Functions | |
def | z3_debug () |
def | enable_trace (msg) |
def | disable_trace (msg) |
def | get_version_string () |
def | get_version () |
def | get_full_version () |
def | open_log (fname) |
def | append_log (s) |
def | to_symbol (s, ctx=None) |
def | z3_error_handler (c, e) |
def | main_ctx () |
def | set_param (args, kws) |
def | reset_params () |
def | set_option (args, kws) |
def | get_param (name) |
def | is_ast (a) |
def | eq (a, b) |
def | is_sort (s) |
def | DeclareSort (name, ctx=None) |
def | is_func_decl (a) |
def | Function (name, sig) |
def | RecFunction (name, sig) |
def | RecAddDefinition (f, args, body) |
def | is_expr (a) |
def | is_app (a) |
def | is_const (a) |
def | is_var (a) |
def | get_var_index (a) |
def | is_app_of (a, k) |
def | If (a, b, c, ctx=None) |
def | Distinct (args) |
def | Const (name, sort) |
def | Consts (names, sort) |
def | FreshConst (sort, prefix='c') |
def | Var (idx, s) |
def | RealVar (idx, ctx=None) |
def | RealVarVector (n, ctx=None) |
def | is_bool (a) |
def | is_true (a) |
def | is_false (a) |
def | is_and (a) |
def | is_or (a) |
def | is_implies (a) |
def | is_not (a) |
def | is_eq (a) |
def | is_distinct (a) |
def | BoolSort (ctx=None) |
def | BoolVal (val, ctx=None) |
def | Bool (name, ctx=None) |
def | Bools (names, ctx=None) |
def | BoolVector (prefix, sz, ctx=None) |
def | FreshBool (prefix='b', ctx=None) |
def | Implies (a, b, ctx=None) |
def | Xor (a, b, ctx=None) |
def | Not (a, ctx=None) |
def | mk_not (a) |
def | And (args) |
def | Or (args) |
def | is_pattern (a) |
def | MultiPattern (args) |
def | is_quantifier (a) |
def | ForAll (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]) |
def | Exists (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]) |
def | Lambda (vs, body) |
def | is_arith_sort (s) |
def | is_arith (a) |
def | is_int (a) |
def | is_real (a) |
def | is_int_value (a) |
def | is_rational_value (a) |
def | is_algebraic_value (a) |
def | is_add (a) |
def | is_mul (a) |
def | is_sub (a) |
def | is_div (a) |
def | is_idiv (a) |
def | is_mod (a) |
def | is_le (a) |
def | is_lt (a) |
def | is_ge (a) |
def | is_gt (a) |
def | is_is_int (a) |
def | is_to_real (a) |
def | is_to_int (a) |
def | IntSort (ctx=None) |
def | RealSort (ctx=None) |
def | IntVal (val, ctx=None) |
def | RealVal (val, ctx=None) |
def | RatVal (a, b, ctx=None) |
def | Q (a, b, ctx=None) |
def | Int (name, ctx=None) |
def | Ints (names, ctx=None) |
def | IntVector (prefix, sz, ctx=None) |
def | FreshInt (prefix='x', ctx=None) |
def | Real (name, ctx=None) |
def | Reals (names, ctx=None) |
def | RealVector (prefix, sz, ctx=None) |
def | FreshReal (prefix='b', ctx=None) |
def | ToReal (a) |
def | ToInt (a) |
def | IsInt (a) |
def | Sqrt (a, ctx=None) |
def | Cbrt (a, ctx=None) |
def | is_bv_sort (s) |
def | is_bv (a) |
def | is_bv_value (a) |
def | BV2Int (a, is_signed=False) |
def | Int2BV (a, num_bits) |
def | BitVecSort (sz, ctx=None) |
def | BitVecVal (val, bv, ctx=None) |
def | BitVec (name, bv, ctx=None) |
def | BitVecs (names, bv, ctx=None) |
def | Concat (args) |
def | Extract (high, low, a) |
def | ULE (a, b) |
def | ULT (a, b) |
def | UGE (a, b) |
def | UGT (a, b) |
def | UDiv (a, b) |
def | URem (a, b) |
def | SRem (a, b) |
def | LShR (a, b) |
def | RotateLeft (a, b) |
def | RotateRight (a, b) |
def | SignExt (n, a) |
def | ZeroExt (n, a) |
def | RepeatBitVec (n, a) |
def | BVRedAnd (a) |
def | BVRedOr (a) |
def | BVAddNoOverflow (a, b, signed) |
def | BVAddNoUnderflow (a, b) |
def | BVSubNoOverflow (a, b) |
def | BVSubNoUnderflow (a, b, signed) |
def | BVSDivNoOverflow (a, b) |
def | BVSNegNoOverflow (a) |
def | BVMulNoOverflow (a, b, signed) |
def | BVMulNoUnderflow (a, b) |
def | is_array (a) |
def | is_const_array (a) |
def | is_K (a) |
def | is_map (a) |
def | is_default (a) |
def | get_map_func (a) |
def | ArraySort (sig) |
def | Array (name, dom, rng) |
def | Update (a, i, v) |
def | Default (a) |
def | Store (a, i, v) |
def | Select (a, i) |
def | Map (f, args) |
def | K (dom, v) |
def | Ext (a, b) |
def | SetHasSize (a, k) |
def | is_select (a) |
def | is_store (a) |
def | SetSort (s) |
Sets. More... | |
def | EmptySet (s) |
def | FullSet (s) |
def | SetUnion (args) |
def | SetIntersect (args) |
def | SetAdd (s, e) |
def | SetDel (s, e) |
def | SetComplement (s) |
def | SetDifference (a, b) |
def | IsMember (e, s) |
def | IsSubset (a, b) |
def | CreateDatatypes (ds) |
def | TupleSort (name, sorts, ctx=None) |
def | DisjointSum (name, sorts, ctx=None) |
def | EnumSort (name, values, ctx=None) |
def | args2params (arguments, keywords, ctx=None) |
def | Model (ctx=None) |
def | is_as_array (n) |
def | get_as_array_func (n) |
def | SolverFor (logic, ctx=None) |
def | SimpleSolver (ctx=None) |
def | FiniteDomainSort (name, sz, ctx=None) |
def | is_finite_domain_sort (s) |
def | is_finite_domain (a) |
def | FiniteDomainVal (val, sort, ctx=None) |
def | is_finite_domain_value (a) |
def | AndThen (ts, ks) |
def | Then (ts, ks) |
def | OrElse (ts, ks) |
def | ParOr (ts, ks) |
def | ParThen (t1, t2, ctx=None) |
def | ParAndThen (t1, t2, ctx=None) |
def | With (t, args, keys) |
def | WithParams (t, p) |
def | Repeat (t, max=4294967295, ctx=None) |
def | TryFor (t, ms, ctx=None) |
def | tactics (ctx=None) |
def | tactic_description (name, ctx=None) |
def | describe_tactics () |
def | is_probe (p) |
def | probes (ctx=None) |
def | probe_description (name, ctx=None) |
def | describe_probes () |
def | FailIf (p, ctx=None) |
def | When (p, t, ctx=None) |
def | Cond (p, t1, t2, ctx=None) |
def | simplify (a, arguments, keywords) |
Utils. More... | |
def | help_simplify () |
def | simplify_param_descrs () |
def | substitute (t, m) |
def | substitute_vars (t, m) |
def | Sum (args) |
def | Product (args) |
def | AtMost (args) |
def | AtLeast (args) |
def | PbLe (args, k) |
def | PbGe (args, k) |
def | PbEq (args, k, ctx=None) |
def | solve (args, keywords) |
def | solve_using (s, args, keywords) |
def | prove (claim, keywords) |
def | parse_smt2_string (s, sorts={}, decls={}, ctx=None) |
def | parse_smt2_file (f, sorts={}, decls={}, ctx=None) |
def | get_default_rounding_mode (ctx=None) |
def | set_default_rounding_mode (rm, ctx=None) |
def | get_default_fp_sort (ctx=None) |
def | set_default_fp_sort (ebits, sbits, ctx=None) |
def | Float16 (ctx=None) |
def | FloatHalf (ctx=None) |
def | Float32 (ctx=None) |
def | FloatSingle (ctx=None) |
def | Float64 (ctx=None) |
def | FloatDouble (ctx=None) |
def | Float128 (ctx=None) |
def | FloatQuadruple (ctx=None) |
def | is_fp_sort (s) |
def | is_fprm_sort (s) |
def | RoundNearestTiesToEven (ctx=None) |
def | RNE (ctx=None) |
def | RoundNearestTiesToAway (ctx=None) |
def | RNA (ctx=None) |
def | RoundTowardPositive (ctx=None) |
def | RTP (ctx=None) |
def | RoundTowardNegative (ctx=None) |
def | RTN (ctx=None) |
def | RoundTowardZero (ctx=None) |
def | RTZ (ctx=None) |
def | is_fprm (a) |
def | is_fprm_value (a) |
def | is_fp (a) |
def | is_fp_value (a) |
def | FPSort (ebits, sbits, ctx=None) |
def | fpNaN (s) |
def | fpPlusInfinity (s) |
def | fpMinusInfinity (s) |
def | fpInfinity (s, negative) |
def | fpPlusZero (s) |
def | fpMinusZero (s) |
def | fpZero (s, negative) |
def | FPVal (sig, exp=None, fps=None, ctx=None) |
def | FP (name, fpsort, ctx=None) |
def | FPs (names, fpsort, ctx=None) |
def | fpAbs (a, ctx=None) |
def | fpNeg (a, ctx=None) |
def | fpAdd (rm, a, b, ctx=None) |
def | fpSub (rm, a, b, ctx=None) |
def | fpMul (rm, a, b, ctx=None) |
def | fpDiv (rm, a, b, ctx=None) |
def | fpRem (a, b, ctx=None) |
def | fpMin (a, b, ctx=None) |
def | fpMax (a, b, ctx=None) |
def | fpFMA (rm, a, b, c, ctx=None) |
def | fpSqrt (rm, a, ctx=None) |
def | fpRoundToIntegral (rm, a, ctx=None) |
def | fpIsNaN (a, ctx=None) |
def | fpIsInf (a, ctx=None) |
def | fpIsZero (a, ctx=None) |
def | fpIsNormal (a, ctx=None) |
def | fpIsSubnormal (a, ctx=None) |
def | fpIsNegative (a, ctx=None) |
def | fpIsPositive (a, ctx=None) |
def | fpLT (a, b, ctx=None) |
def | fpLEQ (a, b, ctx=None) |
def | fpGT (a, b, ctx=None) |
def | fpGEQ (a, b, ctx=None) |
def | fpEQ (a, b, ctx=None) |
def | fpNEQ (a, b, ctx=None) |
def | fpFP (sgn, exp, sig, ctx=None) |
def | fpToFP (a1, a2=None, a3=None, ctx=None) |
def | fpBVToFP (v, sort, ctx=None) |
def | fpFPToFP (rm, v, sort, ctx=None) |
def | fpRealToFP (rm, v, sort, ctx=None) |
def | fpSignedToFP (rm, v, sort, ctx=None) |
def | fpUnsignedToFP (rm, v, sort, ctx=None) |
def | fpToFPUnsigned (rm, x, s, ctx=None) |
def | fpToSBV (rm, x, s, ctx=None) |
def | fpToUBV (rm, x, s, ctx=None) |
def | fpToReal (x, ctx=None) |
def | fpToIEEEBV (x, ctx=None) |
def | StringSort (ctx=None) |
def | SeqSort (s) |
def | is_seq (a) |
def | is_string (a) |
def | is_string_value (a) |
def | StringVal (s, ctx=None) |
def | String (name, ctx=None) |
def | SubString (s, offset, length) |
def | SubSeq (s, offset, length) |
def | Strings (names, ctx=None) |
def | Empty (s) |
def | Full (s) |
def | Unit (a) |
def | PrefixOf (a, b) |
def | SuffixOf (a, b) |
def | Contains (a, b) |
def | Replace (s, src, dst) |
def | IndexOf (s, substr) |
def | IndexOf (s, substr, offset) |
def | LastIndexOf (s, substr) |
def | Length (s) |
def | StrToInt (s) |
def | IntToStr (s) |
def | Re (s, ctx=None) |
def | ReSort (s) |
def | is_re (s) |
def | InRe (s, re) |
def | Union (args) |
def | Intersect (args) |
def | Plus (re) |
def | Option (re) |
def | Complement (re) |
def | Star (re) |
def | Loop (re, lo, hi=0) |
def | Range (lo, hi, ctx=None) |
def | PartialOrder (a, index) |
def | LinearOrder (a, index) |
def | TreeOrder (a, index) |
def | PiecewiseLinearOrder (a, index) |
def | TransitiveClosure (f) |
Variables | |
Z3_DEBUG = __debug__ | |
sat = CheckSatResult(Z3_L_TRUE) | |
unsat = CheckSatResult(Z3_L_FALSE) | |
unknown = CheckSatResult(Z3_L_UNDEF) | |
def z3py.And | ( | args | ) |
Create a Z3 and-expression or and-probe. >>> p, q, r = Bools('p q r') >>> And(p, q, r) And(p, q, r) >>> P = BoolVector('p', 5) >>> And(P) And(p__0, p__1, p__2, p__3, p__4)
Definition at line 1672 of file z3py.py.
