Pungi Documentation
Release 4.2.1

Daniel Mach

Mar 16, 2020

CONTENTS

1 About Pungi 3
1.1 ToOlOVEIVIEW o o o e e e e e e 3
1.2 Links o e e 3
1.3 Originofname o i e e e e e 4
2 Phases 5
2.1 Inmit ..o e 5
2.2 PKESEt . .. e 5
2.3 Buildinstall L e e 5
24 Gather e 6
25 ExtraFiles oL e 6
2.6 CreaterePoot e e e e e e e e e e 6
2.7 OSTICE . . . o o e e 6
2.8 CreateisSo v v v vt e e e e e e e e e e e 6
29 Extralsoso e e e 6
2.10 Livelmages, LiveMedia e 7
211 TImageBuild o L e e e e 7
2.12 OSBS . . 7
2.13 OSTreelnstaller o e 7
2.14 TImageChecksum 0 e e e e e e e e e e e 7
205 Test . . oL e e e e 7
3 Config file format 9
3.1 Importingother files e e e e 9
3.2 Formatting Strin@s o i e e e e e e e e e e e e e 10
4 Configuration 11
4.1 Minimal Config Example e e e e 11
42 Release e e 11
43 BaseProduct L e e e e 12
4.4 General Settings e e e e e 13
45 Image Naming o v i it e e e e e e e e e e e e e e 14
4.6 SIZNING . . o o o e e e e e e e e e e e e e e e e e e 16
47 GitURLS . . . o o e e e 16
4.8 Createrepo SEtings e e e e e e e e 17
4.9 Package Set Settings e e 18
4.10 Buildinstall Settings e e e e e e 18
411 Gather SEttings v v v v et e e e e e e e e e e e e e e e e e e e 20
412 Koji SEttings o v o e e e e e e e e e e e e e e e e e e 23
4.13 Runroot “openssh” method settings 24

10

11

12

4.14 ExtraFiles Settings o o i e e e e e e e e e e e e e e
4.15 CreateISO Settings v v v i e e e e e e e e e e e
4.16 Automatic generation of versionandrelease Lo oo
4.17 Common options for Live Images, Live Media and Image Build
4.18 Live Images Settings i e e e e
4.19 Live Media Settings o o v v i e e e e e e e
420 TImage Build Settings o o e e e e e e e e e
421 OSTree Settings . . . v v v v v i v e
4.22 Ostree Installer Settings L
423 OSBS Settings o o v i e e e e e e e e e e e e
424 ExtralSOs o e e e
4.25 Media Checksums Settings o v i v v i e e e e e e e e e e e e e e e
4.26 Translate Paths Settings o L e e e e e e
4.27 Miscellaneous Settingso e e e e e

Big picture examples

5.1 Fedora Rawhide compose o i i e e e e e e e e
52 RCMTools compoSe« o v v ittt e e e e
Exporting files from SCM

6.1 Kojiexamples e e e e e e e
6.2 filevs.dir
6.3 Caveats L. e e e e e e e

Progress notification

7.1 Settingitup L . o e e e e e
Gathering packages

.1 Variant types o vt e
82 Profiling oL e e e e
8.3 Modular compose e e e e e e

Processing comps files

Contributing to Pungi

10.1 Set up development eNVIrONMENE v v v v v v v e e e e e e e e e e e e e e e e
10.2 Developing e e e e
103 TeSting . . . o o v o e e e e e e e e e e e e e e
10.4 Documenting v v vt e e e e e e e e e e e e

Testing Pungi

11.1 TestData e e e e e e e e e e e
T1.2 Unit Tests o o o e
11.3 Functional Tests o e e e e e

Managing compose from multiple parts
12.1 General SEttNGS v v v o i e
12.2 Partial compose SEtNZS . . . v v v v v v e

38

41
41
47

51
51
52
52

53
53

55
55
56
56

57

59
59
60
62
62

63
63
63
63

65
65

Pungi Documentation, Release 4.2.1

Contents:

CONTENTS 1

Pungi Documentation, Release 4.2.1

2 CONTENTS

CHAPTER
ONE

ABOUT PUNGI

Pungi is a distribution compose tool.
Composes are release snapshots that contain release deliverables such as:
* installation trees
— RPMs

— repodata

— comps
¢ (bootable) ISOs
* kickstart trees
— anaconda images

— images for PXE boot

1.1 Tool overview

Pungi consists of multiple separate executables backed by a common library.

The main entry-point is the pungi-koji script. It loads the compose configuration and kicks off the process.
Composing itself is done in phases. Each phase is responsible for generating some artifacts on disk and updating the
compose object that is threaded through all the phases.

Pungi itself does not actually do that much. Most of the actual work is delegated to separate executables. Pungi just
makes sure that all the commands are invoked in the appropriate order and with correct arguments. It also moves the
artifacts to correct locations.

The executable name pungi-koji comes from the fact that most of those separate executables submit tasks to Koji
that does the actual work in an auditable way.

However unlike doing everything manually in Koji, Pungi will make sure you are building all images from the same
package set, and will produce even deliverables that Koji can not create like YUM repos and installer ISOs.

1.2 Links

e Upstream GIT: https://pagure.io/pungi/
* Issue tracker: https://pagure.io/pungi/issues

* Questions can be asked on #fedora-releng IRC channel on FreeNode

https://pagure.io/pungi/
https://pagure.io/pungi/issues

Pungi Documentation, Release 4.2.1

1.3 Origin of name

The name Pungi comes from the instrument used to charm snakes. Anaconda being the software Pungi was manipu-
lating, and anaconda being a snake, led to the referential naming.

