ezdxf Documentation
Release 1.3.2

Manfred Moitzi

Jul 19, 2024

Included Extensions

Website

Documentation

Knowledge Graph

Release Notes

Changelog

Source Code & Feedback

Questions and Answers

Contents

9.1 Introduction
9.1.1
9.1.2 What ezdxf can’t do
9.1.3 Supported Python Versions
9.1.4 Supported Operating Systems
9.1.5 Supported DXF Versions
9.1.6
9.1.7

9.2 Setup & Dependencies
9.2.1
9.2.2 Installation with Extras
9.2.3
9.2.4
9.2.5 Disable C-Extensions
9.2.6 Installation from GitHub
9.2.7 Build and Install from Source
9.2.8 Install Optional Packages
9.2.9
9.2.10 Build Documentation
9.2.11 Python from Source

9.3 Usage for Beginners
9.3.1 Loading DXF Files
9.3.2 Layouts and Blocks
9.33

Embedded DXF Information of 3rd Party Applications
License

PySide6 Issue

Binary Wheels

Runthe Tests

Query DXF Entities

Whatisezdxf

Basic Installation

CONTENTS

11
13
15

17

....................... 28

9.4

9.5

9.6

9.7

9.3.4 Examine DXFEntities e 29
935 CreateaNewDXFFile e 29
9.3.6 Create New DXF Entities it e 30
9.3.77 SavingDXFFiles e 30
93.8 Create New Blocks e 31
9.3.9 Create Block References 31
9.3.10 Create New Layers o o i i 0 i e e e e e e e e e 31
9.3.11 Delete Entities o e e e e e e e 32
9.3.12 Further Information e 32
BasicConcepts e e 32
9.4.1 WhatisDXF? o e 32
9.4.2 DXFEntitiesand Objects o i e e e e e e e e e 34
9.4.3 AutoCAD Color Index (ACI) o e e e e e 36
944 TrueColor. e 37
9.4.5 Transparency i it e e e e e e e e e e e e e 39
9.4.6 Layers e e 39
9.4.7 LINELYPES . . o v v i e e e e e e e e e e 41
9.4.8 Lineweights e e e e e 43
9.49 Coordinate SYStEMS v v v vt e e e e e e e e e e e e e e e e e e 45
9.4.10 Object Coordinate System (OCS) 46
9411 DXFUNItS o o e e e e 48
9.4.12 Modelspace e e e 52
0.4.13 Paperspace o i e 52
9.4.14 Blocks 52
9.4.15 LayoutExtentsand Limits. L e 53
9.4.16 FontResources i i e e 56
Tasks e 56
9.5.1 AddData e 56
952 QueryData e e e e e 68
953 ModifyData e e e e 81
954 DeleteData e e e e 86
9.5.5 Explode Entities e e e e e 89
External References (XREF) e e 90
9.6.1 DXFFilesas Attached XREFs 90
9.6.2 XREF Structures i i e e e e 91
9.6.3 Supported Entities oL e 91
9.6.4 Importing Data and Resources oo o 91
9.6.5 HighLevel Functions i 92
9.6.6 Conflict Policy e e e e e e e 95
9.6.7 Low Level Loading Interface e 95
Add-onS e e 97
9.7.1 Drawing/Export Add-on 97
9.72 Geolnterface e 122
073 IMPOITET . . . v v v o e 128
9.7.4 dxf2code e 132
9.7.5 dterdxf e e 134
9.7.6 ODA File Converter Support it 137
9.7.77 RI2ZEXPOrt e 140
9.7.8 TI2WIIter o o e e e e e e 142
9.7.9 text2path e e e e e e e 148
9.7.10 MTextExplode o e e e e e 151
9.7.11 HPGL/2 Converter Add-on e e e e 153
9.7.12 PyCSG . . . o e 160
9.7.13 Plot Style Files (CTB/STB) e et e e e e 167

9.8

9.9

9.10

9.7.14 Showcase Forms e 176
9.7.15 Bin-Packing Add-on e e e 183
9.7.16 MeshExchange e e e 190
9.7.17 OpenSCAD o e 193
9.7.18 TablePainter e e 198
9.7.19 MTextSurrogate for DXFRI2 205
9.7.20 ASTM-D6673-10 EXporter o v v i e e e e e e e e e e e e e e e e 206
Reference e 207
9.8.1 DXFDocument e 207
9.8.2 DXFSUTUCIUIES v v o vt e et e e e e e e e e e e e e e e e e 227
9.83 Colors e 437
9.8.4 Enums e 440
9.85 Math. e 446
9.8.6 ConsStruCtion Lt e e e e e e e e e e e e e 512
9.877 CustomData e e e 551
9.8.8 Fonts 556
9.8.9 TOOIs e 563
9.8.10 Global OptionS v v v vt e e e e e e e e e e e e e e e e e e e 623
9.8.11 ForDevelopers o v i i i i e e e e e e e e 629
Launcher e e e 758
9.9.1 System e e 759
9.9.2 Audit . ..o e 759
9.93 Drawo e e e 760
9.9.4 VIEW L e e 762
9.9.5 Browse e e 763
9.9.6 Browse-ACIS e e 766
9.9.7 StP . . . o e e 767
9.9.8 Config o e e e e e 767
9.9.9 Info 768
9.9.10 Show Version & Configuration L o 770
9.9.11 HPGL/2 Viewer/CONVErter v v v v v v i i e e e e e e e e e e e e e e e 770
Tutorials L e 772
9.10.1 Tutorial for Getting Datafrom DXF Files 772
9.10.2 Tutorial for Creating DXF Drawings v v vt ittt et e e e 776
9.10.3 Tutorial for Common Graphical Attributes 777
9.10.4 Tutorial for Layers. L e 781
9.10.5 Tutorial for Creating Linetype Pattern, 784
9.10.6 Tutorial for Creating Complex Linetype Pattern 785
9.10.7 Tutorial for Simple DXF Entities e 787
9.10.8 Tutorial for Entity Selection e 789
9.10.9 Tutorial for Blocks L e 797
9.10.10 Tutorial for LWPolyline 800
9.10.11 Tutorial for Text o o o e e 803
9.10.12 Tutorial for MText and MTextEditor 806
9.10.13 Tutorial for Spline e e e e e e 820
9.10.14 Tutorial for Polyface o 828
9.10.15 Tutorial for Mesh L e 830
9.10.16 Tutorial for Hatch 833
9.10.17 Tutorial for Hatch Pattern Definition, 842
9.10.18 Tutorial for Image and ImageDef 846
9.10.19 Tutorial for Underlay and UnderlayDefinition 847
9.10.20 Tutorial for MultiLeader e 848
9.10.21 Tutorial for Viewports in Paperspace L 0oL, 868
9.10.22 Tutorial for OCS/UCS Usage o v v v vttt e e e e e e e e e e 873

9.12

9.13
9.14
9.15

9.10.23 Tutorial for UCS Based Transformations
9.10.24 Tutorial for Linear DImensions o v v v it et e e e e e e e e e
9.10.25 Tutorial for Radius Dimensions e
9.10.26 Tutorial for Diameter Dimensions e e e e
9.10.27 Tutorial for Angular Dimensions o o o
9.10.28 Tutorial for Arc DImensions e e e e e e e e
9.10.29 Tutorial for Ordinate DImensions v v v v v i e e et e e e e e
9.10.30 Tutorial forthe Geo Add-on. e e e
9.10.31 Storing Custom DatainDXF Files
9.10.32 Tutorial for External References
9.10.33 Tutorial for Image Export e

9.11.1 General Document e e e e e e e e e e e e e
9.11.2 DXF VIEWET o o e e e e e e e e e e e e e e e e e
9.11.3 DXFContent i i i i i it e e e e e e e
9.11.4 Fonts o e e e e e e e e e e

9.12.2 Imported ezdxf package has no content. (readfile,new)
9.12.3 How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?

9.12.7 Is the AutoCAD command XYZ available?
GlOSSATY . . o o e e e e e e e e e
Knowledge Graph L e
Indicesand tables e e e e e e e e e e e e e

Python Module Index

Index

ezdxf Documentation, Release 1.3.2

ezdxf

Welcome! This is the documentation for ezdxf release 1.3.2, last updated Jul 19, 2024.

ezdxf is a Python package to create new DXF documents and read/modify/write existing DXF documents
MIT-License

the intended audience are programmers

requires at least Python 3.9

OS independent

tested with CPython and pypy3

has type annotations and passes mypy —-ignore-missing-imports -p ezdxf successful
additional required packages for the core package without add-ons: typing_extensions, pyparsing, numpy, fontTools
read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018
additional read-only support for DXF versions R13/R14 (upgraded to R2000)

additional read-only support for older DXF versions than R12 (upgraded to R12)

read/write support for ASCII DXF and Binary DXF

retains third-party DXF content

optional C-extensions for CPython are included in the binary wheels, available on PyPI for Windows, Linux and
macOS

CONTENTS 1

https://pypi.org/project/typing-extensions/
https://pypi.org/project/pyparsing/
https://pypi.org/project/numpy/
https://pypi.org/project/fonttools
https://pypi.org/project/ezdxf/

ezdxf Documentation, Release 1.3.2

2 CONTENTS

CHAPTER
ONE

INCLUDED EXTENSIONS

Additional packages required for these add-ons are not automatically installed during the basic setup, for more information
about the setup & dependencies visit the documentation.

drawing add-on to visualise and convert DXF files to images which can be saved as PNG, PDF or SVG files
ri12writer add-on to write basic DXF entities direct and fast into a DXF R12 file or stream

iterdxf add-on to iterate over DXF entities from the modelspace of huge DXF files (> 5GB) which do not fit
into memory

importer add-on to import entities, blocks and table entries from another DXF document

dxf2code add-on to generate Python code for DXF structures loaded from DXF documents as starting point for
parametric DXF entity creation

acadctb add-on to read/write Plot Style Files (CTB/STB)

pycsg add-on for Constructive Solid Geometry (CSG) modeling technique
MTextExplode add-on for exploding MTEXT entities into single-line TEXT entities
textZpath add-on to convert text into outline paths

geo add-on to support the __geo_interface__

me shex add-on for exchanging meshes with other tools as STL, OFF or OBJ files
openscad add-on, an interface to OpenSCAD

oda fc add-on, an interface to the ODA File Converter to read and write DWG files
hpgl2 add-on for converting HPGL/2 plot files to DXF, SVG and PDF

https://ezdxf.mozman.at/docs/setup.html
https://gist.github.com/sgillies/2217756
https://openscad.org
https://www.opendesign.com/guestfiles/oda_file_converter
https://en.wikipedia.org/wiki/HP-GL

ezdxf Documentation, Release 1.3.2

4 Chapter 1. Included Extensions

CHAPTER
TWO

WEBSITE

https://ezdxf.mozman.at/

https://ezdxf.mozman.at/

ezdxf Documentation, Release 1.3.2

6 Chapter 2. Website

CHAPTER
THREE

DOCUMENTATION

Documentation of development version at https://ezdxf.mozman.at/docs

Documentation of latest release at http://ezdxf.readthedocs.io/

https://ezdxf.mozman.at/docs
http://ezdxf.readthedocs.io/

ezdxf Documentation, Release 1.3.2

8 Chapter 3. Documentation

CHAPTER
FOUR

KNOWLEDGE GRAPH

The Knowledge Graph contains additional information beyond the documentation and is managed by logseq. The source
data is included in the repository in the folder ezdxf/notes. There is also a HTML export on the website which gets
regular updates.

https://logseq.com/
https://ezdxf.mozman.at/notes/#/page/ezdxf

ezdxf Documentation, Release 1.3.2

10 Chapter 4. Knowledge Graph

CHAPTER
FIVE

RELEASE NOTES

The release notes are included in the Knowledge Graph.

11

https://ezdxf.mozman.at/notes/#/page/release%20notes

ezdxf Documentation, Release 1.3.2

12 Chapter 5. Release Notes

CHAPTER
SIX

CHANGELOG

The changelog is included in the Knowledge Graph.

13

https://ezdxf.mozman.at/notes/#/page/changelog

ezdxf Documentation, Release 1.3.2

14 Chapter 6. Changelog

CHAPTER
SEVEN

SOURCE CODE & FEEDBACK

Source Code: http://github.com/mozman/ezdxf.git
Issue Tracker: http://github.com/mozman/ezdxf/issues

Forum: https://github.com/mozman/ezdxf/discussions

15

http://github.com/mozman/ezdxf.git
http://github.com/mozman/ezdxf/issues
https://github.com/mozman/ezdxf/discussions

ezdxf Documentation, Release 1.3.2

16 Chapter 7. Source Code & Feedback

CHAPTER
EIGHT

QUESTIONS AND ANSWERS

Please post questions at the forum or stack overflow to make answers available to other users as well.

17

https://github.com/mozman/ezdxf/discussions
https://stackoverflow.com/

ezdxf Documentation, Release 1.3.2

18 Chapter 8. Questions and Answers

CHAPTER
NINE

CONTENTS

9.1 Introduction

9.1.1 What is ezdxf

Ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, ezdxf allows developers
to read and modify existing DXF documents or create new DXF documents.

The main objective in the development of ezdxf was to hide complex DXF details from the programmer but still sup-
port most capabilities of the DXF format. Nevertheless, a basic understanding of the DXF format is required, also to
understand which tasks and goals are possible to accomplish by using the DXF format.

Not all DXF features are supported yet, but additional features will be added in the future gradually.

Ezdxf is also a replacement for the outdated dxfwrite and dxfgrabber packages but with different APIs, for more infor-
mation see also: What is the Relationship between ezdxf, dxfwrite and dxfgrabber?

9.1.2 What ezdxf can’t do

* ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking for an
appropriate application, try the free ODAFileConverter from the Open Design Alliance, which converts between
different DXF version and also between the DXF and the DWG file format.

* ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to other CAD formats such as DWG

¢ ezdxf is not a CAD kernel and does not provide high level functionality for construction work, it is just an interface
to the DXF file format. If you are looking for a CAD kernel with Python scripting support, look at FreeCAD.

9.1.3 Supported Python Versions

Ezdxf requires at least Python 3.9 (determined by numpy) and will be tested with the latest stable CPython version and
the latest stable release of pypy3 during development.

Ezdxf is written in pure Python with optional Cython implementations of some low level math classes and requires pypars-
ing, numpy, fontTools and typing_extensions as additional library beside the Python Standard Library. Pytest is required
to run the unit and integration tests. Data to run the stress and audit test can not be provided, because I don’t have the
rights for publishing these DXF files.

19

http://www.python.org
http://usa.autodesk.com/
https://pypi.org/project/dxfwrite/
https://pypi.org/project/dxfgrabber/
https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/
http://www.python.org
https://www.freecadweb.org/

ezdxf Documentation, Release 1.3.2

9.1.4 Supported Operating Systems

Ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter (>=3.9).

9.1.5 Supported DXF Versions

Version AutoCAD Release

AC1009 AutoCAD R12

AC1012 AutoCAD R13 -> R2000
AC1014 AutoCAD R14 -> R2000
ACI1015 AutoCAD R2000
ACI1018 AutoCAD R2004
AC1021 AutoCAD R2007
AC1024 AutoCAD R2010
AC1027 AutoCAD R2013
AC1032 AutoCAD R2018

Ezdxf also reads older DXF versions but saves it as DXF R12.

9.1.6 Embedded DXF Information of 3rd Party Applications

The DXF format allows third-party applications to embed application-specific information. Ezdxf manages DXF data
in a structure-preserving form, but for the price of large memory requirement. Because of this, processing of DXF
information of third-party applications is possible and will retained on rewriting.

9.1.7 License

Ezdxf is licensed under the very liberal MIT-License.

9.2 Setup & Dependencies

The primary goal is to keep the dependencies of the core package as small as possible. The add-ons are not part of the
core package and can therefore use as many packages as needed. The only requirement for these packages is an easy way
to install them on Windows, Linux and macOS, preferably as:

pip3 install ezdxf

The packages pyparsing, numpy, fontTools and typing_extensions are the hard dependency and will be installed automat-
ically by pip3!

The minimal required Python version is determined by the latest release version of numpy.

20 Chapter 9. Contents

http://opensource.org/licenses/mit-license.php
https://pypi.org/project/pyparsing/
https://pypi.org/project/numpy/
https://pypi.org/project/fonttools/
https://pypi.org/project/typing_extensions/
https://pypi.org/project/numpy/

ezdxf Documentation, Release 1.3.2

9.2.1 Basic Installation

The most common case is the installation by pip3 including the optional C-extensions from PyPI as binary wheels:

pip3 install ezdxf

9.2.2 Installation with Extras

To use all features of the drawing add-on, add the [draw] tag:

pip3 install ezdxf[draw]

Tag Additional Installed Packages
[draw] Matplotlib, PySide6, PyMuPDF, Pillow
[dev] [draw] + setuptools, wheel, Cython, pytest (full development setup)

If PySide6 is not available on your system, use PyQt5 by this options:

Tag Additional Installed Packages
[draw5] Matplotlib, PyQtS, PyMuPDF, Pillow
[dev5] [draw5] + setuptools, wheel, Cython, pytest (full development setup)

9.2.3 PySide6 Issue

Maybe PySide6 won’t launch on Debian based distributions and shows this error message:

gt.gpa.plugin: Could not load the Ot platform plugin "xcb" in "" even though it was.
—found.

This may fix the issue:

sudo apt-get install libxcb-cursor0

9.2.4 Binary Wheels

Ezdxf includes some C-extensions, which will be deployed automatically at each release to PyPI as binary wheels to PyPI:
* Windows: only amd64 packages
* Linux: manylinux and musllinux packages for x86_64 & aarch64
e macOS: x86_64, arm64 and universal packages

The wheels are created by the continuous integration (CI) service provided by GitHub and the build container cibuildwheel
provided by PyPA the Python Packaging Authority. The workflows are kept short and simple, so my future me will
understand what’s going on and they are maybe also helpful for other developers which do not touch CI services every
day.

The C-extensions are disabled for pypy3, because the JIT compiled code of pypy is much faster than the compiled C-
extensions.

9.2. Setup & Dependencies 21

https://pypi.org/project/ezdxf
https://matplotlib.org
https://pypi.org/project/PySide6/
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/Pillow/
https://pypi.org/project/PySide6/
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/Pillow/
https://pypi.org/project/PySide6/
https://pypi.org/project/ezdxf
https://github.com
https://github.com/pypa/cibuildwheel
https://www.pypa.io/en/latest/
https://github.com/mozman/ezdxf/tree/master/.github/workflows
https://www.pypy.org

ezdxf Documentation, Release 1.3.2

9.2.5 Disable C-Extensions

It is possible to disable the C-Extensions by setting the environment variable EZDXF_DISABLE_C_EXT to 1 or true:

set EZDXF_DISABLE_C_EXT=1

or on Linux:

export EZDXF_DISABLE_C_EXT=1

This is has to be done before anything from ezdxf is imported! If you are working in an interactive environment, you
have to restart the interpreter.

9.2.6 Installation from GitHub

Install the latest development version by pip3 from GitHub:

pip3 install git+https://github.com/mozman/ezdxf.git@master

9.2.7 Build and Install from Source
This is only required if you want the compiled C-extensions, the ezdxf installation by pip from the source code package

works without the C-extension but is slower. There are binary wheels available on PyPi which included the compiled
C-extensions.

Windows

Make a build directory and a virtual environment:

mkdir build

cd build

Py —m venv .venv
.venv/Scripts/activate.bat

A working C++ compiler setup is required to compile the C-extensions from source code. Windows users need the build
tools from Microsoft: https://visualstudio.microsoft.com/de/downloads/

Download and install the required Visual Studio Installer of the community edition and choose the option: Visual Studio
Build Tools 20..

Install required packages to build and install ezdxf with C-extensions:

pip3 install setuptools wheel cython

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install .

Check if the installation was successful:

22 Chapter 9. Contents

https://github.com
https://pypi.org/project/ezdxf
https://visualstudio.microsoft.com/de/downloads/
https://github.com

ezdxf Documentation, Release 1.3.2

python3 —-m ezdxf -V

The ezdxf command should run without a preceding python3 -m, but calling the launcher through the interpreter guarantees
to call the version which was installed in the venv if there exist a global installation of ezdxf like in my development
environment.

The output should look like this:

ezdxf 0.17.2b4 from D:\Source\build\.venv\lib\site-packages\ezdxf

Python version: 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64_
—bit (AMDG64)]

using C-extensions: yes

using Matplotlib: no

To install optional packages go to section: Install Optional Packages

To run the included tests go to section: Run the Tests

WSL & Ubuntu

I use sometimes the Windows Subsystem for Linux (WSL) with Ubuntu 20.04 LTS for some tests (how to install WSL).

By doing as fresh install on WSL & Ubuntu, I encountered an additional requirement, the build-essential package adds the
required C++ support and the python3.10-dev package the required headers, change 3.10 to the Python version you are
using:

sudo apt install build-essential python3.10-dev

The system Python 3 interpreter has the version 3.8 (in 2021), but I will show in a later section how to install an additional
newer Python version from the source code:

cd ~

mkdir build

cd build

python3 -m venv .venv
source .venv/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

pip3 install cython wheel

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install

Check if the installation was successful:

python3 —-m ezdxf -V

The output should look like this:

9.2. Setup & Dependencies 23

https://docs.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com
https://docs.microsoft.com/en-us/windows/wsl/install
https://github.com

ezdxf Documentation, Release 1.3.2

ezdxf 0.17.2b4 from /home/mozman/src/.venv/lib/python3.8/site-packages/ezdxf
Python version: 3.8.10 (default, Nov 26 2021, 20:14:08)

[GCC 9.3.0]

using C-extensions: yes

using Matplotlib: no

To install optional packages go to section: Install Optional Packages

To run the included tests go to section: Run the Tests

Raspberry Pi OS

Testing platform is a Raspberry Pi 400 and the OS is the Raspberry Pi OS which runs on 64bit hardware but is a 32bit
OS. The system Python 3 interpreter comes in version 3.7 (in 2021), but I will show in a later section how to install an
additional newer Python version from the source code.

Install the build requirements, Matplotlib and the PyQt5 bindings from the distribution repository:

sudo apt install python3-pip python3-matplotlib python3-pygt5

Installing Matplotlib and the PyQt5 bindings by pip from piwheels in the venv worked, but the packages showed errors at
import, seems to be an packaging error in the required numpy package. PySide6 is the preferred Qt binding but wasn’t
available on Raspberry Pi OS at the time of writing this - PyQt5 is supported as fallback.

Create the venv with access to the system site-packages for using Matplotlib and the Qt bindings from the system instal-
lation:

cd ~

mkdir build

cd build

python3 -m venv --system-site-packages .venv
source .venv/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

pip3 install cython wheel

Clone the GitHub repository:

git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install

Check if the installation was successful:

python3 -m ezdxf -V

The output should look like this:

ezdxf 0.17.2b4 from /home/pi/src/.venv/lib/python3.7/site-packages/ezdxf
Python version: 3.7.3 (default, Jan 22 2021, 20:04:44)

[GCC 8.3.0]

using C-extensions: yes

using Matplotlib: yes

24 Chapter 9. Contents

https://www.raspberrypi.com
https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org
https://pypi.org/project/numpy/
https://pypi.org/project/PySide6/
https://www.raspberrypi.com
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://github.com

ezdxf Documentation, Release 1.3.2

To run the included tests go to section: Run the Tests

Manjaro on Raspberry Pi

Because the (very well working) Raspberry Pi OS is only a 32bit OS, I searched for a 64bit alternative like Ubuntu,
which just switched to version 21.10 and always freezes at the installation process! So I tried Manjaro as rolling release,
which I used prior in a virtual machine and wasn’t really happy, because there is always something to update. Anyway the
distribution looks really nice and has Python 3.9.9 installed.

Install build requirements and optional packages by the system packager pacman:

sudo pacman -S python-pip python-matplotlib python-pygth

Create and activate the venv:

@fel &

mkdir build

cd build

python3 -m venv --system-site-packages .venv
source .venv/bin/activate

The rest is the same procedure as for the Raspberry Pi OS:

pip3 install cython wheel

git clone https://github.com/mozman/ezdxf.git
cd ezdxf

pip3 install

python3 -m ezdxf -V

To run the included tests go to section: Run the Tests

Ubuntu Server 21.10 on Raspberry Pi

I gave the Ubuntu Server 21.10 a chance after the desktop version failed to install by a nasty bug and it worked well. The
distribution comes with Python 3.9.4 and after installing some requirements:

sudo apt install build-essential python3-pip python3.9-venv

The remaining process is like on WSL & Ubuntu except for the newer Python version. Installing Matplotlib by pip works
as expected and is maybe useful even on a headless server OS to create SVG and PNG from DXEF files. PySide6 is not
available by pip and the installation of PyQt5 starts from the source code package which I stopped because this already
didn’t finished on Manjaro, but the installation of the PyQt5 bindings by apt works:

sudo apt install python3-pygt5b

Use the ——system-site-packages option for creating the venv to get access to the PyQt5 package.

9.2. Setup & Dependencies 25

https://www.raspberrypi.com
https://ubuntu.com
https://www.manjaro.org
https://ubuntu.com
https://matplotlib.org
https://pypi.org/project/PySide6/
https://pypi.org/project/PyQt5/
https://www.manjaro.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/

ezdxf Documentation, Release 1.3.2

9.2.8 Install Optional Packages

Install the optional dependencies by pip only for Windows and WSL & Ubuntu, for Raspberry Pi OS and Manjaro on
Raspberry Pi install these packages by the system packager:

pip3 install matplotlib PySide6

9.2.9 Run the Tests

This is the same procedure for all systems, assuming you are still in the build directory build/ezdxf and ezdxf is now
installed in the venv.

Install the test dependencies and run the tests:

pip3 install pytest
python3 -m pytest tests integration_tests

9.2.10 Build Documentation

Assuming you are still in the build directory build/ezdxf of the previous section.

Install Sphinx:

pip3 install Sphinx sphinx-rtd-theme

Build the HTML documentation:

cd docs
make html

The output is located in build/ezdxf/docs/build/html.

9.2.11 Python from Source

Debian based systems have often very outdated software installed and sometimes there is no easy way to install a newer
Python version. This is a brief summery how I installed Python 3.9.9 on the Raspberry Pi OS, for more information go
to the source of the recipe: Real Python

Install build requirements:

sudo apt-get update
sudo apt-get upgrade

sudo apt-get install -y make build-essential libssl-dev zliblg-dev \
libbz2-dev libreadline-dev libsglite3-dev wget curl 1llvm \
libncurses5-dev libncurseswb-dev xz-utils tk-dev

Make a build directory:

cd ~
mkdir build
cd build

Download and unpack the source code from Python.org, replace 3.9.9 by your desired version:

26 Chapter 9. Contents

https://www.raspberrypi.com
https://realpython.com/installing-python/#how-to-build-python-from-source-code
https://www.python.org

ezdxf Documentation, Release 1.3.2

wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz
tar -xvzf Python-3.9.9.tgz
cd Python-3.9.9/

Configure the build process, use a prefix to the directory where the interpreter should be installed:

./configure —--prefix=/opt/python3.9.9 --enable-optimizations

Build & install the Python interpreter. The -j option simply tells make to split the building into parallel steps to speed up
the compilation, my Raspberry Pi 400 has 4 cores so 4 seems to be a good choice:

make —-3j 4
sudo make install

The building time was ~25min and the new Python 3.9.9 interpreter is now installed as /opt/python3.9.9/bin/python3.

At the time there were no system packages for Matplotlib and PyQt5 for this new Python version available, so there is no
benefit of using the option ——system-site-packages for building the venv:

cd ~/build
/opt/python3.9.9/bin/python3 —m venv py39
source py39/bin/activate

I have not tried to build Matplotlib and PyQt5 by myself and the installation by pip from piwheels did not work, in this
case the drawing add-on will not work.

Proceed with the ezdxf installation from source as shown for the Raspberry Pi OS.

9.3 Usage for Beginners

This section shows the intended usage of the ezdxf package. This is just a brief overview for new ezdxf users, follow the
provided links for more detailed information.

First import the package:

import ezdxf

9.3.1 Loading DXF Files

ezdxf supports loading ASCII and binary DXF documents from a file:

doc = ezdxf.readfile(filename)

or from a zip-file:

doc = ezdxf.readzip(zipfilename[, filename])

Which loads the DXF document filename from the zip-file zipfilename or the first DXF file in the zip-file if filename is
absent.

It is also possible to read a DXF document from a stream by the ezdx 7. read () function, but this is a more advanced
feature, because this requires detection of the file encoding in advance.

This works well with DXF documents from trusted sources like AutoCAD or BricsCAD. For loading DXF documents
with minor or major flaws use the ezdx . recover module.

9.3. Usage for Beginners 27

https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org

ezdxf Documentation, Release 1.3.2

See also:

Documentation for ezdxf . readfile (), ezdxf.readzip () and ezdxf. read (), for more information about
file management go to the Document Management section. For loading DXF documents with structural errors look at the
ezdxf.recover module.

9.3.2 Layouts and Blocks

Layouts are containers for DXF entities like LINE or CIRCLE. The most important layout is the modelspace labeled as
“Model” in CAD applications which represents the “world” work space. Paperspace layouts represents plottable sheets
which contains often the framing and the tile block of a drawing and VIEWPORT entities as scaled and clipped “windows”
into the modelspace.

The modelspace is always present and can not be deleted. The active paperspace is also always present in a new DXF
document but can be deleted, in that case another paperspace layout gets the new active paperspace, but you can not delete
the last paperspace layout.

Getting the modelspace of a DXF document:

msp = doc.modelspace ()

Getting a paperspace layout by the name as shown in the tab of a CAD application:

psp = doc.paperspace ("Layoutl")

A block is just another kind of entity space, which can be inserted multiple times into other layouts and blocks by the
INSERT entity also called block references, this is a very powerful and an important concept of the DXF format.

Getting a block layout by the block name:

blk = doc.blocks.get ("NAME")

All these layouts have factory functions to create graphical DXF entities for their entity space, for more information about
creating entities see section: Create new DXF Entities

9.3.3 Query DXF Entities

As said in the Layouts and Blocks section, all graphical DXF entities are stored in layouts, all these layouts can be iterated
and do support the index operator e.g. layout [—1] returns the last entity.

The main difference between iteration and index access is, that iteration filters destroyed entities, but the index operator
returns also destroyed entities until these entities are purged by layout .purge (), more about this topic in section:
Delete Entities.

There are two advanced query methods: query () and groupby ().

Get all lines of layer "MyLayer":

lines = msp.query ('LINE[layer=="MyLayer"]")

This returns an Ent i t yOQuery container, which also provides the same query () and groupby () methods.

Get all lines categorized by a DXF attribute like color:

all _lines_by_color = msp.query ("LINE") .groupby ("color")
lines_with_color_1 = all_lines_by_color.get (1, [1])

28 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The groupby () method returns a regular Python dict with colors as key and a regular Python 1ist of entities as
values (not an Ent it yQuery container).

See also:

For more information go to the Tutorial for Getting Data from DXF Files

9.3.4 Examine DXF Entities

Each DXF entity has a dxf namespace attribute, which stores the named DXF attributes, some entity attributes and
assets are only available from Python properties or methods outside the dxf namespace like the vertices of the LW-
POLYLINE entity. More information about the DXF attributes of each entity can found in the documentation of the
ezdxf.entities module.

Get some basic DXF attributes:

layer = entity.dxf.layer # default is "O0"
color = entity.dxf.color # default is 256 = BYLAYER

Most DXF attributes have a default value, which will be returned if the DXF attribute is not present, for DXF attributes
without a default value you can check if the attribute really exist:

entity.dxf.hasattr ("true_color™)

or use the get () method and provide a default value:

entity.dxf.get ("true_color", 0)

See also:
e Common graphical DXF attributes

e Helper class ezdxf.gfxattribs.GfxAttribs for building DXF attribute dictionaries.

9.3.5 Create a New DXF File

Create new document for the latest supported DXF version:

’ doc = ezdxf.new()

Create a new DXF document for a specific DXF version, e.g. for DXF R12:

’doc = ezdxf.new ("R12")

The ezdxf.new () function can create some standard resources, such as linetypes and text styles, by setting the argu-
ment sefup to True:

doc = ezdxf.new (setup=True)

See also:
* Tutorial for Creating DXF Drawings

¢ Documentation for ezdx . new (), for more information about file management go to the Document Management
section.

9.3. Usage for Beginners 29

ezdxf Documentation, Release 1.3.2

9.3.6 Create New DXF Entities

The factory methods for creating new graphical DXF entities are located in the BaseLayout class and these factory
methods are available for all entity containers:

* Modelspace
* Paperspace
e BlockLayout

The usage is simple:

msp = doc.modelspace ()
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer"})

A few important/required DXF attributes are explicit method arguments, most additional DXF attributes are gives as a
regular Python dict object by the keyword only argument dxfattribs. The supported DXF attributes can be found
in the documentation of the ezdxf.entities module.

Warning: Do not instantiate DXF entities by yourself and add them to layouts, always use the provided factory
methods to create new graphical entities, this is the intended way to use ezdxf.

See also:
* Thematic Index of Layout Factory Methods
* Tutorial for Creating DXF Drawings
* Tutorial for Simple DXF Entities
e Tutorial for LWPolyline
* Tutorial for Text
* Tutorial for MText and MTextEditor

e Tutorial for Hatch

9.3.7 Saving DXF Files

Save the DXF document with a new name:

doc.saveas ("new_name.dxf")

or with the same name as loaded:

doc.save ()

See also:

Documentation for ezdxf . document .Drawing. save () and ezdxf.document .Drawing. saveas (), for
more information about file management go to the Document Management section.

30 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.3.8 Create New Blocks

The block definitions of a DXF document are managed by the B1ocksSect ion object:

my_block = doc.blocks.new ("MyBlock™)

See also:

Tutorial for Blocks

9.3.9 Create Block References

A block reference is just another DXF entity called INSERT. The Insert entity is created by the factory method:
add_blockref ():

msp.add_blockref ("MyBlock", (0, 0))

See also:

See Tutorial for Blocks for more advanced features like using At t rib entities.

9.3.10 Create New Layers

A layer is not an entity container, a layer is just another DXF attribute stored in the entity and the entity can inherit
some properties from this Layer object. Layer objects are stored in the layer table which is available as attribute doc .
layers.

You can create your own layers:

my_layer = doc.layers.add("MyLayer")

The layer object also controls the visibility of entities which references this layer, the on/off state of the layer is unfortu-
nately stored as positive or negative color value which make the raw DXF attribute of layers useless, to change the color
of a layer use the property Layer.color

my_layer.color = 1

To change the state of a layer use the provided methods of the Layer object, like on (), off (), freeze () or
thaw():

my_layer.off ()

See also:

Layers

9.3. Usage for Beginners 31

ezdxf Documentation, Release 1.3.2

9.3.11 Delete Entities

The safest way to delete entities is to delete the entity from the layout containing that entity:

line = msp.add_line((0, 0), (1, 0))
msp.delete_entity (line)

This removes the entity immediately from the layout and destroys the entity. The property is_alive returns False
for a destroyed entity and all Python attributes are deleted, so 1line.dxf.color will raise an AttributeError
exception, because 1ine does not have a dx 1 attribute anymore.

Ezdxf also supports manually destruction of entities by calling the method destroy ():

line.destroy ()

Manually destroyed entities are not removed immediately from entities containers like Mode 1 space orEntityQuery,
but iterating such a container will filter destroyed entities automatically, soa for e in msp: ... loop will never
yield destroyed entities. The index operator and the 1en () function do not filter deleted entities, to avoid getting deleted
entities call the purge () method of the container manually to remove deleted entities.

9.3.12 Further Information

* Basic Concepts: what is the meaning or purpose of ...
* Tasks: how to accomplish certain tasks

* Reference

9.4 Basic Concepts

The Basic Concepts section teach the intended meaning of DXF attributes and structures without teaching the application
of this information or the specific implementation by ezdxf, if you are looking for more information about the ezdxf
internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section and for the
solution of specific problems go to the Howto section.

9.4.1 What is DXF?

The common assumption is also the cite of Wikipedia:

AutoCAD DXF (Drawing eXchange Format) is a CAD data file format developed by Autodesk for enabling
data interoperability between AutoCAD and other applications.

DXEF was originally introduced in December 1982 as part of AutoCAD 1.0, and was intended to provide an
exact representation of the data in the AutoCAD native file format, DWG (Drawing). For many years Au-
todesk did not publish specifications making correct imports of DXF files difficult. Autodesk now publishes
the DXF specifications online.

The more precise cite from the DXF reference itself:

The DXF™ format is a tagged data representation of all the information contained in an AutoCAD® drawing
file. Tagged data means that each data element in the file is preceded by an integer number that is called a
group code. A group code’s value indicates what type of data element follows. This value also indicates the
meaning of a data element for a given object (or record) type. Virtually all user-specified information in a
drawing file can be represented in DXF format.

32 Chapter 9. Contents

https://en.wikipedia.org/wiki/AutoCAD_DXF
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 1.3.2

No mention of interoperability between AutoCAD and other applications.

In reality the DXF format was designed to ensure AutoCAD cross-platform compatibility in the early days when different
hardware platforms with different binary data formats were used. The name DXF (Drawing eXchange Format) may
suggest an universal exchange format, but it is not. It is based on the infrastructure installed by Autodesk products (fonts)
and the implementation details of AutoCAD (MTEXT) or on licensed third party technologies (embedded ACIS entities).

For more information about the AutoCAD history see the document: The Autodesk File - Bits of History, Words of
Experience by John Walker, founder of Autodesk, Inc. and co-author of AutoCAD.

DXF Reference Quality

The DXF reference is by far no specification nor a standard like the W3C standard for SVG or the ISO standard for PDF.

The reference describes many but not all DXF entities and some basic concepts like the tag structure or the arbitrary axis
algorithm. But the existing documentation (reference) is incomplete and partly misleading or wrong. Also missing from
the reference are some important parts like the complex relationship between the entities to create higher order structures
like block definitions, layouts (model space & paper space) or dynamic blocks to name a few.

Reliable CAD Applications

Because of the suboptimal quality of the DXF reference not all DXF viewers, creators or processors are of equal quality.
I consider a CAD application as a reliable CAD application when the application creates valid DXF documents in the
meaning and interpretation of Autodesk and a reliable DXF viewer when the result matches in most parts the result of
the free Trueview viewer provided by Autodesk.

These are some applications which do fit the criteria of a reliable CAD application:
e AutoCAD and Trueview

* CAD applications based on the OpenDesignAlliance (ODA) SDK, see also ODA on wikipedia, even Autodesk is
a corporate member, see their blog post from 22 Sep 2020 at adsknews but only to use the ODA IFC tools and not
to improve the DWG/DXF compatibility

¢ BricsCAD (ODA based)
¢ GstarCAD (ODA based)
e ZWCAD (ODA based)

Unfortunately, I cannot recommend any open source applications because everyone I know has serious shortcomings, at
least as a DXF viewer, and I don’t trust them as a DXF creator either. To be clear, not even ezdxf (which is not a CAD
application) is a reliable library in this sense - it just keeps getting better, but is far from reliable.

Hint: Please do not submit bug reports based on the use of LibreCAD or QCAD, these applications are in no way
reliable regarding the DXF format and I will not waste my time on them.

9.4. Basic Concepts 33

https://www.fourmilab.ch/autofile/
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://www.w3.org/Graphics/SVG/
https://en.wikipedia.org/wiki/PDF
https://www.autodesk.com/
https://www.autodesk.com/viewers
https://www.autodesk.com/
https://www.autodesk.com/products/autocad/overview
https://www.autodesk.com/viewers
https://www.opendesign.com/
https://en.wikipedia.org/wiki/Open_Design_Alliance
https://www.autodesk.com/
https://adsknews.autodesk.com/news/open-design-alliance-membership
https://adsknews.autodesk.com/
https://www.bricsys.com/en-intl/
https://www.gstarcad.net/
https://www.zwsoft.com/product/zwcad
https://librecad.org/
https://qcad.org/en/

ezdxf Documentation, Release 1.3.2

9.4.2 DXF Entities and Objects

DXEF entities are objects that make up the design data stored in a DXF file.

Graphical Entities
Graphical entities are visible objects stored in blocks, modelspace- or paperspace layouts. They represent the various
shapes, lines, and other elements that make up a 2D or 3D design.
Some common types of DXF entities include:
e LINE and POLYLINE: These are the basic building blocks of a DXF file. They represent straight and curved lines.
¢ CIRCLE and ARC: These entities represent circles and portions of circles, respectively.

e TEXT and MTEXT: DXF files can also contain text entities, which can be used to label parts of the design or
provide other information.

¢ HATCH: DXF files can also include hatch patterns, which are used to fill in areas with a specific pattern or texture.

* DIMENSION: DXF files can also contain dimension entities, which provide precise measurements of the various
elements in a design.

* INSERT: A block is a group of entities that can be inserted into a design multiple times by the INSERT entity,
making it a useful way to reuse elements of a design.

These entities are defined using specific codes and values in the DXF file format, and they can be created and manipulated
by ezdxf.

Objects

DXEF objects are non-graphical entities and have no visual representation, they store administrative data, paperspace layout
definitions, style definitions for multiple entity types, custom data and objects. The OBJECTS section in DXF files serves
as a container for these non-graphical objects.

Some common DXF types of DXF objects include:

* DICTIONARY: A dictionary object consists of a series of name-value pairs, where the name is a string that iden-
tifies a specific object within the dictionary, and the value is a reference to that object. The objects themselves can
be any type of DXF entity or custom object defined in the DXF file.

¢ XRECORD entities are used to store custom application data in a DXF file.

e the LAYOUT entity is a DXF entity that represents a single paper space layout in a DXF file. Paper space is the
area in a CAD drawing that represents the sheet of paper or other physical media on which the design will be plotted
or printed.

* MATERIAL, MLINESTYLE, MLEADERSTYLE definitions stored in certain DICTIONARY objects.

¢ A GROUP entity contains a list of handles that refer to other DXF entities in the drawing. The entities in the group
can be of any type, including entities from the model space or paper space layouts.

34 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

TagStorage

The ezdxf package supports many but not all entity types, all these unsupported types are stored as TagStorage in-
stances to preserve their data when exporting the edited DXF content by ezdxf.

Access Entity Attributes

All DXF attributes are stored in the entity namespace attribute dx f.

print (entity.dxf.layer)

Some attributes are mandatory others are optional in most cases a reasonable values will be returned as default value if
the attribute is missing.

See also:

Tutorial for Getting Data from DXF Files

Where to Look for Entities

The DXF document has an entity database where all entities which have a handle are stored in a (key, value) storage. The
query () method is often the easiest way to request data:

for text in doc.entitydb.query ("TEXT") :
print (text.dxf.text)

See also:
e ezdxf.query module
e ezdxf.entitydb module
Graphical entities are stored in blocks, the modelspace or paperspace layouts.
e The doc.modelspace () function returns the Mode 1 space instance
e The doc.paperspace () returns a Paperspace instance
e The doc.blocks attribute provides access to the BlocksSection

The query () method of the Drawing class which represents the DXF document, runs the query on all layouts and
block definitions.

Non-graphical entities are stored in the OBJECTS section:
e The doc.objects attribute provides access to the ObjectsSection.
Resource definitions like Layer, Linet ype or Textstyle are stored in resource tables:
e doc.layers: the LayerTable
e doc.linetypes: the LinetypeTable
e doc.styles: the TextstyleTable

e doc.dimstyles:the DimStyleTable

Important: A layer assignment is just an attribute of a DXF entity, it’s not an entity container!

See also:

9.4. Basic Concepts 35

ezdxf Documentation, Release 1.3.2

* Basic concept of the Modelspace
* Basic concept of Paperspace layouts
* Basic concept of Blocks

 Tutorial for Getting Data from DXF Files

How to Create Entities

The recommended way to create new DXF entities is to use the factory methods of layouts and blocks to create entities
and add them to the entity space automatically.

See also:
» Thematic Index of Layout Factory Methods
e Reference of the BaselLayout class

e Tutorial for Simple DXF Entities

9.4.3 AutoCAD Color Index (ACI)

The color attribute represents an ACI (AutoCAD Color Index). AutoCAD and many other CAD application provides a
default color table, but pen table would be the more correct term. Each ACI entry defines the color value, the line weight
and some other attributes to use for the pen. This pen table can be edited by the user or loaded from an C7B or STB file.
Ezdxf provides functions to create (new ()) or modify (ezdxf.acadctb.load ()) plot styles files.

DXF R12 and prior do not preserve the layout of a drawing very well, because of the lack of a standard color table and
missing DXF structures to define these color tables in the DXF file. If a CAD user redefines an ACI color entry in a CAD
application and does not provide this C7B or STB file, you can not know what color or lineweight was used intentionally.
This got better in later DXF versions by supporting additional DXF attributes like ! ineweight and true_color
which can define these attributes by distinct values.

21X

25X
|
24X
I -0
5 I B s
°c . .
7
s | I

18X 19x 20X

36 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

See also:
* Plot Style Files (CTB/STB)
* ezdxf.colors
o Tutorial for Common Graphical Attributes
¢ Autodesk Knowledge Network: About Setting the Color of Objects
* BricsCAD Help Center: Entity Color

9.4.4 True Color

The support for true color was added to the DXF file format in revision R2004. The true color value has three components
red, green and blue in the range from O to 255 and is stored as a 24-bit value in the DXF namespace as t rue_color
attribute and looks like this 0OxRRGGBB as hex value. For a more easy usage all graphical entities support the rgb
property to get and set the true color as (r, g, b) tuples where the components must be in the range from 0 to 255.

import ezdxf

doc ezdxf.new ()

msp = doc.modelspace ()

line = msp.add_line((0, 0), (10, 0))
line.rgb = (255, 128, 32)

The true color value has higher precedence than the AutoCAD Color Index (ACI) value, if the attributes color and the
true_color are present the entity will be rendered with the true color value.

The true color value has the advantage that it defines the color absolutely and unambiguously, no unexpected overwriting
is possible. The representation of the color is fixed and only depends on the calibration of the output medium:

9.4. Basic Concepts 37

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-14BC039D-238D-4D9E-921B-F4015F96CB54-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitycolor/V22/EN_US?id=165079136935

ezdxf Documentation, Release 1.3.2

See also:
* ezdxf.colors
* Tutorial for Common Graphical Attributes
* Autodesk Knowledge Network: About Setting the Color of Objects
* BricsCAD Help Center: Entity Color

38 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-14BC039D-238D-4D9E-921B-F4015F96CB54-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitycolor/V22/EN_US?id=165079136935

ezdxf Documentation, Release 1.3.2

9.4.5 Transparency

The support for transparency was added to the DXF file format in revision R2004. The raw transparency value stored as 32
bit value in the DXF namespace as t ransparency attribute, has a range from 0 to 255 where 0 is fully transparent and
255 if opaque and has the top byte set to 0x02. For a more easy usage all graphical entities support the t ransparency
property to get and set the transparency as float value in the range frem 0.0 to 1.0 where 0.0 is opaque and 1.0 is fully
transparent. The transparency value can be set explicit in the entity, by layer or by block.

import ezdxf

doc = ezdxf.new/()

msp = doc.modelspace ()

line = msp.add_line((0, 0), (10, 0))
line.transparency = 0.5

See also:
* ezdxf.colors
e Tutorial for Common Graphical Attributes
* Autodesk Knowledge Network: About Making Objects Transparent
* BricsCAD Help Center: Entity Transparency

9.4.6 Layers

Every object has a layer as one of its properties. You may be familiar with layers - independent drawing spaces that stack
on top of each other to create an overall image - from using drawing programs. Most CAD programs use layers as the
primary organizing principle for all the objects that you draw. You use layers to organize objects into logical groups of
things that belong together; for example, walls, furniture, and text notes usually belong on three separate layers, for a
couple of reasons:

» Layers give you a way to turn groups of objects on and off - both on the screen and on the plot.
¢ Layers provide the most efficient way of controlling object color and linetype

Create a layer table entry Layer by Drawing. layers.add (), assign the layer properties such as color and linetype.
Then assign those layers to other DXF entities by setting the DXF attribute 1ayer to the layer name as string.

The DXF format do not require a layer table entry for a layer. A layer without a layer table entry has the default linetype
'Continuous "', adefault color of 7 and a lineweight of —3 which represents the default lineweight of 0.25mm in most
circumstances.

Layer Properties

The advantage of assigning properties to a layer is that entities can inherit this properties from the layer by using the string
"BYLAYER' as linetype string, 256 as color or —1 as lineweight, all these values are the default values for new entities.
DXEF version R2004 and later also support inheriting true_color and transparency attributes from a layer.

9.4. Basic Concepts 39

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-E6EB9CA5-B039-4262-BE17-1AD3E7230EF7-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_transparency/V22/EN_US?id=165079137340

ezdxf Documentation, Release 1.3.2

Layer Status

The layer status is important for the visibility and the ability to select and edit DXF entities on that layer in CAD applica-
tions. Ezdxf does not care about the visual representation and works at the level of entity spaces and the entity database
and therefore all the layer states documented below are ignored by ezdxf. This means if you iterate an entity space like
the modelspace or the entity database you will get all entities from that entity space regardless the layer status.

¢ ON: the layer is visible, entities on that layer are visible, selectable and editable
* OFF: the layer is not visible, entities on that layer are not visible, not selectable and not editable

¢ FROZEN: the layer is not visible, entities on that layer are not visible, not selectable and not editable, very similar
to the OFF status but layers can be frozen individually in VIEWPORTS and freezing layers may speed up some
commands in CAD applications like ZOOM, PAN or REGEN.

» LOCKED: the layer is visible, entities on that layer are visible but not selectable and not editable

Deleting Layers

Deleting a layer is not as simple as it might seem, especially if you are used to use a CAD application like AutoCAD. There
is no directory of locations where layers can be used and references to layers can occur even in third-party data. Deleting
the layer table entry removes only the default attributes of that layer and does not delete any layer references automatically.
And because a layer can exist without a layer table entry, the layer exist as long as at least one layer reference to the layer
exist.

Renaming Layers

Renaming a layer is also problematic because the DXF format stores the layer references in most cases as text strings, so
renaming the layer table entry just creates a new layer and all entities which still have a reference to the old layer now
inherit their attributes from an undefined layer table entry with default settings.

Viewport Overrides

Most of the layer properties can be overriden for each Viewport entity individually and this overrides are stored in
layer table entry referenced by the handle of the VIEWPORT entity. In contrast the frozen status of layers is store in the
VIEWPORT entity.

See also:
» Tutorial for Layers
* Tutorial for Viewports in Paperspace
* Autodesk Knowledge Network: About Layers
¢ BricsCAD Help Center: Working with Layers

40 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-6B3E3B5D-3AE2-4162-A5FE-CFE42AB0743B-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_workingwithlayers/V22/EN_US?id=165079137441

ezdxf Documentation, Release 1.3.2

9.4.7 Linetypes

The Iinetype defines the rendering pattern of linear graphical entities like LINE, ARC, CIRCLE and so on. The
linetype of an entity can be specified by the DXF attribute 1inetype, this can be an explicit named linetype or the
entity can inherit its linetype from the assigned layer by setting 1inetype to 'BYLAYER', which is also the default
value. CONTINUOUS is the default linetype for layers with an unspecified linetype.

Ezdxf creates several standard linetypes, if the argument sefup is True when calling new (), this simple linetypes are
supported by all DXF versions:

doc = ezdxf.new('R2007', setup=True)

9.4. Basic Concepts a1

ezdxf Documentation, Release 1.3.2

CONTINUQUS

CENTER

CENTERXZ

CENTER2

DASHED

DASHEDKZ

DASHED2

PHANTOM
PHANTOMX2

PHANTOM2

DASHDOT

DASHDOTH2

DIVIDE

DIVIDEXZ

42

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

In DXF R13 Autodesk introduced complex linetypes which can contain text or shapes.
See also:

* Tutorial for Common Graphical Attributes

» Tutorial for Creating Linetype Pattern

* Autodesk Knowledge Network: About Linetypes

* BricsCAD Help Center: Entity Linetype

Linetype Scaling
Global linetype scaling can be changed by setting the header variable doc.header ['SLTSCALE'] = 2, which
stretches the line pattern by factor 2.

The linetype scaling for a single entity can be set by the DXF attribute 1t scale, which is supported since DXF R2000.

9.4.8 Lineweights

The 1ineweight attribute represents the lineweight as integer value in millimeters * 100, e.g. 0.25mm = 25, indepen-
dently from the unit system used in the DXF document. The 1ineweight attribute is supported by DXF R2000 and
newer.

Only certain values are valid, they are stored in ezdxf.11dxf.const .VALID_DXF_LINEWEIGHTS:0,5,9, 13,
15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211.

Values < 0 have a special meaning and can be imported as constants from ezdxf.11dxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT_DEFAULT

The validator function: ezdxf.lldxf.validator.is_valid_lineweight () returns True for valid
lineweight values otherwise False.

Sample script which shows all valid lineweights: valid_lineweights.dxf

You have to enable the option to show lineweights in your CAD application or viewer to see the effect on screen, which
is disabled by default, the same has to be done in the page setup options for plotting lineweights.

Setting the HEADER variable SLWDISPLAY to 1, activates support for displaying lineweights on screen:

activate on screen lineweight display
doc.header["SLWDISPLAY"] = 1

9.4. Basic Concepts 43

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-20B4D4B3-1220-426A-847B-5BBE36EC6FDF-htm.html#GUID-20B4D4B3-1220-426A-847B-5BBE36EC6FDF__SECTION_C298CAFE7CDF42A1AF937862BDA04F1C
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_entitylinetype/V22/EN_US?id=165079137037
https://raw.githubusercontent.com/mozman/ezdxf/master/examples_dxf/valid_lineweights.dxf

ezdxf Documentation, Release 1.3.2

Lineweight: 211

Lineweight: 2.00

Lineweight: .58

Linewelght; 1,40

Linewelght: 1.20

Linewelight: 1.0&

Lineweight: 1.00

Lineweight: D.90

Lineweight: D.BO

Lineweight: 0,70

Lineweight: 060

Lineweight: 053

Linewelght: 0,50

Linewelght: 0.40

Lineweight: 0.35

Lineweight: 0.30

Lineweight: D.25

Lineweight: 0.20

Lineweight: 018

Lineweight: 015

Linewelght: 013

Linewelght; 010

Linewelght: 0.09

Lineweight: 0.05

Lineweight: 0.00

44

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The lineweight value can be overridden by C7B or STB files.
See also:

* Autodesk Knowledge Network: About Lineweights

* BricsCAD Help Center: Entity Lineweight

9.4.9 Coordinate Systems

AutoLISP Reference to Coordinate Systems provided by Autodesk.

To brush up you knowledge about vectors, watch the YouTube tutorials of 3BluelBrown about Linear Algebra.

WCS

World coordinate system - the reference coordinate system. All other coordinate systems are defined relative to the WCS,
which never changes. Values measured relative to the WCS are stable across changes to other coordinate systems.

uUcCs

User coordinate system - the working coordinate system defined by the user to make drawing tasks easier. All points
passed to AutoCAD commands, including those returned from AutoLISP routines and external functions, are points in
the current UCS. As far as I know, all coordinates stored in DXF files are always WCS or OCS never UCS.

User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a converter class UCS
to translate coordinates from UCS into WCS and vice versa, but always remember: store only WCS or OCS coordinates
in DXF files, because there is no method to determine which UCS was active or used to create UCS coordinates.

See also:
 Table entry UCS

e ezdxf.math.UCS - converter between WCS and UCS

OCs

Object coordinate system are coordinates relative to the object itself. The main goal of OCS is to place 2D elements in
3D space and the OCS is defined by the extrusion vector of the entity. As long the extrusion vector is (0, 0, 1) (the WCS
z-axis) the OCS is coincident to the WCS, which means the OCS coordinates are equal to the WCS coordinates, most of
the time this is true for 2D entities.

OCS entities: ARC, CIRCLE, TEXT, LWPOLYLINE, HATCH, SOLID, TRACE, INSERT, IMAGE

Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the domain of the
user/application. These lines convert the center of a 3D circle from OCS to WCS:

ocs = circle.ocs ()
wcs_center = ocs.to_wcs(circle.dxf.center)
See also:

* Object Coordinate System (OCS) - deeper insights into OCS

e ezdxf.math.OCS - converter between WCS and OCS

9.4. Basic Concepts 45

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-4B33ACD3-F6DD-4CB5-8C55-D6D0D7130905-htm.html
https://help.bricsys.com/document/_guides--BCAD_2D_drafting--GD_lineweight/V22/EN_US?id=165079137239
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0F0B833D-78ED-4491-9918-9481793ED10B
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

ezdxf Documentation, Release 1.3.2

DCS

Display coordinate system - the coordinate system into which objects are transformed before they are displayed. The
origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its z-axis is the viewing direction.
In other words, a viewport is always a plan view of its DCS. These coordinates can be used to determine where something
will be displayed to the AutoCAD user. Ezdxf does not use or support DCS in any way.

9.4.10 Object Coordinate System (OCS)

* DXF Reference for OCS provided by Autodesk.

The points associated with each entity are expressed in terms of the entity’s own object coordinate system (OCS). The
OCS was referred to as ECS in previous releases of AutoCAD.

With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D vector describing
the z-axis of the OCS (often referenced as extrusion vector), and the elevation value, which is the distance of the entity
xy-plane to the WCS/OCS origin.

For a given z-axis (extrusion) direction, there are an infinite number of coordinate systems, defined by translating the
origin in 3D space and by rotating the x- and y-axis around the z-axis. However, for the same z-axis direction, there is
only one OCS. It has the following properties:

* Its origin coincides with the WCS origin.

¢ The orientation of the x- and y-axis within the xy-plane are calculated in an arbitrary but consistent manner. Au-
toCAD performs this calculation using the arbitrary axis algorithm (see below).

* Because of the Arbitrary Axis Algorithm the OCS can only represent a right-handed coordinate system!

The following entities do not lie in a particular plane. All points are expressed in world coordinates. Of these entities,
only lines and points can be extruded. Their extrusion direction can differ from the world z-axis.

e Line

e Point

* 3DFace

e Polyline (3D)
e Vertex (3D)

* Polymesh

e Polyface

* Viewport

These entities are planar in nature. All points are expressed in object coordinates. All of these entities can be extruded.
Their extrusion direction can differ from the world z-axis.

e Circle
e Arc

e Solid
e Trace
e Text

e Attrib

e Attdef

46 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D99F1509-E4E4-47A3-8691-92EA07DC88F5

ezdxf Documentation, Release 1.3.2

* Shape

e Insert

e Polyline (2D)
e Vertex (2D)

* LWwPolyline

* Hatch

e Image

Some of a Dimension’s points are expressed in WCS and some in OCS.

Elevation

Elevation group code 38:

Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each of the entity’s
defining points.

Arbitrary Axis Algorithm

¢ DXF Reference for Arbitrary Axis Algorithm provided by Autodesk.

The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent generation of object
coordinate systems for all entities that use object coordinates.

Given a unit-length vector to be used as the z-axis of a coordinate system, the arbitrary axis algorithm generates a corre-
sponding x-axis for the coordinate system. The y-axis follows by application of the right-hand rule.

We are looking for the arbitrary x- and y-axis to go with the normal Az (the arbitrary z-axis). They will be called Ax and
Ay (using Vec3):

Az = Vec3(entity.dxf.extrusion) .normalize () # normal (extrusion) vector
if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.):

Ax = Vec3(0, 1, 0).cross(Az) .normalize () # the cross-product operator
else:

Ax = Vec3(0, 0, 1).cross(Az).normalize () # the cross-product operator
Ay = Az.cross (Ax) .normalize ()
WCS to OCS

def wcs_to_ocs (point) :
PxX, pY, pz = Vec3(point) # point in WCS
X = px * Ax.Xx + py * Ax.y + pz * Ax.z
y = px * Ay.x + py * Ay.y + pz * Ay.z
z = px * Az.x + py * Az.y + pz * Az.z
return Vec3(x, vy, z)

9.4. Basic Concepts a7

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E19E5B42-0CC7-4EBA-B29F-5E1D595149EE

ezdxf Documentation, Release 1.3.2

OCS to WCS

Wx = wcs_to_ocs((1, 0, 0))
Wy = wcs_to_ocs((0, 1, 0))
Wz = wcs_to_ocs((0, 0, 1))

def ocs_to_wcs (point) :
PX, Py, pz = Vec3(point) # point in OCS
X = px * Wx.x + py * Wx.y + pz * Wx.z
y = px * Wy.x + py * Wy.y + pz * Wy.z
z = px * Wz.x + py * Wz.y + pz * Wz.z
return Vec3(x, vy, z)

9.4.11 DXF Units

The DXF reference has no explicit information how to handle units in DXF, any information in this section is based
on experiments with BricsCAD and may differ in other CAD applications, BricsCAD tries to be as compatible with
AutoCAD as possible. Therefore, this information should also apply to AutoCAD.

Please open an issue on github if you have any corrections or additional information about this topic.

Length Units

Any length or coordinate value in DXF is unitless in the first place, there is no unit information attached to the value. The
unit information comes from the context where a DXF entity is used. The document/modelspace get the unit information
from the header variable SINSUNITS, paperspace and block layouts get their unit information from the attribute units.
The modelspace object has also a units property, but this value do not represent the modelspace units, this value is
always set to 0 “unitless”.

Get and set document/modelspace units as enum by the Drawing property units:

import ezdxf
from ezdxf import units

doc = ezdxf.new/()
Set centimeter as document/modelspace units

doc.units = units.CM

which is a shortcut (including validation) for
doc.header['SINSUNITS'] = units.CM

Block Units

As said each block definition can have independent units, but there is no implicit unit conversion applied, not in CAD
applications and not in ezdxf.

When inserting a block reference (INSERT) into the modelspace or another block layout with different units, the scal-
ing factor between these units must be applied explicit as DXF attributes (xscale, ...) of the Insert entity, e.g.
modelspace in meters and block in centimeters, x-, y- and z-scaling has to be 0.01:

doc.units = units.M
my_block = doc.blocks.new('MYBLOCK")
my_block.units = units.CM
block_ref = msp.add_block_ref ('"MYBLOCK')
(continues on next page)

48 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://github.com/mozman/ezdxf/issues

ezdxf Documentation, Release 1.3.2

(continued from previous page)

Set uniform scaling for x-, y- and z-axis
block_ref.set_scale(0.01)

Use helper function conversion_rfactor () to calculate the scaling factor between units:

factor = units.conversion_factor (doc.units, my_block.units)
factor = 100 for Im is 100cm
scaling factor = 1 / factor

block_ref.set_scale(l1.0/factor)

Hint: It is never a good idea to use different measurement system in one project, ask the NASA about their Mars Climate
Orbiter from 1999. The same applies for units of the same measurement system, just use one unit like meters or inches.

Angle Units

Angles are always in degrees (360 deg = full circle) in counter-clockwise orientation, unless stated explicit otherwise.

Display Format

How values are shown in the CAD GUI is controlled by the header variables SLUNITS and $AUNITS, but this has no
meaning for values stored in DXF files.

$SINSUNITS

The most important setting is the header variable SINSUNITS, this variable defines the drawing units for the modelspace
and therefore for the DXF document if no further settings are applied.

The modelspace LAYOUT entity has a property unit s as any layout like object, but it seem to have no meaning for the
modelspace, BricsCAD set this property always to 0, which means unitless.

The most common units are 6 for meters and 1 for inches.

doc.header['$SINSUNITS'] = 6

9.4. Basic Concepts 49

ezdxf Documentation, Release 1.3.2

0 Unitless

1 Inches, units.IN

2 Feet, units.FT

3 Miles, units .MI

4 Millimeters, units .MM
5 Centimeters, units.CM
6 Meters, units.M

7 Kilometers, units.KM
8 Microinches

9 Mils

10 Yards, units.YD

11 Angstroms

12 Nanometers

13 Microns

14 Decimeters, units.DM
15 Decameters

16 Hectometers

17 Gigameters

18 Astronomical units

19 Light years

20 Parsecs

21 US Survey Feet

22 US Survey Inch

23 US Survey Yard

24 US Survey Mile

See also enumeration ezdxf.enums. InsertUnits.

SMEASUREMENT

The header variable SMEASUREMENT controls whether the current drawing uses imperial or metric hatch pattern and
linetype files:

This setting is independent from $INSUNITS, it is possible to set the drawing units to inch and use metric linetypes and
hatch pattern.

In BricsCAD the base scaling of linetypes and hatch pattern is defined by the SMEASUREMENT value, the value of
$INSUNITS is ignored.

doc.header['$SMEASUREMENT'] = 1

0 English
1 Metric

See also enumeration ezdxf.enums.Measurement

50 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

SLUNITS

The header variable $LUNITS defines how CAD applications display linear values in the GUI and has no meaning for
ezdxf:

doc.header['SLUNITS'] = 2

1 Scientific

2 Decimal (default)
3 Engineering

4 Architectural

5 Fractional

See also enumeration ezdxf.enums. LengthUnits

$AUNITS

The header variable $AUNITS defines how CAD applications display angular values in the GUI and has no meaning for
ezdxf, DXF angles are always stored as degrees in counter-clockwise orientation, unless stated explicit otherwise:

doc.header['$SAUNITS'] = 0

0 Decimal degrees

1 Degrees/minutes/seconds
2 Grad

3 Radians

See also enumeration ezdxf.enums.AnqularUnits

Helper Tools

ezdxf.units.conversion_factor (source_units: InsertUnits, target_units: InsertUnits) — float

Returns the conversion factor to represent source_units in target_units.
E.g. millimeter in centimeter conversion_factor (MM, CM) returns 0.1, because] mm = 0.1 cm

ezdxf.units.unit_name (enum: int) — str

Returns the name of the unit enum.

ezdxf.units.angle_unit_name (enum: int) — str

Returns the name of the angle unit enum.

9.4. Basic Concepts 51

ezdxf Documentation, Release 1.3.2

9.4.12 Modelspace

The modelspace contains the “real” world representation of the drawing subjects in real world units and is displayed in
the tab called “Model” in CAD applications. The modelspace is always present and can’t be deleted.

The modelspace object is acquired by the method modelspace () of the Drawing class and new entities should be
added to the modelspace by factory methods: Thematic Index of Layout Factory Methods.

This is a common idiom for creating a new document and acquiring the modelspace:

import ezdxf

ezdxf.new ()
doc.modelspace ()

doc
msp

The modelspace can have one or more rectangular areas called modelspace viewports. The modelspace viewports can be
used for displaying different views of the modelspace from different locations of the modelspace or viewing directions. It
is important to know that modelspace viewports (VPort) are not the same as paperspace viewport entities (Viewport).

See also:
¢ Reference of class Modelspace
e Thematic Index of Layout Factory Methods

« Example for usage of modelspace viewports: tiled_window_setup.py

9.4.13 Paperspace
A paperspace layout is where the modelspace drawing content is assembled and organized for 2D output, such as printing
on a sheet of paper, or as a digital document, such as a PDF file.

Each DXF document can have one or more paperspace layouts but the DXF version R12 supports only one paperspace
layout and it is not recommended to rely on paperspace layouts in DXF version R12.

Graphical entities can be added to the paperspace by factory methods: Thematic Index of Layout Factory Methods. Views
or “windows” to the modelspace are added as Viewport entities, each viewport displays a region of the modelspace and
can have an individual scaling factor, rotation angle, clipping path, view direction or overridden layer attributes.

See also:
¢ Reference of class Paperspace
e Thematic Index of Layout Factory Methods

» Example for usage of paperspace viewports: viewports_in_paperspace.py

9.4.14 Blocks

Blocks are collections of DXF entities which can be placed multiple times as block references in different layouts and
other block definitions. The block reference (Insert) can be rotated, scaled, placed in 3D space by OCS and arranged
in a grid like manner, each Tnsert entity can have individual attributes (At t rib) attached.

52 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/tiled_window_setup.py
https://github.com/mozman/ezdxf/blob/master/examples/viewports_in_paperspace.py

ezdxf Documentation, Release 1.3.2

Block Attributes

A block attribute (At t rib) is a text annotation attached to a block reference with an associated tag. Attributes are often
used to add information to block references which can be evaluated and exported by CAD applications.

Extended Block Features

Autodesk added many new features to BLOCKS (dynamic blocks, constraints) as undocumented DXF entities, many of
these features are not fully supported by other CAD application and ezdxf also has no support or these features beyond
the preservation of these undocumented DXF entities.

See also:
e Blocks Section

e Tutorial for Blocks

9.4.15 Layout Extents and Limits
The extents and limits of an layout represents borders which can be referenced by the ZOOM command or read from

some header variables from the HeaderSection, if the creator application maintains these values — ezdxf does this
not automatically.

