 602
rotate_deg() (ezdxf.math.Vec3 method), 476
rotate_local_x() (ezdxf.math.UCS method), 466
rotate_local_y() (ezdxf.math.UCS method), 466
rotate_local_z() (ezdxf.math.UCS method), 466
rotate_rad() (ezdxf.math.Shape2d method), 494
rotate_x() (ezdxf.entities.DXFGraphic method), 312
rotate_x() (ezdxf.render.MeshTransformer method),

602
rotate_y() (ezdxf.entities.DXFGraphic method), 312

1072 Index

ezdxf Documentation, Release 1.3.2

rotate_y() (ezdxf.render.MeshTransformer method),
602

rotate_z() (ezdxf.entities.DXFGraphic method), 312
rotate_z() (ezdxf.math.ConstructionArc method), 486
rotate_z() (ezdxf.render.MeshTransformer method),

602
rotation (ezdxf.entities.BlockData attribute), 377
rotation (ezdxf.entities.Gradient attribute), 344
rotation (ezdxf.entities.Insert.dxf attribute), 267
rotation (ezdxf.entities.MTextData attribute), 376
rotation (ezdxf.entities.MText.dxf attribute), 365
rotation (ezdxf.entities.Shape.dxf attribute), 387
rotation (ezdxf.entities.Text.dxf attribute), 398
rotation (ezdxf.entities.Underlay.dxf attribute), 402
rotation_form() (in module ezdxf.render.forms), 596
rotation_type (ezdxf.addons.binpacking.Item prop-

erty), 188
RotationType (class in ezdxf.addons.binpacking), 189
ROUND (ezdxf.enums.EndCaps attribute), 445
ROUND (ezdxf.enums.JoinStyle attribute), 446
row() (ezdxf.math.linalg.Matrix method), 507
row_count (ezdxf.entities.Insert.dxf attribute), 267
row_spacing (ezdxf.entities.Insert.dxf attribute), 267
rows() (ezdxf.math.linalg.Matrix method), 508
rows() (ezdxf.math.Matrix44 method), 470
RTree (class in ezdxf.math.rtree), 510
ruled_surface (ezdxf.entities.LoftedSurface.dxf

attribute), 395
run() (ezdxf.addons.hpgl2.api.Interpreter method), 157
run() (in module ezdxf.addons.openscad), 195
rytz_axis_construction() (in module

ezdxf.math), 455

S
SAB, 1023
sab (ezdxf.entities.Body property), 319
safe_normal_vector() (in module ezdxf.math), 463
safe_string() (in module ezdxf.tools.text), 578
SAT, 1023
sat (ezdxf.entities.Body property), 319
save() (ezdxf.addons.acadctb.ColorDependentPlotStyles

method), 169
save() (ezdxf.addons.acadctb.NamedPlotStyles method),

170
save() (ezdxf.document.Drawing method), 216
saveas() (ezdxf.document.Drawing method), 217
saveas() (in module ezdxf.addons.r12export), 142
scad_dumps() (in module ezdxf.addons.meshex), 192
scale (ezdxf.addons.drawing.layout.Settings attribute),

104
scale (ezdxf.entities.BlockData attribute), 377
scale (ezdxf.entities.BlockRecord.dxf attribute), 263
scale (ezdxf.entities.MLeaderContext attribute), 374
scale (ezdxf.entities.MLeaderStyle.dxf attribute), 421

scale (ezdxf.entities.MultiLeader.dxf attribute), 371
scale (ezdxf.entities.Underlay attribute), 403
scale() (ezdxf.addons.drawing.layout.Margins method),

103
scale() (ezdxf.entities.DXFGraphic method), 312
scale() (ezdxf.entities.Pattern method), 343
scale() (ezdxf.fonts.fonts.FontMeasurements method),

562
scale() (ezdxf.math.ConstructionBox method), 492
scale() (ezdxf.math.Matrix44 class method), 468
scale() (ezdxf.math.Shape2d method), 494
scale() (ezdxf.render.MeshTransformer method), 602
scale() (in module ezdxf.transform), 546
scale_denominator (ezdxf.entities.PlotSettings.dxf

attribute), 424
scale_estimation_method

(ezdxf.entities.GeoData.dxf attribute), 416
scale_factor (ezdxf.addons.acadctb.ColorDependentPlotStyles

attribute), 168
scale_factor (ezdxf.addons.acadctb.NamedPlotStyles

attribute), 169
scale_factor (ezdxf.entities.ExtrudedSurface.dxf at-

tribute), 394
scale_factor (ezdxf.entities.MLine.dxf attribute), 355
scale_factor (ezdxf.entities.SweptSurface.dxf at-

tribute), 396
scale_from_baseline()

(ezdxf.fonts.fonts.FontMeasurements method),
562

scale_height() (ezdxf.tools.text.MTextEditor
method), 573

scale_lineweights() (ezdxf.layouts.Layout
method), 301

scale_numerator (ezdxf.entities.PlotSettings.dxf at-
tribute), 424

scale_uniform() (ezdxf.entities.DXFGraphic
method), 312

scale_uniform() (ezdxf.math.ConstructionArc
method), 486

scale_uniform() (ezdxf.math.Shape2d method), 494
scale_uniform() (ezdxf.render.MeshTransformer

method), 602
scale_uniform() (in module ezdxf.transform), 546
scale_uniformly (ezdxf.layouts.BlockLayout prop-

erty), 303
scale_x (ezdxf.entities.Underlay.dxf attribute), 402
scale_y (ezdxf.entities.Underlay.dxf attribute), 402
scale_z (ezdxf.entities.Underlay.dxf attribute), 402
schema (ezdxf.entities.DictionaryVar.dxf attribute), 413
Scientific (ezdxf.enums.LengthUnits attribute), 444
screen (ezdxf.addons.acadctb.PlotStyle attribute), 170
Script (class in ezdxf.addons.openscad), 195
sea_level_correction (ezdxf.entities.GeoData.dxf

attribute), 416

Index 1073

ezdxf Documentation, Release 1.3.2

sea_level_elevation (ezdxf.entities.GeoData.dxf
attribute), 416

second_segment_angle_constraint
(ezdxf.entities.MLeaderStyle.dxf attribute),
421

seeds (ezdxf.entities.Hatch attribute), 333
selectable (ezdxf.entities.dxfgroups.DXFGroup.dxf at-

tribute), 304
SELECTION (ezdxf.enums.SortEntities attribute), 444
sense (ezdxf.acis.entities.Edge attribute), 521
sense (ezdxf.acis.entities.Face attribute), 520
separate_meshes() (ezdxf.render.MeshBuilder

method), 600
set() (ezdxf.entities.appdata.AppData method), 756
set() (ezdxf.entities.appdata.Reactors method), 756
set() (ezdxf.lldxf.packedtags.VertexArray method), 753
set() (in module ezdxf.options), 625
set_active_layout() (ezdxf.layouts.Layouts

method), 275
set_align_enum() (ezdxf.entities.Text method), 399
set_app_data() (ezdxf.entities.DXFEntity method),

309
set_app_data_content()

(ezdxf.lldxf.extendedtags.ExtendedTags method),
751

set_arrow_properties()
(ezdxf.render.MultiLeaderBuilder method),
611

set_arrows() (ezdxf.entities.DimStyle method), 255
set_arrows() (ezdxf.entities.DimStyleOverride

method), 325
set_attribute() (ezdxf.render.MultiLeaderBlockBuilder

method), 613
set_axis() (guide.ExampleCls method), 757
set_bg_color() (ezdxf.entities.MText method), 366
set_block_clipping_path() (ezdxf.xclip.XClip

method), 582
set_block_content() (ezdxf.entities.MultiLeader

method), 373
set_border_status()

(ezdxf.addons.tablepainter.CellStyle method),
204

set_border_style()
(ezdxf.addons.tablepainter.CellStyle method),
204

set_boundary_path() (ezdxf.entities.Image
method), 347

set_boundary_vertices()
(ezdxf.entities.SpatialFilter method), 427

set_cell() (ezdxf.addons.tablepainter.TablePainter
method), 201

set_closed() (ezdxf.entities.Spline method), 392
set_closed_rational() (ezdxf.entities.Spline

method), 392

set_coedges() (ezdxf.acis.entities.Loop method), 520
set_col() (ezdxf.math.linalg.Matrix method), 508
set_col() (ezdxf.math.Matrix44 method), 468
set_col_width() (ezdxf.addons.tablepainter.TablePainter

method), 201
set_color() (ezdxf.entities.Layer method), 242
set_color() (ezdxf.entities.LayerOverrides method),

243
set_colors() (ezdxf.addons.drawing.properties.ezdxf.addons.drawing.properties.LayoutProperties.LayoutProperties

method), 118
set_connection_properties()

(ezdxf.render.MultiLeaderBuilder method),
611

set_connection_types()
(ezdxf.render.MultiLeaderBuilder method),
611

set_content() (ezdxf.render.MultiLeaderBlockBuilder
method), 613

set_content() (ezdxf.render.MultiLeaderMTextBuilder
method), 612

set_current_color() (in module ezdxf.appsettings),
563

set_current_dimstyle() (in module
ezdxf.appsettings), 563

set_current_dimstyle_attribs() (in module
ezdxf.appsettings), 563

set_current_layer() (in module ezdxf.appsettings),
563

set_current_layout()
(ezdxf.addons.drawing.properties.RenderContext
method), 120

set_current_linetype() (in module
ezdxf.appsettings), 563

set_current_linetype_scale() (in module
ezdxf.appsettings), 563

set_current_lineweight() (in module
ezdxf.appsettings), 563

set_current_textstyle() (in module
ezdxf.appsettings), 563

set_data() (ezdxf.entities.dxfgroups.DXFGroup
method), 305

set_default() (ezdxf.entities.DictionaryWithDefault
method), 413

set_diag() (ezdxf.math.linalg.Matrix method), 508
set_dimline_format() (ezdxf.entities.DimStyle

method), 256
set_dimline_format()

(ezdxf.entities.DimStyleOverride method),
327

set_dxf_attrib() (ezdxf.entities.DXFEntity method),
308

set_extended_font_data()
(ezdxf.entities.Textstyle method), 247

set_extline1() (ezdxf.entities.DimStyle method), 256

1074 Index

ezdxf Documentation, Release 1.3.2

set_extline1() (ezdxf.entities.DimStyleOverride
method), 327

set_extline2() (ezdxf.entities.DimStyle method), 256
set_extline2() (ezdxf.entities.DimStyleOverride

method), 328
set_extline_format() (ezdxf.entities.DimStyle

method), 256
set_extline_format()

(ezdxf.entities.DimStyleOverride method),
327

set_first() (ezdxf.lldxf.tags.Tags method), 749
set_flag_state() (ezdxf.entities.DXFEntity method),

308
set_flag_state() (in module ezdxf.tools), 737
set_gradient() (ezdxf.entities.Hatch method), 335
set_gradient() (ezdxf.entities.MPolygon method),

363
set_hyperlink() (ezdxf.entities.DXFGraphic

method), 312
set_inverse_insert_matrix()

(ezdxf.entities.SpatialFilter method), 428
set_justification() (ezdxf.entities.MLine

method), 356
set_layer_properties_override()

(ezdxf.addons.drawing.properties.RenderContext
method), 120

set_leader_properties()
(ezdxf.render.MultiLeaderBuilder method),
611

set_limits() (ezdxf.entities.DimStyle method), 257
set_limits() (ezdxf.entities.DimStyleOverride

method), 326
set_linetype() (ezdxf.entities.LayerOverrides

method), 244
set_lineweight() (ezdxf.entities.LayerOverrides

method), 244
set_lineweight_display_style() (in module

ezdxf.appsettings), 563
set_location() (ezdxf.entities.DimStyleOverride

method), 328
set_location() (ezdxf.entities.MText method), 366
set_masking_area() (ezdxf.entities.Wipeout

method), 409
set_mesh_vertex() (ezdxf.entities.Polymesh

method), 385
set_mleader_style()