The first name, which was suggested by Seth Vidal, was FIST, Fedora Installation <Something> Tool. That name was
quickly discarded and replaced with Pungi.

There was also a bit of an inside joke that when said aloud, it could sound like punji, which is a sharpened stick at the
bottom of a trap. Kind of like software. ..

4 Chapter 1. About Pungi

https://en.wikipedia.org/wiki/Punji_stick
https://en.wikipedia.org/wiki/Punji_stick

CHAPTER
TWO

PHASES

Each invocation of pungi-ko7ji consists of a set of phases.

>
Init Pkgset Buildinstall Createiso ImageChecksum

- Createrepo
OSTreelnstaller
Extrafiles| LiveMedia

Most of the phases run sequentially (left-to-right in the diagram), but there are use cases where multiple phases run in
parallel. This happens for phases whose main point is to wait for a Koji task to finish.

2.1 Init

The first phase to ever run. Can not be skipped. It prepares the comps files for variants (by filtering out groups and
packages that should not be there). See Processing comps files for details about how this is done.

2.2 Pkgset

This phase loads a set of packages that should be composed. It has two separate results: it prepares repos with packages
in work/ directory (one per arch) for further processing, and it returns a data structure with mapping of packages to
architectures.

2.3 Buildinstall

Spawns a bunch of threads, each of which runs either lorax or buildinstall command (the latter coming from
anaconda package). The commands create boot . iso and other boot configuration files. The image is finally
linked into the compose/ directory as netinstall media.

The created images are also needed for creating live media or other images in later phases.

With 1orax this phase runs one task per variant.arch combination. For buildinstall command there is only one
task per architecture and product . img should be used to customize the results.

Pungi Documentation, Release 4.2.1

2.4 Gather

This phase uses data collected by pkgset phase and figures out what packages should be in each variant. The basic
mapping can come from comps file, a JSON mapping or additional_packages config option. This inputs can
then be enriched by adding all dependencies. See Gathering packages for details.

Once the mapping is finalized, the packages are linked to appropriate places and the rpms . json manifest is created.

2.5 ExtraFiles

This phase collects extra files from the configuration and copies them to the compose directory. The files are described
by a JSON file in the compose subtree where the files are copied. This metadata is meant to be distributed with the
data (on ISO images).

2.6 Createrepo

This phase creates RPM repositories for each variant.arch tree. It is actually reading the rpms. json manifest to
figure out which packages should be included.

2.7 OSTree

Updates an ostree repository with a new commit with packages from the compose. The repository lives outside of the
compose and is updated immediately. If the compose fails in a later stage, the commit will not be reverted.

Implementation wise, this phase runs rpm-ostree command in Koji runroot (to allow running on different arches).

2.8 Createiso

Generates ISO files and accumulates enough metadata to be able to create image . json manifest. The file is however
not created in this phase, instead it is dumped in the pungi—-ko ji script itself.

The files include a repository with all RPMs from the variant. There will be multiple images if the packages do not fit
on a single image.

The image will be bootable if buildinstall phase is enabled and the packages fit on a single image.

There can also be images with source repositories. These are never bootable.

2.9 Extralsos

This phase is very similar to createiso, except it combines content from multiple variants onto a single image.
Packages, repodata and extra files from each configured variant are put into a subdirectory. Additional extra files can
be put into top level of the image. The image will be bootable if the main variant is bootable.

6 Chapter 2. Phases

Pungi Documentation, Release 4.2.1

2.10 Livelmages, LiveMedia

Creates media in Koji with koji spin-livecd, koji spin-appliance or koji spin-livemedia
command. When the media are finished, the images are copied into the compose/ directory and metadata for images
is updated.

2.11 ImageBuild

This phase wraps up koji image-build. It also updates the metadata ultimately responsible for images. json
manifest.

2.12 OSBS

This phase builds docker base images in OSBS.

The finished images are available in registry provided by OSBS, but not downloaded directly into the compose. The
is metadata about the created image in compose/metadata/osbs. json.

2.13 OSTreelnstaller

Creates bootable media that carry an ostree repository as a payload. These images are created by running 1orax with
special templates. Again it runs in Koji runroot.

2.14 ImageChecksum

Responsible for generating checksums for the images. The checksums are stored in image manifest as well as files on
disk. The list of images to be processed is obtained from the image manifest. This way all images will get the same
checksums irrespective of the phase that created them.

2.15 Test

This phase is supposed to run some sanity checks on the finished compose.

The first test is to run repoclosure on each repository. By default errors are only reported in the log, the compose
will still be considered a success. The actual error has to be looked up in the compose logs directory. Configuration
allows customizing this.

The other test is to check all images listed the metadata and verify that they look sane. For ISO files headers are
checked to verify the format is correct, and for bootable media a check is run to verify they have properties that allow
booting.

2.10. Livelmages, LiveMedia 7

http://osbs.readthedocs.io/en/latest/index.html

Pungi Documentation, Release 4.2.1

8 Chapter 2. Phases

CHAPTER
THREE

CONFIG FILE FORMAT

The configuration file parser is provided by kobo

The file follows a Python-like format. It consists of a sequence of variables that have a value assigned to them.

variable = value

The variable names must follow the same convention as Python code: start with a letter and consist of letters, digits
and underscores only.