Extents

The extents of an layout are determined by the maximum extents of all DXF entities that are in this layout. The command:

Z00M extents

sets the current viewport to the extents of the currently selected layout.

A paperspace layout in an arbitrary zoom state:

9.4. Basic Concepts 53

ezdxf Documentation, Release 1.3.2

o
=
(]

l: 99,0404, NZ0NTT, 0 Stendard Standand Draftng SHAS GAID CATHO POLA BEHAP STRMK LwT Pdaeveutl DUCS 07 CRMAD BT AR LOOWT Mene - o

The same layout after the ZOOM extents command:

T

Wl

1454208, 241074, 0 Standard Stanclard Draftng SHAS GAID CATHO POLA BSHAP STRASK LWT Pdaveutl DUCS O CRMAD BT AR LOOWT Mene - ¥l

54 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Limits

Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking or entering
point locations. The default limits for paperspace layouts is defined by the paper size.

The layout from above after the ZOOM all command:

I AL RSN 0 Senderd Standled Drafong D05 GRID CRTHO POLA: ESMAP ETRACK (0T Pdavoutl DUCE DM QRMD BT MO LOCAUT More -

See also:

The AutoCAD online reference for the ZOOM and the LIMITS command.

Read Stored Values

The extents of the modelspace (the tab called “Model”) are stored in the header variable SEXTMIN and SEXTMAX. The
default values of SEXTMIN is (+1e20, +1e20, +1e20) and SEXTMAX is (-1e20, -1e20, -1e20), which do not describe
real borders. These values are copies of the extents attributes of the Layout object as Layout .dxf.extmin and
Layout.dxf.extmax.

The limits of the modelspace are stored in the header variables SLIMMIN and $LIMMAX and have default values of
(0, 0) and (420, 297), the default paper size of ezdxf in drawing units. These are copies of the Layout attributes
Layout .dxf.extmin and Layout .dxf.extmax.

The extents and the limits of the actual paperspace layout, which is the last activated paperspace layout tab, are stored in
the header variable SPEXTMIN, SPEXTMAX, SPLIMMIN and $PLIMMAX.

Each paperspace layout has its own values stored in the Layout attributes Layout .dxf.extmin, Layout .dxf.
extmax, Layout .dxf.limmin and Layout .dxf.limmax.

9.4. Basic Concepts 55

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-66E7DB72-B2A7-4166-9970-9E19CC06F739-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html?us_oa=akn-us&us_si=e9cbb4f4-03c5-4af9-aa76-b58263233f35&us_st=LIMITS%20(Command)

ezdxf Documentation, Release 1.3.2

Setting Extents and Limits

Since v0.16 ezdxf it is sufficient to define the attributes for extents and limits (Layout .dxf .extmax, Layout .dxf.
limmin and Layout .dxf.limmax) of Layout object. The header variables are synchronized when the document
is saved.

The extents of a layout are not calculated automatically by ezdxf, as this can take a long time for large documents and
correct values are not required to create a valid DXF document.

See also:

How to: Calculate Extents for the Modelspace

9.4.16 Font Resources

DXEF relies on the infrastructure installed by AutoCAD like the included SHX files or True Type fonts. There is no simple
way to store additional information about a used fonts beside the plain file system name like "arial.ttf". The CAD
application or viewer which opens the DXF file has to have access to the specified fonts used in your DXF document or
it has to use an appropriate replacement font, which is not that easy in the age of unicode. Later DXF versions can store
font family names in the XDATA of the STYLE entity but not all CAD application use this information.

9.5 Tasks

These topics provide brief overviews of how to complete specific tasks, but they’re not comprehensive tutorials. For a
deeper understanding, explore the beginner’s guide, explanations of basic concepts, in-depth tutorials, the reference guide,
example code, and even the source code itself.

9.5.1 Add Data
Add DXF Entities

Layout Factory Methods

Recommended way to create DXF entities.

For all supported entities exist at least one factory method in the ezdxf. layouts.BaseLayout class. All factory
methods have the prefix: add_ . . .

import ezdxf

doc = ezdxf.new/()
msp = doc.modelspace ()
msp.add_line((0, 0, 0), (3, 0, 0), dxfattribs={"color": 2})

56 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Thematic Index of Layout Factory Methods
DXF Primitives

* add_3dface ()

e add _arc/()

e add_circle()

e add_ellipse()

* add _hatch ()

e add _helix()

e add_image ()

* add_leader ()

e add _line()

e add_lwpolyline()
* add_mesh ()

e add mline()

* add_mpolygon ()

* add_multileader_mtext ()
* add_multileader_block ()
* add_point ()

* add_polyface()

* add_polyline2d()
* add_polyline3d()
* add_polymesh ()

e add_ray/()

* add_shape ()

e add _solid()

* add _trace()

e add_wipeout ()

* add_xline()

9.5. Tasks 57

ezdxf Documentation, Release 1.3.2

Text Entities

e add_attdef ()

e add_mtext_dynamic_auto_height_columns ()

* add_mtext_dynamic_manual_height_columns ()
e add_mtext_static_columns ()

e add mtext ()

e add_text ()

Spline Entity

* add_cad_spline_control_frame ()
* add_open_spline ()

* add_rational_spline()

* add_spline_control_frame ()

* add_spline()

Block References and Underlays

e add_arrow_blockref ()
e add_auto_blockref ()
e add_blockref ()

* add_underlay /()

Viewport Entity

Only available in paper space layouts.

* add_viewport ()

Dimension Entities

Linear Dimension

* add_aligned_dim/()

* add_linear_dim()

e add_multi_point_linear_dim()
Radius and Diameter Dimension

e add_diameter_dim 2p ()

* add_diameter_dim()

* add_radius_dim_2p ()

58 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

e add _radius_dim_cra /()

* add_radius_dim/()
Angular Dimension

* add_angular_dim 21 ()

e add_angular_dim_3p()

* add_angular_dim _arc()

* add_angular_dim cra()
Arc Dimension

e add_arc_dim_3p()

* add_arc_dim_arc ()

e add _arc_dim cra /()
Ordinate Dimension

* add_ordinate_dim()

e add _ordinate _x_dim/()

* add_ordinate_y_dim()

Miscellaneous

e add_entity()
e add_foreign_entity ()

e add_arrow ()

ACIS Entities

The creation of the required ACIS data has do be done by an external library!

* add_3dsolid()

« add_body ()

e add _extruded _surface()

e add_lofted _surface ()

* add_region()

e add _revolved_ _surface()

e add_surface()
* add_swept_surface ()
See also:

Layout base class: BaseLayout

9.5. Tasks

59

ezdxf Documentation, Release 1.3.2

Factory Functions

Alternative way to create DXF entities for advanced ezdxf users.

The ezdxf.entities.factory module provides the new () function to create new DXF entities by their DXF
name and a dictionary of DXF attributes. This will bypass the validity checks in the factory methods of the BaseLayout
class.

This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the
entity to a layout (and document) by the layout method add_entity ().

import ezdxf
from ezdxf.entities import factory

doc = ezdxf.new ()

msp = doc.modelspace ()
line = factory.new(
"LINE",
dxfattribs={
"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,

b
)
msp.add_entity (line)

Direct Object Instantiation

For advanced developers with knowledge about the internal design of ezdxf.

Import the entity classes from sub-package ezdxf. ent it ies and instantiate them. This will bypass the validity checks
in the factory methods of the BaseLayout class and maybe additional required setup procedures for some entities -
study the source code!.

Warning: A refactoring of the internal ezdxf structures will break your code.

This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the
entity to a layout (and document) by the layout method add_entity ().

import ezdxf
from ezdxf.entities import Line

doc = ezdxf.new()
msp = doc.modelspace ()

line = Line.new (
dxfattribs={
"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,

msp.add_entity (line)

60 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Add Layouts And Blocks

Layouts are containers for DXF entities like LINE or CIRCLE. There exist three layouts types:
e Modelspace
e Paperspace

¢ Blocks

Modelspace

The Modelspace is unique. It is not possible to create another one.

Paperspace Layout

All DXF versions can have multiple paperspace layouts expect DXF R12.

Add a new paperspace layout to a DXF document:

doc.layouts.new ("MyLayout")

The layout name is the name shown on the tab in CAD applications and has to be unique, otherwise a DXFValueError
will be raised.

It is possible to add multiple paperspace layouts to all DXF versions, but ezdxf exports for DXF R12 only the active
paperspace layout. Any paperspace layout can be set as the active paperspace layout by the method: ezdxf. layouts.
Layouts.set_active_layout ().

* ezdxf.layouts.Layouts.new()

Block Definition

Add a new block definition to a DXF document:

doc.blocks.new ("MyLayout")

The block name has to be unique, otherwise a DXFValueError will be raised.

Add an anonymous block definition:

my_block = doc.blocks.new_anonymous_block ()
store the block name, so you can create block references to this block
block_name = my_block.name

Anonymous blocks are used internally and do not show up in the insert dialog for block references in CAD applications.
e ezdxf.sections.blocks.BlocksSection.new ()
* ezdxf.sections.blocks.BlocksSection.new_anonymous_block ()

See also:

Tasks:
e Get Layouts And Blocks

* Delete Layouts and Blocks

9.5. Tasks 61

ezdxf Documentation, Release 1.3.2

* Add DXF Entities
* Copy or Move DXF Entities
* Delete DXF Entities
* Add Block References
Tutorials:
* Tutorial for Getting Data from DXF Files
e Tutorial for Blocks
» Tutorial for Creating DXF Drawings
* Tutorial for Viewports in Paperspace
Basics:
e Layout Types
* Modelspace
* Paperspace
* Blocks
Classes:
* ezdxf.layouts.BaseLayout - parent of all layouts
* ezdxf.layouts.Layout - parent of modelspace & paperspace
* ezdxf.layouts.Modelspace
* ezdxf.layouts.Paperspace
* ezdxf.layouts.BlockLayout
* ezdxf.layouts.Layouts - layout manager (Drawing.layouts attribute)

e ezdxf.sections.blocks.BlocksSection - blocks manager (Drawing.blocks attribute)

Add Block References

Blocks are collections of DXF entities which can be placed multiple times as block references in different layouts and
other block definitions. A block reference is represented by the INSERT entity.

Add Block Reference

Add a block reference to the modelspace for a block definition “BlockName”:

my_block_ref = msp.add_blockref ('BlockName', location, dxfattribs={

'xscale': 1.0,
'yscale': 1.0,
'zscale': 1.0,

'rotation': angle,

H)

Non-uniform scaling is supported by CAD applications. The rotations angle is in degrees (circle=360 degrees).

* ezdxf.layouts.BaseLayout.add_blockref ()

62 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Add Block Attribute

To avoid confusion, it’s important to distinguish block attributes (ATTRIB entities) from DXF attributes. Block attributes
are text annotations linked to a block reference. They have their own location and can be attached to any block reference,
even without a corresponding attribute definition (ATTDEF) in the block layout.

Add a block attribute tomy_block_ref:

my_attribute = my_block_ref.add_attrib ("MY_TAG", "VALUE_STR")
my_attribute.set_placement (location)

¢ “MY_TAG”: a unique identifier or label for the attribute, unique in the context of the block reference
* “VALUE_STR”: the text content displayed by the attribute

Block attributes are a subtype of the TEXT entity. This means they inherit placement and editing functionalities from the
TEXT class.

e ezdxf.entities.Insert.add _attrib/()

e ezdxf.entities.Text.set_placement ()

Add Block Attribute from Template

Block definitions can include pre-defined templates for attributes using ATTDEF entities. The add_auto_attribs ()
method simplifies adding these attributes to block references. It takes a dictionary argument where:

» Keys: the attribute tags (e.g. “MY_TAG”).
* Values: the content for each attribute (e.g. “VALUE_STR”).

The add_auto_attribs () method automatically attaches attributes (ATTRIB entities) to the block reference. These
attributes inherit relevant DXF properties (layer, color, text style, etc.) from the corresponding ATTDEEF entities within
the block definition.

The method also ensures that the relative position of each attribute within the block reference mirrors the position of its
corresponding ATTDEEF entity relative to the block origin:

my_block_ref.add_auto_attrib ({"MY_TAG": "VALUE_STR"})

* ezdxf.entities.Insert.add_auto_attribs/()
See also:
Tasks:

* Add DXF Entities

e Copy or Move DXF Entities

* Delete DXF Entities
Tutorials:

e Tutorial for Blocks

e Tutorial for Getting Data from DXF Files

» Tutorial for Creating DXF Drawings
Basics:

e Modelspace

9.5. Tasks 63

ezdxf Documentation, Release 1.3.2

* Paperspace

¢ Blocks

Classes:

* ezdxf.
* ezdxf.
* ezdxf.
* ezdxf.
* ezdxf.

* ezdxf.

* ezdxf

layouts.BlockLayout

entities.BlockRecord
entities.
entities.
entities.
entities.

.entities.

Block

Insert
Attrib
AttDef

Text

Add Resource Table Entries

All resources require a unique name in their category (names are case-insensitive).

Layer

A layer in a DXF document is a category that controls visual properties (like color and linetype) for associated entities.

It acts like a grouping tag, not a container.

Add a new layer to a DXF document:

doc.layers.add ("MY_NEW_LAYER",

linetype="DASHED")

DXEF entities reference layers, but layers themselves don’t directly contain entities. Instead, each entity hasa dxf . layer

attribute that specifies the layer by name it belongs to.

* ezdxf.sections.table.LayerTable.add()

Linetype

The linetype defines the rendering pattern of linear graphical entities like LINE, ARC, CIRCLE and so on.

Add a new linetype to a DXF document:

doc.linetypes.add ("DOTTED",

pattern=[0.2,

e ezdxf.sections.table.LinetypeTable.add()

64

Chapter 9

. Contents

ezdxf Documentation, Release 1.3.2

Text Style

The text style defines the rendering font for text based entities like TEXT, ATTRIB and MTEXT.

Add a new text style to a DXF document:

doc.styles.add ("ARIAL", font="arial.ttf")

* ezdxf.sections.table.TextstyleTable.add()

Dimension Style

The dimension style defines the initial properties for the DIMENSION entity.

Add a new dimension style to a DXF document:

doc.dimstyles.add ("EZDXE")

e ezdxf.sections.table.DimStyleTable.add()

AppID

The XDATA section of DXF entities is grouped by AppIDs and these ids require an entry in the AppIDTab1le otherwise
the DXF file in invalid (for AutoCAD):

doc.appids.add ("EZDXE")

e ezdxf.sections.table.AppIDTable.add/ ()
See also:
Tutorials:

* Tutorial for Layers

* Tutorial for Creating Linetype Pattern

* Tutorial for Text

 Tutorial for MText and MTextEditor

* Tutorial for Common Graphical Attributes
Basics:

e Layers

* Linetypes

* Lineweights

e AutoCAD Color Index (ACI)

* True Color

 Font Resources
Classes:

* ezdxf.entities.Layer

* ezdxf.entities.Linetype

9.5. Tasks 65

ezdxf Documentation, Release 1.3.2

* ezdxf.entities.Textstyle
* ezdxf.entities.DimStyle
e ezdxf.entities.Appid

* ezdxf.fonts.fonts

Add Custom and Extended Data

DXEF supports storing custom data through various mechanisms.

Header Variables

Custom data can be stored in the HEADER section of a DXF file. Integer values are stored in variables named $USERI1
to $USERIS5, while floating-point values are stored in variables named $USERRI1 to $USERRS.

Example:
doc.header["SUSERI1"] = 17
XDATA Section

The XDATA section is a container for extended data associated with an entity. It’s essentially a way to store additional
information beyond the standard DXF properties for that particular entity. The XDATA section is divided into sub-

sections, each associated with an ApplID.

It’s important that the ApplD is registered in the AppID table:

doc.appids.add ("YOUR_ID")

* ezdxf.sections.table.AppIDTable.add()

Example:

point = msp.add_point ((10, 10))
point.set_xdata ("YOUR_ID", (1040, 3.1415))

* ezdxf.entities.DXFEntity.set_xdata/()

Extension Dictionaries

Each DXF entity can have an extension dictionary to attach custom data. The extension dictionary is a Dictionary
entity which stores references to other DXF entities in a key/value storage, mostly Dictionary and XRecord entities.

Example:

point = msp.add_point ((10, 10))
xdict = point.new_extension_dict ()

e ezdxf.entities.DXFEntity.new_extension_dict ()

66

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Custom Data as XRECORD

The XRECORD is used to store arbitrary data. It is composed of DXF group codes ranging from 1 through 369. This

object is similar in concept to XDATA but is not limited by size or order.

Example:

point = msp.add_point ((10, 10))

xdict = point.new_extension_dict ()

xrecord = xdict.add_xrecord("MyData")
xrecord.extend ([(1, "MyText"), (40, 3.1415)1])

* ezdxf.entities.xdict.ExtensionDict.add xrecord()
* ezdxf.entities.xdict.ExtensionDict.add dictionary ()
* ezdxf.entities.xdict.ExtensionDict.add _dictionary_var()
See also:
Tasks:
* Get Extended Data from DXF Entities
* Modify Extended Data
* Delete Extended Data
Tutorials:
e Storing Custom Data in DXF Files
Basics:
* Extended Data
e Extension Dictionary
e DXF Tags
Classes:
* ezdxf.entities.xdata.XData
e ezdxf.entities.xdict.ExtensionDict
e ezdxf.entities.XRecord
* ezdxf.entities.Dictionary
* ezdxf.entities.DictionaryVar
Helper-Classes:
* ezdxf.entities.xdata.XDataUserList
¢ ezdxf.entities.xdata.XDataUserDict
* ezdxf.urecord.UserRecord

* ezdxf.urecord.BinaryRecord

9.5. Tasks

67

ezdxf Documentation, Release 1.3.2

9.5.2 Query Data

Query Entities

DXF entities can be selected from layouts or arbitrary entity-sequences based on their DXF type and attributes. Create
new queries be the new () function or by the query () methods implemented by all layouts.

See also:

e Tutorial: Tutorial for Getting Data from DXF Files

¢ Reference: ezdxf.query module

Entity Query String

The query string is the combination of two queries, first the required entity query and second the optional attribute query,
enclosed in square brackets, append '1i' after the closing square bracket to ignore case for strings.

Query Result

The EntityQuery class is the return type of all query () methods. Ent it yQuery contains all DXF entities of the
source collection, which matches one name of the entity query AND the whole attribute query. If a DXF entity does not
have or support a required attribute, the corresponding attribute search term is False.

Select all LINE and CIRCLE entities with layer == “construction”:

result = msp.query('LINE CIRCLE[layer=="construction"]")

This result is always empty, because the LINE entity has no text attribute:

result = msp.query ('LINE[text 2 ".*"]")

Select all entities except those with layer == “construction” and color < 7:

result = msp.query('*[! (layer=="construction" & color<7)]")

Ignore case, selects all entities with layer == “construction”, “Construction”, “ConStruction” ...:
result = msp.query('*[layer=="construction"]i'")

Extended EntityQuery Features

The EntityQuery container supports the full Sequence protocol:

result = msp.query(...)
first = result[O0]
last = result[-1]

Slices return a new Ent it yQuery container:

sequence = result[l:-2]

68 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The __getitem__ () function accepts also a DXF attribute name and returns all entities which support this attribute,
this is the base for supporting queries by relational operators. More on that later.

The __setitem__ () method assigns a DXF attribute to all supported entities in the Ent it yQuery container:

result = msp.query(...)
result["layer"] = "MyLayer"

Entities which do not support an attribute are silently ignored:

result = msp.query(...)
result["center"] = (0, 0) # set center only of CIRCLE and ARC entities

The _ _delitem__ () method discards DXF attributes from all entities in the Ent it yQuery container:

result = msp.query(...)

reset the layer attribute from all entities in container result to the
default layer "0"

del result["layer"]

Descriptors for DXF Attributes

For some basic DXF attributes exist descriptors in the Ent it yQuery class:
* layer: layer name as string
e color: AutoCAD Color Index (ACI), see ezdxf.colors
e linetype: linetype as string
* ltscale: linetype scaling factor as float value
e lineweight: Lineweights
e invisible: 0if visible 1 if invisible, O is the default value
e true_color: true color as int value, see ezdxf . colors, has no default value
* transparency: transparency as int value, see ezdxf.colors, has no default value

A descriptor simplifies the attribute access through the Ent it yOuery container and has auto-completion support from
IDEs:

result = msp.query(...)

set attribute of all entities in result
result.layer = "MyLayer"

delete attribute from all entities in result
del result.layer

and for selector usage, see following section
assert len(result.layer == "Mylayer") ==

9.5. Tasks 69

ezdxf Documentation, Release 1.3.2

Relational Selection Operators

The attribute selection by __getitem__ () allows further selections by relational operators:

msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer})
lines = msp.query ("LINE")

select all entities on layer "MyLayer"

entities = lines["layer"] == "MyLayer"
assert len(entities) == 1

or select all entities except the entities on layer "MyLayer"
entities = lines["layer"] != "MyLayer"

These operators work only with real DXF attributes, for instance the rgb attribute of graphical entities is not a real DXF
attribute either the vertices of the LWPOLYLINE entity.

The selection by relational operators is case insensitive by default, because all names of DXF table entries are handled
case insensitive. But if required the selection mode can be set to case sensitive:

lines = msp.query ("LINE")

use case sensitive selection: "MyLayer" != "MYLAYER"
lines.ignore_case = False

entities = lines["layer"] == "MYLAYER"

assert len(entities) == 0

the result container has the default setting:
assert entities.ignore_case is True

Supported selection operators are:
* == equal “value”
e !=not equal “value”
* < lower than “value”
* <= lower or equal than “value”
* > greater than “value”
» >= greater or equal than “value”

The relational operators <, >, <= and >= are not supported for vector-based attributes such as center or insert and raise a
TypeError.

Note: These operators are selection operators and not logic operators, therefore the logic operators and, or and not are
not applicable. The methods union (), intersection (),difference () and symmetric_difference ()
can be used to combine selection. See section Query Set Operators and Build Custom Filters.

70 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Regular Expression Selection

The EntityQuery.match () method returns all entities where the selected DXF attribute matches the given regular
expression. This methods work only on string based attributes, raises TypeError otherwise.

From here on I use only descriptors for attribute selection if possible.

msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Layl"})
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Lay2"})
lines = msp.query ("LINE")

select all entities at layers starting with "Lay",
selection is also case insensitive by default:
assert len(lines.layer.match(""Lay.*")) == 2

Build Custom Filters

The method EntityQuery. filter can be used to build operators for none-DXF attributes or for complex logic
expressions.

Find all MTEXT entities in modelspace containing “SearchText”. All MText entities have a t ext attribute, no need for
a safety check:

mtext = msp.query ("MTEXT") .filter (lambda e: "SearchText" in e.text)

This filter checks the non-DXF attribute rgb. The filter has to check if the rgb attributes exist to avoid exceptions,
because not all entities in modelspace may have the rgb attribute e.g. the DXFTagStorage entities which preserve
unknown DXF entities:

result = msp.query().filter (
lambda e: hasattr (e, "rgb") and e.rgb == (0, 0, 0)

Build 1-pass logic filters for complex queries, which would require otherwise multiple passes:

result = msp.query().filter(lambda e: e.dxf.color < 7 and e.dxf.layer == "0")

Combine filters for more complex operations. The first filter passes only valid entities and the second filter does the actual
check:

def validator (entity):
return True # if entity is valid and has all required attributes

def check (entity):
return True # if entity passes the attribute checks

result = msp.query () .filter(validator).filter (check)

9.5. Tasks 71

ezdxf Documentation, Release 1.3.2

Query Set Operators

The | operator or EntityQuery.union () returns a new Ent ityQuery with all entities from both queries. All
entities are unique - no duplicates. This operator acts like the logical or operator.

entities = msp.query ()
select all entities with color < 2 or color > 7
result = (entities.color < 2) | (entities.color > 7)

The & operator or EntityQuery.intersection () returns a new EntityQuery with entities common to self
and other. This operator acts like the logical and operator.

entities = msp.query ()
select all entities with color > 1 and color < 7
result = (entities.color > 1) & (entities.color < 7)

The - operator or EntityQuery.difference () returns anew Ent it yQuery with all entities from self that are
not in other.

entities = msp.query ()
select all entities with color > 1 and not layer == "MyLayer"
result = (entities.color > 1) - (entities.layer != "MyLayer")

The ~ operator or EntityQuery.symmetric_difference () returns a new EntityQuery with entities in
either self or other but not both.

entities = msp.query ()

select all entities with color > 1 or layer == "MyLayer", exclusive
entities with color > 1 and layer == "MyLayer"
result = (entities.color > 1) ~ (entities.layer == "MyLayer")

Groupby Function

See also:
Tutorial: Retrieve entities by groupby() function

ezdxf.groupby .groupby (entities: Iterable[DXFEntity], dxfattrib: str = ", key: KeyFunc | None = None) —
dict[Hashable, list{ DX FEntity]]

Groups a sequence of DXF entities by a DXF attribute like ' layer ', returns a dict with dxfattrib values as key
and a list of entities matching this dxfattrib. A key function can be used to combine some DXF attributes (e.g. layer
and color) and should return a hashable data type like a tuple of strings, integers or floats, key function example:

def group_key(entity: DXFEntity) :
return entity.dxf.layer, entity.dxf.color

For not suitable DXF entities return None to exclude this entity, in this case it’s not required, because groupby ()
catches DXFAttributeError exceptions to exclude entities, which do not provide layer and/or color attributes,
automatically.

Result dict for dxfattrib = ' layer ' may look like this:

{
'0': [... list of entities 1],
'Examplelayerl': [... 1,
(continues on next page)

72 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

'Examplelayer2': [... 1,

Result dict for key = group_key, which returns a (layer, color) tuple, may look like this:

{

('o'", 1): [... list of entities],
('0'y 3): [... 1,
('o', Yy: [... 1,

('ExamplelLayerl’,
('ExamplelLayerl',
('ExampleLayerl’,
('ExampleLayer2',

~N 0N
~ 0~ 0~

~

All entity containers (modelspace, paperspace layouts and blocks) and the Ent it yQuery object have a dedicated
groupby () method.

Parameters
* entities - sequence of DXF entities to group by a DXF attribute or a key function
* dxfattrib - grouping DXF attribute like ' layer'

* key - key function, which accepts a DXFEnt i t y as argument and returns a hashable grouping
key or None to ignore this entity

Selection Tools
The ezdxf.select module provides entity selection capabilities, allowing users to select entities based on various
shapes such as windows, points, circles, polygons, and fences.

The selection functions bhox_inside () and bbox_outside () work similarly to the inside and outside selection
tools in CAD applications but the selection is based on the bounding box of the DXF entities rather than their actual
geometry.

The bbox_overlap () function works similarly to crossing selection in CAD applications. Entities that are outside
the selection shape but whose bounding box overlapps the selection shape are included in the selection. This is not the
case with crossing selection in CAD applications.

The selection functions accept any iterable of DXF entities as input and return an ezdxf.query.EntityQuery
container, that provides further selection tools based on entity type and DXF attributes.

Usage

Select all entities from the modelspace inside a window defined by two opposite vertices:

import ezdxf
from ezdxf import select

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace ()

Define a window for selection
(continues on next page)

9.5. Tasks 73

ezdxf Documentation, Release 1.3.2

(continued from previous page)
window = select.Window ((0, 0), (10, 10))

Select entities inside the window from modelspace
selected_entities = select.bbox_inside (window, msp)

Iterate over selected entities
for entity in selected_entities:
print (entity)

See also:

* Tutorial for Entity Selection

Selection Functions

The following selection functions are implemented:
* bbox_inside ()
* bbox_outside ()
* bbox_overlap()
e bbox_chained()
* bbox_crosses_fence ()
e point_in_bbox ()

ezdxf.select .bbox_inside (shape: SelectionShape, entities: Iterable] DXFEntity], *, cache: Cache | None =
None) — EntityQuery

Selects entities whose bounding box lies withing the selection shape.
Parameters
* shape - seclection shape
* entities —iterable of DXFEntities
* cache - optional ezdxf.bbox.Cache instance

ezdxf.select .bbox_outside (shape: SelectionShape, entities: Iterablel DXFEntity], *, cache: Cache | None =
None) — EntityQuery

Selects entities whose bounding box is completely outside the selection shape.
Parameters
* shape - seclection shape
* entities —iterable of DXFEntities
* cache - optional ezdxf.bbox.Cache instance

ezdxf.select .bbox_overlap (shape: SelectionShape, entities: Iterablel DXFEntity], *, cache: Cache | None =
None) — EntityQuery

Selects entities whose bounding box overlaps the selection shape.
Parameters
* shape - seclection shape

* entities - iterable of DXFEntities

74 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* cache - optional ezdxf.bbox.Cache instance

ezdxf.select .bbox_chained (start: DXFEntity, entities: Iterablel DXFEntity], *, cache: Cache | None = None)
— EntityQuery

Selects elements that are directly or indirectly connected to each other by overlapping bounding boxes. The selection
begins at the specified starting element.

Warning: the current implementation has a complexity of O(n?).
Parameters
e start — first entity of selection
* entities —iterable of DXFEntities
* cache - optional ezdxf.bbox.Cache instance

ezdxf.select .bbox_crosses_fence (vertices: Iterable[UVec], entities: Iterable] DXFEntity], *, cache: Cache
| None = None) — EntityQuery

Selects entities whose bounding box intersects an open polyline.
All entities are projected on the xy-plane.
A single point can not be selected by a fence polyline by definition.
Parameters
* vertices — vertices of the selection polyline
* entities —iterable of DXFEntities
* cache - optional ezdxf.bbox.Cache instance

ezdxf.select.point_in_bbox (location: UVec, entities: Iterable] DXFEntity], *, cache: Cache | None = None)
— EntityQuery

Selects entities where the selection point lies within the bounding box. All entities are projected on the xy-plane.
Parameters
* point - selection point
* entities —iterable of DXFEntities

* cache - optional ezdxf.bbox.Cache instance

Selection Shapes

The following selection shapes are implemented:
* Window
e Circle
e Polygon
class ezdxf.select.Window (pl: UVec, p2: UVec)

This selection shape tests entities against a rectangular and axis-aligned 2D window. All entities are projected on
the xy-plane.

Parameters
* pl —first corner of the window

* p2 - second corner of the window

9.5. Tasks 75

ezdxf Documentation, Release 1.3.2

class ezdxf.select.Circle (center: UVec, radius: float)

This selection shape tests entities against a circle. All entities are projected on the xy-plane.
Parameters
* center - center of the circle

e radius —radius of the circle

class ezdxf.select.Polygon (vertices: Iterable[UVec])

This selection shape tests entities against an arbitrary closed polygon. All entities are projected on the xy-plane.
Complex concave polygons may not work as expected.

Planar Search Index

Added in version 1.4.

class ezdxf.select.PlanarSearchIndex (entities: Iterablel DXFEntity], cache: Cache | None = None,

max_node_size=5)
Spatial Search Index for DXF Entities
This class implements a spatial search index for DXF entities based on their bounding boxes except for POINT

and LINE. It operates strictly within the two-dimensional (2D) space of the xy-plane. The index is built once and
cannot be extended afterward.

The index can be used to pre-select DXF entities from a certain area to reduce the search space for other selection
tools of this module.

Functionality

» The index relies on the bounding boxes of DXF entities, and only the corner vertices of these bounding boxes
are indexed except for POINT and LINE.

* It can only find DXF entities that have at least one bounding box vertex located within the search area. Entities
whose bounding boxes overlap the search area but have no vertices inside it will not be found (e.g., a circle
whose center point is inside the search area but none of its bounding box vertices will not be included).

» The detection behavior can be customized by overriding the detection_points () method.
Recommendations

Since this index is intended to be used in conjunction with other selection tools within this module, it’'s recommended
to maintain a bounding box cache to avoid the computational cost of recalculating them frequently. This class
creates a new bounding box cache if none is specified. This cache can be accessed through the public attribute
cache.
detection_point_in_circle (center: UVec, radius: float) — Sequence[DXFEntity]
Returns all DXF entities that have at least one detection point located around center with a max. distance of
radius.
detection_point_in_rect (pl: UVec, p2: UVec) — Sequence[DXFEntity]
Returns all DXF entities that have at least one detection point located inside or at the border of the rectangle
defined by the two given corner points.
detection_points (entity: DXFEntity) — Sequence| Vec?2]
Returns the detection points for a given DXF entity.

The detection points must be 2D points projected onto the xy-plane (ignore z-axis). This implementation
returns the corner vertices of the entity bounding box.

76

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Override this method to return more sophisticated detection points (e.g., the vertices of LWPOLYLINE and
POLYLINE or equally spaced raster points for block references).

Get DXF Entity Type

The dxftype () method returns the entity type as defined by the DXF reference as an uppercase string.

e = msp.add_line((0, 0), (1, 0))
assert e.dxftype() == "LINE"

See also:

¢ DXF Reference for DXF R2018

Get DXF Attributes From Entities

All DXF attributes of an entity are grouped in the namespace attribute dx f:

e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer

The dx f namespace attribute has a get () method, which can return a default value if the attribute doesn’t exist:

e.dxf.get ('color', 9)

The attribute has to be supported by the DXF type otherwise a DXFAttributeError will be raised. You can check
if an DXF attribute is supported by the method dxf .is_supported():

line = msp.add_line((0, 0), (1, 0))
assert line.dxf.is_supported("text") is False

Optional DXF Attributs

Many DXF attributes are optional, you can check if an attribute exists by the hasattrib () method:

assert line.dxf.hasattrib("linetype") is False

Default Values

Some DXF attributes have default values and this default value will be returned if the DXF attribute doesn’t exist:

assert line.dxf.linetype == "BYLAYER"

See also:

Tasks:
e Common graphical DXF attributes
e Modify DXF Attributes of Entities
* Delete DXF Attributes from Entities

Tutorials:

9.5. Tasks 77

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3

ezdxf Documentation, Release 1.3.2

e Tutorial for Common Graphical Attributes

* Tutorial for Getting Data from DXF Files

Get Content From DXF Entities

TEXT Entity

The content of the TEXT entity is stored in a single DXF attribute Text . dxf . text and has an empty string as default
value:

for text in msp.query ("TEXT"):
print (text.dxf.text)

The plain_text () method returns the content of the TEXT entity without formatting codes.
See also:
Classes
* ezdxf.entities.Text
Tutorials

* Tutorial for Text

MTEXT Entity

The content of the MTEXT entity is stored in multiple DXF attributes. The content can be accessed by the read/write
property text and the DXF attribute MText .dxf . text and has an empty string as default value:

for mtext in msp.query ("MTEXT") :
print (mtext.text)
is the same as:
print (mtext.dxf.text)

Important: The line ending character \n will be replaced automatically by the MTEXT line ending \P.

The plain_text () method returns the content of the MTEXT entity without inline formatting codes.
See also:
Classes
* ezdxf.entities.MText
e ezdxf.tools.text.MTextEditor
Tutorials

o Tutorial for MText and MTextEditor

78 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MLEADER Entity

The content of MLEADER entities is stored in the MultiLeader.context object. The MLEADER contains text
content if the context .mtext attribute is not None and block content if the context .block attribute is not
None

See also:
Classes
* ezdxf.entities.MultiLeader
* ezdxf.entities.MLeaderContext
e ezdxf.entities.MTextData
* ezdxf.entities.BlockData
* ezdxf.entities.AttribData
Tutorials

e Tutorial for MultiLeader

Text Content

for mleader in msp.query ("MLEADER MULTILEADER") :
mtext = mleader.context.mtext

if mtext:
print (mtext.insert) # insert location
print (mtext.default_content) # text content

The text content supports the same formatting features as the MTEXT entity.

Block Content

The INSERT (block reference) attributes are stored in MultiLeader.context.block as BlockData.

for mleader in msp.query ("MLEADER MULTILEADER") :
block = mleader.context.block
if block:
print (block.insert) # insert location

The ATTRIB attributes are stored outside the context objectin MultiLeader.block_attribsas AttribData.

for mleader in msp.query ("MLEADER MULTILEADER") :
for attrib in mleader.block_attribs:
print (attrib.text) # text content of the ATTRIB entity

9.5. Tasks 79

ezdxf Documentation, Release 1.3.2

DIMENSION Entity

TODO

ACAD_TABLE Entity

TODO

INSERT Entity - Block References

TODO

Get Attribute Content

TODO

Get Virtual Entities

TODO

Get Extended Data from DXF Entities

TODO
See also:
Tasks:
¢ Add Custom and Extended Data
* Modify Extended Data
* Delete Extended Data
Tutorials:
e Storing Custom Data in DXF Files
Basics:
e Extended Data
e Extension Dictionary
* DXF Tags
Classes:
e ezdxf.entities.xdata.XData
* ezdxf.entities.xdict.ExtensionDict
* ezdxf.entities.XRecord
* ezdxf.entities.Dictionary

* ezdxf.entities.DictionaryVar

80

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Helper-Classes:
¢ ezdxf.entities.xdata.XDataUserList
e ezdxf.entities.xdata.XDataUserDict
* ezdxf.urecord.UserRecord

* ezdxf.urecord.BinaryRecord

Get Layouts And Blocks

TODO

Modelspace

TODO

Paperspace Layouts

TODO

Block Layouts

TODO

9.5.3 Modify Data

Modify DXF Attributes of Entities

All DXF attributes of an entity are grouped in the namespace attribute dxf. You can modify/set a DXF attribute by
assignment:

e.dxf.layer = "MyLayer"
e.dxf.color = 9

... or by the set () method:

e.dxf.set ('color', 9)

The attribute has to be supported by the DXF type otherwise a DXFAttributeError will be raised. You can check
if an DXF attribute is supported by the method dxf.is_supported():

line = msp.add_line((0, 0), (1, 0))

assert line.dxf.is_supported("text") is False
See also:

Tasks

* Common graphical DXF attributes

o Get DXF Attributes From Entities

9.5. Tasks 81

ezdxf Documentation, Release 1.3.2

* Delete DXF Attributes from Entities
Tutorials:

* Tutorial for Common Graphical Attributes

Modify Resource Table Entries

TODO

Layer

TODO

Linetype

TODO

Text Style

TODO

Dimension Style

TODO

Modify Geometry of DXF Entities

TODO

LINE

TODO

CIRCLE

TODO

82

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ARC

TODO

ELLIPSE

TODO

SPLINE

TODO

LWPOLYLINE

TODO

POLYLINE

TODO

MESH

TODO

HATCH

TODO

DIMENSION

Delete the existing DIMENSION and create a new one.

MLEADER

Delete the existing MLEADER and create a new one.

9.5. Tasks

83

ezdxf Documentation, Release 1.3.2

ACAD_TABLE

Not supported.

Transform Entities and Layouts

TODO

Transform DXF Entities

TODO

Transform Layouts

TODO

Copy or Move DXF Entities

TODO

Duplicate DXF Entities

TODO

Move DXF Entities between Layouts

TODO

Modify Block References

TODO

Modify Block attributes

TODO

Clip Block References

TODO

84 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Modify Entity Content

TODO

TEXT Entity

TODO

MTEXT Entity

TODO

DIMENSION Entity

Delete the existing DIMENSION and create a new one.

MLEADER Entity

Delete the existing MLEADER and create a new one.

ACAD_TABLE Entity

Not supported.

Modify Header Variables

TODO

Modify Extended Data

TODO
See also:
Tasks:
* Add Custom and Extended Data
» Get Extended Data from DXF Entities
* Delete Extended Data
Tutorials:
e Storing Custom Data in DXF Files
Basics:
* Extended Data
» Extension Dictionary

e DXF Tags

9.5. Tasks

85

ezdxf Documentation, Release 1.3.2

Classes:
* ezdxf.entities.xdata.XData
e ezdxf.entities.xdict.ExtensionDict
* ezdxf.entities.XRecord
* ezdxf.entities.Dictionary
* ezdxf.entities.DictionaryVar
Helper-Classes:
* ezdxf.entities.xdata.XDataUserList
* ezdxf.entities.xdata.XDataUserDict
* ezdxf.urecord.UserRecord

* ezdxf.urecord.BinaryRecord

9.5.4 Delete Data
Delete DXF Attributes from Entities

All DXF attributes of an entity are grouped in the namespace attribute dxf. You can delete a DXF attribute by the del
operator:

line = msp.add_line((0, 0), (1, 0))
line.dxf.layer = "MyLayer"
del line.dxf.layer

assert line.dxf.layer == "O" # the default layer for all entities

The del operator raises an DXFAttributeError if the attribute doesn’t exist or isn’t supported. The discard ()
method ignores these errors:

line.dxf.discard('text") # doesn't raise an exception

See also:

Tasks
» Common graphical DXF attributes
e Get DXF Attributes From Entities
* Modify DXF Attributes of Entities

Tutorials:

e Tutorial for Common Graphical Attributes

86 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Delete DXF Entities

TODO

Delete Entities from Layouts

TODO

Delete Block Reference Attributes

TODO

Delete Resource Table Entries

TODO

Layer

TODO

Linetype

TODO

Text Style

TODO

Dimension Style

TODO

Delete Layouts and Blocks

TODO

Modelspace

This is not possible.

9.5. Tasks 87

ezdxf Documentation, Release 1.3.2

Paperspace Layouts

TODO

Block Definitions

TODO

Delete Extended Data

TODO
See also:
Tasks:
¢ Add Custom and Extended Data
* Get Extended Data from DXF Entities
* Modify Extended Data
Tutorials:
e Storing Custom Data in DXF Files
Basics:
e Extended Data
e Extension Dictionary
* DXF Tags
Classes:
* ezdxf.entities.xdata.XData
* ezdxf.entities.xdict.ExtensionDict
* ezdxf.entities.XRecord
* ezdxf.entities.Dictionary
* ezdxf.entities.DictionaryVar
Helper-Classes:
¢ ezdxf.entities.xdata.XDataUserList
e ezdxf.entities.xdata.XDataUserDict
* ezdxf.urecord.UserRecord

* ezdxf.urecord.BinaryRecord

88

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.5.5 Explode Entities
Explode DXF Entities

TODO

POINT

TODO

POLYLINE & LWPOLYLINE

TODO

MESH

TODO

INSERT (Block References)

Explode Block References

DIMENSION

TODO

MLEADER

TODO

MLINE

TODO

ACAD_TABLE

TODO

9.5. Tasks

89

ezdxf Documentation, Release 1.3.2

Proxy Graphic

TODO

Explode Block References

TODO

Flatten DXF Entities

TODO

9.6 External References (XREF)

Added in version 1.1.

Attached XREFs are links to the modelspace of a specified drawing file. Changes made to the referenced drawing are
automatically reflected in the current drawing when it’s opened or if the XREF is reloaded.

XREFs can be nested within other XREFs: that is, you can attach an XREF that contains another XREF. You can attach
as many copies of an XREF as you want, and each copy can have a different position, scale, and rotation.

You can also overlay an XREF on your drawing. Unlike an attached XREF, an overlaid XREF is not included when the
drawing is itself attached or overlaid as an XREF to another drawing.

9.6.1 DXF Files as Attached XREFs

Important: AutoCAD can only display DWG files as attached XREFs but ezdxf can only create DXF files. Conse-
quently, any DXF file attached as an XREF to a DXF document must be converted to DWG in order to be viewed in
AutoCAD. Fortunately, other CAD applications are more cooperative, BricsCAD has no problem displaying DXF files
as XREFs, although it is not possible to attach a DXF file as an XREF in the BricsCAD application itself.

The ezdxf . xref module provides an interface for working with XREFs.
e attach () - attach a DXF/DWG file as XREF
e detach () - detach a BLOCK definition as XREF
e embed () - embed an XREF as a BLOCK definition
e dxf_info () -scans a DXF file for basic settings and properties

For loading the content of DWG files is a loading function required, which loads the DWG file as Drawing document.
The oda fc add-on module provides such a function: readfile ()

See also:

* Tutorial for External References

90 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.6.2 XREF Structures

An XREF is a normal block definition located in the BLOCKS section with special flags set and a filename to the referenced
DXF/DWG file and without any content, the block content is the modelspace of the referenced file. An XREF can be
referenced (inserted) by one or multiple INSERT entities.

Find block definitions in the BLOCKS section:

for block_layout in doc.blocks:
block = block_layout.block # the BLOCK entity
if block.is_xref:
handle_xref (block_layout)
elif block.is_xref_overlay:
handle_xref_overlay (block_layout)

Find XREF references in modelspace:

for insert in msp.query ("INSERT") :
if insert.is_xref:
handle_xref reference (insert)
... or get the XREF definition
block_layout = insert.block ()
if block_layout is not None:
handle_xref_definition(block_layout)

Use the helper function define () to create your own XREF definition, the attach () creates this definition auto-
matically and raises an exception if the block already exists.

9.6.3 Supported Entities

The current implementation supports only copyable and transformable DXF entities, these are all basic entity types as
LINE, CIRCLE, ... and block references and their associated required table entries and objects from the OBJECTS
section.

Unsupported is the ACAD_TABLE entity and preserved unknown entities wrapped in a DXFTagStorage class like
proxy entities and objects. Support for these entities may be added in a later version of ezdxf. Unsupported entities are
ignored and do not raise exceptions.

Most document features stored in the HEADER and OBJECTS sections are not supported by this module like GROUPS,
LAYER_FILTER, GEODATA, SUN.

Added in version 1.3.0: Support for ACIS based entities was added.

9.6.4 Importing Data and Resources

The ezdxf. xref module replaces the Tmporter add-on.

The basic functionality of the e zdx £ . xre f module is loading data from external files including their required resources,
which is an often requested feature by users for importing data from other DXF files into the current document.

The Importer add-on was very limited and removed many resources, where the e zdx £ . xre £ module tries to preserve
as much information as possible.

e Jload _modelspace () -loads the modelspace content from another DXF document
e load_paperspace () -loads a paperspace layout from another DXF document

e write_block () - writes entities into the modelspace of a new DXF document

9.6. External References (XREF) 91

ezdxf Documentation, Release 1.3.2

e Loader - low level loading interface

9.6.5 High Level Functions

ezdxf.xref.attach (doc: Drawing, *, block_name: str, filename: str, insert: UVec = (0, 0, 0), scale: float = 1.0,
rotation: float = 0.0, overlay=False) — Insert

Attach the file filename to the host document as external reference (XREF) and creates a default block reference for
the XREF in the modelspace of the document. The function raises an XrefDefinitionError exception if the
block definition already exist, but an XREF can be inserted multiple times by adding additional block references:

msp.add_blockref (block_name, insert=another_location)

Important: If the XREF has different drawing units than the host document, the scale factor between these units
must be applied as a uniform scale factor to the block reference! Unfortunately the XREF drawing units can only
be detected by scanning the HEADER section of a document by the function dxf_info () and is therefore not
done automatically by this function. Advice: always use the same units for all drawings of a project!

Parameters
* doc - host DXF document
* block_name — name of the XREF definition block
* filename - file name of the XREF
* insert —location of the default block reference
* scale - uniform scaling factor
* rotation - rotation angle in degrees
* overlay - creates an XREF overlay if True and an XREF attachment otherwise

Returns
default block reference for the XREF

Return type
Insert

Raises
XrefDefinitionError — block with same name exist
Added in version 1.1.

ezdxf.xref.define (doc: Drawing, block_name: str, filename: str, overlay=False) — None

Add an external reference (xref) definition to a document.
XREF attachment types:

e attached: the XREF that’s inserted into this drawing is also present in a document to which this document is
inserted as an XREF.

 overlay: the XREF that’s inserted into this document is not present in a document to which this document is
inserted as an XREF.

Parameters

¢ doc — host document

92 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* block_name — name of the xref block
» filename — external reference filename
* overlay - creates an XREF overlay if True and an XREF attachment otherwise
Raises
XrefDefinitionError — block with same name exist
Added in version 1.1.

ezdxf.xref.detach (block: BlockLayout, *, xref_filename: str | PathLike, overlay=False) — Drawing

Write the content of block into the modelspace of a new DXF document and convert block to an external reference
(XREF). The new DXF document has to be written by the caller: xref_doc.saveas (xref_filename).
This way it is possible to convert the DXF document to DWG by the oda ¢ add-on if necessary:

xref_doc = xref.detach(my_block, "my_block.dwg")
odafc.export_dwg (xref_doc, "my_block.dwg")

It’s recommended to clean up the entity database of the host document afterwards:

doc.entitydb.purge ()

The function does not create any block references. These references should already exist and do not need to be
changed since references to blocks and XREFs are the same.

Parameters
* block - block definition to detach
» xref_filename — name of the external referenced file
* overlay - creates an XREF overlay if True and an XREF attachment otherwise
Added in version 1.1.
ezdxf.xref.dxf_info (filename: str | PathLike) — DXFInfo

Scans the HEADER section of a DXF document and returns a DXF Info object, which contains information about
the DXF version, text encoding, drawing units and insertion base point.

Raises
IOError — not a DXF file or a generic 1O error

ezdxf.xref.embed (xref: BlockLayout, *, load_fn: Callable[[str], Drawing] | None = None, search_paths:
Iterable[Path | str] = tuple(), conflict_policy=ConflictPolicy. XREF _PREFIX) — None

Loads the modelspace of the XREF as content into a block layout.

The loader function loads the XREF as Drawing object, by default the function ezdxf. readfile () is used to
load DXF files. To load DWG files use the readfile () function from the ezdxf.addons . odafc add-on.
The ezdxf.recover.readfile () function is very robust for reading DXF files with errors.

If the XREF path isn’t absolute the XREF is searched in the folder of the host DXF document and in the search_path
folders.

Parameters
e xref — BlockLayout of the XREF document
* load_£n — function to load the content of the XREF as Drawing object

e search_paths - list of folders to search for XREFS, default is the folder of the host doc-
ument or the current directory if no filepath is set

9.6. External References (XREF) 93

ezdxf Documentation, Release 1.3.2

e conflict_policy — how to resolve name conflicts

Raises
* XrefDefinitionError — argument xref is not a XREF definition
* FileNotFoundError — XREF file not found

* DXFVersionError — cannot load a XREF with a newer DXF version than the host docu-
ment, try the oda £ ¢ add-on to downgrade the XREF document or upgrade the host document

Added in version 1.1.

ezdxf.xref.load_modelspace (sdoc: Drawing, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None =
None, conflict_policy=ConflictPolicy. KEEP) — None

Loads the modelspace content of the source document into the modelspace of the target document. The filter
function filter_fn gets every source entity as input and returns True to load the entity or False otherwise.

Parameters
* sdoc - source document
* tdoc - target document
» filter_£n - optional function to filter entities from the source modelspace
* conflict_policy — how to resolve name conflicts
Added in version 1.1.

ezdxf.xref.load_paperspace (psp: Paperspace, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None
= None, conflict_policy=ConflictPolicy. KEEP) — None

Loads the paperspace layout psp into the target document. The filter function filfer_fn gets every source entity as
input and returns True to load the entity or False otherwise.

Parameters
* psp — paperspace layout to load
* tdoc - target document
» filter_£n - optional function to filter entities from the source paperspace layout
* conflict_policy — how to resolve name conflicts
Added in version 1.1.

ezdxf.xref.write_block (entities: Sequence DXFEntity], *, origin: UVec = (0, 0, 0)) — Drawing

Write entities into the modelspace of a new DXF document.

This function is called “write_block” because the new DXF document can be used as an external referenced block.
This function is similar to the WBLOCK command in CAD applications.

Virtual entities are not supported, because each entity needs a real database- and owner handle.
Parameters
e entities — DXF entities to write

* origin - block origin, defines the point in the modelspace which will be inserted at the insert
location of the block reference

Raises
EntityError — virtual entities are not supported

Added in version 1.1.

94 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.6.6 Conflict Policy

class ezdxf.xref.ConflictPolicy (value, names=_not_given, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

These conflict policies define how to handle resource name conflicts.
Added in version 1.1.
KEEP

Keeps the existing resource name of the target document and ignore the resource from the source document.

XREF_PREFIX
This policy handles the resource import like CAD applications by always renaming the loaded resources to
<xref>$08<name>, where xref is the name of source document, the 0 part is a number to create a unique
resource name and <name> is the name of the resource itself.

NUM_PREFIX

This policy renames the loaded resources to $08<name> only if the resource <name> already exists. The 08
prefix is a number to create a unique resource name and <name> is the name of the resource itself.

9.6.7 Low Level Loading Interface

The Loader class is the basic building block for loading entities and resources. The class manages a list of loading
commands which is executed at once by calling the Loader.execute () method. It is important to execute the
commands at once to get a consistent renaming of resources when using resource name prefixes otherwise the loaded
resources would get a new unique name at each loading process even when the resources are loaded from the same
document.

class ezdxf.xref.Loader (sdoc: Drawing, tdoc: Drawing, conflict_policy=ConflictPolicy. KEEP)

Load entities and resources from the source DXF document sdoc into the target DXF document.
Parameters
* sdoc - source DXF document
* tdoc — target DXF document
* conflict_policy - ConflictPolicy

load_modelspace (farget_layout: BaseLayout | None = None, filter_fn: Callable[[DXFEntity], bool] | None
= None) — None

Loads the content of the modelspace of the source document into a layout of the target document, the mod-
elspace of the target document is the default target layout. The filter function filfer_fn is used to skip source
entities, the function should return Fal se for entities to ignore and True otherwise.

Parameters

* target_layout - target layout can be any layout: modelspace, paperspace layout or
block layout.

e filter_£n - function to filter source entities

load_paperspace_layout (psp: Paperspace, filter_fn: Callable[[DXFEntity], bool] | None = None) —
None

Loads a paperspace layout as a new paperspace layout into the target document. If a paperspace layout with
same name already exists the layout will be renamed to “<layout name> (2)” or “<layout name> (3)” and so
on. The filter function filter_fn is used to skip source entities, the function should return False for entities
to ignore and True otherwise.

9.6. External References (XREF) 95

ezdxf Documentation, Release 1.3.2

The content of the modelspace which may be displayed through a VIEWPORT entity will not be loaded!
Parameters
* psp - the source paperspace layout
e filter_f£fn — function to filter source entities

load_paperspace_layout_into (psp: Paperspace, target_layout: BaseLayout, filter_fn:
Callable[[DXFEntity], bool] | None = None) — None

Loads the content of a paperspace layout into an existing layout of the target document. The filter function
filter_fn is used to skip source entities, the function should return False for entities to ignore and True
otherwise.

The content of the modelspace which may be displayed through a VIEWPORT entity will not be loaded!
Parameters
* psp - the source paperspace layout

* target_layout - target layout can be any layout: modelspace, paperspace layout or
block layout.

e filter_f£fn — function to filter source entities

load_block_layout (block_layout: BlockLayout) — None

Loads a block layout (block definition) as a new block layout into the target document. If a block layout with
the same name exists the conflict policy will be applied. This method cannot load modelspace or paperspace
layouts.

Parameters
block_layout — the source block layout
load_block_layout_into (block_layout: BlockLayout, target_layout: BaseLayout) — None
Loads the content of a block layout (block definition) into an existing layout of the target document. This
method cannot load the content of modelspace or paperspace layouts.
Parameters

* block_layout - the source block layout

e target_layout - target layout can be any layout: modelspace, paperspace layout or
block layout.

load_layers (names: Sequence[str]) — None
Loads the layers defined by the argument names into the target document. In the case of a name conflict the
conflict policy will be applied.

load_linetypes (names: Sequence[str]) — None
Loads the linetypes defined by the argument names into the target document. In the case of a name conflict
the conflict policy will be applied.

load_text_styles (names: Sequence[str]) — None
Loads the TEXT styles defined by the argument names into the target document. In the case of a name conflict
the conflict policy will be applied.

load_dim_styles (names: Sequence[str]) — None

Loads the DIMENSION styles defined by the argument names into the target document. In the case of a
name conflict the conflict policy will be applied.

96 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

load_mline_styles (names: Sequence(str]) — None
Loads the MLINE styles defined by the argument names into the target document. In the case of a name
conflict the conflict policy will be applied.

load_mleader_styles (names: Sequence[str]) — None
Loads the MULTILEADER styles defined by the argument names into the target document. In the case of a
name conflict the conflict policy will be applied.

load_materials (names: Sequence[str]) — None
Loads the MATERIALS defined by the argument names into the target document. In the case of a name
conflict the conflict policy will be applied.

execute (xref_prefix: str = ") — None

Execute all loading commands. The xref_prefix string is used as XREF name when the conflict policy
ConflictPolicy.XREF_PREFIX isapplied.

9.7 Add-ons

9.7.1 Drawing / Export Add-on

This add-on provides the functionality to render a DXF document to produce a rasterized or vector-graphic image which
can be saved to a file or viewed interactively depending on the backend being used.

The module provides two example scripts in the folder examples/addons/drawing which can be run to save
rendered images to files or view an interactive visualisation.

$./draw_cad.py —-supported_formats

will list the file formats supported by the matplotlib backend.
Many formats are supported including vector graphics formats

such as pdf and svg

$./draw_cad.py <my_file.dxf> —--out image.png

draw a layout other than the model space
$./draw_cad.py <my_file.dxf> —--layout Layoutl --out image.png

opens a GUI application to view CAD files
./cad_viewer.py

B3

See also:
How-to section for the FAQ about the Drawing Add-on.
Design

The implementation of the drawing add-on is divided into a frontend and multiple backends. The frontend handles the
translation of DXF features and properties into simplified structures, which are then processed by the backends.

9.7. Add-ons 97

ezdxf Documentation, Release 1.3.2

Common Limitations to all Backends

* rich text formatting of the MTEXT entity is close to AutoCAD but not pixel perfect
» relative size of POINT entities cannot be replicated exactly
« rendering of ACIS entities is not supported

* no 3D rendering engine, therefore:

3D entities are projected into the xy-plane and 3D text is not supported

only top view rendering of the modelspace

VIEWPORTS are always rendered as top view
no VISUALSTYLE support

* only basic support for:
— infinite lines (rendered as lines with a finite length)

OLE2FRAME entities (rendered as rectangles)

vertical text (will render as horizontal text)

rendering of additional MTEXT columns may be incorrect

MatplotlibBackend

class ezdxf.addons.drawing.matplotlib.MatplotlibBackend (ax, *, adjust_figure=True,
font=FontProperties(),
use_text_cache=True)

Backend which uses the Matplot1lib package for image export.
Parameters
* ax —drawing canvas as matplotlib.pyplot .Axes object

* adjust_figure — automatically adjust the size of the parent matplotlib.pyplot.
Figure to display all content

The MatplotlibBackend is used by the Draw command of the ezdxf launcher.

Example for the usage of the Matplotlib backend:

import sys

import matplotlib.pyplot as plt

from ezdxf import recover

from ezdxf.addons.drawing import RenderContext, Frontend
from ezdxf.addons.drawing.matplotlib import MatplotlibBackend

Safe loading procedure (requires ezdxf v0.14):
try:
doc, auditor = recover.readfile('your.dxf'")
except IOError:
print (f'Not a DXF file or a generic I/0 error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file.')
sys.exit (2)

(continues on next page)

98 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

The auditor.errors attribute stores severe errors,
which may raise exceptions when rendering.
if not auditor.has_errors:
fig = plt.figure()
ax = fig.add_axes ([0, O, 1, 11])
ctx = RenderContext (doc)
out = MatplotlibBackend (ax)
Frontend (ctx, out) .draw_layout (doc.modelspace (), finalize=True)
fig.savefig('your.png', dpi=300)

Simplified render workflow but with less control:

from ezdxf import recover
from ezdxf.addons.drawing import matplotlib

Exception handling left out for compactness:
doc, auditor = recover.readfile('your.dxf'")
if not auditor.has_errors:

matplotlib.gsave (doc.modelspace (), 'yvour.png')

ezdxf.addons.drawing.matplotlib.qgsave (layout: Layout, filename: str | PathLike, *, bg: str | None =
None, fg: str | None = None, dpi: int = 300, backend: str =
‘agg’, config: Configuration | None = None, filter_func:
Callable[[DXFGraphic], bool] | None = None, size_inches:
tuple[float, float] | None = None) — None

Quick and simplified render export by matplotlib.
Parameters
* layout — modelspace or paperspace layout to export

» filename - export filename, file extension determines the format e.g. “image.png” to save
in PNG format.

* bg — override default background color in hex format #RRGGBB or #RRGGBBAA,
e.g. use bg="#FFFFFF00” to get a transparent background and a black foreground color
(ACI=T7), because a white background #FFFFFF gets a black foreground color or vice versa
bg="#00000000" for a transparent (black) background and a white foreground color.

» fg - override default foreground color in hex format #RRGGBB or #RRGGBBAA, requires
also bg argument. There is no explicit foreground color in DXF defined (also not a background
color), but the ACI color 7 has already a variable color value, black on a light background and
white on a dark background, this argument overrides this (ACI=7) default color value.

* dpi - image resolution (dots per inches).

* size_inches — paper size in inch as (width, height) tuple, which also defines the size in
pixels = (width * dpi) x (height * dpi). If width or height is 0.0 the value is calculated by the
aspect ratio of the drawing.

* backend - the matplotlib rendering backend to use (agg, cairo, svg etc) (see documentation
for matplotlib.use() for a complete list of backends)

* config — drawing parameters

» filter_func —filter function which takes a DXFGraphic object as input and returns True
if the entity should be drawn or False if the entity should be ignored

9.7. Add-ons

99

https://matplotlib.org/3.1.1/api/matplotlib_configuration_api.html?highlight=matplotlib%20use#matplotlib.use

ezdxf Documentation, Release 1.3.2

PyQtBackend

class ezdxf.addons.drawing.pygt .PyQtBackend (scene=None)
Backend which uses the Py Side6 package to implement an interactive viewer. The PyQt 5 package can be used
as fallback if the PySide6 package is not available.

Parameters
scene — drawing canvas of type QtWidgets.QGraphicsScene, if None a new canvas will
be created

The PyQtBackend is used by the View command of the ezdxf launcher.
See also:

The qtviewer.py module implements the core of a simple DXF viewer and the cad_viewer.py example is a skeleton to
show how to launch the CADViewer class.

Recorder

Added in version 1.1.

This is a special backend which records the output of the Frontend class in compact numpy arrays and these recordings
and can be played by a P1layer instance on one or more backends. The recorded numpy arrays support measurement of
bounding boxes and transformations which is for some backends a requirement to place the DXF content on size limited

pages.
class ezdxf.addons.drawing.recorder.Recorder
Records the output of the Frontend class.
The class implements the BackendInterface but does not record enter_entity (),exit_entity ()
and clear () events.
player () — Player

Returns a P1ayer instance with the original recordings! Make a copy of this player to protect the original
recordings from being modified:

safe_player = recorder.player () .copy ()

class ezdxf.addons.drawing.recorder.Player

Plays the recordings of the Recorder backend on another backend.

bbox () — BoundingBox2d
Returns the bounding box of all records as BoundingBox2d.

copy () — Self
Returns a copy of the player with non-shared recordings.

crop_rect (pl: UVec, p2: UVec, distance: float) — None
Crop recorded shapes inplace by a rectangle defined by two points.

The argument distance defines the approximation precision for paths which have to be approximated as poly-
lines for cropping but only paths which are really get cropped are approximated, paths that are fully inside
the crop box will not be approximated.

Parameters
e pl —first corner of the clipping rectangle

* p2 - second corner of the clipping rectangle

100 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/qtviewer.py
https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/cad_viewer.py

ezdxf Documentation, Release 1.3.2

* distance — maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

recordings () — Iterator[tuple[DataRecord, BackendProperties]]
Yields all recordings as (DataRecord, BackendProperties) tuples.

replay (backend: BackendInterface, override: Callable[[BackendProperties], Override] | None = None) —
None

Replay the recording on another backend that implements the BackendInterface. The optional override
function can be used to override the properties and state of data records, it gets the BackendProperties
as input and must return an Override instance.

transform (m: Matrix44) — None

Transforms the recordings inplace by a transformation matrix m of type Matrix44.

class ezdxf.addons.drawing.recorder.Override (properties: BackendProperties, is_visible: bool =
True)

Represents the override state for a data record.

properties

original or modified BackendProperties

Type
ezdxf.addons.drawing.properties.BackendProperties

is_visible
override visibility e.g. switch layers on/off

Type
bool

Layout

Added in version 1.1.

The Layout class builds the page layout and the matrix to transform the DXF content to page coordinates according to
the layout Sett ings. The DXF coordinate transformation is required for PDF and HPGL/2 which expects the output
coordinates in the first quadrant and SVG which has an inverted y-axis.

The Layout class uses following classes and enums for configuration:
e Page - page definition
* Margins - page margins definition
e Settings - configuration settings
e Units - enum for page units

class ezdxf.addons.drawing.layout .Page (width: float, height: float, units: Units = Units.mm, margins:
Margins = (0, 0, 0, 0), max_width: float = 0.0, max_height:
float = 0.0)

Page definition class
width
page width, O for auto-detect

Type
float

9.7. Add-ons 101

ezdxf Documentation, Release 1.3.2

height
page height, O for auto-detect

Type
float

units
page units as enum Units
Type
ezdxf.addons.drawing.layout. Units
margins
page margins in page units
Type
ezdxf.addons.drawing.layout. Margins
max_width
limit width for auto-detection, O for unlimited
Type
float
max_height
limit height for auto-detection, O for unlimited
Type
float
property is_landscape: bool
Returns True if the page has landscape orientation.
property is_portrait: bool
Returns True if the page has portrait orientation. (square is portrait)
classmethod from_dxf_ layout (layout: DXFLayout) — Self
Returns the Page based on the DXF attributes stored in the LAYOUT entity. The modelspace layout often

doesn’t have usable page settings!

Parameters
layout — any paperspace layout or the modelspace layout

get_margin_rect (fop_origin=True) — tuple[Vec2, Vec2]

Returns the bottom-left and the top-right corner of the page margins in mm. The origin (0, 0) is the top-left
corner of the page if fop_origin is True or in the bottom-left corner otherwise.

to_landscape () — None

Converts the page to landscape orientation.

to_portrait () — None

Converts the page to portrait orientation.

class ezdxf.addons.drawing.layout .Margins (fop: float, right: float, bottom: float, left: float)
Page margins definition class

top

Type
float

102 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

left
Type
float
bottom
Type
float
right
Type
float

classmethod all (margin: float) — Self
Returns a page margins definition class with four equal margins.

classmethod all2 (fop_bottom: float, left_right: float) — Self

Returns a page margins definition class with equal top-bottom and left-right margins.

scale (factor: float) — Self

class ezdxf.addons.drawing.layout.PageAlignment (value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

Page alignment of content as enum.

TOP_LEFT
TOP_CENTER
TOP_RIGHT
MIDDLE_LEFT
MIDDLE_CENTER
MIDDLE_RIGHT
BOTTOM_LEFT
BOTTOM_CENTER
BOTTOM_RIGHT

class ezdxf.addons.drawing.layout.Settings (content_rotation: int = 0, fit_page: bool = True, scale:
float = 1.0, page_alignment: PageAlignment =
PageAlignment. MIDDLE_CENTER, crop_at_margins:
bool = False, max_stroke_width: float = 0.001,
min_stroke_width: float = 0.05, fixed_stroke_width:
float = 0.15, output_coordinate_space: float =
1000000)

The Layout settings.

content_rotation
Rotate content about 0, 90, 180 or 270 degrees

Type
int

9.7. Add-ons 103

ezdxf Documentation, Release 1.3.2

fit_page
Scale content to fit the page.
Type
bool
page_alignment
Supported by backends that use the Page class to define the size of the output media, default alignment is
PageAlignment .MIDDLE_CENTER
Type
ezdxf.addons.drawing.layout. PageAlignment
crop_at_margins
crops the content at the page margins if True, when supported by the backend, default is False
Type
bool
scale
Factor to scale the DXF units of model- or paperspace, to represent Imm in the rendered output drawing.

Only uniform scaling is supported.

e.g. scale 1:100 and DXF units are meters, Im = 1000mm corresponds 10mm in the output drawing = 10 /
1000 = 0.01;

e.g. scale 1:1; DXF units are mm = 1 / 1 = 1.0 the default value

The value is ignored if the page size is defined and the content fits the page and the value is also used to
determine missing page sizes (width or height).

Type
float
max_stroke_width
Used for LineweightPolicy.RELATIVE policy, max_stroke_width is defined as percentage of
the content extents, e.g. 0.001 is 0.1% of max(page-width, page-height)

Type
float
min_stroke_width
Used for LineweightPolicy.RELATIVE policy, min_stroke_width is defined as percentage of
max_stroke_width,e.g. 0.051s 5% of max_stroke_width

Type
float
fixed_stroke_width
Used for LineweightPolicy.RELATIVE_FIXED policy, fixed stroke_width is defined as
percentage of max_stroke_width,e.g. 0.151s 15% of max_stroke_width

Type
float

output_coordinate_space

expert feature to map the DXF coordinates to the output coordinate system [0, output_coordinate_space]

Type
float

104 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

class ezdxf.addons.drawing.layout .Units (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

Page units as enum.

inch

25.4 mm
o2

1/96 inch
pt

1/72 inch
mm
cm

SVGBackend

Added in version 1.1.