(ezdxf.render.MultiLeaderBuilder method),
611

set_modelspace_vport()
(ezdxf.document.Drawing method), 221

set_mtext() (ezdxf.entities.AttDef method), 273
set_mtext() (ezdxf.entities.Attrib method), 272
set_mtext_content() (ezdxf.entities.MultiLeader

method), 373

set_open_rational() (ezdxf.entities.Spline method),
392

set_open_uniform() (ezdxf.entities.Spline method),
392

set_overall_scaling()
(ezdxf.render.MultiLeaderBuilder method),
611

set_pattern_angle() (ezdxf.entities.Hatch method),
334

set_pattern_angle() (ezdxf.entities.MPolygon
method), 362

set_pattern_definition() (ezdxf.entities.Hatch
method), 334

set_pattern_definition()
(ezdxf.entities.MPolygon method), 362

set_pattern_fill() (ezdxf.entities.Hatch method),
335

set_pattern_fill() (ezdxf.entities.MPolygon
method), 362

set_pattern_scale() (ezdxf.entities.Hatch method),
334

set_pattern_scale() (ezdxf.entities.MPolygon
method), 362

set_placement() (ezdxf.entities.Text method), 398
set_plot_flags() (ezdxf.layouts.Layout method),

301
set_plot_style() (ezdxf.layouts.Layout method),

300
set_plot_type() (ezdxf.layouts.Layout method), 300
set_plot_window() (ezdxf.layouts.Layout method),

300
set_points() (ezdxf.entities.LWPolyline method), 354
set_raster_variables()

(ezdxf.document.Drawing method), 219
set_raster_variables()

(ezdxf.sections.objects.ObjectsSection method),
234

set_reactors() (ezdxf.entities.DXFEntity method),
310

set_redraw_order() (ezdxf.layouts.BaseLayout
method), 277

set_rgb() (ezdxf.entities.LayerOverrides method), 243
set_rotation() (ezdxf.entities.MText method), 366
set_row() (ezdxf.math.linalg.Matrix method), 508
set_row() (ezdxf.math.Matrix44 method), 468
set_row_height() (ezdxf.addons.tablepainter.TablePainter

method), 201
set_scale() (ezdxf.entities.Insert method), 268
set_scale_factor() (ezdxf.entities.MLine method),

356
set_seed_points() (ezdxf.entities.Hatch method),

336
set_solid_fill() (ezdxf.entities.Hatch method), 334
set_solid_fill() (ezdxf.entities.MPolygon method),

Index 1075

ezdxf Documentation, Release 1.3.2

362
set_style() (ezdxf.entities.MLine method), 356
set_table_lineweight()

(ezdxf.addons.acadctb.ColorDependentPlotStyles
method), 168

set_table_lineweight()
(ezdxf.addons.acadctb.NamedPlotStyles
method), 170

set_text() (ezdxf.entities.DimStyleOverride method),
328

set_text_align() (ezdxf.entities.DimStyle method),
255

set_text_align() (ezdxf.entities.DimStyleOverride
method), 326

set_text_format() (ezdxf.entities.DimStyle method),
255

set_text_format() (ezdxf.entities.DimStyleOverride
method), 327

set_tick() (ezdxf.entities.DimStyle method), 255
set_tick() (ezdxf.entities.DimStyleOverride method),

326
set_tolerance() (ezdxf.entities.DimStyle method),

257
set_tolerance() (ezdxf.entities.DimStyleOverride

method), 326
set_transform_matrix()

(ezdxf.entities.SpatialFilter method), 428
set_transformation_matrix_lofted_entity

(ezdxf.entities.LoftedSurface attribute), 395
set_transparency() (ezdxf.entities.LayerOverrides

method), 243
set_underlay_def() (ezdxf.entities.Underlay

method), 403
set_uniform() (ezdxf.entities.Spline method), 392
set_uniform_rational() (ezdxf.entities.Spline

method), 392
set_values() (ezdxf.lldxf.packedtags.TagArray

method), 752
set_vertices() (ezdxf.entities.Leader method), 349
set_vertices() (ezdxf.entities.PolylinePath method),

339
set_wcs_clipping_path() (ezdxf.xclip.XClip

method), 582
set_wipeout_variables()

(ezdxf.document.Drawing method), 220
set_wipeout_variables()

(ezdxf.sections.objects.ObjectsSection method),
234

set_xdata() (ezdxf.entities.DXFEntity method), 309
set_xdata() (ezdxf.lldxf.extendedtags.ExtendedTags

method), 751
set_xdata_list() (ezdxf.entities.DXFEntity method),

309
set_xlist() (ezdxf.entities.xdata.XData method), 755

Settings (class in ezdxf.addons.drawing.layout), 103
setup_local_grid() (ezdxf.entities.GeoData

method), 417
shade_plot_custom_dpi

(ezdxf.entities.PlotSettings.dxf attribute), 426
shade_plot_handle (ezdxf.entities.PlotSettings.dxf

attribute), 426
shade_plot_handle (ezdxf.entities.Viewport.dxf at-

tribute), 408
shade_plot_mode (ezdxf.entities.PlotSettings.dxf at-

tribute), 426
shade_plot_mode (ezdxf.entities.Viewport.dxf at-

tribute), 407
shade_plot_resolution_level

(ezdxf.entities.PlotSettings.dxf attribute), 426
SHADING (ezdxf.addons.hpgl2.properties.FillType at-

tribute), 160
shadow_map_size (ezdxf.entities.Sun.dxf attribute),

428
shadow_mode (ezdxf.entities.DXFGraphic.dxf attribute),

314
shadow_softness (ezdxf.entities.Sun.dxf attribute),

428
shadow_type (ezdxf.entities.Sun.dxf attribute), 428
shadows (ezdxf.entities.Sun.dxf attribute), 428
Shape (class in ezdxf.entities), 387
shape (ezdxf.math.linalg.Matrix attribute), 507
Shape2d (class in ezdxf.math), 493
ShapeFileFont (class in ezdxf.fonts.fonts), 560
shear_xy() (ezdxf.math.Matrix44 class method), 469
Shell (class in ezdxf.acis.entities), 519
shell (ezdxf.acis.entities.Face attribute), 519
shell (ezdxf.acis.entities.Lump attribute), 518
shells() (ezdxf.acis.entities.Lump method), 518
shift() (ezdxf.fonts.fonts.FontMeasurements method),

562
shift() (ezdxf.math.UCS method), 466
shift_text() (ezdxf.entities.DimStyleOverride

method), 328
SHOW (ezdxf.addons.drawing.config.ProxyGraphicPolicy

attribute), 116
show_defpoints (ezdxf.addons.drawing.config.Configuration

attribute), 112
show_lineweight() (in module ezdxf.appsettings),

564
SHOW_OUTLINE (ezdxf.addons.drawing.config.HatchPolicy

attribute), 115
show_plot_styles() (ezdxf.layouts.Layout method),

300
SHOW_SOLID (ezdxf.addons.drawing.config.HatchPolicy

attribute), 115
SHUFFLE (ezdxf.addons.binpacking.PickStrategy at-

tribute), 189
shuffle_pack() (in module ezdxf.addons.binpacking),

1076 Index

ezdxf Documentation, Release 1.3.2

189
sideload_ttf() (in module ezdxf.fonts.fonts), 559
SierpinskyPyramid (class in ezdxf.addons), 181
signed_distance()

(ezdxf.render.hatching.HatchBaseLine method),
621

signed_distance_to() (ezdxf.math.Plane method),
477

simple_surfaces (ezdxf.entities.LoftedSurface.dxf at-
tribute), 395

Single-Path, 531
single_pass_modelspace() (in module

ezdxf.addons.iterdxf), 136
single_paths() (in module ezdxf.path), 539
size (ezdxf.entities.Shape.dxf attribute), 387
size (ezdxf.math.BoundingBox property), 478
size (ezdxf.math.BoundingBox2d property), 479
skip_entity() (ezdxf.addons.drawing.frontend.Frontend

method), 120
slope (ezdxf.math.ConstructionRay attribute), 480
SMALLER_FIRST (ezdxf.addons.binpacking.PickStrategy

attribute), 189
smooth_type (ezdxf.entities.Polyline.dxf attribute), 380
SNAP (ezdxf.enums.SortEntities attribute), 444
snap_angle (ezdxf.entities.Viewport.dxf attribute), 405
snap_base (ezdxf.entities.VPort.dxf attribute), 258
snap_base_point (ezdxf.entities.Viewport.dxf at-

tribute), 405
snap_isopair (ezdxf.entities.VPort.dxf attribute), 259
snap_on (ezdxf.entities.VPort.dxf attribute), 259
snap_rotation (ezdxf.entities.VPort.dxf attribute), 259
snap_spacing (ezdxf.entities.Viewport.dxf attribute),

405
snap_spacing (ezdxf.entities.VPort.dxf attribute), 258
snap_style (ezdxf.entities.VPort.dxf attribute), 259
Solid (class in ezdxf.entities), 389
SOLID (ezdxf.addons.drawing.config.LinePolicy attribute),

116
SOLID (ezdxf.addons.hpgl2.properties.FillType attribute),

159
solid (ezdxf.entities.ExtrudedSurface.dxf attribute), 394
solid (ezdxf.entities.LoftedSurface.dxf attribute), 395
solid (ezdxf.entities.RevolvedSurface.dxf attribute), 396
solid (ezdxf.entities.SweptSurface.dxf attribute), 396
Solid3d (class in ezdxf.entities), 316
solid_fill (ezdxf.entities.Hatch.dxf attribute), 332
solid_fill (ezdxf.entities.MPolygon.dxf attribute), 361
solve_matrix() (ezdxf.math.linalg.BandedMatrixLU

method), 509
solve_matrix() (ezdxf.math.linalg.NumpySolver

method), 508
solve_vector() (ezdxf.math.linalg.BandedMatrixLU

method), 509

solve_vector() (ezdxf.math.linalg.NumpySolver
method), 508

sort_filled_paths()
(ezdxf.addons.hpgl2.api.Player method), 159

SortEntities (class in ezdxf.enums), 444
source (ezdxf.addons.importer.Importer attribute), 129
source_block_reference (ezdxf.entities.DXFEntity

property), 307
source_boundary_objects

(ezdxf.entities.EdgePath attribute), 339
source_boundary_objects

(ezdxf.entities.PolylinePath attribute), 339
source_of_copy (ezdxf.entities.DXFEntity property),

307
source_vertices (ezdxf.entities.GeoData attribute),

416
space_width() (ezdxf.fonts.fonts.AbstractFont

method), 560
spatial_angle (ezdxf.math.Vec3 attribute), 473
spatial_angle_deg (ezdxf.math.Vec3 attribute), 473
SpatialFilter (class in ezdxf.entities), 427
sphere() (in module ezdxf.render.forms), 594
spherical_envelope() (in module ezdxf.math), 463
Spline (class in ezdxf.entities), 391
Spline (class in ezdxf.render), 584
SPLINE (ezdxf.entities.EdgeType attribute), 341
spline_edges_to_line_edges()

(ezdxf.entities.BoundaryPaths method), 338
SplineEdge (class in ezdxf.entities), 342
splines (ezdxf.render.LeaderType attribute), 613
split_bezier() (in module ezdxf.math), 463
split_polygon_by_plane() (in module

ezdxf.math), 463
SQUARE (ezdxf.enums.EndCaps attribute), 445
square() (in module ezdxf.render.forms), 592
stack() (ezdxf.tools.text.MTextEditor method), 574
standard_scale_type (ezdxf.entities.PlotSettings.dxf

attribute), 425
star() (in module ezdxf.path), 541
star() (in module ezdxf.render.forms), 592
start (ezdxf.entities.Line.dxf attribute), 350
start (ezdxf.entities.LineEdge attribute), 341
start (ezdxf.entities.Ray.dxf attribute), 386
start (ezdxf.entities.XLine.dxf attribute), 409
start (ezdxf.math.ConstructionEllipse attribute), 489
start (ezdxf.math.ConstructionLine attribute), 481
start (ezdxf.path.Path property), 542
START (ezdxf.render.hatching.IntersectionType attribute),

622
start (ezdxf.render.hatching.Line attribute), 622
start() (ezdxf.render.Bezier method), 587
start_angle (ezdxf.entities.ArcDimension.dxf at-

tribute), 329
start_angle (ezdxf.entities.Arc.dxf attribute), 318

Index 1077

ezdxf Documentation, Release 1.3.2

start_angle (ezdxf.entities.ArcEdge attribute), 342
start_angle (ezdxf.entities.EllipseEdge attribute), 342
start_angle (ezdxf.entities.MLineStyle.dxf attribute),