The values can be either an integer, float, boolean (True or False), a string or None. Strings must be enclosed in
either single or double quotes.

Complex types are supported as well.

A list is enclosed in square brackets and items are separated with commas. There can be a comma after the last item
as well.

a_list = [1,

A tuple works like a list, but is enclosed in parenthesis.

a_tuple = (1, "one")

A dictionary is wrapped in brackets, and consists of key: value pairs separated by commas. The keys can only
be formed from basic types (int, float, string).

a_dict = {
'foo': 'bar',
1: None

}

The value assigned to a variable can also be taken from another variable.

one = 1
another = one

Anything on a line after a # symbol is ignored and functions as a comment.

3.1 Importing other files

It is possible to include another configuration file. The files are looked up relative to the currently processed file.

https://github.com/release-engineering/kobo

Pungi Documentation, Release 4.2.1

The general structure of import is:

from FILENAME import WHAT

The FILENAME should be just the base name of the file without extension (which must be . conf). WHAT can either
be a comma separated list of variables or *.

Opens constants.conf and brings PI and E into current scope.
from constants import PI, E

Opens common.conf and brings everything defined in that file into current
file as well.
from common import =«

Note: Pungi will copy the configuration file given on command line into the 1ogs/ directory. Only this single file
will be copied, not any included ones. (Copying included files requires a fix in kobo library.)

The JSON-formatted dump of configuration is correct though.

3.2 Formatting strings

String interpolation is available as well. It uses a $-encoded format. See Python documentation for more details.

joined = " " % (var_a, var_Db)
a_dict = {
"fst": 1,
"snd": 2,
}
another = " " % a_dict

10 Chapter 3. Config file format

CHAPTER
FOUR

CONFIGURATION

Please read productmd documentation for terminology and other release and compose related details.

4.1 Minimal Config Example

RELEASE

release_name = "Fedora"
release_short = "Fedora"
release_version = "23"

GENERAL SETTINGS

comps_file = "comps—-£f23.xml"
variants_file = "variants—f23.xml"
module_defaults_dir = "module_defaults"

KOJI
koji_profile = "koji"
runroot = False

PKGSET

sigkeys = [None]
pkgset_source = "koji"
pkgset_koji_tag = "f23"

CREATEREPO

createrepo_checksum = "sha256"
GATHER
gather_method = "deps"

greedy_method = "build"
check_deps = False

BUILDINSTALL
buildinstall _method = "lorax"

4.2 Release

Following mandatory options describe a release.

11

http://release-engineering.github.io/productmd/index.html
http://release-engineering.github.io/productmd/terminology.html

Pungi Documentation, Release 4.2.1

4.2.1 Options

release_name [mandatory] (str) — release name
release_short [mandatory] (str) — release short name, without spaces and special characters
release_version [mandatory] (str) — release version

release_type = “ga” (str) — release type, for example ga, updates or updates—testing. See list of all valid
values in productmd documentation.

release_internal = False (bool) — whether the compose is meant for public consumption

treeinfo_version (str) Version to display in .treeinfo files. If not configured, the value from
release_version will be used.

4.2.2 Example

release_name = "Fedora"
release_short = "Fedora"
release_version = "23"
release type = "ga"

4.3 Base Product

Base product options are optional and we need to them only if we’re composing a layered product built on another
(base) product.

4.3.1 Options

base_product_name (str) — base product name
base_product_short (str) — base product short name, without spaces and special characters
base_product_version (str) — base product major version

EEIT

base_product_type = “ga” (str) — base product type, “ga”, “updates” etc., for full list see documentation of pro-
ductmd.

4.3.2 Example

release_name = "RPM Fusion"
release_short = "rf"
release_version = "23.0"
base_product_name = "Fedora"
base_product_short = "Fedora"
base_product_version = "23"

12 Chapter 4. Configuration

http://productmd.readthedocs.io/en/latest/common.html#productmd.common.RELEASE_TYPES
http://productmd.readthedocs.io/en/latest/common.html#productmd.common.RELEASE_TYPES

Pungi Documentation, Release 4.2.1

4.4 General Settings

4.4.1 Options

comps_file [mandatory] (scm_dict, str or None) — reference to comps XML file with installation groups

variants_file [mandatory] (scm_dict or str) — reference to variants XML file that defines release variants and archi-
tectures

module_defaults_dir [optional] (scm_dict or str) — reference the module defaults directory containing modulemd-
defaults YAML documents

failable_deliverables [optional] (l/isr) — list which deliverables on which variant and architecture can fail and not
abort the whole compose. This only applies to buildinstall and iso parts. All other artifacts can be
configured in their respective part of configuration.

Please note that x as a wildcard matches all architectures but src.

comps_filter_environments [optional] (bool) — When set to False, the comps files for variants will not have their
environments filtered to match the variant.

tree_arches ([str]) — list of architectures which should be included; if undefined, all architectures from variants.xml
will be included

tree_variants ([szr]) — list of variants which should be included; if undefined, all variants from variants.xml will be
included

repoclosure_strictness (l/ist) — variant/arch mapping describing how repoclosure should run. Possible values are
e off —do not run repoclosure

* lenient — (default) run repoclosure and write results to logs, but detected errors are only reported in
logs

e fatal — abort compose when any issue is detected
When multiple blocks in the mapping match a variant/arch combination, the last value will win.

repoclosure_backend (szr)— Select which tool should be used to run repoclosure over created repositories. By default
yum is used, but you can switch to dnf. Please note that when dnf is used, the build dependencies check is
skipped. On Python 3, only dnf backend is available.

compose_type (str) — Allows to set default compose type. Type set via a command-line option overwrites this.

