Z3
Public Member Functions
RatNumRef Class Reference
+ Inheritance diagram for RatNumRef:

Public Member Functions

def numerator (self)
 
def denominator (self)
 
def numerator_as_long (self)
 
def denominator_as_long (self)
 
def is_int (self)
 
def is_real (self)
 
def is_int_value (self)
 
def as_long (self)
 
def as_decimal (self, prec)
 
def as_string (self)
 
def as_fraction (self)
 
- Public Member Functions inherited from ArithRef
def sort (self)
 
def is_int (self)
 
def is_real (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def as_ast (self)
 
def get_id (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Rational values.

Definition at line 2615 of file z3py.py.

Member Function Documentation

§ as_decimal()

def as_decimal (   self,
  prec 
)
Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.

>>> v = RealVal("1/5")
>>> v.as_decimal(3)
'0.2'
>>> v = RealVal("1/3")
>>> v.as_decimal(3)
'0.333?'

Definition at line 2681 of file z3py.py.

2681  def as_decimal(self, prec):
2682  """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
2683 
2684  >>> v = RealVal("1/5")
2685  >>> v.as_decimal(3)
2686  '0.2'
2687  >>> v = RealVal("1/3")
2688  >>> v.as_decimal(3)
2689  '0.333?'
2690  """
2691  return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
2692 
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places...

§ as_fraction()

def as_fraction (   self)
Return a Z3 rational as a Python Fraction object.

>>> v = RealVal("1/5")
>>> v.as_fraction()
Fraction(1, 5)

Definition at line 2702 of file z3py.py.

2702  def as_fraction(self):
2703  """Return a Z3 rational as a Python Fraction object.
2704 
2705  >>> v = RealVal("1/5")
2706  >>> v.as_fraction()
2707  Fraction(1, 5)
2708  """
2709  return Fraction(self.numerator_as_long(), self.denominator_as_long())
2710 

§ as_long()

def as_long (   self)

Definition at line 2677 of file z3py.py.

2677  def as_long(self):
2678  _z3_assert(self.is_int(), "Expected integer fraction")
2679  return self.numerator_as_long()
2680 

§ as_string()

def as_string (   self)
Return a Z3 rational numeral as a Python string.

>>> v = Q(3,6)
>>> v.as_string()
'1/2'

Definition at line 2693 of file z3py.py.

Referenced by FiniteDomainNumRef.as_long().

2693  def as_string(self):
2694  """Return a Z3 rational numeral as a Python string.
2695 
2696  >>> v = Q(3,6)
2697  >>> v.as_string()
2698  '1/2'
2699  """
2700  return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
2701 
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a string of a numeric constant term.

§ denominator()

def denominator (   self)
Return the denominator of a Z3 rational numeral.

>>> is_rational_value(Q(3,5))
True
>>> n = Q(3,5)
>>> n.denominator()
5

Definition at line 2633 of file z3py.py.

2633  def denominator(self):
2634  """ Return the denominator of a Z3 rational numeral.
2635 
2636  >>> is_rational_value(Q(3,5))
2637  True
2638  >>> n = Q(3,5)
2639  >>> n.denominator()
2640  5
2641  """
2642  return IntNumRef(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
2643 
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

§ denominator_as_long()

def denominator_as_long (   self)
Return the denominator as a Python long.

>>> v = RealVal("1/3")
>>> v
1/3
>>> v.denominator_as_long()
3

Definition at line 2657 of file z3py.py.

2657  def denominator_as_long(self):
2658  """ Return the denominator as a Python long.
2659 
2660  >>> v = RealVal("1/3")
2661  >>> v
2662  1/3
2663  >>> v.denominator_as_long()
2664  3
2665  """
2666  return self.denominator().as_long()
2667 

§ is_int()

def is_int (   self)

Definition at line 2668 of file z3py.py.

2668  def is_int(self):
2669  return False
2670 
def is_int(a)
Definition: z3py.py:2338

§ is_int_value()

def is_int_value (   self)

Definition at line 2674 of file z3py.py.

2674  def is_int_value(self):
2675  return self.denominator().is_int() and self.denominator_as_long() == 1
2676 
def is_int_value(a)
Definition: z3py.py:2380
def is_int(a)
Definition: z3py.py:2338

§ is_real()

def is_real (   self)

Definition at line 2671 of file z3py.py.

2671  def is_real(self):
2672  return True
2673 
def is_real(a)
Definition: z3py.py:2356

§ numerator()

def numerator (   self)
Return the numerator of a Z3 rational numeral.

>>> is_rational_value(RealVal("3/5"))
True
>>> n = RealVal("3/5")
>>> n.numerator()
3
>>> is_rational_value(Q(3,5))
True
>>> Q(3,5).numerator()
3

Definition at line 2618 of file z3py.py.

2618  def numerator(self):
2619  """ Return the numerator of a Z3 rational numeral.
2620 
2621  >>> is_rational_value(RealVal("3/5"))
2622  True
2623  >>> n = RealVal("3/5")
2624  >>> n.numerator()
2625  3
2626  >>> is_rational_value(Q(3,5))
2627  True
2628  >>> Q(3,5).numerator()
2629  3
2630  """
2631  return IntNumRef(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
2632 
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

§ numerator_as_long()

def numerator_as_long (   self)
Return the numerator as a Python long.

>>> v = RealVal(10000000000)
>>> v
10000000000
>>> v + 1
10000000000 + 1
>>> v.numerator_as_long() + 1 == 10000000001
True

Definition at line 2644 of file z3py.py.

2644  def numerator_as_long(self):
2645  """ Return the numerator as a Python long.
2646 
2647  >>> v = RealVal(10000000000)
2648  >>> v
2649  10000000000
2650  >>> v + 1
2651  10000000000 + 1
2652  >>> v.numerator_as_long() + 1 == 10000000001
2653  True
2654  """
2655  return self.numerator().as_long()
2656