Usage:

from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, svg

doc = ezdxf.readfile("your.dxf")

msp = doc.modelspace ()

backend = svg.SVGBackend()

Frontend (RenderContext (doc), backend) .draw_layout (msp)

with open ("your.pdf", "wt") as fp:
fp.write (backend.get_string(layout.Page (0, 0))

PyMuPdfBackend

Added in version 1.1.

class ezdxf.addons.drawing.pymupdf.PyMuPdfBackend

This backend uses the PyMuPdf package to create PDF, PNG, PPM and PBM output. This backend support
content cropping at page margins.

PyMuPDF is licensed under the AGPL. Sorry, but it’s the best package for the job I've found so far.
Install package:

pip install pymupdf

get_pdf_bytes (page: Page, *, settings: Settings = layout.Settings(), render_box: BoundingBox2d | None =
None) — bytes

Returns the PDF document as bytes.
Parameters
* page — page definition, see Page

* settings - layout settings, see Settings

9.7. Add-ons 105

https://pypi.org/project/PyMuPDF/
https://www.gnu.org/licenses/agpl-3.0.html

ezdxf Documentation, Release 1.3.2

* render_box — set explicit region to render, default is content bounding box

get_pixmap_bytes (page: Page, *, fmt='png’, settings: Settings = layout.Settings(), dpi: int = 96,
alpha=False, render_box: BoundingBox2d | None = None) — bytes

Returns a pixel image as bytes, supported image formats:

png Portable Network Graphics
ppm Portable Pixmap (no alpha channel)
pbm Portable Bitmap (no alpha channel)

Parameters
* page — page definition, see Page
* fmt — image format
¢ settings - layout settings, see Settings
¢ dpi - output resolution in dots per inch
* alpha - add alpha channel (transparency)

* render_box — set explicit region to render, default is content bounding box

Usage:

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, pymupdf

doc = ezdxf.readfile("your.dxf")

msp = doc.modelspace ()

backend = pymupdf.PyMuPdfBackend ()

Frontend (RenderContext (doc), backend) .draw_layout (msp)

with open ("your.pdf", "wb") as fp:
fp.write (backend.get_pdf_bytes (layout.Page (0, 0))

Load the output of the PyMuPdfBackend into the Image class of the Pillow package for further processing or to
output additional image formats:

import io
from PIL import Image

see above
the ppm format is faster to process than png

fp = i0.BytesIO (backend.get_pixmap_bytes (layout.Page (0, 0), fmt="ppm", dpi=300))
image = Image.open (fp, formats=["ppm"])

106 Chapter 9. Contents

https://pypi.org/project/Pillow/

ezdxf Documentation, Release 1.3.2

PlotterBackend

Added in version 1.1.

class ezdxf.addons.drawing.hpgl2.PlotterBackend
The P1otterBackend creates HPGL/2 plot files for output on raster plotters. This backend does not need any
additional packages. This backend support content cropping at page margins.

The plot files are tested by the plot file viewer ViewCompanion Standard but not on real hardware - please use with
care and give feedback.

get_bytes (page: Page, *, settings: Settings = layout.Settings(), render_box: BoundingBox2d | None = None,
curves=True, decimal_places: int = 1, base=64) — bytes
Returns the HPGL/2 data as bytes.

Parameters
* page — page definition, see Page
¢ settings - layout settings, see Settings
* render_box — set explicit region to render, default is content bounding box
* curves — use Bezier curves for HPGL/2 output

* decimal_places — HPGL/2 output precision, less decimal places creates smaller files
but for the price of imprecise curves (text)

* base — base for polyline encoding, 32 for 7 bit encoding or 64 for 8 bit encoding

compatible (page: Page, settings: Settings = layout.Settings()) — bytes

Returns the HPGL/2 data as 7-bit encoded bytes curves as approximated polylines and coordinates are
rounded to integer values. Has often the smallest file size and should be compatible to all output devices
but has a low quality text rendering.

low_quality (page: Page, settings: Settings = layout.Settings()) — bytes
Returns the HPGL/2 data as 8-bit encoded bytes, curves as Bézier curves and coordinates are rounded to
integer values. Has a smaller file size than normal quality and the output device must support 8-bit encoding
and Bezier curves.

normal_quality (page: Page, settings: Settings = layout.Settings()) — bytes

Returns the HPGL/2 data as 8-bit encoded bytes, curves as Bézier curves and coordinates are floats rounded to
one decimal place. Has a smaller file size than high quality and the output device must support 8-bit encoding,
Bezier curves and fractional coordinates.

high_quality (page: Page, settings: Settings = layout.Settings()) — bytes

Returns the HPGL/2 data as 8-bit encoded bytes and all curves as Bézier curves and coordinates are floats
rounded to two decimal places. Has the largest file size and the output device must support 8-bit encoding,
Bezier curves and fractional coordinates.

Usage:

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, hpgl2

doc = ezdxf.readfile("your.dxf")
psp = doc.paperspace ("Layoutl")
backend = hpgl2.PlotterBackend()
Frontend (RenderContext (doc), backend) .draw_layout (psp)
(continues on next page)

9.7. Add-ons 107

http://www.softwarecompanions.com/

ezdxf Documentation, Release 1.3.2

(continued from previous page)

page = layout.Page.from_dxf_layout (psp)

with open ("your.plt", "wb") as fp:
fp.write (backend.normal_quality (page)

You can check the output by the HPGL/2 viewer:

ezdxf hpgl your.plt

DXFBackend

Added in version 1.1.

class ezdxf.addons.drawing.dxf .DXFBackend (layout: BaseLayout, color_mode: ColorMode =
ColorMode.RGB)

The DXFBackend creates simple DXF files of POINT, LINE, LWPOLYLINE and HATCH entities. This back-
end does ot need any additional packages.

Parameters
* layout —a DXF BaseLayout
* color_mode —see ColorMode

class ezdxf.addons.drawing.dxf.ColorMode (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

This enum is used to define the color output mode of the DXFBackend.
ACI

the color is set as AutoCAD Color Index (ACI) and assigned by layer
RGB

the color is set as RGB true color value

Render a paperspace layout into modelspace:

import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, dxf

doc = ezdxf.readfile("your.dxf")
layoutl doc.paperspace ("Layoutl")
output_doc = ezdxf.new ()

output_msp = output_doc.modelspace ()

backend dxf .DXFBackend (output_msp)
Frontend (RenderContext (doc), backend) .draw_layout (layoutl)

output_doc.saveas ("layoutl_in_modelspace.dxf")

108 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

GeoJSONBackend

Added in version 1.3.0.

class ezdxf.addons.drawing.json.GeoJdJSONBackend (properties_maker: Callable[[str, float, str],
Dict[str, Any]] = properties_maker,
transform_func: Callable[[Vec2], Tuple[float,
float]] = no_transform)

Creates a JSON-like output according the GeoJSON scheme. GeoJSON uses a geographic coordinate reference
system, World Geodetic System 1984 EPSG:4326, and units of decimal degrees.

e Latitude: -90 to +90 (South/North)
* Longitude: -180 to +180 (East/West)

So most DXF files will produce invalid coordinates and it is the job of the package-user to provide a function
to transfrom the input coordinates to EPSG:4326! The Recorder and Player classes can help to detect the
extents of the DXF content.

Default implementation:

no_transform (location: Vec2) — tuple[float, float]

Dummy transformation function. Does not apply any transformations and just returns the input coordinates.

Factory function to make a transform function from WGS84 World Mercator EPSG:3395 coordinates to WGS84
(GPS) EPSG:4326.

make_world_mercator_to_gps_function (tol: float = le-6) — Callable[[Vec2], Tuple[float, float]]

Returns a function to transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordi-
nates x, y in meters into WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS.

Parameters
tol — accuracy for latitude calculation

The GeoJSON format supports only straight lines so curved shapes are flattened to polylines and polygons.

The properties are handled as a foreign member feature and is therefore not defined in the GeoJSON specs. It is
possible to provide a custom function to create these property objects.

Default implementation:

properties_maker (color: str, stroke_width: float, layer: str) — dict[str, Any]
Returns the property dict:

{

"color": color,
"stroke-width": stroke_width,
"layer": layer,

}

Returning an empty dict prevents properties in the GeoJSON output and also avoids wraping entities into
“Feature” objects.

Parameters
properties_maker — function to create a properties dict.

Class Methods

get_json_data () — dict[str, Any]
Returns the result as a JSON-like data structure according the GeoJSON specs.

9.7. Add-ons 109

https://geojson.org/
https://epsg.io/4326
https://epsg.io/3395
https://epsg.io/4326
https://epsg.io/3395
https://epsg.io/4326

ezdxf Documentation, Release 1.3.2

get_string (¥, indent: int| str = 2) — str
Returns the result as a JSON string.

Added in version 1.3.0.

CustomJSONBackend

Added in version 1.3.0.

class ezdxf.addons.drawing.json.CustomJSONBackend (orient_paths=False)

Creates a JSON-like output with a custom JSON scheme. This scheme supports curved shapes by a SVG-path
like structure and coordinates are not limited in any way. This backend can be used to send geometries from a
web-backend to a frontend.

The JSON scheme is documented in the source code:
https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/json.py

Parameters
orient_paths — orient exterior and hole paths on demand, exterior paths have counter-
clockwise orientation and holes have clockwise orientation.

Class Methods
get_json_data () — list[dict[str, Any]]
Returns the result as a JSON-like data structure.
get_string (¥, indent: int | str = 2) — str
Returns the result as a JSON string.
Added in version 1.3.0.

Configuration

Additional options for the drawing add-on can be passed by the config argument of the Frontend constructor
__init__ (). Notevery option will be supported by all backends.

Usage:

my_config = Configuration (lineweight_scaling=2)

110

Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/json.py

ezdxf Documentation, Release 1.3.2

class ezdxf.addons.drawing.config.Configuration (pdsize: int | None = None, pdmode: int | None

Configuration options for the drawing add-on.

pdsize

= None, measurement: Measurement | None =
None, show_defpoints: bool = False,
proxy_graphic_policy: ProxyGraphicPolicy =
ProxyGraphicPolicy.SHOW , line_policy:
LinePolicy = LinePolicy. ACCURATE,
hatch_policy: HatchPolicy =

HatchPolicy. NORMAL, infinite_line_length:
float = 20, lineweight_scaling: float = 1.0,
min_lineweight: float | None = None,
min_dash_length: float = 0.1,
max_flattening_distance: float = 0.01,
circle_approximation_count: int = 128,
hatching_timeout: float = 30.0,
min_hatch_line_distance: float = 0.0001,
color_policy: ColorPolicy =
ColorPolicy.COLOR, custom_fg_color: str =
#000000', background_policy:
BackgroundPolicy =

BackgroundPolicy. DEFAULT,
custom_bg_color: str = #f{ffif',
lineweight_policy: LineweightPolicy =
LineweightPolicy. ABSOLUTE, text_policy:
TextPolicy = TextPolicy. FILLING,
image_policy: ImagePolicy =

ImagePolicy. DISPLAY)

the size to draw POINT entities (in drawing units) set to None to use the $PDSIZE value from the dxf

document header

0 5% of draw area height
<0 Specifies a percentage of the viewport size
>0 Specifies an absolute size

None use the $PDMODE value from the dxf document header

Type
int | None

pdmode
point styling mode (see POINT documentation)

see Point class documentation

Type
int | None

measurement

whether to use metric or imperial units as enum ezdxf . enums.Measurement

9.7.

Add-ons

111

ezdxf Documentation, Release 1.3.2

0 use imperial units (in, ft, yd, ...)
1 use metric units (ISO meters)
None use the SMEASUREMENT value from the dxf document header

Type
ezdxf.enums. Measurement | None

show_defpoints
whether to show or filter out POINT entities on the defpoints layer
Type
bool
proxy_graphic_policy
the action to take when a proxy graphic is encountered
Type
ezdxf.addons.drawing.config. ProxyGraphicPolicy
line_policy
the method to use when drawing styled lines (eg dashed, dotted etc)
Type
ezdxf.addons.drawing.config. LinePolicy
hatch_policy
the method to use when drawing HATCH entities
Type
ezdxf.addons.drawing.config. HatchPolicy
infinite_line_length
the length to use when drawing infinite lines
Type
float
lineweight_scaling

multiplies every lineweight by this factor; set this factor to 0.0 for a constant minimum line width defined by
the min_ Iineweight setting for all lineweights; the correct DXF lineweight often looks too thick in SVG,
so setting a factor < 1 can improve the visual appearance

Type
float

min_lineweight

the minimum line width in 1/300 inch; set to None for let the backend choose.

Type
float | None

min_dash_length

the minimum length for a dash when drawing a styled line (default value is arbitrary)

Type
float

112 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

max_flattening_distance

Max flattening distance in drawing units see Path.flattening documentation. The backend implementation
should calculate an appropriate value, like 1 screen- or paper pixel on the output medium, but converted into
drawing units. Sets Path() approximation accuracy

Type
float

circle_approximation_count

Approximate a full circle by n segments, arcs have proportional less segments. Only used for approximation
of arcs in banded polylines.

Type
int

hatching_ timeout

hatching timeout for a single entity, very dense hatching patterns can cause a very long execution time, the
default timeout for a single entity is 30 seconds.

Type
float

min_hatch_line_distance

minimum hatch line distance to render, narrower pattern lines are rendered as solid filling

Type
float

color_policy
Type
ezdxf.addons.drawing.config. ColorPolicy

custom_£fg_color

Used for ColorPolicy.custom policy, custom foreground color as “#RRGGBBAA” color string
(RGB+alpha)

Type
str

background_policy
Type
ezdxf.addons.drawing.config. BackgroundPolicy

custom_bg_color

Used for BackgroundPolicy.custom policy, custom background color as “4RRGGBBAA” color
string (RGB+alpha)

Type
str

lineweight_policy

Type
ezdxf.addons.drawing.config. LineweightPolicy

text_policy

Type
ezdxf.addons.drawing.config. TextPolicy

9.7. Add-ons 113

ezdxf Documentation, Release 1.3.2

image_policy
the method for drawing IMAGE entities
Type
ezdxf.addons.drawing.config.ImagePolicy

with_changes ()
Returns a new frozen Configuration object with modified values.

BackgroundPolicy

class ezdxf.addons.drawing.config.BackgroundPolicy (value, names=_not_given, *values,
module=None, qualname=None,
type=None, start=1, boundary=None)

This enum is used to define the background color.
DEFAULT

as resolved by the Frontend class
WHITE

white background
BLACK

black background
PAPERSPACE

default paperspace background
MODELSPACE

default modelspace background
OFF

fully transparent background

CUSTOM

custom background color by Configuration.custom_bg_color

ColorPolicy

class ezdxf.addons.drawing.config.ColorPolicy (value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

This enum is used to define how to determine the line/fill color.
COLOR

as resolved by the Frontend class
COLOR_SWAP_BW

as resolved by the Frontend class but swaps black and white
COLOR_NEGATIVE

invert all colors

MONOCHROME
maps all colors to gray scale in range [0%, 100%]

114 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MONOCHROME_DARK_BG

maps all colors to gray scale in range [30%, 100%], brightens colors for dark backgrounds
MONOCHROME_LIGHT_BG

maps all colors to gray scale in range [0%, 70%], darkens colors for light backgrounds
BLACK

maps all colors to black
WHITE

maps all colors to white
CUSTOM

maps all colors to custom color Configuration.custom_fg_color

HatchPolicy

class ezdxf.addons.drawing.config.HatchPolicy (value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

The action to take when a HATCH entity is encountered
NORMAL

render pattern and solid fillings
IGNORE

do not show HATCH entities at all

SHOW_OUTLINE
show only the outline of HATCH entities

SHOW_SOLID
show HATCH entities as solid filling regardless of the pattern

ImagePolicy

class ezdxf.addons.drawing.config.ImagePolicy (value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

This enum is used to define the image rendering.
DISPLAY

display images as they would appear in a regular CAD application
RECT

display images as rectangles
MISSING

images are always rendered as-if they are missing (rectangle + path text)
PROXY

images are rendered using their proxy representations (rectangle)
IGNORE

ignore images entirely

9.7. Add-ons 115

ezdxf Documentation, Release 1.3.2

LinePolicy

class ezdxf.addons.drawing.config.LinePolicy (value, names=_not_given, *values, module=None,

qualname=None, type=None, start=1,
boundary=None)

This enum is used to define how to render linetypes.

Note: Text and shapes in linetypes are not supported.

SOLID

draw all lines as solid regardless of the linetype style
ACCURATE
render styled lines as accurately as possible

APPROXIMATE
ignored since v0.18.1 - uses always ACCURATE by default

LineweightPolicy

class ezdxf.addons.drawing.config.LineweightPolicy (value, names=_not_given, *values,

module=None, qualname=None,
type=None, start=1, boundary=None)

This enum is used to define how to determine the lineweight.
ABSOLUTE

in mm as resolved by the Frontend class
RELATIVE

lineweight is relative to page size

RELATIVE_FIXED

fixed lineweight relative to page size for all strokes

ProxyGraphicPolicy

class ezdxf.addons.drawing.config.ProxyGraphicPolicy (value, names=_not_given, *values,

module=None, qualname=None,
type=None, start=1, boundary=None)

The action to take when an entity with a proxy graphic is encountered

Note: To get proxy graphics support proxy graphics have to be loaded: Set the global option ezdxf. options.
load_proxy_graphics to True, which is the default value.

This can not prevent drawing proxy graphic inside of blocks, because this is beyond the domain of the drawing
add-on!

IGNORE
do not display proxy graphics (skip_entity will be called instead)

116

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

SHOW
if the entity cannot be rendered directly (e.g. if not implemented) but a proxy is present: display the proxy
PREFER

display proxy graphics even for entities where direct rendering is available

TextPolicy

class ezdxf.addons.drawing.config.TextPolicy (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

This enum is used to define the text rendering.
FILLING

text is rendered as solid filling (default)
OUTLINE

text is rendered as outline paths

REPLACE_RECT

replace text by a rectangle
REPLACE_FILL

replace text by a filled rectangle
IGNORE

ignore text entirely

Properties

class ezdxf.addons.drawing.properties.Properties

An implementation agnostic representation of DXF entity properties like color and linetype. These properties

represent the actual values after resolving all DXF specific rules like “by layer”, “by block” and so on.

color
The actual color value of the DXF entity as “4RRGGBB” or “4RRGGBBAA” string. An alpha value of “00”
is opaque and “ff” is fully transparent.

rgb
RGB values extract from the color value as tuple of integers.

luminance

Perceived luminance calculated from the color value as float in the range [0.0, 1.0].
linetype_name

The actual linetype name as string like “CONTINUOUS”
linetype_pattern

The simplified DXF linetype pattern as tuple of floats, all line elements and gaps are values greater than 0.0

and 0.0 represents a point. Line or point elements do always alternate with gap elements: line-gap-line-gap-

point-gap and the pattern always ends with a gap. The continuous line is an empty tuple.
linetype_scale

The scaling factor as float to apply to the 1 inetype pattern.

9.7. Add-ons 117

ezdxf Documentation, Release 1.3.2

lineweight

The absolute lineweight to render in mm as float.
is_visible

Visibility flag as bool.
layer

The actual layer name the entity resides on as UPPERCASE string.
font

The FontFace used for text rendering or None.
filling
The actual Fi1111ing properties of the entity or None.

units

The actual drawing units as TnsertUnits enum.

LayerProperties

class ezdxf.addons.drawing.properties.LayerProperties

Actual layer properties, inherits from class Properties.
is_visible
Modified meaning: whether entities belonging to this layer should be drawn

layer
Modified meaning: stores real layer name (mixed case)

LayoutProperties

class ezdxf.addons.drawing.properties.LayoutProperties

Actual layout properties.

name
Layout name as string

units
Layout units as TnsertUnits enum.

property LayoutProperties.background _color: str
Returns the default layout background color.

property LayoutProperties.default_color: str
Returns the default layout foreground color.

property LayoutProperties.has_dark_background: bool
Returns True if the actual background-color is “dark”.

LayoutProperties.set_colors (bg: str, fg: str | None = None) — None
Setup default layout colors.

Required color format “#RRGGBB” or including alpha transparency “4RRGGBBAA”.

118 Chapter 9

. Contents

ezdxf Documentation, Release 1.3.2

RenderContext

class ezdxf.addons.drawing.properties.RenderContext (doc: Drawing | None = None, *, ctb: str
| CTB =", export_mode: bool = False)

The render context for the given DXF document. The RenderContext resolves the properties of DXF entities
from the context they reside in to actual values like RGB colors, transparency, linewidth and so on.

A given ctb file (plot style file) overrides the default properties for all layouts, which means the plot style table stored
in the layout is always ignored.

Parameters
* doc — DXF document
* ctb - path to a plot style table or a ColorDependentPlotStyles instance

* export_mode — Whether to render the document as it would look when exported (plotted)
by a CAD application to a file such as pdf, or whether to render the document as it would
appear inside a CAD application.

resolve_aci_color (aci: int, resolved_layer: str) — str

Resolve the aci color as hex color string: “4RRGGBB”
resolve_all (entity: DXFGraphic) — Properties

Resolve all properties of entity.
resolve_color (entity: DXFGraphic, *, resolved_layer: str | None = None) — str

Resolve the rgb-color of entity as hex color string: “#RRGGBB” or “#RRGGBBAA”.
resolve_filling (entity: DXFGraphic) — Filling | None

Resolve filling properties (SOLID, GRADIENT, PATTERN) of entity.
resolve_font (entity: DXFGraphic) — FontFace | None

Resolve the text style of entity to a font name. Returns None for the default font.
resolve_layer (entity: DXFGraphic) — str

Resolve the layer of entity, this is only relevant for entities inside of block references.
resolve_layer_properties (layer: Layer) — LayerProperties

Resolve layer properties.

resolve_linetype (entity: DXFGraphic, *, resolved_layer: str | None = None) — tuple[str,
Sequence[float]]

Resolve the linetype of entity. Returns a tuple of the linetype name as upper-case string and the simplified
linetype pattern as tuple of floats.

resolve_lineweight (entity: DXFGraphic, *, resolved_layer: str | None = None) — float

Resolve the lineweight of entiry in mm.

DXEF stores the lineweight in mm times 100 (e.g. 0.13mm = 13). The smallest line weight is O and the biggest
line weight is 211. The DXF/DWG format is limited to a fixed value table, see: ezdxf.11dxf.const.
VALID_DXF_LINEWEIGHTS

CAD applications draw lineweight Omm as an undefined small value, to prevent backends to draw nothing for
lineweight Omm the smallest return value is 0.01mm.

resolve_units () — InsertUnits

9.7. Add-ons 119

ezdxf Documentation, Release 1.3.2

resolve_visible (entity: DXFGraphic, *, resolved_layer: str | None = None) — bool

Resolve the visibility state of entity. Returns True if entity is visible.
set_current_layout (layout: Layout, ctb: str | CTB = ")
Set the current layout and update layout specific properties.
Parameters
* layout — modelspace or a paperspace layout
* ctb - path to a plot style table or a ColorDependentPlotStyles instance

set_layer_properties_override (func: Callable[[Sequence[l.ayerProperties]], None] | None =
None)

The function func is called with the current layer properties as argument after resetting them, so the function
can override the layer properties.

The RenderContext class can be used isolated from the drawing add-on to resolve DXF properties.

Frontend

class ezdxf.addons.drawing.frontend.Frontend (ctx: RenderContext, out: BackendInterface, config:
Configuration = Configuration.defaults(),
bbox_cache: ezdxf.bbox.Cache = None)

Drawing frontend for 2D backends, responsible for decomposing entities into graphic primitives and resolving entity
properties.

By passing the bounding box cache of the modelspace entities can speed up paperspace rendering, because the
frontend can filter entities which are not visible in the VIEWPORT. Even passing in an empty cache can speed up
rendering time when multiple viewports need to be processed.

Parameters
* ctx — the properties relevant to rendering derived from a DXF document
* out - the 2D backend to draw to
* config - settings to configure the drawing frontend and backend

* bbox_cache - bounding box cache of the modelspace entities or an empty cache which will
be filled dynamically when rendering multiple viewports or None to disable bounding box
caching at all

log_message (message: Sir)

Log given message - override to alter behavior.

skip_entity (entity: DXFEntity, msg: str) — None

Called for skipped entities - override to alter behavior.

override_properties (entity: DXFGraphic, properties: Properties) — None
This method can change the resolved properties of an DXF entity.
The method has access to the DXF entity attributes, the current render context and the resolved properties.

It is recommended to modify only the resolved properties in this method, because the DXF entities are not
copies - except for virtual entities.

Changed in version 1.3.0: This method is the first function in the stack of new property over-
ride functions. It is possible to push additional override functions onto this stack, see also
push_property_override_function().

120 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

push_property_override_function (override_fn: Callable[[DXFGraphic, Properties], None]) —
None

The override function can change the resolved properties of an DXF entity.

The override function has access to the DXF entity attributes and the resolved properties. It is recommended
to modify only the resolved properties in this function, because the DXF entities are not copies - except for
virtual entities.

The override functions are called after resolving the DXF attributes of an entity and before the Frontend.
draw_entity () method in the order from first to last.

Added in version 1.3.0.

pop_property_override_function () — None
Remove the last function from the property override stack.

Does not raise an exception if the override stack is empty.
Added in version 1.3.0.

draw_layout (layout: Layout, finalize: bool = True, *, filter_func: Callable[[DXFGraphic], bool] | None =
None, layout_properties: LayoutProperties | None = None) — None

Draw all entities of the given layout.

Draws the entities of the layout in the default or redefined redraw-order and calls the finalize () method
of the backend if requested. The default redraw order is the ascending handle order not the order the entities
are stored in the layout.

The method skips invisible entities and entities for which the given filter function returns False.
Parameters
¢ layout - layout to draw of type Layout

e finalize—-Trueifthe finalize () method of the backend should be called automat-
ically

e filter_func - function to filter DXf entities, the function should return False if a
given entity should be ignored

* layout_properties - override the default layout properties

BackendInterface

class ezdxf.addons.drawing.backend.BackendInterface

Public interface definition for 2D rendering backends.

For more information read the source code: backend.py

Backend

class ezdxf.addons.drawing.backend.Backend

Abstract base class for concrete backend implementations and implements some default features.

For more information read the source code: backend.py

9.7. Add-ons 121

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/backend.py
https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/backend.py

ezdxf Documentation, Release 1.3.2

Details

The rendering is performed in two stages. The frontend traverses the DXF document structure, converting each encoun-
tered entity into primitive drawing commands. These commands are fed to a backend which implements the interface:
Backend.

Although the resulting images will not be pixel-perfect with AutoCAD (which was taken as the ground truth when devel-
oping this add-on) great care has been taken to achieve similar behavior in some areas:

* The algorithm for determining color should match AutoCAD. However, the color palette is not stored in the DXF
file, so the chosen colors may be different to what is expected. The RenderContext class supports passing a
plot style table (C7B-file) as custom color palette but uses the same palette as AutoCAD by default.

 Text rendering is quite accurate, text positioning, alignment and word wrapping are very faithful. Differences may
occur if a different font from what was used by the CAD application but even in that case, for supported backends,
measurements are taken of the font being used to match text as closely as possible.

* Visibility determination (based on which layers are visible) should match AutoCAD
See also:

 draw_cad.py for a simple use of this module

e cad_viewer.py for an advanced use of this module

* Notes on Rendering DXF Content for additional behaviours documented during the development of this add-on.

9.7.2 Geo Interface

Intended Usage
The intended usage of the ezdxf.addons.geo module is as tool to work with geospatial data in conjunction with
dedicated geospatial applications and libraries and the module can not and should not replicate their functionality.

The only reimplemented feature is the most common WSG84 EPSG:3395 World Mercator projection, for everything else
use the dedicated packages like:

* pyproj - Cartographic projections and coordinate transformations library.

¢ Shapely - Manipulation and analysis of geometric objects in the Cartesian plane.

* PyShp - The Python Shapefile Library (PyShp) reads and writes ESRI Shapefiles in pure Python.

¢ GeoJSON - GeoJSON interface for Python.

* GDAL - Tools for programming and manipulating the GDAL Geospatial Data Abstraction Library.

 Fiona - Fiona is GDAL’s neat and nimble vector API for Python programmers.

* QGIS - A free and open source geographic information system.

¢ and many more ...
This module provides support for the __geo_interface__: https://gist.github.com/sgillies/2217756
Which is also supported by Shapely, for supported types see the GeoJSON Standard and examples in Appendix-A.
See also:

Tutorial for the Geo Add-on for loading GPX data into DXF files with an existing geo location reference and exporting
DXF entities as GeoJSON data.

122 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/draw_cad.py
https://github.com/mozman/ezdxf/blob/master/examples/addons/drawing/cad_viewer.py
https://pypi.org/project/pyproj/
https://pypi.org/project/Shapely/
https://pypi.org/project/pyshp/
https://pypi.org/project/geojson/
https://pypi.org/project/gdal/
https://pypi.org/project/fiona/
https://www.qgis.org/en/site/
https://gist.github.com/sgillies/2217756
https://pypi.org/project/Shapely/
https://pypi.org/project/geojson/
https://tools.ietf.org/html/rfc7946#appendix-A

ezdxf Documentation, Release 1.3.2

Proxy From Mapping

The GeoProxyrepresentsa___geo_interface__ mapping, create a new proxy by GeoProxy.parse () froman
external __geo_interface__ mapping. GeoProxy.to_dxf_entities () returns new DXF entities from this
mapping. Returns “Point” as Point entity, “LineString” as LiWwPo1y11ine entity and “Polygon” as Hat ch entity or as
separated LIWPo 1y 11ine entities (or both) and new in v0.16.6 as MPo 1 ygon. Supports “MultiPoint”, “MultiLineString”,
“MultiPolygon”, “GeometryCollection”, “Feature” and “FeatureCollection”. Add new DXF entities to a layout by the
Layout .add_entity () method.

Proxy From DXF Entity

The proxy () function or the constructor GeoProxy. from dxf _entities () creates a new GeoProxy object
from a single DXF entity or from an iterable of DXF entities, entities without a corresponding representation will be
approximated.

Supported DXF entities are:
* POINT as “Point”
e LINE as “LineString”
* LWPOLYLINE as “LineString” if open and “Polygon” if closed

¢ POLYLINE as “LineString” if open and “Polygon” if closed, supports only 2D and 3D polylines, POLYMESH and
POLYFACE are not supported

* SOLID, TRACE, 3DFACE as “Polygon”
* CIRCLE, ARC, ELLIPSE and SPLINE by approximation as “LineString” if open and “Polygon” if closed
* HATCH and MPOLYGON as “Polygon”, holes are supported

Warning: This module does no extensive validity checks for “Polygon” objects and because DXF has different
requirements for HATCH boundary paths than the GeoJSON Standard, it is possible to create invalid “Polygon”
objects. It is recommended to check critical objects by a sophisticated geometry library like Shapely.

Module Functions

ezdxf.addons.geo.proxy (entity: DXFGraphic | Iterable] DXFGraphic], distance: float =
MAX_FLATTENING _DISTANCE, force_line_string: bool = False) — GeoProxy

Returns a GeoProxy object.
Parameters
* entity - asingle DXF entity or iterable of DXF entities
* distance — maximum flattening distance for curve approximations

* force_line_string — by default this function returns Polygon objects for closed
geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument
force_line_string to True, this entities will be returned as LineString objects.

ezdxf.addons.geo.dxf_entities (geo_mapping: MutableMapping[str, Any],
polygon=PolygonConversion. HATCH, dxfattribs=None, *, post_process:
Callable[[DXFGraphic, MutableMapping[str, Any]], None] | None =
None) — Iterator[DXFGraphic]

9.7. Add-ons 123

https://pypi.org/project/geojson/
https://pypi.org/project/Shapely/

ezdxf Documentation, Release 1.3.2

Returns __geo_interface___ mappings as DXF entities.

The enum polygon determines the method to convert polygons, use PolygonConversion.HATCH
for Hatch entity, PolygonConversion.POLYLINE for LiWWPolyline or PolygonConversion.
HATCH_AND_POLYLINE for both. Option PolygonConversion.POLYLINE returns for the exterior path
and each hole a separated LWPolyline entity. The Hat ch entity supports holes, but has no explicit borderline.

Yields Hat ch always before LWPolyline entities.

PolygonConversion.MPOLYGON support was added in v0.16.6, which is like a Ha t ch entity with additional
borderlines, but the MPOLYGON entity is not a core DXF entity and DXF viewers, applications and libraries my
not support this entity. The DXF attribute color defines the borderline color and fill_color the color of the solid
filling.

The returned DXF entities can be added to a layout by the Layout .add_entity () method.
Parameters

* geo_mapping —__geo__interface__ mapping as dict or a Python object with a
__geo__interface__ property

* polygon —see PolygonConversion
* dxfattribs — dict with additional DXF attributes

* post_process — post process function of type PostProcessFunc that get the
created DXF entity and the geo mapping as input, see reference implementation as-—
sign_layers ()

ezdxf.addons.geo.gfilter (entities: Iterablel DXFGraphic]) — Iterator[DXFGraphic]
Filter DXF entities from iterable entifies, which are incompatible to the __geo_reference___ interface.

GeoProxy Class

class ezdxf.addons.geo.GeoProxy (geo_mapping: MutableMapping[str, Any], places: int = 6)
Stores the __geo_interface__ mapping in a parsed and compiled form.

Stores coordinates as Vec3 objects and represents “Polygon” always as tuple (exterior, holes) even without holes.

The GeoJSON specification recommends 6 decimal places for latitude and longitude which equates to roughly
10cm of precision. You may need slightly more for certain applications, 9 decimal places would be sufficient for
professional survey-grade GPS coordinates.

Parameters
* geo_mapping - parsed and compiled __geo_interface__ mapping
* places —decimal places to round for __geo_interface___ export

__geo_interface__

Returns the ___geo_interface__ compatible mapping as dict.

geotype
Property returns the top level entity type or None.
classmethod parse (geo_mapping: MutableMapping[str, Any]) — Self

Parse and compile a _ _geo_interface__ mapping as dict or a Python object with a
__geo_interface__ property, does some basic syntax checks, converts all coordinates into Vec3 ob-
jects, represents “Polygon” always as tuple (exterior, holes) even without holes.

124 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

classmethod from_dxf_entities (entity: DXFGraphic | Iterable] DXFGraphic], distance: float =
MAX_FLATTENING _DISTANCE, force_line_string: bool = False)
— GeoProxy

Constructor from a single DXF entity or an iterable of DXF entities.
Parameters
* entity — DXF entity or entities
¢ distance — maximum flattening distance for curve approximations

e force_line_string — by default this function returns Polygon objects for closed
geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument
force_line_string to True, this entities will be returned as LineString objects.

to_dxf_entities (polygon=PolygonConversion. HATCH, dxfattribs=None, *, post_process:
Callable[[DXFGraphic, MutableMapping[str, Any]], None] | None = None) —
Iterator[DXFGraphic]

Returns stored __geo_interface__ mappings as DXF entities.

The polygon argument determines the method to convert polygons, use 1 for Hat ch entity, 2 for LiwPoly—
Iine or 3 for both. Option 2 returns for the exterior path and each hole a separated LWPolyline entity.
The Hat ch entity supports holes, but has no explicit borderline.

Yields Hat ch always before LWPolyline entities.

MPolygon support was added in v0.16.6, which is like a Hat ch entity with additional borderlines, but the
MPOLYGON entity is not a core DXF entity and DXF viewers, applications and libraries my not support
this entity. The DXF attribute color defines the borderline color and fill_color the color of the solid filling.

The returned DXF entities can be added to a layout by the Layout .add_entity () method.
Parameters
* polygon —see PolygonConversion
* dxfattribs — dict with additional DXF attributes

* post_process — post process function of type PostProcesFunc that get the cre-
ated DXF entity and the geo mapping as input, see reference implementation as-—
sign_layers ()

copy () — GeoProxy

Returns a deep copy.

__iter__ () — Iterator[MutableMapping[str, Any]]
Iterate over all geometry entities.
Yields only “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString” and “MultiPolygon” objects,
returns the content of “GeometryCollection”, “FeatureCollection” and “Feature” as geometry objects (“Point”,
ce)e

wes_to_crs (crs: Matrix44) — None
Transform all coordinates recursive from WCS coordinates into Coordinate Reference System (CRS) by

transformation matrix crs inplace.

The CRS is defined by the GeoData entity, get the GeoData entity from the modelspace by method
get_geodata (). The CRS transformation matrix can be acquired form the GeoData object by
get_crs_transformation () method:

9.7.

Add-ons 125

ezdxf Documentation, Release 1.3.2

doc = ezdxf.readfile('file.dxf'")
msp = doc.modelspace ()
geodata = msp.get_geodata ()
if geodata:
matrix, axis_ordering = geodata.get_crs_transformation ()

If axis_ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON (see
chapter 3.1.1).

Parameters
crs — transformation matrix of type Matrix44
crs_to_wcs (crs: Matrix44) — None
Transform all coordinates recursive from CRS into WCS coordinates by transformation matrix crs inplace,
see also GeoProxy.wcs_to_crs ().

Parameters
crs — transformation matrix of type Matrix44

globe_to_map (func: Callable[[Vec3], Vec3] | None = None) — None

Transform all coordinates recursive from globe representation in longitude and latitude in decimal degrees
into 2D map representation in meters.

Default is WGS84 EPSG:4326 (GPS) to WGS84 EPSG:3395 World Mercator function
wgs84_4326_to_3395().

Use the pyproj package to write a custom projection function as needed.

Parameters
func - custom transformation function, which takes one Ve c3 object as argument and returns
the result as a Vec 3 object.
map_to_globe (func: Callable[[Vec3], Vec3] | None = None) — None
Transform all coordinates recursive from 2D map representation in meters into globe representation as lon-
gitude and latitude in decimal degrees.

Default is WGS84 EPSG:3395 World Mercator to WGS84 EPSG:4326 GPS function
wgs84_3395_to_4326().

Use the pyproj package to write a custom projection function as needed.

Parameters
func - custom transformation function, which takes one Ve c3 object as argument and returns
the result as a Vec3 object.
apply (func: Callable[[Vec3], Vec3]) — None
Apply the transformation function func recursive to all coordinates.
Parameters
func - transformation function as Callable[[Vec3], Vec3]
filter (func: Callable[[GeoProxy], bool]) — None

Removes all mappings for which func() returns False. The function only has to handle Point, LineString
and Polygon entities, other entities like MultiPolygon are divided into separate entities also any collection.

126 Chapter 9. Contents

https://epsg.io/4326
https://epsg.io/3395
https://pypi.org/project/pyproj/
https://epsg.io/3395
https://epsg.io/4326
https://pypi.org/project/pyproj/

ezdxf Documentation, Release 1.3.2

Helper Functions

ezdxf.addons.geo.wgs84_4326_to_3395 (location: Vec3) — Vec3

Transform WGS84 EPSG:4326 location given as latitude and longitude in decimal degrees as used by GPS into
World Mercator cartesian 2D coordinates in meters EPSG:3395.

Parameters
location — Vec3 object, x-attribute represents the longitude value (East-West) in decimal de-
grees and the y-attribute represents the latitude value (North-South) in decimal degrees.

ezdxf.addons.geo.wgs84_3395_to_4326 (location: Vec3, tol: float = le-6) — Vec3

Transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordinates X, y in meters into
WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS.

Parameters
* location — Vec3 object, z-axis is ignored
* tol - accuracy for latitude calculation

ezdxf.addons.geo.dms2dd (d: float, m: float = 0, s: float = 0) — float
Convert degree, minutes, seconds into decimal degrees.

ezdxf.addons.geo.dd2dms (dd: float) — tuple[float, float, float]
Convert decimal degrees into degree, minutes, seconds.

ezdxf.addons.geo.assign_layers (entity: DXFGraphic, mapping: MutableMapping[str, Any]) — None
Reference implementation for a post_process () function.

See also:

dxf entities|()

def assign_layers(entity: DXFGraphic, mapping: GeoMapping) —> None:
properties = mapping.get ("properties)
if properties is None:
return
layer = properties.get ("layer")
if layer:
entity.dxf.layer = layer

Types

class ezdxf.addons.geo.PolygonConversion (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

Polygon conversion types as Int Enum.

HATCH

POLYLINE
HATCH_AND_POLYLINE
MPOLYGON

ezdxf.addons.geo.GeoMapping
alias of MutableMapping[str, Any]

9.7. Add-ons 127

https://epsg.io/4326
https://epsg.io/3395
https://epsg.io/3395
https://epsg.io/4326

ezdxf Documentation, Release 1.3.2

ezdxf.addons.geo.PostProcessFunc
alias of Callable[[DXFGraphic, MutableMapping[str, Any]], None]

9.7.3 Importer
This add-on is meant to import graphical entities from another DXF drawing and their required table entries like LAYER,
LTYPE or STYLE.

Because of complex extensibility of the DXF format and the lack of sufficient documentation, I decided to remove most
of the possible source drawing dependencies from imported entities, therefore imported entities may not look the same as
the original entities in the source drawing, but at least the geometry should be the same and the DXF file does not break.

Removed data which could contain source drawing dependencies: Extension Dictionaries, AppData and XDATA.

Warning: DON'T EXPECT PERFECT RESULTS!

The ITmporter supports following data import:

* entities which are really safe to import: LINE, POINT, CIRCLE, ARC, TEXT, SOLID, TRACE, 3DFACE,
SHAPE, POLYLINE, ATTRIB, ATTDEF, INSERT, ELLIPSE, MTEXT, LWPOLYLINE, SPLINE, HATCH,
MESH, XLINE, RAY, DIMENSION, LEADER, VIEWPORT

* table and table entry import is restricted to LAYER, LTYPE, STYLE, DIMSTYLE
 import of BLOCK definitions is supported
 import of paper space layouts is supported

Import of DXF objects from the OBJECTS section is not supported.

DIMSTYLE override for entities DIMENSION and LEADER is not supported.

Example:

import ezdxf
from ezdxf.addons import Importer

sdoc = ezdxf.readfile('original.dxf")
tdoc ezdxf.new ()

importer

Importer (sdoc, tdoc)

import all entities from source modelspace into modelspace of the target drawing
importer.import_modelspace ()

import all paperspace layouts from source drawing
importer.import_paperspace_layouts ()

import all CIRCLE and LINE entities from source modelspace into an arbitrary target.
—layout.

create target layout

tblock = tdoc.blocks.new('SOURCE_ENTS")

query source entities

ents = sdoc.modelspace () .query ('CIRCLE LINE')

import source entities into target block

importer.import_entities (ents, tblock)

(continues on next page)

128 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

This is ALWAYS the last & required step, without finalizing the target drawing is.

—maybe invalid!
This step imports all additional required table entries and block definitions.
importer.finalize ()

tdoc.saveas ('imported.dxf"')

class ezdxf.addons.importer.Importer (source: Drawing, target: Drawing)

The Importer class is central element for importing data from other DXF documents.
Parameters
* source - source Drawing
* target - target Drawing

source

source DXF document

target
target DXF document

used_layers
Set of used layer names as string, AutoCAD accepts layer names without a LAYER table entry.

used_linetypes
Set of used linetype names as string, these linetypes require a TABLE entry or AutoCAD will crash.

used_styles
Set of used text style names, these text styles require a TABLE entry or AutoCAD will crash.

used_dimstyles
Set of used dimension style names, these dimension styles require a TABLE entry or AutoCAD will crash.

finalize () — None

Finalize the import by importing required table entries and BLOCK definitions, without finalization the target
document is maybe invalid for AutoCAD. Call the finalize () method as last step of the import process.

import_block (block_name: str, rename=True) — str

Import one BLOCK definition from source document.

If the BLOCK already exist the BLOCK will be renamed if argument rename is True, otherwise the existing
BLOCK in the target document will be used instead of the BLOCK in the source document. Required name
resolving for imported block references (INSERT), will be done in the Tmporter. finalize () method.

To replace an existing BLOCK in the target document, just delete it before importing data: target.
blocks.delete_block (block_name, safe=False)

Parameters
* block_name — name of BLOCK to import
* rename —rename BLOCK if a BLOCK with the same name already exist in target document
Returns: (renamed) BLOCK name

Raises
ValueError — BLOCK in source document not found (defined)

9.7.

Add-ons 129

ezdxf Documentation, Release 1.3.2

import_blocks (block_names: Iterable[str], rename=False) — None
Import all BLOCK definitions from source document.
If a BLOCK already exist the BLOCK will be renamed if argument rename is True, otherwise the existing

BLOCK in the target document will be used instead of the BLOCK from the source document. Required
name resolving for imported BLOCK references (INSERT), will be done in the Tmporter. finalize ()

method.
Parameters
* block_names —names of BLOCK definitions to import
* rename —rename BLOCK if a BLOCK with the same name already exist in target document
Raises

ValueError — BLOCK in source document not found (defined)

import_entities (entities: Iterable[DXFEntity], target_layout: BaseLayout | None = None) — None

Import all entities into target_layout or the modelspace of the target document, if target_layout is None.
Parameters
* entities - Iterable of DXF entities

e target_layout - any layout (modelspace, paperspace or block) from the target docu-
ment

Raises
DXFStructureError — target_layout is not a layout of target document

import_entity (entity: DXFEntity, target_layout: BaseLayout | None = None) — None
Imports a single DXF entity into target_layout or the modelspace of the target document, if target_layout is

None.
Parameters
* entity — DXF entity to import
* target_layout — any layout (modelspace, paperspace or block) from the target docu-
ment
Raises

DXFStructureError — target_layout is not a layout of target document

import_modelspace (target_layout: BaseLayout | None = None) — None

Import all entities from source modelspace into farget_layout or the modelspace of the target document, if
target_layout is None.

Parameters
target_layout — any layout (modelspace, paperspace or block) from the target document

Raises
DXFStructureError — target_layout is not a layout of target document

import_paperspace_layout (name: str) — Layout
Import paperspace layout name into the target document.

Recreates the source paperspace layout in the target document, renames the target paperspace if a paperspace
with same name already exist and imports all entities from the source paperspace into the target paperspace.

Parameters
name — source paper space name as string

Returns: new created target paperspace Layout

130 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Raises
* KeyError — source paperspace does not exist
* DXFTypeError — invalid modelspace import

import_paperspace_layouts () — None

Import all paperspace layouts and their content into the target document. Target layouts will be renamed if a
layout with the same name already exist. Layouts will be imported in original tab order.

import_shape_files (fonts: set[str]) — None

Import shape file table entries from the source document into the target document. Shape file entries are
stored in the styles table but without a name.

import_table (name: str, entries: str | Iterable[str] = '*', replace=False) — None

Import specific table entries from the source document into the target document.
Parameters
* name - valid table names are “layers”, “linetypes” and “styles”

* entries - Iterable of table names as strings, or a single table name or “*” for all table
entries

* replace — True to replace the already existing table entry else ignore existing entries

Raises
TypeError — unsupported table type

import_tables (table_names: str | Iterable[str] = '*', replace=False) — None

Import DXF tables from the source document into the target document.
Parameters

* table_names - iterable of tables names as strings, or a single table name as string or “*”
for all supported tables

e replace - True to replace already existing table entries else ignore existing entries

Raises
TypeError — unsupported table type
recreate_source_layout (name: str) — Layout
Recreate source paperspace layout name in the target document. The layout will be renamed if name already
exist in the target document. Returns target modelspace for layout name “Model”.

Parameters
name — layout name as string

Raises
KeyError — if source layout name not exist

. Add-ons 131

ezdxf Documentation, Release 1.3.2

9.7.4 dxf2code

Translate DXF entities and structures into Python source code.

Short example:

import ezdxf
from ezdxf.addons.dxf2code import entities_to_code, block_to_code

doc = ezdxf.readfile('original.dxf"')
msp = doc.modelspace ()
source = entities_to_code (msp)

create source code for a block definition
block_source = block_to_code (doc.blocks['MyBlock'])

merge source code objects
source.merge (block_source)

with open('source.py', mode='wt') as f:
.write (source.import_str())
.write('\n\n")

.write (source.code_str())
.write('\n'")

Hh Hh Hh Hh

ezdxf.addons.dxf2code.entities_to_code (entities: Iterable/DXFEntity], layout: str = 'layout', ignore:
Iterable[str] | None = None) — Code

Translates DXF entities into Python source code to recreate this entities by ezdxf.
Parameters
* entities - iterable of DXFEntity
* layout — variable name of the layout (model space or block) as string
* ignore —iterable of entities types to ignore as strings like [' IMAGE', 'DIMENSION']

Returns
Code

ezdxf.addons.dxf2code.block_to_code (block: BlockLayout, drawing: str = 'doc’, ignore: Iterable[str] |
None = None) — Code

Translates a BLOCK into Python source code to recreate the BLOCK by ezdxf.
Parameters
* block - block definition layout
* drawing - variable name of the drawing as string
* ignore - iterable of entities types to ignore as strings like [IMAGE’, ‘DIMENSION’]

Returns
Code

ezdxf.addons.dxf2code.table_entries_to_code (entities: Iterable/ DXFEntity/, drawing='doc') —
Code

ezdxf.addons.dxf2code.black (code: str, line_length=388, fast: bool = True) — str
Returns the source code as a single string formatted by Black

Requires the installed Black formatter:

132 Chapter 9. Contents

https://pypi.org/project/black/
https://pypi.org/project/black/

ezdxf Documentation, Release 1.3.2

pip3 install black

Parameters

* code - source code

* line_length — max. source code line length

e fast — True for fast mode, False to check that the reformatted code is valid
Raises

ImportError — Black is not available

class ezdxf.addons.dxf2code.Code

Source code container.

code
Source code line storage, store lines without line ending \ \n
imports
source code line storage for global imports, store lines without line ending \ \n

layers

Layers used by the generated source code, AutoCAD accepts layer names without a LAYER table entry.

linetypes
Linetypes used by the generated source code, these linetypes require a TABLE entry or AutoCAD will crash.

styles
Text styles used by the generated source code, these text styles require a TABLE entry or AutoCAD will
crash.
dimstyles
Dimension styles used by the generated source code, these dimension styles require a TABLE entry or Auto-
CAD will crash.
blocks
Blocks used by the generated source code, these blocks require a BLOCK definition in the BLOCKS section
or AutoCAD will crash.
code_str (indent: int = 0) — str
Returns the source code as a single string.
Parameters
indent - source code indentation count by spaces
black_code_str (line_length=88) — str
Returns the source code as a single string formatted by Black

Parameters
line_length — max. source code line length

Raises
ImportError — Black is not available

import_str (indent: int = 0) — str
Returns required imports as a single string.

Parameters
indent - source code indentation count by spaces

9.7. Add-ons 133

https://pypi.org/project/black/

ezdxf Documentation, Release 1.3.2

merge (code: Code, indent: int = 0) — None
Add another Code object.

add_import (statement: str) — None

Add import statement, identical import statements are merged together.
add_1line (code: str, indent: int = 0) — None

Add a single source code line without line ending \n.

add_1lines (code: Iterable[str], indent: int = 0) — None

Add multiple source code lines without line ending \n.

9.7.5 iterdxf

This add-on allows iterating over entities of the modelspace of really big (> 5GB) DXF files which do not fit into memory
by only loading one entity at the time. Only ASCII DXF files are supported.

The entities are regular DXFGraph i c objects with access to all supported DXF attributes, this entities can be written to
new DXEF files created by the TterDXF.export () method. The new add_foreign_entity () method allows
also to add this entities to new regular ezdxf drawings (except for the INSERT entity), but resources like linetype and
style are removed, only layer will be preserved but only with default attributes like color 7 and linetype CONTINUOUS.

The following example shows how to split a big DXF files into several separated DXF files which contains only LINE,
TEXT or POLYLINE entities.

from ezdxf.addons import iterdxf

doc = iterdxf.opendxf ('big.dxf")
line_exporter = doc.export ('line.dxf'")
text_exporter = doc.export ('text.dxf')
polyline_exporter = doc.export ('polyline.dxf')
try:
for entity in doc.modelspace() :
if entity.dxftype() == 'LINE':
line_exporter.write (entity)
elif entity.dxftype() == 'TEXT':
text_exporter.write (entity)
elif entity.dxftype() == 'POLYLINE':
polyline_exporter.write (entity)
finally:
line_exporter.close ()
text_exporter.close()
polyline_exporter.close ()
doc.close ()

Supported DXF types:

3DFACE, ARC, ATTDEF, ATTRIB, CIRCLE, DIMENSION, ELLIPSE, HATCH, HELIX, IMAGE, INSERT,
LEADER, LINE, LWPOLYLINE, MESH, MLEADER, MLINE, MTEXT, POINT, POLYLINE, RAY, SHAPE,
SOLID, SPLINE, TEXT, TRACE, VERTEX, WIPEOUT, XLINE

Transfer simple entities to another DXF document, this works for some supported entities, except for entities with strong
dependencies to the original document like INSERT look at add_foreign_entity () for all supported types:

newdoc = ezdxf.new()
msp = newdoc.modelspace ()
line is an entity from a big source file

(continues on next page)

134 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
msp.add_foreign_entity (line)
and so on
msp.add_foreign_entity (lwpolyline)
msp.add_foreign_entity (mesh)
msp.add_foreign_entity (polyface)

Transfer MESH and POLYFACE (dxftype for POLYFACE and POLYMESH is POLYLINE!) entities into a new DXF
document by the MeshTransformer class:

from ezdxf.render import MeshTransformer

mesh is MESH from a big source file

t = MeshTransformer.from_mesh (mesh)

create a new MESH entity from MeshTransformer
t.render (msp)

polyface is POLYFACE from a big source file

t = MeshTransformer.from_polyface (polyface)

create a new POLYMESH entity from MeshTransformer
t.render_polyface (msp)

Another way to import entities from a big source file into new DXF documents is to split the big file into smaller parts
and use the Tmporter add-on for a more safe entity import.

ezdxf.addons.iterdxf .opendxf (filename: Path | str, errors: str = 'surrogateescape’') — IterDXF
Open DXF file for iterating, be sure to open valid DXF files, no DXF structure checks will be applied.

Use this function to split up big DXF files as shown in the example above.
Parameters
* filename — DXF filename of a seekable DXF file.
* errors - specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — invalid or incomplete DXF file
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.addons.iterdxf .modelspace (filename: Path | str, types: Iterable[str] | None = None, errors: str =
'surrogateescape’) — Iterable[DXFGraphic]

Iterate over all modelspace entities as DXFGraphic objects of a seekable file.

Use this function to iterate “quick” over modelspace entities of a DXF file, filtering DXF types may speed up things
if many entity types will be skipped.

Parameters
* filename - filename of a seekable DXF file

* types —DXF typeslike ['LINE', '3DFACE'] which should be returned, None returns
all supported types.

» errors — specify decoding error handler

9.7. Add-ons 135

ezdxf Documentation, Release 1.3.2

— 7surrogateescape” to preserve possible binary data (default)
— ignore” to use the replacement char U+FFFD “€” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — invalid or incomplete DXF file
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.addons.iterdxf.single_pass_modelspace (stream: BinarylO, types: Iterable[str] | None = None,
errors: str = 'surrogateescape') —
Iterable[DXFGraphic]

Iterate over all modelspace entities as DXFGraphic objects in a single pass.

Use this function to ‘quick’ iterate over modelspace entities of a not seekable binary DXF stream, filtering DXF
types may speed up things if many entity types will be skipped.

Parameters
* stream — (not seekable) binary DXF stream

* types —DXFtypeslike ['LINE', '3DFACE'] which should be returned, None returns
all supported types.

* errors - specify decoding error handler
— 7surrogateescape” to preserve possible binary data (default)
— Yignore” to use the replacement char U+FFFD “€” for invalid data
— ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — Invalid or incomplete DXF file
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs
class ezdxf.addons.iterdxf.IterDXF

export (name: Path | str) — IterDXFWriter

Returns a companion object to export parts from the source DXF file into another DXF file, the new file
will have the same HEADER, CLASSES, TABLES, BLOCKS and OBJECTS sections, which guarantees all
necessary dependencies are present in the new file.

Parameters
name — filename, no special requirements

modelspace (types: Iterable[str] | None = None) — Iterable[DXFGraphic]

Returns an iterator for all supported DXF entities in the modelspace. These entities are regular DXFGraphic
objects but without a valid document assigned. It is not possible to add these entities to other ezdxf documents.

It is only possible to recreate the objects by factory functions base on attributes of the source entity. For
MESH, POLYMESH and POLYFACE it is possible to use the MeshTransformer class to render (recre-
ate) this objects as new entities in another document.

Parameters
types — DXF types like ['LINE', '3DFACE'] which should be returned, None returns
all supported types.

136 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

close ()

Safe closing source DXF file.
class ezdxf.addons.iterdxf.IterDXFWriter
write (entity: DXFGraphic)
Write a DXF entity from the source DXF file to the export file.

Don’t write entities from different documents than the source DXF file, dependencies and resources will not
match, maybe it will work once, but not in a reliable way for different DXF documents.

close ()

Safe closing of exported DXF file. Copying of OBJECTS section happens only at closing the file, without
closing the new DXF file is invalid.

9.7.6 ODA File Converter Support

Use an installed ODA File Converter for converting between different versions of .dwg, .dxb and .dxf.

Warning: Execution of an external application is a big security issue! Especially when the path to the executable
can be altered.

To avoid this problem delete the ezdx f . addons .odafc.py module.

Install ODA File Converter

The ODA File Converter has to be installed by the user, the application is available for Windows XP, Windows 7 or later,
Mac OS X, and Linux in 32/64-bit RPM and DEB format.

Applmage Support

The option “unix_exec_path” defines an executable for Linux and macOS, this executable overrides the default command
ODAFileConverter. Assign an absolute path to the executable to that key and if the executable is not found the
add-on falls back to the ODAFileConverter command.

The option “unix_exec_path” also adds support for AppImages provided by the Open Design Alliance. Download the
ApplImage file and store it in a folder of your choice (e.g. ~/Apps) and make the file executable:

chmod at+x ~/Apps/ODAFileConverter_QT5_1nxX64_8.3d11_23.9.AppImage

Add the absolute path as config option “unix_exec_path” to the “odafc-addon” section:

[odafc—addon]

win_exec_path = "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe"
unix_exec_path = "/home/<your user name>/Apps/ODAFileConverter_QT5_1nxX64_8.3d11_23.9.
—AppImage"

This overrides the default command ODAFileConverter and if the executable is not found the add-on falls back to
the ODAFileConverter command.

See also:

For more information about config files see section: Global Options Object

9.7. Add-ons 137

https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/guestfiles/oda_file_converter

ezdxf Documentation, Release 1.3.2

Suppressed GUI

On Windows the GUI of the ODA File Converter is suppressed, on Linux you may have to install the xvfb package to

prevent this, for macOS is no solution known.

Supported DXF and DWG Versions

ODA File Converter version strings, you can use any of this strings to specify a version, 'R. . " and 'AC. ... " strings
will be automatically mapped to ' ACAD. ... " strings:
ODAFC ezdxf Version

ACAD9 not supported AC1004
ACADI10 not supported AC1006

ACADI12 R12 AC1009
ACADI3 R13 AC1012
ACAD14 R14 AC1014
ACAD2000 R2000 ACI1015
ACAD2004 R2004 AC1018
ACAD2007 R2007 AC1021
ACAD2010 R2010 AC1024
ACAD2013 R2013 AC1027
ACAD2018 R2018 AC1032

Config

On Windows the path to the ODAFileConverter . exe executable is stored in the config file (see e zdxf . opt ions)

in the “odafc-addon” section as key “win_exec_path”, the default entry is:

[odafc—addon]

win_exec_path = "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe"

unix_exec_path =

On Linux and macOS the ODAFileConverter command is located by the shutil.which () function but can be

overridden since version 1.0 by the key “linux_exec_path”.

Usage

from ezdxf.addons import odafc

Load a DWG file
doc = odafc.readfile('my.dwg")

Use loaded document like any other ezdxf document
print (f'Document loaded as DXF version: {doc.dxfversion
msp = doc.modelspace ()

Export document as DWG file for AutoCAD R2018
odafc.export_dwg(doc, 'my R2018.dwg', version='R2018")

=)

138

Chapter 9

. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.addons.odafc.win_exec_path

Path to installed ODA File Converter executable on Windows systems, defaultis "C: \Program Files\ODA\
ODAFileConverter\ODAFileConverter.exe".

ezdxf.addons.odafc.unix_exec_path

Absolute path to a Linux or macOS executable if set, otherwise an empty string and the default command
ODAFileConverter is used.

ezdxf.addons.odafc.is_installed () — bool
Returns True if the ODAFileConverter is installed.

ezdxf.addons.odafc.readfile (filename: str | PathLike, version: str | None = None, *, audit: bool = False)
— Drawing | None

Uses an installed ODA File Converter to convert a DWG/DXB/DXEF file into a temporary DXF file and load this
file by ezdxf.

Parameters
» filename —file to load by ODA File Converter

* version —load file as specific DXF version, by default the same version as the source file or
if not detectable the latest by ezdxf supported version.

* audit - audit source file before loading
Raises
* FileNotFoundError — source file not found
* odafc.UnknownODAFCError — conversion failed for unknown reasons
* odafc.UnsupportedVersion — invalid DWG version specified
* odafc.UnsupportedFileFormat — unsupported file extension
* odafc.ODAFCNotInstalledError — ODA File Converter not installed

ezdxf.addons.odafc.export_dwg (doc: Drawing, filename: str | PathLike, version: str | None = None, *,
audit: bool = False, replace: bool = False) — None

Uses an installed ODA File Converter to export the DXF document doc as a DWG file.

A temporary DXF file will be created and converted to DWG by the ODA File Converter. If version is not specified
the DXF version of the source document is used.

Parameters
* doc — ezdxf DXF document as Drawing object
* filename - output DWG filename, the extension will be set to “.dwg”
* version — DWG version to export, by default the same version as the source document.
* audit - audit source file by ODA File Converter at exporting
* replace - replace existing DWG file if True
Raises
* FileExistsError — target file already exists, and argument replace is False
* FileNotFoundError — parent directory of target file does not exist
* odafc.UnknownODAFCError — exporting DWG failed for unknown reasons

* odafc.ODAFCNotInstalledError — ODA File Converter not installed

9.7. Add-ons 139

https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/guestfiles/oda_file_converter

ezdxf Documentation, Release 1.3.2

ezdxf.addons.odafc.convert (source: str | PathLike, dest: str | PathLike = ", *, version="R2018’', audit=True,
replace=False)

Convert source file to dest file.

The file extension defines the target formate.g. convert ("test.dxf", "Test.dwg") converts the source
file to a DWG file. If dest is an empty string the conversion depends on the source file format and is DXF to DWG
or DWG to DXF. To convert DXF to DXF an explicit destination filename is required: convert ("r12.dxf",
"r2013.dxf", version="R2013")

Parameters
e source - source file

* dest - destination file, an empty string uses the source filename with the extension of the
target format e.g. “test.dxf” -> “test.dwg”

* version - output DXF/DWG version e.g. “ACAD2018”, “R2018”, “AC1032”
* audit - audit files
* replace - replace existing destination file
Raises
* FileNotFoundError — source file or destination folder does not exist
* FileExistsError — destination file already exists and argument replace is False
* odafc.UnsupportedVersion — invalid DXF version specified
* odafc.UnsupportedFileFormat — unsupported file extension
* odafc.UnknownODAFCError — conversion failed for unknown reasons

e odafc.ODAFCNotInstalledError — ODA File Converter not installed

9.7.7 R12 Export

Added in version 1.1.

This module exports any DXF file as a simple DXF R12 file. Many complex entities will be converted into DXF primitives.
This exporter is intended for creating a simple file format as an input format for other software such as laser cutters. In
order to get a file that can be edited well in a CAD application, the results of the ODA file converter are much better.

Usage

import ezdxf
from ezdxf.addons import rl2export

doc = ezdxf.readfile("any.dxf")
rl2export.saveas (doc, "rl2.dxf")

140 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Converted Entity Types

LWPOLYLINE translated to POLYLINE

MESH translated to POLYLINE (PolyfaceMesh)
SPLINE flattened to POLYLINE

ELLIPSE flattened to POLYLINE

MTEXT exploded into DXF primitives

LEADER exploded into DXF primitives
MLEADER exploded into DXF primitives
MULTILEADER exploded into DXF primitives

MLINE exploded into DXF primitives

HATCH exploded into DXF primitives

MPOLYGON exploded into DXF primitives
ACAD_TABLE export of pre-rendered BLOCK content

For proxy- or unknown entities the available proxy graphic will be exported as DXF primitives.

Limitations

» Explosion of MTEXT into DXF primitives is not perfect
* Pattern rendering for complex HATCH entities has issues

* Solid fill rendering for complex HATCH entities has issues

ODA File Converter

The advantage of the r12export module is that the ODA file converter isn’t needed, but the ODA file converter will
produce a much better result:

from ezdxf.addons import odafc

odafc.convert ("any.dxf", "rl2.dxf", version="R12")
Functions
write Write a DXF document as DXF version R12 to a text
stream.
saveas Write a DXF document as DXF version R12 to a file.
convert Export and reload DXF document as DXF version R12.

ezdxf.addons.rl2export .write (doc: Drawing, stream: TextlO, *, max_sagitta: float = MAX_SAGITTA) —
None

Write a DXF document as DXF version R12 to a text stream. The max_sagitta argument determines the accuracy
of the curve flatting for SPLINE and ELLIPSE entities.

Parameters
* doc — DXF document to export

* stream - output stream, use doc . encoding as encoding

9.7. Add-ons 141

ezdxf Documentation, Release 1.3.2

* max_sagitta — maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.

ezdxf.addons.rl2export.saveas (doc: Drawing, filepath: str | PathLike, *, max_sagitta: float =
MAX _SAGITTA) — None

Write a DXF document as DXF version R12 to a file. The max_sagitta argument determines the accuracy of the
curve flatting for SPLINE and ELLIPSE entities.

Parameters
* doc — DXF document to export
* filepath — output filename

* max_sagitta — maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.

ezdxf.addons.rl2export.convert (doc: Drawing, *, max_sagitta: float = MAX_SAGITTA) — Drawing
Export and reload DXF document as DXF version R12.

Writes the DXF document into a temporary file at the file-system and reloads this file by the ezdx . readfile ()
function.

9.7.8 r12writer

The fast file/stream writer creates simple DXF R12 drawings with just an ENTITIES section. The HEADER, TABLES
and BLOCKS sections are not present except FIXED-TABLES are written. Only LINE, CIRCLE, ARC, TEXT, POINT,
SOLID, 3DFACE and POLYLINE entities are supported. FIXED-TABLES is a predefined TABLES section, which will
be written, if the init argument fixed_tables of R12FastStreamWriteris True.

The R12FastStreamiWriter writes the DXF entities as strings direct to the stream without creating an in-memory
drawing and therefore the processing is very fast.

Because of the lack of a BLOCKS section, BLOCK/INSERT can not be used. Layers can be used, but this layers have a
default setting color = 7 (black/white) and linetype = ' Cont inuous '. If writing the FIXED-TABLES, some predefined
text styles and line types are available, else text style is always ' STANDARD ' and line type is always 'ByLayer"'.

If using FIXED-TABLES, following predefined line types are available:
* CONTINUOUS
e CENTER
* CENTERX2
* CENTER2
e DASHED __ _ _ _ _ _ _ _ _ _ __ __ _ _
* DASHEDX?2
« DASHED2 _ _ _ _ _ _ _ _ _ _ _ _ _ _
*« PHANTOM ___
« PHANTOMX?2
« PHANTOM2 ____
« DASHDOT __ . __
* DASHDOTX2

« DASHDOT2 _ . _

142 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

« DOT .

« DOTX2 .