4.4.2 Example

comps_file = {
"scm": "git",
"repo": "https://git.fedorahosted.org/git/comps.git",
"branch": None,
"file": "comps-f23.xml.in",
}
variants_file = {
"scm": "git",
"repo": "https://pagure.io/pungi-fedora.git ",

"branch": None,
"file": "variants-fedora.xml",

(continues on next page)

4.4. General Settings 13

Pungi Documentation, Release 4.2.1

(continued from previous page)

failable_deliverables = [
(""axSt, |
Buildinstall can fail on any variant and any arch
'«': ['buildinstall'],
'src': ['buildinstall'],
Nothing on 1386 blocks the compose
'i386': ['buildinstall', 'iso', 'live'],

tree_arches = ["x86_64"]
tree_variants = ["Server"]

repoclosure_strictness = [
Make repoclosure failures fatal for compose on all variants
(""oxS', {'x': 'fatal'}),
... except for Everything where it should not run at all.
('"Everything$', {'x': 'off'})

4.5 Image Naming

Both image name and volume id are generated based on the configuration. Since the volume id is limited to 32
characters, there are more settings available. The process for generating volume id is to get a list of possible formats
and try them sequentially until one fits in the length limit. If substitutions are configured, each attempted volume id
will be modified by it.

For layered products, the candidate formats are first image_volid_layered_product_formats followed by
image_volid_formats. Otherwise, only image_volid_formats are tried.

If no format matches the length limit, an error will be reported and compose aborted.

4.5.1 Options

There a couple common format specifiers available for both the options:
e compose_id
e release_short
e version
¢ date
* respin
* type
e type_suffix
e label
e label_major_version
e variant

* arch

14 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

e disc_type

image_name_format [optional] (stridict) — Python’s format string to serve as template for image names. The value
can also be a dict mapping variant UID regexes to the format string. The pattern should not overlap, otherwise
it is undefined which one will be used.

This format will be used for all phases generating images. Currently that means createiso, live_images
and buildinstall.

Available extra keys are:
* disc_num
e suffix
image_volid_formats [optional] (l/ist) — A list of format strings for generating volume id.
The extra available keys are:
* base_product_short
* base_product_version

image_volid_layered_product_formats [optional] (l/ist) — A list of format strings for generating volume id for lay-
ered products. The keys available are the same as for image_volid_formats.

restricted_volid = False (bool) — New versions of lorax replace all non-alphanumerical characters with dashes (un-
derscores are preserved). This option will mimic similar behaviour in Pungi.

volume_id_substitutions [optional] (dict) — A mapping of string replacements to shorten the volume id.
disc_types [optional] (dict) — A mapping for customizing disc_type used in image names.
Available keys are:
* boot —for boot . iso images created in buildinstall phase
* live — for images created by live_images phase
* dvd - for images created by createiso phase
* ostree — for ostree installer images

Default values are the same as the keys.

4.5.2 Example

Image name respecting Fedora's image naming policy
n

image_name_format = - - - -
n

R

Use the same format for volume id

image_volid_formats = [
" "

]
No special handling for layered products, use same format as for regular images
image_volid_layered_product_formats = []
Replace "Cloud" with "C" in volume id etc.
volume_id_substitutions = {

'Cloud': 'cCc"',

'Alpha': 'A'",

'Beta': 'B',

'‘Ter: 'TY,

(continues on next page)

4.5. Image Naming 15

Pungi Documentation, Release 4.2.1

(continued from previous page)

disc_types = {

'boot': 'netinst',
'live': 'Live',
'dvd': 'DVD',

4.6 Signhing

If you want to sign deliverables generated during pungi run like RPM wrapped images. You must provide few config-
uration options:

signing_command [optional] (str) — Command that will be run with a koji build as a single argument. This command
must not require any user interaction. If you need to pass a password for a signing key to the command, do this
via command line option of the command and use string formatting syntax $ (signing_key_password) s.
(See signing_key_password_file).

signing_key_id [optional] (str) — ID of the key that will be used for the signing. This ID will be used when craft-
ing koji paths to signed files (ko jipkgs.fedoraproject.org/packages/NAME/VER/REL/data/
signed/KEYID/..).

signing_key_password_file [optional] (str) — Path to a file with password that will be formatted into sign-
ing_command string via $ (signing_key_password) s string format syntax (if used). Because pungi
config is usualy stored in git and is part of compose logs we don’t want password to be included directly in the
config. Note: If — string is used instead of a filename, then you will be asked for the password interactivelly
right after pungi starts.

4.6.1 Example

signing_command = '~/git/releng/scripts/sigulsign_unsigned.py -vv —--password=
— fedora-24"

signing_key_id = '81b46521"

signing_key_password_file = '~/password_for_ fedora-24_key'

4.7 Git URLs

In multiple places the config requires URL of a Git repository to download some file from. This URL is passed on to
Koji. 1t is possible to specify which commit to use using this syntax:

’git://git.example.com/git/repo—name.git?#<rev_spec>

The <rev_spec> pattern can be replaced with actual commit SHA, a tag name, HEAD to indicate that tip of default
branch should be used or origin/<branch_name> to use tip of arbitrary branch.