358
start_angle (ezdxf.entities.RevolvedSurface.dxf

attribute), 396
start_angle (ezdxf.math.ConstructionArc attribute),

485
start_angle_rad (ezdxf.math.ConstructionArc

attribute), 485
start_caps (ezdxf.entities.MLine property), 356
start_draft_angle (ezdxf.entities.LoftedSurface.dxf

attribute), 395
start_draft_distance

(ezdxf.entities.RevolvedSurface.dxf attribute),
396

start_draft_magnitude
(ezdxf.entities.LoftedSurface.dxf attribute),
395

start_location (ezdxf.entities.MLine.dxf attribute),
355

start_location() (ezdxf.entities.MLine method),
356

start_param (ezdxf.acis.entities.Edge attribute), 521
start_param (ezdxf.entities.Ellipse.dxf attribute), 330
start_point (ezdxf.entities.Arc attribute), 318
start_point (ezdxf.entities.Ellipse attribute), 330
start_point (ezdxf.entities.Helix.dxf attribute), 345
start_point (ezdxf.math.ConstructionArc attribute),

485
start_point (ezdxf.math.ConstructionEllipse attribute),

489
start_tangent (ezdxf.entities.Spline.dxf attribute), 391
start_tangent (ezdxf.entities.SplineEdge attribute),

343
start_vertex (ezdxf.acis.entities.Edge attribute), 521
start_width (ezdxf.entities.Vertex.dxf attribute), 383
status (ezdxf.entities.Sun.dxf attribute), 428
status (ezdxf.entities.Viewport.dxf attribute), 405
status (ezdxf.entities.VPort.dxf attribute), 259
STB, 1023
stl_dumpb() (in module ezdxf.addons.meshex), 192
stl_dumps() (in module ezdxf.addons.meshex), 191
stl_loadb() (in module ezdxf.addons.meshex), 191
stl_loads() (in module ezdxf.addons.meshex), 191
stl_readfile() (in module ezdxf.addons.meshex),

191
store_proxy_graphics (in module ezdxf.options),

627
straight_lines (ezdxf.render.LeaderType attribute),

613
StraightCurve (class in ezdxf.acis.entities), 523
stretch() (ezdxf.tools.text.TextLine method), 576
STRIKE_THROUGH (ezdxf.enums.MTextStroke attribute),

442
strike_through() (ezdxf.tools.text.MTextEditor

method), 574
strip() (ezdxf.lldxf.tags.Tags class method), 750
STROKE (ezdxf.fonts.fonts.FontRenderType attribute), 561
style (ezdxf.entities.MLine property), 356
style (ezdxf.entities.MText.dxf attribute), 365
style (ezdxf.entities.Text.dxf attribute), 398
style (ezdxf.fonts.fonts.FontFace attribute), 562
style_element_count (ezdxf.entities.MLine.dxf at-

tribute), 356
style_handle (ezdxf.entities.MLine.dxf attribute), 355
style_handle (ezdxf.entities.MTextData attribute), 376
style_handle (ezdxf.entities.MultiLeader.dxf at-

tribute), 371
style_name (ezdxf.entities.MLine.dxf attribute), 355
styles (ezdxf.addons.dxf2code.Code attribute), 133
styles (ezdxf.document.Drawing attribute), 216
styles (ezdxf.sections.tables.TablesSection attribute), 229
sub_paths() (ezdxf.path.Path method), 544
subclasses (ezdxf.lldxf.extendedtags.ExtendedTags at-

tribute), 750
subdivide() (ezdxf.render.MeshBuilder method), 600
subdivide() (ezdxf.render.Spline method), 584
subdivide_face() (in module ezdxf.math), 463
subdivide_ngons() (ezdxf.render.MeshBuilder

method), 600
subdivide_ngons() (in module ezdxf.math), 463
subdivision_levels (ezdxf.entities.Mesh.dxf

attribute), 359
Subshell (class in ezdxf.acis.entities), 519
subshell (ezdxf.acis.entities.Face attribute), 519
subshell (ezdxf.acis.entities.Shell attribute), 519
subtract() (ezdxf.addons.pycsg.CSG method), 166
sum() (ezdxf.math.Vec3 static method), 476
Sun (class in ezdxf.entities), 428
sun_handle (ezdxf.entities.View.dxf attribute), 261
sun_handle (ezdxf.entities.Viewport.dxf attribute), 408
support_dirs (in module ezdxf.options), 627
suppress_zeros() (in module ezdxf.tools), 738
Surface (class in ezdxf.acis.entities), 522
Surface (class in ezdxf.entities), 393
surface (ezdxf.acis.entities.Face attribute), 520
surface_area() (ezdxf.render.MeshDiagnose

method), 605
swap_axis() (ezdxf.math.ConstructionEllipse method),

490
sweep() (in module ezdxf.render.forms), 596
sweep_alignment (ezdxf.entities.SweptSurface.dxf at-

tribute), 397
sweep_alignment_flags

(ezdxf.entities.ExtrudedSurface.dxf attribute),
394

sweep_entity_transform_computed

1078 Index

ezdxf Documentation, Release 1.3.2

(ezdxf.entities.ExtrudedSurface.dxf attribute),
394

sweep_entity_transform_computed
(ezdxf.entities.SweptSurface.dxf attribute),
397

sweep_entity_transformation_matrix
(ezdxf.entities.ExtrudedSurface attribute), 394

sweep_entity_transformation_matrix()
(ezdxf.entities.SweptSurface method), 397

sweep_profile() (in module ezdxf.render.forms), 596
sweep_vector (ezdxf.entities.ExtrudedSurface.dxf at-

tribute), 394
swept_entity_id (ezdxf.entities.SweptSurface.dxf at-

tribute), 396
SweptSurface (class in ezdxf.entities), 396
symmetric_difference()

(ezdxf.query.EntityQuery method), 571

T
tab_order (ezdxf.entities.DXFLayout.dxf attribute), 414
Table (class in ezdxf.sections.table), 235
table_entries_to_code() (in module

ezdxf.addons.dxf2code), 132
table_height (ezdxf.addons.tablepainter.TablePainter

property), 201
table_width (ezdxf.addons.tablepainter.TablePainter

property), 201
TablePainter (class in ezdxf.addons.tablepainter), 200
tables (ezdxf.document.Drawing attribute), 215
TablesSection (class in ezdxf.sections.tables), 229
tag (ezdxf.entities.AttDef.dxf attribute), 273
tag (ezdxf.entities.Attrib.dxf attribute), 271
tag_index() (ezdxf.lldxf.tags.Tags method), 749
TagArray (class in ezdxf.lldxf.packedtags), 752
TagList (class in ezdxf.lldxf.packedtags), 752
Tags (class in ezdxf.lldxf.tags), 748
tags (ezdxf.entities.XRecord attribute), 430
tangent (ezdxf.entities.Vertex.dxf attribute), 384
tangent() (ezdxf.math.Bezier3P method), 501
tangent() (ezdxf.math.Bezier4P method), 500
tangent() (ezdxf.math.ConstructionCircle method), 483
tangent() (ezdxf.math.EulerSpiral method), 502
tangents() (ezdxf.math.ConstructionArc method), 486
target (ezdxf.addons.importer.Importer attribute), 129
target_point (ezdxf.entities.View.dxf attribute), 260
target_point (ezdxf.entities.VPort.dxf attribute), 258
target_vertices (ezdxf.entities.GeoData attribute),

416
tessellation() (ezdxf.render.MeshBuilder method),

600
test_files (in module ezdxf.options), 628
test_files_path (in module ezdxf.options), 628
Text (class in ezdxf.entities), 397
text (ezdxf.entities.AttDef.dxf attribute), 273

text (ezdxf.entities.AttribData attribute), 376
text (ezdxf.entities.Attrib.dxf attribute), 271
text (ezdxf.entities.Dimension.dxf attribute), 323
text (ezdxf.entities.MText attribute), 366
text (ezdxf.entities.Text.dxf attribute), 397
text (ezdxf.tools.text.MTextEditor attribute), 573
text_align_always_left

(ezdxf.entities.MLeaderStyle.dxf attribute),
421

text_align_type (ezdxf.entities.MLeaderContext at-
tribute), 374

text_alignment_type
(ezdxf.entities.MLeaderStyle.dxf attribute),
421

text_alignment_type
(ezdxf.entities.MultiLeader.dxf attribute), 371

text_angle_type (ezdxf.entities.MLeaderStyle.dxf at-
tribute), 421

text_angle_type (ezdxf.entities.MultiLeader.dxf at-
tribute), 371

text_attachment_direction
(ezdxf.entities.MLeaderStyle.dxf attribute),
422

text_attachment_direction
(ezdxf.entities.MultiLeader.dxf attribute), 371

text_attachment_point
(ezdxf.entities.MultiLeader.dxf attribute), 371

text_bottom_attachment_type
(ezdxf.entities.MLeaderStyle.dxf attribute),
422

text_bottom_attachment_type
(ezdxf.entities.MultiLeader.dxf attribute), 372

text_cell() (ezdxf.addons.tablepainter.TablePainter
method), 201

text_color (ezdxf.entities.MLeaderStyle.dxf attribute),
422

text_color (ezdxf.entities.MultiLeader.dxf attribute),
372

text_direction (ezdxf.entities.MTextData attribute),
376

text_direction (ezdxf.entities.MText.dxf attribute),
365

text_generation_flag (ezdxf.entities.Text.dxf at-
tribute), 398

text_height (ezdxf.entities.Leader.dxf attribute), 348
text_IPE_align (ezdxf.entities.MultiLeader.dxf

attribute), 371
text_left_attachment_type

(ezdxf.entities.MLeaderStyle.dxf attribute),
422

text_left_attachment_type
(ezdxf.entities.MultiLeader.dxf attribute), 372

text_midpoint (ezdxf.entities.Dimension.dxf at-
tribute), 323

Index 1079

ezdxf Documentation, Release 1.3.2

text_path() (ezdxf.fonts.fonts.AbstractFont method),
560

text_path_ex() (ezdxf.fonts.fonts.AbstractFont
method), 560

text_policy (ezdxf.addons.drawing.config.Configuration
attribute), 113

text_right_attachment_type
(ezdxf.entities.MLeaderStyle.dxf attribute),
422

text_right_attachment_type
(ezdxf.entities.MultiLeader.dxf attribute), 372

text_rotation (ezdxf.entities.Dimension.dxf at-
tribute), 324

text_size() (in module ezdxf.tools.text_size), 579
text_style_handle (ezdxf.entities.MLeaderStyle.dxf

attribute), 422
text_style_handle (ezdxf.entities.MultiLeader.dxf

attribute), 372
text_top_attachment_type

(ezdxf.entities.MLeaderStyle.dxf attribute),
422

text_top_attachment_type
(ezdxf.entities.MultiLeader.dxf attribute), 372

text_width (ezdxf.entities.Leader.dxf attribute), 348
text_width() (ezdxf.fonts.fonts.AbstractFont method),

560
text_width_ex() (ezdxf.fonts.fonts.AbstractFont

method), 560
text_wrap() (in module ezdxf.tools.text), 579
TextAlignment (class in ezdxf.render), 614
TextCell (class in ezdxf.addons.tablepainter), 202
TextEntityAlignment (class in ezdxf.enums), 440
TextLine (class in ezdxf.tools.text), 576
TextPolicy (class in ezdxf.addons.drawing.config), 117
Textstyle (class in ezdxf.entities), 246
TextstyleTable (class in ezdxf.sections.table), 237
thaw() (ezdxf.entities.Layer method), 241
thaw() (ezdxf.entities.Viewport method), 408
thickness (ezdxf.entities.DXFGraphic.dxf attribute),