Referenced by Fixedpoint.add_rule(), Goal.as_expr(), Bool(), Bools(), BoolVector(), Lambda(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), and Fixedpoint.update_rule().
def z3py.AndThen | ( | ts, | |
ks | |||
) |
Return a tactic that applies the tactics in `*ts` in sequence. >>> x, y = Ints('x y') >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs')) >>> t(And(x == 0, y > x + 1)) [[Not(y <= 1)]] >>> t(And(x == 0, y > x + 1)).as_expr() Not(y <= 1)
Definition at line 7714 of file z3py.py.
Referenced by Then().
def z3py.append_log | ( | s | ) |
def z3py.args2params | ( | arguments, | |
keywords, | |||
ctx = None |
|||
) |
Convert python arguments into a Z3_params object. A ':' is added to the keywords, and '_' is replaced with '-' >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True}) (params model true relevancy 2 elim_and true)
Definition at line 5050 of file z3py.py.
Referenced by Tactic.apply(), Fixedpoint.set(), Optimize.set(), simplify(), and With().
def z3py.Array | ( | name, | |
dom, | |||
rng | |||
) |
Return an array constant named `name` with the given domain and range sorts. >>> a = Array('a', IntSort(), IntSort()) >>> a.sort() Array(Int, Int) >>> a[0] a[0]
Definition at line 4383 of file z3py.py.
Referenced by ArrayRef.__getitem__(), ArraySort(), ArrayRef.domain(), get_map_func(), is_array(), is_const_array(), is_K(), is_map(), is_select(), is_store(), K(), Lambda(), Map(), ArrayRef.range(), Select(), ArrayRef.sort(), Store(), and Update().
def z3py.ArraySort | ( | sig | ) |
Return the Z3 array sort with the given domain and range sorts. >>> A = ArraySort(IntSort(), BoolSort()) >>> A Array(Int, Bool) >>> A.domain() Int >>> A.range() Bool >>> AA = ArraySort(IntSort(), A) >>> AA Array(Int, Array(Int, Bool))
Definition at line 4351 of file z3py.py.
Referenced by ArraySortRef.domain(), Context.mkArraySort(), and ArraySortRef.range().
def z3py.AtLeast | ( | args | ) |
def z3py.AtMost | ( | args | ) |
def z3py.BitVec | ( | name, | |
bv, | |||
ctx = None |
|||
) |
Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort. If `ctx=None`, then the global context is used. >>> x = BitVec('x', 16) >>> is_bv(x) True >>> x.size() 16 >>> x.sort() BitVec(16) >>> word = BitVecSort(16) >>> x2 = BitVec('x', word) >>> eq(x, x2) True
Definition at line 3753 of file z3py.py.
Referenced by BitVecRef.__add__(), BitVecRef.__and__(), BitVecRef.__div__(), BitVecRef.__invert__(), BitVecRef.__mod__(), BitVecRef.__mul__(), BitVecRef.__neg__(), BitVecRef.__or__(), BitVecRef.__pos__(), BitVecRef.__radd__(), BitVecRef.__rand__(), BitVecRef.__rdiv__(), BitVecRef.__rlshift__(), BitVecRef.__rmod__(), BitVecRef.__rmul__(), BitVecRef.__ror__(), BitVecRef.__rrshift__(), BitVecRef.__rsub__(), BitVecRef.__rxor__(), BitVecRef.__sub__(), BitVecRef.__xor__(), BitVecs(), BitVecSort(), BV2Int(), Extract(), is_bv(), is_bv_value(), RepeatBitVec(), SignExt(), BitVecRef.size(), BitVecRef.sort(), SRem(), UDiv(), URem(), and ZeroExt().
def z3py.BitVecs | ( | names, | |
bv, | |||
ctx = None |
|||
) |
Return a tuple of bit-vector constants of size bv. >>> x, y, z = BitVecs('x y z', 16) >>> x.size() 16 >>> x.sort() BitVec(16) >>> Sum(x, y, z) 0 + x + y + z >>> Product(x, y, z) 1*x*y*z >>> simplify(Product(x, y, z)) x*y*z
Definition at line 3776 of file z3py.py.
Referenced by BitVecRef.__ge__(), BitVecRef.__gt__(), BitVecRef.__le__(), BitVecRef.__lshift__(), BitVecRef.__lt__(), BitVecRef.__rshift__(), LShR(), RotateLeft(), RotateRight(), UGE(), UGT(), ULE(), and ULT().
def z3py.BitVecSort | ( | sz, | |
ctx = None |
|||
) |
Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used. >>> Byte = BitVecSort(8) >>> Word = BitVecSort(16) >>> Byte BitVec(8) >>> x = Const('x', Byte) >>> eq(x, BitVec('x', 8)) True
Definition at line 3723 of file z3py.py.
Referenced by BitVec(), BitVecSortRef.cast(), fpSignedToFP(), fpToFP(), fpToSBV(), fpToUBV(), fpUnsignedToFP(), is_bv_sort(), Context.mkBitVecSort(), BitVecSortRef.size(), and BitVecRef.sort().
def z3py.BitVecVal | ( | val, | |
bv, | |||
ctx = None |
|||
) |
Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used. >>> v = BitVecVal(10, 32) >>> v 10 >>> print("0x%.8x" % v.as_long()) 0x0000000a
Definition at line 3737 of file z3py.py.
Referenced by BitVecRef.__lshift__(), BitVecRef.__rshift__(), BitVecNumRef.as_long(), BitVecNumRef.as_signed_long(), Concat(), fpBVToFP(), fpFP(), fpSignedToFP(), fpToFP(), fpUnsignedToFP(), is_bv_value(), LShR(), RepeatBitVec(), SignExt(), and ZeroExt().
def z3py.Bool | ( | name, | |
ctx = None |
|||
) |
Return a Boolean constant named `name`. If `ctx=None`, then the global context is used. >>> p = Bool('p') >>> q = Bool('q') >>> And(p, q) And(p, q)
Definition at line 1558 of file z3py.py.
Referenced by Solver.assert_and_track(), Optimize.assert_and_track(), and Not().
def z3py.Bools | ( | names, | |
ctx = None |
|||
) |
Return a tuple of Boolean constants. `names` is a single string containing all names separated by blank spaces. If `ctx=None`, then the global context is used. >>> p, q, r = Bools('p q r') >>> And(p, Or(q, r)) And(p, Or(q, r))
Definition at line 1569 of file z3py.py.
Referenced by And(), Solver.consequences(), Implies(), Or(), Solver.unsat_core(), and Xor().
def z3py.BoolSort | ( | ctx = None | ) |
Return the Boolean Z3 sort. If `ctx=None`, then the global context is used. >>> BoolSort() Bool >>> p = Const('p', BoolSort()) >>> is_bool(p) True >>> r = Function('r', IntSort(), IntSort(), BoolSort()) >>> r(0, 1) r(0, 1) >>> is_bool(r(0, 1)) True
Definition at line 1523 of file z3py.py.
Referenced by ArrayRef.__getitem__(), ArraySort(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), ArraySortRef.domain(), ArrayRef.domain(), Context.getBoolSort(), If(), IntSort(), is_arith_sort(), Context.mkBoolSort(), ArraySortRef.range(), ArrayRef.range(), and ArrayRef.sort().
def z3py.BoolVal | ( | val, | |
ctx = None |
|||
) |
Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used. >>> BoolVal(True) True >>> is_true(BoolVal(True)) True >>> is_true(True) False >>> is_false(BoolVal(False)) True
Definition at line 1540 of file z3py.py.
Referenced by ApplyResult.as_expr(), BoolSortRef.cast(), Re(), and Solver.to_smt2().
def z3py.BoolVector | ( | prefix, | |
sz, | |||
ctx = None |
|||
) |
Return a list of Boolean constants of size `sz`. The constants are named using the given prefix. If `ctx=None`, then the global context is used. >>> P = BoolVector('p', 3) >>> P [p__0, p__1, p__2] >>> And(P) And(p__0, p__1, p__2)
Definition at line 1584 of file z3py.py.
Referenced by And(), and Or().
def z3py.BV2Int | ( | a, | |
is_signed = False |
|||
) |
Return the Z3 expression BV2Int(a). >>> b = BitVec('b', 3) >>> BV2Int(b).sort() Int >>> x = Int('x') >>> x > BV2Int(b) x > BV2Int(b) >>> x > BV2Int(b, is_signed=False) x > BV2Int(b) >>> x > BV2Int(b, is_signed=True) x > If(b < 0, BV2Int(b) - 8, BV2Int(b)) >>> solve(x > BV2Int(b), b == 1, x < 3) [x = 2, b = 1]
Definition at line 3693 of file z3py.py.
def z3py.BVAddNoOverflow | ( | a, | |
b, | |||
signed | |||
) |
def z3py.BVAddNoUnderflow | ( | a, | |
b | |||
) |
def z3py.BVMulNoOverflow | ( | a, | |
b, | |||
signed | |||
) |
A predicate the determines that bit-vector multiplication does not overflow
Definition at line 4185 of file z3py.py.
def z3py.BVMulNoUnderflow | ( | a, | |
b | |||
) |
A predicate the determines that bit-vector signed multiplication does not underflow
Definition at line 4192 of file z3py.py.
def z3py.BVRedAnd | ( | a | ) |
def z3py.BVRedOr | ( | a | ) |
def z3py.BVSDivNoOverflow | ( | a, | |
b | |||
) |
def z3py.BVSNegNoOverflow | ( | a | ) |
def z3py.BVSubNoOverflow | ( | a, | |
b | |||
) |
def z3py.BVSubNoUnderflow | ( | a, | |
b, | |||
signed | |||
) |
A predicate the determines that bit-vector subtraction does not underflow
Definition at line 4167 of file z3py.py.
def z3py.Cbrt | ( | a, | |
ctx = None |
|||
) |
def z3py.Complement | ( | re | ) |
def z3py.Concat | ( | args | ) |
Create a Z3 bit-vector concatenation expression. >>> v = BitVecVal(1, 4) >>> Concat(v, v+1, v) Concat(Concat(1, 1 + 1), 1) >>> simplify(Concat(v, v+1, v)) 289 >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long()) 121
Definition at line 3796 of file z3py.py.
Referenced by Contains(), and BitVecRef.size().
def z3py.Cond | ( | p, | |
t1, | |||
t2, | |||
ctx = None |
|||
) |
Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise. >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
Definition at line 8133 of file z3py.py.
Referenced by If().
def z3py.Const | ( | name, | |
sort | |||
) |
Create a constant of the given sort. >>> Const('x', IntSort()) x
Definition at line 1291 of file z3py.py.
Referenced by BitVecSort(), Consts(), FPSort(), IntSort(), IsMember(), IsSubset(), RealSort(), DatatypeSortRef.recognizer(), SetAdd(), SetComplement(), SetDel(), SetDifference(), SetIntersect(), and SetUnion().
def z3py.Consts | ( | names, | |
sort | |||
) |
Create a several constants of the given sort. `names` is a string containing the names of all constants to be created. Blank spaces separate the names of different constants. >>> x, y, z = Consts('x y z', IntSort()) >>> x + y + z x + y + z
Definition at line 1302 of file z3py.py.
Referenced by Ext(), ModelRef.get_sort(), ModelRef.get_universe(), ModelRef.num_sorts(), and ModelRef.sorts().
def z3py.Contains | ( | a, | |
b | |||
) |
Check if 'a' contains 'b' >>> s1 = Contains("abc", "ab") >>> simplify(s1) True >>> s2 = Contains("abc", "bc") >>> simplify(s2) True >>> x, y, z = Strings('x y z') >>> s3 = Contains(Concat(x,y,z), y) >>> simplify(s3) True
Definition at line 10131 of file z3py.py.
def z3py.CreateDatatypes | ( | ds | ) |
Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects. In the following example we define a Tree-List using two mutually recursive datatypes. >>> TreeList = Datatype('TreeList') >>> Tree = Datatype('Tree') >>> # Tree has two constructors: leaf and node >>> Tree.declare('leaf', ('val', IntSort())) >>> # a node contains a list of trees >>> Tree.declare('node', ('children', TreeList)) >>> TreeList.declare('nil') >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList)) >>> Tree, TreeList = CreateDatatypes(Tree, TreeList) >>> Tree.val(Tree.leaf(10)) val(leaf(10)) >>> simplify(Tree.val(Tree.leaf(10))) 10 >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil))) >>> n1 node(cons(leaf(10), cons(leaf(20), nil))) >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil)) >>> simplify(n2 == n1) False >>> simplify(TreeList.car(Tree.children(n2)) == n1) True
Definition at line 4762 of file z3py.py.
Referenced by Datatype.create().
def z3py.DeclareSort | ( | name, | |
ctx = None |
|||
) |
Create a new uninterpreted sort named `name`. If `ctx=None`, then the new sort is declared in the global Z3Py context. >>> A = DeclareSort('A') >>> a = Const('a', A) >>> b = Const('b', A) >>> a.sort() == A True >>> b.sort() == A True >>> a == b a == b
Definition at line 627 of file z3py.py.