» DOT2 .
 DIVIDE __

e DIVIDEX2 __
* DIVIDE2 _

If using FIXED-TABLES, following predefined text styles are available:
¢ OpenSans
* OpenSansCondensed-Light

Tutorial

A simple example with different DXF entities:

from random import random
from ezdxf.addons import rl2writer

with rl2writer ("quick_and _dirty_dxf_rl12.dxf") as dxf:
dxf.add_line((0, 0), (17, 23))
dxf.add_circle((0, 0), radius=2)
dxf.add_arc((0, 0), radius=3, start=0, end=175)
dxf.add_solid ([(0, 0), (1, 0), (0, 1), (1, 1)1)
dxf.add_point ((1.5, 1.5))

2d polyline, new in v0.12
dxf.add_polyline_2d([(5, 5), (7, 3), (7, 6)1)

2d polyline with bulge value, new in v0.12
dxf.add_polyline_2d([(5, 5), (7, 3, 0.5), (7, 6)1, format='xyb')

3d polyline only, changed in v0.12
dxf.add_polyline ([(4, 3, 2), (8, 5, 0), (2, 4, 9)1)

dxf.add_text ("test the text entity", align="MIDDLE_CENTER")

A simple example of writing really many entities in a short time:

from random import random
from ezdxf.addons import rl2writer

MAX_X_COORD = 1000.0
MAX_Y_COORD = 1000.0
CIRCLE_COUNT = 1000000

with rl12writer ("many_circles.dxf") as dxf:
for i in range (CIRCLE_COUNT) :
dxf.add_circle ((MAX_X_COORD*random (), MAX_Y_ COORD*random()), radius=2)

Show all available line types:

9.7. Add-ons 143

ezdxf Documentation, Release 1.3.2

import ezdxf

LINETYPES = [
'"CONTINUOUS', 'CENTER', 'CENTERX2', 'CENTER2',
'"DASHED', 'DASHEDX2', 'DASHED2', 'PHANTOM', 'PHANTOMX2',
"PHANTOM2', 'DASHDOT', 'DASHDOTX2', 'DASHDOT2', 'DOT',
'DOTX2', 'DOT2', 'DIVIDE', 'DIVIDEX2', 'DIVIDE2',

]

with rl12writer('rl12_linetypes.dxf', fixed_tables=True) as dxf:
for n, ltype in enumerate (LINETYPES) :
dxf.add_line((0, n), (10, n), linetype=ltype)
dxf.add_text (ltype, (0, n+0.1), height=0.25, style='OpenSansCondensed-Light")

Reference

ezdxf.addons.rl2writer.rl2writer (stream: TextlO | BinarylO | str, fixed_tables=False, fmt="asc') —
R12FastStream Writer

Context manager for writing DXF entities to a stream/file. stream can be any file like object with a write ()
method or just a string for writing DXF entities to the file system. If fixed_tables is True, a standard TABLES
section is written in front of the ENTITIES section and some predefined text styles and line types can be used.

Set argument fint to “asc” to write ASCII DXF file (default) or “bin” to write Binary DXF files. ASCII DXF require
a Text IO stream and Binary DXF require a BinaryIO stream.

class ezdxf.addons.rl2writer.R12FastStreamWriter (stream: TextlO, fixed_tables=False)

Fast stream writer to create simple DXF R12 drawings.
Parameters
» stream - afile like object witha write () method.

» fixed_tables —if fixed_tables is True, a standard TABLES section is written in front of
the ENTITIES section and some predefined text styles and line types can be used.

close () — None

Writes the DXF tail. Call is not necessary when using the context manager r 1 2writer ().

add_1line (start: Sequence[float], end: Sequence[float], layer: str = '0', color: int | None = None, linetype: str |
None = None) — None

Add a LINE entity from start to end.
Parameters
e start —start vertexas (x, y[, z]) tuple
* end-end vertexasas (x, y[, z]) tuple

¢ layer - layer name as string, without a layer definition the assigned color = 7 (black/white)
and line type is 'Continuous"'.

e color — color as AutoCAD Color Index (ACI) in the range from 0 to 256, 0 is ByBlock and
256 is ByLayer, default is ByLayer which is always color = 7 (black/white) without a layer
definition.

¢ linetype - line type as string, if FIXED-TABLES are written some predefined line types
are available, else line type is always ByLayer, which is always 'Continuous' without a
LAYERS table.

144 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_circle (center: Sequence[float], radius: float, layer: str = ‘0, color: int | None = None, linetype: str |
None = None) — None

Add a CIRCLE entity.
Parameters
* center - circle center point as (x, vy) tuple
* radius - circle radius as float
e layer - layer name as string see add_line ()
e color —color as AutoCAD Color Index (ACI) see add_1line ()
* linetype - line type as string see add_Iline ()

add_arc (center: Sequence[float], radius: float, start: float = 0, end: float = 360, layer: str = '0', color: int |
None = None, linetype: str | None = None) — None

Add an ARC entity. The arc goes counter-clockwise from start angle to end angle.
Parameters
* center —arc center pointas (x, y) tuple
* radius - arc radius as float
* start - arc start angle in degrees as float
* end - arc end angle in degrees as float
* layer - layer name as string see add_line ()
e color —color as AutoCAD Color Index (ACI) see add_1line ()
¢ linetype - line type as string see add_line ()

add_point (location: Sequence[float], layer: str = '0', color: int | None = None, linetype: str | None = None) —
None

Add a POINT entity.
Parameters
* location - point locationas (x, y [,z]) tuple
e layer - layer name as string see add_line ()
¢ color — color as AutoCAD Color Index (ACI) see add_1ine ()
e linetype - line type as string see add_Iline ()

add_3dface (vertices: Iterable[Sequence[float]], invisible: int = 0, layer: str = '0', color: int | None = None,
linetype: str | None = None) — None

Add a 3DFACE entity. 3DFACE is a spatial area with 3 or 4 vertices, all vertices have to be in the same
plane.

Parameters
e vertices —iterableof 30or4 (x, y, =z) vertices.

e invisible - bit coded flag to define the invisible edges,

1. edge =1
2. edge =2
3. edge =4

. Add-ons 145

ezdxf Documentation, Release 1.3.2

4. edge =8

Add edge values to set multiple edges invisible, 1. edge + 3. edge =1 + 4 =5, all edges = 15
e layer - layer name as string see add_line ()
¢ color — color as AutoCAD Color Index (ACI) see add_1line ()
e linetype - line type as string see add_Iline ()

add_solid (vertices: Iterable[Sequence[float]], layer: str = '0', color: int | None = None, linetype: str | None =
None) — None

Add a SOLID entity. SOLID is a solid filled area with 3 or 4 edges and SOLID is a 2D entity.
Parameters
e vertices —iterableof 3or4 (x, y[, z]) tuples,z-axis will be ignored.
¢ layer - layer name as string see add_line ()
e color — color as AutoCAD Color Index (ACI) see add_1line ()
* linetype - line type as string see add_line ()

add_polyline_2d (points: Iterable[Sequence], format: str = xy', closed: bool = False, start_width: float = 0,
end_width: float = 0, layer: str = ‘0, color: int | None = None, linetype: str | None =
None) — None

Add a 2D POLYLINE entity with start width, end width and bulge value support.

Format codes:

bulge value
(X, y) tuple (z-axis is ignored)

X x-coordinate
y y-coordinate
s start width

e end width

b

\%

Parameters

e points —iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple, value order according
to the format string, unset values default to 0

» format — format: format string, default is ' xy '

* closed - True creates a closed polyline

¢ start_width — default start width, default is 0

¢ end_width — default end width, default is O

e layer - layer name as string see add_line ()

e color — color as AutoCAD Color Index (ACI) see add_1line ()
* linetype - line type as string see add_line ()

add_polyline (vertices: Iterable[Sequence[float]], closed: bool = False, layer: str = '0', color: int | None =
None, linetype: str | None = None) — None

Add a 3D POLYLINE entity.

Parameters

146 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

vertices —iterable of (x, y[, z]) tuples,z-axisis O by default
closed - True creates a closed polyline

layer — layer name as string see add_line ()

color — color as AutoCAD Color Index (ACI) see add_1ine ()

linetype - line type as string see add_1ine ()

add_polyface (vertices: Iterable[Sequence[float]], faces: Iterable[Sequence[int]], layer: str = '0', color: int |

None = None, linetype: str | None = None) — None

Add a POLYFACE entity. The POLYFACE entity supports only faces of maximum 4 vertices, more indices
will be ignored. A simple square would be:

v0
vl
v2
v3

(0
= (1,
(1

I4

’

= (OI
dxf.add_polyface (vertices=[v0, vi1, v2, v3], faces=[(0, 1, 2, 3)1)

I4

0
0
1

o O O

)
, 0)
, 0)

1, 0)

All 3D form functions of the ezdxf. render. forms module return MeshBuilder objects, which
provide the required vertex and face lists.

See sphere example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py

Parameters

vertices —iterable of (x, y, z) tuples

faces —iterable of 3 or 4 vertex indices, indices have to be 0-based
layer — layer name as string see add_Iline ()

color — color as AutoCAD Color Index (ACI) see add_1ine ()

linetype - line type as string see add_Iline ()

add_polymesh (vertices: Iterable[Sequence[float]], size: tuple[int, int], closed=(False, False), layer: str = '0',

color: int | None = None, linetype: str | None = None) — None

Add a POLYMESH entity. A POLYMESH is a mesh of m rows and n columns, each mesh vertex has its
own Xx-, y- and z coordinates. The mesh can be closed in m- and/or n-direction. The vertices have to be in
column order: (m0, n0), (m0, n1), (m0, n2), (m1, n0), (m1, nl), (ml1, n2), ...

See example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py

Parameters

vertices —iterable of (x, vy, z) tuples, in column order

size — mesh dimension as (m, n)-tuple, requirement: len (vertices) == m*n
closed - (m_closed, n_closed) tuple, for closed mesh in m and/or n direction
layer — layer name as string see add_line ()

color — color as AutoCAD Color Index (ACI) see add_1line ()

linetype - line type as string see add_1ine ()

add_text (fext: str, insert: Sequence[float] = (0, 0), height: float = 1.0, width: float = 1.0, align: str = 'LEFT",
rotation: float = 0.0, oblique: float = 0.0, style: str = 'STANDARD', layer: str = ‘0, color: int | None
= None) — None

Add a one line TEXT entity.

9.7. Add-ons

147

https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py
https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py

ezdxf Documentation, Release 1.3.2

Parameters
* text — the text as string
* insert —insert location as (x, vy) tuple
* height - text height in drawing units
* width - text width as factor
* align - text alignment, see table below
* rotation - text rotation in degrees as float
* oblique - oblique in degrees as float, vertical = 0 (default)

e style — text style name as string, if FIXED-TABLES are written some predefined text
styles are available, else text style is always ' STANDARD'.

¢ layer - layer name as string see add_1line ()

e color — color as AutoCAD Color Index (ACI) see add_1ine ()

Vert/Horiz Left Center Right

Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

The special alignments ALIGNED and FIT are not available.

9.7.9 text2path

Tools to convert text strings and text based DXF entities into outer- and inner linear paths as Pat h objects. At the moment
only the TEXT and the ATTRIB entity can be converted into paths and hatches.

Added in version 1.1: Text rendering is done by the fontTools package, which is a hard dependency of ezdxf. Support
for stroke fonts, these are the basic vector fonts included in CAD applications, like .shx, .shp or .Iff fonts was added but
these fonts cannot be rendered as HATCH entities.

The required font files are not included with ezdxf as they are copyrighted or, in the case of the LibreCAD font format,
licensed under the “GPL v2 and later”. Set the paths to such stroke fonts in the config file, see option ezdxf . options.
support_dirs:

[core]
support_dirs =
"C:\Program Files\Bricsys\BricsCAD V23 en_US\Fonts",
~/shx_fonts,
~/shp_fonts,
~/1ff_fonts,

Don’t expect a 100% match compared to CAD applications but the results with fontTools are better than the previous
Matplotlib renderings.

148 Chapter 9. Contents

https://pypi.org/project/fonttools/

ezdxf Documentation, Release 1.3.2

Text Alignments

The text alignments are enums of type ezdxf.enums. TextEntityAlignment

Vertical Left Center Right

Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT MIDDLE_CENTER MIDDLE_RIGHT
Bottom BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

The vertical middle alignments (MIDDLE_XXX), center the text vertically in the middle of the uppercase letter “X” (cap
height).

Special alignments, where the horizontal alignment is always in the center of the text:
¢ ALIGNED: text is scaled to match the given length, scales x- and y-direction by the same factor.
» FIT: text is scaled to match the given length, but scales only in x-direction.

* MIDDLE: insertion point is the center of the total height (cap height + descender height) without scaling, the length
argument is ignored.

Font Face Definition
A font face is defined by the Matplotlib compatible FontFace object by font-family, font-style,
font-stretchand font-weight.
See also:
» Font Anatomy

* Font Properties

String Functions

ezdxf.addons.text2path.make_path_£from_str (s: str, font: FontFace, size: float = 1.0,
align="TextEntityAlignment. LEFT, length: float = 0, m:
Matrix44 = None) — Path

Convert a single line string s into a Multi-Path object. The text size is the height of the uppercase letter “X” (cap
height). The paths are aligned about the insertion point at (0, 0). BASELINE means the bottom of the letter “X”.

Parameters
* s —text to convert
» font — font face definition as FontFace object
* size — text size (cap height) in drawing units
* align —alignment as ezdxf.enums. TextEntityAlignment, defaultis LEFT
* length — target length for the ALIGNED and FIT alignments

e m — transformation Matrix44

9.7. Add-ons 149

ezdxf Documentation, Release 1.3.2

ezdxf.addons.text2path.make_paths_from_str (s: str, font: FontFace, size: float = 1.0,
align="TextEntityAlignment. LEFT, length: float = 0,
m: Matrix44 = None) — list[Path]

Convert a single line string s into a list of Path objects. All paths are returned as a list of Single-Path objects. The
text size is the height of the uppercase letter “X” (cap height). The paths are aligned about the insertion point at (0,
0). BASELINE means the bottom of the letter “X”.

Parameters
* s —text to convert
* font — font face definition as FontFace object
* size — text size (cap height) in drawing units
* align —alignment as ezdxf.enums. TextEntityAlignment, defaultis LEFT
* length — target length for the ALIGNED and FIT alignments
* m — transformation Matrix44

ezdxf.addons.text2path.make_hatches_from_str (s: str, font: FontFace, size: float = 1.0,
align="TextEntityAlignment. LEFT, length: float =
0, dxfattribs=None, m: Matrix44 = None) —
list[Hatch]
Convert a single line string s into a list of virtual Hat ch entities. The text size is the height of the uppercase letter

“X” (cap height). The paths are aligned about the insertion point at (0, 0). The HATCH entities are aligned to this
insertion point. BASELINE means the bottom of the letter “X”.

Important: Returns an empty list for .shx, .shp and .Iff fonts a.k.a. stroke fonts.

Parameters
* s — text to convert
» font — font face definition as FontFace object
* size — text size (cap height) in drawing units
* align -alignment as ezdxf.enums. TextEntityAlignment, defaultis LEFT
* length — target length for the ALIGNED and FIT alignments
* dxfattribs — additional DXF attributes

e m — transformation Matrix44

Entity Functions

class ezdxf.addons.text2path.Kind (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1, boundary=None)

The Kind enum defines the DXF types to create as bit flags, e.g. 1+2 to get HATCHES as filling and SPLINES
and POLYLINES as outline:

150 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Int Enum Description
1 HATCHES Hatch entities as filling
2 SPLINES Splineand 3D Polyline entities as outline

4 LWPOLYLINES LWPolyline entities as approximated (flattened) outline

ezdxf.addons.text2path.virtual_entities (entity: Text | Autrib, kind: int = Kind. HATCHES) —
EntityQuery

Convert the text content of DXF entities TEXT and ATTRIB into virtual SPLINE and 3D POLYLINE entities or
approximated LWPOLYLINE entities as outlines, or as HATCH entities as fillings.

Returns the virtual DXF entities as an Ent it yQuery object.
Parameters
* entity — TEXT or ATTRIB entity
* kind - kind of entities to create as bit flags, see enum Kind

ezdxf.addons.text2path.explode (entity: Text | Attrib, kind: int = Kind. HATCHES, target=None) —
EntityQuery

Explode the text entity into virtual entities, see virtual_ entities (). The source entity will be destroyed.

The target layout is given by the farget argument, if farget is None, the target layout is the source layout of the text
entity.

Returns the created DXF entities as an Ent it yQuery object.
Parameters
* entity — TEXT or ATTRIB entity to explode
* kind - kind of entities to create as bit flags, see enum Kind

* target — target layout for new created DXF entities, None for the same layout as the source
entity.

ezdxf.addons.text2path.make_path_f£from_entity (entity: Text | Antrib) — Path

Convert text content from DXF entities TEXT and ATTRIB into a Multi- Path object. The paths are located at the
location of the source entity.

ezdxf.addons.text2path.make_paths_from_entity (entity: Text | Attrib) — list[Path]

Convert text content from DXF entities TEXT and ATTRIB into a list of Path objects. All paths are returned as
a list of Single-Path objects. The paths are located at the location of the source entity.

9.7.10 MTextExplode

This tool is meant to explode MTEXT entities into single line TEXT entities by replicating the MTEXT layout as close
as possible. This tool requires the optional Matplotlib package to create usable results, nonetheless it also works without
Matplotlib, but then uses a mono-spaced replacement font for text size measuring which leads to very inaccurate results.

The supported MTEXT features are:
* changing text color
* text strokes: underline, overline and strike through
* changing text size, width and oblique

e changing font faces

9.7. Add-ons 151

ezdxf Documentation, Release 1.3.2

stacked text (fractions)
multi-column support
background color

text frame

The tool requires an initialized DXF document io implement all these features by creating additional text styles. When
exploding multiple MTEXT entities, they can share this new text styles. Call the MTextExplode.finalize ()
method just once after all MTEXT entities are processed to create the required text styles, or use MTextExplode as
context manager by using the with statement, see examples below.

There are also many limitations:

A 100% accurate result cannot be achieved.
Character tracking is not supported.

Tabulator stops have only limited support for LEFT and JUSTIFIED aligned paragraphs to support numbered and
bullet lists. An excessive use of tabs will lead to incorrect results.

The DISTRIBUTED alignment will be replaced by the JUSTIFIED alignment.
Text flow is always “left to right”.

The line spacing mostly corresponds to the “EXACT” style, except for stacked text (fractions), which corresponds
more to the “AT LEAST” style, but not precisely. This behavior maybe will improve in the future.

FIELDS are not evaluated by ezdxf.

class ezdxf.addons.MTextExplode (layout, doc=None, spacing_factor=1.0)

The MTextExplode class is a tool to disassemble MTEXT entities into single line TEXT entities and additional
LINE entities if required to emulate strokes.

The layout argument defines the target layout for “exploded” parts of the MTEXT entity. Use argument doc if
the target layout has no DXF document assigned like virtual layouts. The spacing_factor argument is an advanced
tuning parameter to scale the size of space chars.
explode (mtext: MText, destroy=True)

Explode mtext and destroy the source entity if argument destroy is True.

finalize ()

Create required text styles. This method is called automatically if the class is used as context manager. This
method does not work with virtual layouts if no document was assigned at initialization!

Example to explode all MTEXT entities in the DXF file “mtext.dxf”:

import ezdxf
from ezdxf.addons import MTextExplode

doc
msp

= ezdxf.readfile("mtext.dxf™)
= doc.modelspace ()

with MTextExplode (msp) as xpl:

for mtext in msp.query ("MTEXT") :

xpl.explode (mtext)

doc.saveas ("xpl_mtext.dxf")

Explode all MTEXT entities into the block “EXPLODE":

152

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

import ezdxf
from ezdxf.addons import MTextExplode

doc = ezdxf.readfile("mtext.dxf™)
msp = doc.modelspace ()
blk = doc.blocks.new ("EXPLODE")

with MTextExplode (blk) as xpl:
for mtext in msp.query ("MTEXT") :
xpl.explode (mtext)
msp.add_block_ref ("EXPLODE", (0, 0))
doc.saveas ("xpl_into_block.dxf")

9.7.11 HPGL/2 Converter Add-on

Added in version 1.1.

The hpgl2 add-on provides tools to process and convert HPGL/2 plot files.

What are HPGL/2 Plot Files?

The Hewlett-Packard Graphics Language (HPGL) is a vector graphics language originally developed by Hewlett-Packard
in the 1970s. HPGL is widely used for controlling pen plotters and other output devices, and it has become a de facto
standard for communicating between computers and output devices in the field of computer-aided design (CAD) and
drafting.

HPGL is a command-driven language that consists of a series of commands that control the movement of the plotter pen,
the selection of pens and other output parameters, and the drawing of geometric shapes such as lines, arcs, circles, and
text. The language is interpreted by the plotter or other output device and translated into physical pen movements on the
drawing surface.

HPGL has evolved over the years, and various extensions have been added to support more complex graphics operations
and to improve compatibility with other graphics languages. Despite the development of newer graphics languages and file
formats, HPGL remains a widely used format for vector-based graphics, particularly in the engineering and architectural
fields.

The Goal of This Add-on

An HPGL/2 plot file contains all of the data generated by a CAD application that has been sent to a plotter to print an
engineering drawing. In the past, the only way to access this data was to view it on a plotter or an specialized application,
which could be expensive and impractical for many people. However, this module provides functions and classes to
convert HPGL/2 plot files into modern vector graphic formats such as PDF and SVG and of course DXF, allowing the
data to be viewed and processed using a wide range of software tools.

Important: The Python module PyMuPDF is required for the PDF export: https://pypi.org/project/PyMuPDF/

The P1otter classin the hpgl2 add-on supports only the most commonly used commands of HPGL/2. This is because
many CAD applications use only a small subset of HPGL/2 to create their output, typically consisting of polylines and
filled polygons. For more information on the supported commands, please refer to the documentation for the P1otter
class.

To use the HPGL2 add-on, the entry point is the ezdxf.addons.hpglZ2.api module. This module contains the
public interface of the add-on and should be imported in the following way:

9.7. Add-ons 153

https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/SVG
https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.3.2

from ezdxf.addons.hpgl2 import api as hpgl2

with open("hpgl2.plt", "rb") as fp:

data = fp.read()
doc = hpgl2.to_dxf (data, color_mode=hpgl2.ColorMode.ACI)
doc.saveas ("hpgl2_as.dxf")

High Level Functions

to_dxf Exports the HPGL/2 commands of the byte stream b as a
DXF document.

to_svg Exports the HPGL/2 commands of the byte stream b as
SVG string.

to_pdf Exports the HPGL/2 commands of the byte stream b as
PDF data.

to_pixmap Exports the HPGL/2 commands of the byte stream b as

pixel image.

ezdxf.addons.hpgl2.api.to_dx£ (b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, color_mode=ColorMode.RGB, merge_control: MergeControl =
MergeControl. AUTO) — Drawing

Exports the HPGL/2 commands of the byte stream b as a DXF document.

The page content is created at the origin of the modelspace and 1 drawing unit is 1 plot unit (1 plu = 0.025mm)
unless scaling values are provided.

The content of HPGL files is intended to be plotted on white paper, therefore a white filling will be added as
background in color mode RGB.

All entities are assigned to a layer according to the pen number with the name scheme PEN_ <###>. In order to be
able to process the file better, it is also possible to assign the ACI color by layer by setting the argument color_mode
to ColorMode . ACT, but then the RGB color is lost because the RGB color has always the higher priority over
the ACI.

The first paperspace layout “Layoutl” of the DXF document is set up to print the entire modelspace on one sheet,
the size of the page is the size of the original plot file in millimeters.

HPGL/2’s merge control works at the pixel level and cannot be replicated by DXF, but to prevent fillings from
obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also Me rgeCont rol enum.

Parameters
* b - plot file content as bytes
* rotation - rotation angle of 0, 90, 180 or 270 degrees
* mirror_x — mirror in x-axis direction
* mirror_y — mirror in y-axis direction

* color_mode - the color mode controls how color values are assigned to DXF entities, see
ColorMode

* merge_control — how to order filled polygons, see MergeControl

Returns: DXF document as instance of class Drawing

154 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

ezdxf.addons.hpgl2.api.to_svg (b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, merge_control=MergeControl. AUTO) — str

Exports the HPGL/2 commands of the byte stream b as SVG string.

The plot units are mapped 1:1 to viewBox units and the size of image is the size of the original plot file in
millimeters.

HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to prevent fillings
from obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also MergeCont rol enum.

Parameters
* b - plot file content as bytes
* rotation - rotation angle of 0, 90, 180 or 270 degrees
* mirror_x — mirror in X-axis direction
* mirror_y — mirror in y-axis direction
* merge_control — how to order filled polygons, see MergeControl
Returns: SVG content as st r

ezdxf.addons.hpgl2.api.to_pdf (b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, merge_control=MergeControl. AUTO) — bytes

Exports the HPGL/2 commands of the byte stream b as PDF data.

The plot units (1 plu = 0.025mm) are converted to PDF units (1/72 inch) so the image has the size of the original
plot file.

HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to prevent fillings
from obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also MergeCont rol enum.

Python module PyMuPDF is required: https://pypi.org/project/PyMuPDF/
Parameters

* b - plot file content as bytes

* rotation - rotation angle of 0, 90, 180 or 270 degrees

* mirror_x — mirror in x-axis direction

* mirror_y — mirror in y-axis direction

* merge_control — how to order filled polygons, see MergeControl
Returns: PDF content as bytes

ezdxf.addons.hpgl2.api.to_pixmap (b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, merge_control=MergeControl. AUTO, fmt: str = 'png’, dpi: int =
96) — bytes

Exports the HPGL/2 commands of the byte stream b as pixel image.

Supported image formats:

png Portable Network Graphics
ppm Portable Pixmap
pbm Portable Bitmap

9.7. Add-ons 155

https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.3.2

The plot units (1 plu = 0.025mm) are converted to dot per inch (dpi) so the image has the size of the original plot
file.

HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to prevent fillings
from obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the argument
merge_control, see also MergeControl enum.

Python module PyMuPDF is required: https://pypi.org/project/PyMuPDF/
Parameters
* b - plot file content as bytes
* rotation - rotation angle of 0, 90, 180 or 270 degrees
* mirror_x — mirror in x-axis direction
* mirror_y — mirror in y-axis direction
* merge_control — how to order filled polygons, see MergeControl
* fmt — image format
* dpi - output resolution in dots per inch
Returns: image content as bytes

class ezdxf.addons.hpgl2.api.ColorMode
The color mode controls how color values are assigned to DXF entities
ACI
Use the pen number as AutoCAD Color Index (ACI) for DXF entities, ignores the RGB color values
RGB

Use the pen number as AutoCAD Color Index (ACI) but also set the RGB color for DXF entities, RGB color
values have always higher priority than the ACI when displaying DXF content.

class ezdxf.addons.hpgl2.api.MergeControl
Merge control enumeration.
NONE
export filled polygons in print order
LUMINANCE
sort filled polygons by luminance
AUTO
guess best order of filled polygons

The Low Level Functions and Classes

ezdxf.addons.hpgl2.api.hpgl2_commands (s: bytes) — listfCommand]
Low level plot file parser, extracts the HPGL/2 from the byte stream b.

Important: This parser expects the “Enter HPGL/2 mode” escape sequence to recognize HPGL/2 commands.
The sequence looks like this: [ESC] % 1B, multiple variants of this sequence are supported.

156 Chapter 9. Contents

https://pypi.org/project/PyMuPDF/

ezdxf Documentation, Release 1.3.2

The HPGL/2 commands are often mixed with the Printer Command Language (PCL) and/or the Raster Transfer Lan-
guage (RTL) commands in a single plot file.

Some plot files that contain pure HPGL/2 code do not contain the escape sequence “Enter HPGL/2 mode”, without this
sequence the HPGL/2 parser cannot recognize the beginning of the HPGL/2 code. Add the ENTER_HPGL2_MODE
sequence in front of the bytes stream to switch on the HPGL/2 manually, regardless of whether the file is an HPGL/2 plot
file or not, so be careful:

commands = hpgl2_commands (hpgl2.ENTER_HPGL2_MODE + data)

class ezdxf.addons.hpgl?2.api.Interpreter (plotter: Plotter)

The Interpreter is the frontend for the P1ot ter class. The run () methods interprets the low level HPGL
commands from the hpgl2_ commands () parser and sends the commands to the virtual plotter device, which
sends his output to a low level Backend class.

Most CAD application send a very restricted subset of commands to plotters, mostly just polylines and filled poly-
gons. Implementing the whole HPGL/2 command set is not worth the effort - unless reality proofs otherwise.

Not implemented commands:
* the whole character group - text is send as filled polygons or polylines

* configuration group: IN, DF, RO, IW - the plotter is initialized by creating a new plotter and page rotation is
handled by the add-on itself

* polygon group: EA, ER, EW, FA, RR, WG, the rectangle and wedge commands
* line and fill attributes group: LA, RF, SM, SV, TR, UL, WU, linetypes and hatch patterns are decomposed
into simple lines by CAD applications

Parameters
plotter —virtual Plotter device

errors

List of error messages occurred during the interpretation of the HPGL/2 commands.

not_implemented_commands

List of all unsupported/ignored commands from the input stream.

run (commands: listf Command]) — None

Interprets the low level HPGL commands from the hpg12_commands () parser and sends the commands
to the virtual plotter device.

disable_commands (commands: Iterable[str]) — None

Disable commands manually, like the scaling command [“SC”, “IP”, “IR”]. This is a feature for experts,
because disabling commands which changes the pen location may distort or destroy the plotter output.

class ezdxf.addons.hpgl2.api.Plotter (backend: Backend)

The P1otter class represents a virtual plotter device.

The HPGL/2 commands send by the Tnterpreter are processed into simple polylines and filled polygons and
send to low level Backend.

HPGL/2 uses a units system called “Plot Units”:
* 1 plot unit (plu) = 0.025mm
* 40 plu=1 mm
e 1016 plu =1 inch

9.7. Add-ons 157

https://en.wikipedia.org/wiki/Printer_Command_Language
https://en.wikipedia.org/wiki/Hewlett-Packard_Raster_Transfer_Language

ezdxf Documentation, Release 1.3.2

The Plotter device does not support font rendering and page rotation (RO). The scaling commands IP, RP, SC are
supported.

Recorder

class ezdxf.addons.hpgl2.api.Recorder

The Recorder class records the output of the P1ot ter class.
All input coordinates are page coordinates:

¢ 1 plot unit (plu) = 0.025mm

* 40 plu =1 mm

* 1016 plu =1 inch
player () — Player

Returns a P1ayer instance with the original recordings. Make a copy of this player to protect the original
recordings from being modified:

safe_player = recorder.player () .copy ()

draw_polyline (properties: Properties, points: Sequence[{Vec2]) — None

Draws a polyline from a sequence points. The input coordinates are page coordinates in plot units. The points
sequence can contain O or more points!

Parameters
* properties —display Properties for the polyline
* points —sequence of ezdxf.math. VecZ instances

draw_paths (properties: Properties, paths: Sequence[Path], filled: bool) — None

Draws filled or outline paths from the sequence of paths. The input coordinates are page coordinates in plot
units. The paths sequence can contain O or more single Path instances. Draws outline paths if Proper-
ties.FillType is NONE and filled paths otherwise.

Parameters
* properties —display Properties for the filled polygon
* paths - sequence of single ezdxf.path.Path instances

e filled —draw filled paths if True otherwise outline paths

Player

class ezdxf.addons.hpgl?2.api.Player (records: listf DataRecord], properties: dict[int, Properties])

This class replays the recordings of the Recorder class on another backend. The class can modify the recorded
output.

copy () — Self
Returns a new P1ayer instance with a copy of recordings.

recordings () — Iterator[tuple[RecordType, Properties, Any]]
Yields all recordings as (RecordType, Properties, Data) tuples.

The content of the Data field is determined by the enum RecordType:

* RecordType.POLYLINE returns a NumpyPoints2d instance

158 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* RecordType.FILLED_POLYGON returns a tuple of NumpyPath2d instances

replay (backend: Backend) — None

Replay the recording on another backend.
bbox () — BoundingBox2d

Returns the bounding box of all recorded polylines and polygons as BoundingBox2d.
transform (m: Matrix44) — None

Transforms the recordings by a transformation matrix m of type Mat rix44.
sort_filled_paths () — None

Sort filled paths by descending luminance (from light to dark).

This also changes the plot order in the way that all filled paths are plotted before polylines and outline paths.

Properties

class ezdxf.addons.hpgl2.properties.Properties

Consolidated display properties.
pen_index

pen index as int
pen_color

pen color as RGB tuple
pen_width

pen width in millimeters (float)
fill_type

FillType of filled polygons
fill_method

FillMethod of filled polygons
fill_hatch_line_angle

fill hatch line angle in degrees
£fill_hatch_line_spacing

fill hatch line distance in plotter units
£ill_shading_density

fill shading density in percent from 0 to 100.

resolve_pen_color () — RGB
Returns the final RGB pen color.

resolve_f£fill_color () — RGB
Returns the final RGB fill color.

class ezdxf.addons.hpgl2.properties.FillType (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

Fill type enumeration.

NONE

9.7. Add-ons 159

ezdxf Documentation, Release 1.3.2

SOLID
HATCHING
CROSS_HATCHING
SHADING

class ezdxf.addons.hpgl2.properties.FillMethod (value, names=_not_given, *values,
module=None, qualname=None, type=None,
start=1, boundary=None)

Fill method enumeration.

EVEN_ODD

NONE_ZERO_WINDING

Exceptions

class ezdxf.addons.hpgl2.api.Hpgl2Error
Base exception for the hpgl2 add-on.

class ezdxf.addons.hpgl2.api.Hpgl2DataNotFound
No HPGL/2 data was found, maybe the “Enter HPGL/2 mode” escape sequence is missing.

class ezdxf.addons.hpgl2.api.EmptyDrawing
The HPGL/2 commands do not produce any content.

9.7.12 PyCSG

Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersection to
combine 3D solids. This library implements CSG operations on meshes elegantly and concisely using BSP trees, and is
meant to serve as an easily understandable implementation of the algorithm. All edge cases involving overlapping coplanar
polygons in both solids are correctly handled.

Example for usage:

import ezdxf
from ezdxf.render.forms import cube, cylinder_2p
from ezdxf.addons.pycsg import CSG

create new DXF document
doc = ezdxf.new/()
msp = doc.modelspace ()

create same geometric primitives as MeshTransformer () objects

cubel = cube()

cylinderl = cylinder_2p(count=32, base_center=(0, -1, 0), top_center=(0, 1, 0),-
—radius=.25)

build solid union

union = CSG(cubel) + CSG(cylinderl)

convert to mesh and render mesh to modelspace
union.mesh () .render_mesh (msp, dxfattribs={'color': 1})

(continues on next page)

160 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)
build solid difference
CSG (cubel) - CSG(cylinderl)
convert to mesh, translate mesh and render mesh to modelspace
difference.mesh () .translate(1.5) .render_mesh (msp, dxfattribs={'color': 3})

difference

build solid intersection

intersection = CSG(cubel) * CSG(cylinderl)

convert to mesh, translate mesh and render mesh to modelspace
intersection.mesh () .translate(2.75) .render_mesh (msp, dxfattribs={'color': 5})

doc.saveas ('csg.dxf")

/!

g, 'y,

This CSG kernel supports only meshes as MeshBuilder objects, which can be created from and converted to DXF
Me sh entities.

This CSG kernel is not compatible with ACIS objects like So1id3d, Body, Surface or Region.

Note: This is a pure Python implementation, don’t expect great performance and the implementation is based on an
unbalanced BSP tree, so in the case of RecursionError, increase the recursion limit:

import sys

actual_limit = sys.getrecursionlimit ()

default is 1000, increasing too much may cause a seg fault
sys.setrecursionlimit (10000)

do the CSG stuff

sys.setrecursionlimit (actual_limit)

9.7. Add-ons 161

https://en.wikipedia.org/wiki/Binary_space_partitioning

ezdxf Documentation, Release 1.3.2

CSG works also with spheres, but with really bad runtime behavior and most likely RecursionError exceptions, and
use quadrilaterals as body faces to reduce face count by setting argument quads to True.

import ezdxf

from ezdxf.render.forms import sphere, cube
from ezdxf.addons.pycsg import CSG

doc = ezdxf.new()
doc.set_modelspace_vport (6, center=(5, 0))
msp = doc.modelspace ()

cubel = cube().translate(-.5, —-.5, —.5)

spherel = sphere(count=32, stacks=16, radius=.5, quads=True)
union = (CSG(cubel) + CSG(spherel)) .mesh()
union.render_mesh (msp, dxfattribs={'color': 1})

subtract = (CSG(cubel) - CSG(spherel)) .mesh().translate(2.5)
subtract.render_mesh (msp, dxfattribs={'color': 3})
intersection = (CSG(cubel) * CSG(spherel)) .mesh().translate (4)
intersection.render_mesh (msp, dxfattribs={'color': 5})

162 Chapter 9. Contents

https://en.wikipedia.org/wiki/Quadrilateral

ezdxf Documentation, Release 1.3.2

Hard Core CSG - Menger Sponge Level 3 vs Sphere

Required runtime on an old Xeon E5-1620 Workstation @ 3.60GHz (2020), with default recursion limit of 1000 on
Windows 10:

* CPython 3.8.1 64bit: ~60 seconds,

* PyPy [PyPy 7.2.0] 32bit: ~6 seconds, and using __slots__ reduced runtime below 5 seconds, yes - PyPy is
worth a look for long running scripts!

Updated runtime in 2024 on an i7-12700K @ 3.60GHz (peak ~5SGHz), Windows 11:
¢ CPython 3.11.6 64bit: ~3.4 seconds
* PyPy 3.9.18 [PyPy 7.3.13] 64bit: ~1.5 seconds

from ezdxf.render.forms import sphere
from ezdxf.addons import MengerSponge
from ezdxf.addons.pycsg import CSG

doc = ezdxf.new/()

(continues on next page)

9.7. Add-ons 163

ezdxf Documentation, Release 1.3.2

(continued from previous page)

doc.layers.new('sponge', dxfattribs={'color': 5})
doc.layers.new('sphere', dxfattribs={'color': 6})

doc.set_modelspace_vport (6, center=(5, 0))
msp = doc.modelspace ()

spongel = MengerSponge (level=3) .mesh ()
spherel = sphere (count=32, stacks=16, radius=.5, quads=True) .translate (.25, .25, 1)

subtract = (CSG(spongel, meshid=1) - CSG(spherel, meshid=2))

get mesh result by id

subtract.mesh (1) .render_mesh (msp, dxfattribs={'layer': 'sponge'})
subtract .mesh (2) .render_mesh (msp, dxfattribs={'layer': 'sphere'})

164 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

v
r
y
r
»
P
P

'

CSG Class

class ezdxf.addons.pycsg.CSG (mesh: MeshBuilder, meshid: int = 0)

Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersec-
tion to combine 3D solids. This class implements CSG operations on meshes.

New 3D solids are created from MeshBuilder objects and results can be exported as MeshTransformer
objects to ezdxf by method mesh ().

Parameters

e mesh - ezdxf.render.MeshBuilder or inherited object

9.7. Add-ons 165

ezdxf Documentation, Release 1.3.2

* meshid - individual mesh ID to separate result meshes, O is default

mesh (meshid: int = 0) — MeshTransformer
Returns a ezdxf. render.MeshTransformer object.

Parameters
meshid — individual mesh ID, 0 is default

union (other: CSG) — CSG

Return a new CSG solid representing space in either this solid or in the solid other. Neither this solid nor the

solid other are modified:

A.union (B)

o + o +

\ \ \ \

\ A \ \ \

| +——t———— = | +————+

+————t——+ | +————+ |
\ B \ \
\ | \ \
o + - +

_add__()
union = A + B

subtract (other: CSG) — CSG

Return a new CSG solid representing space in this solid but not in the solid other. Neither this solid nor the

solid other are modified:

A.subtract (B)
o + - +
\ \ \ \
\ A \ \ \
| +——t———— = | +——+
+————t——+ | +————t

\ B |

\ \

o +

__sub__ ()

difference = A - B

intersect (other: CSG) — CSG

Return a new CSG solid representing space both this solid and in the solid other. Neither this solid nor the

solid other are modified:

A.intersect (B)

fo—m———— +
\ A \

| to—t————+ = +——+
fo———t——+ \ +-—+

(continues on next page)

166

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

\ B \
\ |
o +
_mul__ ()
intersection = A * B

inverse () — CSG

Return a new CSG solid with solid and empty space switched. This solid is not modified.

License
¢ Original implementation csg.js, Copyright (c) 2011 Evan Wallace (http://madebyevan.com/), under the MIT li-
cense.
* Python port pycsg, Copyright (c) 2012 Tim Knip (http://www.floorplanner.com), under the MIT license.
» Additions by Alex Pletzer (Pennsylvania State University)
* Integration as ezdxf add-on, Copyright (c) 2020, Manfred Moitzi, MIT License.

9.7.13 Plot Style Files (CTB/STB)

CTB and STB files store plot styles used by AutoCAD and BricsCAD for printing and plotting.

If the plot style table is attached to a Paperspace or the Modelspace, a change of a plot style affects any object that
uses that plot style. CTB files contain color dependent plot style tables, STB files contain named plot style tables.

See also:
* Using plot style tables in AutoCAD
* AutoCAD Plot Style Table Editor
* BricsCAD Plot Style Table Editor
¢ AUTODESK KNOWLEDGE NETWORK: How to install CTB files in AutoCAD

ezdxf.addons.acadctb.load (filename: str | PathLike) — ColorDependentPlotStyles | NamedPlotStyles
Load the CTB or STB file filename from file system.

ezdxf.addons.acadctb.new_ctb () — ColorDependentPlotStyles
Create a new CTB file.

ezdxf.addons.acadctb.new_stb () — NamedPlotStyles
Create a new STB file.

9.7. Add-ons 167

https://github.com/evanw/csg.js
http://madebyevan.com/
https://github.com/timknip/pycsg
http://www.floorplanner.com
https://knowledge.autodesk.com/support/autocad-lt/learn-explore/caas/sfdcarticles/sfdcarticles/Use-plot-style-tables.html
https://knowledge.autodesk.com/support/autocad-lt/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-LT/files/GUID-56184373-FC19-49A0-9E67-181C4F5C19B7-htm.html
https://help.bricsys.com/hc/en-us/articles/360006617933-The-Plot-Style-Table-editor
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/sfdcarticles/sfdcarticles/How-to-insert-a-CTB-or-STB-file-from-another-end-user-in-your-DWG-file.html

ezdxf Documentation, Release 1.3.2

ColorDependentPlotStyles

Color dependent plot style table (CTB file), table entries are P1ot St y1e objects.

class ezdxf.addons.acadctb.ColorDependentPlotStyles

description
Custom description of plot style file.

scale_factor
Specifies the factor by which to scale non-ISO linetypes and fill patterns.

apply_factor
Specifies whether or not you want to apply the scale_factor.

custom_lineweight_display_ units
Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in
millimeters.

lineweights
Lineweights table as array.array

__getitem__ (aci: int) — PlotStyle

Returns P1ot St yle for AutoCAD Color Index (ACI) aci.
__iter__ ()

Iterable of all plot styles.

new_style (aci: int, data: dict | None = None) — PlotStyle
Set aci to new attributes defined by data dict.

Parameters
e aci - AutoCAD Color Index (ACI)

e data — dict of PlotStyle attributes: description, color, physical_pen_number,
virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight,
end_style, join_style, fill_style

get_lineweight (aci: int)

Returns the assigned lineweight for P1ot Sty le aci in millimeter.

get_lineweight_index (lineweight: float) — int
Get index of lineweight in the lineweight table or append lineweight to lineweight table.

get_table_lineweight (index: int) — float

Returns lineweight in millimeters of lineweight table entry index.

Parameters
index - lineweight table index = P1otStyle. lineweight

Returns
lineweight in mm or 0 . O for use entity lineweight

set_table_lineweight (index: int, lineweight: float) — int
Argument index is the lineweight table index, not the AutoCAD Color Index (ACI).

Parameters

¢ index - lineweight table index = P1otStyle. lineweight

168

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

¢ lineweight — in millimeters

save ()
Save CTB file as filename to the file system.

write (stream: BinarylO) — None
Compress and write CTB file to binary stream.

NamedPlotStyles

Named plot style table (STB file), table entries are P1ot Sty 1e objects.
class ezdxf.addons.acadctb.NamedPlotStyles
description
Custom description of plot style file.

scale_factor
Specifies the factor by which to scale non-ISO linetypes and fill patterns.

apply_factor

Specifies whether or not you want to apply the scale_factor.

custom_lineweight_display_units

Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are always defined in

millimeters.

lineweights

Lineweights table as array.array

__getitem__ (name: str) — PlotStyle
Returns P1ot St yle by name.

__delitem__ (name: str) — None
Delete plot style name. Plot style 'Normal' is not deletable.
__iter__ () — Iterable[str]
Iterable of all plot style names.
new_style (name: str, data: dict | None = None, localized_name: str | None = None) — PlotStyle
Create new class:PlotStyle name by attribute dict data, replaces existing class:PlotStyle objects.
Parameters
* name - plot style name
¢ localized_name — name shown in plot style editor, uses name if None

e data — dict of PlotStyle attributes: description, color, physical_pen_number,
virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype, lineweight,
end_style, join_style, fill_style

get_lineweight (name: str)

Returns the assigned lineweight for P1 ot Sty 1e name in millimeter.

get_lineweight_index (lineweight: float) — int
Get index of /ineweight in the lineweight table or append lineweight to lineweight table.

9.7. Add-ons

ezdxf Documentation, Release 1.3.2

get_table_lineweight (index: int) — float

Returns lineweight in millimeters of lineweight table entry index.

Parameters
index - lineweight table index = P1otStyle. lineweight

Returns
lineweight in mm or 0 . O for use entity lineweight

set_table_lineweight (index: int, lineweight: float) — int
Argument index is the lineweight table index, not the AutoCAD Color Index (ACI).

Parameters
* index - lineweight table index = P1otStyle. lineweight
* lineweight — in millimeters

save ()

Save STB file as filename to the file system.

write ()

Compress and write STB file to binary stream.

PlotStyle

class ezdxf.addons.acadctb.PlotStyle

index
Table index (0-based). (int)
aci
AutoCAD Color Index (ACI) in range from 1 to 255. Has no meaning for named plot styles. (int)
description
Custom description of plot style. (str)
physical_pen_number
Specifies physical plotter pen, valid range from 1 to 32 or AUTOMATIC. (int)

virtual_pen_number

Only used by non-pen plotters and only if they are configured for virtual pens. valid range from 1 to 255 or
AUTOMATIC. (int)

screen

Specifies the color intensity of the plot on the paper, valid range is from 0 to 100. (int)

If you select 100 the drawing will plotted with its full color intensity. In order for screening to work, the
dithering option must be active.

linetype
Overrides the entity linetype, default value is OBJECT_LINETYPE. (bool)
adaptive_linetype
True if a complete linetype pattern is more important than a correct linetype scaling, default is True. (bool)

linepattern_size

Line pattern size, default = 0. 5. (float)

170 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

lineweight
Overrides the entity lineWEIGHT, default value is OBJECT_LINEWEIGHT. This is an index into the
UserStyles.lineweights table. (int)
end_style
Line end cap style, see table below, default is END_STYLE_OBJECT (int)
join_style
Line join style, see table below, default is JOIN_STYLE_OBJECT (int)
fill_style
Line fill style, see table below, default is FILL_STYLE_OBJECT (int)
dithering

Depending on the capabilities of your plotter, dithering approximates the colors with dot patterns. When
this option is False, the colors are mapped to the nearest color, resulting in a smaller range of colors when
plotting.

Dithering is available only whether you select the object’s color or assign a plot style color.

grayscale

Plot colors in grayscale. (bool)

Default Line Weights

[mm]
0 0.00
1 0.05
2 0.09
3 010
4 0.13
5 015
6 0.18
7 020
8 025
9 030
10 0.35
11 0.40
12 0.45
13 0.50
14 053
15 0.60
16 0.65
17 0.70
18 0.80
19 0.90
20 1.00
21 1.06
22 1.20
23 1.40
24 1.58
25 2.00
26 2.11

9.7. Add-ons 171

ezdxf Documentation, Release 1.3.2

Predefined Values

ezdxf.

ezdxf.

ezdxf.

ezdxf.

ezdxf.

addons.

addons.

addons.

addons.

addons.

Line End Style

Line Join Style

acadctb.AUTOMATIC
acadctb.OBJECT_LINEWEIGHT
acadctb.OBJECT_LINETYPE
acadctb.OBJECT_COLOR

acadctb.OBJECT_COLOR2

Line end style: | Use entity end style

Line join style:

=} Butt
Fill style: | =] square
= Round

=3 Diamaond

END_STYLE BUTT
END_STYLE_SQUARE
END_STYLE_ROUND
END_STYLE_DIAMOND
END_STYLE OBIJECT

S w NN O

IUse entity join style

»> Miter
21 Bevel
110 Round
¥» Diamond

JOIN_STYLE_MITER
JOIN_STYLE_BEVEL
JOIN_STYLE_ROUND
JOIN_STYLE_DIAMOND
JOIN_STYLE_OBIJECT

172

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Fill Style

B solid

= Checkerboard
8% Croschatch
B Diamonds

= Horizontal Bars
Slant Left

= Slant Right
£Efi Square Dotz

W #Z |

|| vertical Bars

Fill style: | Use entity fill style w

FILL_STYLE_SOLID
FILL_STYLE_CHECKERBOARD
FILL_STYLE_CROSSHATCH
FILL_STYLE_DIAMONDS
FILL_STYLE _HORIZONTAL_BARS
FILL_STYLE_SLANT_LEFT
FILL_STYLE_SLANT_RIGHT
FILL_STYLE_SQUARE_DOTS
FILL_STYLE_VERICAL_BARS
FILL_STYLE_OBIJECT

64
65
66
67
68
69
70
71
72
73

9.7. Add-ons

173

ezdxf Documentation, Release 1.3.2

Linetypes
Linetype: |Use entity linetype
Use entity linetype ™
Solid
Lineweight:
————— Dashed
Line end style: |- == -=- - .- Dotted
S —_————- Dash Dot
Line join style:
------ Short Dash
Fill style: | = = = =— — Medium Dash
= =—— —— = long Dash
————— Short Dash x2

Medium Dash x2

Long Dash x2

Medium Long Dash

Medium Dash Short Dash Short Dash
Long Dash Shart Dash

Long Dash Dot Dot

Long Dash Dot

Medium Dash Dot Short Dash Dot
Sparse Dot

IS0 Dash

St

174

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Linetype: | Use entity linetype bl
—— = —— == Long Dash Shart Dash ~
=+ == | ong Dash Dot Dot
Lineweight:
= = = = | ong Dash Dot
Line end style: | ===+ =" Medium Dash Dot Short Dash Dot

* Sparse Dot
————— IS0 Dash
Fill style: | = —_ — 150 Dash Space
= = = = 150 Long Dash Dot
—_—— = 150 Long Dash Double Dot

Line join style:

— IS0 Long Dash Triple Dot
.......... 150 Dot

—— = —— = — 150 Long Dash Short Dash

= = = = =[50 Long Dash Double Shaort Dash

—_——— = IS0 Dash Dot
——————— 150 Double Dash Dot
e IS0 Dash Double Dot
_———— IS0 Double Dash Double Dot
—_—e— — 150 Dash Triple Dot

_———— IS0 Double Dash Triple Dot W
Linetype name Value
Solid 0
Dashed 1
Dotted 2
Dash Dot 3
Short Dash 4
Medium Dash 5
Long Dash 6
Short Dash x2 7
Medium Dash x2 8
Long Dash x2 9
Medium Lang Dash 10
Medium Dash Short Dash Short Dash 11
Long Dash Short Dash 12
Long Dash Dot Dot 13
Long Dash Dot 14
Medium Dash Dot Short Dash Dot 15
Sparse Dot 16
ISO Dash 17
ISO Dash Space 18
ISO Long Dash Dot 19
ISO Long Dash Double Dot 20
ISO Long Dash Triple Dot 21

continues on next page

9.7. Add-ons 175

ezdxf Documentation, Release 1.3.2

Table 1 - continued from previous page

Linetype name Value
ISO Dot 22
ISO Long Dash Short Dash 23
ISO Long Dash Double Short Dash 24
ISO Dash Dot 25
ISO Double Dash Dot 26
ISO Dash Double Dot 27
ISO Double Dash Double Dot 28
ISO Dash Triple Dot 29
ISO Double Dash Triple Dot 30
Use entity linetype 31

9.7.14 Showcase Forms
MengerSponge

Build a 3D Menger sponge.

class ezdxf.addons.MengerSponge (location: UVec = (0.0, 0.0, 0.0), length: float = 1.0, level:

kind: int = 0)
Parameters
* location — location of lower left corner as (X, y, z) tuple
* length —side length
¢ level - subdivide level

* kind - type of menger sponge

0 Original Menger Sponge
1 Variant XOX

2 Variant OXO

3 Jerusalem Cube

cint =1,

render (layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 | None = None,

ucs: UCS | None = None) — None

Renders the menger sponge into layout, set merge to True for rendering the whole menger sponge into one
MESH entity, set merge to Fa 1l se for rendering the individual cubes of the menger sponge as MESH entities.

Parameters

¢ layout — DXF target layout

* merge — True for one MESH entity, False for individual MESH entities per cube

¢ dxfattribs — DXF attributes for the MESH entities
e matrix — apply transformation matrix at rendering
¢ ucs — apply UCS transformation at rendering

cubes () — Iterator[MeshTransformer]

Yields all cubes of the menger sponge as individual MeshTransformer objects.

176 Chapter 9

. Contents

https://en.wikipedia.org/wiki/Menger_sponge

ezdxf Documentation, Release 1.3.2

mesh () — MeshTransformer

Returns geometry as one MeshTransformer object.

=0:

Menger Sponge kind

=1:

Menger Sponge kind

177

9.7. Add-ons

ezdxf Documentation, Release 1.3.2

> | % o ::’-"‘ I'
e e 0o

: 9 b T
gl g 20 =Y $900.99..
RAAs g A S 2

Menger Sponge kind=2:

178 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Jerusalem Cube kind=3:

9.7. Add-ons 179

ezdxf Documentation, Release 1.3.2

180 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

SierpinskyPyramid

Build a 3D Sierpinsky Pyramid.
class ezdxf.addons.SierpinskyPyramid (location: UVec = (0.0, 0.0, 0.0), length: float = 1.0, level: int =
1, sides: int =4)
Parameters
* location — location of base center as (X, y, z) tuple
* length —side length
* level - subdivide level
* sides —sides of base geometry

render (layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 | None = None,
ucs: UCS | None = None) — None

Renders the sierpinsky pyramid into layout, set merge to True for rendering the whole sierpinsky pyramid
into one MESH entity, set merge to False for individual pyramids as MESH entities.

Parameters
¢ layout — DXF target layout
* merge — True for one MESH entity, False for individual MESH entities per pyramid
e dxfattribs — DXF attributes for the MESH entities
* matrix — apply transformation matrix at rendering
* ucs - apply UCS at rendering

pyramids () — Iterable[MeshTransformer]
Yields all pyramids of the sierpinsky pyramid as individual MeshTransformer objects.

mesh () — MeshTransformer

Returns geometry as one MeshTransformer object.

Sierpinsky Pyramid with triangle base:

9.7. Add-ons 181

https://en.wikipedia.org/wiki/Sierpinski_triangle

ezdxf Documentation, Release 1.3.2

Sierpinsky Pyramid with square base:

182 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.7.15 Bin-Packing Add-on

This add-on is based on the 3D bin packing module py3dbp hosted on PyPI. Both sources of this package are MIT licensed
like ezdxf itself.

The Bin Packing Problem

Quote from the Wikipedia article:

The bin packing problem is an optimization problem, in which items of different sizes must be packed into
a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of
bins used.

9.7. Add-ons 183

https://github.com/enzoruiz/3dbinpacking
https://pypi.org/project/py3dbp/
https://en.wikipedia.org/wiki/Bin_packing_problem

ezdxf Documentation, Release 1.3.2

Example

This code replicates the example used by the py3dbp package:

from typing import List

import ezdxf

from ezdxf import colors

from ezdxf.addons import binpacking as bp

SMALL_ENVELOPE = ("small-envelope", 11.5, 6.125, 0.25, 10)
LARGE_ENVELOPE = ("large-envelope", 15.0, 12.0, 0.75, 15)
SMALL_BOX = ("small-box", 8.625, 5.375, 1.625, 70.0)
MEDIUM_BOX = ("medium-box", 11.0, 8.5, 5.5, 70.0)
MEDIUM_BOX2 = ("medium-box-2", 13.625, 11.875, 3.375, 70.0)
LARGE_BOX = ("large-box", 12.0, 12.0, 5.5, 70.0)

LARGE_BOX2 = ("large-box-2", 23.6875, 11.75, 3.0, 70.0)

ALL_BINS = [
SMALL_ENVELOPE,
LARGE_ENVELOPE,
SMALL_BOX,
MEDIUM_BOX,
MEDIUM BOX2,
LARGE_BOX,
LARGE_BOX2,

def build_packer():
packer = bp.Packer ()
packer.add_item("50g [powder 1
packer.add_item("50g [powder 2
packer.add_item("50g [powder 3

]
(]
(]
packer.add_item("250g [powder 4]", 7.8740, 3.9370, 1
packer.add_item("250g [powder 5]", 7.8740, 3.9370, 1
packer.add_item("250g [powder 6]", 7.8740, 3.9370, 1.9685,
packer.add_item("250g [powder 71", 7.8740, 3.9370, 1
packer.add_item("250g [powder 8]", 7.8740, 3.9370, 1
packer.add_item("250g [powder 9]", 7.8740, 3.9370, 1

return packer

def make_doc () :
doc = ezdxf.new /()
doc.layers.add ("FRAME", color=colors.YELLOW)
doc.layers.add ("ITEMS")
doc.layers.add ("TEXT")
return doc

def main(filename) :

bins: List[bp.Bin] = []

for box in ALL_BINS:
packer = build_packer ()
packer.add_bin (*box)
packer.pack (bp.PickStrategy.BIGGER_FIRST)
bins.extend (packer.bins)

doc = make_doc ()

", 3.9370, 1.9685, 1.9685,
v, 3,9370, 11,9685, 11,9685,
", 3.9370, 1.9685, 1.9685,
.9685,
- 96E5,

w N =

O 00 J o U i — — —

.9685,
- 96E5,
.9685,

(continues on next page)

184

Chapter 9. Contents

https://github.com/enzoruiz/3dbinpacking

ezdxf Documentation, Release 1.3.2

(continued from previous page)

bp.export_dxf (doc.modelspace (), bins, offset=(0, 20, 0))
doc.saveas (filename)

if == "_ main__ ":
main ("py3dbp_example.dxf")

See also:

e examplel script

e example2 script

Packer Classes

class ezdxf.addons.binpacking.AbstractPacker
bins
List of containers to fill.
items
List of items to pack into the bins.
property is_packed: bool
Returns True if packer is packed, each packer can only be used once.
property unfitted_items: 1list[Item]

Returns the unfitted items.

9.7. Add-ons 185

https://github.com/mozman/ezdxf/blob/master/examples/addons/binpacking.py
https://github.com/mozman/ezdxf/blob/master/examples/addons/binpacking2.py

ezdxf Documentation, Release 1.3.2

str__ () —str
Return str(self).

append_bin (box: Bin) — None

Append a container.
append_item (item: [tem) — None

Append a item.
get_fill_ratio () — float

Return the fill ratio of all bins.
get_capacity () — float

Returns the maximum fill volume of all bins.
get_total_weight () — float

Returns the total weight of all fitted items in all bins.
get_total_volume () — float

Returns the total volume of all fitted items in all bins.

pack (pick=PickStrategy. BIGGER_FIRST) — None

Pack items into bins. Distributes all items across all bins.

Packer

class ezdxf.addons.binpacking.Packer
3D Packer inherited from AbstractPacker.

add_bin (name: str, width: float, height: float, depth: float, max_weight: float = UNLIMITED_WEIGHT) —
Box

Add a 3D Box container.

add_item (payload, width: float, height: float, depth: float, weight: float = 0.0) — Item
Add a 3D Ttemto pack.

FlatPacker

class ezdxf.addons.binpacking.FlatPacker
2D Packer inherited from AbstractPacker. All containers and items used by this packer must have a depth
of 1.
add_bin (name: str, width: float, height: float, max_weight: float = UNLIMITED_WEIGHT) — Envelope
Add a 2D Envelope container.
add_item (payload, width: float, height: float, weight: float = 0.0) — Item
Add a?2D FlatItemto pack.

186 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Bin Classes

class ezdxf.addons.binpacking.Bin (name, width: float, height: float, depth: float, max_weight: float =
UNLIMITED_WEIGHT)

name

Name of then container as string.

width

height

depth

max_weight

property is_empty: bool

str__ () —str
Return str(self).

copy ()
Returns a copy.

reset ()
Reset the container to empty state.

put_item (item: Item, pivot: tuple[float, float, float]) — bool
get_capacity () — float
Returns the maximum fill volume of the bin.

get_total_weight () — float
Returns the total weight of all fitted items.

get_total_volume () — float
Returns the total volume of all fitted items.

get_fill_ratio () — float
Return the fill ratio.

Box Class

class ezdxf.addons.binpacking.Box (name, width: float, height: float, depth: float, max_weight: float =
UNLIMITED_WEIGHT)

3D container inherited from Bin.

9.7. Add-ons 187

ezdxf Documentation, Release 1.3.2

Envelope Class

class ezdxf.addons.binpacking.Envelope (name, width: float, height: float, max_weight: float =
UNLIMITED_WEIGHT)

2D container inherited from Bin.

Item Class

class ezdxf.addons.binpacking.Item (payload, width: float, height: float, depth: float, weight: float =
0.0)

3D container item.

payload
Arbitrary Python object.

width

height

depth

weight

property bbox: AbstractBoundingBox
property rotation_type: RotationType

property position: tuple[float, float, float]
Returns the position of then lower left corner of the item in the container, the lower left corner is the origin
(0, 0, 0).

copy ()
Returns a copy, all copies have a reference to the same payload object.

Return str(self).
get_volume () — float
Returns the volume of the item.
get_dimension () — tuple[float, float, float]
Returns the item dimension according the rotation_type.

get_transformation () — Matrixd4

Returns the transformation matrix to transform the source entity located with the minimum extension corner
of its bounding box in (0, 0, 0) to the final location including the required rotation.

188 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Flatltem Class

class ezdxf.addons.binpacking.FlatItem (payload, width: float, height: float, weight: float = 0.0)
2D container item, inherited from Item. Has a default depth of 1.0.

Functions

ezdxf.addons.binpacking.shuffle_pack (packer: AbstractPacker, attempts: int) — AbstractPacker
Random shuffle packing. Returns a new packer with the best packing result, the input packer is unchanged.

Enums

RotationType

class ezdxf.addons.binpacking.RotationType (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

Rotation type of an item:
e W = width
* H = height
e D =depth

WHD

HWD
HDW
DHW

DWH

PickStrategy

class ezdxf.addons.binpacking.PickStrategy (value, names=_not_given, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

Order of how to pick items for placement.

BIGGER_FIRST
SMALLER_FIRST

SHUFFLE

9.7. Add-ons 189

ezdxf Documentation, Release 1.3.2

Credits

* py3dbp package by Enzo Ruiz Pelaez
* bp3d by gedex - github repository on which py3dbp is based, written in Go

¢ Optimizing three-dimensional bin packing through simulation (PDF)

9.7.16 MeshExchange

The ezdxf.addons.meshex module provides functions to exchange meshes with other tools in the following file
formats:

e STL: import/export, supports only triangles as faces

* OFF: import/export, supports ngons as faces and is more compact than STL

* OBJ: import/export, supports ngons as faces and can contain multiple meshes in one file
¢ PLY: export only, supports ngons as faces

¢ OpenSCAD: export as polyhedron, supports ngons as faces

¢ [FC4: export only, supports ngons as faces

The source or target object is always a MeshBui I1der instance and therefore the supported features are also limited by
this class. Only vertices and faces are exchanged, colors, textures and explicit face- and vertex normals are lost.

Note: This add-on is not a replacement for a proper file format interface for this data formats! It’s just a simple way to
exchange meshes with other tools like OpenSCAD or MeshLab.

Warning: The meshes created by the ezdxf. addons . pycsg add-on are usually not suitable for export because
they often violate the vertex-to-vertex rule: A vertex of a face cannot lie on the edge of another face. This was one
of the reasons to create this addon to get an interface to OpenSCAD.

Example for a simple STL to DXF converter:

import sys
import ezdxf
from ezdxf.addons import meshex

try:
mesh = meshex.stl_readfile("your.stl")
except (meshex.ParsingError, IOError) as e:
print (str(e))
sys.exit (1)

doc = ezdxf.new()
mesh.render_mesh (doc.modelspace())
doc.saveas ("your.dxf")

See also:

Example script meshex_export.py at github.

190 Chapter 9. Contents

https://github.com/enzoruiz/3dbinpacking
https://github.com/gedex/bp3d
https://github.com/enzoruiz/3dbinpacking
https://github.com/enzoruiz/3dbinpacking/blob/master/erick_dube_507-034.pdf
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)
https://openscad.org/index.html
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://openscad.org/index.html
https://www.meshlab.net
https://openscad.org/index.html
https://github.com/mozman/ezdxf/blob/master/examples/addons/meshex_export.py

ezdxf Documentation, Release 1.3.2

Import

ezdxf.addons.meshex.stl_readfile (filename: str | PathLike) — MeshTransformer
Read ascii or binary STL file content as ezdxf . render.MeshTransformer instance.

Raises
ParsingError — vertex parsing error or invalid/corrupt data

ezdxf.addons.meshex.stl_loads (content: str) — MeshTransformer

Load a mesh from an ascii STL content string as ezdxf. render.MeshTransformer instance.

Raises
ParsingError — vertex parsing error

ezdxf.addons.meshex.stl_loadb (buffer: bytes) — MeshTransformer
Load a mesh from a binary STL data ezdxf. render.MeshTransformer instance.

Raises
ParsingError — invalid/corrupt data or not a binary STL file

ezdxf.addons.meshex.off_readfile (filename: str | PathLike) — MeshTransformer

Read OFF file content as ezdxf . render.MeshTransformer instance.

Raises
ParsingError — vertex or face parsing error

ezdxf.addons.meshex.off_loads (content: str) — MeshTransformer

Load a mesh from a OFF content string as ezdxf . render.MeshTransformer instance.

Raises
ParsingError — vertex or face parsing error

ezdxf.addons.meshex.ob]j_readfile (filename: str | PathLike) — listfMeshTransformer]
Read OBJ file content as list of ezdx . render.MeshTransformer instances.

Raises
ParsingError — vertex or face parsing error

ezdxf.addons.meshex.ob]j_loads (content: str) — listfMeshTransformer]

Load one or more meshes from an OBJ content string as list of ezdxf.render.MeshTransformer in-
stances.

Raises
ParsingError — vertex parsing error

Export

ezdxf.addons.meshex.stl_dumps (mesh: MeshBuilder) — str

Returns the STL data as string for the given mesh. This function triangulates the meshes automatically because the
STL format supports only triangles as faces.

This function does not check if the mesh obey the STL format rules:
* The direction of the face normal is outward.

» The face vertices are listed in counter-clockwise order when looking at the object from the outside (right-hand
rule).

» Each triangle must share two vertices with each of its adjacent triangles.

9.7. Add-ons 191

https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
http://www.fabbers.com/tech/STL_Format

ezdxf Documentation, Release 1.3.2

» The object represented must be located in the all-positive octant (non-negative and nonzero).

ezdxf.addons.meshex.stl_dumpb (mesh: MeshBuilder) — bytes
Returns the STL binary data as bytes for the given mesh.

For more information see function: st 1_dumps ()

ezdxf.addons.meshex.off_dumps (mesh: MeshBuilder) — str

Returns the OFF data as string for the given mesh. The OFF format supports ngons as faces.
ezdxf.addons.meshex.ob]j_dumps (mesh: MeshBuilder) — str

Returns the OBJ data as string for the given mesh. The OBJ format supports ngons as faces.
ezdxf.addons.meshex.ply_dumpb (mesh: MeshBuilder) — bytes

Returns the PLY binary data as bytes for the given mesh. The PLY format supports ngons as faces.

ezdxf.addons.meshex.scad_dumps (mesh: MeshBuilder) — str

Returns the OpenSCAD polyhedron definition as string for the given mesh. OpenSCAD supports ngons as faces.

Important: OpenSCAD requires the face normals pointing inwards, the method f1ip_normals () of the
MeshBuilder class can flip the normals inplace.

ezdxf.addons.meshex.ifcd_dumps (mesh: MeshBuilder, entity_type=IfcEntityType. POLYGON_FACE_SET,
* layer: str = 'MeshExport', color: tuple[float, float, float] = (1.0, 1.0,

1.0)) — str
Returns the [FC4 string for the given mesh. The caller is responsible for checking if the mesh is a closed or open
surface (e.g. mesh.diagnose () .euler_characteristic == 2)and using the appropriate entity type.
Parameters

* mesh — MeshBuilder
* entity_type- IfcEntityType
* layer - layer name as string

* color — entity color as RGB tuple, values in the range [0,1]

Warning: [FC4 is a very complex data format and this is a minimal effort exporter, so the exported data may
not be importable by all CAD applications.