If the URL specifies a branch or HEAD, Pungi will replace it with the actual commit SHA. This will later show up in
Koji tasks and help with tracing what particular inputs were used.

Note: The origin must be specified because of the way Koji works with the repository. It will clone the repository
then switch to requested state with git reset —--hard REF. Since no local branches are created, we need to use

16 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

full specification including the name of the remote.

4.8 Createrepo Settings

4.8.1 Options

createrepo_checksum (str) — specify checksum type for createrepo; expected values: sha512, sha256, sha.
Defaults to sha256.

createrepo_c = True (bool) — use createrepo_c (True) or legacy createrepo (False)

createrepo_deltas = False (/ist) — generate delta RPMs against an older compose. This needs to be used together with
——old-composes command line argument. The value should be a mapping of variants and architectures that
should enable creating delta RPMs. Source and debuginfo repos never have deltas.

createrepo_use_xz = False (bool) — whether to pass ——xz to the createrepo command. This will cause the SQLite
databases to be compressed with xz.

createrepo_num_threads (inf) — how many concurrent createrepo process to run. The default is to use one
thread per CPU available on the machine.

createrepo_num_workers (int) — how many concurrent createrepo workers to run. Value defaults to 3.

createrepo_database (bool) — whether to create SQLite database as part of the repodata. This is only useful as an
optimization for clients using Yum to consume to the repo. Default value depends on gather backend. For DNF
it’s turned off, for Yum the default is True.

createrepo_extra_args (/str]) — a list of extra arguments passed on to createrepo or createrepo_c exe-
cutable. This could be useful for enabling zchunk generation and pointing it to correct dictionaries.

product_id = None (scm_dict) — 1If specified, it should point to a directory with certificates
<variant_uid>-<arch>-+.pem. Pungi will copy each certificate file into the relevant Yum repos-
itories as a productid file in the repodata directories. The purpose of these productid files is to
expose the product data to subscription-manager. subscription-manager inclues a “product-id” Yum plugin that
can read these product id certificate files from each Yum repository.

product_id_allow_missing = False (bool) — When product_id is used and a certificate for some variant and ar-
chitecture is missing, Pungi will exit with an error by default. When you set this option to True, Pungi will
ignore the missing certificate and simply log a warning message.

4.8.2 Example

createrepo_checksum = "sha"
createrepo_deltas = [
All arches for Everything should have deltas.

('""Everything$', {'x': True}),
Also Server.x86_64 should have them (but not on other arches).
(""ServerS$', {'x86_64"': True}),

4.8. Createrepo Settings 17

https://github.com/candlepin/subscription-manager

Pungi Documentation, Release 4.2.1

4.9 Package Set Settings

4.9.1 Options

sigkeys ([str or None]) — priority list of sigkeys; if the list includes an empty string or None, unsigned packages will
be allowed

pkgset_source [mandatory] (str) — “koji” (any koji instance) or “repos” (arbitrary yum repositories)
pkgset_koji_tag (strl[str]) —tag(s) to read package set from. This option can be omitted for modular composes.
pkgset_koji_builds (strl/str]) — extra build(s) to include in a package set defined as NVRs.

pkgset_koji_module_tag (stzrl[str]) — tags to read module from. This option works similarly to listing tags in variants
XML. If tags are specified and variants XML specifies some modules via NSVC (or part of), only modules
matching that list will be used (and taken from the tag). Inheritance is used automatically.

pkgset_koji_inherit = True (bool) — inherit builds from parent tags; we can turn it off only if we have all builds
tagged in a single tag

pkgset_Kkoji_inherit_modules = False (bool) — the same as above, but this only applies to modular tags. This option
applies to the content tags that contain the RPMs.

pkgset_repos (dict) — A mapping of architectures to repositories with RPMs: {arch: [repo] }. Only use when
pkgset_source = "repos".

pkgset_exclusive_arch_considers_noarch = True (bool) — If a package includes noarch inits ExclusiveArch
tag, it will be included in all architectures since noarch is compatible with everything. Set this option to
False toignore noarch in ExclusiveArch and always consider only binary architectures.

4.9.2 Example

sigkeys = [None]
pkgset_source = "koji"
pkgset_koji_tag = "f£23"

4.10 Buildinstall Settings

Script or process that creates bootable images with Anaconda installer is historically called buildinstall.

4.10.1 Options

buildinstall_method (str) — “lorax” (f16+, rhel7+) or “buildinstall” (older releases)
lorax_options (list) — special options passed on to lorax.
Format: [(variant_uid_regex, {arch|x: {option: name}})].
Recognized options are:
¢ bugurl — str (default None)
¢ nomacboot — bool (default True)
e noupgrade — bool (default True)

e add_template — [str] (default empty)

18 Chapter 4. Configuration

https://git.fedorahosted.org/cgit/anaconda.git/tree/scripts/buildinstall?h=f15-branch

Pungi Documentation, Release 4.2.1

* add_arch_template — [str] (default empty)

* add_template_var — [str] (default empty)

* add_arch_template_var — [str] (default empty)
* rootfs_size — [int] (default empty)

e version — [str] (default from treeinfo_version or release_version) — used as
—-—version and ——release argument on the lorax command line

* dracut_args — [[str]] (default empty) override arguments for dracut. Please note that if this option
is used, lorax will not use any other arguments, so you have to provide a full list and can not just add
something.