Referenced by ModelRef.get_sort(), ModelRef.get_universe(), ModelRef.num_sorts(), and ModelRef.sorts().
def z3py.Default | ( | a | ) |
Return a default value for array expression. >>> b = K(IntSort(), 1) >>> prove(Default(b) == 1) proved
Definition at line 4417 of file z3py.py.
Referenced by is_default().
def z3py.describe_probes | ( | ) |
def z3py.describe_tactics | ( | ) |
def z3py.disable_trace | ( | msg | ) |
def z3py.DisjointSum | ( | name, | |
sorts, | |||
ctx = None |
|||
) |
Create a named tagged union sort base on a set of underlying sorts Example: >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
def z3py.Distinct | ( | args | ) |
Create a Z3 distinct expression. >>> x = Int('x') >>> y = Int('y') >>> Distinct(x, y) x != y >>> z = Int('z') >>> Distinct(x, y, z) Distinct(x, y, z) >>> simplify(Distinct(x, y, z)) Distinct(x, y, z) >>> simplify(Distinct(x, y, z), blast_distinct=True) And(Not(x == y), Not(x == z), Not(y == z))
Definition at line 1260 of file z3py.py.
def z3py.Empty | ( | s | ) |
Create the empty sequence of the given sort >>> e = Empty(StringSort()) >>> e2 = StringVal("") >>> print(e.eq(e2)) True >>> e3 = Empty(SeqSort(IntSort())) >>> print(e3) Empty(Seq(Int)) >>> e4 = Empty(ReSort(SeqSort(IntSort()))) >>> print(e4) Empty(ReSort(Seq(Int)))
Definition at line 10066 of file z3py.py.
def z3py.EmptySet | ( | s | ) |
def z3py.enable_trace | ( | msg | ) |
def z3py.EnumSort | ( | name, | |
values, | |||
ctx = None |
|||
) |
Return a new enumeration sort named `name` containing the given values. The result is a pair (sort, list of constants). Example: >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
Definition at line 4974 of file z3py.py.
Referenced by Context.mkEnumSort().
def z3py.eq | ( | a, | |
b | |||
) |
Return `True` if `a` and `b` are structurally identical AST nodes. >>> x = Int('x') >>> y = Int('y') >>> eq(x, y) False >>> eq(x + 1, x + 1) True >>> eq(x + 1, 1 + x) False >>> eq(simplify(x + 1), simplify(1 + x)) True
Definition at line 422 of file z3py.py.
Referenced by BitVec(), BitVecSort(), FP(), FPSort(), FreshBool(), FreshInt(), FreshReal(), get_map_func(), Select(), and substitute().
def z3py.Exists | ( | vs, | |
body, | |||
weight = 1 , |
|||
qid = "" , |
|||
skid = "" , |
|||
patterns = [] , |
|||
no_patterns = [] |
|||
) |
Create a Z3 exists formula. The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> x = Int('x') >>> y = Int('y') >>> q = Exists([x, y], f(x, y) >= x, skid="foo") >>> q Exists([x, y], f(x, y) >= x) >>> is_quantifier(q) True >>> r = Tactic('nnf')(q).as_expr() >>> is_quantifier(r) False
Definition at line 2044 of file z3py.py.
Referenced by Fixedpoint.abstract(), QuantifierRef.is_exists(), QuantifierRef.is_forall(), and QuantifierRef.is_lambda().
def z3py.Ext | ( | a, | |
b | |||
) |
Return extensionality index for one-dimensional arrays. >> a, b = Consts('a b', SetSort(IntSort())) >> Ext(a, b) Ext(a, b)
Definition at line 4502 of file z3py.py.
def z3py.Extract | ( | high, | |
low, | |||
a | |||
) |
Create a Z3 bit-vector extraction expression, or create a string extraction expression. >>> x = BitVec('x', 8) >>> Extract(6, 2, x) Extract(6, 2, x) >>> Extract(6, 2, x).sort() BitVec(5) >>> simplify(Extract(StringVal("abcd"),2,1)) "c"
Definition at line 3841 of file z3py.py.
def z3py.FailIf | ( | p, | |
ctx = None |
|||
) |
Return a tactic that fails if the probe `p` evaluates to true. Otherwise, it returns the input goal unmodified. In the following example, the tactic applies 'simplify' if and only if there are more than 2 constraints in the goal. >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify')) >>> x, y = Ints('x y') >>> g = Goal() >>> g.add(x > 0) >>> g.add(y > 0) >>> t(g) [[x > 0, y > 0]] >>> g.add(x == y + 1) >>> t(g) [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
Definition at line 8096 of file z3py.py.
def z3py.FiniteDomainSort | ( | name, | |
sz, | |||
ctx = None |
|||
) |
Create a named finite domain sort of a given size sz
Definition at line 7188 of file z3py.py.
Referenced by Context.mkFiniteDomainSort().
def z3py.FiniteDomainVal | ( | val, | |
sort, | |||
ctx = None |
|||
) |
Return a Z3 finite-domain value. If `ctx=None`, then the global context is used. >>> s = FiniteDomainSort('S', 256) >>> FiniteDomainVal(255, s) 255 >>> FiniteDomainVal('100', s) 100
Definition at line 7256 of file z3py.py.
def z3py.Float128 | ( | ctx = None | ) |
def z3py.Float16 | ( | ctx = None | ) |
def z3py.Float32 | ( | ctx = None | ) |
Floating-point 32-bit (single) sort.
Definition at line 8700 of file z3py.py.
Referenced by FPRef.__neg__(), fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), and fpUnsignedToFP().
def z3py.Float64 | ( | ctx = None | ) |
Floating-point 64-bit (double) sort.
Definition at line 8710 of file z3py.py.
Referenced by fpFPToFP(), and fpToFP().
def z3py.FloatDouble | ( | ctx = None | ) |
def z3py.FloatHalf | ( | ctx = None | ) |
def z3py.FloatQuadruple | ( | ctx = None | ) |
def z3py.FloatSingle | ( | ctx = None | ) |
def z3py.ForAll | ( | vs, | |
body, | |||
weight = 1 , |
|||
qid = "" , |
|||
skid = "" , |
|||
patterns = [] , |
|||
no_patterns = [] |
|||
) |
Create a Z3 forall formula. The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> x = Int('x') >>> y = Int('y') >>> ForAll([x, y], f(x, y) >= x) ForAll([x, y], f(x, y) >= x) >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ]) ForAll([x, y], f(x, y) >= x) >>> ForAll([x, y], f(x, y) >= x, weight=10) ForAll([x, y], f(x, y) >= x)
Definition at line 2027 of file z3py.py.
Referenced by Fixedpoint.abstract(), QuantifierRef.body(), QuantifierRef.children(), QuantifierRef.is_exists(), QuantifierRef.is_forall(), is_pattern(), is_quantifier(), MultiPattern(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), QuantifierRef.pattern(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().
def z3py.FP | ( | name, | |
fpsort, | |||
ctx = None |
|||
) |
Return a floating-point constant named `name`. `fpsort` is the floating-point sort. If `ctx=None`, then the global context is used. >>> x = FP('x', FPSort(8, 24)) >>> is_fp(x) True >>> x.ebits() 8 >>> x.sort() FPSort(8, 24) >>> word = FPSort(8, 24) >>> x2 = FP('x', word) >>> eq(x, x2) True
Definition at line 9306 of file z3py.py.
Referenced by FPRef.__add__(), FPRef.__div__(), FPRef.__mul__(), FPRef.__neg__(), FPRef.__radd__(), FPRef.__rdiv__(), FPRef.__rmul__(), FPRef.__rsub__(), FPRef.__sub__(), fpAdd(), fpDiv(), fpIsInf(), fpIsNaN(), fpMax(), fpMin(), fpMul(), fpNeg(), fpRem(), FPSort(), fpSub(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), is_fp(), is_fp_value(), and FPRef.sort().
def z3py.fpAbs | ( | a, | |
ctx = None |
|||
) |
Create a Z3 floating-point absolute value expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FPVal(1.0, s) >>> fpAbs(x) fpAbs(1) >>> y = FPVal(-20.0, s) >>> y -1.25*(2**4) >>> fpAbs(y) fpAbs(-1.25*(2**4)) >>> fpAbs(-1.25*(2**4)) fpAbs(-1.25*(2**4)) >>> fpAbs(x).sort() FPSort(8, 24)
Definition at line 9347 of file z3py.py.
def z3py.fpAdd | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
Create a Z3 floating-point addition expression. >>> s = FPSort(8, 24) >>> rm = RNE() >>> x = FP('x', s) >>> y = FP('y', s) >>> fpAdd(rm, x, y) fpAdd(RNE(), x, y) >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ x + y >>> fpAdd(rm, x, y).sort() FPSort(8, 24)
Definition at line 9436 of file z3py.py.
Referenced by FPs().
def z3py.fpBVToFP | ( | v, | |
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a bit-vector term to a floating-point term. >>> x_bv = BitVecVal(0x3F800000, 32) >>> x_fp = fpBVToFP(x_bv, Float32()) >>> x_fp fpToFP(1065353216) >>> simplify(x_fp) 1
Definition at line 9733 of file z3py.py.
def z3py.fpDiv | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
def z3py.fpEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpFMA | ( | rm, | |
a, | |||
b, | |||
c, | |||
ctx = None |
|||
) |
def z3py.fpFP | ( | sgn, | |
exp, | |||
sig, | |||
ctx = None |
|||
) |
Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp. >>> s = FPSort(8, 24) >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23)) >>> print(x) fpFP(1, 127, 4194304) >>> xv = FPVal(-1.5, s) >>> print(xv) -1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() sat >>> xv = FPVal(+1.5, s) >>> print(xv) 1.5 >>> slvr = Solver() >>> slvr.add(fpEQ(x, xv)) >>> slvr.check() unsat
def z3py.fpFPToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a floating-point term to a floating-point term of different precision. >>> x_sgl = FPVal(1.0, Float32()) >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64()) >>> x_dbl fpToFP(RNE(), 1) >>> simplify(x_dbl) 1 >>> x_dbl.sort() FPSort(11, 53)
Definition at line 9749 of file z3py.py.
def z3py.fpGEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpGT | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpInfinity | ( | s, | |
negative | |||
) |
def z3py.fpIsInf | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsNaN | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsNegative | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsNormal | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsPositive | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsSubnormal | ( | a, | |
ctx = None |
|||
) |
def z3py.fpIsZero | ( | a, | |
ctx = None |
|||
) |
def z3py.fpLEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpLT | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpMax | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpMin | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpMinusInfinity | ( | s | ) |
def z3py.fpMinusZero | ( | s | ) |
def z3py.fpMul | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
def z3py.fpNaN | ( | s | ) |
Create a Z3 floating-point NaN term. >>> s = FPSort(8, 24) >>> set_fpa_pretty(True) >>> fpNaN(s) NaN >>> pb = get_fpa_pretty() >>> set_fpa_pretty(False) >>> fpNaN(s) fpNaN(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 9203 of file z3py.py.
def z3py.fpNeg | ( | a, | |
ctx = None |
|||
) |
def z3py.fpNEQ | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpPlusInfinity | ( | s | ) |
Create a Z3 floating-point +oo term. >>> s = FPSort(8, 24) >>> pb = get_fpa_pretty() >>> set_fpa_pretty(True) >>> fpPlusInfinity(s) +oo >>> set_fpa_pretty(False) >>> fpPlusInfinity(s) fpPlusInfinity(FPSort(8, 24)) >>> set_fpa_pretty(pb)
Definition at line 9219 of file z3py.py.
def z3py.fpPlusZero | ( | s | ) |
def z3py.fpRealToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a real term to a floating-point term. >>> x_r = RealVal(1.5) >>> x_fp = fpRealToFP(RNE(), x_r, Float32()) >>> x_fp fpToFP(RNE(), 3/2) >>> simplify(x_fp) 1.5
Definition at line 9768 of file z3py.py.
def z3py.fpRem | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.fpRoundToIntegral | ( | rm, | |
a, | |||
ctx = None |
|||
) |
def z3py.FPs | ( | names, | |
fpsort, | |||
ctx = None |
|||
) |
Return an array of floating-point constants. >>> x, y, z = FPs('x y z', FPSort(8, 24)) >>> x.sort() FPSort(8, 24) >>> x.sbits() 24 >>> x.ebits() 8 >>> fpMul(RNE(), fpAdd(RNE(), x, y), z) fpMul(RNE(), fpAdd(RNE(), x, y), z)
Definition at line 9329 of file z3py.py.
Referenced by fpEQ(), fpGEQ(), fpGT(), fpLEQ(), fpLT(), and fpNEQ().
def z3py.fpSignedToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from a signed bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFP(RNE(), 4294967291) >>> simplify(x_fp) -1.25*(2**2)
Definition at line 9785 of file z3py.py.
def z3py.FPSort | ( | ebits, | |
sbits, | |||
ctx = None |
|||
) |
Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used. >>> Single = FPSort(8, 24) >>> Double = FPSort(11, 53) >>> Single FPSort(8, 24) >>> x = Const('x', Single) >>> eq(x, FP('x', FPSort(8, 24))) True
Definition at line 9145 of file z3py.py.