The exported IFC4 data can be imported by the following applications:
* BricsCAD
e FreeCAD (IfcOpenShell)
* Allplan
» Tekla BIMsight

ezdxf.addons.meshex.export_ifcZIP (filename: str | PathLike, mesh: MeshBuilder,
entity_type=IfcEntityType. POLYGON_FACE_SET, *, layer: str =
'"MeshExport', color: tuple[float, float, float] = (1.0, 1.0, 1.0))
Export the given mesh as zip-compressed [FC4 file. The filename suffix should be . i £cZ IP. For more information
see function i fc4_dumps ().

Parameters

192 Chapter 9. Contents

https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OFF_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/OBJ_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)
https://openscad.org/index.html
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron
https://openscad.org/index.html
https://openscad.org/index.html
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://en.wikipedia.org/wiki/Industry_Foundation_Classes

ezdxf Documentation, Release 1.3.2

» filename - zip filename, the data file has the same name with suffix . ifc
* mesh - MeshBuilder

* entity_type- IfcEntityType

* layer — layer name as string

* color - entity color as RGB tuple, values in the range [0,1]

Raises
IOError - IO error when opening the zip-file for writing

class ezdxf.addons.meshex.IfcEntityType (value, names=_not_given, *values, module=None,

qualname=None, type=None, start=1, boundary=None)

POLYGON_FACE_SET
“SurfaceModel” representation usable for open or closed surfaces.
CLOSED_SHELL

“Brep” representation usable for closed surfaces.

OPEN_SHELL
“SurfaceModel” representation usable for open surfaces.

9.7.17 OpenSCAD

Interface to the OpenSCAD application to apply boolean operations to MeshBui lder objects. For more information
about boolean operations read the documentation of OpenSCAD. The OpenSCAD application is not bundled with ezdxf,
you need to install the application yourself.

On Windows the path to the openscad.exe executable is stored in the config file (see ezdxf.options) in the
“openscad-addon” section as key “win_exec_path”, the default entry is:

[openscad—-addon]
win_exec_path = "C:\Program Files\OpenSCAD\openscad.exe"

On Linux and macOS the openscad command is located by the shutil.which () function.

Example:

import ezdxf
from ezdxf.render import forms
from ezdxf.addons import MengerSponge, openscad

doc ezdxf.new ()
msp = doc.modelspace ()

1. create the meshes:
sponge = MengerSponge (level=3) .mesh ()
sponge.flip_normals () # important for OpenSCAD
sphere = forms.sphere (

count=32, stacks=16, radius=0.5, quads=True
) .translate(0.25, 0.25, 1)
sphere.flip_normals () # important for OpenSCAD

2. create the script:
script = openscad.boolean_operation (openscad.DIFFERENCE, sponge, sphere)

(continues on next page)

9.7. Add-ons 193

https://openscad.org
https://openscad.org
https://openscad.org

ezdxf Documentation, Release 1.3.2

(continued from previous page)

3. execute the script by OpenSCAD:
result = openscad.run (script)

4. render the MESH entity:
result.render_mesh (msp)

doc.set_modelspace_vport (6, center=(5, 0))
doc.saveas ("OpenSCAD.dxf")

194 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Functions

ezdxf.addons.openscad. run (script: str, exec_path: str | None = None) — MeshTransformer

Executes the given script by OpenSCAD and returns the result mesh as MeshTransformer.
Parameters
* script —the OpenSCAD script as string
* exec_path - path to the executable as string or None to use the default installation path

ezdxf.addons.openscad.boolean_operation (op: Operation, meshl: MeshBuilder, mesh2: MeshBuilder)
— str

Returns an OpenSCAD script to apply the given boolean operation to the given meshes.
The supported operations are:

« UNION

* DIFFERENCE

e INTERSECTION

ezdxf.addons.openscad.is_installed () — bool

Returns True if OpenSCAD is installed. = On Windows only the default install path ‘C:\Program
Files\OpenSCAD\openscad.exe’ is checked.

Script Class

class ezdxf.addons.openscad.Script

Helper class to build OpenSCAD scripts. This is a very simple string building class and does no checks at all! If
you need more advanced features to build OpenSCAD scripts look at the packages solidpython2 and openpyscad.

add (data: str) — None
Add a string.

add_mirror (v: UVec) — None
Addamirror () operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#mirror

Parameters
v — the normal vector of a plane intersecting the origin through which to mirror the object

add_multmatrix (m: Matrix44) — None

Add a transformation matrix of type Matrix44 asmultmatrix () operation.

OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#multmatrix
add_polyhedron (mesh: MeshBuilder) — None

Add mesh as polyhedron () command.

OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron

add_polygon (path: Iterable[UVec], holes: Sequence[lterable[UVec]] | None = None) — None

Add apolygon () command. This is a 2D command, all z-axis values of the input vertices are ignored and
all paths and holes are closed automatically.

OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#
polygon

9.7. Add-ons 195

https://openscad.org
https://pypi.org/project/solidpython2/
https://pypi.org/project/openpyscad/
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#mirror
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#multmatrix
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#polygon
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#polygon

ezdxf Documentation, Release 1.3.2

Parameters
* path — exterior path
* holes - a sequence of one or more holes as vertices, or None for no holes
add_resize (nx: float, ny: float, nz: float, auto: bool | tuple[bool, bool, bool] | None = None) — None
Add a resize () operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#resize
Parameters
* nx — new size in x-axis
* ny - new size in y-axis
* nz —new size in z-axis

e auto — If the auto argument is set to True, the operation auto-scales any 0-dimensions to
match. Set the auto argument as a 3-tuple of bool values to auto-scale individual axis.

add_rotate (ax: float, ay: float, az: float) — None
Add a rotation () operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
Parameters
e ax — rotation about the x-axis in degrees
* ay - rotation about the y-axis in degrees
e az - rotation about the z-axis in degrees

add_rotate_about_axis (a: float, v: UVec) — None

Add a rotation () operation about the given axis v.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
Parameters
* a —rotation angle about axis v in degrees
e v —rotation axis as ezdxf.math. UVec object
add_scale (sx: float, sy: float, sz: float) — None
Add a scale () operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#scale
Parameters
* sx — scaling factor for the x-axis
¢ sy — scaling factor for the y-axis
* sz — scaling factor for the z-axis

add_translate (v: UVec) — None
Add a translate () operation.

OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#translate

Parameters
v — translation vector

196 Chapter 9. Contents

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#resize
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#scale
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#translate

ezdxf Documentation, Release 1.3.2

get_string () — str
Returns the OpenSCAD build script.

Boolean Operation Constants

ezdxf.addons.openscad.UNION
ezdxf.addons.openscad.DIFFERENCE

ezdxf.addons.openscad.INTERSECTION

openpyscad

This add-on is not a complete wrapper around OpenSCAD, if you need such a tool look at the openpyscad or solidpython2

packages at PyPIL.

Not sure if the openpyscad package is still maintained, the last commit at github is more than a year old and did not pass

the CI process! (state June 2022)

This code snippet shows how to get the MeshTransformer object from the basic openpyscad example:

from ezdxf.addons import openscad
import openpyscad as ops

cl = ops.Cube([10, 20, 101])
c2 = ops.Cube([20, 10, 10])

dump OpenSCAD script as string:
script = (cl + c2).dumps ()

execute script and load the result as MeshTransformer instance:
mesh = openscad.run(script)

Create an openpyscad Polyhedron object from an ezdxf MeshBuilder object:

from ezdxf.render import forms
import openpyscad as ops

create an ezdxf MeshBuilder () object
sphere = forms.sphere ()
sphere.flip_normals () # required for OpenSCAD

create an openpyscad Polyhedron () object

polyhedron = ops.Polyhedron (
points=[list (p) for p in sphere.vertices], # convert Vec3 objects to lists!
faces=[list (f) for f in sphere.faces], # convert face tuples to face lists!

create the OpenSCAD script:
script = polyhedron.dumps ()

The type conversion is needed to get valid OpenSCAD code from openpyscad!

9.7. Add-ons

197

https://openscad.org
https://pypi.org/project/openpyscad/
https://pypi.org/project/solidpython2/
https://pypi.org/project/openpyscad/
https://github.com/taxpon/openpyscad
https://pypi.org/project/openpyscad/
https://pypi.org/project/openpyscad/
https://openscad.org
https://pypi.org/project/openpyscad/

ezdxf Documentation, Release 1.3.2

solidpython2

The solidpython2 package seems to be better maintained than the openpyscad package, but this is just an opinion based
on newer commits at github (link) for the solidpython2 package.

Same example for solidpython2:

from ezdxf.addons import openscad
from solid2 import cube, scad_render

cl = cube([10, 20, 10])
c2 = cube ([20, 10, 101)

dump OpenSCAD script as string:
script = scad_render(cl + c2)

execute script and load the result as MeshTransformer instance:
mesh = openscad.run (script)

Create a solidpython2 polyhedron object from an ezdxf MeshBui lder object:

from ezdxf.render import forms
from solid2 import polyhedron, scad_render

create an ezdxf MeshBuilder () object
sphere = forms.sphere ()
sphere.flip_normals () # required for OpenSCAD

create a solidpython2 polyhedron () object

ph = polyhedron (
points=[v.xyz for v in sphere.vertices], # convert Vec3 objects to tuples!
faces=sphere.faces, # types are compatible

create the OpenSCAD script:
script = scad_render (ph)

9.7.18 TablePainter

This is an add-on for drawing tables build from DXF primitives.

This add-on was created for porting dx fwrite projects to e zdx £ and was not officially documented for e zdx £ versions
prior the 1.0 release. For the 1.0 version of ezdx £, this class was added as an officially documented add-on because full
support for the ACAD_TABLE entity is very unlikely due to the enormous complexity for both the entity itself, and for
the required infrastructure and also the lack of a usable documentation to implement all that features.

Important: This add-on is not related to the ACAD_TABLE entity at all and and does not create ACAD_TABLE
entities!

The table cells can contain multi-line text or BLOCK references. You can create your own cell types by extending the
CustomCell class. The cells are addressed by zero-based row and column indices. A table cell can span over multiple
columns and/or rows.

A TextCell can contain multi-line text with an arbitrary rotation angle or letters stacked from top to bottom. The
MTextSurrogate add-on is used to create multi-line text compatible to DXF version R12.

198 Chapter 9. Contents

https://pypi.org/project/solidpython2/
https://pypi.org/project/openpyscad/
https://github.com/jeff-dh/SolidPython
https://pypi.org/project/solidpython2/
https://pypi.org/project/solidpython2/
https://pypi.org/project/solidpython2/

ezdxf Documentation, Release 1.3.2

A BlockCell contains block references (INSERT entities), if the block definition contains attribute definitions as
ATTDEEF entities, these attributes can be added automatically to the block reference as ATTRIB entities.

Note: The DXF format does not support clipping boxes ot paths, therefore the render method of any cell can render
beyond the borders of the cell!

Tutorial

Set up a new DXF document:

import ezdxf
from ezdxf.enums import MTextEntityAlignment
from ezdxf.addons import TablePainter

doc = ezdxf.new ("R2000") # required for lineweight support
doc.header ["SLWDISPLAY"] = 1 # show lineweights
doc.styles.add ("HEAD", font="OpenSans-ExtraBold.ttf")
doc.styles.add ("CELL", font="OpenSans—Regular.ttf")

Create anew TablePainter object with four rows and four columns, the insert location is the default render location
but can be overriden in the render () method:

table = TablePainter (
insert=(0, 0), nrows=4, ncols=4, cell_width=6.0, cell_height=2.0

Create anew Cel 1Sty le object for the table-header called “head”:

table.new_cell_style(
"head",
text_style="HEAD",
text_color=ezdxf.colors.BLUE,
char_height=0.7,
bg_color=ezdxf.colors.LIGHT_GRAY,
align=MTextEntityAlignment .MIDDLE_CENTER,

Redefine the default Ce 115ty 1e for the content cells:

reset default cell style

default_style = table.get_cell_style("default")
default_style.text_style = "CELL"
default_style.char_height = 0.5

default_style.align = MTextEntityAlignment.BOTTOM_LEFT

Set the table-header content:

for col in range (4) :
table.text_cell (0, col, f"Head[{col}]", style="head")

Set the cell content:

for row in range(l, 4):
for col in range (4):
(continues on next page)

9.7. Add-ons 199

ezdxf Documentation, Release 1.3.2

(continued from previous page)
] +n

cell style is "default

table.text_cell (row, col, f"Cell[{row}/, col}]")

Add a red frame around the table-header:

new cell style 1is required
red_frame = table.new_cell_style("red-frame")
red_borderline = table.new_border_style(color=ezdxf.colors.RED, lineweight=35)

le for all cell borders

set the red borderline ¢

red_frame.set_border_style (red_borderline)

create the frame object

table.frame (0, 0, 4, style="red-frame")

Render the table into the modelspace and export the DXF file:

render the table, shifting the left-bott of the table to the «

table.render (doc.modelspace (), insert=(0, table.table_height))

om

th = table.table_height

tw = table.table_width

doc.set_modelspace_vport (height=th * 1.5, center=(tw/2, th/2))
doc.saveas ("table_tutorial.dxf")

Cell[1, O] Cell[1, 1] Cell[1, 2] Cell[1, 3]

Cell[2, 0] Cell[2, 1] Cell[2, 2] Cellf2, 3]

Cell[3, 1] Cell[3, 2] Cell[3, 3]

See also:

» Example script: table_painter_addon.py

TablePainter

class ezdxf.addons.tablepainter.TablePainter (insert: UVec, nrows: int, ncols: int,
cell_width=DEFAULT _CELL_WIDTH,
cell_height=DEFAULT _CELL_HFIGHT,
default_grid=True)

The TablePainter class renders tables build from DXF primitives.
The TablePainter instance contains all the data cells.
Parameters

* insert —insert location as or UVec

200 Chapter 9. Contents

https://github.com/mozman/ezdxf/blob/master/examples/addons/table_painter_addon.py

ezdxf Documentation, Release 1.3.2

®* Nrows — row count

* ncols — column count

* cell_width — default cell width in drawing units

* cell_height — default cell height in drawing units

e default_grid - draw a grid of solid lines if True, otherwise draw only explicit defined
borders, the default grid has a priority of 50.

bg_layer_ name: str
background layer name, layer for the background SOLID entities, default is “TABLEBACKGROUND”

fg_layer_name: str

foreground layer name, layer for the cell content, default is “TABLECONTENT”
grid_layer_name: str

table grid layer name, layer for the cell border lines, default is “TABLEGRID”

property table_width: float
Returns the total table width.

property table_height: float
Returns the total table height.

set_col_width (index: int, value: float)
Set column width in drawing units of the given column index.

Parameters
¢ index - zero based column index
* value — new column width in drawing units
set_row_height (index: int, value: float)
Set row height in drawing units of the given row index.
Parameters
¢ index - zero based row index
* value — new row height in drawing units

text_cell (row: int, col: int, text: str, span: tuple[int, int] = (1, 1), style="default'’y — TextCell

Factory method to create a new text cell at location (row, col), with zext as content, the zext can be a line breaks
"\n"'. The final cell can spread over several cells defined by the argument span.

block_cell (row: int, col: int, blockdef: BlockLayout, span: tuple[int, int] = (1, 1), attribs=None,
style='"default') — BlockCell

Factory method to Create a new block cell at position (row, col).

Content is a block reference inserted by an INSERT entity, attributes will be added if the block definition
contains ATTDEF. Assignments are defined by attribs-key to attdef-tag association.

Example: attribs = {‘num’: 1} if an ATTDEF with tag=="num’ in the block definition exists, an attrib with
text=str(1) will be created and added to the insert entity.

The cell spans over ‘span’ cells and has the cell style with the name ‘style’.

set_cell (row: int, col: int, cell: T) — T

Insert a cell at position (row, col).

9.7. Add-ons 201

ezdxf Documentation, Release 1.3.2

get_cell (row: int, col: int) — Cell

Get cell at location (row, col).

new_cell_style (name: str, **kwargs) — CellStyle

Factory method to create a new Ce 1Sty e object, overwrites an already existing cell style.
Parameters
* name - style name as string
* kwargs — see attributes of class Cel1Style

get_cell_style (name: str) — CellStyle
Get cell style by name.

static new_border_style (color: int = const. BYLAYER, status="True, priority: int = 100, linetype: str =
'BYLAYER', lineweight: int = const. LINEWEIGHT _BYLAYER) —
BorderStyle

Factory method to create a new border style.
Parameters
e status — True for visible, False for invisible
e color — AutoCAD Color Index (ACI)
¢ linetype - linetype name, default is “BYLAYER”
* lineweight - lineweight as int, default is by layer
* priority — drawing priority, higher priorities cover lower priorities

frame (row: int, col: int, width: int = 1, height: int = 1, style='default') — Frame

Creates a frame around the give cell area, starting at (row, col) and covering width columns and height rows.
The style argument is the name of a Cel1Style.

render (layout: GenericLayoutType, insert: UVec | None = None)

Render table to layout.

Cell

class ezdxf.addons.tablepainter.Cell
Abstract base class for table cells.

TextCell

class ezdxf.addons.tablepainter.TextCell

Implements a cell type containing a multi-line text. Uses the MText Surrogate add-on to render the multi-line
text, therefore the content of these cells is compatible to DXF R12.

Important: Use the factory method TablePainter.text_cell () to instantiate text cells.

202 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

BlockCell

class ezdxf.addons.tablepainter.BlockCell (fable: TablePainter, blockdef: BlockLayout,
style="default', attribs=None, span: tuple[int, int] = (1,
1))

Implements a cell type containing a block reference.
Parameters
* table - table object
e blockdef — ezdxf.layouts.BlockLayout instance
* attribs - BLOCK attributes as (tag, value) dictionary
* style — cell style name as string
* span — tuple(rows, cols) area of cells to cover

Implements a cell type containing a block reference.

Important: Use the factory method TablePainter.block_cell () to instantiate block cells.

CustomCell

class ezdxf.addons.tablepainter.CustomCell
Base class to implement custom cells. Overwrite the render () method to render the cell. The custom cell type
has to be instantiated by the user and added to the table by the TablePainter.set_cell () method.
render (layout: GenericLayoutType, coords: Sequence[float], layer: str)
Renders the cell content into the given layout.
The render space is defined by the argument coords which is a tuple of 4 float values in the order: left, right,

top, bottom. These values are layout coordinates in drawing units. The DXF format does not support clipping
boxes, therefore the render method can render beyond these borders!

CellStyle

class ezdxf.addons.tablepainter.CellStyle (data: dict[str, Any] | None = None)
Cell style object.

Important: Always instantiate new styles by the factory method: TablePainter.new_cell_style ()

text_style: str

Textstyle name as string, ignored by BlockCell
char_height: float

text height in drawing units, ignored by B1ockCell
line_spacing: float

line spacing in percent, distance of line base points = char_height * line_spacing, ignored by
BlockCell

9.7. Add-ons 203

ezdxf Documentation, Release 1.3.2

scale_x: float

text stretching factor (width factor) or block reference x-scaling factor
scale_y: float

block reference y-scaling factor, ignored by TextCell
text_color: int

AutoCAD Color Index (ACI) for text, ignored by BlockCell
rotation: float

text or block rotation in degrees

stacked: bool

Stacks letters of TextCell instances from top to bottom without rotating the characters if True, ignored
by BlockCell

align: MTextEntityAlignment
text and block alignment, see ezdx f.enums.MTextEntityAlignment

margin_x: float

left and right cell margin in drawing units
margin_y: float

top and bottom cell margin in drawing units

bg_color: int
cell background color as AutoCAD Color Index (ACI), ignored by BlockCell

left: BorderStyle
left cell border style

top: BorderStyle
top cell border style

right: BorderStyle
right cell border style

bottom: BorderStyle
bottom cell border style

set_border_status (left=True, right=True, top=True, bottom=True)
Set status of all cell borders at once.

set_border_style (style: BorderStyle, left=True, right=True, top=True, bottom=True)
Set border styles of all cell borders at once.

static get_default_border_style () — BorderStyle

204 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

BorderStyle

class ezdxf.addons.tablepainter.BorderStyle (status: bool = DEFAULT_BORDER_STATUS, color:
int = DEFAULT_BORDER_COLOR, linetype: str =
DEFAULT_BORDER_LINETYPE,
lineweight=const. LINEWEIGHT _BYLAYER, priority:
int = DEFAULT_BORDER_PRIORITY)

Border style class.

Important: Always instantiate new border styles by the factory method: TablePainter.
new_border_style()

status: bool

border status, True for visible, False for hidden

color: int
AutoCAD Color Index (ACI)

linetype: str

linetype name as string, default is “BYLAYER”
lineweight: int

lineweight as int, default is by layer
priority: int

drawing priority, higher values cover lower values

9.7.19 MTextSurrogate for DXF R12

class ezdxf.addons.MTextSurrogate (text: str, insert: UVec, line_spacing: float = 1.5,
align=MTextEntityAlignment. TOP_LEFT, char_height: float = 1.0,
style="STANDARD', oblique: float = 0.0, rotation: float = 0.0,
width_factor: float = 1.0, mirror=Mirror.NONE, layer="0', color:
int = const. BYLAYER)

MTEXT surrogate for DXF R12 build up by TEXT Entities. This add-on was added to simplify the transition from
dxfwriteto ezdxf.

The rich-text formatting capabilities for the regular MTEXT entity are not supported, if these features are re-
quired use the regular MTEXT entity and the MTextExplode add-on to explode the MTEXT entity into DXF
primitives.

Important: The align-point is always the insert-point, there is no need for a second align-point because the
horizontal alignments FIT, ALIGN, BASELINE_MIDDLE are not supported.

Parameters
* text — content as string
* insert —insert location in drawing units
* line_spacing - line spacing in percent of height, 1.5 = 150% = 1+1/2 lines

* align —text alignment as MTextEntityAlignment enum

9.7. Add-ons 205

ezdxf Documentation, Release 1.3.2

* char_height - text height in drawing units

* style — Textstyle name as string

* oblique - oblique angle in degrees, where O is vertical
* rotation — text rotation angle in degrees

* width_factor — text width factor as float

* mirror - MTextSurrogate.MIRROR_X to mirror the text horizontal or
MTextSurrogate.MIRROR_Y to mirror the text vertical

* layer - layer name as string

e color — AutoCAD Color Index (ACI)

render (layout: GenericLayoutType) — None
Render the multi-line content as separated TEXT entities into the given layout instance.

9.7.20 ASTM-D6673-10 Exporter

This add-on creates special DXF files for use by Gerber Technology applications which have a low quality DXF parser
and cannot parse/ignore BLOCKS which do not contain data according the ASTM-D6673-10 standard. The function
export_file () exports DXF R12 and only DXF R12 files which do not contain the default “sMODEL_SPACE”
and “$SPAPER_SPACE” layout block definitions, have an empty HEADER section and no TABLES section. These special
requirements of the Gerber Technology parser are annoying, but correspond to the DXF R12 standard.

Autodesk applications maybe complain about invalid BLOCK names such as “Shape 0_M”, which in my opinion are
valid, maybe spaces were not allowed in the original R12 version, but this is just a minor issue and is more a problem of
the picky Autodesk DXF parser, which is otherwise very forgiving for DXF R12 files.

import ezdxf
from ezdxf.addons import gerber_D6673

doc = ezdxf.new("R12") # the export function rejects other DXF versions
msp doc.modelspace ()

Create your content according the ASTM-D6673-10 standard
Do not use any linetypes or text styles, the TABLES section will not be exported.
The ASTM-D6673-10 standard supports only 7-bit ASCII characters.

gerber_D6673.export_file(doc, "gerber_ file.dxf")

ezdxf.addons.gerber_D6673.export_£file (doc: Drawing, filename: str | PathLike) — None
Exports the specified DXF R12 document, which should contain content conforming to the ASTM-D6673-10
standard, in a special way so that Gerber Technology applications can parse it by their low-quality DXF parser.
ezdxf.addons.gerber_D6673.export_stream (doc: Drawing, stream: TextlO) — None
Exports the specified DXF R12 document into a stream object.

206 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.8 Reference

The DXF Reference is online available at Autodesk.

Quoted from the original DXF 12 Reference which is not available on the web:

Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes significantly as
new features are added to AutoCAD, we do not document its format and do not recommend that you attempt
to write programs to read it directly. To assist in interchanging drawings between AutoCAD and other
programs, a Drawing Interchange file format (DXF) has been defined. All implementations of AutoCAD
accept this format and are able to convert it to and from their internal drawing file representation.

9.8.1 DXF Document
Document Management

Create New Drawings

ezdxf .new (dxfversion='AC1027', setup=False, units=6) — Drawing

Create a new Drawing from scratch, dxfversion can be either “AC1009” the official DXF version name or “R12”

the AutoCAD release name.

new () can create drawings for following DXF versions:

Version

AutoCAD Release

AC1009
ACI1015
AC1018
AC1021
AC1024
AC1027
AC1032

AutoCAD R12

AutoCAD R2000
AutoCAD R2004
AutoCAD R2007
AutoCAD R2010
AutoCAD R2013
AutoCAD R2018

The units argument defines th document and modelspace units. The header variable SMEASUREMENT will be set
according to the given units, O for inch, feet, miles, ... and 1 for metric units. For more information go to module

ezdxf.units

Parameters

» dxfversion — DXF version specifier as string, default is “AC1027” respectively “R2013”

* setup — setup default styles, False for no setup, True to setup everything or a list of topics

G«

as strings, e.g. [“linetypes”, “styles”] to setup only some topics:

Topic

Description

linetypes
styles
dimstyles
visualstyles

setup line types

setup text styles

setup default ezdxf dimension styles
setup 25 standard visual styles

* units — document and modelspace units, default is 6 for meters

9.8. Reference

207

http://docs.autodesk.com/ACD/2014/ENU/index.html?url=files/GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3.htm,topicNumber=d30e652301
http://usa.autodesk.com/

ezdxf Documentation, Release 1.3.2

Open Drawings

Open DXF drawings from file system or text stream, byte stream usage is not supported.

DXEF files prior to R2007 requires file encoding defined by header variable SDWGCODEPAGE, DXF R2007 and later
requires an UTF-8 encoding.

ezdxf supports reading of files for following DXF versions:

Version Release Encoding Remarks

< AC1009 $DWGCODEPAGE pre AutoCAD R12 upgraded to AC1009
AC1009 R12 $DWGCODEPAGE AutoCAD R12

AC1012 R13 $DWGCODEPAGE AutoCAD R13 upgraded to AC1015
AC1014 R14 $DWGCODEPAGE AutoCAD R14 upgraded to AC1015
AC1015 R2000 $DWGCODEPAGE AutoCAD R2000

AC1018 R2004 $DWGCODEPAGE AutoCAD R2004

AC1021 R2007 UTEF-8 AutoCAD R2007

AC1024 R2010 UTF-8 AutoCAD R2010

AC1027 R2013 UTEF-8 AutoCAD R2013

AC1032 R2018 UTF-8 AutoCAD R2018

ezdxf.readfile (filename: str | PathLike, encoding: str | None = None, errors: str = 'surrogateescape') — Drawing

Read the DXF document filename from the file-system.

This is the preferred method to load existing ASCII or Binary DXF files, the required text encoding will be detected
automatically and decoding errors will be ignored.

Override encoding detection by setting argument encoding to the estimated encoding. (use Python encoding names
like in the open () function).

If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover.readfile () function to load this corrupt DXF document.

Parameters

* filename —filename of the ASCII- or Binary DXF document

* encoding — use None for auto detect (default), or set a specific encoding like “utf-8”, ar-
gument is ignored for Binary DXF files

* errors — specify decoding error handler

— 7surrogateescape” to preserve possible binary data (default)

— ignore” to use the replacement char U+FFFD “€” for invalid data

— 7strict” to raise an UnicodeDecodeError exception for invalid data

Raises

e IOError —not a DXF file or file does not exist

* DXFStructureError — for invalid or corrupted DXF structures

* UnicodeDecodeError —if errors is “strict” and a decoding error occurs

ezdxf .read (stream: TextlO) — Drawing

Read a DXF document from a text-stream. Open stream in text mode (mode="rt ') and set correct text encoding,
the stream requires at least a readline () method.

208

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Since DXF version R2007 (AC1021) file encoding is always “utf-8”, wuse the helper function
dxf_stream_info () to detect the required text encoding for prior DXF versions. To preserve possi-
ble binary data in use errors="'surrogateescape"' as error handler for the import stream.

If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover. read () function to load this corrupt DXF document.

Parameters
stream — input text stream opened with correct encoding

Raises
DXFStructureError — for invalid or corrupted DXF structures

ezdxf.readzip (zipfile: str | PathLike, filename: str | None = None, errors: str = 'surrogateescape') — Drawing

Load a DXF document specified by filename from a zip archive, or if filename is None the first DXF document in
the zip archive.

Parameters
* zipfile - name of the zip archive

* filename - filename of DXF file, or None to load the first DXF document from the zip
archive.

* errors - specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— Yignore” to use the replacement char U+FFFD “@” for invalid data
— ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* IOError — not a DXF file or file does not exist or if filename is None - no DXF file found
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf .decode_base64 (data: bytes, errors: str = ‘surrogateescape') — Drawing
Load a DXF document from base64 encoded binary data, like uploaded data to web applications.

Parameters
* data — DXF document base64 encoded binary data
» errors — specify decoding error handler
— “surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures

* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

Hint: This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with
minor or major flaws look at the ezdxf. recover module.

9.8. Reference 209

ezdxf Documentation, Release 1.3.2

Save Drawings

Save the DXF document to the file system by Drawing methods save () or saveas (). Write the DXF document
to a text stream with write (), the text stream requires at least a write () method. Get required output encoding for
text streams by property Drawing.output_encoding

Drawing Settings

The HeaderSection stores meta data like modelspace extensions, user name or saving time and current application
settings, like actual layer, text style or dimension style settings. These settings are not necessary to process DXF data and
therefore many of this settings are not maintained by ezdxf automatically.

Header variables set at new

$ACADVER DXF version
$TDCREATE date/time at creating the drawing
$FINGERPRINTGUID every drawing gets a GUID

Header variables updated at saving

$TDUPDATE actual date/time at saving
$HANDSEED next available handle as hex string
$DWGCODEPAGE encoding setting

$VERSIONGUID every saved version gets a new GUID

See also:
e Howto: Set/Get Header Variables
* Howto: Set DXF Drawing Units

Ezdxf Metadata

Store internal metadata like ezdxf version and creation time for a new created document as metadata in the DXF file.
Only standard DXF features are used to store meta data and this meta data is preserved by Autodesk products, BricsCAD
and of course ezdxf. Other 3rd party DXF libraries may remove this meta data.

For DXF R12 the meta data is stored as XDATA by AppID EZDXF in the model space BLOCK entity in the BLOCKS
section.

For DXF R2000+ the meta data is stored in the “root” DICTIONARY in the OBJECTS section as a DICTIONARY
object by the key EZDXF_META.

The MetaData object has a dict-like interface and can also store custom metadata:

metadata = doc.ezdxf_metadata ()

set data
metadata["MY_CUSTOM_META_DATA"] = "a string with max. length of 254"
(continues on next page)

210 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

(continued from previous page)

get data, raises a KeyError () if key not exist
value = metadata["MY_ _CUSTOM _META_DATA"]

get data, returns an empty string if key not exist
value = metadata.get ("MY_CUSTOM_META_DATA")

delete entry, raises a KeyError() if key not exist
del metadata["MY CUSTOM _META DATA"]

discard entry, does not raise a KeyError () if key not exist
metadata.discard ("MY_CUSTOM_META_DATA")

Keys and values are limited to strings with a max. length of 254 characters and line ending \n will be replaced by \P.
Keys used by ezdxf:

* WRITTEN_BY_EZDXF: ezdxf version and UTC time in ISO format

* CREATED_BY_EZDXF: ezdxf version and UTC time in ISO format
Example of the ezdxf marker string: 0.16.4b1 @ 2021-06-12T07:35:34.898808+00:00
class ezdxf.document.MetaData

abstract MetaData.__contains__ (key: str) — bool
Returns key in self.

abstract MetaData.__getitem__ (key: str) — str

Returns the value for self[key].

Raises
KeyError — key does not exist

MetaData.get (key: str, default: str =") — str
Returns the value for key. Returns default if key not exist.
abstract MetaData.__setitem__ (key: str, value: str) — None
Set self[key] to value.
abstract MetaData.__delitem__ (key: str) — None
Delete self[key].

Raises
KeyError — key does not exist

MetaData.discard (key: str) — None

Remove key, does not raise an exception if key not exist.

9.8. Reference 211

ezdxf Documentation, Release 1.3.2

Export/Load JSON Encoded Tags

Tag format of DXF documents:

0
SECTION
2

HEADER

9
SACADVER
1

AC1027

9

SLIMMIN

10

0.0

20

0.0

9

SLIMMAX

10

420.0

20

297.0

9
SORTHOMODE
70

0

9
SREGENMODE
70

1

0
EOF

The compact format is a list of [group—-code, wvalue] pairs where each pair is a DXF tag. The group-code has to
be an integer and the value has to be a string, integer, float or list of floats for vertices.

[

[0, "SECTION"],
[2, "HEADER"],
[9, "SACADVER"],
[1, "AC1027"],

[9, "SLIMMIN"],

[10, [0.0,0.011],

[9, "SLIMMAX"],

[10, [420.0,297.011]1,
[9, "SORTHOMODE"],
[70, 01,

[9, "SREGENMODE"],
[70, 1]

[0, "EOF"]
]

212 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

The verbose format (compact is False)is alist of [group—code, wvalue] pairs where each pair is a 1:1 represen-

tation of a DXF tag. The group-code has to be an integer and the value has to be a string.

[

[0,
[z,
[9,
[1,
[9,
[10,
(20,
[9,
[10,
(20,
[9,
L70,
L9,
[70,

"SECTION"],
"HEADER"],
"SACADVER"],
"AC1027"7,

"SLIMMIN"],
"0.0"1,
"0.0"1,

"SLIMMAX"],
"420.0"1,
"297.0"1,

"$ORTHOMODE"],
"O"J 4

"$REGENMODE"],
"1y,

"EORF"]

ezdxf.document .export_json_tags (doc: Drawing, compact=True) — str
Export a DXF document as JSON formatted tags.

ezdxf.document.load_json_tags (data: Sequence[Any]) — Drawing
Load DXF document from JSON formatted tags.

The compact format is a list of [group-code,
has to be an integer and the value has to be a string, integer, float or list of floats for vertices.

The verbose format (compact is False) is a list of [group-code,
representation of a DXF tag. The group-code has to be an integer and the value has to be a string.

value] pairs where each pair is a DXF tag. The group-code

value] pairs where each pair is a 1:1

The expected JSON format is a list of [group-code, value] pairs where each pair is a DXF tag. The compact and

the verbose format is supported.

Parameters
data — JSON data structure as a sequence of [group-code, value] pairs

Drawing Class

The Drawing class is the central management structure of a DXF document.

Access Layouts

* Drawing.modelspace ()

* Drawing.paperspace ()

9.8.

Reference

213

ezdxf Documentation, Release 1.3.2

Access Resources

Application ID Table: Drawing.appids

Block Definition Table: Drawing.blocks
Dimension Style Table: Drawing.dimstyles
Layer Table: Drawing. layers

Linetype Table: Drawing. linetypes
MLeader Style Table: Drawing.mleader_styles
MLine Style Table: Drawing.mline_styles
Material Table: Drawing.materials

Text Style Table: Drawing.styles

UCS Table: Drawing.ucs

VPort Table: Drawing. viewports

View Table: Drawing.views

Classes Section: Drawing.classes

Object Section: Drawing.objects

Entity Database: Drawing.entitydb

Entity Groups: Drawing.groups

Header Variables: Drawing. header

Drawing Class

class ezdxf.document .Drawing

The Drawing class is the central management structure of a DXF document.

dxfversion
Actual DXF version like 'AC1009',setby ezdxf.new () or ezdxf.readfile ().
For supported DXF versions see Document Management

acad_release
The AutoCAD release name like 'R12 "' or 'R2000 "' for actual dxfversion.

encoding

Text encoding of Drawing, the default encoding for new drawingsis ' cp1252'. Starting with DXF R2007
(AC1021), DXEF files are written as UTF-8 encoded text files, regardless of the attribute encoding. The
text encoding can be changed to encodings listed below.

see also: DXF File Encoding

214

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

supported encodings

'cp874" Thai

'cp932" Japanese
'gbk' UnifiedChinese
'cp949’ Korean
'cp950" TradChinese

'cpl250" CentralEurope
'cpl251' Cyrillic
'cpl252' WesternEurope
'cpl253' Greek
'cpl254' Turkish
'cpl255' Hebrew
'cpl256' Arabic
'cpl257' Baltic
'cpl258' Vietnam

output_encoding

Returns required output encoding for saving to filesystem or encoding to binary data.

filename

Drawing filename, if loaded by ezdxf. readfile () else None.

rootdict
Reference to the root dictionary of the OBJECTS section.

header

Reference to the HeaderSection, get/set drawing settings as header variables.

entities

Reference to the EntitySection of the drawing, where all graphical entities are stored, but only from
modelspace and the active paperspace layout. Just for your information: Entities of other paperspace layouts

are stored as Bl ockLayout inthe BlocksSection.
objects

Reference to the objects section, see also Ob jectsSection.
blocks

Reference to the blocks section, see also Bl ocksSection.
tables

Reference to the tables section, see also TablesSection.
classes

Reference to the classes section, see also ClassesSection.
layouts

Reference to the layout manager, see also Layouts.
groups

Collection of all groups, see also GroupCollection.

requires DXF R13 or later

9.8. Reference

215

ezdxf Documentation, Release 1.3.2

layers

Shortcut for Drawing.tables.layers
Reference to the layers table, where you can create, get and remove layers, see also Table and Layer

styles
Shortcut for Drawing.tables.styles

Reference to the styles table, see also Textstyle.

dimstyles
Shortcut for Drawing.tables.dimstyles

Reference to the dimstyles table, see also DimStyle.

linetypes
Shortcut for Drawing.tables.linetypes

Reference to the linetypes table, see also Linetype.

views

Shortcut for Drawing.tables.views
Reference to the views table, see also View.

viewports

Shortcut for Drawing.tables.viewports
Reference to the viewports table, see also VPort.

ucs

Shortcut for Drawing.tables.ucs

Reference to the ucs table, see also UCSTableEntry.
appids

Shortcut for Drawing.tables.appids

Reference to the appids table, see also AppID.

materials

MaterialCollectionof allMaterial objects.
mline_styles

MLineStyleCollection of all MLineStyle objects.
mleader_styles

MLeaderStyleCollection of all MLeaderStyle objects.

units

Get and set the document/modelspace base units as enum, for more information read this: DXF Units. Re-
quires DXF R2000 or newer.

get_abs_filepath = <function Drawing.get_abs_filepath>

save (encoding: str | None = None, fmt: str = 'asc') — None

Write drawing to file-system by using the 71 Iename attribute as filename. Override file encoding by argu-
ment encoding, handle with care, but this option allows you to create DXF files for applications that handle
file encoding different from AutoCAD.

Parameters

216 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* encoding - override default encoding as Python encoding string like 'ut £-8"
e fmt — "asc' for ASCII DXF (default) or 'bin"' for Binary DXF

saveas (filename: PathLike | str, encoding: str | None = None, fmt: str = ‘asc') — None

Set Drawing attribute £11ename to filename and write drawing to the file system. Override file encoding
by argument encoding, handle with care, but this option allows you to create DXF files for applications that
handles file encoding different than AutoCAD.

Parameters
* filename - file name as string
* encoding - override default encoding as Python encoding string like 'ut £-8"
e fmt — 'asc' for ASCII DXF (default) or 'bin' for Binary DXF

write (stream: TextlO | BinarylO, fmt: str = 'asc') — None

Write drawing as ASCII DXF to a text stream or as Binary DXF to a binary stream. For DXF
R2004 (AC1018) and prior open stream with drawing encoding and mode="wt '. For DXF R2007
(AC1021) and later use encoding="utf-8", or better use the later added Drawing property out —
put_encoding which returns the correct encoding automatically. The correct and required error handler
iserrors="dxfreplace'!

If writingtoa St ringIOstream, use Drawing.encode () toencode the result string from StringIO.
get_value():

binary = doc.encode (stream.get_value())

Parameters
* stream - output text stream or binary stream

e fmt — “asc” for ASCII DXF (default) or “bin” for binary DXF

encode_base64 () — bytes
Returns DXF document as base64 encoded binary data.

encode (s: str) — bytes

Encode string s with correct encoding and error handler.

query (query: str = '*') — EntityQuery

Entity query over all layouts and blocks, excluding the OBJECTS section and the resource tables of the
TABLES section.

Parameters
query — query string

See also:
Entity Query String and Retrieve entities by query language

groupby (dxfattrib=", key=None) — dict

Groups DXF entities of all layouts and blocks (excluding the OBJECTS section) by a DXF attribute or a key
function.

Parameters
e dxfattrib - grouping DXF attribute like “layer”

* key - key function, which accepts a DXFEnt ity as argument and returns a hashable group-
ing key or None to ignore this entity.

9.8.

Reference 217

ezdxf Documentation, Release 1.3.2

See also:
groupby () documentation

modelspace () — Modelspace
Returns the modelspace layout, displayed as “Model” tab in CAD applications, defined by block record named
“*Model_Space”.

paperspace (name: str = "') — Paperspace
Returns paperspace layout name or the active paperspace if no name is given.

Parameters
name — paperspace name or empty string for the active paperspace

Raises
KeyError — if the modelspace was acquired or layout name does not exist

layout (name: str = ") — Layout
Returns paperspace layout name or the first layout in tab-order if no name is given.

Parameters
name — paperspace name or empty string for the first paperspace in tab-order

Raises
KeyError — layout name does not exist

active_layout () — Paperspace

Returns the active paperspace layout, defined by block record name “*Paper_Space”.
layout_names () — Iterable[str]

Returns all layout names in arbitrary order.
layout_names_in_taborder () — Iterable[str]

Returns all layout names in tab-order, “Model” is always the first name.
new_1layout (name, dxfattribs=None) — Paperspace

Create a new paperspace layout name. Returns a Paperspace object. DXF R12 (AC1009) supports only
one paperspace layout, only the active paperspace layout is saved, other layouts are dismissed.

Parameters
* name — unique layout name
* dxfattribs — additional DXF attributes for the DXFLayout entity

Raises
DXFValueError — paperspace layout name already exist

page_setup (name: str = 'Layoutl’, fmt: str = 'ISO A3', landscape=True) — Paperspace

Creates a new paperspace layout if name does not exist or reset the existing layout. This method requires
DXF R2000 or newer. The paper format name fmt defines one of the following paper sizes, measures in
landscape orientation:

218 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Name Units Width Height

ISO A0 mm 1189 841
ISO Al mm 841 594
ISO A2 mm 594 420
ISO A3 mm 420 297
ISO A4 mm 297 210

ANSI A inch 11 8.5
ANSI B inch 17 11
ANSIC inch 22 17
ANSI D inch 34 22
ANSI E inch 44 34
ARCHC inch 24 18
ARCHD inch 36 24
ARCHE inch 48 36
ARCHE!l inch 42 30
Letter inch 11 8.5
Legal inch 14 8.5

The layout uses the associated units of the paper format as drawing units, has no margins or offset defined
and the scale of the paperspace layout is 1:1.

Parameters
* name — paperspace layout name
* fmt — paper format
* landscape — True for landscape orientation, False for portrait orientation

delete_layout (name: str) — None

Delete paper space layout name and all entities owned by this layout. Available only for DXF R2000 or later,
DXF R12 supports only one paperspace, and it can’t be deleted.

add_image_def (filename: str, size_in_pixel: tuple[int, int], name=None)
Add an image definition to the objects section.

Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (X, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDe £ entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.

Absolute image paths works best for AutoCAD but not perfect, you have to update external references man-
ually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also have
touse: set_raster variables ().

Parameters
¢ filename - image file name (absolute path works best for AutoCAD)
* size_in_pixel - image size in pixel as (X, y) tuple
* name — image name for internal use, None for using filename as name (best for AutoCAD)
See also:

Tutorial for Image and ImageDef

9.8. Reference 219

ezdxf Documentation, Release 1.3.2

set_raster_variables (frame: int = 0, quality: int = 1, units: str = 'm’)
Set raster variables.
Parameters
e frame - 0 = do not show image frame; 1 = show image frame
¢ quality - 0 =draft; 1 = high

* units — units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm Millimeter

cm Centimeter

m Meter (ezdxf default)
km Kilometer

in Inch
ft Foot
yd Yard
mi Mile

set_wipeout_variables (frame=0)

Set wipeout variables.

Parameters
frame - 0 = do not show image frame; 1 = show image frame

add_underlay_def (filename: str, fmt: str = 'ext’, name: str | None = None)

Add an UnderlayDef entity to the drawing (OBJECTS section). The filename is the underlay file name
as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to create an
underlay reference.

Parameters
* filename — underlay file name

e fmt - file format as string “pdf”1”dwf”|”dgn” or “ext” for getting file format from filename
extension

* name — pdf format = page number to display; dgn format = “default”; dwf: ?77?
See also:
Tutorial for Underlay and UnderlayDefinition

add_xref_def (filename: str, name: str, flags: int = BLK_XREF | BLK_EXTERNAL)
Add an external reference (xref) definition to the blocks section.

Parameters
¢ filename - external reference filename
* name — name of the xref block
» flags - block flags

layouts_and_blocks () — Iterator[GenericLayoutType]
Iterate over all layouts (modelspace and paperspace) and all block definitions.

chain_layouts_and_blocks () — Iterator[DXFEntity]
Chain entity spaces of all layouts and blocks. Yields an iterator for all entities in all layouts and blocks.

220 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

reset_fingerprint_guid()
Reset fingerprint GUID.

reset_version_guid ()
Reset version GUID.

set_modelspace_vport (height, center=(0, 0), *, dxfattribs=None) — VPort
Set initial view/zoom location for the modelspace, this replaces the current “* Active” viewport configuration
(VPort) and reset the coordinate system to the WCS.

Parameters
* height — modelspace area to view
¢ center — modelspace location to view in the center of the CAD application window.
e dxfattribs — additional DXF attributes for the VPORT entity

audit () — Auditor
Checks document integrity and fixes all fixable problems, not fixable problems are stored in Auditor.
errors.

If you are messing around with internal structures, call this method before saving to be sure to export valid
DXF documents, but be aware this is a long-running task.

validate (print_report=True) — bool

Simple way to run an audit process. Fixes all fixable problems, return False if not fixable errors occurs.
Prints a report of resolved and unrecoverable errors, if requested.

Parameters
print_report — print report to stdout

Returns: False if unrecoverable errors exist

ezdxf_metadata () — MeraData

Returns the ezdxf ezdxf.document . MetaData object, which manages ezdxf and custom metadata in
DXEF files. For more information see: Ezdxf Metadata.

Recover
This module provides functions to “recover” ASCII DXF documents with structural flaws, which prevents the regular
ezdxf.read() and ezdxf.readfile () functions to load the document.

The read () and readfile () functions will repair as much flaws as possible and run the required audit process
automatically afterwards and return the result of this audit process:

import sys
import ezdxf
from ezdxf import recover

try:
doc, auditor = recover.readfile("messy.dxf")
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file.')
sys.exit (2)

(continues on next page)

9.8. Reference 221

ezdxf Documentation, Release 1.3.2

(continued from previous page)

DXF file can still have unrecoverable errors, but this is maybe just
a problem when saving the recovered DXF file.
if auditor.has_errors:

auditor.print_error_report ()

The loading functions also decode DXF-Unicode encoding automatically e.g. “\U+00FC” -> “ii”. All these efforts cost
some time, loading the DXF document with ezdxf. read () or ezdxf.readfile () is faster.

Warning: This module will load DXF files which have decoding errors, most likely binary data stored in XRECORD
entities, these errors are logged as unrecoverable AuditError.DECODE_ERRORS in the Auditor.errors
attribute, but no DXFStructureError exception will be raised, because for many use cases this errors can be
ignored.

Writing such files back with ezdxf may create invalid DXF files, or at least some information will be lost - handle
with care!

To avoid this problem use recover.readfile (filename, errors='strict') which raises an Uni-
codeDecodeError exception for such binary data. Catch the exception and handle this DXF files as unrecover-
able.

Loading Scenarios
1. It will work

Mostly DXEF files from AutoCAD or BricsCAD (e.g. for In-house solutions):

try:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: name /. ")
sys.exit (2)

2. DXF file with minor flaws

DXF files have only minor flaws, like undefined resources:

try:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

auditor = doc.audit ()
if auditor.has_errors:
auditor.print_error_report ()

222 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

3. Try Hard

From trusted and untrusted sources but with good hopes, the worst case works like a cache miss, you pay for the first try
and pay the extra fee for the recover mode:

try: # Fast path:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

Catch all DXF errors:

except ezdxf.DXFError:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile (name)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}."'")

sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:
print (f 'Found unrecoverable errors in DXF file: {name}."')
auditor.print_error_report ()

4. Just use the slow recover module

Untrusted sources and expecting many invalid or corrupted DXF files, you always pay an extra fee for the recover mode:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:
print (f'Found unrecoverable errors in DXF file: {name}.")
auditor.print_error_report ()

5. Unrecoverable Decoding Errors

If files contain binary data which can not be decoded by the document encoding, it is maybe the best to ignore these files,
this works in normal and recover mode:

try:
doc, auditor = recover.readfile (name, errors='strict!')
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

(continues on next page)

9.8. Reference 223

ezdxf Documentation, Release 1.3.2

(continued from previous page)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: name /. ")
sys.exit (2)

except UnicodeDecodeError:
print (f'Decoding error in DXF file: name /. ")
sys.exit (3)

6. Ignore/Locate Decoding Errors

Sometimes ignoring decoding errors can recover DXF files or at least you can detect where the decoding errors occur:

try:
doc, auditor = recover.readfile (name, errors='ignore')
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)
if auditor.has_errors:
auditor.print_report ()

The error messages with code AuditError.DECODING_ERROR shows the approximate line number of the decoding
error: “Fixed unicode decoding error near line: xxx.”

Hint: This functions can handle only ASCII DXF files!

ezdxf.recover.readfile (filename: str | Path, errors: str = ‘surrogateescape') — tuple[Drawing, Auditor]

Read a DXF document from file system similar to ezdxf. readfile (), but this function will repair as many
flaws as possible, runs the required audit process automatically the DXF document and the Auditor.

Parameters
» filename —file-system name of the DXF document to load
* errors — specify decoding error handler
— 7surrogateescape” to preserve possible binary data (default)
— ignore” to use the replacement char U+FFFD “4” for invalid data
— ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError —for invalid or corrupted DXF structures
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.recover.read (stream: BinarylO, errors: str = 'surrogateescape') — tuple[Drawing, Auditor]

Read a DXF document from a binary-stream similar to ezdxf. read (), but this function will detect the text
encoding automatically and repair as many flaws as possible, runs the required audit process afterwards and returns
the DXF document and the Auditor.

Parameters

* stream - data stream to load in binary read mode

224 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

» errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError —if errors is “strict” and a decoding error occurs

ezdxf.recover.explore (filename: str | Path, errors: str = 'ignore') — tuple[Drawing, Auditor]

Read a DXF document from file system similar to readfile (), but this function will use a special tag loader,
which tries to recover the tag stream if invalid tags occur. This function is intended to load corrupted DXF files
and should only be used to explore such files, data loss is very likely.

Parameters
» filename - file-system name of the DXF document to load
* errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures

* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ri2strict

Added in version 1.1.

Due to ACAD release 14 the resource names, such as layer-, linetype, text style-, dimstyle- and block names, were limited
to 31 characters in length and all names were uppercase.

Names can include the letters A to Z, the numerals O to 9, and the special characters, dollar sign " $", underscore "_",
hyphen "-" and the asterix "*" as first character for special names like anonymous blocks. Most applications do not
care about that and work fine with longer names and any characters used in names for some exceptions, but of course
Autodesk applications are very picky about that.

The function make_acad_compatible () makes DXF R12 drawings to 100% compatible to Autodesk products and
does everything at once, but the different processing steps can be called manually.

Important: This module can only process DXF R12 file and will throw a DXFVersionError otherwise. For ex-
porting any DXF document as DXF R12 use the ezdx . addons. r12export add-on.

9.8. Reference 225

ezdxf Documentation, Release 1.3.2

Usage

import ezdxf
from ezdxf import rl2strict

doc = ezdxf.readfile("rl2sloppy.dxf")
rl2strict.make_acad_compatible (doc)
doc.saveas ("rl2strict.dxf")

Functions

make_acad_compatible
translate_names

clean

Apply all DXF R12 requirements, so Autodesk products
will load the document.

Translate table and block names into strict DXF R12
names.

Removes all features that are not supported for DXF R12
by Autodesk products.

ezdxf.rl2strict.make_acad_compatible (doc: Drawing) — None

Apply all DXF R12 requirements, so Autodesk products will load the document.

ezdxf.rl2strict.translate_names (doc: Drawing) — None

Translate table and block names into strict DXF R12 names.

ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names can include
the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($), underscore (_), hyphen (-) and
the asterix (*) as first character for special names like anonymous blocks.

Most applications do not care about that and work fine with longer names and any characters used in names for
some exceptions, but of course Autodesk applications are very picky about that.

Note: This is a destructive process and modifies the internals of the DXF document.

ezdxf.rl2strict.clean (doc: Drawing) — None

Removes all features that are not supported for DXF R12 by Autodesk products.

class ezdxf.rl2strict.Rl12NameTranslator

Translate table and block names into strict DXF R12 names.

ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names can include
the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($), underscore (_), hyphen (-) and
the asterix (*) as first character for special names like anonymous blocks.

reset () — None

translate (name: str) — str

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

9.8.2 DXF Structures

Sections

Header Section

The drawing settings are stored in the HEADER section, which is accessible by the heade r attribute of the Drawing
object. See the online documentation from Autodesk for available header variables.

See also:
DXF Internals: HEADER Section

class ezdxf.sections.header.HeaderSection

custom_vars

Stores the custom drawing properties in a CustomVars object.

len__ () —int

Returns count of header variables.

_ _contains__ (key) — bool
Returns True if header variable key exist.

varnames () — KeysView

Returns an iterable of all header variable names.

get (key: str, default: Any = None) — Any

Returns value of header variable key if exist, else the default value.

__getitem__ (key: str) — Any
Get header variable key by index operator like: drawing.header ['$ACADVER']

_ _setitem__ (key: str, value: Any) — None
Set header variable key to value by index operator like: drawing.header ['$SANGDIR'] = 1

__delitem___ (key: str) — None
Delete header variable key by index operator like: del drawing.header['S$ANGDIR']

reset_wes ()
Reset the current UCS settings to the WCS.

class ezdxf.sections.header.CustomVars

The CustomVars class stores custom properties in the DXF header as SCUSTOMPROPERTYTAG and $CUS-
TOMPROPERTY values. Custom properties require DXF R2004 or later, ezdxf can create custom properties for
older DXF versions as well, but AutoCAD will not show that properties.

properties

A list of custom header properties, stored as string tuples (tag, wvalue). Multiple occurrence of the same
custom tag is allowed, but not well supported by the interface. This is a standard Python list and it’s safe to
modify this list as long as you just use tuples of strings.

len__ () —int

Count of custom properties.

__iter__ () — Iterator[tuple[str, str]]
Iterate over all custom properties as (tag, value) tuples.

9.8. Reference 227

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 1.3.2

clear () — None
Remove all custom properties.

get (tag: str, default: str | None = None)

Returns the value of the first custom property fag.

has_tag (tag: str) — bool
Returns True if custom property tag exist.

append (tag: str, value: str) — None
Add custom property as (tag, value) tuple.

replace (tag: str, value: str) — None

Replaces the value of the first custom property fag by a new value.
Raises DXFValueError if fag does not exist.

remove (tag: str, all: bool = False) — None

Removes the first occurrence of custom property fag, removes all occurrences if all is True.

Raises :class:'DXFValueError if tag does not exist.

Classes Section

The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in Lay—
out objects. As usual package user there is no need to bother about CLASSES.

See also:
DXEF Internals: CLASSES Section
class ezdxf.sections.classes.ClassesSection

classes

Storage of all DXFC1ass objects, they are not stored in the entities database, because CLASS instances do
not have a handle attribute.

register ()
add_class (name: str)
Register a known class by name.

get (name: str) — DXFClass
Returns the first class matching name.

Storage key is the (name, cpp_class_name) tuple, because there are some classes with the same
name but different cpp_class_names.

add_required_classes (dxfversion: str) — None
Add all required CLASS definitions for the specified DXF version.

update_instance_counters () — None
Update CLASS instance counter for all registered classes, requires DXF R2004+.

class ezdxf.entities.DXFClass

Information about application-defined classes.

dxf .name

Class DXF record name.

228 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.cpp_class_name

C++ class name. Used to bind with software that defines object class behavior.

dxf .app_name

Application name. Posted in Alert box when a class definition listed in this section is not currently loaded.

dxf.flags
Proxy capabilities flag

0 No operations allowed (0)
1 Erase allowed (0x1)
2 Transform allowed (0x2)
4 Color change allowed (0x4)
8 Layer change allowed (0x8)
16 Linetype change allowed (0x10)
32 Linetype scale change allowed (0x20)

64 Visibility change allowed (0x40)

128 Cloning allowed (0x80)

256 Lineweight change allowed (0x100)

512 Plot Style Name change allowed (0x200)

895 All operations except cloning allowed (0x37F)
1023 All operations allowed (0x3FF)

1024 Disables proxy warning dialog (0x400)

32768 R13 format proxy (0x8000)

dxf.instance_count

Instance count for a custom class.

dxf.was_a_proxy

Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise.
dxf.is_an_entity

Set to 1 if class was derived from the DXFGraphic class and can reside in layouts. If 0, instances may
appear only in the OBJECTS section.

key

Unique name as (name, cpp_class_name) tuple.

Tables Section

The TABLES section is the home of all TABLE objects of a DXF document.
See also:
DXF Internals: TABLES Section
class ezdxf.sections.tables.TablesSection
layers
LayerTable maintaining the Layer objects

linetypes
LinetypeTable maintaining the Linet ype objects

9.8. Reference 229

ezdxf Documentation, Release 1.3.2

styles
TextstyleTable maintaining the Text sty e objects

dimstyles
DimStyleTable maintaining the DimSty e objects

appids
AppIDTable maintaining the AppID objects

ucs
UCSTable maintaining the UCSTable objects

views

ViewTable maintaining the View objects

viewports

Viewport Table maintaining the VPort objects

block_records

BlockRecordTable maintaining the Bl ockRecord objects

Blocks Section

The BLOCKS section is the home all block definitions (Bl ockLayout) of a DXF document.

Warning: Blocks are an essential building block of the DXF format. Most blocks are referenced are by name, and
renaming or deleting a block is not as easy as it seems, since there is no overall index where all block references appear,
and such block references can also reside in custom data or even custom entities, therefore renaming or deleting block
definitions can damage a DXF file!

See also:
DXEF Internals: BLOCKS Section and Block Management Structures
class ezdxf.sections.blocks.BlocksSection
__iter__ () — Iterator[BlockLayout]
Iterable of all BlockLayout objects.

__contains___ (name: str) — bool

Returns True if BlockLayout name exist.
__getitem__ (name: str) — BlockLayout
Returns Bl ockLayout name, raises DXFKeyError if name not exist.
__delitem__ (name: str) — None
Deletes B1ockLayout name and all of its content, raises DXFKeyError if name not exist.
get (name: str, default=None) — BlockLayout
Returns BlockLayout name, returns default if name not exist.
new (name: str, base_point: UVec = NULLVEC, dxfattribs=None) — BlockLayout

Create and add a new BlockLayout, name is the BLOCK name, base_point is the insertion point of the
BLOCK.

230 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

new_anonymous_block (type_char: str = 'U’, base_point: UVec = NULLVEC) — BlockLayout

Create and add a new anonymous B1ockLayout, type_char is the BLOCK type, base_point is the insertion
point of the BLOCK.

type_char Anonymous Block Type

g’ ' *U#4# ' anonymous BLOCK

B’ ' *E##4# ' anonymous non-uniformly scaled BLOCK
X! ' *X##4# ' anonymous HATCH graphic

'D' ' *D### ' anonymous DIMENSION graphic

TR ' *A##4# ' anonymous GROUP

'T! ' *T##4#"' anonymous block for ACAD_TABLE content

rename_block (old_name: str, new_name: str) — None

Rename BlockLayout old_name to new_name

Warning: This is a low-level tool and does not rename the block references, so all block references to
old_name are pointing to a non-existing block definition!

delete_block (name: str, safe: bool = True) — None

Delete block. Checks if the block is still referenced if safe is True.
Parameters
¢ name — block name (case insensitive)
» safe — check if the block is still referenced or a special block without explicit references
Raises
* DXFKeyError — if block not exists
e DXFBlockInUseError —if block is still referenced, and safe is True
delete_all_blocks () — None

Delete all blocks without references except modelspace- or paperspace layout blocks, special arrow- and
anonymous blocks (DIMENSION, ACAD_TABLE).

Warning: There could exist references to blocks which are not documented in the DXF reference,

hidden in extended data sections or application defined data, which could invalidate a DXF document if
these blocks will be deleted.

Entities Section

The ENTITIES section is the home of all entities of the Modelspace and the active Paperspace layout. This is a
real section in the DXF file but in ezdxf the EntitySection is just a linked entity space of these two layouts.

See also:
DXF Internals: ENTITIES Section

class ezdxf.sections.entities.EntitySection

9.8. Reference 231

ezdxf Documentation, Release 1.3.2

__iter__ () — lterator[DXFEntity]

Returns an iterator for all entities of the modelspace and the active paperspace.

len__ () —int

Returns the count of all entities in the modelspace and the active paperspace.

Objects Section

The OBJECTS section is the home of all none graphical objects of a DXF document. The OBJECTS section is accessible
by the Drawing.objects attribute.

Convenience methods of the Drawing object to create essential structures in the OBJECTS section:
e IMAGEDEF: add_image_def ()
e UNDERLAYDEF: add_underlay_ def ()
* RASTERVARIABLES: set_raster_variables ()
¢ WIPEOUTVARIABLES: set_wipeout_variables ()
See also:
DXEF Internals: OBJECTS Section
class ezdxf.sections.objects.ObjectsSection
rootdict
Returns the root DICTIONARY, or as AutoCAD calls it: the named DICTIONARY.

len__ () —int
Returns the count of all DXF objects in the OBJECTS section.

__iter__ () — Iterator[DXFObject]
Returns an iterator of all DXF objects in the OBJECTS section.

__getitem__ (index) — DXFObject
Get entity at index.

The underlying data structure for storing DXF objects is organized like a standard Python list, therefore index
can be any valid list indexing or slicing term, like a single index objects [-1] to get the last entity, or an
index slice objects[:10] to get the first 10 or fewer objects as 1ist [DXFObject].

__contains___ (entity)
Returns True if entity stored in OBJECTS section.

Parameters
entity - DXFObject or handle as hex string

query (query: str = '*') — EntityQuery
Get all DXF objects matching the Entity Query String.

add_dictionary (owner: str = '0', hard_owned: bool = True) — Dictionary

Add new Dictionary object.
Parameters
¢ owner - handle to owner as hex string.

* hard_owned - True to treat entries as hard owned.

232 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_dictionary_with_default (owner="'0", default="0', hard_owned: bool = True) —
Dictionary WithDefault

Addnew DictionaryWithDefault object.
Parameters
* owner — handle to owner as hex string.
* default - handle to default entry.
¢ hard_owned — True to treat entries as hard owned.

add_dictionary_var (owner: str = '0', value: str = ") — DictionaryVar

Add anew DictionaryVar object.
Parameters
* owner - handle to owner as hex string.
* value - value as string

add_geodata (owner: str = '0', dxfattribs=None) — GeoData

Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OBJECTS
section and NOT in the layout entity space, and it is linked to the layout by an extension dictionary located in
BLOCK_RECORD of the layout.

The GEODATA entity requires DXF version R2010+. The DXF Reference does not document if other
layouts than model space supports geo referencing, so getting/setting geo data may only make sense for the
model space layout, but it is also available in paper space layouts.

Parameters
* owner - handle to owner as hex string
* dxfattribs — DXF attributes for GeoDat a entity

add_image_def (filename: str, size_in_pixel: tuple[int, int], name: str | None = None) — ImageDef

Add an image definition to the objects section.

Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (X, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.

Absolute image paths works best for AutoCAD but not really good, you have to update external references
manually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also
have to use: set_raster _variables ().

Parameters
* filename - image file name (absolute path works best for AutoCAD)
* size_in_pixel - image size in pixel as (X, y) tuple
* name — image name for internal use, None for using filename as name (best for AutoCAD)

add_placeholder (owner: str = '0') — Placeholder
Add anew Placeholder object.

Parameters
owner — handle to owner as hex string.

9.8.

Reference 233

ezdxf Documentation, Release 1.3.2

add_underlay_def (filename: str, fmt: str = 'pdf’, name: str | None = None) — UnderlayDefinition

Add an UnderlayDefinition entity to the drawing (OBJECTS section). filename is the underlay file
name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to
create an underlay reference.

Parameters
e filename — underlay file name
e fmt — file format as string 'pdf' | 'dwf' | 'dgn’
* name — pdf format = page number to display; dgn format = 'default'; dwf: 77?7

add_xrecord (owner: str = '0') — XRecord
Add a new XRecord object.

Parameters
owner — handle to owner as hex string.

set_raster_variables (frame: int = 0, quality: int = 1, units: str = 'm') — None

Set raster variables.
Parameters
e frame - 0 = do not show image frame; 1 = show image frame
* quality — 0 =draft; 1 = high

* units — units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm Millimeter

cm Centimeter

m Meter (ezdxf default)
km Kilometer

in Inch
ft Foot
yd Yard
mi Mile

none None

(internal API), public interface set_raster_variables ()

set_wipeout_variables (frame: int = 0) — None
Set wipeout variables.

Parameters
frame — 0 = do not show image frame; 1 = show image frame

(internal API)

234 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Tables

Table Classes
Generic Table Class

class ezdxf.sections.table.Table

Generic collection of table entries. Table entry names are case insensitive: “Test” == “TEST”.

static key (name: str) — str

Unified table entry key.

has_entry (name: str) — bool

Returns True if a table entry name exist.

__contains___ (name: str) — bool

Returns True if a table entry name exist.

len__ () —int

Count of table entries.

__iter__ () — Iterator[T]

Iterable of all table entries.

new (name: str, dxfattribs=None) — T

Create a new table entry name.
Parameters
* name — name of table entry
* dxfattribs — additional DXF attributes for table entry

get (name: str) — T

Returns table entry name.

Parameters
name — name of table entry, case-insensitive

Raises
DXFTableEntryError — table entry does not exist

remove (name: str) — None

Removes table entry name.

Parameters
name — name of table entry, case-insensitive

Raises
DXFTableEntryError — table entry does not exist

duplicate_entry (name: str, new_name: str) — T

Returns a new table entry new_name as copy of name, replaces entry new_name if already exist.
Parameters
* name — name of table entry, case-insensitive

* new_name — name of duplicated table entry

9.8. Reference 235

ezdxf Documentation, Release 1.3.2

Raises
DXFTableEntryError — table entry does not exist

Layer Table

class ezdxf.sections.table.LayerTable
Subclass of Table.

Collection of Layer objects.

add (name: str, *, color: int = const. BYLAYER, true_color: int | None = None, linetype: str = 'Continuous’,
lineweight: int = const. LINEWEIGHT _BYLAYER, plot: bool = True, transparency: float | None = None,
dxfattribs=None) — Layer

Add anew Layer.
Parameters
* name (str) - layer name
e color (int)— AutoCAD Color Index (ACI) value, default is BYLAYER

¢ true_color (int) — true color value, use ezdxf.rgb2int () to create int values
from RGB values

* linetype (str) - line type name, default is “Continuous”
¢ lineweight (int) - line weight, default is BYLAYER
e plot (bool) - plot layer as bool, default is True

* transparency - transparency value in the range [0, 1], where 1 is 100% transparent and
0 is opaque

e dxfattribs (dict) - additional DXF attributes

Linetype Table

class ezdxf.sections.table.LinetypeTable

Subclass of Table.
Collection of Linetype objects.

add (name: str, pattern: Sequence[float] | str, *, description: str = ", length: float = 0.0, dxfattribs=None) —

Linetype
Add a new line type entry. The simple line type pattern is a list of floats [total_pattern_length,
eleml, elem2, ...] wherean element> 0 is a line, an element < 0 is a gap and an element == 0.0

is a dot. The definition for complex line types are strings, like: 'A, .5, -.2, ["GAS", STANDARD, S=.
1,U=0.0,X=-0.1,Y=-.05],—.25" similar to the line type definitions stored in the line definition ./in

files, for more information see the tutorial about complex line types. Be aware that not many CAD applications
and DXF viewers support complex linetypes.