313
thickness (ezdxf.entities.Line.dxf attribute), 350
time (ezdxf.entities.Sun.dxf attribute), 428
tint (ezdxf.entities.Gradient attribute), 344
to_bsplines_and_vertices() (in module

ezdxf.path), 537
to_control_vertices() (in module

ezdxf.disassemble), 528
to_dxf() (in module ezdxf.addons.hpgl2.api), 154
to_dxf_entities() (ezdxf.addons.geo.GeoProxy

method), 125
to_ellipse() (ezdxf.entities.Arc method), 318
to_ellipse() (ezdxf.entities.Circle method), 320
to_floats() (ezdxf.colors.RGB method), 438
to_floats() (ezdxf.colors.RGBA method), 439

to_hatches() (in module ezdxf.path), 534
to_hex() (ezdxf.colors.RGB method), 438
to_hex() (ezdxf.colors.RGBA method), 439
to_landscape() (ezdxf.addons.drawing.layout.Page

method), 102
to_lines() (in module ezdxf.path), 535
to_lwpolylines() (in module ezdxf.path), 535
to_meshes() (in module ezdxf.disassemble), 528
to_mpolygons() (in module ezdxf.path), 535
to_multi_path() (in module ezdxf.path), 539
to_ocs() (ezdxf.math.ConstructionEllipse method), 489
to_ocs() (ezdxf.math.UCS method), 465
to_ocs_angle_deg() (ezdxf.math.UCS method), 466
to_paths() (in module ezdxf.disassemble), 528
to_pdf() (in module ezdxf.addons.hpgl2.api), 155
to_pixmap() (in module ezdxf.addons.hpgl2.api), 155
to_polylines2d() (in module ezdxf.path), 536
to_polylines3d() (in module ezdxf.path), 536
to_portrait() (ezdxf.addons.drawing.layout.Page

method), 102
to_primitives() (in module ezdxf.disassemble), 528
to_spline() (ezdxf.entities.Arc method), 318
to_spline() (ezdxf.entities.Circle method), 320
to_spline() (ezdxf.entities.Ellipse method), 331
to_splines_and_polylines() (in module

ezdxf.path), 536
to_svg() (in module ezdxf.addons.hpgl2.api), 154
to_vertices() (in module ezdxf.disassemble), 528
to_wcs() (ezdxf.math.OCS method), 464
to_wcs() (ezdxf.math.UCS method), 465
top (ezdxf.addons.drawing.layout.Margins attribute), 102
TOP (ezdxf.enums.MTextLineAlignment attribute), 442
top (ezdxf.render.ConnectionSide attribute), 614
top_attachment (ezdxf.entities.MLeaderContext

attribute), 374
TOP_CENTER (ezdxf.addons.drawing.layout.PageAlignment

attribute), 103
TOP_CENTER (ezdxf.enums.MTextEntityAlignment

attribute), 441
TOP_CENTER (ezdxf.enums.TextEntityAlignment at-

tribute), 441
TOP_LEFT (ezdxf.addons.drawing.layout.PageAlignment

attribute), 103
TOP_LEFT (ezdxf.enums.MTextEntityAlignment attribute),

441
TOP_LEFT (ezdxf.enums.TextEntityAlignment attribute),

441
top_margin (ezdxf.entities.PlotSettings.dxf attribute),

423
top_of_top_line (ezdxf.render.HorizontalConnection

attribute), 614
TOP_RIGHT (ezdxf.addons.drawing.layout.PageAlignment

attribute), 103

1080 Index

ezdxf Documentation, Release 1.3.2

TOP_RIGHT (ezdxf.enums.MTextEntityAlignment at-
tribute), 441

TOP_RIGHT (ezdxf.enums.TextEntityAlignment attribute),
441

TOP_TO_BOTTOM (ezdxf.enums.MTextFlowDirection at-
tribute), 442

torus() (in module ezdxf.render.forms), 594
tostring() (ezdxf.entities.Body method), 319
tostring() (ezdxf.lldxf.types.DXFBinaryTag method),

747
tostring() (ezdxf.tools.text.ParagraphProperties

method), 575
total_edge_count() (ezdxf.render.MeshDiagnose

method), 605
total_height (ezdxf.fonts.fonts.FontMeasurements

property), 562
total_height (ezdxf.tools.text_size.ezdxf.tools.text_size.MTextSize

attribute), 579
total_height (ezdxf.tools.text_size.ezdxf.tools.text_size.TextSize

attribute), 579
total_width (ezdxf.tools.text_size.ezdxf.tools.text_size.MTextSize

attribute), 579
Trace (class in ezdxf.entities), 401
TraceBuilder (class in ezdxf.render.trace), 607
Transform (class in ezdxf.acis.entities), 517
transform (ezdxf.acis.entities.Body attribute), 518
transform() (ezdxf.addons.drawing.recorder.Player

method), 101
transform() (ezdxf.addons.hpgl2.api.Player method),

159
transform() (ezdxf.entities.Arc method), 318
transform() (ezdxf.entities.Circle method), 320
transform() (ezdxf.entities.Dimension method), 324
transform() (ezdxf.entities.DXFGraphic method), 312
transform() (ezdxf.entities.Ellipse method), 331
transform() (ezdxf.entities.Face3d method), 316
transform() (ezdxf.entities.Hatch method), 336
transform() (ezdxf.entities.Image method), 347
transform() (ezdxf.entities.Insert method), 269
transform() (ezdxf.entities.Leader method), 349
transform() (ezdxf.entities.Line method), 350
transform() (ezdxf.entities.LWPolyline method), 354
transform() (ezdxf.entities.Mesh method), 359
transform() (ezdxf.entities.MLine method), 357
transform() (ezdxf.entities.MPolygon method), 363
transform() (ezdxf.entities.MText method), 367
transform() (ezdxf.entities.MultiLeader method), 373
transform() (ezdxf.entities.Point method), 379
transform() (ezdxf.entities.Polyline method), 382
transform() (ezdxf.entities.Ray method), 386
transform() (ezdxf.entities.Shape method), 388
transform() (ezdxf.entities.Solid method), 390
transform() (ezdxf.entities.Spline method), 393
transform() (ezdxf.entities.Text method), 399

transform() (ezdxf.entities.Trace method), 402
transform() (ezdxf.entities.xdata.XData method), 755
transform() (ezdxf.entities.XLine method), 410
transform() (ezdxf.math.Bezier method), 498
transform() (ezdxf.math.Bezier3P method), 500
transform() (ezdxf.math.Bezier4P method), 499
transform() (ezdxf.math.BSpline method), 496
transform() (ezdxf.math.ConstructionEllipse method),

490
transform() (ezdxf.math.Matrix44 method), 470
transform() (ezdxf.math.UCS method), 466
transform() (ezdxf.path.Path method), 544
transform() (ezdxf.render.MeshTransformer method),

601
transform_2d() (ezdxf.tools.text.TextLine static

method), 577
transform_direction() (ezdxf.math.Matrix44

method), 470
transform_directions() (ezdxf.math.Matrix44

method), 471
transform_matrix (ezdxf.entities.SpatialFilter prop-

erty), 427
transform_paths() (in module ezdxf.path), 539
transform_paths_to_ocs() (in module

ezdxf.path), 539
transform_vertices() (ezdxf.math.Matrix44

method), 470
transformation_matrix_extruded_entity

(ezdxf.entities.ExtrudedSurface attribute), 394
transformation_matrix_path_entity()

(ezdxf.entities.SweptSurface method), 397
transformation_matrix_revolved_entity

(ezdxf.entities.RevolvedSurface attribute), 396
transformation_matrix_sweep_entity

(ezdxf.entities.SweptSurface attribute), 397
TRANSFORMATION_NOT_SUPPORTED

(ezdxf.transform.Error attribute), 546
translate() (ezdxf.entities.Circle method), 320
translate() (ezdxf.entities.DXFGraphic method), 312
translate() (ezdxf.entities.Ellipse method), 331
translate() (ezdxf.entities.Insert method), 269
translate() (ezdxf.entities.Line method), 350
translate() (ezdxf.entities.Point method), 379
translate() (ezdxf.entities.Ray method), 386
translate() (ezdxf.entities.Text method), 399
translate() (ezdxf.entities.XLine method), 410
translate() (ezdxf.math.ConstructionArc method),

486
translate() (ezdxf.math.ConstructionBox method),

492
translate() (ezdxf.math.ConstructionCircle method),

483
translate() (ezdxf.math.ConstructionLine method),

482

Index 1081

ezdxf Documentation, Release 1.3.2

translate() (ezdxf.math.Matrix44 class method), 468
translate() (ezdxf.math.Shape2d method), 494
translate() (ezdxf.r12strict.R12NameTranslator

method), 226
translate() (ezdxf.render.MeshTransformer method),

601
translate() (in module ezdxf.transform), 546
translate_names() (in module ezdxf.r12strict), 226
transparency (ezdxf.entities.DXFGraphic attribute),

311
transparency (ezdxf.entities.DXFGraphic.dxf at-

tribute), 314
transparency (ezdxf.entities.Layer attribute), 241
transparency (ezdxf.entities.MText.dxf attribute), 365
transparency (ezdxf.gfxattribs.GfxAttribs property),

566
transparency2float() (in module ezdxf.colors),

437
transpose() (ezdxf.math.linalg.Matrix method), 508
transpose() (ezdxf.math.Matrix44 method), 471
trashcan() (ezdxf.entitydb.EntityDB method), 745
triangulate() (in module ezdxf.path), 539
tridiagonal_matrix_solver() (in module

ezdxf.math.linalg), 505
tridiagonal_vector_solver() (in module

ezdxf.math.linalg), 505
true-color, 1023
true_color (ezdxf.entities.DXFGraphic.dxf attribute),

314
true_color (ezdxf.entities.Layer.dxf attribute), 240
true_color (ezdxf.entities.Sun.dxf attribute), 428
TrueTypeFont (class in ezdxf.fonts.fonts), 560
tuple() (ezdxf.math.Vec3 class method), 474
tuples_to_tags() (in module ezdxf.lldxf.types), 746
turn_height (ezdxf.entities.Helix.dxf attribute), 345
turns (ezdxf.entities.Helix.dxf attribute), 345
turtle() (in module ezdxf.render.forms), 592
twist_angle (ezdxf.entities.ExtrudedSurface.dxf

attribute), 394
twist_angle (ezdxf.entities.RevolvedSurface.dxf

attribute), 396
twist_angle (ezdxf.entities.SweptSurface.dxf attribute),

396
type (ezdxf.acis.entities.AcisEntity attribute), 517
type (ezdxf.entities.ArcEdge attribute), 342
type (ezdxf.entities.EdgePath attribute), 339
type (ezdxf.entities.EllipseEdge attribute), 342
type (ezdxf.entities.LineEdge attribute), 341
type (ezdxf.entities.PolylinePath attribute), 338
type (ezdxf.entities.SplineEdge attribute), 342
type (ezdxf.render.hatching.Intersection attribute), 622

U
u_bounds (ezdxf.acis.entities.Surface attribute), 522

u_count (ezdxf.entities.Surface.dxf attribute), 393
u_dir (ezdxf.acis.entities.Plane attribute), 522
u_pixel (ezdxf.entities.Image.dxf attribute), 346
UCS (class in ezdxf.math), 465
ucs (ezdxf.document.Drawing attribute), 216
ucs (ezdxf.entities.View.dxf attribute), 260
ucs (ezdxf.sections.tables.TablesSection attribute), 230
ucs() (ezdxf.entities.Insert method), 271
ucs() (ezdxf.entities.MText method), 367
ucs() (ezdxf.entities.UCSTableEntry method), 262
ucs() (ezdxf.math.Matrix44 static method), 470
ucs_base_handle (ezdxf.entities.Viewport.dxf at-

tribute), 407
ucs_handle (ezdxf.entities.DXFLayout.dxf attribute),

414
ucs_handle (ezdxf.entities.View.dxf attribute), 261
ucs_handle (ezdxf.entities.Viewport.dxf attribute), 407
ucs_icon (ezdxf.entities.Viewport.dxf attribute), 407
ucs_icon (ezdxf.entities.VPort.dxf attribute), 259
ucs_origin (ezdxf.entities.DXFLayout.dxf attribute),

414
ucs_origin (ezdxf.entities.View.dxf attribute), 260
ucs_origin (ezdxf.entities.Viewport.dxf attribute), 407
ucs_ortho_type (ezdxf.entities.View.dxf attribute),

261
ucs_ortho_type (ezdxf.entities.Viewport.dxf at-

tribute), 407
ucs_per_viewport (ezdxf.entities.Viewport.dxf

attribute), 407
ucs_type (ezdxf.entities.DXFLayout.dxf attribute), 414
ucs_x_axis (ezdxf.entities.Viewport.dxf attribute), 407
ucs_xaxis (ezdxf.entities.DXFLayout.dxf attribute), 414
ucs_xaxis (ezdxf.entities.View.dxf attribute), 260
ucs_y_axis (ezdxf.entities.Viewport.dxf attribute), 407
ucs_yaxis (ezdxf.entities.DXFLayout.dxf attribute), 414
ucs_yaxis (ezdxf.entities.View.dxf attribute), 261
UCSTable (class in ezdxf.sections.table), 238
UCSTableEntry (class in ezdxf.entities), 262
uid (ezdxf.entities.Body.dxf attribute), 319
Underlay (class in ezdxf.entities), 402
underlay_def_handle (ezdxf.entities.Underlay.dxf

attribute), 402
UnderlayDefinition (class in ezdxf.entities), 429
UNDERLINE (ezdxf.enums.MTextStroke attribute), 442
underline() (ezdxf.tools.text.MTextEditor method),