Referenced by FPRef.__add__(), FPRef.__div__(), FPRef.__mul__(), FPRef.__radd__(), FPRef.__rdiv__(), FPRef.__rmul__(), FPRef.__rsub__(), FPRef.__sub__(), FPSortRef.cast(), FPSortRef.ebits(), FPRef.ebits(), FPNumRef.exponent(), FP(), fpAbs(), fpAdd(), fpDiv(), fpEQ(), fpFP(), fpFPToFP(), fpGEQ(), fpGT(), fpIsInf(), fpIsNaN(), fpLEQ(), fpLT(), fpMax(), fpMin(), fpMul(), fpNaN(), fpNeg(), fpNEQ(), fpPlusInfinity(), fpRem(), FPs(), fpSub(), fpToFP(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), FPVal(), is_fp(), is_fp_sort(), is_fp_value(), is_fprm_sort(), FPNumRef.isNegative(), Context.mkFPSort(), Context.mkFPSort128(), Context.mkFPSort16(), Context.mkFPSort32(), Context.mkFPSort64(), Context.mkFPSortDouble(), Context.mkFPSortHalf(), Context.mkFPSortQuadruple(), Context.mkFPSortSingle(), FPSortRef.sbits(), FPRef.sbits(), FPNumRef.sign_as_bv(), FPNumRef.significand(), FPNumRef.significand_as_bv(), and FPRef.sort().
def z3py.fpSqrt | ( | rm, | |
a, | |||
ctx = None |
|||
) |
def z3py.fpSub | ( | rm, | |
a, | |||
b, | |||
ctx = None |
|||
) |
def z3py.fpToFP | ( | a1, | |
a2 = None , |
|||
a3 = None , |
|||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression from other term sorts to floating-point. From a bit-vector term in IEEE 754-2008 format: >>> x = FPVal(1.0, Float32()) >>> x_bv = fpToIEEEBV(x) >>> simplify(fpToFP(x_bv, Float32())) 1 From a floating-point term with different precision: >>> x = FPVal(1.0, Float32()) >>> x_db = fpToFP(RNE(), x, Float64()) >>> x_db.sort() FPSort(11, 53) From a real term: >>> x_r = RealVal(1.5) >>> simplify(fpToFP(RNE(), x_r, Float32())) 1.5 From a signed bit-vector term: >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> simplify(fpToFP(RNE(), x_signed, Float32())) -1.25*(2**2)
Definition at line 9695 of file z3py.py.
Referenced by fpBVToFP(), fpFPToFP(), fpRealToFP(), and fpSignedToFP().
def z3py.fpToFPUnsigned | ( | rm, | |
x, | |||
s, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.
Definition at line 9819 of file z3py.py.
Referenced by fpUnsignedToFP().
def z3py.fpToIEEEBV | ( | x, | |
ctx = None |
|||
) |
\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format. The size of the resulting bit-vector is automatically determined. Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion knows only one NaN and it will always produce the same bit-vector representation of that NaN. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToIEEEBV(x) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
Definition at line 9889 of file z3py.py.
Referenced by fpToFP().
def z3py.fpToReal | ( | x, | |
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from floating-point expression to real. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToReal(x) >>> print(is_fp(x)) True >>> print(is_real(y)) True >>> print(is_fp(y)) False >>> print(is_real(x)) False
Definition at line 9870 of file z3py.py.
def z3py.fpToSBV | ( | rm, | |
x, | |||
s, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToSBV(RTZ(), x, BitVecSort(32)) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
def z3py.fpToUBV | ( | rm, | |
x, | |||
s, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector. >>> x = FP('x', FPSort(8, 24)) >>> y = fpToUBV(RTZ(), x, BitVecSort(32)) >>> print(is_fp(x)) True >>> print(is_bv(y)) True >>> print(is_fp(y)) False >>> print(is_bv(x)) False
def z3py.fpUnsignedToFP | ( | rm, | |
v, | |||
sort, | |||
ctx = None |
|||
) |
Create a Z3 floating-point conversion expression that represents the conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term. >>> x_signed = BitVecVal(-5, BitVecSort(32)) >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32()) >>> x_fp fpToFPUnsigned(RNE(), 4294967291) >>> simplify(x_fp) 1*(2**32)
Definition at line 9802 of file z3py.py.
def z3py.FPVal | ( | sig, | |
exp = None , |
|||
fps = None , |
|||
ctx = None |
|||
) |
Return a floating-point value of value `val` and sort `fps`. If `ctx=None`, then the global context is used. >>> v = FPVal(20.0, FPSort(8, 24)) >>> v 1.25*(2**4) >>> print("0x%.8x" % v.exponent_as_long(False)) 0x00000004 >>> v = FPVal(2.25, FPSort(8, 24)) >>> v 1.125*(2**1) >>> v = FPVal(-2.25, FPSort(8, 24)) >>> v -1.125*(2**1) >>> FPVal(-0.0, FPSort(8, 24)) -0.0 >>> FPVal(0.0, FPSort(8, 24)) +0.0 >>> FPVal(+0.0, FPSort(8, 24)) +0.0
Definition at line 9262 of file z3py.py.
Referenced by FPNumRef.exponent(), fpAbs(), fpFP(), fpFPToFP(), fpToFP(), is_fp_value(), FPNumRef.isNegative(), FPNumRef.sign_as_bv(), FPNumRef.significand(), and FPNumRef.significand_as_bv().
def z3py.fpZero | ( | s, | |
negative | |||
) |
def z3py.FreshBool | ( | prefix = 'b' , |
|
ctx = None |
|||
) |
Return a fresh Boolean constant in the given context using the given prefix. If `ctx=None`, then the global context is used. >>> b1 = FreshBool() >>> b2 = FreshBool() >>> eq(b1, b2) False
Definition at line 1598 of file z3py.py.
def z3py.FreshConst | ( | sort, | |
prefix = 'c' |
|||
) |
def z3py.FreshInt | ( | prefix = 'x' , |
|
ctx = None |
|||
) |
Return a fresh integer constant in the given context using the given prefix. >>> x = FreshInt() >>> y = FreshInt() >>> eq(x, y) False >>> x.sort() Int
Definition at line 3028 of file z3py.py.
def z3py.FreshReal | ( | prefix = 'b' , |
|
ctx = None |
|||
) |
Return a fresh real constant in the given context using the given prefix. >>> x = FreshReal() >>> y = FreshReal() >>> eq(x, y) False >>> x.sort() Real
Definition at line 3080 of file z3py.py.
def z3py.Full | ( | s | ) |
Create the regular expression that accepts the universal language >>> e = Full(ReSort(SeqSort(IntSort()))) >>> print(e) Full(ReSort(Seq(Int))) >>> e1 = Full(ReSort(StringSort())) >>> print(e1) Full(ReSort(String))
Definition at line 10085 of file z3py.py.
def z3py.FullSet | ( | s | ) |
def z3py.Function | ( | name, | |
sig | |||
) |
Create a new Z3 uninterpreted function with the given sorts. >>> f = Function('f', IntSort(), IntSort()) >>> f(f(0)) f(f(0))
Definition at line 789 of file z3py.py.
Referenced by ModelRef.__getitem__(), ModelRef.__len__(), FuncEntry.arg_value(), FuncInterp.arity(), FuncEntry.as_list(), FuncInterp.as_list(), QuantifierRef.body(), QuantifierRef.children(), ModelRef.decls(), FuncInterp.else_value(), FuncInterp.entry(), Exists(), ForAll(), ModelRef.get_interp(), get_map_func(), QuantifierRef.is_exists(), QuantifierRef.is_forall(), QuantifierRef.is_lambda(), is_map(), is_pattern(), is_quantifier(), Lambda(), Map(), MultiPattern(), FuncEntry.num_args(), FuncInterp.num_entries(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), QuantifierRef.pattern(), FuncEntry.value(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().
def z3py.get_as_array_func | ( | n | ) |
Return the function declaration f associated with a Z3 expression of the form (_ as-array f).
def z3py.get_default_rounding_mode | ( | ctx = None | ) |
def z3py.get_full_version | ( | ) |
def z3py.get_map_func | ( | a | ) |
Return the function declaration associated with a Z3 map array expression. >>> f = Function('f', IntSort(), IntSort()) >>> b = Array('b', IntSort(), IntSort()) >>> a = Map(f, b) >>> eq(f, get_map_func(a)) True >>> get_map_func(a) f >>> get_map_func(a)(0) f(0)
Definition at line 4334 of file z3py.py.
def z3py.get_param | ( | name | ) |
def z3py.get_var_index | ( | a | ) |
Return the de-Bruijn index of the Z3 bounded variable `a`. >>> x = Int('x') >>> y = Int('y') >>> is_var(x) False >>> is_const(x) True >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> # Z3 replaces x and y with bound variables when ForAll is executed. >>> q = ForAll([x, y], f(x, y) == x + y) >>> q.body() f(Var(1), Var(0)) == Var(1) + Var(0) >>> b = q.body() >>> b.arg(0) f(Var(1), Var(0)) >>> v1 = b.arg(0).arg(0) >>> v2 = b.arg(0).arg(1) >>> v1 Var(1) >>> v2 Var(0) >>> get_var_index(v1) 1 >>> get_var_index(v2) 0
Definition at line 1194 of file z3py.py.
def z3py.get_version | ( | ) |
def z3py.get_version_string | ( | ) |
def z3py.help_simplify | ( | ) |
def z3py.If | ( | a, | |
b, | |||
c, | |||
ctx = None |
|||
) |
Create a Z3 if-then-else expression. >>> x = Int('x') >>> y = Int('y') >>> max = If(x > y, x, y) >>> max If(x > y, x, y) >>> simplify(max) If(x <= y, y, x)
Definition at line 1238 of file z3py.py.
Referenced by BoolRef.__mul__(), BV2Int(), and Lambda().
def z3py.Implies | ( | a, | |
b, | |||
ctx = None |
|||
) |
Create a Z3 implies expression. >>> p, q = Bools('p q') >>> Implies(p, q) Implies(p, q) >>> simplify(Implies(p, q)) Or(Not(p), q)
Definition at line 1611 of file z3py.py.
Referenced by Fixedpoint.add_rule(), Solver.consequences(), Store(), Solver.unsat_core(), Update(), and Fixedpoint.update_rule().
def z3py.IndexOf | ( | s, | |
substr, | |||
offset | |||
) |
Retrieve the index of substring within a string starting at a specified offset. >>> simplify(IndexOf("abcabc", "bc", 0)) 1 >>> simplify(IndexOf("abcabc", "bc", 2)) 4
Definition at line 10167 of file z3py.py.
def z3py.InRe | ( | s, | |
re | |||
) |
Create regular expression membership test >>> re = Union(Re("a"),Re("b")) >>> print (simplify(InRe("a", re))) True >>> print (simplify(InRe("b", re))) True >>> print (simplify(InRe("c", re))) False
Definition at line 10264 of file z3py.py.
Referenced by Loop(), Option(), Plus(), Range(), Star(), and Union().
def z3py.Int | ( | name, | |
ctx = None |
|||
) |
Return an integer constant named `name`. If `ctx=None`, then the global context is used. >>> x = Int('x') >>> is_int(x) True >>> is_int(x + 1) True
Definition at line 2993 of file z3py.py.
Referenced by ArithRef.__add__(), AstVector.__contains__(), AstMap.__contains__(), ArithRef.__div__(), Statistics.__getattr__(), ArrayRef.__getitem__(), AstVector.__getitem__(), AstMap.__getitem__(), ModelRef.__getitem__(), Statistics.__getitem__(), AstVector.__len__(), AstMap.__len__(), ModelRef.__len__(), Statistics.__len__(), ArithRef.__mod__(), ArithRef.__neg__(), ArithRef.__pos__(), ArithRef.__radd__(), ArithRef.__rdiv__(), ArithRef.__rmod__(), ArithRef.__rsub__(), AstVector.__setitem__(), AstMap.__setitem__(), ArithRef.__sub__(), Goal.add(), Solver.add(), Goal.append(), Solver.append(), Goal.as_expr(), Solver.assert_and_track(), Goal.assert_exprs(), Solver.assert_exprs(), Solver.assertions(), QuantifierRef.body(), BV2Int(), Solver.check(), QuantifierRef.children(), ModelRef.decls(), AstMap.erase(), ModelRef.eval(), ModelRef.evaluate(), Exists(), ForAll(), ModelRef.get_interp(), Statistics.get_key_value(), Goal.insert(), Solver.insert(), is_arith(), is_arith_sort(), is_bv(), QuantifierRef.is_exists(), QuantifierRef.is_forall(), is_fp(), ArithSortRef.is_int(), ArithRef.is_int(), is_int(), is_int_value(), QuantifierRef.is_lambda(), is_pattern(), is_quantifier(), ArithSortRef.is_real(), is_real(), is_select(), is_to_real(), K(), AstMap.keys(), Statistics.keys(), Solver.model(), MultiPattern(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), QuantifierRef.pattern(), Solver.pop(), AstVector.push(), Solver.push(), Solver.reason_unknown(), AstMap.reset(), Solver.reset(), AstVector.resize(), Select(), Solver.sexpr(), Goal.simplify(), ArithRef.sort(), Solver.statistics(), Store(), ToReal(), Goal.translate(), AstVector.translate(), Update(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().
def z3py.Int2BV | ( | a, | |
num_bits | |||
) |
def z3py.Intersect | ( | args | ) |
def z3py.Ints | ( | names, | |
ctx = None |
|||
) |
Return a tuple of Integer constants. >>> x, y, z = Ints('x y z') >>> Sum(x, y, z) x + y + z
Definition at line 3005 of file z3py.py.