See also:

e Tutorial for simple line types

¢ Tutorial for complex line types

Parameters

236 Chapter 9. Contents

https://ezdxf.mozman.at/docs/tutorials/linetypes.html
https://ezdxf.mozman.at/docs/tutorials/linetypes.html#tutorial-for-complex-linetypes

ezdxf Documentation, Release 1.3.2

* name (str) - line type name

* pattern - line type pattern as list of floats or as a string

* description (str) - line type description, optional

¢ length (float) - total pattern length, only for complex line types required
e dxfattribs (dict) - additional DXF attributes

Style Table

class ezdxf.sections.table.TextstyleTable
Subclass of Table.

Collection of Text sty le objects.

add (name: str, *, font: str, dxfattribs=None) — Textstyle

Add a new text style entry for TTF fonts. The entry must not yet exist, otherwise an DXFTableEntryEr—
ror exception will be raised.

Finding the TTF font files is the task of the DXF viewer and each viewer is different (hint: support files).
Parameters
* name (str) — text style name

e font (str)-TTF font file name like “Arial.ttf”, the real font file name from the file system
is required and only the Windows filesystem is case-insensitive.

e dxfattribs (dict) - additional DXF attributes

add_shx (shx_file_name: str, *, dxfattribs=None) — Textstyle

Add a new shape font (SHX file) entry. These are special text style entries and have no name. The entry must
not yet exist, otherwise an DXFTableEntryError exception will be raised.

Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is different (hint:
support files).

Parameters
* shx_file_name (str)—shape file name like “gdt.shx”
e dxfattribs (dict) - additional DXF attributes

get_shx (shx_file_name: str) — Textstyle
Get existing entry for a shape file (SHX file), or create a new entry.

Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is different (hint:
support files).

Parameters
shx_file_name (str) - shape file name like “gdt.shx”

find_shx (shx_file_name: str) — Textstyle | None
Find the shape file (SHX file) text style table entry, by a case-insensitive search.

A shape file table entry has no name, so you have to search by the font attribute.

Parameters
shx_file_name (str) - shape file name like “gdt.shx”

9.8. Reference 237

ezdxf Documentation, Release 1.3.2

discard_shx (shx_file_name: str) — None

Discard the shape file (SHX file) text style table entry. Does not raise an exception if the entry does not exist.

Parameters
shx_file_name (str) - shape file name like “gdt.shx”

DimStyle Table

class ezdxf.sections.table.DimStyleTable
Subclass of Table.

Collection of DimSt y1e objects.

add (name: str, *, dxfattribs=None) — DimStyle

Add a new dimension style table entry.
Parameters
* name (str)— dimension style name

e dxfattribs (dict) - DXF attributes

ApplD Table

class ezdxf.sections.table.AppIDTable
Subclass of Table.

Collection of AppID objects.

add (name: str, *, dxfattribs=None) — ApplD
Add a new appid table entry.

Parameters
* name (str)— appid name

e dxfattribs (dict)- DXF attributes

UCS Table

class ezdxf.sections.table.UCSTable
Subclass of Table.

Collection of UCSTableEntry objects.

add (name: str, *, dxfattribs=None) — UCSTableEntry
Add a new UCS table entry.

Parameters
¢ name (str)— UCS name

e dxfattribs (dict) - DXEF attributes

238 Chapter 9

. Contents

ezdxf Documentation, Release 1.3.2

View Table

class ezdxf.sections.table.ViewTable
Subclass of Table.

Collection of View objects.

add (name: str, *, dxfattribs=None) — View
Add a new view table entry.

Parameters
* name (str)— view name

e dxfattribs (dict) - DXEF attributes

Viewport Table

class ezdxf.sections.table.ViewportTable

The viewport table stores the modelspace viewport configurations. A viewport configuration is a tiled view of
multiple viewports or just one viewport. In contrast to other tables the viewport table can have multiple entries
with the same name, because all viewport entries of a multi-viewport configuration are having the same name - the
viewport configuration name.

The name of the actual displayed viewport configuration is “* ACTIVE”.
Duplication of table entries is not supported: duplicate_entry () raises NotImplementedError

add (name: str, *, dxfattribs=None) — VPort

Add a new modelspace viewport entry. A modelspace viewport configuration can consist of multiple viewport
entries with the same name.

Parameters
* name (str)— viewport name, multiple entries possible
e dxfattribs (dict) - additional DXF attributes

get_config (self, name: str) — List[VPort]
Returns a list of VPort objects, for the multi-viewport configuration name.

delete_config (name: str) — None

Delete all VPort objects of the multi-viewport configuration name.

Block Record Table

class ezdxf.sections.table.BlockRecordTable
Subclass of Table.

Collection of B1ockRecord objects.

add (name: str, *, dxfattribs=None) — BlockRecord
Add a new block record table entry.

Parameters
¢ name (str)— block record name

e dxfattribs (dict) - DXEF attributes

9.8. Reference 239

ezdxf Documentation, Release 1.3.2

Layer

LAYER (DXF Reference) definition, defines attribute values for entities on this layer for their attributes set to BYLAYER.

Important: A layer assignment is just an attribute of a DXF entity, it’s not an entity container, the entities are stored in
layouts and blocks and the assigned layer is not important for that.

Deleting a layer entry does not delete the entities which reference this layer!

Subclass of ezdxf.entities.DXFEntity
DXF type '"LAYER'
Factory function Drawing.layers.new ()

See also:
Basic concepts of Layers and Tutorial for Layers
class ezdxf.entities.Layer
dxf.handle
DXEF handle (feature for experts)

dxf .owner

Handle to owner (LayerTable).

dxf .name

Layer name, case insensitive and can not contain any of this characters: <>/\":; 2*|=" (str)

dxf.flags
Layer flags (bit-coded values, feature for experts)

1 Layer is frozen; otherwise layer is thawed; use is_frozen (), freeze () and thaw ()

2 Layer is frozen by default in new viewports

4 Layer is locked; use is_locked (), lock (),unlock ()

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is for the benefit of AutoCAD commands. It can be ignored by most programs
that read DXEF files and need not be set by programs that write DXF files)

dxf.color
Layer color, but use property Layer. color to get/set color value, because color is negative for layer status
off (int)

dxf.true_color

Layer true color value as int, use property Layer. rgb to set/get true color value as (r, g, b) tuple.
(requires DXF R2004)

dxf.linetype
Name of line type (str)

240 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D94802B0-8BE8-4AC9-8054-17197688AFDB

ezdxf Documentation, Release 1.3.2

dxf.plot

Plot flag (int). Whether entities belonging to this layer should be drawn when the document is exported
(plotted) to pdf. Does not affect visibility inside the CAD application itself.

1 plot layer (default value)
0 don’t plot layer

dxf.lineweight

Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line weight is 200,
values outside this range prevents AutoCAD from loading the file.

ezdxf.lldxf.const.LINEWEIGHT_DEFAULT for using global default line weight.
(requires DXF R13)
dxf.plotstyle_handle
Handle to plot style name?
(requires DXF R13)

dxf.material_handle

Handle to default Material.

(requires DXF R13)
rgb
Get/set DXF attribute dxf. t rue_color as (1, g, b) tuple, returns None if attribute dxf. t rue_color
is not set.
layer.rgb = (30, 40, 50)

r, g, b = layer.rgb

This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level
attribute dxf.true color.

color

Get/set layer color, preferred method for getting the layer color, because dxf. color is negative for layer
status off.

description

Get/set layer description as string

transparency

Get/set layer transparency as float value in the range from O to 1. O for no transparency (opaque) and 1 for
100% transparency.

is_frozen () — bool

Returns True if layer is frozen.

freeze () — None
Freeze layer.

thaw () — None
Thaw layer.

is_locked () — bool
Returns True if layer is locked.

9.8. Reference 241

ezdxf Documentation, Release 1.3.2

lock () — None

Lock layer, entities on this layer are not editable - just important in CAD applications.

unlock () — None

Unlock layer, entities on this layer are editable - just important in CAD applications.

is_off () — bool

Returns True if layer is off.

is_on () — bool

Returns True if layer is on.

on () — None

Switch layer on (visible).

off () — None
Switch layer off (invisible).

get_color () — int

Use property Layer. color instead.

set_color (value: int) — None

Use property Layer. color instead.

rename (name: str) — None

Rename layer and all known (documented) references to this layer.

Warning: The DXF format is not consistent in storing layer references, the layers are mostly referenced
by their case-insensitive name, some later introduced entities do reference layers by handle, which is the
safer way in the context of renaming layers.

There is no complete overview of where layer references are stored, third-party entities are black-boxes
with unknown content and layer names could be stored in the extended data section of any DXF entity or
in XRECORD entities. Which means that in some rare cases references to the old layer name can persist,
at least this does not invalidate the DXF document.

Parameters
name — new layer name

Raises

¢ ValueError — name contains invalid characters: <>/":;?7*|="
* ValueError - layer name already exist

* ValueError —renaming of layers ' 0' and 'DEFPOINTS"' not possible

get_vp_overrides () — LayerOverrides
Returns the LayerOverrides object for this layer.

. Contents

ezdxf Documentation, Release 1.3.2

LayerOverrides

class ezdxf.entities.LayerOverrides

This object stores the layer attribute overridden in Viewport entities, where each Viewport can have individual
layer attribute overrides.

Layer attributes which can be overridden:
* ACI color
* true color (rgb)
* linetype
* lineweight
¢ transparency
Get the override object for a certain layer by the Layer.get_vp_overrides () method.

It is important to write changes back by calling commit (), otherwise the changes are lost.

Important: The implementation of this feature as DXF structures is not documented by the DXF reference, so
if you encounter problems or errors, ALWAYS provide the DXF files, otherwise it is not possible to help.

has_overrides (vp_handle: str | None = None) — bool
Returns True if attribute overrides exist for the given Viewport handle. Returns True if any attribute
overrides exist if the given handle is None.

commit () — None

Write Viewport overrides back into the Layer entity. Without a commit() all changes are lost!

get_color (vp_handle: str) — int

Returns the AutoCAD Color Index (ACI) override or the original layer value if no override exist.

set_color (vp_handle: str, value: int) — None
Override the AutoCAD Color Index (ACI).
Raises
ValueError — invalid color value
get_rgb (vp_handle: str) — RGB | None
Returns the RGB override or the original layer value if no override exist. Returns None if no true color value
is set.
set_xrgb (vp_handle: str, value: RGB | None)
Set the RGB override as (red, gree, blue) tuple or None to remove the true color setting.
Raises
ValueError — invalid RGB value
get_transparency (vp_handle: str) — float
Returns the transparency override or the original layer value if no override exist. Returns 0.0 for opaque and
1.0 for fully transparent.
set_transparency (vp_handle: str, value: float) — None
Set the transparency override. A transparency of 0.0 is opaque and 1.0 is fully transparent.

Raises
ValueError — invalid transparency value

9.8. Reference 243

ezdxf Documentation, Release 1.3.2

get_1linetype (vp_handle: str) — str
Returns the linetype override or the original layer value if no override exist.

set_linetype (vp_handle: str, value: str) — None
Set the linetype override.

Raises
ValueError - linetype without a LTYPE table entry

get_lineweight (vp_handle: str) — int
Returns the lineweight override or the original layer value if no override exist.
set_lineweight (vp_handle: str, value: int) — None

Set the lineweight override.

Raises
ValueError — invalid lineweight value

discard (vp_handle: str | None = None) — None

Discard all attribute overrides for the given Viewport handle or for all Viewport entities if the handle is
None.

Style

Important: DXF is not a layout preserving data format like PDF. It is more similar to the MS Word format. Many
applications can open MS Word documents, but the displayed or printed document does not look perfect like the result
of MS Word.

The final rendering of DXF files is highly dependent on the interpretation of DXF entities by the rendering engine, and the
DXEF reference does not provide any guidelines for rendering entities. The biggest visual differences of CAD applications
are the text renderings, therefore the only way to get the exact same result is to use the same CAD application.

The DXF format does not and can not embed TTF fonts like the PDF format!

The Text st y1e entity defines a text style (DXF Reference), and can be used by the entities: Text, Attrib, Attdef,
MText, Dimension, Leader and MultiLeader.

Example to create a new text style “Arial” and to apply this text style:

doc.styles.add ("Arial", font="Arial.ttf")
msp = doc.modelspace ()
msp.add_text ("my text", dxfattribs={"style": "Arial"})

The settings stored in the Text st y 1 e entity are the default text style values used by CAD applications if the text settings
are not stored in the text entity itself. But not all setting are substituted by the default value. The height or width
attribute must be stored in the text entities itself in order to influence the appearance of the text. It is recommended that
you do not rely on the default settings in the Text st y1e entity, set all attributes in the text entity itself if supported.

244 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EF68AF7C-13EF-45A1-8175-ED6CE66C8FC9

ezdxf Documentation, Release 1.3.2

Font Settings

Just a few settings are available exclusive by the Text sty le entity:

The most important setting is the font attribute, this attribute defines the rendering font as raw TTF file name, e.g.
“Arial.ttf” or “OpenSansCondensed-Light.ttf”, this file name is often not the name displayed in GUI application and you
have to digg down into the fonts folder e.g. (“C:\Windows\Fonts”) to get the real file name for the TTF font. Do not
include the path!

Algemein Sicherheit Detals Vorgdngerversionen

A OpenSansCondensed-Light Hf

Dateityp: True Type-Schriftartendatei ()

Cffnen mit: A Windows-Schriftartenanzeige Endem...

Ort: CWindows\Fonts

Grofe: 215 KB (220,540 Bytes)

Grole auf ‘

Datentrager: 216 KB (221.184 Bytes)

Erstellt: Sonntag, 30. Dezember 2018, 11:34:05

Geandert: Maontag, 9. Mai 2011, 01:00:00

ﬁ;tnﬁr Heute, 21. Februar 2021, vor 38 Minuten
Atribute: [] Schreibgeschiitzt Erweitert...
[] Versteckt
QK Abbrechen Dbemehmen

AutoCAD supports beyond the legacy SHX fonts only TTF fonts. The SHX font format is not documented and only
available in some CAD applications. The ezdxf drawing add-on replaces the SHX fonts by TTF fonts, which look
similar to the SHX fonts, unfortunately the license of these fonts is unclear, therefore they can not be packaged with
ezdxf. They are installed automatically if you use an Autodesk product like TrueView, or search the internet at you own
risk for these TTF fonts.

The extended font data can provide extra information for the font, it is stored in the XDATA section, not well documented
and not widely supported.

Important: The DXF format does not and can not embed TTF fonts like the PDF format!

You need to make sure that the CAD application is properly configured to have access to the system fonts. The DXF
format has no setting where the CAD application should search for fonts, and does not guarantee that the text rendering

9.8. Reference 245

https://www.autodesk.com/products/dwg/viewers

ezdxf Documentation, Release 1.3.2

on other computers or operating systems looks the same as on your current system on which you created the DXF.

The second exclusive setting is the vertical text flag in Textstyle.flags. The vertical text style is enabled for all
entities using the text style. Vertical text works only for SHX fonts and is not supported for TTF fonts (in AutoCAD) and
is works only for the single line entities Text and At trib. Most CAD applications beside AutoCAD and BricsCAD
do not support vertical text rendering and even AutoCAD and BricsCAD have problems with vertical text rendering in
some circumstances. Using the vertical text feature is not recommended.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'STYLE'
Factory function Drawing.styles.new ()

See also:

Tutorial for Text and DXF internals for DIMSTYLE Table.

class ezdxf.entities.Textstyle

property is_backward: bool
Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.

property is_upside_down: bool

Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.

property is_vertical_stacked: bool

Get/set style flag VERTICAL_STACKED, for vertical stacked text.
property is_shape_file: bool

True if entry describes a shape.
dxf.handle

DXEF handle (feature for experts).
dxf.owner

Handle to owner (TextstyleTable).
dxf .name

Style name (str)
dxf.flags

Style flags (feature for experts).

1 If set, this entry describes a shape
4 Vertical text
16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)commands. It can be ignored by most
programs that read DXF files and need not be set by programs that write DXF files)

dxf.height

Fixed height in drawing units as float value, O for not fixed.

246

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.width

Width factor as float value, default value is 1.

dxf.oblique

Oblique (slanting) angle in degrees as float value, default value is O for no slanting.

dxf.generation_flags

Text generations flags as int value.

2 text is backward (mirrored along the x-axis)
4 text is upside down (mirrored about the base line)

dxf.last_height
Last height used in drawing units as float value.

dxf.font
Raw font file name as string without leading path, e.g. “Arial.ttf” for TTF fonts or the SHX font name like
“TXT” or “TXT.SHX”.

dxf.bigfont

Big font name as string, blank if none. No documentation how to use this feature, maybe just a legacy artifact.

property has_extended_font_data: bool

Returns True if extended font data is present.

get_extended_font_data () — tuple[str, bool, bool]
Returns extended font data as tuple (font-family, italic-flag, bold-flag).

132

The extended font data is optional and not reliable! Returns (“”, False, False) if extended font data is not

present.
set_extended_font_data (family: str = ", *, italic=False, bold=False) — None
Set extended font data, the font-family name family is not validated by ezdxf. Overwrites existing data.

discard_extended_font_data ()
Discard extended font data.

make_font (cap_height: float | None = None, width_factor: float | None = None) — fonts.AbstractFont

Returns a font abstraction AbstractFont for this text style. Returns a font for a cap height of 1, if the
text style has auto height (Textstyle.dxf.height is 0) and the given cap_height is None or 0. Uses
the Textstyle.dxf.width attribute if the given width_factor is None or 0, the default value is 1. The
attribute Textstyle.dxf.big_~font isignored.

Linetype

Defines a linetype (DXF Reference).

Subclass of ezdxf.entities.DXFEntity
DXF type '"LTYPE'
Factory function Drawing.linetypes.new ()

See also:

Tutorial for Creating Linetype Pattern

9.8. Reference 247

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC

ezdxf Documentation, Release 1.3.2

DXEF Internals: LTYPE Table

class ezdxf.entities.Linetype

dxf .name

Linetype name (str).

dxf .owner

Handle to owner (Table).

dxf.description

Linetype description (str).

dxf.length

Total pattern length in drawing units (float).

dxf.items

Number of linetype elements (int).

DimStyle

blue vars available in R13+
green vars available in R2007+

suppress
dimsoxd (175)

dimexe (44)

dimexo (42)

Text

color: dimclrt (178)
v-position: dimtad=1(77)
h-position: dimjust (280)

distance: 3 drawing units

&2 Definition points defined in the Dimension entity

Dimension Line SUppress
color: dimcrld (176) dimsoxd (175)
X lineweight: dimlwd (371) S)
dimdle (46) linetype: dimltype (345) = dimdle (46,)\
-+ £ - =
I ¥ - 97 I 5
g T 72
N hrrow 1 s Arrow 2 / -
block name: dimblk? (6) or dimblk(5) = block name: dimblk2 (7)
scale factor: dimasz (41) — 300 — & or dimblk(S)
color: dimclrd (176) S
on/off: dimsah (173) A
stroke instead blk: dimtsz > 0 (142) dimgap (147) _ Etension Line 2 —\
Extension Line 1 dimtad=0 (77) g suppress: dimse2 (76)
Fcolor:dimclre(177) — 1= linetype: dimltex2 (347)
suppress: dimse1 (75) 300 2 _
lineweight: dimiwe (372) dimtad=4 (77) = S5
linetype: dimtex1 (346) I S
>4 < SR =

248

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

blue vars available in R13+ measurement * (dimlfac = 100) (144)

dimrnd = 0.5 (45): rounding value
dimdec=1(271): decimal places

[] =
dimtad=1(77) /o /
dimzin =12 (78): zero suppression / / iE,
dimsep="" (278) E

dimtvp=0 (145)
/dimtad:0(77) . CI l I \
dimsd1 (281) (282)

dimsd2 (282
- - - -

dimgap (147) dimgap (147) PP
dimpost = "<>mm" (3)

suppress

DIMSTYLE (DXF Reference) defines the appearance of Dimension entities. Each of this dimension variables starting
with "dim. . ." can be overridden for any Dimension entity individually.

Subclass of ezdxf.entities.DXFEntity
DXF type "DIMSTYLE'
Factory function Drawing.dimstyles.new ()

class ezdxf.entities.DimStyle

dxf.owner

Handle to owner (Table).
dxf .name

Dimension style name.
dxf.flags

Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent XREF has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.dimpost

Prefix/suffix for primary units dimension values.

9.8. Reference 249

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F2FAD36F-0CE3-4943-9DAD-A9BCD2AE81DA

ezdxf Documentation, Release 1.3.2

dxf

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

.dimapost

Prefix/suffix for alternate units dimensions.

dimblk

Block type to use for both arrowheads as name string.

dimblkl

Block type to use for first arrowhead as name string.

dimblk2

Block type to use for second arrowhead as name string.

dimscale

Global dimension feature scale factor. (default=1)

dimasz

Dimension line and arrowhead size. (default=0.25)

dimexo

Distance from origin points to extension lines. (default imperial=0.0625, default metric=0.625)
dimdli

Incremental spacing between baseline dimensions. (default imperial=0.38, default metric=3.75)
dimexe

Extension line distance beyond dimension line. (default imperial=0.28, default metric=2.25)
dimrnd

Rounding value for decimal dimensions. (default=0)

Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to 0.25, all distances
round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer.

dimdle

Dimension line extension beyond extension lines. (default=0)

dimtp

Upper tolerance value for tolerance dimensions. (default=0)

dimtm

Lower tolerance value for tolerance dimensions. (default=0)

dimtxt

Size of dimension text. (default imperial=0.28, default metric=2.5)

dimcen

Controls placement of center marks or centerlines. (default imperial=0.09, default metric=2.5)
dimtsz

Controls size of dimension line tick marks drawn instead of arrowheads. (default=0)
dimaltf

Alternate units dimension scale factor. (default=25.4)

dimlfac

Scale factor for linear dimension values. (default=1)

dimtvp

Vertical position of text above or below dimension line if dimtad is 0. (default=0)

250

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.dimtfac

Scale factor for fractional or tolerance text size. (default=1)
dxf .dimgap

Gap size between dimension line and dimension text. (default imperial=0.09, default metric=0.625)
dxf.dimaltrnd

Rounding value for alternate dimension units. (default=0)
dxf.dimtol

Toggles creation of appended tolerance dimensions. (default imperial=1, default metric=0)
dxf.dimlim

Toggles creation of limits-style dimension text. (default=0)
dxf.dimtih

Orientation of text inside extension lines. (default imperial=1, default metric=0)
dxf.dimtoh

Orientation of text outside extension lines. (default imperial=1, default metric=0)
dxf.dimsel

Toggles suppression of first extension line. (default=0)
dxf.dimse2

Toggles suppression of second extension line. (default=0)

dxf.dimtad

Sets vertical text placement relative to dimension line. (default imperial=0, default metric=1)

center

above

outside, handled like above by ezdxf
JIS, handled like above by ezdxf
below

B WO = O

dxf.dimzin

Zero suppression for primary units dimensions. (default imperial=0, default metric=8)

Values 0-3 affect feet-and-inch dimensions only.

Suppresses zero feet and precisely zero inches

Includes zero feet and precisely zero inches

Includes zero feet and suppresses zero inches

Includes zero inches and suppresses zero feet

Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)

Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)
2 Suppresses both leading and trailing zeros (for example, 0.5000 becomes .5)

— 00 N~ W = O

dxf.dimazin

Controls zero suppression for angular dimensions. (default=0)

9.8. Reference 251

ezdxf Documentation, Release 1.3.2

0 Displays all leading and trailing zeros

1 Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)

2 Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)

3 Suppresses leading and trailing zeros (for example, 0.5000 becomes .5)
dxf.dimalt

Enables or disables alternate units dimensioning. (default=0)
dxf.dimaltd

Controls decimal places for alternate units dimensions. (default imperial=2, default metric=3)
dxf.dimtofl

Toggles forced dimension line creation. (default imperial=0, default metric=1)
dxf.dimsah

Toggles appearance of arrowhead blocks. (default=0)
dxf.dimtix

Toggles forced placement of text between extension lines. (default=0)
dxf.dimsoxd

Suppresses dimension lines outside extension lines. (default=0)
dxf.dimelrd

Dimension line, arrowhead, and leader line color. (default=0)
dxf.dimeclre

Dimension extension line color. (default=0)
dxf.dimeclrt

Dimension text color. (default=0)
dxf.dimadec

Controls the number of decimal places for angular dimensions.
dxf.dimunit

Obsolete, now use DIMLUNIT AND DIMFRAC
dxf.dimdec

Decimal places for dimension values. (default imperial=4, default metric=2)
dxf.dimtdec

Decimal places for primary units tolerance values. (default imperial=4, default metric=2)
dxf.dimaltu

Units format for alternate units dimensions. (default=2)
dxf.dimalttd

Decimal places for alternate units tolerance values. (default imperial=4, default metric=2)
dxf.dimaunit

Unit format for angular dimension values. (default=0)

dxf.dimfrac

Controls the fraction format used for architectural and fractional dimensions. (default=0)

252 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.dimlunit

Specifies units for all nonangular dimensions. (default=2)

dxf.dimdsep
Specifies a single character to use as a decimal separator. (default imperial = “.”, default metric = “,”) This is
an integer value, use ord (" . ") to write value.

dxf.dimtmove

Controls the format of dimension text when it is moved. (default=0)

0 Moves the dimension line with dimension text
1 Adds a leader when dimension text is moved
2 Allows text to be moved freely without a leader

dxf.dimjust

Horizontal justification of dimension text. (default=0)

Center of dimension line

Left side of the dimension line, near first extension line
Right side of the dimension line, near second extension line
Over first extension line

Over second extension line

A WD = O

dxf.dimsdl

Toggles suppression of first dimension line. (default=0)
dxf.dimsd2

Toggles suppression of second dimension line. (default=0)

dxf.dimtolj

Vertical justification for dimension tolerance text. (default=1)

0 Align with bottom line of dimension text
1 Align vertical centered to dimension text
2 Align with top line of dimension text

dxf.dimtzin

Zero suppression for tolerances values, see DimStyle.dxf.dimzin
dxf.dimaltz

Zero suppression for alternate units dimension values. (default=0)
dxf.dimalttz

Zero suppression for alternate units tolerance values. (default=0)
dxf.dimfit

Obsolete, now use DIMATFIT and DIMTMOVE

dxf.dimupt

Controls user placement of dimension line and text. (default=0)

9.8.

Reference 253

ezdxf Documentation, Release 1.3.2

dxf.dimatfit
Controls placement of text and arrowheads when there is insufficient space between the extension lines. (de-
fault=3)

dxf.dimtxsty
Text style used for dimension text by name.

dxf.dimtxsty_handle

Text style used for dimension text by handle of STYLE entry. (use DimStyle.dxf.dimtxsty to get/set
text style by name)

dxf.dimldrblk
Specify arrowhead used for leaders by name.

dxf.dimldrblk_handle
Specify arrowhead used for leaders by handle of referenced block. (use DimStyle.dxf.dimldrblkto
get/set arrowhead by name)

dxf.dimblk_handle
Block type to use for both arrowheads, handle of referenced block. (use DimStyle.dxf.dimblk to
get/set arrowheads by name)

dxf.dimblkl_handle
Block type to use for first arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk1 to
get/set arrowhead by name)

dxf.dimblk2_handle
Block type to use for second arrowhead, handle of referenced block. (use DimStyle.dxf.dimblkZ2 to
get/set arrowhead by name)

dxf.dimlwd
Lineweight value for dimension lines. (default=-2, BYBLOCK)

dxf.dimlwe
Lineweight value for extension lines. (default=-2, BYBLOCK)
dxf.dimltype
Specifies the linetype used for the dimension line as linetype name, requires DXF R2007+

dxf.dimltype_handle

Specifies the linetype used for the dimension line as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltype to get/set linetype by name)

dxf.dimltexl
Specifies the linetype used for the extension line 1 as linetype name, requires DXF R2007+

dxf.dimlex1l_handle
Specifies the linetype used for the extension line 1 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex] to get/set linetype by name)

dxf.dimltex2
Specifies the linetype used for the extension line 2 as linetype name, requires DXF R2007+

dxf.dimlex2_handle

Specifies the linetype used for the extension line 2 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex2 to get/set linetype by name)

254

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.dimfxlon
Extension line has fixed length if set to 1, requires DXF R2007+

dxf.dimfxl
Length of extension line below dimension line if fixed (DimStyle.dxf.dimtfxlon==1),DimStyle.
dxf .dimexen defines the length above the dimension line, requires DXF R2007+

dxf.dimt£fill
Text fill O=off; 1=background color; 2=custom color (see DimStyle.dxf.dimtfillclr), requires
DXF R2007+

dxf.dimtfillclr
Text fill custom color as color index (1-255), requires DXF R2007+

dxf.dimarcsym
Display arc symbol, supported only by ArcDimension:

0 arc symbol preceding the measurement text
1 arc symbol above the measurement text
2 disable arc symbol

copy_to_header (doc: Drawing)

Copy all dimension style variables to HEADER section of doc.

set_arrows (blk: str =", blkl: str = ", blk2: str = ", ldrblk: str = ") — None
Set arrows by block names or AutoCAD standard arrow names, set DIMTSZ to 0 which disables tick.

Parameters
¢ blk — block/arrow name for both arrows, if DIMSAH is 0
¢ blk1 — block/arrow name for first arrow, if DIMSAH is 1
¢ blk2 — block/arrow name for second arrow, if DIMSAH is 1
e 1drblk - block/arrow name for leader

set_tick (size: float = 1) — None
Set tick size, which also disables arrows, a tick is just an oblique stroke as marker.
Parameters
size — arrow size in drawing units
set_text_align (halign: str | None = None, valign: str | None = None, vshift: float | None = None) — None

Set measurement text alignment, halign defines the horizontal alignment (requires DXF R2000+), valign
defines the vertical alignment, abovel and above2 means above extension line 1 or 2 and aligned with extension

line.
Parameters
¢ halign - “left”, “right”, “center”, “abovel”, “above2”, requires DXF R2000+
e valign - “above”, “center”, “below”
* vshift — vertical text shift, if valign is “center”; >0 shift upward, <0 shift downwards
set_text_format (prefix: str = ", postfix: str = ", rnd: float | None = None, dec: int | None = None, sep: str |

None = None, leading_zeros: bool = True, trailing_zeros: bool = True)

Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.

9.8.

Reference 255

ezdxf Documentation, Release 1.3.2

Parameters
* prefix — Dimension text prefix text as string
* postfix — Dimension text postfix text as string

¢ rnd - Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

* dec - Sets the number of decimal places displayed for the primary units of a dimension,
requires DXF R2000+

@ @

e sep - “.” or “,” as decimal separator, requires DXF R2000+
* leading_zeros — Suppress leading zeros for decimal dimensions if False
* trailing_zeros — Suppress trailing zeros for decimal dimensions if False

set_dimline_format (color: int | None = None, linetype: str | None = None, lineweight: int | None = None,
extension: float | None = None, disablel: bool | None = None, disable2: bool | None
= None)

Set dimension line properties
Parameters
* color - color index
* linetype - linetype as string, requires DXF R2007+
¢ lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm, requires DXF R2000+
* extension - extension length
* disablel — True to suppress first part of dimension line, requires DXF R2000+
* disable2 - True to suppress second part of dimension line, requires DXF R2000+

set_extline_format (color: int | None = None, lineweight: int | None = None, extension: float | None =
None, offset: float | None = None, fixed_length: float | None = None)

Set common extension line attributes.
Parameters
* color - color index
* lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
¢ extension - extension length above dimension line
* offset - offset from measurement point
» fixed_length - set fixed length extension line, length below the dimension line

set_extlinel (linetype: str | None = None, disable=False)

Set extension line 1 attributes.
Parameters
¢ linetype - linetype for extension line 1, requires DXF R2007+
* disable - disable extension line 1 if True

set_extline2 (linetype: str | None = None, disable=False)
Set extension line 2 attributes.

Parameters

256 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

¢ linetype - linetype for extension line 2, requires DXF R2007+
* disable - disable extension line 2 if True

set_tolerance (upper: float, lower: float | None = None, hfactor: float = 1.0, align: MTextLineAlignment |
None = None, dec: int | None = None, leading_zeros: bool | None = None, trailing_zeros:
bool | None = None) — None

Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and
trailing zero suppression.

Parameters
e upper — upper tolerance value
* lower - lower tolerance value, if None same as upper
* hfactor - tolerance text height factor in relation to the dimension text height

* align - tolerance text alignment enum ezdxf.enums.MTextLineAlignment re-
quires DXF R2000+

* dec - Sets the number of decimal places displayed, requires DXF R2000+

* leading_zeros - suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

* trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+

set_limits (upper: float, lower: float, hfactor: float = 1.0, dec: int | None = None, leading_zeros: bool | None
= None, trailing_zeros: bool | None = None) — None

Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading
and trailing zero suppression.

Parameters
e upper — upper limit value added to measurement value
* lower — lower limit value subtracted from measurement value
* hfactor - limit text height factor in relation to the dimension text height
¢ dec - Sets the number of decimal places displayed, requires DXF R2000+

* leading_zeros - suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

* trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+

VPort

The viewport table (DXF Reference) stores the modelspace viewport configurations. So this entries just modelspace
viewports, not paperspace viewports, for paperspace viewports see the Viewport entity.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'VPORT'
Factory function Drawing.viewports.new ()

9.8. Reference 257

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8CE7CC87-27BD-4490-89DA-C21F516415A9

ezdxf Documentation, Release 1.3.2

See also:
DXF Internals: VPORT Configuration Table

class ezdxf.entities.VPort
Subclass of DXFEntity

Defines a viewport configurations for the modelspace.

dxf .owner
Handle to owner (ViewportTable).
dxf .name

Viewport name

dxf.flags
Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.lower_left

Lower-left corner of viewport

dxf.upper_right

Upper-right corner of viewport

dxf.center

View center point (in DCS)

dxf.snap_base

Snap base point (in DCS)
dxf.snap_spacing

Snap spacing X and Y
dxf.grid_spacing

Grid spacing X and Y

dxf.direction_point

View direction from target point (in WCS)
dxf.target_point

View target point (in WCS)
dxf.height

View height
dxf.aspect_ratio
dxf.lens_length

Lens focal length in mm

dxf.front_clipping
Front clipping plane (offset from target point)

258 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf .back_clipping
Back clipping plane (offset from target point)

dxf.snap_rotation

Snap rotation angle in degrees

dxf.view_twist

View twist angle in degrees

dxf.status
dxf.view_mode
dxf.circle_zoom
dxf.fast_zoom

dxf.uecs_icon

¢ bit O: O=hide, 1=show
* bit 1: O=display in lower left corner, 1=display at origin

dxf.snap_on
dxf.grid_on
dxf.snap_style
dxf.snap_isopair

reset_wcs () — None

Reset coordinate system to the WCS.

View

The View table (DXF Reference) stores named views of the model or paperspace layouts. This stored views makes parts
of the drawing or some view points of the model in a CAD applications more accessible. This views have no influence
to the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the
convenience of CAD application users.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'VIEW'
Factory function Drawing.views.new ()

See also:
DXF Internals: VIEW Table
class ezdxf.entities.View
dxf.owner
Handle to owner (Table).

dxf .name

Name of view.

9.8. Reference 259

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C

ezdxf Documentation, Release 1.3.2

dxf.flags
Standard flag values (bit-coded values):

1 If set, this is a paper space view
16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved
64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing

was edited. (This flag is only for the benefit of AutoCAD)

dxf.height
View height (in DCS)

dxf.width
View width (in DCS)

dxf.center_point
View center point (in DCS)

dxf.direction_point
View direction from target (in WCS)

dxf.target_point
Target point (in WCS)

dxf.lens_length
Lens length

dxf.front_clipping
Front clipping plane (offset from target point)

dxf.back_clipping
Back clipping plane (offset from target point)

dxf.view_twist

Twist angle in degrees.

dxf.view_mode
View mode (see VIEWMODE system variable)

dxf.render_mode

Flat shaded with wireframe
Gouraud shaded with wireframe

0 2D Optimized (classic 2D)
1 Wireframe

2 Hidden line

3 Flat shaded

4 Gouraud shaded

5

6

dxf.ucs
1 if there is a UCS associated to this view; 0 otherwise

dxf.ues_origin

UCS origin as (x, y, z) tuple (appears only if ucs is set to 1)

260 Chapter 9

. Contents

ezdxf Documentation, Release 1.3.2

dxf.ucs_xaxis

UCS x-axis as (X, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_yaxis

UCS y-axis as (X, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_ortho_type

Orthographic type of UCS (appears only if ucs is set to 1)

0 UCS is not orthographic
1 Top

2 Bottom

3 Front

4 Back

5 Left

6 Right

dxf.elevation
UCS elevation
dxf.ucs_handle

Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed (appears only if ucs
issetto 1)

dxf .base_ucs_handle

Handle of UCSTable of base UCS if UCS is orthographic. If not present and ucs_ortho_type is
non-zero, then base UCS is taken to be WORLD (appears only if ucs is set to 1)

dxf.camera_plottable

1 if the camera is plottable

dxf .background_handle
Handle to background object (optional)

dxf.live_selection_handle

Handle to live section object (optional)

dxf.visual_style_handle

Handle to visual style object (optional)

dxf.sun_handle

Sun hard ownership handle.

ApplID

Defines an APPID (DXF Reference). These table entries maintain a set of names for all registered applications.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'APPID'
Factory function Drawing.appids.new ()

class ezdxf.entities.AppID

9.8. Reference 261

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6E3140E9-E560-4C77-904E-480382F0553E

ezdxf Documentation, Release 1.3.2

dxf .owner
Handle to owner (Table).

dxf.name
User-supplied (or application-supplied) application name (for extended data).

dxf.flags
Standard flag values (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

ucs

Defines an named or unnamed user coordinate system (DXF Reference) for usage in CAD applications. This UCS table
entry does not interact with ezdxf in any way, to do coordinate transformations by ezdxf use the ezdxf.math.UCS
class.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'ycs!
Factory function Drawing.ucs.new ()

See also:
UCS and OCS
class ezdxf.entities.UCSTableEntry
dxf.owner
Handle to owner (Table).

dxf .name
UCS name (str).

dxf.flags
Standard flags (bit-coded values):

16 If set, table entry is externally dependent on an xref

32 If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.origin
Origin as (X, y, z) tuple

dxf.xaxis

X-axis direction as (X, y, z) tuple

dxf.yaxis

Y-axis direction as (X, y, z) tuple

262 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1906E8A7-3393-4BF9-BD27-F9AE4352FB8B

ezdxf Documentation, Release 1.3.2

uecs () — UCS
Returns an ezdxf.math. UCS object for this UCS table entry.

BlockRecord

BLOCK_RECORD (DXF Reference) is the core management structure for Bl ockLayout and Layout. This is an
internal DXF structure managed by ezdxf, package users don’t have to care about it.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'BLOCK_RECORD'
Factory function Drawing.block_records.new ()

class ezdxf.entities.BlockRecord
dxf .owner
Handle to owner (Table).

dxf .name
Name of associated BLOCK.

dxf.layout
Handle to associated DXFLayout, if paperspace layout or modelspace else “0”

dxf.explode
1 for BLOCK references can be exploded else O

dxf.scale
1 for BLOCK references can be scaled else 0

dxf.units
BLOCK insert units

9.8. Reference 263

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A1FD1934-7EF5-4D35-A4B0-F8AE54A9A20A

ezdxf Documentation, Release 1.3.2

0 Unitless

1 Inches

2 Feet

3 Miles

4 Millimeters

5 Centimeters

6 Meters

7 Kilometers

8 Microinches

9 Mils

10 Yards

11 Angstroms

12 Nanometers

13 Microns

14 Decimeters

15 Decameters

16 Hectometers

17 Gigameters

18 Astronomical units
19 Light years

20 Parsecs

21 US Survey Feet
22 US Survey Inch
23 US Survey Yard
24 US Survey Mile

property is_active_paperspace: bool
True if is “active” paperspace layout.
property is_any_paperspace: bool
True if is any kind of paperspace layout.
property is_any_layout: bool
True if is any kind of modelspace or paperspace layout.
property is_block_layout: bool
True if not any kind of modelspace or paperspace layout, just a regular block definition.
property is_modelspace: bool
True if is the modelspace layout.
property is_xref: bool
True if represents an XREF (external reference) or XREF_OVERLAY.

264 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Internal Structure

Do not change this structures, this is just an information for experienced developers!

The BLOCK_RECORD is the owner of all the entities in a layout and stores them in an EntitySpace object
(BlockRecord.entity_space). For each layout exist a BLOCK definition in the BLOCKS section, a reference
to the B1ock entity is stored in BlockRecord.block.

Modelspace and Paperspace layouts require an additional DXFLayout object in the OBJECTS section.
See also:

More information about Block Management Structures and Layout Management Structures.

Blocks

A block definition (B1ockLayout) is a collection of DXF entities, which can be placed multiply times at different
layouts or other blocks as references to the block definition. Block layouts are located in the BLOCKS sections and are
accessible by the b1ocks attribute of the Drawing class.

See also:

Tutorial for Blocks and DXF Internals: Block Management Structures

Block

BLOCK (DXF Reference) entity is embedded into the B1ockLayout object. The BLOCK entity is accessible by the
BlockLayout .block attribute.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'BLOCK'
Factory function Drawing.blocks.new () (returnsa BlockLayout)

See also:
Tutorial for Blocks and DXF Internals: Block Management Structures
class ezdxf.entities.Block
dxf.handle
BLOCK handle as plain hex string. (feature for experts)

dxf.owner

Handle to owner as plain hex string. (feature for experts)
dxf.layer

Layer name as string; default value is '0'

dxf .name

BLOCK name as string. (case insensitive)

dxf.base_point
BLOCK base point as (x, vy, z) tuple, default valueis (0, 0, O0)

Insertion location referenced by the Tnsert entity to place the block reference and also the center of rotation
and scaling.

9.8. Reference 265

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-66D32572-005A-4E23-8B8B-8726E8C14302

ezdxf Documentation, Release 1.3.2

dxf.flags
BLOCK flags (bit-coded)

1 Anonymous block generated by hatching, associative dimensioning, other internal operations, or an

application

2 Block has non-constant attribute definitions (this bit is not set if the block has any attribute definitions

that are constant, or has no attribute definitions at all)
4 Block is an external reference (xref)
8 Block is an xref overlay
16 Block is externally dependent

32 This is a resolved external reference, or dependent of an external reference (ignored on input)

64 This definition is a referenced external reference (ignored on input)

dxf.xref_ path

File system path as string, if this block defines an external reference (XREF).

is_layout_block

Returns True if this is a Mode 1 space or Paperspace block definition.

is_anonymous

Returns True if this is an anonymous block generated by hatching, associative dimensioning, other internal

operations, or an application.

is_xref

Returns True if bock is an external referenced file.

is_xref_ overlay

Returns True if bock is an external referenced overlay file.

EndBlk

ENDBLK entity is embedded into the BlockLayout object. ~The ENDBLK entity is accessible by the

BlockLayout .endblk attribute.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'ENDBLK'

class ezdxf.entities.EndBlk
dxf.handle
BLOCK handle as plain hex string. (feature for experts)

dxf .owner

Handle to owner as plain hex string. (feature for experts)

dxf.layer

Layer name as string; should always be the same as Block.dxf.layer

266

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Insert

The INSERT entity (DXF Reference) represents a block reference with optional attached attributes as (At t rib) entities.

Subclass of

DXEF type

Factory function
Inherited DXF attributes

ezdxf.entities.DXFGraphic

'INSERT'

ezdxf.layouts.BaseLayout.add blockref ()
Common graphical DXF attributes

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Insert

dxf .name
BLOCK name (str)

dxf.insert

Insertion location of the BLOCK base point as (2D/3D Point in OCS)

dxf.xscale

Scale factor for x direction (float)

dxf.yscale

Scale factor for y direction (float)

Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.zscale

Scale factor for z direction (float)

Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.rotation

Rotation angle in degrees (float)

dxf.row_count

Count of repeated insertions in row direction, MINSERT entity if > 1 (int)

dxf.row_spacing

Distance between two insert points (MINSERT) in row direction (float)

dxf.column_count

Count of repeated insertions in column direction, MINSERT entity if > 1 (int)

dxf.column_spacing

Distance between two insert points (MINSERT) in column direction (float)

attribs

A list of all attached At t rib entities.

9.8. Reference

267

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-28FA4CFB-9D5E-4880-9F11-36C97578252F

ezdxf Documentation, Release 1.3.2

has_scaling

Returns True if scaling is applied to any axis.

has_uniform scaling

Returns True if the scale factor is uniform for x-, y- and z-axis, ignoring reflections e.g. (1, 1, -1) is uniform

scaling.

mcount

Returns the multi-insert count, MINSERT (multi-insert) processing is required if mcount > 1.

set_scale (factor: float)
Set a uniform scale factor.

block () — BlockLayout | None
Returns the associated BlockLayout.

place (insert: UVec | None = None, scale: tuple[float, float, float] | None = None, rotation: float | None =
None) — Insert

Set the location, scaling and rotation attributes. Arguments which are None will be ignored.
Parameters
* insert - insert location as (x, y [,z]) tuple
* scale - (x-scale, y-scale, z-scale) tuple
* rotation - rotation angle in degrees

grid (size: tuple[int, int] = (1, 1), spacing: tuple[float, float] = (1, 1)) — Insert

Place block reference in a grid layout, grid size defines the row- and column count, spacing defines the distance

between two block references.
Parameters
* size — grid size as (row_count, column_count) tuple
* spacing - distance between placing as (row_spacing, column_spacing) tuple

has_attrib (tag: str, search_const: bool = False) — bool

Returns True if the INSERT entity has an attached ATTRIB entity with the given tag. Some applications do
not attach constant ATTRIB entities, set search_const to True, to check for an associated At tDef entity

with constant content.
Parameters
* tag - tag name fo the ATTRIB entity
¢ search_const —search also const ATTDEF entities

get_attrib (fag: str, search_const: bool = False) — Attrib | AttDef | None

Get an attached Attrib entity with the given fag, returns None if not found. Some applications do not
attach constant ATTRIB entities, set search_const to True, to get at least the associated At tDe £ entity.

Parameters
¢ tag - tag name of the ATTRIB entity
¢ search_const —search also const ATTDEF entities

get_attrib_text (tag: str, default: str = ", search_const: bool = False) — str

Get content text of an attached Attrib entity with the given tag, returns the default value if not found.
Some applications do not attach constant ATTRIB entities, set search_const to True, to get content text of
the associated At tDef entity.

268

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Parameters
* tag - tag name of the ATTRIB entity
* default - default value if ATTRIB fag is absent
¢ search_const —search also const ATTDEEF entities

add_attrib (fag: str, text: str, insert: UVec = (0, 0), dxfattribs=None) — Attrib
Attach an At t rib entity to the block reference.

Example for appending an attribute to an INSERT entity:

e.add_attrib ('EXAMPLETAG', 'example text').set_placement (
(3, 7), align=TextEntityAlignment .MIDDLE_CENTER
)

Parameters
* tag - tag name of the ATTRIB entity
* text — content text as string
e insert - insert location as (X, y[, z]) tuple in OCS

e dxfattribs — additional DXF attributes for the ATTRIB entity

add_auto_attribs (values: dict[str, str]) — Insert

Attach for each At tdef entity, defined in the block definition, automatically an At t i b entity to the block
reference and set tag/value DXF attributes of the ATTRIB entities by the key/value pairs (both as
strings) of the values dict. The ATTRIB entities are placed relative to the insert location of the block reference,
which is identical to the block base point.

This method avoids the wrapper block of the add_auto_blockref () method, but the visual results may
not match the results of CAD applications, especially for non-uniform scaling. If the visual result is very
important to you, use the add_auto_blockref () method.

Parameters
values — Attrib tagvalues as tag/value pairs

delete_attrib (fag: str, ignore=False) — None

Delete an attached At ¢t rib entity from INSERT. Raises an DXFKeyError exception, if no ATTRIB for
the given fag exist if ignore is False.

Parameters
* tag - tag name of the ATTRIB entity
e ignore —False for raising DXFKeyError if ATTRIB tag does not exist.

Raises
DxXFKeyError —no ATTRIB for the given tag exist

delete_all_attribs () — None
Delete all Attrib entities attached to the INSERT entity.

transform (m: Matrix44) — Insert
Transform INSERT entity by transformation matrix m inplace.

Unlike the transformation matrix m, the INSERT entity can not represent a non-orthogonal target coordinate
system and an InsertTransformationError will be raised in that case.

9.8.

Reference 269

ezdxf Documentation, Release 1.3.2

translate (dx: float, dy: float, dz: float) — Insert
Optimized INSERT translation about dx in x-axis, dy in y-axis and dz in z-axis.
virtual_entities (¥ skipped_entity_callback: Callable[[DXFGraphic, str], None] | None = None,
redraw_order=False) — Iterator[DXFGraphic]
Yields the transformed referenced block content as virtual entities.
This method is meant to examine the block reference entities at the target location without exploding the
block reference. These entities are not stored in the entity database, have no handle and are not assigned to

any layout. It is possible to convert these entities into regular drawing entities by adding the entities to the
entities database and a layout of the same DXF document as the block reference:

doc.entitydb.add (entity)
msp = doc.modelspace ()
msp.add_entity (entity)

Warning: Non-uniform scale factors may return incorrect results for some entities (TEXT, MTEXT,
ATTRIB).

This method does not resolve the MINSERT attributes, only the sub-entities of the first INSERT will be
returned. To resolve MINSERT entities check if multi insert processing is required, that’s the case if the
property Insert.mcount > 1,usethe Tnsert.multi_insert () method to resolve the MINSERT
entity into multiple INSERT entities.

This method does not apply the clipping path created by the XCLIP command. The method returns all entities
and ignores the clipping path polygon and no entity is clipped.

The skipped_entity_callback() will be called for all entities which are not processed, signature:
skipped_entity_callback (entity: DXFEntity, reason: str), entityis the origi-
nal (untransformed) DXF entity of the block definition, the reason string is an explanation why the entity was
skipped.

Parameters

* skipped_entity_callback - called whenever the transformation of an entity is not
supported and so was skipped

¢ redraw_order - yield entities in ascending redraw order if True

multi_insert () — Iterator[Insert]
Yields a virtual INSERT entity for each grid element of a MINSERT entity (multi-insert).

explode (target_layout: BaseLayout | None = None, *, redraw_order=False) — EntityQuery

Explodes the block reference entities into the target layout, if target layout is None, the layout of the block
reference will be used. This method destroys the source block reference entity.

Transforms the block entities into the required WCS location by applying the block reference attributes insert,
extrusion, rotation and the scale factors xscale, yscale and zscale.

Attached ATTRIB entities are converted to TEXT entities, this is the behavior of the BURST command of
the AutoCAD Express Tools.

Warning: Non-uniform scale factors may lead to incorrect results some entities (TEXT, MTEXT,
ATTRIB).

Parameters

270 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* target_layout - target layout for exploded entities, None for same layout as source
entity.

* redraw_order - create entities in ascending redraw order if True

Returns
Ent ityQuery container referencing all exploded DXF entities.

ucs ()
Returns the block reference coordinate system as ezdxf.math. UCS object.

matrix44 () — Matrix44
Returns a transformation matrix to transform the block entities from the block reference coordinate system

into the WCS.

reset_transformation () — None
Reset block reference attributes location, rotation angle and the extrusion vector but preserves the scale factors.

Attrib

The ATTRIB (DXF Reference) entity represents a text value associated with a tag. In most cases an ATTRIB is appended
to an Insert entity, but it can also be used as a standalone entity.

Subclass of ezdxf.entities. Text

DXF type '"ATTRIB'

Factory function ezdxf.layouts.BaselLayout.add_attrib () (stand alone entity)
Factory function Insert.add _attrib () (attached to Insert)

Inherited DXF attributes ~ Common graphical DXF attributes

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Attrib
ATTRIB supports all DXF attributes and methods of parent class Text.

dxf.tag
Tag to identify the attribute (str)

dxf.text

Attribute content as text (str)
property is_invisible: bool

Attribute is invisible if True.
property is_const: bool

This is a constant attribute if True.

property is_verify: bool
Verification is required on input of this attribute. (interactive CAD application feature)

9.8. Reference 271

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7DD8B495-C3F8-48CD-A766-14F9D7D0DD9B

ezdxf Documentation, Release 1.3.2

property is_preset: bool
No prompt during insertion. (interactive CAD application feature)

property has_embedded mtext_entity: bool
Returns True if the entity has an embedded MTEXT entity for multi-line support.

virtual_mtext_entity () — MText

Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties
as the host entity.

plain_mtext (fast=True) — str

Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.

The fast mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The accurate mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

The accurate mode is much slower than the fast mode.

Parameters
fast —uses the fast mode to extract the plain MTEXT content if True or the accurate mode
if setto False

set_mtext (mtext: MText, graphic_properties=True) — None

Set multi-line properties from a MText entity.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
* mtext — source MText entity

* graphic_properties - copy graphic properties (color, layer, ...) from source MTEXT
if True

embed_mtext (mtext: M1ext, graphic_properties=True) — None
Set multi-line properties from a MText entity and destroy the source entity afterwards.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
* mtext —source MText entity

* graphic_properties —copy graphic properties (color, layer, ...) from source MTEXT
if True

AttDef

The ATTDEF (DXF Reference) entity is a template in a Bl ockLayout, which will be used to create an attached
Attrib entity for an Tnsert entity.

Subclass of ezdxf.entities.Text
DXEF type 'ATTDEF"
Factory function ezdxf.layouts.BaseLayout.add_attdef ()

Inherited DXF attributes ~ Common graphical DXF attributes

272

Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0EA099B-6F88-4BCC-BEC7-247BA64838A4

ezdxf Documentation, Release 1.3.2

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.AttDef
ATTDEEF supports all DXF attributes and methods of parent class Text.

dxf.tag
Tag to identify the attribute (str)

dxf.text
Attribute content as text (str)

dxf .prompt
Attribute prompt string. (CAD application feature)

dxf.field_length
Just relevant to CAD programs for validating user input

property is_invisible: bool
Attribute is invisible if True.

property is_const: bool
This is a constant attribute if True.

property is_verify: bool
Verification is required on input of this attribute. (interactive CAD application feature)

property is_preset: bool
No prompt during insertion. (interactive CAD application feature)

property has_embedded mtext_entity: bool
Returns True if the entity has an embedded MTEXT entity for multi-line support.

virtual_mtext_entity () — MText
Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties
as the host entity.

plain_mtext (fast=True) — str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.

The fast mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The accurate mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

The accurate mode is much slower than the fast mode.

Parameters
fast —uses the fast mode to extract the plain MTEXT content if True or the accurate mode
if settoFalse

set_mtext (mtext: MText, graphic_properties=True) — None
Set multi-line properties from a MText entity.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

9.8. Reference 273

ezdxf Documentation, Release 1.3.2

Parameters

* mtext — source MText entity

* graphic_properties - copy graphic properties (color, layer, ...) from source MTEXT

if True

embed_mtext (mtext: MText, graphic_properties=True) — None

Set multi-line properties from a MText entity and destroy the source entity afterwards.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-

TRIB/ATTDEEF entity will be exported.
Parameters

* mtext —source MText entity

* graphic_properties - copy graphic properties (color, layer, ...) from source MTEXT

if True

Layouts

Layout Manager

The layout manager is unique to each DXF drawing, access the layout manager as 1 ayout s attribute of the Drawing
object (e.g. doc.layouts.rename ("Layoutl", "PlanView")).

class ezdxf.layouts.Layouts

The Layouts class manages Paperspace layouts and the Modelspace.

len__ () —int

Returns count of existing layouts, including the modelspace layout.

__contains___ (name: str) — bool

Returns True if layout name exist.

__iter__ () — Iterator[Layout]
Returns iterable of all layouts as Layout objects, including the modelspace layout.

names () — list[str]

Returns a list of all layout names, all names in original case sensitive form.

names_in_taborder () — list[str]
Returns all layout names in tab order as shown in CAD applications.

modelspace () — Modelspace
Returns the Mode 1 space layout.

get (name: str | None) — Layout
Returns Layout by name, case insensitive “Model” == “MODEL”.

Parameters
name — layout name as shown in tab, e.g. 'Model' for modelspace

new (name: str, dxfattribs=None) — Paperspace

Returns a new Paperspace layout.
Parameters

* name — layout name as shown in tabs in CAD applications

274

Chapter 9

. Contents

ezdxf Documentation, Release 1.3.2

e dxfattribs — additional DXF attributes for the DXFLayout entity
Raises

* DXFValueError — Invalid characters in layout name.

e DXFValueError — Layout name already exist.

rename (old_name: str, new_name: str) — None
Rename a layout from old_name to new_name. Can not rename layout 'Model' and the new name of a
layout must not exist.

Parameters

* old_name - actual layout name, case insensitive

* new_name — new layout name, case insensitive
Raises

* DXFValueError —try to rename 'Model'

e DXFValueError — Layout new_name already exist.

delete (name: str) — None

Delete layout name and destroy all entities in that layout.

Parameters
name (str) — layout name as shown in tabs

Raises
* DXFKeyError — if layout name do not exists
* DXFValueError — deleting modelspace layout is not possible
* DXFValueError — deleting last paperspace layout is not possible

active_layout () — Paperspace
Returns the active paperspace layout.

set_active_layout (name: str) — None
Set layout name as active paperspace layout.

get_layout_for_entity (entity: DXFEntity) — Layout
Returns the owner layout for a DXF entity.

Layout Types

A Layout represents and manages DXF entities, there are three different layout objects:
* Modelspace is the common working space, containing basic drawing entities.

* Paperspace is the arrangement of objects for printing and plotting, this layout contains basic drawing entities
and viewports to the Modelspace.
e BlockLayout works on an associated Block, Blocks are collections of DXF entities for reusing by block

references.

Warning: Do not instantiate layout classes by yourself - always use the provided factory functions!

9.8. Reference 275

ezdxf Documentation, Release 1.3.2

Entity Ownership

A layout owns all entities residing in their entity space, therefore the dxf . owner attribute of any DXFGraphi c entity
in this layout is the dxf.handle of the layout, and deleting an entity from a layout is the end of life of this entity,
because it is also deleted from the Ent it yDB. It’s possible to just unlink an entity from a layout to assign the entity to
another layout, use the move_to_Ilayout () method to move entities between layouts.

BaseLayout

class ezdxf.layouts.BaseLayout

BaseLayout is the common base class for Layout and BlockLayout.
is_alive

False if layout is deleted.
is_active_paperspace

True if is active layout.
is_any_paperspace

True if is any kind of paperspace layout.
is_modelspace

True if is modelspace layout.
is_any_layout

True if is any kind of modelspace or paperspace layout.
is_block_layout

True if not any kind of modelspace or paperspace layout, just a regular block definition.
units

set drawing units.

Type
Get/Set layout/block drawing units as enum, see also

Type
ref
_len__ () —int
Returns count of entities owned by the layout.
__iter_ () — lIterator[DXFGraphic]
Returns iterable of all drawing entities in this layout.
__getitem__ (index)
Get entity at index.
The underlying data structure for storing entities is organized like a standard Python list, therefore index can
be any valid list indexing or slicing term, like a single index 1ayout [-1] to get the last entity, or an index
slice layout [:10] to get the first 10 or less entities as 11 st [DXFGraphic].
get_extension_dict () — ExtensionDict
Returns the associated extension dictionary, creates a new one if necessary.
delete_entity (entity: DXFGraphic) — None
Delete entity from layout entity space and the entity database, this destroys the entfity.

276

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

delete_all_entities () — None
Delete all entities from this layout and from entity database, this destroys all entities in this layout.
unlink_entity (entity: DXFGraphic) — None
Unlink entity from layout but does not delete entity from the entity database, this removes entity just from the
layout entity space.
purge ()
Remove all destroyed entities from the layout entity space.
query (query: str = '*') — EntityQuery
Get all DXF entities matching the Entity Query String.
groupby (dxfattrib: str = ", key: KeyFunc | None = None) — dict
Returns a dict of entity lists, where entities are grouped by a dxfattrib or a key function.

Parameters
* dxfattrib - grouping by DXF attribute like ' layer'

¢ key — key function, which accepts a DXFGraphic entity as argument and returns the
grouping key of an entity or None to ignore the entity. Reason for ignoring: a queried DXF
attribute is not supported by entity.
move_to_layout (entity: DXFGraphic, layout: BaseLayout) — None
Move entity to another layout.

Parameters
¢ entity — DXF entity to move
¢ layout - any layout (modelspace, paperspace, block) from same drawing

set_redraw_order (handles: dict | Iterable[tuple][str, str]]) — None
If the header variable $SSORTENTS Regen flag (bit-code value 16) is set, AutoCAD regenerates entities in
ascending handles order.

To change redraw order associate a different sort-handle to entities, this redefines the order in which the
entities are regenerated. The handles argument can be a dict of entity_handle and sort_handle as (k, v) pairs,
or an iterable of (entity_handle, sort_handle) tuples.

The sort-handle doesn’t have to be unique, some or all entities can share the same sort-handle and a sort-handle
can be an existing handle.

The “0” handle can be used, but this sort-handle will be drawn as latest (on top of all other entities) and not
as first as expected.

Parameters
handles - iterable or dict of handle associations; an iterable of 2-tuples (entity_handle,
sort_handle) or a dict (k, v) association as (entity_handle, sort_handle)
get_redraw_order () — Iterable[tuple[str, str]]
Returns iterable for all existing table entries as (entity_handle, sort_handle) pairs, see also
set_redraw_order ().
entities_in_redraw_order (reverse=False) — Iterable[DXFGraphic]

Yields all entities from layout in ascending redraw order or descending redraw order if reverse is True.

9.8.

Reference 277

ezdxf Documentation, Release 1.3.2

add_entity (entity: DXFGraphic) — None

Add an existing DXFGraphic entity to a layout, but be sure to unlink (unlink_entity ()) entity from
the previous owner layout. Adding entities from a different DXF drawing is not supported.

Warning: This is a low-level tool - use it with caution and make sure you understand what you are doing!
If used improperly, the DXF document may be damaged.

add_foreign_entity (entity: DXFGraphic, copy=True) — None

Add a foreign DXF entity to a layout, this foreign entity could be from another DXF document or an entity
without an assigned DXF document. The intention of this method is to add simple entities from another
DXF document or from a DXF iterator, for more complex operations use the i mporter add-on. Especially
objects with BLOCK section (INSERT, DIMENSION, MLEADER) or OBJECTS section dependencies
(IMAGE, UNDERLAY) can not be supported by this simple method.

Not all DXF types are supported and every dependency or resource reference from another DXF document
will be removed except attribute layer will be preserved but only with default attributes like color 7 and
linetype CONTINUOUS because the layer attribute doesn’t need a layer table entry.

If the entity is part of another DXF document, it will be unlinked from this document and its entity database
if argument copy is False, else the entity will be copied. Unassigned entities like from DXF iterators will
just be added.

Supported DXF types:
¢ POINT
* LINE
¢ CIRCLE
*« ARC
* ELLIPSE
« LWPOLYLINE
* SPLINE
 POLYLINE
* 3DFACE
e SOLID
« TRACE
* SHAPE
* MESH
e ATTRIB
e ATTDEF
e TEXT
* MTEXT
« HATCH

Parameters

* entity — DXF entity to copy or move

278

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* copy - if True copy entity from other document else unlink from other document
Raises

CopyNot Supported - copying of enfity i not supported

add_point (location: UVec, dxfattribs=None) — Point
Add a Point entity at location.

Parameters
* location - 2D/3D point in WCS
e dxfattribs — additional DXF attributes

add_1line (start: UVec, end: UVec, dxfattribs=None) — Line
Add a Line entity from start to end.

Parameters
e start - 2D/3D point in WCS
e end - 2D/3D point in WCS
e dxfattribs - additional DXF attributes

add_circle (center: UVec, radius: float, dxfattribs=None) — Circle
Add a Circle entity. This is an 2D element, which can be placed in space by using OCS.

Parameters
* center - 2D/3D point in WCS
¢ radius - circle radius
* dxfattribs — additional DXF attributes

add_ellipse (center: UVec, major_axis: UVec = (1, 0, 0), ratio: float = 1, start_param: float = 0,
end_param: float = math.tau, dxfattribs=None) — Ellipse

Add an E111ipse entity, ratio is the ratio of minor axis to major axis, start_param and end_param defines
start and end point of the ellipse, a full ellipse goes from 0 to 2. The ellipse goes from start to end param in
counter-clockwise direction.

Parameters
* center - center of ellipse as 2D/3D point in WCS
* major_axis — major axis as vector (X, y,)
e ratio - ratio of minor axis to major axis in range +/-[le-6, 1.0]
* start_param — start of ellipse curve
* end_param — end param of ellipse curve
* dxfattribs — additional DXF attributes

add_arc (center: UVec, radius: float, start_angle: float, end_angle: float, is_counter_clockwise: bool = True,
dxfattribs=None) — Arc

Add an Arc entity. The arc goes from start_angle to end_angle in counter-clockwise direction by default, set
parameter is_counter_clockwise to False for clockwise orientation.

Parameters
e center — center of arc as 2D/3D point in WCS

e radius — arc radius

9.8.

Reference 279

ezdxf Documentation, Release 1.3.2

* start_angle - start angle in degrees

* end_angle - end angle in degrees

* is_counter_clockwise —False for clockwise orientation
¢ dxfattribs — additional DXF attributes

add_solid (points: Iterable[UVec], dxfattribs=None) — Solid
Add a So1id entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters
* points —iterable of 3 or 4 2D/3D points in WCS
e dxfattribs - additional DXF attributes

add_trace (points: Iterable[UVec], dxfattribs=None) — Trace

Add a Trace entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters

e points —iterable of 3 or 4 2D/3D points in WCS
e dxfattribs — additional DXF attributes

add_3dface (points: Iterable[UVec], dxfattribs=None) — Face3d
Add a 3DFace entity, points is an iterable 3 or 4 2D/3D points.

Hint: In contrast to SOLID and TRACE, the last two vertices are in regular order: a square has the vertex
order 0-1-2-3

Parameters

e points —iterable of 3 or 4 2D/3D points in WCS
* dxfattribs — additional DXF attributes

add_text (text: str, *, height: float | None = None, rotation: float | None = None, dxfattribs=None) — Text
Add a Text entity, see also Textstyle.

Parameters
* text — content string
* height - text height in drawing units
e rotation - text rotation in degrees

e dxfattribs — additional DXF attributes

280 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_blockref (name: str, insert: UVec, dxfattribs=None) — Insert
Add an Tnsert entity.

When inserting a block reference into the modelspace or another block layout with different units, the scaling
factor between these units should be applied as scaling attributes (xscale, ...) e.g. modelspace in meters
and block in centimeters, xscale has to be 0.01.

Parameters
* name - block name as str
e insert —insert location as 2D/3D point in WCS
e dxfattribs - additional DXF attributes

add_auto_blockref (name: str, insert: UVec, values: dict[str, str], dxfattribs=None) — Insert

Add an Tnsert entity. This method adds for each At t de £ entity, defined in the block definition, automat-
ically an Attrib entity to the block reference and set (tag, value) DXF attributes of the ATTRIB entities
by the (key, value) pairs (both as strings) of the values dict.

The Attrib entities are placed relative to the insert point, which is equal to the block base point.

This method wraps the INSERT and all the ATTRIB entities into an anonymous block, which produces
the best visual results, especially for non-uniform scaled block references, because the transformation
and scaling is done by the CAD application. But this makes evaluation of block references with at-
tributes more complicated, if you prefer INSERT and ATTRIB entities without a wrapper block use the
add_blockref_ with_attribs () method.

Parameters
* name — block name
* insert - insert location as 2D/3D point in WCS
e values — Attrib tag values as (tag, value) pairs
e dxfattribs - additional DXF attributes

add_attdef (rag: str, insert: UVec = (0, 0), text: str = ", *, height: float | None = None, rotation: float | None
= None, dxfattribs=None) — AttDef

Add an AttDef as stand alone DXF entity.