574
unfitted_items (ezdxf.addons.binpacking.AbstractPacker

property), 185
uniform_knot_vector() (in module ezdxf.math),

447
unify_face_normals() (ezdxf.render.MeshBuilder

method), 601
unify_face_normals_by_reference()

(ezdxf.render.MeshBuilder method), 601

1082 Index

ezdxf Documentation, Release 1.3.2

UNION (in module ezdxf.addons.openscad), 197
union() (ezdxf.addons.pycsg.CSG method), 166
union() (ezdxf.math.BoundingBox method), 478
union() (ezdxf.math.BoundingBox2d method), 480
union() (ezdxf.query.EntityQuery method), 570
unique_edges() (ezdxf.render.MeshDiagnose

method), 605
unit_circle() (in module ezdxf.path), 541
unit_factor (ezdxf.entities.PlotSettings.dxf attribute),

426
unit_name() (in module ezdxf.units), 51
unit_vector (ezdxf.entities.Ray.dxf attribute), 386
unit_vector (ezdxf.entities.XLine.dxf attribute), 410
Unitless (ezdxf.enums.InsertUnits attribute), 443
Units (class in ezdxf.addons.drawing.layout), 104
units (ezdxf.addons.drawing.ezdxf.addons.drawing.properties.LayoutProperties

attribute), 118
units (ezdxf.addons.drawing.layout.Page attribute), 102
units (ezdxf.addons.drawing.properties.Properties

attribute), 118
units (ezdxf.document.Drawing attribute), 216
units (ezdxf.entities.BlockRecord.dxf attribute), 263
units (ezdxf.layouts.BaseLayout attribute), 276
unix_exec_path (in module ezdxf.addons.odafc), 139
unlink_entity() (ezdxf.layouts.BaseLayout method),

277
unlink_from_layout() (ezdxf.entities.DXFGraphic

method), 311
unlock() (ezdxf.entities.Layer method), 242
unnamed (ezdxf.entities.dxfgroups.DXFGroup.dxf at-

tribute), 304
up_direction (ezdxf.entities.GeoData.dxf attribute),

416
update() (ezdxf.entities.DimStyleOverride method), 325
update() (ezdxf.lldxf.tags.Tags method), 749
update_all() (ezdxf.entities.MLineStyle method), 358
update_dxf_attribs() (ezdxf.entities.DXFEntity

method), 308
update_extents() (in module ezdxf.appsettings), 564
update_geometry() (ezdxf.entities.MLine method),

356
update_instance_counters()

(ezdxf.sections.classes.ClassesSection method),
228

update_paper() (ezdxf.layouts.Layout method), 301
upper (ezdxf.math.linalg.BandedMatrixLU attribute), 509
upper_right (ezdxf.entities.VPort.dxf attribute), 258
upright() (in module ezdxf.upright), 548
upright_all() (in module ezdxf.upright), 548
upright_text_angle() (in module ezdxf.tools.text),

579
use_auto_height (ezdxf.entities.MTextData attribute),

377
use_c_ext (in module ezdxf.options), 629

use_plot_styles() (ezdxf.layouts.Layout method),
300

use_standard_scale() (ezdxf.layouts.Layout
method), 300

use_window_bg_color (ezdxf.entities.MTextData at-
tribute), 377

use_word_break (ezdxf.entities.MTextData attribute),
377

used_dimstyles (ezdxf.addons.importer.Importer at-
tribute), 129

used_layers (ezdxf.addons.importer.Importer at-
tribute), 129

used_linetypes (ezdxf.addons.importer.Importer at-
tribute), 129

used_styles (ezdxf.addons.importer.Importer at-
tribute), 129

user_data (ezdxf.path.Path property), 542
user_location_override()

(ezdxf.entities.DimStyleOverride method),
328

user_scale_factor (ezdxf.entities.GeoData.dxf at-
tribute), 416

UserRecord (class in ezdxf.urecord), 555
USSurveyFeet (ezdxf.enums.InsertUnits attribute), 443
USSurveyInch (ezdxf.enums.InsertUnits attribute), 443
USSurveyMile (ezdxf.enums.InsertUnits attribute), 443
USSurveyYard (ezdxf.enums.InsertUnits attribute), 443
uuid (ezdxf.entities.DXFEntity property), 307
UVec (class in ezdxf.math), 472
ux (ezdxf.math.OCS attribute), 464
ux (ezdxf.math.UCS attribute), 465
uy (ezdxf.math.OCS attribute), 464
uy (ezdxf.math.UCS attribute), 465
uz (ezdxf.math.OCS attribute), 464
uz (ezdxf.math.UCS attribute), 465

V
v_bounds (ezdxf.acis.entities.Surface attribute), 522
v_count (ezdxf.entities.Surface.dxf attribute), 393
v_dir (ezdxf.acis.entities.Plane attribute), 523
v_pixel (ezdxf.entities.Image.dxf attribute), 346
validate() (ezdxf.document.Drawing method), 221
valign (ezdxf.entities.Text.dxf attribute), 398
value (ezdxf.entities.DictionaryVar property), 413
value (ezdxf.entities.DictionaryVar.dxf attribute), 413
value (ezdxf.lldxf.types.DXFTag attribute), 746
values (ezdxf.lldxf.packedtags.TagArray attribute), 752
values (ezdxf.lldxf.packedtags.TagList attribute), 752
values() (ezdxf.entitydb.EntityDB method), 744
varnames() (ezdxf.sections.header.HeaderSection

method), 227
Vec2 (class in ezdxf.math), 476
vec2 (ezdxf.math.Vec3 attribute), 473
Vec3 (class in ezdxf.math), 472

Index 1083

ezdxf Documentation, Release 1.3.2

vector (ezdxf.math.Plane attribute), 477
version (ezdxf.entities.Body.dxf attribute), 319
version (ezdxf.entities.Dimension.dxf attribute), 321
version (ezdxf.entities.GeoData.dxf attribute), 415
version (ezdxf.entities.Mesh.dxf attribute), 359
version (ezdxf.entities.MultiLeader.dxf attribute), 372
version (ezdxf.entities.Sun.dxf attribute), 428
Vertex (class in ezdxf.acis.entities), 522
Vertex (class in ezdxf.entities), 383
vertex_at() (ezdxf.math.ConstructionPolyline

method), 493
VERTEX_SIZE (ezdxf.lldxf.packedtags.VertexArray at-

tribute), 752
VertexArray (class in ezdxf.lldxf.packedtags), 752
vertical_unit_scale (ezdxf.entities.GeoData.dxf

attribute), 416
vertical_units (ezdxf.entities.GeoData.dxf at-

tribute), 416
VerticalConnection (class in ezdxf.render), 614
vertices (ezdxf.entities.Leader attribute), 349
vertices (ezdxf.entities.LeaderLine attribute), 375
vertices (ezdxf.entities.Mesh attribute), 359
vertices (ezdxf.entities.MeshData attribute), 359
vertices (ezdxf.entities.MeshVertexCache attribute), 385
vertices (ezdxf.entities.MLine attribute), 356
vertices (ezdxf.entities.Polyline attribute), 381
vertices (ezdxf.entities.PolylinePath attribute), 339
vertices (ezdxf.math.Shape2d attribute), 493
vertices (ezdxf.render.MeshBuilder attribute), 597
vertices (ezdxf.render.MeshDiagnose property), 605
vertices (ezdxf.xclip.ClippingPath attribute), 582
vertices() (ezdxf.disassemble.Primitive method), 529
vertices() (ezdxf.entities.Circle method), 320
vertices() (ezdxf.entities.Ellipse method), 330
vertices() (ezdxf.entities.LWPolyline method), 353
vertices() (ezdxf.entities.Solid method), 390
vertices() (ezdxf.entities.Trace method), 402
vertices() (ezdxf.math.ConstructionArc method), 485
vertices() (ezdxf.math.ConstructionCircle method),

483
vertices() (ezdxf.math.ConstructionEllipse method),

489
vertices_from_body() (in module ezdxf.acis.api),

516
vertices_in_wcs() (ezdxf.entities.LWPolyline

method), 353
View (class in ezdxf.entities), 259
view_brightness (ezdxf.entities.Viewport.dxf at-

tribute), 408
view_center_point (ezdxf.entities.Viewport.dxf at-

tribute), 405
view_contrast (ezdxf.entities.Viewport.dxf attribute),

408

view_direction_vector
(ezdxf.entities.Viewport.dxf attribute), 405

view_height (ezdxf.entities.Viewport.dxf attribute), 405
view_mode (ezdxf.entities.View.dxf attribute), 260
view_mode (ezdxf.entities.VPort.dxf attribute), 259
view_target_point (ezdxf.entities.Viewport.dxf at-

tribute), 405
view_twist (ezdxf.entities.View.dxf attribute), 260
view_twist (ezdxf.entities.VPort.dxf attribute), 259
view_twist_angle (ezdxf.entities.Viewport.dxf

attribute), 405
Viewport (class in ezdxf.entities), 405
viewport_handle (ezdxf.entities.DXFLayout.dxf at-

tribute), 414
viewports (ezdxf.document.Drawing attribute), 216
viewports (ezdxf.sections.tables.TablesSection attribute),

230
viewports() (ezdxf.layouts.Paperspace method), 302
ViewportTable (class in ezdxf.sections.table), 239
views (ezdxf.document.Drawing attribute), 216
views (ezdxf.sections.tables.TablesSection attribute), 230
ViewTable (class in ezdxf.sections.table), 239
virtual_entities()

(ezdxf.entities.ACADProxyEntity method),
317

virtual_entities() (ezdxf.entities.Dimension
method), 324

virtual_entities() (ezdxf.entities.Insert method),
270

virtual_entities() (ezdxf.entities.Leader method),
349

virtual_entities() (ezdxf.entities.LWPolyline
method), 354

virtual_entities() (ezdxf.entities.MLine method),
357

virtual_entities() (ezdxf.entities.MultiLeader
method), 373

virtual_entities() (ezdxf.entities.Point method),
379

virtual_entities() (ezdxf.entities.Polyline
method), 382

virtual_entities() (ezdxf.render.arrows._Arrows
method), 619

virtual_entities()
(ezdxf.render.trace.CurvedTrace method),
608

virtual_entities()
(ezdxf.render.trace.LinearTrace method),
608

virtual_entities()
(ezdxf.render.trace.TraceBuilder method),
607

virtual_entities() (in module
ezdxf.addons.text2path), 151

1084 Index

ezdxf Documentation, Release 1.3.2

virtual_entities() (in module ezdxf.render.point),
609

VIRTUAL_ENTITY_NOT_SUPPORTED
(ezdxf.transform.Error attribute), 546

virtual_guide (ezdxf.entities.LoftedSurface.dxf
attribute), 395

virtual_mtext_entity() (ezdxf.entities.AttDef
method), 273

virtual_mtext_entity() (ezdxf.entities.Attrib
method), 272

virtual_pen_number
(ezdxf.addons.acadctb.PlotStyle attribute),
170

visual_style_handle (ezdxf.entities.View.dxf at-
tribute), 261

visual_style_handle (ezdxf.entities.Viewport.dxf
attribute), 408

volume() (ezdxf.render.MeshDiagnose method), 605
VPort (class in ezdxf.entities), 258
vtx0 (ezdxf.entities.Face3d.dxf attribute), 315
vtx0 (ezdxf.entities.Solid.dxf attribute), 389
vtx0 (ezdxf.entities.Trace.dxf attribute), 401
vtx1 (ezdxf.entities.Face3d.dxf attribute), 315
vtx1 (ezdxf.entities.Solid.dxf attribute), 390
vtx1 (ezdxf.entities.Trace.dxf attribute), 401
vtx1 (ezdxf.entities.Vertex.dxf attribute), 384
vtx2 (ezdxf.entities.Face3d.dxf attribute), 315
vtx2 (ezdxf.entities.Solid.dxf attribute), 390
vtx2 (ezdxf.entities.Trace.dxf attribute), 402
vtx2 (ezdxf.entities.Vertex.dxf attribute), 384
vtx3 (ezdxf.entities.Face3d.dxf attribute), 316
vtx3 (ezdxf.entities.Solid.dxf attribute), 390
vtx3 (ezdxf.entities.Trace.dxf attribute), 402
vtx3 (ezdxf.entities.Vertex.dxf attribute), 384
vtx4 (ezdxf.entities.Vertex.dxf attribute), 384