lorax_extra_sources (list) — a variant/arch mapping with urls for extra source repositories added to Lorax command
line. Either one repo or a list can be specified.

lorax_use_koji_plugin = False (bool) — When set to True, the Koji pungi_buildinstall task will be used to execute
Lorax instead of runroot. Use only if the Koji instance has the pungi_buildinstall plugin installed.

buildinstall_Kkickstart (scm_dict) — If specified, this kickstart file will be copied into each file and pointed to in boot
configuration.

buildinstall_topdir (str) — Full path to top directory where the runroot buildinstall Koji tasks output should be stored.
This is useful in situation when the Pungi compose is not generated on the same storage as the Koji task is
running on. In this case, Pungi can provide input repository for runroot task using HTTP and set the output
directory for this task to buildinstall_topdir. Once the runroot task finishes, Pungi will copy the results
of runroot tasks to the compose working directory.

buildinstall_skip (/ist) — mapping that defines which variants and arches to skip during buildinstall; format:
[(variant_uid_regex, {arch|x: True})]. Thisis only supported for lorax.

4.10.2 Example

buildinstall_method = "lorax"

Enables macboot on x86_64 for all variants and builds upgrade images
everywhere.
lorax_options = [

(HA'*$H’ {
"x86_64": {
"nomacboot": False

}
LR {

"noupgrade": False

b

Don't run buildinstall phase for Modular variant
buildinstall_skip = [
('*Modular', {
'x': True

})

Add another repository for lorax to install packages from
lorax_extra_sources = [

(continues on next page)

4.10. Buildinstall Settings 19

Pungi Documentation, Release 4.2.1

(continued from previous page)

('""SimpleS$', |
'x': 'https://example.com/repo/S$Sbasearch/"',
})

Note: It is advised to run buildinstall (lorax) in koji, i.e. with runroot enabled for clean build environments, better
logging, etc.

Warning: Lorax installs RPMs into a chroot. This involves running %post scriptlets and they frequently run
executables in the chroot. If we’re composing for multiple architectures, we must use runroot for this reason.

4.11 Gather Settings

4.11.1 Options

gather_method [mandatory] (str*|*dict) — Options are deps, nodeps and hybrid. Specifies whether and how
package dependencies should be pulled in. Possible configuration can be one value for all variants, or if con-
figured per-variant it can be a simple string hybrid or a a dictionary mapping source type to a value of deps
or nodeps. Make sure only one regex matches each variant, as there is no guarantee which value will be used
if there are multiple matching ones. All used sources must have a configured method unless hybrid solving is
used.

gather_fulltree = False (bool) — When set to True all RPMs built from an SRPM will always be included. Only use
when gather_method = "deps".

gather_selfhosting = False (bool) — When set to True, Pungi will build a self-hosting tree by following build de-
pendencies. Only use when gather_method = "deps".

gather_allow_reuse = False (bool) — When set to True, Pungi will try to reuse gather results from old compose
specified by ——old-composes.

greedy_method (str) — This option controls how package requirements are satisfied in case a particular Requires
has multiple candidates.

* none —the best packages is selected to satisfy the dependency and only that one is pulled into the compose
* all - packages that provide the symbol are pulled in

* build - the best package is selected, and then all packages from the same build that provide the symbol
are pulled in

Note: As an example let’s work with this situation: a package in the compose has Requires:
foo. There are three packages with Provides: foo: pkg-a, pkg-b-provider-1 and
pkg-b-provider-2. The pkg-b-=* packages are build from the same source package. Best match de-
termines pkg-b-provider—1 as best matching package.

e With greedy_method = "none" only pkg-b-provider-1 will be pulled in.

e With greedy_method = "all" all three packages will be pulled in.

¢ With greedy_method = "build" " pkg-b-provider-1 and pkg-b-provider-2 will be
pulled in.

20 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

gather_backend (str) —This changes the entire codebase doing dependency solving, so it can change the result in
unpredictable ways.

On Python 2, the choice is between yum or dnf and defaults to yum. On Python 3 dnf is the only option and
default.

Particularly the multilib work is performed differently by using python-multilib library. Please refer to
multilib option to see the differences.

multilib (/ist) — mapping of variant regexes and arches to list of multilib methods
Available methods are:
* none —no package matches this method
* all - all packages match this method
e runtime — packages that install some shared object file (x . so.) will match.

e devel — packages whose name ends with —devel or ——static suffix will be matched. When
dnf is used, this method automatically enables runt ime method as well. With yum backend this
method also uses a hardcoded blacklist and whitelist.

e kernel — packages providing kernel or kernel-devel match this method (only in yum back-
end)

* yaboot —only yaboot package on ppc arch matches this (only in yum backend)

additional_packages (list) — additional packages to be included in a variant and architecture; format:
[(variant_uid_regex, {arch]x*: [package_globs]})]

The packages specified here are matched against RPM names, not any other provides in the package not the
name of source package. Shell globbing is used, so wildcards are possible. The package can be specified as
name only or name . arch.

With dnf gathering backend, you can specify a debuginfo package to be included. This is meant to include a
package if autodetection does not get it. If you add a debuginfo package that does not have anything else from
the same build included in the compose, the sources will not be pulled in.

filter_packages (list) — packages to be excluded from a variant and architecture; format:
[(variant_uid_regex, {arch]|x*: [package_globs]})]

See additional_packages for details about package specification.

filter_modules (/ist) — modules to be excluded from a variant and architecture; format: [(variant_uid_regex,
{arch]| *: [name:stream] })]

Both name and stream can use shell-style globs. If stream is omitted, all streams are removed.

