[AL70] Atkin, A. and Lehner, J., Hecke operators on Γ_0(m) , Math. Ann. , 185 (1970), 134--160.
[BCNS15] Braun, O., Coulangeon, R., Nebe, G. and Schoennenbeck, S., Computing in arithmetic groups with Voronoï’s algorithm, J. Algebra , 435 (2015), 263--285.
[BE14] Bui, A. and Ellis, G., The homology of SL_2( Z[1/m]) for small m , Journal of Algebra, 408 (2014), 102--108.
[Ber16] Bergeron, N., Torsion homology growth in arithmetic groups , EuropeanMathematical Society, European Congress of Mathematicians, July 18-22 (2016).
[Eic57] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale , Mathematische Zeitschrift , 67 (1957), 267--298.
[KFM08] Kauffman, L. H. and Faria Martins, J., Invariants of welded virtual knots via crossed module invariants of knotted surfaces, Compos. Math., 144 (4) (2008), 1046--1080.
[Kso00] Ksontini, R., Proprietes homotopiques du complexe de Quillen du groupe symetrique, These de doctorat, Universitet de Lausanne (2000).
[Kul91] Kulkarni, R., An arithmetic-geometric method in the study of the subgroups of the modular group , American Journal of Mathematics , 113, No. 6 (1991), 1053--1133.
[Rah10] Rahm, A., Cohomologies and K-theory of Bianchi groups using computational geometric models , These de doctorat, Universite Joseph-Fourier -- Grenoble I (2010).
[Sat00] Satoh, S., Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications, 9 (4) (2000), 531--542.
[Sen11] Sengun, M. H., On the Integral Cohomology of Bianchi Groups , Experimental Mathematics , 20(4) (2011), 487--505.
[Shi59] Shimura, G., Sur les integrales attachees aux formes automorphes , Journal of the Mathematical Society of Japan , 67 (1959), 291--311.
[Ste07] Stein, W., Modular forms, a computational approach , AMS Graduate Studies in Mathematics , 79 (2007).
[Swa71] Swan, R., Generators and relations for certain general linear groups , Advances in Mathematics , 6 (1971), 1--77.
[Wie78] Wieser, G., Computational arithmetic of modular forms , Universitat Duisburg-Essen (2007/8).
generated by GAPDoc2HTML