W
was_a_proxy (ezdxf.entities.DXFClass.dxf attribute),

229
wcs_to_crs() (ezdxf.addons.geo.GeoProxy method),

125
wcs_vertices() (ezdxf.entities.Face3d method), 316
wcs_vertices() (ezdxf.entities.Solid method), 390
wcs_vertices() (ezdxf.entities.Trace method), 402
WDH (ezdxf.addons.binpacking.RotationType attribute), 189
wedge() (in module ezdxf.path), 542
weight (ezdxf.addons.binpacking.Item attribute), 188
weight (ezdxf.fonts.fonts.FontFace attribute), 562
weight_str (ezdxf.fonts.fonts.FontFace property), 562
weights (ezdxf.entities.Spline attribute), 392
weights (ezdxf.entities.SplineEdge attribute), 343
weights() (ezdxf.math.BSpline method), 496
wgs84_3395_to_4326() (in module

ezdxf.addons.geo), 127

wgs84_4326_to_3395() (in module
ezdxf.addons.geo), 127

WHD (ezdxf.addons.binpacking.RotationType attribute), 189
WHITE (ezdxf.addons.drawing.config.BackgroundPolicy

attribute), 114
WHITE (ezdxf.addons.drawing.config.ColorPolicy at-

tribute), 115
WHITE (ezdxf.enums.ACI attribute), 445
width (ezdxf.addons.binpacking.Bin attribute), 187
width (ezdxf.addons.binpacking.Item attribute), 188
width (ezdxf.addons.drawing.layout.Page attribute), 101
width (ezdxf.entities.AttribData attribute), 375
width (ezdxf.entities.MTextData attribute), 376
width (ezdxf.entities.MText.dxf attribute), 364
width (ezdxf.entities.Text.dxf attribute), 398
width (ezdxf.entities.Textstyle.dxf attribute), 246
width (ezdxf.entities.View.dxf attribute), 260
width (ezdxf.entities.Viewport.dxf attribute), 405
width (ezdxf.fonts.fonts.FontFace attribute), 562
width (ezdxf.math.ConstructionBox attribute), 491
width (ezdxf.tools.text_size.ezdxf.tools.text_size.TextSize

attribute), 579
width (ezdxf.tools.text.TextLine property), 576
width_factor() (ezdxf.tools.text.MTextEditor

method), 573
width_str (ezdxf.fonts.fonts.FontFace property), 562
win_exec_path (in module ezdxf.addons.odafc), 138
Window (class in ezdxf.select), 75
WINDOW (ezdxf.enums.MTextBackgroundColor attribute),

442
window() (in module ezdxf.zoom), 584
Wipeout (class in ezdxf.entities), 409
Wire (class in ezdxf.acis.entities), 519
wire (ezdxf.acis.entities.Body attribute), 518
wire (ezdxf.acis.entities.Shell attribute), 519
with_changes() (ezdxf.addons.drawing.config.Configuration

method), 114
world_mercator_to_gps() (in module

ezdxf.math), 449
write() (ezdxf.addons.acadctb.ColorDependentPlotStyles

method), 169
write() (ezdxf.addons.acadctb.NamedPlotStyles

method), 170
write() (ezdxf.addons.iterdxf.IterDXFWriter method),

137
write() (ezdxf.document.Drawing method), 217
write() (in module ezdxf.addons.r12export), 141
write() (in module ezdxf.options), 626
write_block() (in module ezdxf.xref), 94
write_file() (in module ezdxf.options), 626
write_fixed_meta_data_for_testing (in

module ezdxf.options), 628
write_home_config() (in module ezdxf.options),

626

Index 1085

ezdxf Documentation, Release 1.3.2

write_to_header() (ezdxf.gfxattribs.GfxAttribs
method), 567

X
x (ezdxf.math.Vec3 attribute), 472
X_AXIS (in module ezdxf.math), 476
x_height (ezdxf.fonts.fonts.FontMeasurements at-

tribute), 562
x_rotate() (ezdxf.math.Matrix44 class method), 468
x_rotate() (in module ezdxf.transform), 546
x_top (ezdxf.fonts.fonts.FontMeasurements property), 562
xaxis (ezdxf.entities.UCSTableEntry.dxf attribute), 262
XClip (class in ezdxf.xclip), 581
XData (class in ezdxf.entities.xdata), 754
xdata (ezdxf.entities.xdata.XDataUserDict attribute), 553
xdata (ezdxf.entities.xdata.XDataUserList attribute), 552
xdata (ezdxf.lldxf.extendedtags.ExtendedTags attribute),

750
XDataUserDict (class in ezdxf.entities.xdata), 553
XDataUserList (class in ezdxf.entities.xdata), 551
XLine (class in ezdxf.entities), 409
xof() (ezdxf.math.ConstructionRay method), 481
XRecord (class in ezdxf.entities), 430
xrecord (ezdxf.urecord.BinaryRecord attribute), 556
xrecord (ezdxf.urecord.UserRecord attribute), 555
xref_path (ezdxf.entities.Block.dxf attribute), 266
XREF_PREFIX (ezdxf.xref.ConflictPolicy attribute), 95
xround() (in module ezdxf.math), 447
xscale (ezdxf.entities.Insert.dxf attribute), 267
xscale (ezdxf.entities.Shape.dxf attribute), 388
xy (ezdxf.math.Vec3 attribute), 473
xyz (ezdxf.math.Vec3 attribute), 473
xyz_rotate() (ezdxf.math.Matrix44 class method),

469

Y
y (ezdxf.math.Vec3 attribute), 472
Y_AXIS (in module ezdxf.math), 476
y_rotate() (ezdxf.math.Matrix44 class method), 469
y_rotate() (in module ezdxf.transform), 546
Yards (ezdxf.enums.InsertUnits attribute), 443
yaxis (ezdxf.entities.UCSTableEntry.dxf attribute), 262
YELLOW (ezdxf.enums.ACI attribute), 445
yof() (ezdxf.math.ConstructionRay method), 481
yscale (ezdxf.entities.Insert.dxf attribute), 267

Z
z (ezdxf.math.Vec3 attribute), 472
Z_AXIS (in module ezdxf.math), 476
z_rotate() (ezdxf.math.Matrix44 class method), 469
z_rotate() (in module ezdxf.transform), 546
zoom_to_paper_on_update()

(ezdxf.layouts.Layout method), 301
zscale (ezdxf.entities.Insert.dxf attribute), 267

1086 Index

	Included Extensions
	Website
	Documentation
	Knowledge Graph
	Release Notes
	Changelog
	Source Code & Feedback
	Questions and Answers
	Contents
	Introduction
	What is ezdxf
	What ezdxf can’t do
	Supported Python Versions
	Supported Operating Systems
	Supported DXF Versions
	Embedded DXF Information of 3rd Party Applications
	License

	Setup & Dependencies
	Basic Installation
	Installation with Extras
	PySide6 Issue
	Binary Wheels
	Disable C-Extensions
	Installation from GitHub
	Build and Install from Source
	Windows
	WSL & Ubuntu
	Raspberry Pi OS
	Manjaro on Raspberry Pi
	Ubuntu Server 21.10 on Raspberry Pi

	Install Optional Packages
	Run the Tests
	Build Documentation
	Python from Source

	Usage for Beginners
	Loading DXF Files
	Layouts and Blocks
	Query DXF Entities
	Examine DXF Entities
	Create a New DXF File
	Create New DXF Entities
	Saving DXF Files
	Create New Blocks
	Create Block References
	Create New Layers
	Delete Entities
	Further Information

	Basic Concepts
	What is DXF?
	DXF Reference Quality
	Reliable CAD Applications

	DXF Entities and Objects
	Graphical Entities
	Objects
	TagStorage
	Access Entity Attributes
	Where to Look for Entities
	How to Create Entities

	AutoCAD Color Index (ACI)
	True Color
	Transparency
	Layers
	Layer Properties
	Layer Status
	Deleting Layers
	Renaming Layers
	Viewport Overrides

	Linetypes
	Linetype Scaling

	Lineweights
	Coordinate Systems
	WCS
	UCS
	OCS
	DCS

	Object Coordinate System (OCS)
	Elevation
	Arbitrary Axis Algorithm
	WCS to OCS
	OCS to WCS

	DXF Units
	Length Units
	Block Units
	Angle Units
	Display Format
	$INSUNITS
	$MEASUREMENT
	$LUNITS
	$AUNITS
	Helper Tools

	Modelspace
	Paperspace
	Blocks
	Block Attributes
	Extended Block Features

	Layout Extents and Limits
	Extents
	Limits
	Read Stored Values
	Setting Extents and Limits

	Font Resources

	Tasks
	Add Data
	Add DXF Entities
	Layout Factory Methods
	Thematic Index of Layout Factory Methods
	DXF Primitives
	Text Entities
	Spline Entity
	Block References and Underlays
	Viewport Entity
	Dimension Entities
	Miscellaneous
	ACIS Entities

	Factory Functions
	Direct Object Instantiation

	Add Layouts And Blocks
	Modelspace
	Paperspace Layout
	Block Definition

	Add Block References
	Add Block Reference
	Add Block Attribute
	Add Block Attribute from Template

	Add Resource Table Entries
	Layer
	Linetype
	Text Style
	Dimension Style
	AppID

	Add Custom and Extended Data
	Header Variables
	XDATA Section
	Extension Dictionaries
	Custom Data as XRECORD

	Query Data
	Query Entities
	Entity Query String
	Query Result
	Extended EntityQuery Features
	Descriptors for DXF Attributes
	Relational Selection Operators
	Regular Expression Selection
	Build Custom Filters
	Query Set Operators

	Groupby Function
	Selection Tools
	Usage
	Selection Functions
	Selection Shapes
	Planar Search Index

	Get DXF Entity Type
	Get DXF Attributes From Entities
	Optional DXF Attributs
	Default Values

	Get Content From DXF Entities
	TEXT Entity
	MTEXT Entity
	MLEADER Entity
	Text Content
	Block Content

	DIMENSION Entity
	ACAD_TABLE Entity
	INSERT Entity - Block References
	Get Attribute Content
	Get Virtual Entities

	Get Extended Data from DXF Entities
	Get Layouts And Blocks
	Modelspace
	Paperspace Layouts
	Block Layouts

	Modify Data
	Modify DXF Attributes of Entities
	Modify Resource Table Entries
	Layer
	Linetype
	Text Style
	Dimension Style

	Modify Geometry of DXF Entities
	LINE
	CIRCLE
	ARC
	ELLIPSE
	SPLINE
	LWPOLYLINE
	POLYLINE
	MESH
	HATCH
	DIMENSION
	MLEADER
	ACAD_TABLE

	Transform Entities and Layouts
	Transform DXF Entities
	Transform Layouts

	Copy or Move DXF Entities
	Duplicate DXF Entities
	Move DXF Entities between Layouts

	Modify Block References
	Modify Block attributes
	Clip Block References

	Modify Entity Content
	TEXT Entity
	MTEXT Entity
	DIMENSION Entity
	MLEADER Entity
	ACAD_TABLE Entity

	Modify Header Variables
	Modify Extended Data

	Delete Data
	Delete DXF Attributes from Entities
	Delete DXF Entities
	Delete Entities from Layouts
	Delete Block Reference Attributes

	Delete Resource Table Entries
	Layer
	Linetype
	Text Style
	Dimension Style

	Delete Layouts and Blocks
	Modelspace
	Paperspace Layouts
	Block Definitions

	Delete Extended Data

	Explode Entities
	Explode DXF Entities
	POINT
	POLYLINE & LWPOLYLINE
	MESH
	INSERT (Block References)
	DIMENSION
	MLEADER
	MLINE
	ACAD_TABLE
	Proxy Graphic

	Explode Block References
	Flatten DXF Entities

	External References (XREF)
	DXF Files as Attached XREFs
	XREF Structures
	Supported Entities
	Importing Data and Resources
	High Level Functions
	Conflict Policy
	Low Level Loading Interface