This option only applies to modules taken from Koji tags, not modules explicitly listed in variants XML without
any tags.

filter_system_release_packages (bool) — for each variant, figure out the best system release package and filter out all
others. This will not work if a variant needs more than one system release package. In such case, set this option
toFalse.

gather_prepopulate = None (scm_dict) — If specified, you can use this to add additional packages. The for-
mat of the file pointed to by this option is a JSON mapping {variant_uid: {arch: {build:
[package] } } }. Packages added through this option can not be removed by filter_packages.

multilib_blacklist (dict) — multilib blacklist; format: {arch]| *: [package_globs]}.

See additional_packages for details about package specification.

4.11. Gather Settings 21

Pungi Documentation, Release 4.2.1

multilib_whitelist (dictr) — multilib blacklist; format: {arch]| *: [package_names]}. The whitelist must
contain exact package names; there are no wildcards or pattern matching.

gather_lookaside_repos =[] (list) — lookaside repositories used for package gathering; format:
[(variant_uid_regex, {arch]x*: [repo_urls]})]

hashed_directories = False (bool) — put packages into ‘“hashed” directories, for example Packages/k/
kernel-4.0.4-301.£fc22.x86_64.rpm

check_deps = True (bool) — Set to False if you don’t want the compose to abort when some package has broken
dependencies.

require_all_comps_packages = False (bool) — Set to True to abort compose when package mentioned in comps file
can not be found in the package set. When disabled (the default), such cases are still reported as warnings in the
log.

gather_source_mapping (str) — JSON mapping with initial packages for the compose. The value should be a path to
JSON file with following mapping: {variant: {arch: {rpm_name: [rpm_arch|None]}}}.

gather_profiler = False (bool) — When set to True the gather tool will produce additional performance profiling
information at the end of its logs. Only takes effect when gather_backend = "dnf".

variant_as_lookaside (/ist) — a variant/variant mapping that tells one or more variants in compose has other vari-
ant(s) in compose as a lookaside. Only top level variants are supported (not addons/layered products). Format:
[(variant_uid, wvariant_uid)]

4.11.2 Example

gather_method = "deps"
greedy_method = "build"
check_deps = False
hashed_directories = True

gather_method = {
"“"Everything$": {
"comps": "deps" # traditional content defined by comps groups
}I
"~"Modulars$": {

"module": "nodeps" # Modules do not need dependencies
}I
""MixedS": | # Mixed content in one variant
"comps": "deps",
"module": "nodeps"
}
"~OtherMixed$": "hybrid", # Using hybrid depsolver

additional_packages = [
bz#123456
(" (Workstation|Server)$', {
V*l: [
'grub2',
'kernel’',

1)y

filter_packages = [

(continues on next page)

22 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

(continued from previous page)

bz#111222
("axST, |
LR [
'kernel-doc',
JV
1)y
1

multilib = [
('""Servers$', {
'x86_64": ['devel', 'runtime']
1)
1

multilib_blacklist
"*H : [

"gCC",

I
—~—

1,
}

multilib_whitelist = {
"*H: [

"alsa-plugins—»",

1,
}

gather_lookaside_repos = [

("roxst, o

'x86_64": [

"https://dl.fedoraproject.org/pub/fedora/linux/releases/22/Everything/
—x86_64/0s/",

"https://dl.fedoraproject.orqg/pub/fedora/linux/releases/22/Everything/
—source/SRPMS/",

]

1)y

1]

Note: It is a good practice to attach bug/ticket numbers to additional_packages, filter_packages, multilib_blacklist
and multilib_whitelist to track decisions.

4.12 Koji Settings

4.12.1 Options

koji_profile (str) — koji profile name. This tells Pungi how to communicate with your chosen Koji instance. See
Koji’s documentation about profiles for more information about how to set up your Koji client profile. In the
examples, the profile name is “koji”, which points to Fedora’s koji.fedoraproject.org.

global_runroot_method (str) — global runroot method to use. If runroot_method is set per Pungi phase using a
dictionary, this option defines the default runroot method for phases not mentioned in the runroot_method
dictionary.

4.12. Koji Settings 23

https://docs.pagure.org/koji/profiles/

Pungi Documentation, Release 4.2.1

runroot_method (str*|*dict) — Runroot method to use. It can further specify the runroot method in case the
runroot is set to True.

Available methods are:
e local —runroot tasks are run locally
* koJji —runroot tasks are run in Koji

* openssh — runroot tasks are run on remote machine connected using OpenSSH. The
runroot_ssh_hostnames for each architecture must be set and the user under which Pungi
runs must be configured to login as runroot_ssh_username using the SSH key.

The runroot method can also be set per Pungi phase using the dictionary with phase name as key and runroot
method as value. The default runroot method is in this case defined by the global_runroot_method
option.