Referenced by ArithRef.__ge__(), Goal.__getitem__(), ArithRef.__gt__(), ArithRef.__le__(), Goal.__len__(), ArithRef.__lt__(), Goal.convert_model(), Goal.depth(), Goal.get(), Goal.inconsistent(), is_add(), is_div(), is_ge(), is_gt(), is_idiv(), is_le(), is_lt(), is_mod(), is_mul(), is_sub(), Lambda(), Goal.prec(), Goal.size(), Store(), Solver.unsat_core(), and Update().
def z3py.IntSort | ( | ctx = None | ) |
Return the integer sort in the given context. If `ctx=None`, then the global context is used. >>> IntSort() Int >>> x = Const('x', IntSort()) >>> is_int(x) True >>> x.sort() == IntSort() True >>> x.sort() == BoolSort() False
Definition at line 2890 of file z3py.py.
Referenced by ArrayRef.__getitem__(), ModelRef.__getitem__(), ModelRef.__len__(), DatatypeSortRef.accessor(), FuncEntry.arg_value(), FuncInterp.arity(), Array(), ArraySort(), FuncEntry.as_list(), FuncInterp.as_list(), QuantifierRef.body(), ArithSortRef.cast(), QuantifierRef.children(), DatatypeSortRef.constructor(), Datatype.create(), CreateDatatypes(), Datatype.declare(), ModelRef.decls(), Default(), DisjointSum(), ArraySortRef.domain(), ArrayRef.domain(), FuncInterp.else_value(), Empty(), EmptySet(), FuncInterp.entry(), Exists(), Ext(), ForAll(), Full(), FullSet(), ModelRef.get_interp(), get_map_func(), Context.getIntSort(), is_arith_sort(), is_array(), is_bv_sort(), is_const_array(), is_default(), QuantifierRef.is_exists(), QuantifierRef.is_forall(), is_fp_sort(), is_K(), QuantifierRef.is_lambda(), is_map(), is_pattern(), is_quantifier(), is_select(), is_store(), SeqSortRef.is_string(), IsMember(), IsSubset(), K(), Lambda(), Map(), Context.mkIntSort(), MultiPattern(), FuncEntry.num_args(), DatatypeSortRef.num_constructors(), FuncInterp.num_entries(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), QuantifierRef.pattern(), ArraySortRef.range(), ArrayRef.range(), DatatypeSortRef.recognizer(), Select(), SeqSort(), SetAdd(), SetComplement(), SetDel(), SetDifference(), SetIntersect(), SetUnion(), ArrayRef.sort(), Store(), TupleSort(), Update(), FuncEntry.value(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().
def z3py.IntToStr | ( | s | ) |
Convert integer expression to string
Definition at line 10218 of file z3py.py.
Referenced by StrToInt().
def z3py.IntVal | ( | val, | |
ctx = None |
|||
) |
Return a Z3 integer value. If `ctx=None`, then the global context is used. >>> IntVal(1) 1 >>> IntVal("100") 100
Definition at line 2937 of file z3py.py.
Referenced by AstMap.__len__(), ArithRef.__mod__(), ArithRef.__pow__(), ArithRef.__rpow__(), AstMap.__setitem__(), IntNumRef.as_long(), IntNumRef.as_string(), is_arith(), is_int(), is_int_value(), is_rational_value(), is_seq(), AstMap.keys(), AstMap.reset(), and SeqSort().
def z3py.IntVector | ( | prefix, | |
sz, | |||
ctx = None |
|||
) |
def z3py.is_add | ( | a | ) |
def z3py.is_algebraic_value | ( | a | ) |
def z3py.is_and | ( | a | ) |
def z3py.is_app | ( | a | ) |
Return `True` if `a` is a Z3 function application. Note that, constants are function applications with 0 arguments. >>> a = Int('a') >>> is_app(a) True >>> is_app(a + 1) True >>> is_app(IntSort()) False >>> is_app(1) False >>> is_app(IntVal(1)) True >>> x = Int('x') >>> is_app(ForAll(x, x >= 0)) False
Definition at line 1127 of file z3py.py.
Referenced by ExprRef.arg(), ExprRef.children(), ExprRef.decl(), is_app_of(), is_const(), ExprRef.num_args(), and RecAddDefinition().
def z3py.is_app_of | ( | a, | |
k | |||
) |
Return `True` if `a` is an application of the given kind `k`. >>> x = Int('x') >>> n = x + 1 >>> is_app_of(n, Z3_OP_ADD) True >>> is_app_of(n, Z3_OP_MUL) False
Definition at line 1226 of file z3py.py.
Referenced by is_and(), is_distinct(), is_eq(), is_false(), is_implies(), is_not(), is_or(), and is_true().
def z3py.is_arith | ( | a | ) |
def z3py.is_arith_sort | ( | s | ) |
def z3py.is_array | ( | a | ) |
def z3py.is_as_array | ( | n | ) |
def z3py.is_ast | ( | a | ) |
Return `True` if `a` is an AST node. >>> is_ast(10) False >>> is_ast(IntVal(10)) True >>> is_ast(Int('x')) True >>> is_ast(BoolSort()) True >>> is_ast(Function('f', IntSort(), IntSort())) True >>> is_ast("x") False >>> is_ast(Solver()) False
Definition at line 402 of file z3py.py.
Referenced by AstRef.eq(), and eq().
def z3py.is_bool | ( | a | ) |
Return `True` if `a` is a Z3 Boolean expression. >>> p = Bool('p') >>> is_bool(p) True >>> q = Bool('q') >>> is_bool(And(p, q)) True >>> x = Real('x') >>> is_bool(x) False >>> is_bool(x == 0) True
Definition at line 1412 of file z3py.py.
Referenced by BoolSort(), and prove().
def z3py.is_bv | ( | a | ) |
def z3py.is_bv_sort | ( | s | ) |
def z3py.is_bv_value | ( | a | ) |
def z3py.is_const | ( | a | ) |
Return `True` if `a` is Z3 constant/variable expression. >>> a = Int('a') >>> is_const(a) True >>> is_const(a + 1) False >>> is_const(1) False >>> is_const(IntVal(1)) True >>> x = Int('x') >>> is_const(ForAll(x, x >= 0)) False
Definition at line 1152 of file z3py.py.
Referenced by Optimize.assert_and_track(), and prove().
def z3py.is_const_array | ( | a | ) |
def z3py.is_default | ( | a | ) |
def z3py.is_distinct | ( | a | ) |
def z3py.is_div | ( | a | ) |
def z3py.is_eq | ( | a | ) |
Return `True` if `a` is a Z3 equality expression. >>> x, y = Ints('x y') >>> is_eq(x == y) True
Definition at line 1503 of file z3py.py.
Referenced by AstRef.__bool__().
def z3py.is_expr | ( | a | ) |
Return `True` if `a` is a Z3 expression. >>> a = Int('a') >>> is_expr(a) True >>> is_expr(a + 1) True >>> is_expr(IntSort()) False >>> is_expr(1) False >>> is_expr(IntVal(1)) True >>> x = Int('x') >>> is_expr(ForAll(x, x >= 0)) True >>> is_expr(FPVal(1.0)) True
Definition at line 1105 of file z3py.py.
Referenced by SortRef.cast(), BoolSortRef.cast(), ExprRef.children(), is_var(), simplify(), substitute(), and substitute_vars().
def z3py.is_false | ( | a | ) |
Return `True` if `a` is the Z3 false expression. >>> p = Bool('p') >>> is_false(p) False >>> is_false(False) False >>> is_false(BoolVal(False)) True
Definition at line 1446 of file z3py.py.
Referenced by AstRef.__bool__(), and BoolVal().
def z3py.is_finite_domain | ( | a | ) |
Return `True` if `a` is a Z3 finite-domain expression. >>> s = FiniteDomainSort('S', 100) >>> b = Const('b', s) >>> is_finite_domain(b) True >>> is_finite_domain(Int('x')) False
Definition at line 7217 of file z3py.py.
Referenced by is_finite_domain_value().
def z3py.is_finite_domain_sort | ( | s | ) |
Return True if `s` is a Z3 finite-domain sort. >>> is_finite_domain_sort(FiniteDomainSort('S', 100)) True >>> is_finite_domain_sort(IntSort()) False
Definition at line 7195 of file z3py.py.
Referenced by FiniteDomainVal().
def z3py.is_finite_domain_value | ( | a | ) |
def z3py.is_fp | ( | a | ) |
Return `True` if `a` is a Z3 floating-point expression. >>> b = FP('b', FPSort(8, 24)) >>> is_fp(b) True >>> is_fp(b + 1.0) True >>> is_fp(Int('x')) False
Definition at line 9118 of file z3py.py.
Referenced by FP(), fpToIEEEBV(), fpToReal(), fpToSBV(), and fpToUBV().
def z3py.is_fp_sort | ( | s | ) |
def z3py.is_fp_value | ( | a | ) |
def z3py.is_fprm | ( | a | ) |
def z3py.is_fprm_sort | ( | s | ) |
def z3py.is_fprm_value | ( | a | ) |
def z3py.is_func_decl | ( | a | ) |
def z3py.is_ge | ( | a | ) |
def z3py.is_gt | ( | a | ) |
def z3py.is_idiv | ( | a | ) |
def z3py.is_implies | ( | a | ) |
def z3py.is_int | ( | a | ) |
Return `True` if `a` is an integer expression. >>> x = Int('x') >>> is_int(x + 1) True >>> is_int(1) False >>> is_int(IntVal(1)) True >>> y = Real('y') >>> is_int(y) False >>> is_int(y + 1) False
Definition at line 2480 of file z3py.py.
Referenced by Int(), IntSort(), and RealSort().
def z3py.is_int_value | ( | a | ) |
Return `True` if `a` is an integer value of sort Int. >>> is_int_value(IntVal(1)) True >>> is_int_value(1) False >>> is_int_value(Int('x')) False >>> n = Int('x') + 1 >>> n x + 1 >>> n.arg(1) 1 >>> is_int_value(n.arg(1)) True >>> is_int_value(RealVal("1/3")) False >>> is_int_value(RealVal(1)) False
Definition at line 2522 of file z3py.py.
def z3py.is_is_int | ( | a | ) |
def z3py.is_K | ( | a | ) |
def z3py.is_le | ( | a | ) |
def z3py.is_lt | ( | a | ) |
def z3py.is_map | ( | a | ) |
def z3py.is_mod | ( | a | ) |
def z3py.is_mul | ( | a | ) |
def z3py.is_not | ( | a | ) |
def z3py.is_or | ( | a | ) |
def z3py.is_pattern | ( | a | ) |
Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation. >>> f = Function('f', IntSort(), IntSort()) >>> x = Int('x') >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ]) >>> q ForAll(x, f(x) == 0) >>> q.num_patterns() 1 >>> is_pattern(q.pattern(0)) True >>> q.pattern(0) f(Var(0))
Definition at line 1751 of file z3py.py.
Referenced by MultiPattern().
def z3py.is_probe | ( | p | ) |
def z3py.is_quantifier | ( | a | ) |
def z3py.is_rational_value | ( | a | ) |
Return `True` if `a` is rational value of sort Real. >>> is_rational_value(RealVal(1)) True >>> is_rational_value(RealVal("3/5")) True >>> is_rational_value(IntVal(1)) False >>> is_rational_value(1) False >>> n = Real('x') + 1 >>> n.arg(1) 1 >>> is_rational_value(n.arg(1)) True >>> is_rational_value(Real('x')) False
Definition at line 2545 of file z3py.py.
Referenced by RatNumRef.denominator(), and RatNumRef.numerator().
def z3py.is_real | ( | a | ) |
Return `True` if `a` is a real expression. >>> x = Int('x') >>> is_real(x + 1) False >>> y = Real('y') >>> is_real(y) True >>> is_real(y + 1) True >>> is_real(1) False >>> is_real(RealVal(1)) True
Definition at line 2498 of file z3py.py.
Referenced by fpToReal(), Real(), and RealSort().
def z3py.is_select | ( | a | ) |
def z3py.is_seq | ( | a | ) |
def z3py.is_sort | ( | s | ) |
Return `True` if `s` is a Z3 sort. >>> is_sort(IntSort()) True >>> is_sort(Int('x')) False >>> is_expr(Int('x')) True
Definition at line 586 of file z3py.py.