	Add-ons
	Drawing / Export Add-on
	Design
	Common Limitations to all Backends
	MatplotlibBackend
	PyQtBackend
	Recorder
	Layout
	SVGBackend
	PyMuPdfBackend
	PlotterBackend
	DXFBackend
	GeoJSONBackend
	CustomJSONBackend
	Configuration
	BackgroundPolicy
	ColorPolicy
	HatchPolicy
	ImagePolicy
	LinePolicy
	LineweightPolicy
	ProxyGraphicPolicy
	TextPolicy
	Properties
	LayerProperties
	LayoutProperties
	RenderContext
	Frontend
	BackendInterface
	Backend
	Details

	Geo Interface
	Intended Usage
	Proxy From Mapping
	Proxy From DXF Entity
	Module Functions
	GeoProxy Class
	Helper Functions
	Types

	Importer
	dxf2code
	iterdxf
	ODA File Converter Support
	Install ODA File Converter
	AppImage Support
	Suppressed GUI
	Supported DXF and DWG Versions
	Config
	Usage

	R12 Export
	Usage
	Converted Entity Types
	Limitations
	ODA File Converter
	Functions

	r12writer
	Tutorial
	Reference

	text2path
	Text Alignments
	Font Face Definition
	String Functions
	Entity Functions

	MTextExplode
	HPGL/2 Converter Add-on
	What are HPGL/2 Plot Files?
	The Goal of This Add-on
	High Level Functions
	The Low Level Functions and Classes
	Recorder
	Player
	Properties
	Exceptions

	PyCSG
	CSG Class
	License

	Plot Style Files (CTB/STB)
	ColorDependentPlotStyles
	NamedPlotStyles
	PlotStyle
	Default Line Weights
	Predefined Values
	Line End Style
	Line Join Style
	Fill Style
	Linetypes

	Showcase Forms
	MengerSponge
	SierpinskyPyramid

	Bin-Packing Add-on
	The Bin Packing Problem
	Example
	Packer Classes
	Packer
	FlatPacker

	Bin Classes
	Box Class
	Envelope Class
	Item Class
	FlatItem Class

	Functions
	Enums
	RotationType
	PickStrategy

	Credits

	MeshExchange
	Import
	Export

	OpenSCAD
	Functions
	Script Class
	Boolean Operation Constants
	openpyscad
	solidpython2

	TablePainter
	Tutorial
	TablePainter
	Cell
	TextCell
	BlockCell
	CustomCell
	CellStyle
	BorderStyle

	MTextSurrogate for DXF R12
	ASTM-D6673-10 Exporter

	Reference
	DXF Document
	Document Management
	Create New Drawings
	Open Drawings
	Save Drawings
	Drawing Settings
	Header variables set at new
	Header variables updated at saving
	Ezdxf Metadata

	Export/Load JSON Encoded Tags

	Drawing Class
	Access Layouts
	Access Resources
	Drawing Class

	Recover
	Loading Scenarios
	1. It will work
	2. DXF file with minor flaws
	3. Try Hard
	4. Just use the slow recover module
	5. Unrecoverable Decoding Errors
	6. Ignore/Locate Decoding Errors

	r12strict
	Usage
	Functions

	DXF Structures
	Sections
	Header Section
	Classes Section
	Tables Section
	Blocks Section
	Entities Section
	Objects Section

	Tables
	Table Classes
	Generic Table Class
	Layer Table
	Linetype Table
	Style Table
	DimStyle Table
	AppID Table
	UCS Table
	View Table
	Viewport Table
	Block Record Table

	Layer
	LayerOverrides

	Style
	Font Settings

	Linetype
	DimStyle
	VPort
	View
	AppID
	UCS
	BlockRecord
	Internal Structure

	Blocks
	Block
	EndBlk
	Insert
	Attrib
	AttDef

	Layouts
	Layout Manager
	Layout Types
	Entity Ownership

	BaseLayout
	Layout
	Modelspace
	Paperspace
	BlockLayout

	Groups
	DXFGroup
	GroupCollection

	DXF Entities
	DXF Entity Base Class
	DXF Graphic Entity Base Class
	Common graphical DXF attributes

	Face3d
	Solid3d
	ACADProxyEntity
	Arc
	Body
	Circle
	Dimension
	Factory Functions
	DimStyleOverride

	ArcDimension
	Ellipse
	Hatch
	Boundary Paths
	Island Detection
	Hatch Style
	Hatch Boundary Classes
	Hatch Pattern Definition Classes
	Hatch Gradient Fill Class

	Helix
	Image
	Leader
	Line
	LWPolyline
	User Defined Point Format Codes

	MLine
	Mesh
	MeshData

	MPolygon
	MText
	MText Inline Codes
	Convenient constants defined in MTextEditor:

	MultiLeader
	Point
	Polyline
	Vertex
	Polymesh
	MeshVertexCache

	Polyface
	Ray
	Region
	Shape
	Solid
	Spline
	Factory Functions

	Surface
	ExtrudedSurface
	LoftedSurface
	RevolvedSurface
	SweptSurface

	Text
	Trace
	Underlay
	PdfUnderlay
	DwfUnderlay
	DgnUnderlay

	Viewport
	Wipeout
	XLine

	DXF Objects
	Dictionary
	DictionaryWithDefault
	DictionaryVar
	DXFLayout
	DXFObject
	GeoData
	ImageDef
	ImageDefReactor
	MLeaderStyle
	Placeholder
	PlotSettings
	SpatialFilter
	Sun
	UnderlayDefinition
	PdfDefinition
	DwfDefinition
	DgnDefinition

	XRecord

	Extended Data (XDATA)
	Application-Defined Data (AppData)
	Extension Dictionary
	Reactors
	Block Reference Management
	Const
	DXF Version Strings
	Exceptions

	Colors
	Colors Module
	Converter Functions
	RGB Class
	RGBA Class
	ACI Color Values
	Default Palettes
	Raw Color Types
	Raw Color Vales
	Transparency Values

	Enums
	TextEntityAlignment
	MTextEntityAlignment
	MTextParagraphAlignment
	MTextFlowDirection
	MTextLineAlignment
	MTextStroke
	MTextLineSpacing
	MTextBackgroundColor
	InsertUnits
	Measurement
	LengthUnits
	AngularUnits
	SortEntities
	ACI
	EndCaps
	JoinStyle

	Math
	Core
	Utility Functions
	Bulge Related Functions
	2D Graphic Functions
	3D Graphic Functions
	Transformation Classes
	OCS Class
	UCS Class
	Matrix44

	Basic Construction Classes
	UVec
	Vec3
	Vec2
	Plane
	BoundingBox
	BoundingBox2d
	ConstructionRay
	ConstructionLine
	ConstructionCircle
	ConstructionArc
	ConstructionEllipse
	ConstructionBox
	ConstructionPolyline
	Shape2d

	Curves
	BSpline
	Bezier
	Bezier4P
	Bezier3P
	ApproxParamT
	EulerSpiral

	Clipping
	Clustering
	Linear Algebra
	Functions
	Matrix Class
	NumpySolver
	BandedMatrixLU Class

	RTree
	Triangulation

	Construction
	ACIS Tools
	Functions
	Exceptions
	Entities
	AcisEntity
	Transform
	Body
	Pattern
	Lump
	Wire
	Shell
	Subshell
	Face
	Loop
	Coedge
	Edge
	Vertex
	Surface
	Plane
	Curve
	StraightCurve
	PCurve
	Point

	Bounding Box
	Functions
	Caching Strategies
	Cache Class

	Disassemble
	Text Boundary Calculation
	Flatten Complex DXF Entities
	Entity Deconstruction

	Math Construction Tools
	Path
	Factory Functions
	Render Functions
	Entity Maker
	Tool Maker
	Utility Functions
	Basic Shapes
	The Path Class

	Reorder
	Transform
	Upright
	Usage
	Functions
	Additional Explanation

	Custom Data
	Custom XDATA
	XDataUserList
	XDataUserDict

	Custom XRecord
	UserRecord
	BinaryRecord

	Fonts
	Fonts
	Font Locations
	TrueType Fonts
	Basic Stroke Fonts

	Font Caching
	Rebuilding the Font Cache
	Functions
	Classes
	Font Anatomy
	Font Properties

	Tools
	Application Settings
	Set Current Properties
	Restore the WCS
	Update Extents
	Show Lineweight

	Load DXF Comments
	GfxAttribs
	Query Module
	The new() Function
	Entity Query String

	Entity Query
	Attribute Query
	EntityQuery Class

	Revision Cloud
	Text Tools
	MTextEditor
	Single Line Text
	Functions

	Text Size Tools
	XClip Module
	Zoom Layouts
	Render Tools
	Spline
	R12Spline
	Bezier
	EulerSpiral
	Random Paths
	Forms
	2D Forms
	3D Forms
	3D Form Builder

	MeshBuilder
	MeshTransformer
	MeshVertexMerger
	MeshAverageVertexMerger
	MeshBuilder Helper Classes
	Trace
	Point Rendering
	MultiLeaderBuilder
	MultiLeaderMTextBuilder
	MultiLeaderBlockBuilder
	Enums

	Arrows
	Hatching
	High Level Functions
	Classes
	Helper Functions
	Exceptions

	Global Options
	Global Options Object
	Config Files
	Modify and Save Changes
	Use a Custom Config File
	Functions
	Core Options
	Default Dimension Text Style
	Load Proxy Graphic
	Store Proxy Graphic
	Support Directories

	Debugging Options
	Test Files
	Filter Invalid XDATA Group Codes
	Log Unprocessed Tags
	Write Fixed Meta Data for Testing
	Disable C-Extension
	Use C-Extensions

	Environment Variables

	For Developers
	DXF Internals
	Basic DXF Structures
	DXF File Encoding
	DXF R2004 and prior
	Known $DWGCODEPAGE encodings
	DXF R2007 and later
	DXF Tags
	Extended Data
	String value encoding
	Multi tag text (MTEXT)
	DXF R13 and later tag structure
	Subclass Markers
	Quote about group codes from the DXF reference
	Usage of group codes in subclasses twice
	Tag order is sometimes important especially for AutoCAD
	Extension Dictionary
	Persistent Reactors
	Application-Defined Codes
	Embedded Objects
	Handles
	Handle Definition
	Handle Pointer
	Pointer and Ownership
	Hard and Soft References
	Arbitrary Handles
	About 1005 Group Codes
	DXF File Structure
	Minimal DXF Content
	DXF R12
	DXF R13/R14 and later
	Data Model
	Database Objects
	DXF R12 Data Model
	DXF R13+ Data Model
	Objects Organisation
	Root DICTIONARY content for DXF R2018

	DXF Structures
	DXF Sections
	HEADER Section
	CLASSES Section
	CLASS Entities
	TABLES Section
	APPID Table
	Table Structure DXF R12
	Table Structure DXF R2000+
	Name References
	BLOCK_RECORD Table
	DIMSTYLE Table
	Table Structure DXF R12
	DIMSTYLE Entry DXF R12
	DIMSTYLE Variables DXF R12
	Table Structure DXF R2000+
	Additional DIMSTYLE Variables DXF R13/14
	Additional DIMSTYLE Variables DXF R2000
	Text Location
	Unofficial DIMSTYLE Variables for DXF R2007 and later
	Extended Settings as Special XDATA Groups
	LAYER Table
	Table Structure DXF R2000+
	Layer Entity Tags DXF R2000+
	Layer Viewport Overrides
	Name References
	LTYPE Table
	Table Structure DXF R12
	Table Structure DXF R2000+
	Simple Line Type
	Simple Line Type Tag Structure DXF R2000+
	Complex Line Type TEXT
	TEXT Tag Structure
	Complex Line Type SHAPE
	SHAPE Tag Structure
	Name References
	STYLE Table
	Table Structure DXF R12
	Table Structure DXF R2000+
	Extended Font Data
	Name References
	UCS Table
	VIEW Table
	DXF R12
	DXF R2000+
	VPORT Configuration Table
	DXF R12
	DXF R2000+
	BLOCKS Section
	ENTITIES Section
	OBJECTS Section
	DXF Tables
	DXF Entities
	DIMENSION Internals
	MESH Internals
	MULTILEADER Internals
	MTEXT Internals
	Orientation
	Text Content
	Inline Code Specials
	Height Calculation
	Width Calculation
	Background Filling
	Text Frame
	XDATA for Text Frame
	Extra LWPOLYLINE Entity as Text Frame
	Column Support
	Column Type
	Column Count
	Static Columns R2000
	Static Columns R2018
	Dynamic (auto height) Columns R2000
	Dynamic (auto height) Columns R2018
	Dynamic (manual height) Columns R2000
	Dynamic (manual height) Columns R2018
	No Columns R2000
	No Columns R2018
	DXF Objects