Set position and alignment by the idiom:

layout.add_attdef ("NAME") .set_placement (
(2, 3), align=TextEntityAlignment.MIDDLE_CENTER

)

Parameters
* tag - tag name as string
e insert —insert location as 2D/3D point in WCS
* text - tag value as string
* height - text height in drawing units
e rotation - text rotation in degrees

e dxfattribs — additional DXF attributes

. Reference 281

ezdxf Documentation, Release 1.3.2

add_polyline2d (points: Iterable[UVec], format: str | None = None, *, close: bool = False,
dxfattribs=None) — Polyline

Add a 2D Polyline entity.
Parameters
* points —iterable of 2D points in WCS
* close - True for a closed polyline
* format — user defined point format like add_Iwpolyline (), defaultis None
e dxfattribs — additional DXF attributes

add_polyline3d (points: Iterable[UVec], *, close: bool = False, dxfattribs=None) — Polyline
Add a 3D Polyline entity.

Parameters
e points —iterable of 3D points in WCS
* close — True for a closed polyline
* dxfattribs — additional DXF attributes

add_polymesh (size: tuple[int, int] = (3, 3), dxfattribs=None) — Polymesh

Add a Po1ymesh entity, which is a wrapper class for the POLYLINE entity. A polymesh is a grid of mcount
X ncount vertices and every vertex has its own (X, y, z)-coordinates.

Parameters
* size - 2-tuple (mcount, ncount)
* dxfattribs — additional DXF attributes
add_polyface (dxfattribs=None) — Polyface
Add a Polyface entity, which is a wrapper class for the POLYLINE entity.

Parameters
dxfattribs - additional DXF attributes for Po1y11ine entity

add_shape (name: str, insert: UVec = (0, 0), size: float = 1.0, dxfattribs=None) — Shape
Add a Shape reference to an external stored shape.

Parameters
* name - shape name as string
e insert - insert location as 2D/3D point in WCS
* size -size factor
* dxfattribs — additional DXF attributes

add_1lwpolyline (points: lterable[UVec], format: str = xyseb', *, close: bool = False, dxfattribs=None) —
LWPolyline

Add a 2D polyline as LWPo1y11ine entity. A points are defined as (X, y, [start_width, [end_width, [bulge]]])

tuples, but order can be redefined by the format argument. Set start_width, end_width to 0 to be ignored like
(x,y, 0, 0, bulge).

The LiwwPolyline is defined as a single DXF entity and needs less disk space than a Poly1ine entity.
(requires DXF R2000)

Format codes:

282 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

¢ x = x-coordinate
e y = y-coordinate
e s =start width

¢ e =end width

* b = bulge value

e v =(X,Y [,z]) tuple (z-axis is ignored)

Parameters
e points —iterable of (x, y, [start_width, [end_width, [bulge]]]) tuples
* format — user defined point format, default is “xyseb”
* close - True for a closed polyline

e dxfattribs — additional DXF attributes

add_mtext (fext: str, dxfattribs=None) — MText

Add a multiline text entity with automatic text wrapping at boundaries as MText entity. (requires DXF
R2000)

Parameters
¢ text — content string
e dxfattribs — additional DXF attributes

add_mtext_static_columns (content: Iterable[str], width: float, gutter_width: float, height: float,
dxfattribs=None) — MText

Add a multiline text entity with static columns as MText entity. The content is spread across the columns,
the count of content strings determine the count of columns.

This factory method adds automatically a column break " \N" at the end of each column text to force a new
column. The height attribute should be big enough to reserve enough space for the tallest column. Too small
values produce valid DXF files, but the visual result will not be as expected. The height attribute also defines
the total height of the MTEXT entity.

(requires DXF R2000)
Parameters
* content - iterable of column content
* width - column width
* gutter_width — distance between columns
¢ height — max. column height
e dxfattribs — additional DXF attributes

add_mtext_dynamic_manual_height_columns (content: str, width: float, gutter_width: float, heights:
Sequence[float], dxfattribs=None) — MText

Add a multiline text entity with dynamic columns as MText entity. The content is spread across the columns
automatically by the CAD application. The heights sequence determine the height of the columns, except for
the last column, which always takes the remaining content. The height value for the last column is required
but can be 0, because the value is ignored. The count of heights also determines the count of columns, and
max (heights) defines the total height of the MTEXT entity, which may be wrong if the last column
requires more space.

9.8. Reference 283

ezdxf Documentation, Release 1.3.2

This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXF viewers and CAD application, which do the MTEXT content distribution completely by itself.

(requires DXF R2000)
Parameters
* content - column content as a single string
* width - column width
¢ gutter_width — distance between columns
* heights - column height for each column
e dxfattribs - additional DXF attributes

add_mtext_dynamic_auto_height_columns (content: str, width: float, gutter_width: float, height:
float, count: int, dxfattribs=None) — MText

Add a multiline text entity with as many columns as needed for the given common fixed height. The content
is spread across the columns automatically by the CAD application. The height argument also defines the
total height of the MTEXT entity. To get the correct column count requires an exact MTEXT rendering like
AutoCAD, which is not done by ezdxf, therefore passing the expected column count is required to calculate
the correct total width.

This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXEF viewers and CAD application, which do the MTEXT content distribution completely by itself.

Because of the current limitations the use of this method is not recommend. This situation may improve in
future releases, but the exact rendering of the content will also slow down the processing speed dramatically.

(requires DXF R2000)
Parameters
* content - column content as a single string
¢ width - column width
e gutter_width — distance between columns
* height — max. column height
* count - expected column count
e dxfattribs — additional DXF attributes

add_ray (start: UVec, unit_vector: UVec, dxfattribs=None) — Ray
Add a Ray that begins at start point and continues to infinity (construction line). (requires DXF R2000)

Parameters
* start - location 3D point in WCS
* unit_vector - 3D vector (X, y, z)
e dxfattribs — additional DXF attributes

add_x1line (start: UVec, unit_vector: UVec, dxfattribs=None) — XLine
Add an infinity XTI ine (construction line). (requires DXF R2000)

Parameters

284 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* start - location 3D point in WCS
e unit_vector - 3D vector (X, y, z)
e dxfattribs - additional DXF attributes

add_mline (vertices: Iterable[UVec] | None = None, *, close: bool = False, dxfattribs=None) — MLine
Add a MLine entity

Parameters
e vertices — MLINE vertices (in WCS)
* close — True to add a closed MLINE
e dxfattribs — additional DXF attributes

add_spline (fit_points: Iterable[UVec] | None = None, degree: int = 3, dxfattribs=None) — Spline

Add a B-spline (Sp i ne entity) defined by the given fir_points - the control points and knot values are created
by the CAD application, therefore it is not predictable how the rendered spline will look like, because for every
set of fit points exists an infinite set of B-splines.

If fit_points is None, an “empty” spline will be created, all data has to be set by the user.
The SPLINE entity requires DXF R2000.

AutoCAD creates a spline through fit points by a global curve interpolation and an unknown method to
estimate the direction of the start- and end tangent.

See also:

* Tutorial for Spline

* ezdxf.math.fit_points_to_cad_cv()

Parameters

e fit_points —iterable of fit pointsas (x, y[, z]) in WCS, creates an empty Spline
if None

* degree — degree of B-spline, max. degree supported by AutoCAD is 11

e dxfattribs — additional DXF attributes

add_cad_spline_control_£frame (fit_points: Iterable[UVec], tangents: Iterable/UVec] | None = None,
dxfattribs=None) — Spline

Add a Sp1ine entity passing through the given fit points. This method creates the same control points as
CAD applications.

Parameters
e fit_points —iterable of fit points as (x, y[, z]) in WCS
* tangents - start- and end tangent, default is autodetect
e dxfattribs — additional DXF attributes

add_spline_control_£frame (fit_points: Iterable[UVec], degree: int = 3, method: str = ‘chord’,
dxfattribs=None) — Spline

Add a Sp1ine entity passing through the given fit_points, the control points are calculated by a global curve
interpolation without start- and end tangent constrains. The new SPLINE entity is defined by control points
and not by the fit points, therefore the SPLINE looks always the same, no matter which CAD application
renders the SPLINE.

9.8.

Reference 285

ezdxf Documentation, Release 1.3.2

* “uniform”: creates a uniform t vector, from 0 to 1 evenly spaced, see uniform method

» “distance”, “chord”: creates a t vector with values proportional to the fit point distances, see chord length
method

 “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see
centripetal method

* “arc”: creates a t vector with values proportional to the arc length between fit points.

Use function add_cad_spline_control_frame () to create SPLINE entities from fit points similar
to CAD application including start- and end tangent constraints.

Parameters
e fit_points —iterable of fit points as (x, y[, z]) in WCS
* degree —degree of B-spline, max. degree supported by AutoCAD is 11
* method - calculation method for parameter vector t
* dxfattribs - additional DXF attributes

add_open_spline (control_points: Iterable[UVec], degree: int = 3, knots: Iterable[float] | None = None,
dxfattribs=None) — Spline

Add an open uniform Sp1ine defined by control_points. (requires DXF R2000)
Open uniform B-splines start and end at your first and last control point.
Parameters
* control_points —iterable of 3D points in WCS
* degree — degree of B-spline, max. degree supported by AutoCAD is 11
* knots — knot values as iterable of floats
¢ dxfattribs — additional DXF attributes

add_rational_spline (control_points: Iterable[UVec], weights: Sequence[float], degree: int = 3, knots:
Iterable[float] | None = None, dxfattribs=None) — Spline

Add an open rational uniform Sp ine defined by control_points. (requires DXF R2000)

weights has to be an iterable of floats, which defines the influence of the associated control point to the shape
of the B-spline, therefore for each control point is one weight value required.

Open rational uniform B-splines start and end at the first and last control point.
Parameters
e control_points - iterable of 3D points in WCS
* weights — weight values as iterable of floats
¢ degree — degree of B-spline, max. degree supported by AutoCAD is 11
* knots — knot values as iterable of floats
* dxfattribs - additional DXF attributes

add_hatch (color: int = 7, dxfattribs=None) — Hatch
Add a Hat ch entity. (requires DXF R2000)

Parameters
¢ color —fill color as :ref ACT', default is 7 (black/white).
e dxfattribs - additional DXF attributes

286 Chapter 9. Contents

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-uniform.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-chord-length.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-centripetal.html

ezdxf Documentation, Release 1.3.2

add_helix (radius: float, pitch: float, turns: float, ccw="True, dxfattribs=None) — Helix
Add a Helix entity.
The center of the helix is always (0, 0, 0) and the helix axis direction is the +z-axis.

Transform the new HELIX by the t ransform () method to your needs.

Parameters
¢ radius - helix radius
e pitch - the height of one complete helix turn
* turns - count of turns
* ccw — creates a counter-clockwise turning (right-handed) helix if True
e dxfattribs — additional DXF attributes
add_mpolygon (color: int = const. BYLAYER, fill_color: int | None = None, dxfattribs=None) — MPolygon
Add a MPolygon entity. (requires DXF R2000)

The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application or DXF
library.

DXEF version R2004+ is required to use a fill color different from BYLAYER. For R2000 the fill color is
always BYLAYER, set any ACI value to create a filled MPOLYGON entity.

Parameters
* color - boundary color as AutoCAD Color Index (ACI), default is BYLAYER.
e £ill_color —fill color as AutoCAD Color Index (ACI), default is None
e dxfattribs — additional DXF attributes

add_mesh (dxfattribs=None) — Mesh
Add a Mesh entity. (requires DXF R2007)

Parameters
dxfattribs — additional DXF attributes

add_image (image_def: ImageDef, insert: UVec, size_in_units: tuple(float, float], rotation: float = 0.0,
dxfattribs=None) — Image
Add an Image entity, requires a ImageDef entity, see Tutorial for Image and ImageDef. (requires DXF
R2000)

Parameters
* image_def - required image definition as TmageDef
* insert - insertion point as 3D point in WCS
* size_in_units -size as (X, y) tuple in drawing units
¢ rotation - rotation angle around the extrusion axis, default is the z-axis, in degrees
* dxfattribs — additional DXF attributes

add_wipeout (vertices: Iterable[UVec], dxfattribs=None) — Wipeout
Addaezdxf.entities.Wipeout entity, the masking area is defined by WCS vertices.

This method creates only a 2D entity in the xy-plane of the layout, the z-axis of the input vertices are ignored.

9.8.

Reference 287

ezdxf Documentation, Release 1.3.2

add_underlay (underlay_def: UnderlayDefinition, insert: UVec = (0, 0, 0), scale=(1, 1, 1), rotation: float =
0.0, dxfattribs=None) — Underlay

Add an Underlay entity, requires a UnderlayDefinition entity, see Tutorial for Underlay and Un-
derlayDefinition. (requires DXF R2000)

Parameters
* underlay_def —required underlay definition as UnderlayDefinition
e insert - insertion point as 3D point in WCS

* scale - underlay scaling factor as (X, y, z) tuple or as single value for uniform scaling for
X,y and z

* rotation - rotation angle around the extrusion axis, default is the z-axis, in degrees
e dxfattribs — additional DXF attributes

add_1linear_dim (base: UVec, pl: UVec, p2: UVec, location: UVec | None = None, text: str = '<>', angle:
float = 0, text_rotation: float | None = None, dimstyle: str = 'EZDXF", override: dict | None
= None, dxfattribs=None) — DimStyleOverride

Add horizontal, vertical and rotated Dimension line. If an UCS is used for dimension line rendering,
all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function.
Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base - location of dimension line, any point on the dimension line or its extension will do
(in UCS)

e pl — measurement point 1 and start point of extension line 1 (in UCS)
* p2 — measurement point 2 and start point of extension line 2 (in UCS)
* location —user defined location for the text midpoint (in UCS)

@ <

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

e dimstyle — dimension style name (DimSt y 1 e table entry), default is “EZDXF”
* angle - angle from ucs/wcs x-axis to dimension line in degrees

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e override - DimStyleOverride attributes

e dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

288

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

add_multi_point_linear_dim (base: UVec, points: Iterable[UVec], angle: float = 0, ucs: UCS | None
= None, avoid_double_rendering: bool = True, dimstyle: str = 'EZDXF’,
override: dict | None = None, dxfattribs=None, discard=False) — None
Add multiple linear dimensions for iterable points. If an UCS is used for dimension line rendering, all point

definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion
vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method sets many design decisions by itself, the necessary geometry will be generated automatically, no
required nor possible render () call. This method is easy to use, but you get what you get.

Note: FEzdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base - location of dimension line, any point on the dimension line or its extension will do
(in UCS)

¢ points - iterable of measurement points (in UCS)

* angle - angle from ucs/wcs x-axis to dimension line in degrees (0 = horizontal, 90 = ver-
tical)

* ucs — user defined coordinate system

¢ avoid_double_rendering — suppresses the first extension line and the first arrow if
possible for continued dimension entities

* dimstyle — dimension style name (DimStyle table entry), default is “EZDXF”
e override - DimStyleOverride attributes
e dxfattribs — additional DXF attributes for the DIMENSION entity

* discard - discard rendering result for friendly CAD applications like BricsCAD to get a
native and likely better rendering result. (does not work with AutoCAD)

add_aligned_dim (pl: UVec, p2: UVec, distance: float, text: str = '<>', dimstyle: str = 'EZDXF", override:
dict | None = None, dxfattribs=None) — DimStyleOverride

Add linear dimension aligned with measurement points p/ and p2. If an UCS is used for dimension line
rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering
function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimStyleOverride object, to create the necessary dimension geometry, you have
to call DimStyleOverride.render () manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
¢ pl — measurement point 1 and start point of extension line 1 (in UCS)
* p2 — measurement point 2 and start point of extension line 2 (in UCS)

* distance - distance of dimension line from measurement points

9.8. Reference 289

ezdxf Documentation, Release 1.3.2

@ ¢

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

e dimstyle — dimension style name (DimSt y e table entry), default is “EZDXF”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim (center: UVec, mpoint: UVec | None = None, radius: float | None = None, angle: float |
None = None, *, location: UVec | None = None, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None) — DimStyleOverride

Add a radius Dimension line. The radius dimension line requires a center point and a point mpoint on
the circle or as an alternative a radius and a dimension line angle in degrees. See also: Tutorial for Radius

Dimensions

If a UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS

and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension

entity between creation and rendering.
Following render types are supported:
¢ Default text location outside: text aligned with dimension line; dimension style: “EZ_RADIUS”

¢ Default text location outside horizontal: “EZ_RADIUS” + dimtoh=1

¢ Default text location inside: text aligned with dimension line; dimension style: “EZ_RADIUS_INSIDE”

¢ Default text location inside horizontal: “EZ_RADIUS_INSIDE” + dimtih=1

 User defined text location: argument location != None, text aligned with dimension line; dimension style:

“EZ_RADIUS”

 User defined text location horizontal: argument location != None, “EZ_RADIUS” + dimtoh=1 for text

outside horizontal, “EZ_RADIUS” + dimtih=1 for text inside horizontal

Placing the dimension text at a user defined location, overrides the mpoint and the angle argument, but requires
a given radius argument. The location argument does not define the exact text location, instead it defines the
dimension line starting at center and the measurement text midpoint projected on this dimension line going
through location, if text is aligned to the dimension line. If text is horizontal, location is the kink point of the

dimension line from radial to horizontal direction.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD

applications.

Parameters
* center - center point of the circle (in UCS)
* mpoint — measurement point on the circle, overrides angle and radius (in UCS)
* radius - radius in drawing units, requires argument angle
* angle - specify angle of dimension line in degrees, requires argument radius

* location - user defined dimension text location, overrides mpoint and angle, but requires
radius (in UCS)

290

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

@ ¢

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

* dimstyle — dimension style name (DimStyle table entry), default is “EZ_RADIUS”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim_2p (center: UVec, mpoint: UVec, *, text: str = '<>', dimstyle: str = 'EZ_RADIUS',
override: dict | None = None, dxfattribs=None) — DimStyleOverride

Shortcut method to create a radius dimension by center point, measurement point on the circle and the mea-
surement text at the default location defined by the associated dimstyle, for further information see general
method add _radius_dim().

 dimstyle “EZ_RADIUS”: places the dimension text outside
* dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
* center - center point of the circle (in UCS)
* mpoint — measurement point on the circle (in UCS)

@ e

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_RADIUS”
e override - DimStyleOverride attributes

* dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim_cra (center: UVec, radius: float, angle: float, *, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None) — DimStyleOverride

Shortcut method to create a radius dimension by (c)enter point, (r)adius and (a)ngle, the measurement text is
placed at the default location defined by the associated dimstyle, for further information see general method
add_radius_dim().

¢ dimstyle “EZ_RADIUS”: places the dimension text outside
 dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
¢ center - center point of the circle (in UCS)
¢ radius - radius in drawing units
* angle - angle of dimension line in degrees

@ e

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_RADIUS”
e override - DimStyleOverride attributes

* dxfattribs — additional DXF attributes for the DIMENSION entity

9.8.

Reference 291

ezdxf Documentation, Release 1.3.2

Returns: DimStyleOverride

add_diameter_dim (center: UVec, mpoint: UVec | None = None, radius: float | None = None, angle: float |
None = Nome, *, location: UVec | None = None, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None) — DimStyleOverride

Add a diameter Dimension line. The diameter dimension line requires a center point and a point mpoint
on the circle or as an alternative a radius and a dimension line angle in degrees.

If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimSt y leOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
* center - specifies the center of the circle (in UCS)
* mpoint — specifies the measurement point on the circle (in UCS)
* radius - specify radius, requires argument angle, overrides p/ argument

* angle - specify angle of dimension line in degrees, requires argument radius, overrides pl/
argument

* location — user defined location for the text midpoint (in UCS)

* text —None or "<>" the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

¢ dimstyle — dimension style name (DimSt y e table entry), default is “EZ_RADIUS”

e override — DimStyleOverride attributes

e dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_diameter_dim_2p (pl: UVec, p2: UVec, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: dict |
None = None, dxfattribs=None) — DimStyleOverride

Shortcut method to create a diameter dimension by two points on the circle and the measurement text
at the default location defined by the associated dimstyle, for further information see general method
add_diameter_dim (). Center point of the virtual circle is the midpoint between p/ and p2.

¢ dimstyle “EZ_RADIUS”: places the dimension text outside
 dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
e pl —first point of the circle (in UCS)

* p2 —second point on the opposite side of the center point of the circle (in UCS)

“@

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

292 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_RADIUS”
e override - DimStyleOverride attributes

* dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_21 (base: UVec, linel: tuple[UVec, UVec], line2: tuple[UVec, UVec], *, location:
UVec | None = None, text: str = '<>', text_rotation: float | None = None, dimstyle: str
= 'EZ_CURVED', override: dict | None = None, dxfattribs=None) —
DimStyleOverride

Add angular Dimension from two lines. The measurement is always done from linel to line2 in counter-
clockwise orientation. This does not always match the result in CAD applications!

If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimSt yleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: FEzdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base — location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

e linel —specifies start leg of the angle (start point, end point) and determines extension line
1 (in UCS)

* line2 - specifies end leg of the angle (start point, end point) and determines extension line
2 (in UCS)

* location —user defined location for the text midpoint (in UCS)

@ <

¢ text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_3p (base: UVec, center: UVec, pl: UVec, p2: UVec, *, location: UVec | None = None,
text: str = '<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED/,
override: dict | None = None, dxfattribs=None) — DimStyleOverride

Add angular Dimension from three points (center, pl, p2). The measurement is always done from p/ to
p2 in counter-clockwise orientation. This does not always match the result in CAD applications!

If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

9.8. Reference 293

ezdxf Documentation, Release 1.3.2

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

base - location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

center — specifies the vertex of the angle

p1 —specifies start leg of the angle (center -> p1) and end-point of extension line 1 (in UCS)
P2 — specifies end leg of the angle (center -> p2) and end-point of extension line 2 (in UCS)
location — user defined location for the text midpoint (in UCS)

@ e

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_cra (center: UVec, radius: float, start_angle: float, end_angle: float, distance: float, *,

location: UVec | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None) —
DimStyleOverride

Shortcut method to create an angular dimension by (c)enter point, (r)adius and start- and end (a)ngles,
the measurement text is placed at the default location defined by the associated dimstyle. The measure-
ment is always done from start_angle to end_angle in counter-clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim 3p ().

Parameters

center — center point of the angle (in UCS)

radius - the distance from center to the start of the extension lines in drawing units
start_angle - start angle in degrees (in UCS)

end_angle - end angle in degrees (in UCS)

distance —distance from start of the extension lines to the dimension line in drawing units
location — user defined location for the text midpoint (in UCS)

@ <

text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

294

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

* dimstyle — dimension style name (DimStyle table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes
e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_arc (arc: ConstructionArc, distance: float, *, location: UVec | None = None, text: str =
'<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override:
dict | None = None, dxfattribs=None) — DimStyleOverride

Shortcut method to create an angular dimension from a ConstructionArc. This construction tool can
be created from ARC entities and the tool itself provides various construction class methods. The mea-
surement text is placed at the default location defined by the associated dimstyle. The measurement is al-
ways done from start_angle to end_angle of the arc in counter-clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim 3p ().

Parameters
* arc - ConstructionArc
* distance —distance from start of the extension lines to the dimension line in drawing units
* location — user defined location for the text midpoint (in UCS)

@ <

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

¢ dimstyle — dimension style name (DimStyle table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes
e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_arc_dim_3p (base: UVec, center: UVec, pl: UVec, p2: UVec, *, location: UVec | None = None, text: str
= '<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override: dict |
None = None, dxfattribs=None) — DimStyleOverride

Add ArcDimension from three points (center, pl, p2). Point p/ defines the radius and the start-angle of
the arc, point p2 only defines the end-angle of the arc.

If an UCS is used for arc dimension rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you
have to call render () manually, this two-step process allows additional processing steps on the ArcDi -
mension entity between creation and rendering.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters

9.8. Reference 295

ezdxf Documentation, Release 1.3.2

* base - location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

* center - specifies the vertex of the angle

¢ pl - specifies the radius (center -> p1) and the star angle of the arc, this is also the start point
for the 1st extension line (in UCS)

* p2 —specifies the end angle of the arc. The start 2nd extension line is defined by this angle
and the radius defined by p1 (in UCS)

¢ location —user defined location for the text midpoint (in UCS)

@ <

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_arc_dim_cra (center: UVec, radius: float, start_angle: float, end_angle: float, distance: float, *,
location: UVec | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None) —
DimStyleOverride

Shortcut method to create an arc dimension by (c)enter point, (r)adius and start- and end (a)ngles, the mea-
surement text is placed at the default location defined by the associated dimstyle.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters
* center - center point of the angle (in UCS)
* radius - the distance from center to the start of the extension lines in drawing units
» start_angle - start-angle in degrees (in UCS)
* end_angle - end-angle in degrees (in UCS)
* distance - distance from start of the extension lines to the dimension line in drawing units
* location — user defined location for text midpoint (in UCS)

@

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y e table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

296 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Returns: DimStyleOverride

add_arc_dim_arc (arc: ConstructionArc, distance: float, *, location: UVec | None = None, text: str = '<>',
text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override: dict | None =
None, dxfattribs=None) — DimStyleOverride

Shortcut method to create an arc dimension from a ConstructionArc. This construction tool can be
created from ARC entities and the tool itself provides various construction class methods. The measurement
text is placed at the default location defined by the associated dimstyle.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters
* arc— ConstructionArc
* distance —distance from start of the extension lines to the dimension line in drawing units

¢ location —user defined location for the text midpoint (in UCS)

@ e

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_ordinate_dim (feature_location: UVec, offset: UVec, dtype: int, *, origin: UVec = NULLVEC,
rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None =
None, dxfattribs=None) — DimStyleOverride

Add an ordinate type Dimension line. The feature location is defined in the global coordinate system,
which is set as render UCS, which is the WCS by default.

If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two-step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
e feature_location - feature location in the global coordinate system (UCS)

* offset — offset vector of leader end point from the feature location in the local coordinate
system

* dtype - | =x-type, 0 = y-type

9.8. Reference 297

ezdxf Documentation, Release 1.3.2

* origin - specifies the origin (0, 0) of the local coordinate system in UCS

* rotation - rotation angle of the local coordinate system in degrees

* text — None or “<>” the measurement is drawn as text, “ “ (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZDXF”

e override - DimStyleOverride attributes

* dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_ordinate_x_dim (feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation: float
= 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) — DimStyleOverride

Shortcut to add an x-type feature ordinate DIMENSION, for more information see
add_ordinate_dim/().

add_ordinate_y_dim (feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation: float
= 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) — DimStyleOverride

Shortcut to add a y-type feature ordinate DIMENSION, for more information see
add_ordinate_dim/().

add_1leader (vertices: Iterable[UVec], dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) — Leader

The Leader entity represents an arrow, made up of one or more vertices (or spline fit points) and an arrow-
head. The label or other content to which the Leader is attached is stored as a separate entity, and is not
part of the Leader itself. (requires DXF R2000)

Leader shares its styling infrastructure with Dimension.

By default a Leade r without any annotation is created. For creating more fancy leaders and annotations see
documentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementa-
tion notes .

Parameters
¢ vertices - leader vertices (in WCS)
* dimstyle — dimension style name (DimStyle table entry), default is “EZDXF”
e override —override DimStyleOverride attributes
e dxfattribs - additional DXF attributes

add_multileader_mtext (style: str = ‘Standard', dxfattribs=None) — MultileaderMTextBuilder
Add a MultiLeader entity but returns a MultileaderMTextBuilder.

add_multileader_block (style: str = ‘Standard', dxfattribs=None) — MultiLeaderBlockBuilder
Add a MultiLeader entity but returns a MultilLeaderBlockBuilder.

add_body (dxfattribs=None) — Body
Add a Body entity. (requires DXF R2000 or later)

The ACIS data has to be set as SAT or SAB.

298 Chapter 9. Contents

https://atlight.github.io/formats/dxf-leader.html
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 1.3.2

add_region (dxfattribs=None) — Region
Add a Region entity. (requires DXF R2000 or later)

The ACIS data has to be set as SAT or SAB.

add_3dsolid (dxfattribs=None) — Solid3d
Add a 3DSOLID entity (Sol1id3d). (requires DXF R2000 or later)

The ACIS data has to be set as SAT or SAB.

add_surface (dxfattribs=None) — Surface
Add a Surface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_extruded_surface (dxfattribs=None) — ExtrudedSurface
Add a Ext rudedSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_lofted_surface (dxfattribs=None) — LoftedSurface
Add a LoftedSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_revolved_surface (dxfattribs=None) — RevolvedSurface
Add a RevolvedSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

add_swept_surface (dxfattribs=None) — SweptSurface
Add a SweptSurface entity. (requires DXF R2007 or later)

The ACIS data has to be set as SAT or SAB.

Layout

class ezdxf.layouts.Layout

Layout is a subclass of BaseLayout and common base class of Modelspace and Paperspace.

name

Layout name as shown in tabs of CAD applications.

dxf
Returns the DXF name space attribute of the associated DXFLayout object.

This enables direct access to the underlying LAYOUT entity, e.g. Layout .dxf.layout_flags

__contains__ (entity: DXFGraphic | str) — bool

Returns True if entity is stored in this layout.

Parameters
entity - DXFGraphic object or handle as hex string

reset_extents (extmin=(+1¢20, +1e20, +1e20), extmax=(-1e20, -1¢20, -1e20)) — None

Reset extents to given values or the AutoCAD default values.
“Drawing extents are the bounds of the area occupied by objects.” (Quote Autodesk Knowledge Network)

Parameters

9.8. Reference 299

https://knowledge.autodesk.com/de/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/DEU/AutoCAD-Core/files/GUID-B3926CFA-DE74-4661-A9A5-2738A1FD937B-htm.html

ezdxf Documentation, Release 1.3.2

¢ extmin — minimum extents or (+1e20, +1e20, +1e20) as default value
¢ extmax — maximum extents or (-1e20, -1e20, -1e20) as default value

reset_limits (limmin=None, limmax=None) — None

Reset limits to given values or the AutoCAD default values.

“Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking
or entering point locations.” (Quote Autodesk Knowledge Network)

The Paperspace class has an additional method reset_paper_Ilimits () todeduce the default limits
from the paper size settings.

Parameters
¢ limmin — minimum limits or (0, 0) as default
¢ limmax — maximum limits or (paper width, paper height) as default value

set_plot_type (value: int =5) — None

0 last screen display
1 drawing extents
2 drawing limits
3 view specific (defined by Layout .dxf.plot_view_name)
4 window specific (defined by Layout . set_plot_window_limits())
5 layout information (default)
Parameters

value - plot type
Raises
DXFValueError — for value out of range

set_plot_style (name: str = 'ezdxf.ctb’, show: bool = False) — None
Set plot style file of type .ctb.

Parameters
* name - plot style filename
» show — show plot style effect in preview? (AutoCAD specific attribute)

set_plot_window (lower_left: tuple[float, float] = (0, 0), upper_right: tuple[float, float] = (0, 0)) — None

Set plot window size in (scaled) paper space units.
Parameters
* lower_left — lower left corner as 2D point
* upper_right — upper right corner as 2D point

plot_viewport_borders (state: bool = True) — None
show_plot_styles (state: bool = True) — None
plot_centered (state: bool = True) — None
plot_hidden (state: bool = True) — None

use_standard_scale (state: bool = True) — None

300 Chapter 9. Contents

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html

ezdxf Documentation, Release 1.3.2

use_plot_styles (state: bool = True) — None
scale_lineweights (state: bool = True) — None
print_lineweights (state: bool = True) — None
draw_viewports_£first (state: bool = True) — None
model_type (state: bool = True) — None

update_paper (state: bool = True) — None
zoom_to_paper_on_update (state: bool = True) — None
plot_flags_initializing (state: bool = True) — None
prev_plot_init (state: bool = True) — None

set_plot_flags (flag, state: bool = True) — None

Modelspace

class ezdxf.layouts.Modelspace

Modelspaceis asubclass of Layout.
The modelspace contains the “real” world representation of the drawing subjects in real world units.
name

Name of modelspace is fixed as “Model”.

new_geodata (dxfattribs=None) — GeoData

Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OB-
JECTS section and not in the modelspace, it is linked to the modelspace by an ExtensionDict located
in BLOCK_RECORD of the modelspace.

The GEODATA entity requires DXF R2010. The DXF reference does not document if other layouts than
the modelspace supports geo referencing, so I assume getting/setting geo data may only make sense for the
modelspace.

Parameters
dxfattribs — DXF attributes for GeoDat a entity

get_geodata () — GeoData | None

Returns the GeoDat a entity associated to the modelspace or None.

Paperspace

class ezdxf.layouts.Paperspace

Paperspace is a subclass of Layout.

Paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF
export.

name

Layout name as shown in tabs of CAD applications.

9.8. Reference 301

ezdxf Documentation, Release 1.3.2

page_setup (size=(297, 210), margins=(10, 15, 10, 15), units="mm’, offset=(0, 0), rotation=0, scale=16,
name='ezdxf", device="DWG to PDF.pc3’)

Setup plot settings and paper size and reset viewports. All parameters in given units (mm or inch).
Reset paper limits, extents and viewports.
Parameters

* size — paper size as (width, height) tuple

* margins — (top, right, bottom, left) hint: clockwise

* units - “mm” or “inch”

» offset — plot origin offset is 2D point

e rotation - see table Rotation

* scale - integer in range [0, 32] defines a standard scale type or as tuple(numerator, de-
nominator) e.g. (1, 50) for scale 1:50

* name — paper name prefix “{name}_({width}_x_{height}_{unit})”

¢ device —device .pc3 configuration file or system printer name

int Rotation

0 no rotation

1 90 degrees counter-clockwise
2 upside-down

3 90 degrees clockwise

viewports () — list[Viewport]
Get all VIEWPORT entities defined in this paperspace layout.
main_viewport () — Viewport | None

Returns the main viewport of this paper space layout, or None if no main viewport exist.

add_viewport (center: UVec, size: tuple[float, float], view_center_point: UVec, view_height: float, status: int
= 2, dxfattribs=None) — Viewport

Add anew Viewport entity.
Viewport status:

-1 is on, but is fully off-screen, or is one of the viewports that is not active because the SMAXACTVP
count is currently being exceeded.

e Ois off

* any value>0 is on and active. The value indicates the order of stacking for the viewports, where 1 is the
“active viewport”, 2 is the next, ...

reset_viewports () — None

Delete all existing viewports, and create a new main viewport.

reset_main_viewport (center: UVec = None, size: UVec = None) — Viewport
Reset the main viewport of this paper space layout to the given values, or reset them to the default values,
deduced from the paper settings. Creates a new main viewport if none exist.

Ezdxf does not create a main viewport by default, because CAD applications don’t require one.

Parameters

302 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* center - center of the viewport in paper space units
* size — viewport size as (width, height) tuple in paper space units
reset_paper_limits () — None
Set paper limits to default values, all values in paperspace units but without plot scale (?).
get_paper_ limits () — tuple[Vec2, Vec2]
Returns paper limits in plot paper units, relative to the plot origin.

plot origin = lower left corner of printable area + plot origin offset

Returns
tuple (Vec2(x1, y1), Vec2(x2, y2)), lower left corner is (x1, y1), upper right corner is (x2, y2).

BlockLayout

class ezdxf.layouts.BlockLayout
BlockLayout is a subclass of BaseLayout.

Block layouts are reusable sets of graphical entities, which can be referenced by multiple Tnsert entities. Each
reference can be placed, scaled and rotated individually and can have it’s own set of DXF At t 1 b entities attached.

property name: str

Get/set the BLOCK name
property block: Block | None

the associated B1ock entity.
property endblk: EndBlk | None

the associated EndB1k entity.
property dxf

DXF name space of associated Bl ockRecord table entry.
property can_explode: bool

Set property to True to allow exploding block references of this block.
property scale_uniformly: bool

Set property to True to allow block references of this block only scale uniformly.
property base_point: Vec3

Get/Set the base point of the block.

__contains___ (entity) — bool
Returns True if block contains entity.

Parameters
entity - DXFGraphic object or handle as hex string

attdefs () — Iterable[AttDef]
Returns iterable of all At tdef entities.

has_attdef (tag: str) — bool
Returns True if an Attdef for fag exist.

9.8. Reference 303

ezdxf Documentation, Release 1.3.2

get_attdef (tag: str) — DXFGraphic | None
Returns attached At tdef entity by tag name.

get_attdef_text (tag: str, default: str = ") — str

Returns text content for At tdef fag as string or returns default if no Attdef for tag exist.
Parameters
* tag - name of tag

* default - default value if fag not exist

Groups

A group is just a bunch of DXF entities tied together. All entities of a group has to be in the same layout (modelspace
or any paperspace layout but not block). Groups can be named or unnamed, but in reality an unnamed groups has just a
special name like “*Annnn”. The name of a group has to be unique in the drawing. Groups are organized in the group
table, which is stored as attribute groups in the Drawing object.

Important: Group entities have to reside in the modelspace or an paperspace layout but not in a block definition!

DXFGroup

class ezdxf.entities.dxfgroups.DXFGroup
The group name is not stored in the GROUP entity, it is stored in the GroupCollection object.

dxf.description
group description (string)

dxf .unnamed

1 for unnamed, O for named group (int)

dxf.selectable

1 for selectable, O for not selectable group (int)

__iter__ () — Iterator[DXFEntity]
Iterate over all DXF entities in DXFGroup as instances of DXFGraphic or inherited (LINE, CIRCLE,
c).
len__ () —int

Returns the count of DXF entities in DXFGroup.
__getitem__ (item)
Returns entities by standard Python indexing and slicing.
__contains___ (item: str | DXFEntity) — bool
Returns True if item is in DXFGroup. item has to be a handle string or an object of type DXFEntity or
inherited.

handles () — Iterable[str]
Iterable of handles of all DXF entities in DXFGroup.

304 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

edit_data () — listfDXFEntity]

Context manager which yields all the group entities as standard Python list:

with group.edit_data () as data:
add new entities to a group
data.append (modelspace.add_line((0, 0), (3, 0)))
remove last entity from a group
data.pop ()

set_data (entities: Iterablel DXFEntity]) — None
Set entities as new group content, entities should be an iterable of DXFGraphic (LINE, CIRCLE, ...).

Raises
DXFValueError — not all entities are located on the same layout (modelspace or any pa-
perspace layout but not block)

extend (entities: Iterablel DXFEntity]) — None
Add entities to DXFGroup, entities should be an iterable of DXFGraphic (LINE, CIRCLE, ...).

Raises
DXFValueError — not all entities are located on the same layout (modelspace or any pa-

perspace layout but not block)

clear () — None
Remove all entities from DXFGroup, does not delete any drawing entities referenced by this group.

audit (auditor: Auditor) — None
Remove invalid entities from DXFGroup.

Invalid entities are:
¢ deleted entities
« all entities which do not reside in model- or paper space

« all entities if they do not reside in the same layout

GroupCollection

Each Drawing has one group table, which is accessible by the attribute groups.

class ezdxf.entities.dxfgroups.GroupCollection

Manages all DXFGroup objects of a Drawing.

Returns the count of DXF groups.

__iter__ ()
Iterate over all existing groups as (name, group) tuples. name is the name of the group as string and group is
an DXFGroup object.

__contains__ ()

Returns True if a group name exist.

get (name: str) — DXFGroup
Returns the group name. Raises DXFKeyError if group name does not exist.

9.8. Reference 305

ezdxf Documentation, Release 1.3.2

groups () — lterator[DXFGroup]

Iterable of all existing groups.

new (name: str | None = None, description: str = ", selectable: bool = True) — DXFGroup

Creates a new group. If name is None an unnamed group is created, which has an automatically generated
name like “* Annnn”. Group names are case-insensitive.

Parameters
* name — group name as string
¢ description - group description as string
* selectable — group is selectable if True
delete (group: DXFGroup | str) — None
Delete group, group can be an object of type DXFGroup or a group name as string.

clear ()

Delete all groups.

audit (auditor: Auditor) — None

Removes empty groups and invalid handles from all groups.

DXF Entities

All DXF entities can only reside in the BaseLayout and inherited classes like Modelspace, Paperspace and
BlockLayout.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

DXF Entity Base Class

Common base class for all DXF entities and objects.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFEntity

dxf
The DXEF attributes namespace:

set attribute value
entity.dxf.layer = 'MyLayer'

get attribute value
linetype = entity.dxf.linetype

delete attribute
del entity.dxf.linetype

306 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.handle
DXEF handle is a unique identifier as plain hex string like F000. (feature for experts)

dxf .owner

Handle to owner as plain hex string like F000. (feature for experts)

doc

Get the associated Drawing instance.
property is_alive: bool

Is False if entity has been deleted.
property is_virtual: bool

Is True if entity is a virtual entity.
property is_bound: bool

Is True if entity is bound to DXF document.
property is_copy: bool

Is True if the entity is a copy.
property uuid: UUID

Returns a UUID, which allows to distinguish even virtual entities without a handle.
Dynamic attribute: this UUID will be created at the first request.

property source_of_copy: DXFEntity | None
The immediate source entity if this entity is a copy else None. Never references a destroyed entity.
property origin_of_copy: DXFEntity | None
The origin source entity if this entity is a copy else None. References the first non-virtual source entity and
never references a destroyed entity.
property has_source_block_reference: bool
Is True if this virtual entity was created by a block reference.

property source_block_reference: Insert | None
The source block reference (INSERT) which created this virtual entity. The property is None if this entity
was not created by a block reference.

dxftype () — str
Get DXF type as string, like LINE for the line entity.

str__ () —str

Returns a simple string representation.
__repr__ () —»str
Returns a simple string representation including the class.
has_dxf_attrib (key: str) — bool
Returns True if DXF attribute key really exist.
Raises DXFAttributeError if key is not an supported DXF attribute.
is_supported_dxf_ attrib (key: str) — bool
Returns True if DXF attrib key is supported by this entity. Does not grant that attribute key really exist.

9.8. Reference 307

ezdxf Documentation, Release 1.3.2

get_dxf_attrib (key: str, default: Any = None) — Any

Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if default is DXF -
ValueError and no DXF default value is defined:

layer = entity.get_dxf_attrib("layer")
same as
layer = entity.dxf.layer

Raises DXFAttributeError if key is not an supported DXF attribute.

set_dxf_attrib (key: str, value: Any) — None
Set new value for DXF attribute key:

entity.set_dxf_attrib("layer", "MyLayer")
same as
entity.dxf.layer = "MyLayer"

Raises DXFAttributeError if key is not an supported DXF attribute.

del_dxf_attrib (key: str) — None
Delete DXF attribute key, does not raise an error if attribute is supported but not present.

Raises DXFAttributeError if key is not an supported DXF attribute.

dxfattribs (drop: set[str] | None = None) — dict
Returns a dict with all existing DXF attributes and their values and exclude all DXF attributes listed in set
drop.
update_dxf_attribs (dxfanribs: dict) — None
Set DXF attributes by a dict like { ' layer': 'test', 'color': 4}.
set_flag_state (flag: int, state: bool = True, name: str = 'flags') — None
Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to O (off) if state is False.
get_flag_state (flag: int, name: str = 'flags') — bool
Returns True if any flag of DXF attribute is 1 (on), else False. Always check only one flag state at the
time.
has_extension_dict

Returns True if entity has an attached ExtensionDict instance.

get_extension_dict () — ExtensionDict

Returns the existing ExtensionDict instance.

Raises
AttributeError - extension dict does not exist

new_extension_dict () — ExtensionDict
Create anew ExtensionDict instance.

discard_extension_dict () — None

Delete ExtensionDict instance.

discard_empty_extension_dict () — None
Delete ExtensionDict instance when empty.
has_app_data (appid: str) — bool

Returns True if application defined data for appid exist.

308 Chapter 9. Contents

9.8.

ezdxf Documentation, Release 1.3.2

get_app_data (appid: str) — Tags
Returns application defined data for appid.
Parameters
appid — application name as defined in the APPID table.
Raises
DXFValueError —no data for appid found
set_app_data (appid: str, tags: Iterable) — None
Set application defined data for appid as iterable of tags.

Parameters

e appid - application name as defined in the APPID table.
* tags —iterable of (code, value) tuples or DXFTag

discard_app_data (appid: str)

Discard application defined data for appid. Does not raise an exception if no data for appid exist.
has_xdata (appid: str) — bool

Returns True if extended data for appid exist.
get_xdata (appid: str) — Tags

Returns extended data for appid.

Parameters

appid - application name as defined in the APPID table.
Raises

DXFValueError — no extended data for appid found
set_xdata (appid: str, tags: Iterable) — None
Set extended data for appid as iterable of tags.

Parameters

* appid - application name as defined in the APPID table.
* tags —iterable of (code, value) tuples or DXFTag

discard_xdata (appid: str) — None

Discard extended data for appid. Does not raise an exception if no extended data for appid exist.
has_xdata_1list (appid: str, name: str) — bool

Returns True if a tag list name for extended data appid exist.
get_xdata_list (appid: str, name: str) — Tags

Returns tag list name for extended data appid.

Parameters

* appid - application name as defined in the APPID table.
* name - extended data list name

Raises

DXFValueError —no extended data for appid found or no data list name not found

Reference

309

ezdxf Documentation, Release 1.3.2

set_xdata_list (appid: str, name: str, tags: Iterable) — None
Set tag list name for extended data appid as iterable of tags.

Parameters
* appid - application name as defined in the APPID table.
* name — extended data list name
* tags —iterable of (code, value) tuples or DXFTag

discard_xdata_list (appid: str, name: str) — None

Discard tag list name for extended data appid. Does not raise an exception if no extended data for appid or
no tag list name exist.

replace_xdata_1list (appid: str, name: str, tags: Iterable) — None

Replaces tag list name for existing extended data appid by fags. Appends new list if tag list name do not exist,
but raises DXFValueError if extended data appid do not exist.

Parameters
* appid - application name as defined in the APPID table.
* name - extended data list name
* tags —iterable of (code, value) tuples or DXFTag

Raises
DXFValueError —no extended data for appid found

has_reactors () — bool

Returns True if entity has reactors.

get_reactors () — list[str]

Returns associated reactors as list of handles.

set_reactors (handles: Iterable[str]) — None
Set reactors as list of handles.

append_reactor_handle (handle: str) — None
Append handle to reactors.

discard_reactor_handle (handle: str) — None

Discard handle from reactors. Does not raise an exception if handle does not exist.

DXF Graphic Entity Base Class

Common base class for all graphical DXF entities.
All graphical entities reside in an entity space like Modelspace, any Paperspace or BlockLayout.
See also:

* ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities

* ezdxf.colors module

e Tutorial for Common Graphical Attributes

310 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFEntity

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFGraphic

rgb
Get/set/delete DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute dxr.
true_ color isnot set.

entity.rgb = (30, 40, 50) # set as tuple[int, int, int] or color.RGB
r, g, b = entity.rgb # returns tuple[int, int, int] or None
del entity.rgb # discard true color value, no exception if not exist

This is the recommend method to get/set/delete RGB values, when ever possible do not use the DXF low
level attribute dxf. true color.
transparency

Get/set the transparency value as float. The transparency value is in the range from O to 1, where 0 means
the entity is opaque and 1 means the entity is 100% transparent (invisible). This is the recommend method
to get/set the transparency value, when ever possible do not use the DXF low level attribute DXFGraphic.
dxf.transparency.

This attribute requires DXF R2004 or later, returns O for older DXF versions and raises DXFAttribu—
teError for setting transparency in older DXF versions.
property is_transparency_by_layer: bool

Returns True if entity inherits transparency from layer.

property is_transparency_by_block: bool

Returns True if entity inherits transparency from block.

ocs () — OCS
Returns object coordinate system (OCS) for 2D entities like Text or Circle, returns a pass-through OCS
for entities without OCS support.

get_layout () — BaseLayout | None
Returns the owner layout or returns None if entity is not assigned to any layout.

unlink_from_layout () — None
Unlink entity from associated layout. Does nothing if entity is already unlinked.

It is more efficient to call the unliink _entity () method of the associated layout, especially if you have
to unlink more than one entity.

copy_to_layout (layout: BaseLayout) — Self
Copy entity to another layout, returns new created entity as DXFEnt ity object. Copying between different
DXF drawings is not supported.

Parameters
layout - any layout (model space, paper space, block)

Raises
DXFStructureError — for copying between different DXF drawings

9.8. Reference 311

ezdxf Documentation, Release 1.3.2

move_to_layout (layout: BaselLayout, source: BaseLayout | None = None) — None

Move entity from model space or a paper space layout to another layout. For block layout as source, the block
layout has to be specified. Moving between different DXF drawings is not supported.

Parameters
* layout - any layout (model space, paper space, block)
¢ source - provide source layout, faster for DXF R12, if entity is in a block layout

Raises
DXFStructureError — for moving between different DXF drawings

graphic_properties () — dict

Returns the important common properties layer, color, linetype, lineweight, Itscale, true_color and
color_name as dxfartribs dict.

has_hyperlink () — bool

Returns True if entity has an attached hyperlink.
get_hyperlink () — tuple[str, str, str]

Returns hyperlink, description and location.

set_hyperlink (link: str, description: str | None = None, location: str | None = None)
Set hyperlink of an entity.
transform (m: Matrix44) — Self

Inplace transformation interface, returns self (floating interface).

Parameters
m — 4x4 transformation matrix (ezdxf.math.Matrix44)

translate (dx: float, dy: float, dz: float) — Self

Translate entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).

Basic implementation uses the t ransform () interface, subclasses may have faster implementations.
scale (sx: float, sy: float, sz: float) — Self

Scale entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).
scale_uniform (s: float) — Self

Scale entity inplace uniform about s in x-axis, y-axis and z-axis, returns self (floating interface).
rotate_x (angle: float) — Self

Rotate entity inplace about x-axis, returns self (floating interface).

Parameters
angle - rotation angle in radians

rotate_y (angle: float) — Self

Rotate entity inplace about y-axis, returns self (floating interface).

Parameters
angle - rotation angle in radians

rotate_z (angle: float) — Self

Rotate entity inplace about z-axis, returns self (floating interface).

Parameters
angle - rotation angle in radians

312 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

rotate_axis (axis: UVec, angle: float) — Self

Rotate entity inplace about vector axis, returns self (floating interface).
Parameters
* axis —rotation axis as tuple or Vec3

* angle - rotation angle in radians

Common graphical DXF attributes

DXFGraphic.dxf.layer

Layer name as string; default = “0”

DXFGraphic.dxf.linetype
Linetype as string, special names “BYLAYER”, “BYBLOCK?”; default value is “BYLAYER”

DXFGraphic.dxf.color
AutoCAD Color Index (ACI), default value is 256

Constants defined in ezdxf.11dxf.const oruse the ezdxf.colors module

0 BYBLOCK
256 BYLAYER
257 BYOBIJECT

DXFGraphic.dxf.lineweight

Line weight in mm times 100 (e.g. 0.13mm = 13). There are fixed valid lineweights which are accepted
by AutoCAD, other values prevents AutoCAD from loading the DXF document, BricsCAD isn’t that
picky. (requires DXF R2000)

Constants defined in ezdxf.1]ldxf.const

-1 LINEWEIGHT_BYLAYER
-2 LINEWEIGHT_BYBLOCK
-3 LINEWEIGHT _DEFAULT

Valid DXF lineweights stored in VALID_DXF_LINEWEIGHTS:O0, 5, 9, 13, 15, 18, 20, 25, 30, 35,
40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211

DXFGraphic.dxf.ltscale
Line type scale as float; default value is 1.0; (requires DXF R2000)

DXFGraphic.dxf.invisible
1 for invisible, O for visible; default value is 0; (requires DXF R2000)

DXFGraphic.dxf.paperspace
0 for entity resides in modelspace or a block, 1 for paperspace, this attribute is set automatically by
adding an entity to a layout (feature for experts); default value is O
DXFGraphic.dxf.extrusion

Extrusion direction as 3D vector; default value is (0, 0, 1)

9.8. Reference 313

ezdxf Documentation, Release 1.3.2

DXFGraphic.dxf.thickness
Entity thickness as float; default value is 0.0; (requires DXF R2000)

DXFGraphic.dxf.true_color
True color value as int 0XOORRGGBB, use DXFGraphic. rgb to get/set true color values as (r, g,
b) tuples. (requires DXF R2004)

DXFGraphic.dxf.color_name

Color name as string. (requires DXF R2004)

DXFGraphic.dxf.transparency

Transparency value as int, 0x020000TT, 0x00 = 100% transparent / OxFF = opaque, spe-
cial value 0x01000000 means transparency by block. An unset transparency value means
transparency by layer. Use DXFGraphic.transparency to get/set transparency as float
value, and the properties DXFGraphic.is_transparency_by_block and DXFGraphic.
is_transparency_by_layer to check special cases.

(requires DXF R2004)

DXFGraphic.dxf.shadow_mode

casts and receives shadows
casts shadows

receives shadows

ignores shadows

[SVIN S)

(requires DXF R2007)
See also:
* ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities
e ezdxf.colors module

* Tutorial for Common Graphical Attributes

Face3d

The 3DFACE entity (DXF Reference) is real 3D solid filled triangle or quadrilateral. Access vertices by name (entity.
dxf.vtx0 = (1.7, 2.3))orbyindex (entity[0] = (1.7, 2.3)).

Unlike the entities So11id and Trace, the vertices of Face3d have the expected vertex order:

msp.add_3dface([(0, O0), (10, 0), (10, 10), (0, 10)1)

314 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-747865D5-51F0-45F2-BEFE-9572DBC5B151

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFGraphic
DXF type ' 3DFACE"
Factory function ezdxf.layouts.BaseLayout.add_3dface ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Face3d
The class name is Face 3d because 3dface is not a valid Python class name.

dxf.vtx0
Location of 1. vertex (3D Point in WCS)

dxf.vtxl
Location of 2. vertex (3D Point in WCS)

dxf.vtx2
Location of 3. vertex (3D Point in WCS)

9.8. Reference 315

ezdxf Documentation, Release 1.3.2

dxf.vtx3
Location of 4. vertex (3D Point in WCS)

dxf.invisible_edges

invisible edge flag (int, default=0)

first edge is invisible
second edge is invisible
third edge is invisible
fourth edge is invisible

oo B~ N —

Combine values by adding them, e.g. 1+4 = first and third edge is invisible.

transform (m: Matrix44) — Face3d
Transform the 3DFACE entity by transformation matrix m inplace.

wes_vertices (close: bool = False) — list[Vec3]

Returns WCS vertices, if argument close is True, the first vertex is also returned as closing last vertex.

Returns 4 vertices when close is False and 5 vertices when close is True. Some edges may have zero-
length. This is a compatibility interface to SOLID and TRACE. The 3DFACE entity is already defined by
WCS vertices.

Solid3d

3DSOLID entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
See also:

Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How fo add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXEF type '3DSOLID'
Factory function ezdxf.layouts.BaseLayout.add_3dsolid /()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Solid3d

Same attributes and methods as parent class Body.

dxf.history_handle
Handle to history object.

316 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-19AB1C40-0BE0-4F32-BCAB-04B37044A0D3
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 1.3.2

ACADProxyEntity

An ACAD_PROXY_ENTITY (DXF Reference) is a proxy entity that represents an entity created by an Autodesk or 3rd
party application. It stores the graphics and data of the original entity.

The internals of this entity are unknown, so the entity cannot be copied or transformed. However, ezdxf can extract the
proxy graphic from these entities as virtual entities or replace (explode) the entire entity with its proxy graphic. The
meaning and data of this entity is lost when the entity is exploded.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'ACAD_PROXY_ENTITY'
Factory function not supported

Inherited DXF attributes ~ Common graphical DXF attributes

class ezdxf.entities.ACADProxyEntity

virtual_entities () — Iterator[DXFGraphic]
Yields proxy graphic as “virtual” entities.

explode (target_layout: BaseLayout | None = None) — EntityQuery

Explodes the proxy graphic for the ACAD_PROXY_ENTITY into the target layout, if target layout
is None, the layout of the ACAD_PROXY_ENTITY will be used. This method destroys the source
ACAD_PROXY_ENTITY entity.

Parameters
target_layout - target layout for exploded entities, None for same layout as the source
ACAD_PROXY_ENTITY.

Returns
Ent ityQuery container referencing all exploded DXF entities.

Arc

The ARC entity (DXF Reference) represents a circular arc, which is defined by the DXF attributes dxf . center, dxf.
radius, dxf.start_angle and dxf.end_angle. The arc-curve goes always from dxf.start_angle to
dxf.end_angle in counter-clockwise orientation around the dxf . ext rusion vector, which is (0, 0, 1) by default
and the usual case for 2D arcs. The ARC entity has OCS coordinates.

The helper tool ezdxf.math.ConstructionArc supports creating arcs from various scenarios, like from 3 points
or 2 points and an angle or 2 points and a radius and the upright module can convert inverted extrusion vectors from
(0,0, -1) to (0, 0, 1) without changing the curve.

See also:
e Tutorial for Simple DXF Entities, section Arc
* ezdxf.math.ConstructionArc
* Object Coordinate System (OCS)

* ezdxf.upright module

Subclass of ezdxf.entities.Circle
DXF type 'ARC'
Factory function ezdxf.layouts.BaseLayout.add_arc ()

Inherited DXF attributes ~ Common graphical DXF attributes

9.8. Reference 317

https://help.autodesk.com/view/OARX/2019/ENU/?guid=GUID-89A690F9-E859-4D57-89EA-750F3FB76C6B
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0B14D8F1-0EBA-44BF-9108-57D8CE614BC8

ezdxf Documentation, Release 1.3.2

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Arc

dxf.center
Center point of arc (2D/3D Point in OCS)

dxf.radius
Radius of arc (float)

dxf.start_angle
Start angle in degrees (float)

dxf.end_angle
End angle in degrees (float)

start_point
Returns the start point of the arc in WCS, takes the OCS into account.

end_point
Returns the end point of the arc in WCS, takes the OCS into account.

angles (num: int) — Iterator[float]
Yields num angles from start- to end angle in degrees in counter-clockwise orientation. All angles are nor-
malized in the range from [0, 360).

flattening (sagitta: float) — Iterator[Vec3]
Approximate the arc by vertices in WCS, the argument sagitta defines the maximum distance from the center
of an arc segment to the center of its chord.

transform (m: Matrix44) — Arc
Transform ARC entity by transformation matrix m inplace. Raises NonUniformScalingError () for
non-uniform scaling.

to_ellipse (replace=True) — Ellipse
Convert the CIRCLE/ARC entity to an £1 1 1pse entity.

Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by ELLIPSE entity if True

to_spline (replace=True) — Spline
Convert the CIRCLE/ARC entity to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by SPLINE entity if True
construction_tool () — ConstructionArc

Returns the 2D construction tool ezdx f.math.ConstructionArc but the extrusion vector is ignored.

apply_construction_tool (arc: ConstructionArc) — Arc

Set ARC data from the construction tool ezdxf.math.ConstructionArc but the extrusion vector is
ignored.

318

Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.3.2

Body

BODY entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.

See also:

Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to add/edit ACIS
based entities like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.DXFGraphic
DXF type 'BODY'
Factory function ezdxf.layouts.BaseLayout .add_body ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Body
dxf.version
Modeler format version number, default value is 1

dxf.flags
Require DXF R2013.

dxf.uid
Require DXF R2013.

property acis_data: bytes | Sequence[str]
Returns SAT data for DXF R2000 up to R2010 and SAB data for DXF R2013 and later

property sat: Sequence[str]
Get/Set SAT data as sequence of strings.

property sab: bytes
Get/Set SAB data as bytes.

property has_binary_data
Returns True if the entity contains SAB data and False if the entity contains SAT data.

tostring () — str
Returns ACIS SAT data as a single string if the entity has SAT data.

Circle

The CIRCLE entity (DXF Reference) defined by the DXF attributes dxf . center and dxf.radius. The CIRCLE
entity has OCS coordinates.

See also:
e Tutorial for Simple DXF Entities, section Circle
* ezdxf.math.ConstructionCircle

* Object Coordinate System (OCS)

9.8. Reference 319

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7FB91514-56FF-4487-850E-CF1047999E77
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8663262B-222C-414D-B133-4A8506A27C18

ezdxf Documentation, Release 1.3.2

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'CIRCLE'
Factory function ezdxf.layouts.BaseLayout.add _circle ()

Inherited DXF attributes ~ Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Circle

dxf.center
Center point of circle (2D/3D Point in OCS)

dxf.radius
Radius of circle (float)

vertices (angles: Iterable[float]) — Iterator[Vec3]
Yields the vertices of the circle of all given angles as Vec 3 instances in WCS.
Parameters
angles - iterable of angles in OCS as degrees, angle goes counter-clockwise around the ex-
trusion vector, and the OCS x-axis defines 0-degree.
flattening (sagitta: float) — Iterator[Vec3]
Approximate the circle by vertices in WCS as Vec 3 instances. The argument sagitta is the maximum distance
from the center of an arc segment to the center of its chord. Yields a closed polygon where the start vertex is
equal to the end vertex!
transform (m: Matrix44) — Circle
Transform the CIRCLE entity by transformation matrix m inplace. Raises NonUniformScalingEr—
ror () for non-uniform scaling.
translate (dx: float, dy: float, dz: float) — Circle
Optimized CIRCLE/ARC translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating
interface).
to_ellipse (replace=True) — Ellipse
Convert the CIRCLE/ARC entity to an £1 1 i pse entity.

Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by ELLIPSE entity if True

to_spline (replace=True) — Spline
Convert the CIRCLE/ARC entity to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace — replace (delete) source entity by SPLINE entity if True

320 Chapter 9. Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 1.3.2

Dimension

The DIMENSION entity (DXF Reference) represents several types of dimensions in many orientations and alignments.
The basic types of dimensioning are linear, radial, angular, ordinate, and arc length.

For more information about dimensions see the online help from AutoDesk: About the Types of Dimensions

Important: The DIMENSION entity is reused to create dimensional constraints, such entities do not have an associ-
ated geometrical block nor a dimension type group code (2) and reside on layer *ADSK_CONSTRAINTS. Use property
Dimension.is_dimensional_constraint to check for this objects. Dimensional constraints are not docu-
mented in the DXF reference and not supported by ezdxf.

See also:
e Tutorial for Linear Dimensions
e Tutorial for Radius Dimensions
e Tutorial for Diameter Dimensions
» Tutorial for Angular Dimensions

* Tutorial for Ordinate Dimensions

Subclass of ezdxf.entities.DXFGraphic
DXF type "DIMENSION'
factory function see table below

Inherited DXF attributes ~ Common graphical DXF attributes

Factory Functions

Linear and Rotated Dimension (DXF) add_linear dim()
Aligned Dimension (DXF) add_aligned_dim/()
Angular Dimension (DXF) add_angular_dim_ 21 ()
Angular 3P Dimension (DXF) add_angular_dim_3p ()
Angular Dimension by center, radius, angles add_angular _dim_cra ()
Angular Dimension by ConstructionArc add_angular_dim arc ()
Diameter Dimension (DXF) add_diameter _dim()
Radius Dimension (DXF) add_radius_dim/()
Ordinate Dimension (DXF) add_ordinate_dim()

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Dimension

There is only one Dimension class to represent all different dimension types.

dxf.version
Version number: 0 = R2010. (int, DXF R2010)

9.8. Reference 321

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-239A1BDD-7459-4BB9-8DD7-08EC79BF1EB0
https://knowledge.autodesk.com/support/autocad/getting-started/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-9A8AB1F2-4754-444C-B90D-CD3F2FC8A3E0-htm.html
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 1.3.2

dxf.geometry
Name of the BLOCK that contains the entities that make up the dimension picture.
For AutoCAD this graphical representation is mandatory, otherwise AutoCAD will not open the DXF docu-
ment. BricsCAD will render the DIMENSION entity by itself, if the graphical representation is not present,
but displays the BLOCK content if present.

dxf.dimstyle
Dimension style (DimStyle) name as string.

dxf.dimtype

Values 0-6 are integer values that represent the dimension type. Values 32, 64, and 128 are bit values, which
are added to the integer values.

Linear and Rotated Dimension (DXF)

Aligned Dimension (DXF)

Angular Dimension (DXF)

Diameter Dimension (DXF)

Radius Dimension (DXF)

Angular 3P Dimension (DXF)

Ordinate Dimension (DXF)

subclass ezdxf.entities.ArcDimension introduced in DXF R2004

Indicates that graphical representation geomet ry is referenced by this dimension only. (always

set in DXF R13 and later)

64 Ordinate type. This is a bit value (bit 7) used only with integer value 6. If set, ordinate is X-type; if
not set, ordinate is Y-type

128 This is a bit value (bit 8) added to the other dimt ype values if the dimension text has been posi-

tioned at a user-defined location rather than at the default location

LW oo NN AW —O

[\

dxf.defpoint
Definition point for all dimension types. (3D Point in WCS)

* Linear- and rotated dimension: dxf . de fpoint specifies the dimension line location.

¢ Arc- and angular dimension: dxf . defpoint and dxfdefpoint4 specify the endpoints of the line
used to determine the second extension line.

dxf.defpoint2
Definition point for linear- and angular dimensions. (3D Point in WCS)

 Linear- and rotated dimension: The dxf.defpoint?2 specifies the start point of the first extension
line.

¢ Arc- and angular dimension: The dxf .defpoint2 and dxf .defpoint 3 specify the endpoints of
the line used to determine the first extension line.

dxf.defpoint3
Definition point for linear- and angular dimensions. (3D Point in WCS)

* Linear- and rotated dimension: The dxf . defpoint 3 specifies the start point of the second extension
line.

¢ Arc- and angular dimension: The dxf .defpoint2 and dxf .defpoint 3 specify the endpoints of
the line used to determine the first extension line.

322 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 1.3.2

dxf.defpoint4
Definition point for diameter-, radius-, and angular dimensions. (3D Point in WCS)

The dxf.defpoint and dxf.defpoint4 specify the endpoints of the line used to determine the second
extension line for arc- and angular dimension:

dxf.defpoint5h

This point defines the location of the arc for angular dimensions. (3D Point in OCS)
dxf.angle

Rotation angle of linear and rotated dimensions in degrees. (float)
dxf.leader_length

Leader length for radius and diameter dimensions. (float)
dxf.text_midpoint

Middle point of dimension text. (3D Point in OCS)
dxf.insert

Insertion point for clones of a linear dimensions. (3D Point in OCS)

This value translates the content of the associated anonymous block for cloned linear dimensions, similar to
the insert attribute of the Tnsert entity.

dxf.attachment_point
Text attachment point (int, DXF R2000), default value is 5.

Top left

Top center
Top right
Middle left
Middle center
Middle right
Bottom left
Bottom center
Bottom right

O 00 1O\ N B W~

dxf.line_spacing_style
Dimension text line-spacing style (int, DXF R2000), default value is 1.

1 At least (taller characters will override)
2 Exact (taller characters will not override)

dxf.line_spacing_ factor
Dimension text-line spacing factor. (float, DXF R2000)

Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00.

dxf.actual_measurement

Actual measurement (float, DXF R2000), this is an optional attribute and often not present. (read-only value)

dxf.text
Dimension text explicitly entered by the user (str), default value is an empty string.

If empty string or “<>”, the dimension measurement is drawn as the text, if “” (one blank space), the text is
suppressed. Anything else will be displayed as the dimension text.

9.8. Reference 323

ezdxf Documentation, Release 1.3.2

dxf.oblique_angle
The optional dxf . oblique_angle defines the angle of the extension lines for linear dimension.

dxf.text_rotation
Defines is the rotation angle of the dimension text away from its default orientation (the direction of the
dimension line). (float)

dxf.horizontal_direction
Indicates the horizontal direction for the dimension entity (float).
This attribute determines the orientation of dimension text and lines for horizontal, vertical, and rotated linear

dimensions. This value is the negative of the angle in the OCS xy-plane between the dimension line and the
OCS x-axis.

property dimtype: int
dxf.dimt ype without binary flags (32, 62, 128).

property is_dimensional_constraint: bool
Returns True if the DIMENSION entity is a dimensional constraint object.

get_dim_style () — DimStyle
Returns the associated DimStyle entity.

get_geometry_block () — BlockLayout | None
Returns BlockLayout of associated anonymous dimension block, which contains the entities that make
up the dimension picture. Returns None if block name is not set or the BLOCK itself does not exist

get_measurement () — float| Vec3
Returns the actual dimension measurement in WCS units, no scaling applied for linear dimensions. Returns
angle in degrees for angular dimension from 2 lines and angular dimension from 3 points. Returns vector
from origin to feature location for ordinate dimensions.

override () — DimStyleOverride
Returns the DimStyleOverride object.

render () — None
Renders the graphical representation of the DIMENSION entity as DXF primitives (TEXT, LINE, ARC, ...)
into an anonymous content BLOCK.

transform (m: Matrix44) — Dimension
Transform the DIMENSION entity by transformation matrix m inplace.