Referenced by Function(), prove(), RecFunction(), and Var().
def z3py.is_store | ( | a | ) |
def z3py.is_string | ( | a | ) |
def z3py.is_string_value | ( | a | ) |
def z3py.is_sub | ( | a | ) |
def z3py.is_to_int | ( | a | ) |
def z3py.is_to_real | ( | a | ) |
def z3py.is_true | ( | a | ) |
Return `True` if `a` is the Z3 true expression. >>> p = Bool('p') >>> is_true(p) False >>> is_true(simplify(p == p)) True >>> x = Real('x') >>> is_true(x == 0) False >>> # True is a Python Boolean expression >>> is_true(True) False
Definition at line 1429 of file z3py.py.
Referenced by AstRef.__bool__(), and BoolVal().
def z3py.is_var | ( | a | ) |
Return `True` if `a` is variable. Z3 uses de-Bruijn indices for representing bound variables in quantifiers. >>> x = Int('x') >>> is_var(x) False >>> is_const(x) True >>> f = Function('f', IntSort(), IntSort()) >>> # Z3 replaces x with bound variables when ForAll is executed. >>> q = ForAll(x, f(x) == x) >>> b = q.body() >>> b f(Var(0)) == Var(0) >>> b.arg(1) Var(0) >>> is_var(b.arg(1)) True
Definition at line 1170 of file z3py.py.
Referenced by get_var_index().
def z3py.IsInt | ( | a | ) |
Return the Z3 predicate IsInt(a). >>> x = Real('x') >>> IsInt(x + "1/2") IsInt(x + 1/2) >>> solve(IsInt(x + "1/2"), x > 0, x < 1) [x = 1/2] >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2") no solution
Definition at line 3127 of file z3py.py.
Referenced by is_is_int().
def z3py.IsMember | ( | e, | |
s | |||
) |
def z3py.IsSubset | ( | a, | |
b | |||
) |
def z3py.K | ( | dom, | |
v | |||
) |
Return a Z3 constant array expression. >>> a = K(IntSort(), 10) >>> a K(Int, 10) >>> a.sort() Array(Int, Int) >>> i = Int('i') >>> a[i] K(Int, 10)[i] >>> simplify(a[i]) 10
Definition at line 4481 of file z3py.py.
Referenced by Default(), EmptySet(), FullSet(), is_const_array(), is_default(), and is_K().
def z3py.Lambda | ( | vs, | |
body | |||
) |
Create a Z3 lambda expression. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> mem0 = Array('mem0', IntSort(), IntSort()) >>> lo, hi, e, i = Ints('lo hi e i') >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i])) >>> mem1 Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
Definition at line 2064 of file z3py.py.
Referenced by QuantifierRef.is_lambda().
def z3py.LastIndexOf | ( | s, | |
substr | |||
) |
def z3py.Length | ( | s | ) |
def z3py.LinearOrder | ( | a, | |
index | |||
) |
def z3py.Loop | ( | re, | |
lo, | |||
hi = 0 |
|||
) |
Create the regular expression accepting between a lower and upper bound repetitions >>> re = Loop(Re("a"), 1, 3) >>> print(simplify(InRe("aa", re))) True >>> print(simplify(InRe("aaaa", re))) False >>> print(simplify(InRe("", re))) False
Definition at line 10353 of file z3py.py.
def z3py.LShR | ( | a, | |
b | |||
) |
Create the Z3 expression logical right shift. Use the operator >> for the arithmetical right shift. >>> x, y = BitVecs('x y', 32) >>> LShR(x, y) LShR(x, y) >>> (x >> y).sexpr() '(bvashr x y)' >>> LShR(x, y).sexpr() '(bvlshr x y)' >>> BitVecVal(4, 3) 4 >>> BitVecVal(4, 3).as_signed_long() -4 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long() -2 >>> simplify(BitVecVal(4, 3) >> 1) 6 >>> simplify(LShR(BitVecVal(4, 3), 1)) 2 >>> simplify(BitVecVal(2, 3) >> 1) 1 >>> simplify(LShR(BitVecVal(2, 3), 1)) 1
Definition at line 3996 of file z3py.py.
Referenced by BitVecRef.__rlshift__(), BitVecRef.__rrshift__(), and BitVecRef.__rshift__().
def z3py.main_ctx | ( | ) |
Return a reference to the global Z3 context. >>> x = Real('x') >>> x.ctx == main_ctx() True >>> c = Context() >>> c == main_ctx() False >>> x2 = Real('x', c) >>> x2.ctx == c True >>> eq(x, x2) False
Definition at line 213 of file z3py.py.
Referenced by help_simplify(), simplify_param_descrs(), and Goal.translate().
def z3py.Map | ( | f, | |
args | |||
) |
Return a Z3 map array expression. >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> a1 = Array('a1', IntSort(), IntSort()) >>> a2 = Array('a2', IntSort(), IntSort()) >>> b = Map(f, a1, a2) >>> b Map(f, a1, a2) >>> prove(b[0] == f(a1[0], a2[0])) proved
Definition at line 4459 of file z3py.py.
Referenced by Context.Context(), get_map_func(), and is_map().
def z3py.Model | ( | ctx = None | ) |
Definition at line 6216 of file z3py.py.
Referenced by Goal.convertModel(), Optimize.getModel(), and Solver.getModel().
def z3py.MultiPattern | ( | args | ) |
Create a Z3 multi-pattern using the given expressions `*args` >>> f = Function('f', IntSort(), IntSort()) >>> g = Function('g', IntSort(), IntSort()) >>> x = Int('x') >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ]) >>> q ForAll(x, f(x) != g(x)) >>> q.num_patterns() 1 >>> is_pattern(q.pattern(0)) True >>> q.pattern(0) MultiPattern(f(Var(0)), g(Var(0)))
Definition at line 1768 of file z3py.py.
def z3py.Not | ( | a, | |
ctx = None |
|||
) |
Create a Z3 not expression or probe. >>> p = Bool('p') >>> Not(Not(p)) Not(Not(p)) >>> simplify(Not(Not(p))) p
Definition at line 1641 of file z3py.py.
Referenced by Solver.consequences(), Goal.convert_model(), fpNEQ(), Implies(), prove(), and Xor().
def z3py.open_log | ( | fname | ) |
def z3py.Option | ( | re | ) |
Create the regular expression that optionally accepts the argument. >>> re = Option(Re("a")) >>> print(simplify(InRe("a", re))) True >>> print(simplify(InRe("", re))) True >>> print(simplify(InRe("aa", re))) False
Definition at line 10325 of file z3py.py.
def z3py.Or | ( | args | ) |
Create a Z3 or-expression or or-probe. >>> p, q, r = Bools('p q r') >>> Or(p, q, r) Or(p, q, r) >>> P = BoolVector('p', 5) >>> Or(P) Or(p__0, p__1, p__2, p__3, p__4)
Definition at line 1705 of file z3py.py.
Referenced by ApplyResult.as_expr(), Bools(), Goal.convert_model(), and Implies().
def z3py.OrElse | ( | ts, | |
ks | |||
) |
Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail). >>> x = Int('x') >>> t = OrElse(Tactic('split-clause'), Tactic('skip')) >>> # Tactic split-clause fails if there is no clause in the given goal. >>> t(x == 0) [[x == 0]] >>> t(Or(x == 0, x == 1)) [[x == 0], [x == 1]]
def z3py.ParAndThen | ( | t1, | |
t2, | |||
ctx = None |
|||
) |
def z3py.ParOr | ( | ts, | |
ks | |||
) |
Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail). >>> x = Int('x') >>> t = ParOr(Tactic('simplify'), Tactic('fail')) >>> t(x + 1 == 2) [[x == 1]]
def z3py.parse_smt2_file | ( | f, | |
sorts = {} , |
|||
decls = {} , |
|||
ctx = None |
|||
) |
Parse a file in SMT 2.0 format using the given sorts and decls. This function is similar to parse_smt2_string().
Definition at line 8564 of file z3py.py.
def z3py.parse_smt2_string | ( | s, | |
sorts = {} , |
|||
decls = {} , |
|||
ctx = None |
|||
) |
Parse a string in SMT 2.0 format using the given sorts and decls. The arguments sorts and decls are Python dictionaries used to initialize the symbol table used for the SMT 2.0 parser. >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))') [x > 0, x < 10] >>> x, y = Ints('x y') >>> f = Function('f', IntSort(), IntSort()) >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f}) [x + f(y) > 0] >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() }) [a > 0]
Definition at line 8544 of file z3py.py.
Referenced by parse_smt2_file().
def z3py.ParThen | ( | t1, | |
t2, | |||
ctx = None |
|||
) |
Return a tactic that applies t1 and then t2 to every subgoal produced by t1. The subgoals are processed in parallel. >>> x, y = Ints('x y') >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values')) >>> t(And(Or(x == 1, x == 2), y == x + 1)) [[x == 1, y == 2], [x == 2, y == 3]]
Definition at line 7783 of file z3py.py.
Referenced by ParAndThen().
def z3py.PartialOrder | ( | a, | |
index | |||
) |
def z3py.PbEq | ( | args, | |
k, | |||
ctx = None |
|||
) |
def z3py.PbGe | ( | args, | |
k | |||
) |
def z3py.PbLe | ( | args, | |
k | |||
) |
def z3py.PiecewiseLinearOrder | ( | a, | |
index | |||
) |
def z3py.Plus | ( | re | ) |
def z3py.PrefixOf | ( | a, | |
b | |||
) |
def z3py.probe_description | ( | name, | |
ctx = None |
|||
) |
Return a short description for the probe named `name`. >>> d = probe_description('memory')
Definition at line 8055 of file z3py.py.
Referenced by describe_probes().
def z3py.probes | ( | ctx = None | ) |
Return a list of all available probes in Z3. >>> l = probes() >>> l.count('memory') == 1 True
Definition at line 8045 of file z3py.py.
Referenced by describe_probes().
def z3py.Product | ( | args | ) |
Create the product of the Z3 expressions. >>> a, b, c = Ints('a b c') >>> Product(a, b, c) a*b*c >>> Product([a, b, c]) a*b*c >>> A = IntVector('a', 5) >>> Product(A) a__0*a__1*a__2*a__3*a__4
Definition at line 8253 of file z3py.py.
Referenced by BitVecs().
def z3py.prove | ( | claim, | |
keywords | |||
) |
Try to prove the given claim. This is a simple function for creating demonstrations. It tries to prove `claim` by showing the negation is unsatisfiable. >>> p, q = Bools('p q') >>> prove(Not(And(p, q)) == Or(Not(p), Not(q))) proved
Definition at line 8419 of file z3py.py.
Referenced by Default(), Map(), Store(), and Update().
def z3py.Q | ( | a, | |
b, | |||
ctx = None |
|||
) |
Return a Z3 rational a/b. If `ctx=None`, then the global context is used. >>> Q(3,5) 3/5 >>> Q(3,5).sort() Real
Definition at line 2981 of file z3py.py.
Referenced by RatNumRef.as_string(), RatNumRef.denominator(), and RatNumRef.numerator().
def z3py.Range | ( | lo, | |
hi, | |||
ctx = None |
|||
) |
Create the range regular expression over two sequences of length 1 >>> range = Range("a","z") >>> print(simplify(InRe("b", range))) True >>> print(simplify(InRe("bb", range))) False
Definition at line 10365 of file z3py.py.
def z3py.RatVal | ( | a, | |
b, | |||
ctx = None |
|||
) |
Return a Z3 rational a/b. If `ctx=None`, then the global context is used. >>> RatVal(3,5) 3/5 >>> RatVal(3,5).sort() Real
def z3py.Re | ( | s, | |
ctx = None |
|||
) |
The regular expression that accepts sequence 's' >>> s1 = Re("ab") >>> s2 = Re(StringVal("ab")) >>> s3 = Re(Unit(BoolVal(True)))
Definition at line 10225 of file z3py.py.
Referenced by InRe(), Intersect(), Loop(), Option(), Plus(), Star(), and Union().
def z3py.Real | ( | name, | |
ctx = None |
|||
) |
Return a real constant named `name`. If `ctx=None`, then the global context is used. >>> x = Real('x') >>> is_real(x) True >>> is_real(x + 1) True
Definition at line 3041 of file z3py.py.
Referenced by ArithRef.__div__(), ArithRef.__ge__(), ArithRef.__gt__(), ArithRef.__le__(), ArithRef.__lt__(), ArithRef.__mul__(), ArithRef.__pow__(), ArithRef.__rdiv__(), ArithRef.__rmul__(), ArithRef.__rpow__(), Cbrt(), is_arith(), ArithSortRef.is_int(), ArithRef.is_int(), is_int(), is_is_int(), is_rational_value(), ArithSortRef.is_real(), ArithRef.is_real(), is_real(), is_to_int(), IsInt(), ArithRef.sort(), Sqrt(), ToInt(), and QuantifierRef.var_sort().
def z3py.Reals | ( | names, | |
ctx = None |
|||
) |
def z3py.RealSort | ( | ctx = None | ) |
Return the real sort in the given context. If `ctx=None`, then the global context is used. >>> RealSort() Real >>> x = Const('x', RealSort()) >>> is_real(x) True >>> is_int(x) False >>> x.sort() == RealSort() True
Definition at line 2906 of file z3py.py.