	Management Structures
	Block Management Structures
	Block Names
	Block Definitions in DXF R12
	Block Definitions in DXF R2000+
	Layout Management Structures
	LAYOUT Entity
	Main VIEWPORT Entity for LAYOUT

	Miscellaneous
	Notes on Rendering DXF Content
	Colors
	Layers and Draw Order
	TEXT
	MTEXT
	POINT

	Low Level Functions
	DXF Unicode Decoder
	SAT Format “Encryption”
	Developer Guides
	Source Code Formatting
	Type Annotations
	Design
	Package Design for Developers
	Terminology
	States
	Actions
	Loading a DXF Document
	First Loading Stage
	Second Loading Stage
	New DXF Document
	Creating New DXF Entities
	Factory functions
	Class Interfaces
	DXF Entities
	DXF Objects
	Layouts
	Database

	Internal Data Structures
	Entity Database
	Entity Space
	DXF Types
	DXFTag Factory Functions
	DXFTag
	DXFBinaryTag
	DXFVertex
	NONE_TAG
	Tags
	Packed DXF Tags
	XData
	Application-Defined Data (AppData)
	Reactors

	Documentation Guide
	Formatting Guide
	guide — Example module
	Text Formatting

	Launcher
	System
	Audit
	Draw
	View
	Browse
	Line Numbers
	GUI Features
	Auto Reload
	Menus and Shortcuts

	Browse-ACIS
	Entity View
	Menus and Shortcuts

	Strip
	Config
	Info
	Show Version & Configuration
	HPGL/2 Viewer/Converter
	DXF
	SVG
	PDF
	All Formats

	Tutorials
	Tutorial for Getting Data from DXF Files
	Layouts
	Getting the modelspace layout
	Iterate over DXF entities of a layout
	Access DXF attributes of an entity
	Getting a paperspace layout
	Retrieve entities by query language
	Extended EntityQuery Features
	Retrieve entities by groupby() function

	Tutorial for Creating DXF Drawings
	Predefined Resources
	Simple DXF R12 drawings

	Tutorial for Common Graphical Attributes
	Color
	True Color
	Transparency
	Linetype
	Lineweight
	Linetype Scale
	Invisible
	GfxAttribs

	Tutorial for Layers
	Create a Layer Definition
	Moving an Entity to a Different Layer
	Changing Layer State
	Check Available Layers
	Renaming a Layer
	Deleting a Layer Definition
	Deleting All Entities From a Layer

	Tutorial for Creating Linetype Pattern
	Check Available Linetypes
	Removing Linetypes

	Tutorial for Creating Complex Linetype Pattern
	Tutorial for Simple DXF Entities
	Point
	Line
	Circle
	Arc
	Ellipse
	Further Tutorials

	Tutorial for Entity Selection
	Why Bounding Boxes?
	Source of Entities
	Selection Shapes
	Using Selection Functions
	Bounding Box Inside Selection
	Bounding Box Outside Selection
	Bounding Box Overlap Selection
	Bounding Box Chained Selection
	Bounding Box Crosses Fence
	Point In Bounding Box Selection
	Circle Selection
	Polygon Selection

	Tutorial for Blocks
	Create a Block
	Block References (Insert)
	Block Attributes
	Using Attribute Definitions
	Get/Set Attributes of Existing Block References
	Evaluate Wrapped Block References
	Exploding Block References
	Examine Entities of Block References

	Tutorial for LWPolyline
	Tutorial for Text
	Standard Text Styles
	New Text Style
	3D Text

	Tutorial for MText and MTextEditor
	Adding a MTEXT entity
	Text placement
	Character height
	Text rotation (direction)
	Defining a wrapping border
	MTEXT formatting
	Stacked text
	Background color (filling)
	MTextEditor
	Init Editor
	Set Text Color
	Changing Text Height
	Changing Font
	Set Paragraph Properties
	Bullet List
	Numbered List
	Stacked Text

	Tutorial for Spline
	Splines from fit points
	Splines by control points
	Open Spline
	Rational Spline

	Spline Tangents
	Spline properties

	Tutorial for Polyface
	Tutorial for Mesh
	Tutorial for Hatch
	Create hatches with one boundary path
	Create hatches with multiple boundary paths (islands)
	Example for Edge Path Boundary
	Associative Boundary Paths
	Predefined Hatch Pattern
	Load Hatch Patterns From File

	Tutorial for Hatch Pattern Definition
	Tutorial for Image and ImageDef
	Tutorial for Underlay and UnderlayDefinition
	Tutorial for MultiLeader
	MTEXT Quick Draw
	Create MTEXT Content
	MTEXT Connection Types
	MTEXT Alignment

	Create BLOCK Content
	BLOCK Connection Types
	BLOCK Alignment
	BLOCK Scaling
	BLOCK Rotation
	BLOCK Attributes

	Leader Properties
	“Dogleg” Properties
	Polyline Leader
	Spline Leader
	Line Styling
	Arrowheads

	Overall Scaling
	Setup MLEADERSTYLE

	Tutorial for Viewports in Paperspace
	Page Setup
	Drawing in Paperspace
	Adding Viewports
	Scaling Factor
	View Direction
	Viewport Frame
	Freeze Layers
	Override Layer Properties

	Tutorial for OCS/UCS Usage
	Object Coordinate System (OCS)
	Extrusion
	Elevation
	Thickness

	Placing 2D Circle in 3D Space
	Placing LWPolyline in 3D Space
	Using UCS to Place 3D Polyline
	Placing 2D Text in 3D Space
	Placing 2D Arc in 3D Space
	Placing Block References in 3D Space

	Tutorial for UCS Based Transformations
	Placing 2D Circle in 3D Space
	Placing LWPolyline in 3D Space
	Using UCS to Place 3D Polyline
	Placing 2D Text in 3D Space
	Placing 2D Arc in 3D Space
	Placing Block References in 3D Space

	Tutorial for Linear Dimensions
	Horizontal Dimension
	Vertical and Rotated Dimension
	Aligned Dimension
	Dimension Style Override
	Placing Measurement Text
	Default Text Locations
	User Defined Text Locations
	Location Relative to Origin
	Location Relative to Center of Dimension Line
	Location Relative to Default Location
	Overriding Text Rotation

	Measurement Text Formatting and Styling
	Text Properties
	Background Filling
	Text Formatting

	Overriding Measurement Text
	Dimension Line Properties
	Extension Line Properties
	Arrows
	Arrow Shapes
	Arrow Names

	Tolerances and Limits
	Tolerances
	Limits

	Alternative Units

	Tutorial for Radius Dimensions
	Placing Measurement Text
	Default Text Locations Outside
	Default Text Locations Inside
	User Defined Text Locations

	Center Mark/Lines
	Overriding Measurement Text
	Measurement Text Formatting and Styling

	Tutorial for Diameter Dimensions
	Placing Measurement Text
	Default Text Locations Outside
	Default Text Locations Inside
	User Defined Text Locations

	Center Mark/Lines
	Overriding Measurement Text
	Measurement Text Formatting and Styling

	Tutorial for Angular Dimensions
	Dimension Style “EZ_CURVED”
	Factory Methods to Create Angular Dimensions
	Defined by Center, Radius and Angles
	Angle by 2 Lines
	Angle by 3 Points
	Angle from ConstructionArc

	Placing Measurement Text
	Default Text Locations
	Shift Text From Default Location
	User Defined Text Locations
	Absolute User Location
	Relative User Location
	Adding a Leader

	Overriding Text Rotation
	Angular Units
	Overriding Measurement Text
	Measurement Text Formatting and Styling
	Tolerances and Limits

	Tutorial for Arc Dimensions
	Dimension Style “EZ_CURVED”
	Factory Methods to Create Arc Dimensions
	Defined by Center, Radius and Angles
	Arc by 3 Points
	Angle from ConstructionArc

	Placing Measurement Text
	Default Text Locations
	Shift Text From Default Location
	User Defined Text Locations
	Absolute User Location
	Relative User Location
	Adding a Leader

	Overriding Text Rotation
	Overriding Measurement Text
	Measurement Text Formatting and Styling
	Tolerances and Limits

	Tutorial for Ordinate Dimensions
	Local Coordinate System
	Factory Methods to Create Ordinate Dimensions
	Global Feature Location
	Local Feature Location

	Placing Measurement Text
	Overriding Measurement Text
	Measurement Text Formatting and Styling
	Tolerances and Limits

	Tutorial for the Geo Add-on
	Setup Geo Location Reference
	Load GPX Data
	Export DXF Entities as GeoJSON
	Custom Transformation Function
	Polygon Validation by Shapely
	Interface to GDAL/OGR

	Storing Custom Data in DXF Files
	Retrieving User Data
	AutoLISP Resources

	Header Section
	Predefined User Variables
	Custom Document Properties

	Meta Data
	XDATA
	XDATA Helper Classes
	Extension Dictionaries
	XRecord
	XRecord Helper Classes
	AppData

	Tutorial for External References
	Introduction
	Supported Entities
	Environment Setup
	Attach a DXF File
	Attach a DWG File
	Detach an XREF
	Embed an XREF
	Load Modelspace
	Load Paperspace
	Write Block
	Conflict Policies
	ConflictPolicy.KEEP
	ConflictPolicy.XREF_PREFIX
	ConflictPolicy.NUM_PREFIX

	Load Table Resources

	Tutorial for Image Export
	Introduction
	Common Basics
	Frontend Configuration
	Page Layout
	Autodetect Page Size
	Scaling Content
	Limit Page Size

	SVG Export
	PDF Export
	PNG Export
	PLT/HPGL2 Export
	DXF Export
	Recorder Backend

	Howto
	General Document
	Load DXF Files with Structure Errors
	Set/Get Header Variables
	Set DXF Drawing Units
	Explore the DXF File Structure
	Calculate Extents for the Modelspace
	Set Initial View/Zoom for the Modelspace
	Hide the UCS Icon
	Show Lineweights in DXF Viewers
	Add ezdxf Resources to Existing DXF Document
	Set Logging Level of ezdxf

	DXF Viewer
	A360 Viewer Problems
	DXF Entities Are Not Displayed in the Viewer
	Show IMAGES/XREFS on Loading in AutoCAD
	Set Initial View/Zoom for the Modelspace
	Show Lineweights in DXF Viewers

	DXF Content
	Get/Set Entity Color
	Get/Set Entity RGB Color
	Get/Set True Color as RGB-Tuple
	Get/Set Block Reference Attributes
	Adding XDATA to Entities
	Get Overridden DIMSTYLE Values from DIMENSION
	Override DIMSTYLE Values for DIMENSION
	How to Change the HATCH Pattern Origin Point
	How to Get the Length of a Spline or Polyline
	How to Resolve DXF Properties
	How to Find XREF Definitions
	How to Find XREF References

	Fonts
	Rendering SHX Fonts
	Rebuild Font Manager Cache

	Drawing Add-on
	All Backends
	How to Set Background and Foreground Colors
	How to Set a Transparent Background Color
	How to Exclude DXF Entities from Rendering
	How to Override Properties of DXF Entities

	Matplotlib Backend
	How to Get the Pixel Coordinates of DXF Entities
	How to Get Modelspace Coordinates from Pixel Coordinates
	How to Export a Specific Area of the Modelspace
	How to Render Without Margins
	How to Set the Pixel Count per Drawing Unit
	How to Export a Specific Image Size in Pixels
	How to Set the Page Size in Inches
	How to Render at a Specific Scale
	How to Control the Line Width

	FAQ
	What is the Relationship between ezdxf, dxfwrite and dxfgrabber?
	Imported ezdxf package has no content. (readfile, new)
	How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?
	Are OLE/OLE2 entities supported?
	Rendering SHX fonts
	Drawing Add-on
	Is the AutoCAD command XYZ available?

	Glossary
	Knowledge Graph
	Indices and tables

	Python Module Index
	Index

