Source code for SALib.test_functions.Ishigami

from __future__ import division

import math

import numpy as np


# Non-monotonic Ishigami Function (3 parameters)
# Using Saltelli sampling with a sample size of ~1000
# the expected first-order indices would be:
# x1: 0.3139
# x2: 0.4424
# x3: 0.0
[docs]def evaluate(values): Y = np.zeros([values.shape[0]]) A = 7 B = 0.1 for i, X in enumerate(values): Y[i] = math.sin(X[0]) + A * math.pow(math.sin(X[1]), 2) + \ B * math.pow(X[2], 4) * math.sin(X[0]) return Y