Referenced by ArithSortRef.cast(), Context.getRealSort(), is_arith_sort(), Context.mkRealSort(), RealVar(), and QuantifierRef.var_sort().
def z3py.RealVal | ( | val, | |
ctx = None |
|||
) |
Return a Z3 real value. `val` may be a Python int, long, float or string representing a number in decimal or rational notation. If `ctx=None`, then the global context is used. >>> RealVal(1) 1 >>> RealVal(1).sort() Real >>> RealVal("3/5") 3/5 >>> RealVal("1.5") 3/2
Definition at line 2948 of file z3py.py.
Referenced by RatNumRef.as_decimal(), RatNumRef.as_fraction(), RatNumRef.denominator_as_long(), fpRealToFP(), fpToFP(), is_algebraic_value(), is_int_value(), is_rational_value(), is_real(), RatNumRef.numerator(), and RatNumRef.numerator_as_long().
def z3py.RealVar | ( | idx, | |
ctx = None |
|||
) |
Create a real free variable. Free variables are used to create quantified formulas. They are also used to create polynomials. >>> RealVar(0) Var(0)
Definition at line 1333 of file z3py.py.
Referenced by RealVarVector().
def z3py.RealVarVector | ( | n, | |
ctx = None |
|||
) |
def z3py.RealVector | ( | prefix, | |
sz, | |||
ctx = None |
|||
) |
def z3py.RecAddDefinition | ( | f, | |
args, | |||
body | |||
) |
Set the body of a recursive function. Recursive definitions are only unfolded during search. >>> ctx = Context() >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx)) >>> n = Int('n', ctx) >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1))) >>> simplify(fac(5)) fac(5) >>> s = Solver(ctx=ctx) >>> s.add(fac(n) < 3) >>> s.check() sat >>> s.model().eval(fac(5)) 120
Definition at line 831 of file z3py.py.
def z3py.RecFunction | ( | name, | |
sig | |||
) |
Create a new Z3 recursive with the given sorts.
Definition at line 814 of file z3py.py.
def z3py.Repeat | ( | t, | |
max = 4294967295 , |
|||
ctx = None |
|||
) |
Return a tactic that keeps applying `t` until the goal is not modified anymore or the maximum number of iterations `max` is reached. >>> x, y = Ints('x y') >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y) >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip'))) >>> r = t(c) >>> for subgoal in r: print(subgoal) [x == 0, y == 0, x > y] [x == 0, y == 1, x > y] [x == 1, y == 0, x > y] [x == 1, y == 1, x > y] >>> t = Then(t, Tactic('propagate-values')) >>> t(c) [[x == 1, y == 0]]
Definition at line 7827 of file z3py.py.
def z3py.RepeatBitVec | ( | n, | |
a | |||
) |
Return an expression representing `n` copies of `a`. >>> x = BitVec('x', 8) >>> n = RepeatBitVec(4, x) >>> n RepeatBitVec(4, x) >>> n.size() 32 >>> v0 = BitVecVal(10, 4) >>> print("%.x" % v0.as_long()) a >>> v = simplify(RepeatBitVec(4, v0)) >>> v.size() 16 >>> print("%.x" % v.as_long()) aaaa
Definition at line 4113 of file z3py.py.
def z3py.Replace | ( | s, | |
src, | |||
dst | |||
) |
Replace the first occurrence of 'src' by 'dst' in 's' >>> r = Replace("aaa", "a", "b") >>> simplify(r) "baa"
Definition at line 10150 of file z3py.py.
def z3py.reset_params | ( | ) |
def z3py.ReSort | ( | s | ) |
Definition at line 10245 of file z3py.py.
Referenced by Empty(), Full(), and Context.mkReSort().
def z3py.RNA | ( | ctx = None | ) |
def z3py.RNE | ( | ctx = None | ) |
Definition at line 8946 of file z3py.py.
Referenced by fpAbs(), fpAdd(), fpDiv(), fpFPToFP(), fpMax(), fpMin(), fpMul(), fpNeg(), fpRealToFP(), FPs(), fpSignedToFP(), fpSub(), fpToFP(), fpUnsignedToFP(), is_fprm(), and is_fprm_sort().
def z3py.RotateLeft | ( | a, | |
b | |||
) |
Return an expression representing `a` rotated to the left `b` times. >>> a, b = BitVecs('a b', 16) >>> RotateLeft(a, b) RotateLeft(a, b) >>> simplify(RotateLeft(a, 0)) a >>> simplify(RotateLeft(a, 16)) a
Definition at line 4027 of file z3py.py.
def z3py.RotateRight | ( | a, | |
b | |||
) |
Return an expression representing `a` rotated to the right `b` times. >>> a, b = BitVecs('a b', 16) >>> RotateRight(a, b) RotateRight(a, b) >>> simplify(RotateRight(a, 0)) a >>> simplify(RotateRight(a, 16)) a
Definition at line 4042 of file z3py.py.
def z3py.RoundNearestTiesToAway | ( | ctx = None | ) |
def z3py.RoundNearestTiesToEven | ( | ctx = None | ) |
def z3py.RoundTowardNegative | ( | ctx = None | ) |
def z3py.RoundTowardPositive | ( | ctx = None | ) |
def z3py.RoundTowardZero | ( | ctx = None | ) |
def z3py.RTN | ( | ctx = None | ) |
def z3py.RTP | ( | ctx = None | ) |
def z3py.RTZ | ( | ctx = None | ) |
def z3py.Select | ( | a, | |
i | |||
) |
def z3py.SeqSort | ( | s | ) |
Create a sequence sort over elements provided in the argument >>> s = SeqSort(IntSort()) >>> s == Unit(IntVal(1)).sort() True
Definition at line 9950 of file z3py.py.
Referenced by Empty(), Full(), SeqSortRef.is_string(), Context.mkSeqSort(), and Context.mkStringSort().
def z3py.set_option | ( | args, | |
kws | |||
) |
def z3py.set_param | ( | args, | |
kws | |||
) |
Set Z3 global (or module) parameters. >>> set_param(precision=10)
Definition at line 239 of file z3py.py.
Referenced by set_option().
def z3py.SetAdd | ( | s, | |
e | |||
) |
def z3py.SetComplement | ( | s | ) |
def z3py.SetDel | ( | s, | |
e | |||
) |
def z3py.SetDifference | ( | a, | |
b | |||
) |
The set difference of a and b >>> a = Const('a', SetSort(IntSort())) >>> b = Const('b', SetSort(IntSort())) >>> SetDifference(a, b) setminus(a, b)
Definition at line 4621 of file z3py.py.
def z3py.SetHasSize | ( | a, | |
k | |||
) |
def z3py.SetIntersect | ( | args | ) |
Take the union of sets >>> a = Const('a', SetSort(IntSort())) >>> b = Const('b', SetSort(IntSort())) >>> SetIntersect(a, b) intersection(a, b)
Definition at line 4580 of file z3py.py.
def z3py.SetSort | ( | s | ) |
Sets.
Create a set sort over element sort s
Definition at line 4548 of file z3py.py.
Referenced by Ext(), IsMember(), IsSubset(), Context.mkSetSort(), SetAdd(), SetComplement(), SetDel(), SetDifference(), SetIntersect(), and SetUnion().
def z3py.SetUnion | ( | args | ) |
def z3py.SignExt | ( | n, | |
a | |||
) |
Return a bit-vector expression with `n` extra sign-bits. >>> x = BitVec('x', 16) >>> n = SignExt(8, x) >>> n.size() 24 >>> n SignExt(8, x) >>> n.sort() BitVec(24) >>> v0 = BitVecVal(2, 2) >>> v0 2 >>> v0.size() 2 >>> v = simplify(SignExt(6, v0)) >>> v 254 >>> v.size() 8 >>> print("%.x" % v.as_long()) fe
Definition at line 4057 of file z3py.py.
def z3py.SimpleSolver | ( | ctx = None | ) |
Return a simple general purpose solver with limited amount of preprocessing. >>> s = SimpleSolver() >>> x = Int('x') >>> s.add(x > 0) >>> s.check() sat
Definition at line 6898 of file z3py.py.
Referenced by Solver.reason_unknown(), and Solver.statistics().
def z3py.simplify | ( | a, | |
arguments, | |||
keywords | |||
) |
Utils.
Simplify the expression `a` using the given options. This function has many options. Use `help_simplify` to obtain the complete list. >>> x = Int('x') >>> y = Int('y') >>> simplify(x + 1 + y + x + 1) 2 + 2*x + y >>> simplify((x + 1)*(y + 1), som=True) 1 + x + y + x*y >>> simplify(Distinct(x, y, 1), blast_distinct=True) And(Not(x == y), Not(x == 1), Not(y == 1)) >>> simplify(And(x == 0, y == 1), elim_and=True) Not(Or(Not(x == 0), Not(y == 1)))
Definition at line 8149 of file z3py.py.
Referenced by BitVecRef.__invert__(), BitVecRef.__lshift__(), ArithRef.__mod__(), ArithRef.__neg__(), BitVecRef.__neg__(), ArithRef.__pow__(), ArithRef.__rpow__(), BitVecRef.__rshift__(), AlgebraicNumRef.approx(), AlgebraicNumRef.as_decimal(), BitVecs(), Concat(), Contains(), CreateDatatypes(), Extract(), fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpUnsignedToFP(), Implies(), IndexOf(), InRe(), is_algebraic_value(), K(), Length(), Loop(), LShR(), Not(), Option(), Plus(), PrefixOf(), Range(), DatatypeSortRef.recognizer(), RepeatBitVec(), Replace(), RotateLeft(), RotateRight(), SignExt(), Star(), StrToInt(), SuffixOf(), Union(), Xor(), and ZeroExt().
def z3py.simplify_param_descrs | ( | ) |
def z3py.solve | ( | args, | |
keywords | |||
) |
Solve the constraints `*args`. This is a simple function for creating demonstrations. It creates a solver, configure it using the options in `keywords`, adds the constraints in `args`, and invokes check. >>> a = Int('a') >>> solve(a > 0, a < 2) [a = 1]
Definition at line 8362 of file z3py.py.
Referenced by BV2Int(), and IsInt().
def z3py.solve_using | ( | s, | |
args, | |||
keywords | |||
) |
Solve the constraints `*args` using solver `s`. This is a simple function for creating demonstrations. It is similar to `solve`, but it uses the given solver `s`. It configures solver `s` using the options in `keywords`, adds the constraints in `args`, and invokes check.
Definition at line 8390 of file z3py.py.
def z3py.SolverFor | ( | logic, | |
ctx = None |
|||
) |
Create a solver customized for the given logic. The parameter `logic` is a string. It should be contains the name of a SMT-LIB logic. See http://www.smtlib.org/ for the name of all available logics. >>> s = SolverFor("QF_LIA") >>> x = Int('x') >>> s.add(x > 0) >>> s.add(x < 2) >>> s.check() sat >>> s.model() [x = 1]
Definition at line 6878 of file z3py.py.
def z3py.Sqrt | ( | a, | |
ctx = None |
|||
) |
Return a Z3 expression which represents the square root of a. >>> x = Real('x') >>> Sqrt(x) x**(1/2)
Definition at line 3143 of file z3py.py.
Referenced by AlgebraicNumRef.approx(), AlgebraicNumRef.as_decimal(), and is_algebraic_value().
def z3py.SRem | ( | a, | |
b | |||
) |
Create the Z3 expression signed remainder. Use the operator % for signed modulus, and URem() for unsigned remainder. >>> x = BitVec('x', 32) >>> y = BitVec('y', 32) >>> SRem(x, y) SRem(x, y) >>> SRem(x, y).sort() BitVec(32) >>> (x % y).sexpr() '(bvsmod x y)' >>> SRem(x, y).sexpr() '(bvsrem x y)'
Definition at line 3976 of file z3py.py.
Referenced by BitVecRef.__mod__(), BitVecRef.__rmod__(), and URem().
def z3py.Star | ( | re | ) |
def z3py.Store | ( | a, | |
i, | |||
v | |||
) |
Return a Z3 store array expression. >>> a = Array('a', IntSort(), IntSort()) >>> i, v = Ints('i v') >>> s = Store(a, i, v) >>> s.sort() Array(Int, Int) >>> prove(s[i] == v) proved >>> j = Int('j') >>> prove(Implies(i != j, s[j] == a[j])) proved
Definition at line 4428 of file z3py.py.
Referenced by is_array(), is_store(), SetAdd(), and SetDel().
def z3py.String | ( | name, | |
ctx = None |
|||
) |
Return a string constant named `name`. If `ctx=None`, then the global context is used. >>> x = String('x')
Definition at line 10043 of file z3py.py.