Raises NonUniformScalingError () for non uniform scaling.

virtual_entities () — Iterator[DXFGraphic]
Yields the graphical representation of the anonymous content BLOCK as virtual DXF primitives (LINE,
ARC, TEXT, ...).

These virtual entities are located at the original location of the DIMENSION entity, but they are not stored
in the entity database, have no handle and are not assigned to any layout.

explode (target_layout: BaseLayout | None = None) — EntityQuery
Explodes the graphical representation of the DIMENSION entity as DXF primitives (LINE, ARC, TEXT,
...) into the target layout, None for the same layout as the source DIMENSION entity.

Returns an Ent it yQuery container containing all DXF primitives.

Parameters
target_layout — target layout for the DXF primitives, None for same layout as source

DIMENSION entity.

324 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

DimStyleOverride

All of the DimSt y1e attributes can be overridden for each Dimension entity individually.

The DimStyleOverride class manages all the complex dependencies between DimStyle and Dimension, the
different features of all DXF versions and the rendering process to create the Dimension picture as BLOCK, which is
required for AutoCAD.

class ezdxf.entities.DimStyleOverride

dimension

Base Dimension entity.
dimstyle
By dimension referenced DimStyle entity.
dimstyle_attribs
Contains all overridden attributes of dimension, asa dict with DimStyle attribute names as keys.
__getitem__ (key: str) — Any
Returns DIMSTYLE attribute key, see also get ().
__setitem__ (key: str, value: Any) — None
Set DIMSTYLE attribute key in dimstyle_attribs.
__delitem__ (key: str) — None
Deletes DIMSTYLE attribute key from dimstyle_attribs,ignores KeyErrors silently.

get (attribute: str, default: Any = None) — Any
Returns DIMSTYLE attribute from override dict dimstyle_attribsorbase DimStyle.

Returns default value for attributes not supported by DXF R12. This is a hack to use the same algorithm to
render DXF R2000 and DXF R12 DIMENSION entities. But the DXF R2000 attributes are not stored in the
DXF R12file! This method does not catch invalid attribute names! Check debug log for ignored DIMSTYLE
attributes.
pop (attribute: str, default: Any = None) — Any
Returns DIMSTYLE attribute from override dict dimstyle_attribs and removes this attribute from
override dict.
update (attribs: dict) — None
Update override dict dimstyle _attribs.
Parameters
attribs - dict of DIMSTYLE attributes
commit () — None
Writes overridden DIMSTYLE attributes into ACAD:DSTYLE section of XDATA of the DIMENSION
entity.
get_arrow_names () — tuple[str, str]
Get arrow names as strings like ‘ARCHTICK’ as tuple (dimblk1, dimblk?2).
set_arrows (blk: str | None = None, blkl: str | None = None, blk2: str | None = None, ldrblk: str | None =
None, size: float | None = None) — None

Set arrows or user defined blocks and disable oblique stroke as tick.
Parameters

¢ blk — defines both arrows at once as name str or user defined block

9.8. Reference 325

ezdxf Documentation, Release 1.3.2

* blk1 - defines left arrow as name str or as user defined block

* blk2 — defines right arrow as name str or as user defined block

* 1drblk — defines leader arrow as name str or as user defined block
* size — arrow size in drawing units

set_tick (size: float = 1) — None

Use oblique stroke as tick, disables arrows.

Parameters
size — arrow size in daring units

set_text_align (halign: str | None = None, valign: str | None = None, vshift: float | None = None) — None

Set measurement text alignment, halign defines the horizontal alignment, valign defines the vertical alignment,
abovel and above2 means above extension line 1 or 2 and aligned with extension line.

Parameters
* halign - left, right, center, abovel, above2, requires DXF R2000+
* valign - above, center, below
e vshift — vertical text shift, if valign is center; >0 shift upward, <0 shift downwards

set_tolerance (upper: float, lower: float | None = None, hfactor: float | None = None, align:
MTextLineAlignment | None = None, dec: int | None = None, leading_zeros: bool | None =
None, trailing_zeros: bool | None = None) — None

Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and
trailing zero suppression.

Parameters
* upper — upper tolerance value
¢ lower - lower tolerance value, if None same as upper
* hfactor — tolerance text height factor in relation to the dimension text height
e align - tolerance text alignment enum ezdxf.enums.MTextLineAlignment
¢ dec - Sets the number of decimal places displayed
* leading_zeros - suppress leading zeros for decimal dimensions if False
* trailing_zeros —suppress trailing zeros for decimal dimensions if False

set_limits (upper: float, lower: float, hfactor: float | None = None, dec: int | None = None, leading_zeros:
bool | None = None, trailing_zeros: bool | None = None) — None

Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading
and trailing zero suppression.

Parameters
e upper — upper limit value added to measurement value
* lower - lower limit value subtracted from measurement value
* hfactor - limit text height factor in relation to the dimension text height
* dec - Sets the number of decimal places displayed, requires DXF R2000+

* leading_zeros — suppress leading zeros for decimal dimensions if False, requires
DXF R2000+

326 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires

DXF R2000+
set_text_format (prefix: str = ", postfix: str = ", rnd: float | None = None, dec: int | None = None, sep: str |
None = None, leading_zeros: bool | None = None, trailing_zeros: bool | None = None) —
None

Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.
Parameters
* prefix — dimension text prefix text as string
* postfix — dimension text postfix text as string

* rnd - Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

¢ dec — Sets the number of decimal places displayed for the primary units of a dimension.
requires DXF R2000+

@ » @ »

* sep-— or “,” as decimal separator
* leading_zeros - suppress leading zeros for decimal dimensions if False
* trailing_zeros —suppress trailing zeros for decimal dimensions if False

set_dimline_format (color: int | None = None, linetype: str | None = None, lineweight: int | None = None,
extension: float | None = None, disablel: bool | None = None, disable2: bool | None
= None)

Set dimension line properties.
Parameters
¢ color - color index
¢ linetype - linetype as string
* lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
* extension - extension length
e disablel - True to suppress first part of dimension line
* disable2 - True to suppress second part of dimension line

set_extline_format (color: int | None = None, lineweight: int | None = None, extension: float | None =
None, offset: float | None = None, fixed_length: float | None = None)

Set common extension line attributes.
Parameters
* color - color index
e lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
* extension - extension length above dimension line
* offset - offset from measurement point
» fixed_length - set fixed length extension line, length below the dimension line

set_extlinel (linetype: str | None = None, disable=False)
Set attributes of the first extension line.

Parameters

9.8.

Reference 327

ezdxf Documentation, Release 1.3.2

¢ linetype - linetype for the first extension line

* disable — disable first extension line if True
set_extline2 (linetype: str | None = None, disable=False)

Set attributes of the second extension line.
Parameters

¢ linetype - linetype for the second extension line

e disable — disable the second extension line if True
set_text (fext: str = '<>') — None

Set dimension text.

“@ o«

e text = “ “ to suppress dimension text

232

e text = “” or “<>" to use measured distance as dimension text
* otherwise display rext literally

shift_text (dh: float, dv: float) — None
Set relative text movement, implemented as user location override without leader.

Parameters
* dh - shift text in text direction
¢ dv - shift text perpendicular to text direction

set_location (location: UVec, leader=False, relative=False) — None

Set text location by user, special version for linear dimensions, behaves for other dimension types like
user_location_override ().

Parameters
¢ location — user defined text location
¢ leader - create leader from text to dimension line
e relative - location is relative to default location.

user_location_override (location: UVec) — None
Set text location by user, location is relative to the origin of the UCS defined in the render () method or
WCS if the ucs argument is None.

render (ucs: UCS | None = None, discard=False) — BaseDimensionRenderer

Starts the dimension line rendering process and also writes overridden dimension style attributes into the
DSTYLE XDATA section. The rendering process “draws” the graphical representation of the DIMENSION
entity as DXF primitives (TEXT, LINE, ARC, ...) into an anonymous content BLOCK.

You can discard the content BLOCK for a friendly CAD applications like BricsCAD, because the rendering
of the dimension entity is done automatically by BricsCAD if the content BLOCK is missing, and the result
is in most cases better than the rendering done by ezdxf.

AutoCAD does not render DIMENSION entities automatically, therefore I see AutoCAD as an unfriendly
CAD application.

Parameters
* ucs — user coordinate system

¢ discard - discard the content BLOCK created by ezdxf, this works for BricsCAD, Auto-
CAD refuses to open DXF files containing DIMENSION entities without a content BLOCK

328 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Returns
The rendering object of the DIMENSION entity for analytics

ArcDimension

The ARC_DIMENSION entity was introduced in DXF R2004 and is not documented in the DXF reference.
See also:

Tutorial for Arc Dimensions

Subclass of ezdxf.entities.Dimension
DXF type 'ARC_DIMENSION'

factory function
ry * add_arc_dim 3p ()

e add _arc_dim cra /()
e add_arc_dim_arc ()

Inherited DXF attributes Common graphical DXF attributes
Required DXF version R2004 / AC1018

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.ArcDimension

dxf.defpoint2

start point of first extension line in OCS

dxf.defpoint3

start point of second extension line in OCS

dxf.defpoint4

center point of arc in OCS

dxf.start_angle
dxf.end_angle
dxf.is_partial
dxf.has_leader
dxf.leader_pointl
dxf.leader_point2

dimtype

Returns always 8.

9.8. Reference 329

ezdxf Documentation, Release 1.3.2

Ellipse

The ELLIPSE entity (DXF Reference) is an elliptic 3D curve defined by the DXF attributes dxf . center, the dxf.
major_axis vector and the dxf .extrusion vector.

The dxf.ratio attribute is the ratio of minor axis to major axis and has to be smaller or equal 1. The dxf.
start_param and dxf.end_param attributes defines the starting- and the end point of the ellipse, a full ellipse
goes from O to 2;. The curve always goes from start- to end param in counter clockwise orientation.

The dxf .extrusion vector defines the normal vector of the ellipse plane. The minor axis direction is calculated by
dxf.extrusion cross dxf.major_axis. The default extrusion vector (0, O, 1) defines an ellipse plane parallel to
xy-plane of the WCS.

All coordinates and vectors in WCS.

See also:

 Tutorial for Simple DXF Entities, section Ellipse

e ezdxf.math.ConstructionEllipse

Subclass of ezdxf.entities.DXFGraphic
DXF type '"ELLIPSE'
factory function add_ellipse ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ("AC1015")

class ezdxf.entities.Ellipse

dxf.center
Center point of circle (2D/3D Point in WCS)

dxf.major_axis
Endpoint of major axis, relative to the dxf . center (Vec3), default value is (1, 0, 0).

dxf.ratio
Ratio of minor axis to major axis (float), has to be in range from 0.000001 to 1.0, default value is 1.

dxf.start_param
Start parameter (float), default value is O.

dxf.end_param

End parameter (float), default value is 2.

start_point

Returns the start point of the ellipse in WCS.
end_point

Returns the end point of the ellipse in WCS.
minor_axis

Returns the minor axis of the ellipse as Vec3 in WCS.

construction_tool () — ConstructionEllipse

Returns construction tool ezdxf.math.ConstructionEllipse.

apply_construction_tool (e: ConstructionEllipse) — Ellipse
Set ELLIPSE data from construction tool ezdxf.math.ConstructionEllipse.

330

Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-107CB04F-AD4D-4D2F-8EC9-AC90888063AB

ezdxf Documentation, Release 1.3.2

vertices (params: Iterable[float]) — Iterable[Vec3]

Yields vertices on ellipse for iterable params in WCS.

Parameters
params — param values in the range from O to 2 in radians, param goes counter-clockwise
around the extrusion vector, major_axis = local x-axis = 0 rad.

flattening (distance: float, segments: int = 8) — Iterable[Vec3]

Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided. Returns a closed polygon for a full ellipse where the start vertex has the same value as the
end vertex.

Parameters
* distance — maximum distance from the projected curve point onto the segment chord.
¢ segments — minimum segment count

params (num: int) — Iterable[float]

Returns num params from start- to end param in counter-clockwise order.
All params are normalized in the range [0, 27).

transform (m: Matrix44) — Ellipse
Transform the ELLIPSE entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Ellipse

Optimized ELLIPSE translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating inter-
face).

to_spline (replace=True) — Spline
Convert ELLIPSE to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters
replace - replace (delete) source entity by SPLINE entity if True

classmethod from_arc (entity: DXFGraphic) — Ellipse
Create a new virtual ELLIPSE entity from an ARC or a CIRCLE entity.

The new entity has no owner, no handle, is not stored in the entity database nor assigned to any layout!

Hatch

The HATCH entity (DXF Reference) fills a closed area defined by one or more boundary paths by a hatch pattern, a solid
fill, or a gradient fill.

All points in OCS as (x, y) tuples (Hatch.dxf.elevation is the z-axis value).

There are two different hatch pattern default scaling, depending on the HEADER variable SMEASUREMENT, one for
ISO measurement (m, cm, mm, ...) and one for imperial measurement (in, ft, yd, ...).

The default scaling for predefined hatch pattern will be chosen according this measurement setting in the HEADER
section, this replicates the behavior of BricsCAD and other CAD applications. Ezdxf uses the ISO pattern definitions as a
base line and scales this pattern down by factor 1/25.6 for imperial measurement usage. The pattern scaling is independent
from the drawing units of the document defined by the HEADER variable SINSUNITS.

9.8. Reference 331

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-C6C71CED-CE0F-4184-82A5-07AD6241F15B

ezdxf Documentation, Release 1.3.2

See also:

Tutorial for Hatch and DXF Units

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'HATCH'
Factory function ezdxf.layouts.BaseLayout.add_hatch ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ("AC1015")

Boundary paths classes

Path manager: BoundaryPaths
* PolylinePath

e EdgePath

LineEdge

ArcEdge

EllipseEdge

SplineEdge

Pattern and gradient classes

e Pattern
e PatternLine
* Gradien
class ezdxf.entities.Hatch
dxf.pattern_name
Pattern name as string

dxf.solid fill

1 solid fill, use method Hatch.set solid fill ()
0 pattern fill, use method Hatch. set_pattern_fill ()

dxf.associative

1 associative hatch
0 not associative hatch

Associations are not managed by ezdxf.

332 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

dxf.hatch_style

0 normal
1 outer
2 ignore
(search AutoCAD help for more information)
dxf.pattern_type
0 user

1 predefined

2 custom

dxf.pattern_angle

The actual pattern rotation angle in degrees (float). Changing this value does not rotate the pattern, use

set_pattern_angle () for this task.

dxf.pattern_scale

The actual pattern scale factor (float). Changing this value does not scale the pattern use

set_pattern_scale () for this task.

dxf.pattern_double
1 = double pattern size else 0. (int)

dxf.n_seed_points
Count of seed points (use get_seed_points())

dxf.elevation

Z value represents the elevation height of the OCS. (float)

paths
BoundaryPaths object.

pattern

Pattern object.

gradient

Gradient object.

seeds

A list of seed points as (x, y) tuples.

property has_solid_fill: bool
True if entity has a solid fill. (read only)

property has_pattern_f£fill: bool
True if entity has a pattern fill. (read only)

property has_gradient_data: bool

True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)

9.8.

Reference

333

ezdxf Documentation, Release 1.3.2

property bgcolor: RGB | None
Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)

usage:

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition (lines: Sequence, factor: float = 1, angle: float = 0) — None

Setup pattern definition by a list of definition lines and the definition line is a 4-tuple (angle, base_point, offset,
dash_length_items). The pattern definition should be designed for a pattern scale factor of 1 and a pattern
rotation angle of 0.

* angle: line angle in degrees
¢ base-point: (x, y) tuple
* offset: (dx, dy) tuple

* dash_length_items: list of dash items (item > O is a line, item < O is a gap and item == 0.0 is a point)

Parameters
¢ lines - list of definition lines
e factor - pattern scale factor

* angle - rotation angle in degrees

set_pattern_scale (scale: float) — None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale (1) call resets the pat-
tern scale to the original appearance as defined by the pattern designer, but only if the pattern attribute dx 1.

pattern_scale represents the actual scale, it cannot restore the original pattern scale from the pattern
definition itself.

Parameters
scale - pattern scale factor

set_pattern_angle (angle: float) — None

Sets the pattern rotation angle and rotates the pattern definition.

The method always starts from the original base rotation of 0, the set_pattern_angle (0) call resets
the pattern rotation angle to the original appearance as defined by the pattern designer, but only if the pattern
attribute dx . pattern_angle represents the actual pattern rotation, it cannot restore the original rotation
angle from the pattern definition itself.

Parameters
angle — pattern rotation angle in degrees

set_solid_£il1 (color: int = 7, style: int = 1, rgb: RGB | None = None)
Set the solid fill mode and removes all gradient and pattern fill related data.

Parameters
e color — AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)

¢ style - hatch style (0 = normal; 1 = outer; 2 = ignore)

334 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

rgb — true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2000.

set_pattern_£ill (name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int

= 1, pattern_type: int = 1, definition=None) — None

Sets the pattern fill mode and removes all gradient related data.

The pattern definition should be designed for a scale factor 1 and a rotation angle of 0 degrees. The predefined
hatch pattern like “ANSI33” are scaled according to the HEADER variable SMEASUREMENT for 1SO
measurement (m, cm, ...), or imperial units (in, ft, ...), this replicates the behavior of BricsCAD.

Parameters

name — pattern name as string

color — pattern color as AutoCAD Color Index (ACI)

angle — pattern rotation angle in degrees

scale — pattern scale factor

double - double size flag

style - hatch style (0 = normal; 1 = outer; 2 = ignore)

pattern_type — pattern type (0 = user-defined; 1 = predefined; 2 = custom)

definition - list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition()

set_gradient (colorl: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,

centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') — None

Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004 or newer. A gradient
filled hatch is also a solid filled hatch.

Valid gradient type names are:
“LINEAR”
“CYLINDER”
“INVCYLINDER”
“SPHERICAL”
“INVSPHERICAL”
“HEMISPHERICAL”
“INVHEMISPHERICAL”
“CURVED”
“INVCURVED”

Parameters

colorl — (1, g, b)-tuple for first color, rgb values as int in the range [0, 255]
color2 —(r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
rotation - rotation angle in degrees

centered - determines whether the gradient is centered or not

one_color — | for gradient from color! to tinted colorl

9.8. Reference

335

ezdxf Documentation, Release 1.3.2

* tint - determines the tinted target colorl for a one color gradient. (valid range 0.0 to 1.0)

* name — name of gradient type, default “LINEAR”

set_seed_points (points: Iterable[tuple[float, float]]) — None

Set seed points, points is an iterable of (x, y)-tuples. I don’t know why there can be more than one seed point.
All points in OCS (Hatch.dxf.elevation is the Z value)

transform (m: Matrixd4) — Hatch

Transform entity by transformation matrix m inplace.

associate (path: AbstractBoundaryPath, entities: Iterable/DXFEntity])
Set association from hatch boundary path to DXF geometry entities.

A HATCH entity can be associative to a base geometry, this association is not maintained nor verified by
ezdxf, so if you modify the base geometry the geometry of the boundary path is not updated and no verification
is done to check if the associated geometry matches the boundary path, this opens many possibilities to create
invalid DXF files: USE WITH CARE!

remove_association ()

Remove associated path elements.

Boundary Paths

The hatch entity is build by different path types, these are the filter flags for the Hatch.dxf.hatch_style:
¢ EXTERNAL: defines the outer boundary of the hatch
* OUTERMOST: defines the first tier of inner hatch boundaries
* DEFAULT: default boundary path

As you will learn in the next sections, these are more the recommended usage type for the flags, but the fill algorithm
doesn’t care much about that, for instance an OUTERMOST path doesn’t have to be inside the EXTERNAL path.

Island Detection

In general the island detection algorithm works always from outside to inside and alternates filled and unfilled areas. The
area between then 1st and the 2nd boundary is filled, the area between the 2nd and the 3rd boundary is unfilled and so on.
The different hatch styles defined by the Hatch. dxf.hatch_style attribute are created by filtering some boundary
path types.

Hatch Style

* HATCH_STYLE_IGNORE: Ignores all paths except the paths marked as EXTERNAL, if there are more than
one path marked as EXTERNAL, they are filled in NESTED style. Creates no hatch if no path is marked as
EXTERNAL.

« HATCH_STYLE_OUTERMOST: Ignores all paths marked as DEFAULT, remaining EXTERNAL and OUTER-
MOST paths are filled in NESTED style. Creates no hatch if no path is marked as EXTERNAL or OUTERMOST.

e HATCH_STYLE_NESTED: Use all existing paths.

336 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

Hatch Boundary Classes

class ezdxf.entities.BoundaryPaths

Defines the borders of the hatch, a hatch can consist of more than one path.

paths
List of all boundary paths. Contains PolylinePath and EdgePath objects. (read/write)

external_paths () — Iterable[AbstractBoundaryPath]
Iterable of external paths, could be empty.

outermost_paths () — Iterable[AbstractBoundaryPath]

Iterable of outermost paths, could be empty.

default_paths () — Iterable[AbstractBoundaryPath]
Iterable of default paths, could be empty.

rendering_paths (hatch_style: int = const HATCH_STYLE_NESTED) —; Iterable[AbstractBoundaryPath]

Iterable of paths to process for rendering, filters unused boundary paths according to the given hatch style:
e NESTED: use all boundary paths
¢ OUTERMOST: use EXTERNAL and OUTERMOST boundary paths
* IGNORE: ignore all paths except EXTERNAL boundary paths

Yields paths in order of EXTERNAL, OUTERMOST and DEFAULT.

add_polyline_path (path_vertices: Iterable[tuple[float, ...]], is_closed: bool = True, flags: int = 1) —
PolylinePath

Create and add a new PolylinePath object.
Parameters
* path_vertices —iterable of polyline vertices as (x, y) or (X, y, bulge)-tuples.
* is_closed - 1 for a closed polyline else 0
¢ flags — external(1) or outermost(16) or default (0)

add_edge_path (flags: int = 1) — EdgePath
Create and add a new EdgePath object.

Parameters
flags — external(1) or outermost(16) or default (0)

polyline_to_edge_paths (just_with_bulge=True) — None
Convert polyline paths including bulge values to line- and arc edges.

Parameters
just_with_bulge - convert only polyline paths including bulge values if True

edge_to_polyline_paths (distance: float, segments: int = 16)
Convert all edge paths to simple polyline paths without bulges.

Parameters

* distance — maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

* segments — minimum segment count per curve

9.8. Reference 337

ezdxf Documentation, Release 1.3.2

arc_edges_to_ellipse_edges () — None
Convert all arc edges to ellipse edges.
ellipse_edges_to_spline_edges (num: int = 32) — None
Convert all ellipse edges to spline edges (approximation).

Parameters

num — count of control points for a full ellipse, partial ellipses have proportional fewer control
points but at least 3.

spline_edges_to_line_edges (factor: int = 8) — None
Convert all spline edges to line edges (approximation).

Parameters
factor - count of approximation segments = count of control points x factor

all_to_spline_edges (num: int = 64) — None
Convert all bulge, arc and ellipse edges to spline edges (approximation).

Parameters

num — count of control points for a full circle/ellipse, partial circles/ellipses have proportional
fewer control points but at least 3.

all_to_line_edges (num: int = 64, spline_factor: int = 8) — None
Convert all bulge, arc and ellipse edges to spline edges and approximate this splines by line edges.

Parameters

* num - count of control points for a full circle/ellipse, partial circles/ellipses have proportional
fewer control points but at least 3.

* spline_factor — count of spline approximation segments = count of control points x
spline_factor

clear () — None

Remove all boundary paths.

class ezdxf.entities.BoundaryPathType

POLYLINE
polyline path type
EDGE
edge path type
class ezdxf.entities.PolylinePath
A polyline as hatch boundary path.
type
Path type as BoundaryPathType.POLYLINE enum
path_type_flags
(bit coded flags)

0 default

1 external

2 polyline, will be set by ezdxf
16 outermost

338 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

My interpretation of the path_type_flags, see also Tutorial for Hatch:
* external: path is part of the hatch outer border
* outermost: path is completely inside of one or more external paths
e default: path is completely inside of one or more outermost paths

If there are troubles with AutoCAD, maybe the hatch entity has the Hatch.dxf.pixel_size attribute

set - delete it del hatch.dxf.pixel_size and maybe the problem is solved. Ezdxf does not use the

Hatch.dxf.pixel_size attribute, but it can occur in DXF files created by other applications.
is_closed

True if polyline path is closed.

vertices

List of path vertices as (X, y, bulge)-tuples. (read/write)

source_boundary_objects
List of handles of the associated DXF entities for associative hatches. There is no support for associative
hatches by ezdxf, you have to do it all by yourself. (read/write)

set_vertices (vertices: Iterable[Sequence[float]], is_closed: bool = True) — None

Set new vertices as new polyline path, a vertex has to be a (x, y) or a (x, y, bulge)-tuple.

clear () — None

Removes all vertices and all handles to associated DXF objects (source_boundary_objects).

class ezdxf.entities.EdgePath

Boundary path build by edges. There are four different edge types: LineEdge, ArcEdge, E11ipseEdge of
SplineEdge. Make sure there are no gaps between edges and the edge path must be closed to be recognized as
path. AutoCAD is very picky in this regard. Ezdxf performs no checks on gaps between the edges and does not
prevent creating open loops.

Note: ArcEdge and E11ipseEdge are ALWAYS represented in counter-clockwise orientation, even if an
clockwise oriented edge is required to build a closed loop. To add a clockwise oriented curve swap start- and end
angles and set the ccw flag to False and ezdxf will export a correct clockwise orientated curve.

type

Path type as BoundaryPathType.EDGE enum
path_type_flags

(bit coded flags)

0 default
1 external
16 outermost

see PolylinePath.path_type_flags
edges

List of boundary edges of type LineEdge, ArcEdge, E11ipseEdge of SplineEdge
source_boundary_objects

Required for associative hatches, list of handles to the associated DXF entities.

9.8. Reference 339

ezdxf Documentation, Release 1.3.2

clear () — None
Delete all edges.

add_1line (start: UVec, end: UVec) — LineEdge
Add a LineEdge from start to end.

Parameters
* start - start point of line, (x, y)-tuple
* end - end point of line, (x, y)-tuple

add_arc (center: UVec, radius: float = 1.0, start_angle: float = 0.0, end_angle: float = 360.0, ccw: bool =
True) — ArcEdge

Add an ArcEdge.
Adding Clockwise Oriented Arcs:

Clockwise oriented ArcEdge objects are sometimes necessary to build closed loops, but the ArcEdge
objects are always represented in counter-clockwise orientation. To add a clockwise oriented ArcEdge
you have to swap the start- and end angle and set the ccw flag to False, e.g. to add a clockwise oriented
ArcEdge from 180 to 90 degree, add the ArcEdge in counter-clockwise orientation with swapped angles:

edge_path.add_arc(center, radius, start_angle=90, end_angle=180, ccw=False)

Parameters
e center — center point of arc, (x, y)-tuple
* radius - radius of circle
e start_angle - start angle of arc in degrees (end_angle for a clockwise oriented arc)
* end_angle - end angle of arc in degrees (start_angle for a clockwise oriented arc)
* ccw — True for counter-clockwise False for clockwise orientation
add_ellipse (center: UVec, major_axis: UVec = (1.0, 0.0), ratio: float = 1.0, start_angle: float = 0.0,
end_angle: float = 360.0, ccw: bool = True) — EllipseEdge
Addan E11ipseEdge.
Adding Clockwise Oriented Ellipses:

Clockwise oriented E11ipseEdge objects are sometimes necessary to build closed loops, but the E1 -
1lipseEdge objects are always represented in counter-clockwise orientation. To add a clockwise oriented
EllipseEdge you have to swap the start- and end angle and set the ccw flag to False, e.g. toadd a
clockwise oriented E11ipseEdge from 180 to 90 degree, add the £11ipseEdge in counter-clockwise
orientation with swapped angles:

edge_path.add_ellipse(center, major_axis, ratio, start_angle=90, end_
—~angle=180, ccw=False)

Parameters
* center — center point of ellipse, (X, y)-tuple
* major_axis — vector of major axis as (x, y)-tuple
e ratio - ratio of minor axis to major axis as float

* start_angle — start angle of ellipse in degrees (end_angle for a clockwise oriented el-
lipse)

340 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

* end_angle - end angle of ellipse in degrees (start_angle for a clockwise oriented ellipse)

¢ cecw — True for counter-clockwise False for clockwise orientation

add_spline (fit_points: Iterable[UVec] | None = None, control_points: Iterable[UVec] | None = None,

knot_values: Iterable/[float] | None = None, weights: Iterable[float] | None = None, degree: int =
3, periodic: int = 0, start_tangent: UVec | None = None, end_tangent: UVec | None = None) —
SplineEdge

Add a SplineEdge.

Parameters

* fit_points — points through which the spline must go, at least 3 fit points are required.
list of (X, y)-tuples

e control_points — affects the shape of the spline, mandatory and AutoCAD crashes on
invalid data. list of (x, y)-tuples

* knot_values — (knot vector) mandatory and AutoCAD crashes on invalid data. list of
floats; ezdxf provides two tool functions to calculate valid knot values: ezdxf.math.
uniform knot_vector (), ezdxf.math.open_uniform knot_vector ()
(default if None)

* weights — weight of control point, not mandatory, list of floats.
* degree — degree of spline (int)

* periodic - 1 for periodic spline, O for none periodic spline

* start_tangent - start_tangent as 2d vector, optional

* end_tangent - end_tangent as 2d vector, optional

crashes.

Warning: Unlike for the spline entity AutoCAD does not calculate the necessary knot_values for the
spline edge itself. On the contrary, if the knot_values in the spline edge are missing or invalid AutoCAD

class ezdxf.entities.EdgeType
LINE
ARC
ELLIPSE
SPLINE

class ezdxf.entities.LineEdge
Straight boundary edge.

type
Edge type as EdgeType . LINE enum

start
Start point as (X, y)-tuple. (read/write)

end
End point as (x, y)-tuple. (read/write)

9.8. Reference

341

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.ArcEdge

Arc as boundary edge in counter-clockwise orientation, see EdgePath.add_arc ().
type
Edge type as EdgeType . ARC enum
center
Center point of arc as (X, y)-tuple. (read/write)
radius
Arc radius as float. (read/write)
start_angle
Arc start angle in counter-clockwise orientation in degrees. (read/write)
end_angle
Arc end angle in counter-clockwise orientation in degrees. (read/write)
cew
True for counter clockwise arc else False. (read/write)
class ezdxf.entities.EllipseEdge
Elliptic arc as boundary edge in counter-clockwise orientation, see EdgePath.add_ellipse ().
type
Edge type as EdgeType . ELLIPSE enum
major_axis_vector
Ellipse major axis vector as (X, y)-tuple. (read/write)
minor_axis_length
Ellipse minor axis length as float. (read/write)
radius
Ellipse radius as float. (read/write)
start_angle
Ellipse start angle in counter-clockwise orientation in degrees. (read/write)
end_angle
Ellipse end angle in counter-clockwise orientation in degrees. (read/write)
cew
True for counter clockwise ellipse else False. (read/write)
class ezdxf.entities.SplineEdge
Spline as boundary edge.
type
Edge type as EdgeType . SPLINE enum
degree
Spline degree as int. (read/write)
rational

1 for rational spline else 0. (read/write)

342 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

periodic

1 for periodic spline else 0. (read/write)

knot_values

List of knot values as floats. (read/write)

control_points

List of control points as (x, y)-tuples. (read/write)
fit_points
List of fit points as (x, y)-tuples. (read/write)

weights

List of weights (of control points) as floats. (read/write)

start_tangent

Spline start tangent (vector) as (X, y)-tuple. (read/write)

end_tangent

Spline end tangent (vector) as (X, y)-tuple. (read/write)

Hatch Pattern Definition Classes

class ezdxf.entities.Pattern
lines
List of pattern definition lines (read/write). see PatternLine

add_1line (angle: float = 0, base_point: UVec = (0, 0), offset: UVec = (0, 0), dash_length_items:
Iterable[float] | None = None) — None

Create a new pattern definition line and add the line to the Pattern. 1 ines attribute.

clear () — None

Delete all pattern definition lines.

scale (factor: float = 1, angle: float = 0) — None

Scale and rotate pattern.

Be careful, this changes the base pattern definition, maybe better use Hatch. set_pattern_scale ()
or Hatch.set_pattern_angle ().

Parameters
e factor - scaling factor
* angle - rotation angle in degrees

class ezdxf.entities.PatternlLine
Represents a pattern definition line, use factory function Pattern.add_1ine () tocreate new pattern definition
lines.
angle
Line angle in degrees. (read/write)

base_point
Base point as (x, y)-tuple. (read/write)

9.8. Reference 343

ezdxf Documentation, Release 1.3.2

offset
Offset as (x, y)-tuple. (read/write)

dash_length_items
List of dash length items (item > O is line, < 0 is gap, 0.0 = dot). (read/write)

Hatch Gradient Fill Class

class ezdxf.entities.Gradient
colorl
First rgb color as (r, g, b)-tuple, rgb values in range O to 255. (read/write)

color2
Second rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)

one_color
If one_coloris 1 - the hatch is filled with a smooth transition between color and a specified t int of
colorl. (read/write)

rotation

Gradient rotation in degrees. (read/write)

centered

Specifies a symmetrical gradient configuration. If this option is not selected, the gradient fill is shifted up and
to the left, creating the illusion of a light source to the left of the object. (read/write)

tint
Specifies the tint (color1 mixed with white) of a color to be used for a gradient fill of one color. (read/write)
See also:

Tutorial for Hatch Pattern Definition

Helix

The HELIX entity (DXF Reference).

The helix curve is represented by a cubic B-spline curve, therefore the HELIX entity is also derived from the SPLINE
entity.

See also:

» Wikipedia article about the helix shape

Subclass of ezdxf.entities.Spline
DXF type "HELIX'
Factory function ezdxf.layouts.BaseLayout.add _helix ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.Helix
All points in WCS as (X, y, z) tuples

344 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-76DB3ABF-3C8C-47D1-8AFB-72942D9AE1FF
https://en.wikipedia.org/wiki/Helix

ezdxf Documentation, Release 1.3.2

dxf.axis_base_point
The base point of the helix axis (Vec3).

dxf.start_point
The starting point of the helix curve (Vec3). This also defines the base radius as the distance from the start
point to the axis base point.

dxf.axis_vector

Defines the direction of the helix axis (Vec3).

dxf.radius
Defines the top radius of the helix (float).

dxf.turn_height
Defines the pitch (height if one helix turn) of the helix (float).

dxf.turns
The count of helix turns (float).

dxf .handedness

Helix orientation (int).

0 clock wise (left handed)
1 counter clockwise (right handed)

dxf.constrain

0 constrain turn height (pitch)
1 constrain count of turns
2 constrain total height

Image

The IMAGE entity (DXF Reference) represents a raster image, the image file itself is not embedded into the DXF file,
it is always a separated file. The IMAGE entity is like a block reference, it can be used to add the image multiple times
at different locations with different scale and rotation angles. Every IMAGE entity requires an image definition, see
entity TmageDef. Ezdxf creates only images in the xy-plan, it’s possible to place images in 3D space, therefore the
Image.dxf.u_pixel and the Tmage.dxf.v_pixel vectors has to be set accordingly.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'IMAGE'
Factory function ezdxf.layouts.BaseLayout.add_image ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Image

9.8. Reference 345

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3A2FF847-BE14-4AC5-9BD4-BD3DCAEF2281

ezdxf Documentation, Release 1.3.2

dxf.insert

Insertion point, lower left corner of the image (3D Point in WCS).

dxf.u_pixel
U-vector of a single pixel as (X, y, z) tuple. This vector points along the visual bottom of the image, starting
at the insertion point.

dxf.v_pixel
V-vector of a single pixel as (X, y, z) tuple. This vector points along the visual left side of the image, starting
at the insertion point.

dxf.image_size
Image size in pixels as (X, y) tuple

dxf.image_def_handle
Handle to the image definition entity, see TmageDef

dxf.flags
Image.SHOW_IMAGE 1 Show image
Image.SHOW_WHEN_NOT_ALIGNED 2 Show image when not aligned with screen
Image.USE_CLIPPING_BOUNDARY 4 Use clipping boundary
Image.USE_TRANSPARENCY 8 Transparency is on

dxf.clipping
Clipping state:

0 clipping off
1 clipping on

dxf .brightness
Brightness value in the range [0, 100], default is 50

dxf.contrast
Contrast value in the range [0, 100], default is 50

dxf . fade
Fade value in the range [0, 100], default is O

dxf.clipping_boundary_ type

1 Rectangular
2 Polygonal

dxf.count_boundary_ points
Number of clip boundary vertices, this attribute is maintained by ezdxf.

dxf.clip_mode

0 Outside
1 Inside

346

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

requires DXF R2010 or newer
boundary_path
Returns the boundray path in raw form in pixel coordinates.

A list of vertices as pixel coordinates, Two vertices describe a rectangle, lower left corner is (-0.5, -0.5) and
upper right corner is (ImageSizeX-0.5, ImageSizeY-0.5), more than two vertices is a polygon as clipping path.
All vertices as pixel coordinates. (read/write)

image_def
Returns the associated IMAGEDEEF entity, see TmageDef.

reset_boundary_path () — None
Reset boundary path to the default rectangle [(-0.5, -0.5), (ImageSizeX-0.5, ImageSizeY-0.5)].

set_boundary_path (vertices: Iterable[UVec]) — None

Set boundary path to vertices. Two vertices describe a rectangle (lower left and upper right corner), more
than two vertices is a polygon as clipping path.

pixel_boundary_path () — list[Vec2]

Returns the boundary path as closed loop in pixel coordinates. Resolves the simple form of two vertices as a
rectangle. The image coordinate system has an inverted y-axis and the top-left corner is (0, 0).

Changed in version 1.2.0: renamed from boundray_path_ocs ()

boundary path_wcs () — list[Vec3]
Returns the boundary/clipping path in WCS coordinates.

It’s recommended to acquire the clipping path as Path object by the make_path () function:

from ezdxf.path import make_path

image = ... # get image entity
clipping_path = make_path (image)

transform (m: Matrix44) — Self
Transform IMAGE entity by transformation matrix m inplace.

Leader

The LEADER entity (DXF Reference) represents a pointer line, made up of one or more vertices (or spline fit points)
and an arrowhead. The label or other content to which the Leader is attached is stored as a separate entity, and is not
part of the Leader itself.

The LEADER entity uses parts of the styling infrastructure of the DIMENSION entity.

By default a Leader without any annotation is created. For creating more fancy leaders and annotations see the docu-
mentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementation notes .

Subclass of ezdxf.entities.DXFGraphic
DXF type ' LEADER'
Factory function ezdxf.layouts.BaseLayout.add_leader ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ("AC1015")

9.8. Reference 347

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-396B2369-F89F-47D7-8223-8B7FB794F9F3
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.Leader

dxf

dxf

dxf

dxf.

dxf.

dxf.

dxf.

dxf.

dxf

dxf.

dxf.

.dimstyle

Name of Dimstyle as string.

.has_arrowhead

0 Disabled

1 Enabled
.path_type
Leader path type:
0 Straight line segments
1 Spline
annotation_type

Created with text annotation

Created with tolerance annotation
Created with block reference annotation
Created without any annotation (default)

W N = O

hookline_direction
Hook line direction flag:

0 Hookline (or end of tangent for a splined leader) is the opposite direction from the horizontal vector

1 Hookline (or end of tangent for a splined leader) is the same direction as horizontal
has_hook_1line)

vector (see

has_hookline

0 No hookline
1 Has a hookline

text_height
Text annotation height in drawing units.

text_width
Text annotation width.

.block_color

Color to use if leader’s DIMCLRD = BYBLOCK

annotation_handle
Hard reference (handle) to associated annotation (MText, Tolerance, or Insert entity)

normal_vector

Extrusion vector? default is (0, 0, 1).

348

Chapter 9

. Contents

ezdxf Documentation, Release 1

3.2

.dxf.horizontal_direction

Horizontal direction for leader, default is (1, 0, 0).

dxf.leader_offset_block_ref

Offset of last leader vertex from block reference insertion point, default is (0, 0, 0).

dxf.leader_offset_annotation_placement

Offset of last leader vertex from annotation placement point, default (0, 0, 0).

vertices

List of Vec3 objects, representing the vertices of the leader (3D Point in WCS).

set_vertices (vertices: Iterable[UVec])

Set vertices of the leader, vertices is an iterable of (x, y [,z]) tuples or Vec3.
transform (m: Matrix44) — Leader

Transform LEADER entity by transformation matrix m inplace.

virtual_entities () — Iterator[DXFGraphic]
Yields the DXF primitives the LEADER entity is build up as virtual entities.

These entities are located at the original location, but are not stored in the entity database, have no handle and

are not assigned to any layout.

explode (target_layout: BaseLayout | None = None) — EntityQuery

Explode parts of the LEADER entity as DXF primitives into target layout, if target layout is None, the target

layout is the layout of the LEADER entity. This method destroys the source entity.
Returns an Ent it yQuery container referencing all DXF primitives.

Parameters
target_layout - target layout for the created DXF primitives, None for the same layout
as the source entity.

Line

The LINE entity (DXF Reference) is a 3D line defined by the DXF attributes dxf . start and dxf .end. The LINE

entity has WCS coordinates.

See also:
* Tutorial for Simple DXF Entities, section Line
* ezdxf.math.ConstructionRay

e ezdxf.math.ConstructionLine

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'LINE'
Factory function ezdxf.layouts.BaseLayout.add_line ()

Inherited DXF Attributes Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

9.8. Reference

349

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-FCEF5726-53AE-4C43-B4EA-C84EB8686A66

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.Line

dxf.start
start point of line (2D/3D Point in WCS)

dxf.end
end point of line (2D/3D Point in WCS)

dxf.thickness
Line thickness in 3D space in direction ext rusion, default value is 0. This value should not be confused
with the 1 ineweight value.

dxf.extrusion

extrusion vector, default value is (0, 0, 1)

transform (m: Matrix44) — Line

Transform the LINE entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Line
Optimized LINE translation about dx in x-axis, dy in y-axis and dz in z-axis.

LWPolyline

The LWPOLYLINE entity (Lightweight POLYLINE, DXF Reference) is defined as a single graphic entity, which differs
from the old-style Poly1ine entity, which is defined as a group of sub-entities. LWPolyline display faster (in
AutoCAD) and consume less disk space, it is a planar element, therefore all points are located in the OCS as (x, y)-tuples
(Lwpolyline.dxf.elevation is the z-axis value).

Subclass of ezdxf.entities.DXFGraphic
DXEF type ' LWPOLYLINE'
factory function add_lwpolyline ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Bulge value

The bulge value is used to create arc shaped line segments for Polyline and LIiWPolyline entities. The arc starts at
the vertex which includes the bulge value and ends at the following vertex. The bulge value defines the ratio of the arc
sagitta (versine) to half line segment length, a bulge value of 1 defines a semicircle.

The sign of the bulge value defines the side of the bulge:
* positive value (> 0): bulge is right of line (counter clockwise)
* negative value (< 0): bulge is left of line (clockwise)

* 0 =no bulge

350 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-748FC305-F3F2-4F74-825A-61F04D757A50

ezdxf Documentation, Release 1.3.2

bulge = 0.5 [h=2.5

R6.25

10.0
bulge =1.0 ‘

R5.0
h=5.0 T

Start- and end width

The start width and end width values defines the width in drawing units for the following line segment. To use the default
width value for a line segment set value to 0.

Width and bulge values at last point

The width and bulge values of the last point has only a meaning if the polyline is closed, and they apply to the last line
segment from the last to the first point.

See also:

Tutorial for LWPolyline and Bulge Related Functions

9.8. Reference 351

ezdxf Documentation, Release 1.3.2

User Defined Point Format Codes

Code Point Component

bulge value
X,y [, z]) as tuple

X x-coordinate
y y-coordinate
S start width

e end width

b

v

class ezdxf.entities.LWPolyline
dxf.elevation
OCS z-axis value for all polyline points, default=0

dxf.flags
Constants defined in ezdxf.11dxf.const:

dxf.flags Value Description

LWPOLYLINE_CLOSED 1 polyline is closed
LWPOLYLINE_PLINEGEN 128 linetype is generated across the points

dxf.const_width
Constant line width (float), default value is 0.

dxf.count
Count of polyline points (read only), same as 1en (polyline)

property closed: bool
Get/set closed state of polyline. A closed polyline has a connection segment from the last vertex to the first
vertex.

property is_closed: bool
Get closed state of LWPOLYLINE. Compatibility interface to Polyline

close (state: bool = True) — None
Set closed state of LWPOLYLINE. Compeatibility interface to Polyline

property has_arc: bool
Returns True if LWPOLYLINE has an arc segment.

property has_width: bool
Returns True if LWPOLYLINE has any segment with width attributes or the DXF attribute const_width is
not 0.

len__ () —int

Returns count of polyline points.

__getitem__ (index: int) — Tuple[float, float, float, float, float]

Returns point at position index as (x, y, start_width, end_width, bulge) tuple. start_width, end_width and
bulge is 0 if not present, supports extended slicing. Point format is fixed as “xyseb”.

All coordinates in OCS.

352 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

__setitem__ (index: int, value: Sequence[float]) — None

Set point at position index as (X, y, [start_width, [end_width, [bulge]]]) tuple. If start_width or end_width is
0 or left off the default width value is used. If the bulge value is left off, bulge is O by default (straight line).
Does NOT support extend slicing. Point format is fixed as “xyseb”.

All coordinates in OCS.
Parameters
¢ index — point index
* value - point value as (X, y, [start_width, [end_width, [bulge]]]) tuple

_ delitem__ (index: int) — None
Delete point at position index, supports extended slicing.

_ _iter__ () — Iterator[Tuple[float, float, float, float, float]]
Returns iterable of tuples (x, y, start_width, end_width, bulge).

vertices () — Iterator[tuple[float, float]]
Returns iterable of all polyline points as (X, y) tuples in OCS (dxf.elevation is the z-axis value).

vertices_in_wes () — Iterator[Vec3]

Returns iterable of all polyline points as Vec3(x, y, z) in WCS.

append (point: Sequence[float], format: str = DEFAULT_FORMAT) — None
Append point to polyline, format specifies a user defined point format.

All coordinates in OCS.
Parameters
* point - (X, y, [start_width, [end_width, [bulge]]]) tuple
» format — format string, default is “xyseb”, see: format codes

append_points (points: Iterable[Sequence[float]], format: str = DEFAULT_FORMAT) — None
Append new points to polyline, format specifies a user defined point format.

All coordinates in OCS.
Parameters
* points - iterable of point, point is (X, y, [start_width, [end_width, [bulge]]]) tuple
» format — format string, default is “xyseb”, see: format codes

insert (pos: int, point: Sequence(float], format: str = DEFAULT_FORMAT) — None

Insert new point in front of positions pos, format specifies a user defined point format.
All coordinates in OCS.
Parameters
* pos — insert position
* point - point data
* format — format string, default is “xyseb”, see: format codes

clear () — None

Remove all points.

9.8.

Reference 353

ezdxf Documentation, Release 1.3.2

get_points (format: str = DEFAULT_FORMAT) — list[Sequence[float]]

Returns all points as list of tuples, format specifies a user defined point format.
All points in OCS as (x, y) tuples (dxf.elevation is the z-axis value).

Parameters
format - format string, default is “xyseb”, see format codes

set_points (points: Iterable[Sequence[float]], format: str = DEFAULT _FORMAT) — None

Remove all points and append new points.
All coordinates in OCS.
Parameters
* points —iterable of point, point is (X, y, [start_width, [end_width, [bulge]]]) tuple
» format — format string, default is “xyseb”, see format codes

points (format: str = DEFAULT_FORMAT) — lIterator[list[Sequence[float]]]
Context manager for polyline points. Returns a standard Python list of points, according to the format string.

All coordinates in OCS.

Parameters
format - format string, see format codes
transform (m: Matrix44) — LWPolyline
Transform the LWPOLYLINE entity by transformation matrix m inplace.

A non-uniform scaling is not supported if the entity contains circular arc segments (bulges).

Parameters
m — transformation Mat rix44

Raises
NonUniformScalingError — for non-uniform scaling of entity containing circular arc
segments (bulges)
virtual_entities () — Iterator[Line | Arc]
Yields the graphical representation of LWPOLYLINE as virtual DXF primitives (LINE or ARC).
These virtual entities are located at the original location, but are not stored in the entity database, have no
handle and are not assigned to any layout.
explode (target_layout: BaseLayout | None = None) — EntityQuery
Explode the LWPOLYLINE entity as DXF primitives (LINE or ARC) into the target layout, if the target
layout is None, the target layout is the layout of the source entity. This method destroys the source entity.

Returns an Ent it yQuery container referencing all DXF primitives.

Parameters
target_layout —target layout for the DXF primitives, None for same layout as the source
entity.

354 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

MLine

The MLINE entity (DXF Reference).

Subclass of ezdxf.entities.DXFGraphic
DXF type '"MLINE'
factory function add_mline ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MLine

dxf.style_name
MLineStylename stored in Drawing.mline_styles dictionary, use set_style () tochange the
MLINESTYLE and update geometry accordingly.

dxf.style_handle
Handle of MLineStyle,use set_style () tochange the MLINESTYLE and update geometry accord-
ingly.

dxf.scale_factor
MLINE scaling factor, use method set_scale_factor () to change the scaling factor and update ge-
ometry accordingly.

dxf.justification
Justification defines the location of the MLINE in relation to the reference line, use method

set_justification () to change the justification and update geometry accordingly.

Constants defined in ezdxf.11ldxf.const:

dxf.justification Value
MLINE_TOP 0
MLINE_ZERO 1
MLINE_BOTTOM 2
MLINE_RIGHT (alias) 0
MLINE_CENTER (alias) 1
MLINE_LEFT (alias) 2

dxf.flags

Use method close () and the properties start_caps and end_caps to change these flags.

Constants defined in ezdxf.11dxf.const:

dxf.flags Value
MLINE_HAS_VERTEX 1
MLINE_CLOSED 2

MLINE_SUPPRESS_START_CAPS 4
MLINE_SUPPRESS_END_CAPS 8

dxf.start_location

Start location of the reference line. (read only)

9.8. Reference 355

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-590E8AE3-C6D9-4641-8485-D7B3693E432C

ezdxf Documentation, Release 1.3.2

dxf.count
Count of MLINE vertices. (read only)

dxf.style_element_count

Count of elements in MLineSt y1e definition. (read only)

dxf.extrusion
Normal vector of the entity plane, but MLINE is not an OCS entity, all vertices of the reference line are
WCS! (read only)

vertices

MLINE vertices as MLineVertex objects, stored in a regular Python list.
property style: MLineStyle | None
Get associated MLINESTYLE.

set_style (name: str) — None
Set MLINESTYLE by name and update geometry accordingly. The MLINESTYLE definition must exist.

set_scale_factor (value: float) — None

Set the scale factor and update geometry accordingly.
set_justification (value: int) — None

Set MLINE justification and update geometry accordingly. See dxf. justification for valid settings.
property is_closed: bool

Returns True if MLINE is closed. Compatibility interface to Polyline
close (state: bool = True) — None

Get/set closed state of MLINE and update geometry accordingly. Compatibility interface to Polyline
property start_caps: bool

Get/Set start caps state. True to enable start caps and False tu suppress start caps.
property end_caps: bool

Get/Set end caps state. True to enable end caps and False tu suppress start caps.

len ()

Count of MLINE vertices.

start_location () — Vec3
Returns the start location of the reference line. Callback function for dxf.start_location.

get_locations () — list[Vec3]
Returns the vertices of the reference line.

extend (vertices: Iterable[UVec]) — None

Append multiple vertices to the reference line.

It is possible to work with 3D vertices, but all vertices have to be in the same plane and the normal vector of
this plan is stored as extrusion vector in the MLINE entity.

clear () — None
Remove all MLINE vertices.

update_geometry () — None
Regenerate the MLINE geometry based on current settings.

356

Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

generate_geometry (vertices: list/ Vec3]) — None

Regenerate the MLINE geometry for new reference line defined by vertices.

transform (m: Matrix44) — Self

Transform MLINE entity by transformation matrix m inplace.

virtual_entities () — Iterator[DXFGraphic]
Yields virtual DXF primitives of the MLINE entity as LINE, ARC and HATCH entities.

These entities are located at the original positions, but are not stored in the entity database, have no handle
and are not assigned to any layout.

explode (target_layout: BaseLayout | None = None) — EntityQuery

Explode the MLINE entity as LINE, ARC and HATCH entities into target layout, if target layout is None,
the target layout is the layout of the MLINE. This method destroys the source entity.

Returns an Ent it yQuery container referencing all DXF primitives.

Parameters
target_layout — target layout for DXF primitives, None for same layout as source entity.

class ezdxf.entities.MLineVertex
location
Reference line vertex location.

line_direction

Reference line direction.

miter_direction

line_params

The line parameterization is a list of float values. The list may contain zero or more items.

The first value (miter-offset) is the distance from the vertex location along the miter direction
vector to the point where the line element’s path intersects the miter vector.

The next value (line-start-offset) is the distance along the 1 ine_ direction from the miter/line path in-
tersection point to the actual start of the line element.

The next value (dash-length) is the distance from the start of the line element (dash) to the first break (gap)
in the line element. The successive values continue to list the start and stop points of the line element in this
segment of the mline.

fill_params

The fill parameterization is also a list of float values. Similar to the line parameterization, it describes the
parameterization of the fill area for this mline segment. The values are interpreted identically to the line
parameters and when taken as a whole for all line elements in the mline segment, they define the boundary of
the fill area for the mline segment.

class ezdxf.entities.MLineStyle
The MLineSty1e stores the style properties for the MLINE entity.

dxf.name
dxf.description

dxf.flags

9.8. Reference 357

ezdxf Documentation, Release 1.3.2

dxf.£fill_color
AutoCAD Color Index (ACI) value of the fill color

dxf.start_angle

dxf.end_angle

elements
MLineStyleElement s object

update_all ()
Update all MLINE entities using this MLINESTYLE.

The update is required if elements were added or removed or the offset of any element was changed.

class ezdxf.entities.mline.MLineStyleElements

elements
List of MLineStyleElement objects, one for each line element.

MLineStyleElements.__len ()

MLineStyleElements.__getitem__ (item)
MLineStyleElements.append (offset: float, color: int = 0, linetype: str = 'BYLAYER') — None
Append a new line element.

Parameters

¢ offset — normal offset from the reference line: if justification is MLINE_ZERO, positive
values are above and negative values are below the reference line.

e color — AutoCAD Color Index (ACI) value
* linetype - linetype name

class ezdxf.entities.mline.MLineStyleElement

Named tuple to store properties of a line element.

offset
Normal offset from the reference line: if justification is MLINE_ZERO, positive values are above and negative
values are below the reference line.

color
AutoCAD Color Index (ACI) value

linetype

Linetype name

Mesh

The MESH entity (DXF Reference) is a 3D surface in WCS build up from vertices and faces similar to the Polyface
entity.

All vertices in WCS as (X, y, z) tuples

358 Chapter 9. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-4B9ADA67-87C8-4673-A579-6E4C76FF7025

ezdxf Documentation, Release 1.3.2

Subclass of

DXEF type

Factory function
Inherited DXF attributes
Required DXF version

ezdxf.entities.DXFGraphic

'MESH'

ezdxf.layouts.BaseLayout.add _mesh ()
Common graphical DXF attributes

DXF R2000 ('AC1015")

See also:

Tutorial for Mesh and helper classes: MeshBuilder, MeshVertexMerger

class ezdxf.entities.Mesh
dxf.version

dxf.blend_crease
0=off, 1 =on

dxf.subdivision_levels

0 for no smoothing else integer greater than 0.

vertices

Vertices as list like VertexArray. (read/write)

edges

Edges as list like TagArray. (read/write)

faces

Faces as list like TagList. (read/write)

creases

Creases as array.array. (read/write)

edit_data () — Iterator[MeshData]

Context manager for various mesh data, returns a Me shDat a instance.

Despite that vertices, edge and faces are accessible as packed data types, the usage of MeshDat a by context
manager edit_data () is still recommended.

transform (m: Matrix44) — Mesh

Transform the MESH entity by transformation matrix m inplace.

MeshData

class ezdxf.entities.MeshData

vertices

A standard Python list with (X, y, z) tuples (read/write)

faces

A standard Python list with (v1, v2, v3,...) tuples (read/write)

Each face consist of a list of vertex indices (= index in vertices).

9.8. Reference

359

ezdxf Documentation, Release 1.3.2

edges

A Python list with (vl, v2) tuples (read/write). This list represents the edges to which the
edge_crease_values values will be applied. Each edge consist of exact two vertex indices (= index in
vertices).

edge_crease_values
A Python list of float values, one value for each edge. (read/write)

add_face (vertices: Iterable[UVec]) — Sequencel[int]
Add a face by a list of vertices.

add_edge_crease (vi: int, v2: int, crease: float)
Add an edge crease value, the edge is defined by the vertex indices v/ and v2.

The crease value defines the amount of subdivision that will be applied to this edge. A crease value of the
subdivision level prevents the edge from deformation and a value of 0.0 means no protection from subdividing.

optimize ()

Reduce vertex count by merging coincident vertices.

MPolygon

The MPOLYGON entity is not a core DXF entity and is not supported by all CAD applications and DXF libraries. The
MPolygon class is very similar to the Hat ch class with small differences in the supported features and DXF attributes.

The boundary paths of the MPOLYGON are visible and use the graphical DXF attributes of the main entity like dxf .
color, dxf.linetype and so on. The solid filling is only visible if the attribute dxf.solid_£fi1l1 is 1, the
color of the solid fill is defined by dxf.fi11_color as AutoCAD Color Index (ACI). The MPOLYGON supports
ezdxf.entities.Gradient settings like HATCH for DXF R2004 and newer. This feature is used by method
MPolygon.set_solid_fill () to seta solid RGB fill color as linear gradient, this disables pattern fill automati-
cally. The MPOLYGON does not support associated source path entities, because the MPOLYGON also represents the
boundary paths as visible graphical objects. Hatch patterns are supported, but the hatch style tag is not supported, the
default hatch style is ezdx f . const . HATCH_STYLE_NESTED and the style flags of the boundary paths are ignored.
Background color for pattern fillings is supported, set background color by property MPolygon.bgcolor as RGB
tuple.

Note: Background RGB fill color for solid fill and pattern fill is set differently!

Autodesk products do support polyline paths including bulges. An example for edge paths as boundary paths is not
available or edge paths are not supported. Ezdxf does not export MPOLYGON entities including edge paths! The
BoundaryPaths.edge_to_polyline paths () method converts all edge paths to simple polyline paths with
approximated curves, this conversion has to be done explicit.

See also:

For more information see the ezdxf.entities.Hatch documentation.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'MPOLYGON'
Factory function ezdxf.layouts.BaseLayout.add _mpolygon ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

360 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

class ezdxf.entities.MPolygon

dxf.pattern_name

Pattern name as string

dxf.solid_£fill

1 solid fill, better use: MPolygon.set_solid fill ()
0 pattern fill, better use: MPolygon.set_pattern fill ()

(search AutoCAD help for more information)

dxf.pattern_type

dxf.pattern_angle

Actual pattern angle in degrees (float).

set_pattern_angle () for this task.

dxf.pattern_scale

Actual pattern scaling factor (float).
set_pattern_scale () for this task.

dxf.pattern_double
1 = double pattern size else 0. (int)

dxf.elevation

0 user
1 predefined
2 custom

Changing this value does not rotate the pattern, use

Changing this value does not scale the pattern use

Z value represents the elevation height of the OCS. (float)

paths
BoundaryPaths object.

pattern
Pattern object.

gradient
Gradient object.

property has_solid_£fill: bool
True if entity has a solid fill. (read only)

property has_pattern_f£fill: bool

True if entity has a pattern fill. (read only)

property has_gradient_data: bool

True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)

property bgcolor: RGB | None

Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)

usage:

9.8. Reference

361

ezdxf Documentation, Release 1.3.2

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition (lines: Sequence, factor: float = 1, angle: float = 0) — None

Setup pattern definition by a list of definition lines and the definition line is a 4-tuple (angle, base_point, offset,
dash_length_items). The pattern definition should be designed for a pattern scale factor of 1 and a pattern
rotation angle of 0.

* angle: line angle in degrees
* base-point: (x, y) tuple
* offset: (dx, dy) tuple

* dash_length_items: list of dash items (item > O is a line, item < O is a gap and item == 0.0 is a point)

Parameters
¢ lines — list of definition lines
* factor — pattern scale factor

* angle - rotation angle in degrees

set_pattern_scale (scale: float) — None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale (1) call resets the pat-
tern scale to the original appearance as defined by the pattern designer, but only if the pattern attribute dx 1.

pattern_scale represents the actual scale, it cannot restore the original pattern scale from the pattern
definition itself.

Parameters
scale — pattern scale factor

set_pattern_angle (angle: float) — None

Sets the pattern rotation angle and rotates the pattern definition.

The method always starts from the original base rotation of 0, the set_pattern_angle (0) call resets
the pattern rotation angle to the original appearance as defined by the pattern designer, but only if the pattern
attribute dx . pattern_angle represents the actual pattern rotation, it cannot restore the original rotation
angle from the pattern definition itself.

Parameters
angle — pattern rotation angle in degrees

set_solid_£i11 (color: int = 7, style: int = 1, rgb: RGB | None = None)
Set MPo1ygon to solid fill mode and removes all gradient and pattern fill related data.

Parameters
e color — AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
* style - hatch style is not supported by MPOLYGON, just for symmetry to HATCH

e rgb — true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2004+

362 Chapter 9. Contents

ezdxf Documentation, Release 1.3.2

set_pattern_£ill (name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style: int

= 1, pattern_type: int = 1, definition=None) — None

Sets the pattern fill mode and removes all gradient related data.

The pattern definition should be designed for a scale factor 1 and a rotation angle of 0 degrees. The predefined
hatch pattern like “ANSI33” are scaled according to the HEADER variable SMEASUREMENT for ISO
measurement (m, cm, ...), or imperial units (in, ft, ...), this replicates the behavior of BricsCAD.

Parameters

name — pattern name as string

color — pattern color as AutoCAD Color Index (ACI)

angle — pattern rotation angle in degrees

scale — pattern scale factor

double - double size flag

style - hatch style (O = normal; 1 = outer; 2 = ignore)

pattern_type — pattern type (0 = user-defined; 1 = predefined; 2 = custom)

definition - list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition ()

set_gradient (colorl: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,

centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') — None

Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004 or newer. A gradient
filled hatch is also a solid filled hatch.

Valid gradient type names are:
* “LINEAR”
“CYLINDER”
“INVCYLINDER”
“SPHERICAL”
“INVSPHERICAL”
“HEMISPHERICAL”
“INVHEMISPHERICAL”
“CURVED”
“INVCURVED”

Parameters

colorl —(r, g, b)-tuple for first color, rgb values as int in the range [0, 255]

color2 —(r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
rotation - rotation angle in degrees

centered - determines whether the gradient is centered or not

one_color — 1 for gradient from color! to tinted colorl

tint - determines the tinted target color! for a one color gradient. (valid range 0.0 to 1.0)

name — name of gradient type, default “LINEAR”

9.8. Reference

363

ezdxf Documentation, Release 1.3.2

transform (m: Matrix44) — DXFPolygon

Transform entity by transformation matrix m inplace.

MText

The MTEXT entity (DXF Reference) fits a multiline text in a specified width but can extend vertically to an indefinite
length. You can format individual words or characters within the MText.

See also:

Tutorial for MText and MTextEditor

Subclass of ezdxf.entities.DXFGraphic
DXF type "MTEXT'
Factory function ezdxf.layouts.BaseLayout.add _mtext ()

Inherited DXF attributes ~ Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MText
dxf.insert
Insertion point (3D Point in OCS)

dxf.char_height
Initial text height (float); default=1.0
dxf.width

Reference text width (float), forces text wrapping at given width.

dxf.attachment_point
Constants defined in ezdxf.11ldxf.const:

MText.dxf.attachment_point ~ Value

MTEXT_TOP_LEFT
MTEXT_TOP_CENTER
MTEXT_TOP_RIGHT
MTEXT_MIDDLE_LEFT
MTEXT_MIDDLE_CENTER
MTEXT_MIDDLE_RIGHT
MTEXT_BOTTOM_LEFT
MTEXT_BOTTOM_CENTER
MTEXT_BOTTOM_RIGHT

O 001N N AW

dxf.flow_direction

Constants defined in ezdxf .const:

MText.dxf.flow_direction Value Description

MTEXT_LEFT TO_RIGHT 1 left to right

MTEXT_TOP_TO_BOTTON 3 top to bottom

MTEXT BY_STYLE 5 by style (the flow direction is inherited from the associated text
style)

364 Chapter 9. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-5E5DB93B-F8D3-4433-ADF7-E92E250D2BAB

ezdxf Documentation, Release 1.3.2

dxf.style
Text style (string); default is “STANDARD”

dxf.text_direction

X-axis direction vector in WCS (3D Point); default value is (1, 0, 0); if dxf.rotation and dxf.
text_direction are present, dxf.text_direction wins.

dxf.rotation
Text rotation in degrees (float); default is O

dxf.line_spacing_style

Line spacing style (int), see table below

dxf.line_spacing_factor
Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4.00 (float).

Constants defined in ezdxf.11dxf.const:

MText.dxf.line_spacing_style Value Description

MTEXT AT LEAST 1 taller characters will override
MTEXT_EXACT 2 taller characters will not override

dxf.bg_£ill
Defines the background fill type. (DXF R2007)

MText.dxf.bg_fill Value Description

MTEXT BG_OFF 0 no background color
MTEXT BG_COLOR 1 use specified color
MTEXT_BG_WINDOW_COLOR 2 use window color (?)
MTEXT_BG_CANVAS_COLOR 3 use canvas background color

dxf.box_f£fill_scale
Determines how much border there is around the text. (DXF R2007)

Requires that the attributes bg_fill, bg_fill_color are present otherwise AutoCAD complains.
It’s recommended to use set_bg_color ()

dxf.bg_£fill_color
Background fill color as AutoCAD Color Index (ACI) (DXF R2007)

It’s recommended to use set_bg_color ()

dxf.bg_f£fill_true_color
Background fill color as true color value (DXF R2007), also the dxf .bg_fill_color attribute must be
present otherwise AutoCAD complains.

It’s recommended to use set_bg_color ()

dxf.bg_£fill_color_name
Background fill color as name string (?) (DXF R2007), also the dxf .bg_fill_color attribute must be
present otherwise AutoCAD complains.

It’s recommended to use set_bg_color ()

9.8. Reference 365

ezdxf Documentation, Release 1.3.2

dxf.transparency
Transparency of background fill color (DXF R2007), not supported by AutoCAD nor BricsCAD.

text
MTEXT content as string (read/write).

The line ending character \ n will be replaced by the MTEXT line ending \ P at DXF export, but not vice versa
the \P character by \n at DXF file loading, therefore loaded MTEXT entities always use the \P character
for line endings.

set_location (insert: UVec, rotation: float | None = None, attachment_point: int | None = None) — MText

Sets the attributes dxf. insert, dxf.rotation and dxf.attachment_point, None for dxf.
rotationor dxf.attachment_point preserves the existing value.

get_rotation () — float

Returns the text rotation in degrees.

set_rotation (angle: float) — MText

Sets the attribute rotation to angle (in degrees) and deletes dx . text_direction if present.
get_text_direction () — Vec3
Returns the horizontal text direction as Vec 3 object, even if only the text rotation is defined.

set_bg_color (color: int | str | RGB | None, scale: float = 1.5, text_frame=False)
Sets the background color as AutoCAD Color Index (ACI) value, as name string or as (r, g, b) tuple.

Use the special color name canvas, to set the background color to the canvas background color. Remove
the background filling by setting argument color to None.

Parameters
¢ color - color as AutoCAD Color Index (ACI), string, (r, g, b) tuple or None

¢ scale —determines how much border there is around the text, the value is based on the text
height, and should be in the range of [1, 5], where 1 fits exact the MText entity.

¢ text_frame — draw a text frame in text color if True

__iadd__ (text: str) — MText

Append fext to existing content (text attribute).
append (text: str) — MText

Append fext to existing content (text attribute).
plain_text (split=False, fast=True) — list[str] | str

Returns the text content without inline formatting codes.

The “fast” mode is acc