Referenced by Native.applyResultToString(), Native.astMapToString(), Native.astToString(), Native.astVectorToString(), Native.benchmarkToSmtlibString(), Context.Context(), Native.evalSmtlib2String(), Native.fixedpointGetHelp(), Native.fixedpointGetReasonUnknown(), Native.fixedpointToString(), Native.fpaGetNumeralExponentString(), Native.fpaGetNumeralSignificandString(), Native.funcDeclToString(), Native.getDeclRationalParameter(), Statistics.getEntries(), Native.getErrorMsg(), Native.getFullVersion(), Statistics.getKeys(), Native.getLstring(), Native.getNumeralDecimalString(), Native.getNumeralString(), Native.getProbeName(), Context.getProbeNames(), Native.getString(), Native.getSymbolString(), Native.getTacticName(), Context.getTacticNames(), Native.goalToDimacsString(), Native.goalToString(), Native.modelToString(), Native.optimizeGetHelp(), Native.optimizeGetReasonUnknown(), Native.optimizeToString(), Native.paramDescrsGetDocumentation(), Native.paramDescrsToString(), Native.paramsToString(), Native.patternToString(), Native.probeGetDescr(), Native.rcfNumToDecimalString(), Native.rcfNumToString(), Native.simplifyGetHelp(), Native.solverGetHelp(), Native.solverGetReasonUnknown(), Native.solverToDimacsString(), Native.solverToString(), Native.sortToString(), Native.statsGetKey(), Native.statsToString(), Native.tacticGetDescr(), Native.tacticGetHelp(), and FuncInterp.toString().
def z3py.Strings | ( | names, | |
ctx = None |
|||
) |
Return a tuple of String constants.
Definition at line 10059 of file z3py.py.
Referenced by Contains().
def z3py.StringSort | ( | ctx = None | ) |
Create a string sort >>> s = StringSort() >>> print(s) String
Definition at line 9940 of file z3py.py.
Referenced by DisjointSum(), Empty(), Full(), SeqSortRef.is_string(), and TupleSort().
def z3py.StringVal | ( | s, | |
ctx = None |
|||
) |
create a string expression
Definition at line 10038 of file z3py.py.
Referenced by Empty(), Extract(), is_seq(), is_string(), is_string_value(), Length(), and Re().
def z3py.StrToInt | ( | s | ) |
def z3py.SubSeq | ( | s, | |
offset, | |||
length | |||
) |
def z3py.substitute | ( | t, | |
m | |||
) |
Apply substitution m on t, m is a list of pairs of the form (from, to). Every occurrence in t of from is replaced with to. >>> x = Int('x') >>> y = Int('y') >>> substitute(x + 1, (x, y + 1)) y + 1 + 1 >>> f = Function('f', IntSort(), IntSort()) >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1))) 1 + 1
Definition at line 8181 of file z3py.py.
def z3py.substitute_vars | ( | t, | |
m | |||
) |
Substitute the free variables in t with the expression in m. >>> v0 = Var(0, IntSort()) >>> v1 = Var(1, IntSort()) >>> x = Int('x') >>> f = Function('f', IntSort(), IntSort(), IntSort()) >>> # replace v0 with x+1 and v1 with x >>> substitute_vars(f(v0, v1), x + 1, x) f(x + 1, x)
Definition at line 8207 of file z3py.py.
def z3py.SubString | ( | s, | |
offset, | |||
length | |||
) |
def z3py.SuffixOf | ( | a, | |
b | |||
) |
def z3py.Sum | ( | args | ) |
Create the sum of the Z3 expressions. >>> a, b, c = Ints('a b c') >>> Sum(a, b, c) a + b + c >>> Sum([a, b, c]) a + b + c >>> A = IntVector('a', 5) >>> Sum(A) a__0 + a__1 + a__2 + a__3 + a__4
Definition at line 8227 of file z3py.py.
Referenced by BitVecs(), Ints(), IntVector(), Reals(), and RealVector().
def z3py.tactic_description | ( | name, | |
ctx = None |
|||
) |
Return a short description for the tactic named `name`. >>> d = tactic_description('simplify')
Definition at line 7864 of file z3py.py.
Referenced by describe_tactics().
def z3py.tactics | ( | ctx = None | ) |
Return a list of all available tactics in Z3. >>> l = tactics() >>> l.count('simplify') == 1 True
Definition at line 7854 of file z3py.py.
Referenced by describe_tactics(), and z3.par_or().
def z3py.Then | ( | ts, | |
ks | |||
) |
Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks). >>> x, y = Ints('x y') >>> t = Then(Tactic('simplify'), Tactic('solve-eqs')) >>> t(And(x == 0, y > x + 1)) [[Not(y <= 1)]] >>> t(And(x == 0, y > x + 1)).as_expr() Not(y <= 1)
Definition at line 7733 of file z3py.py.
Referenced by Statistics.__getattr__(), Statistics.__getitem__(), Statistics.__len__(), Goal.convert_model(), Goal.depth(), Statistics.get_key_value(), and Statistics.keys().
def z3py.to_symbol | ( | s, | |
ctx = None |
|||
) |
Convert an integer or string into a Z3 symbol.
Definition at line 111 of file z3py.py.
Referenced by Fixedpoint.add_rule(), Optimize.add_soft(), Const(), DeclareSort(), FiniteDomainSort(), Function(), prove(), RecFunction(), Fixedpoint.set_predicate_representation(), SolverFor(), and Fixedpoint.update_rule().
def z3py.ToInt | ( | a | ) |
Return the Z3 expression ToInt(a). >>> x = Real('x') >>> x.sort() Real >>> n = ToInt(x) >>> n ToInt(x) >>> n.sort() Int
Definition at line 3110 of file z3py.py.
Referenced by is_to_int().
def z3py.ToReal | ( | a | ) |
Return the Z3 expression ToReal(a). >>> x = Int('x') >>> x.sort() Int >>> n = ToReal(x) >>> n ToReal(x) >>> n.sort() Real
Definition at line 3093 of file z3py.py.
Referenced by ArithRef.__ge__(), ArithRef.__gt__(), ArithRef.__le__(), ArithRef.__lt__(), and is_to_real().
def z3py.TransitiveClosure | ( | f | ) |
Given a binary relation R, such that the two arguments have the same sort create the transitive closure relation R+. The transitive closure R+ is a new relation.
def z3py.TreeOrder | ( | a, | |
index | |||
) |
def z3py.TryFor | ( | t, | |
ms, | |||
ctx = None |
|||
) |
Return a tactic that applies `t` to a given goal for `ms` milliseconds. If `t` does not terminate in `ms` milliseconds, then it fails.
Definition at line 7846 of file z3py.py.
def z3py.TupleSort | ( | name, | |
sorts, | |||
ctx = None |
|||
) |
Create a named tuple sort base on a set of underlying sorts Example: >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
Definition at line 4951 of file z3py.py.
Referenced by Context.mkTupleSort().
def z3py.UDiv | ( | a, | |
b | |||
) |
Create the Z3 expression (unsigned) division `self / other`. Use the operator / for signed division. >>> x = BitVec('x', 32) >>> y = BitVec('y', 32) >>> UDiv(x, y) UDiv(x, y) >>> UDiv(x, y).sort() BitVec(32) >>> (x / y).sexpr() '(bvsdiv x y)' >>> UDiv(x, y).sexpr() '(bvudiv x y)'
Definition at line 3936 of file z3py.py.
Referenced by BitVecRef.__div__(), and BitVecRef.__rdiv__().
def z3py.UGE | ( | a, | |
b | |||
) |
Create the Z3 expression (unsigned) `other >= self`. Use the operator >= for signed greater than or equal to. >>> x, y = BitVecs('x y', 32) >>> UGE(x, y) UGE(x, y) >>> (x >= y).sexpr() '(bvsge x y)' >>> UGE(x, y).sexpr() '(bvuge x y)'
Definition at line 3902 of file z3py.py.
Referenced by BitVecRef.__ge__().
def z3py.UGT | ( | a, | |
b | |||
) |
Create the Z3 expression (unsigned) `other > self`. Use the operator > for signed greater than. >>> x, y = BitVecs('x y', 32) >>> UGT(x, y) UGT(x, y) >>> (x > y).sexpr() '(bvsgt x y)' >>> UGT(x, y).sexpr() '(bvugt x y)'
Definition at line 3919 of file z3py.py.
Referenced by BitVecRef.__gt__().
def z3py.ULE | ( | a, | |
b | |||
) |
Create the Z3 expression (unsigned) `other <= self`. Use the operator <= for signed less than or equal to. >>> x, y = BitVecs('x y', 32) >>> ULE(x, y) ULE(x, y) >>> (x <= y).sexpr() '(bvsle x y)' >>> ULE(x, y).sexpr() '(bvule x y)'
Definition at line 3868 of file z3py.py.
Referenced by BitVecRef.__le__().
def z3py.ULT | ( | a, | |
b | |||
) |
Create the Z3 expression (unsigned) `other < self`. Use the operator < for signed less than. >>> x, y = BitVecs('x y', 32) >>> ULT(x, y) ULT(x, y) >>> (x < y).sexpr() '(bvslt x y)' >>> ULT(x, y).sexpr() '(bvult x y)'
Definition at line 3885 of file z3py.py.
Referenced by BitVecRef.__lt__().
def z3py.Union | ( | args | ) |
Create union of regular expressions. >>> re = Union(Re("a"), Re("b"), Re("c")) >>> print (simplify(InRe("d", re))) False
Definition at line 10277 of file z3py.py.
Referenced by InRe().
def z3py.Unit | ( | a | ) |
def z3py.Update | ( | a, | |
i, | |||
v | |||
) |
def z3py.URem | ( | a, | |
b | |||
) |
Create the Z3 expression (unsigned) remainder `self % other`. Use the operator % for signed modulus, and SRem() for signed remainder. >>> x = BitVec('x', 32) >>> y = BitVec('y', 32) >>> URem(x, y) URem(x, y) >>> URem(x, y).sort() BitVec(32) >>> (x % y).sexpr() '(bvsmod x y)' >>> URem(x, y).sexpr() '(bvurem x y)'
Definition at line 3956 of file z3py.py.
Referenced by BitVecRef.__mod__(), BitVecRef.__rmod__(), and SRem().
def z3py.Var | ( | idx, | |
s | |||
) |
Create a Z3 free variable. Free variables are used to create quantified formulas. >>> Var(0, IntSort()) Var(0) >>> eq(Var(0, IntSort()), Var(0, BoolSort())) False
Definition at line 1321 of file z3py.py.
Referenced by QuantifierRef.body(), QuantifierRef.children(), is_pattern(), MultiPattern(), QuantifierRef.pattern(), and RealVar().
def z3py.When | ( | p, | |
t, | |||
ctx = None |
|||
) |
Return a tactic that applies tactic `t` only if probe `p` evaluates to true. Otherwise, it returns the input goal unmodified. >>> t = When(Probe('size') > 2, Tactic('simplify')) >>> x, y = Ints('x y') >>> g = Goal() >>> g.add(x > 0) >>> g.add(y > 0) >>> t(g) [[x > 0, y > 0]] >>> g.add(x == y + 1) >>> t(g) [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
Definition at line 8115 of file z3py.py.
def z3py.With | ( | t, | |
args, | |||
keys | |||
) |
Return a tactic that applies tactic `t` using the given configuration options. >>> x, y = Ints('x y') >>> t = With(Tactic('simplify'), som=True) >>> t((x + 1)*(y + 2) == 0) [[2*x + y + x*y == -2]]
Definition at line 7801 of file z3py.py.
Referenced by Goal.prec().
def z3py.WithParams | ( | t, | |
p | |||
) |
Return a tactic that applies tactic `t` using the given configuration options. >>> x, y = Ints('x y') >>> p = ParamsRef() >>> p.set("som", True) >>> t = WithParams(Tactic('simplify'), p) >>> t((x + 1)*(y + 2) == 0) [[2*x + y + x*y == -2]]
Definition at line 7814 of file z3py.py.
def z3py.Xor | ( | a, | |
b, | |||
ctx = None |
|||
) |
def z3py.z3_debug | ( | ) |
Definition at line 58 of file z3py.py.
Referenced by FuncDeclRef.__call__(), Probe.__call__(), Context.__init__(), AndThen(), Tactic.apply(), ExprRef.arg(), AtLeast(), AtMost(), SortRef.cast(), BoolSortRef.cast(), ExprRef.children(), Const(), ExprRef.decl(), describe_probes(), Distinct(), FuncDeclRef.domain(), AstRef.eq(), eq(), FiniteDomainVal(), Function(), get_var_index(), If(), is_sort(), ExprRef.num_args(), OrElse(), Tactic.param_descrs(), ParOr(), ParThen(), prove(), RecFunction(), set_param(), simplify(), solve_using(), substitute(), substitute_vars(), AstRef.translate(), and Var().
def z3py.ZeroExt | ( | n, | |
a | |||
) |
Return a bit-vector expression with `n` extra zero-bits. >>> x = BitVec('x', 16) >>> n = ZeroExt(8, x) >>> n.size() 24 >>> n ZeroExt(8, x) >>> n.sort() BitVec(24) >>> v0 = BitVecVal(2, 2) >>> v0 2 >>> v0.size() 2 >>> v = simplify(ZeroExt(6, v0)) >>> v 2 >>> v.size() 8
Definition at line 4086 of file z3py.py.
sat = CheckSatResult(Z3_L_TRUE) |
unknown = CheckSatResult(Z3_L_UNDEF) |
unsat = CheckSatResult(Z3_L_FALSE) |