4.12.2 Example

global_runroot_method = "koji"
runroot_method = {
"createiso": "local"

}

runroot_channel (str) — name of koji channel
runroot_tag (str) — name of koji build tag used for runroot

runroot_weights (dict) — customize task weights for various runroot tasks. The values in the mapping should be
integers, the keys can be selected from the following list. By default no weight is assigned and Koji picks the
default one according to policy.

e buildinstall
* createiso
* ostree

e ostree_installer

4.12.3 Example

koji_profile = "koji"
runroot_channel = "runroot"
runroot_tag = "f23-build"

4.13 Runroot “openssh” method settings

4.13.1 Options

runroot_ssh_username (str) — For openssh runroot method, configures the username used to login the remote
machine to run the runroot task. Defaults to “root”.

runroot_ssh_hostnames (dict) — For openssh runroot method, defines the hostname for each architecture on which
the runroot task should be running. Format: {"x86_64": "runroot-x86-64.localhost.tld",

-}

24 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

runroot_ssh_init_template (str) [optional] — For openssh runroot method, defines the command to initializes the
runroot task on the remote machine. This command is executed as first command for each runroot task executed.

The command can print a string which is then available as { runroot_key} for other SSH commands. This
string might be used to keep the context across different SSH commands executed for single runroot task.

The goal of this command is setting up the environment for real runroot commands. For example preparing the
unique mock environment, mounting the desired file-systems, ...

The command string can contain following variables which are replaced by the real values before executing the
init command:

* {runroot_tag} - Tag to initialize the runroot environment from.
When not set, no init command is executed.

runroot_ssh_install_packages_template (str) [optional] — For openssh runroot method, defines the template for
command to install the packages requested to run the runroot task.

The template string can contain following variables which are replaced by the real values before executing the
install command:

e {runroot_key} - Replaced with the string returned by runroot_ssh_init_template if used.
This can be used to keep the track of context of SSH commands beloging to single runroot task.

* {packages} - White-list separated list of packages to install.

Example (The {runroot_key} 1is expected to be set to mock config file wusing the
runroot_ssh_init_template command.): "mock -r {runroot_key} -—-install
{packages}™"

When not set, no command to install packages on remote machine is executed.

runroot_ssh_run_template (str) [optional] — For openssh runroot method, defines the template for the main run-
root command.

The template string can contain following variables which are replaced by the real values before executing the
install command:

* {runroot_key} - Replaced with the string returned by runroot_ssh_init_template if used.
This can be used to keep the track of context of SSH commands beloging to single runroot task.

¢ {command} - Command to run.

Example (The {runroot_key} 1is expected to be set to mock config file using the
runroot_ssh_init_template command.): "mock -r {runroot_key} chroot --
{command}"

When not set, the runroot command is run directly.

4.14 Extra Files Settings

4.14.1 Options

extra_files (list) — references to external files to be placed in os/ directory and media; format:
[(variant_uid_regex, {arch|*: [scm_dict]})]1. See Exporting files from SCM for details.
If the dict specifies a target key, an additional subdirectory will be used.

4.14. Extra Files Settings 25

Pungi Documentation, Release 4.2.1

4.14.2 Example

extra_files = [
("~oxst, |
Al * L} . [
GPG keys
{
"scm": "rpm",
"repo": "fedora-repos",
"branch": None,
"file": [
"/etc/pki/rpm-gpg/RPM-GPG-KEY-22-fedora",
]I
"target": "",
}l
GPL
{
"scm": "git",
"repo": "https://pagure.io/pungi-fedora",
"branch": None,
"file": [
"GPL",
]I

"target" . H,

4.14.3 Extra Files Metadata

If extra files are specified a metadata file, extra_files. json, is placed in the os/ directory and media. The
checksums generated are determined by media_checksums option. This metadata file is in the format:

{

"header": {"version": "1.0},
"data": [
{
"file": "GPL",
"checksums": {
"sha256": "8177£97513213526df2cf6184d8ff986c675afb514d4e68a404010521b880643"

b
"size": 18092

"file": "release-notes/notes.html",
"checksums": {
"sha256": "82blba8db522aadfl101dca6404235fbal79e559095ea24ff39%9eele5d9%9a53bdchb"

bo
"size": 1120

26 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

4.15 CreatelSO Settings

4.15.1 Options

createiso_skip = False (/ist) — mapping that defines which variants and arches to skip during createiso; format: [(vari-
ant_uid_regex, {archl*: True})]

createiso_max_size (l/isf) — mapping that defines maximum expected size for each variant and arch. If the ISO is
larger than the limit, a warning will be issued.

Format: [(variant_uid_regex, {arch|*: number})]

createiso_max_size_is_strict (/isf) — Set the value to True to turn the warning from createiso_max_size into
a hard error that will abort the compose. If there are multiple matches in the mapping, the check will be strict if
at least one match says so.

Format: [(variant_uid_regex, {arch|x: bool})]
create_jigdo = True (bool) — controls the creation of jigdo from ISO

create_optional_isos = False (bool) — when set to True, ISOs will be created even for optional variants. By
default only variants with type variant or layered-product will get ISOs.

createiso_break_hardlinks = False (bool)— when set to True, all files that should go on the ISO and have a hardlink
will be first copied into a staging directory. This should work around a bug in genisoimage including
incorrect link count in the image, but it is at the cost of having to copy a potentially significant amount of data.

The staging directory is deleted when ISO is successfully created. In that case the same task to create the ISO
will not be re-runnable.

iso_size = 4700000000 (intlstr) — size of ISO image. The value should either be an integer meaning size in bytes, or
it can be a string with k, M, G suffix (using multiples of 1024).

split_iso_reserve = 10MiB (intlstr) — how much free space should be left on each disk. The format is the same as for
iso_size option.

iso_hfs_ppc64le_compatible = True (bool) — when set to False, the Apple/HFS compatibility is turned off for
ppc64le ISOs. This option only makes sense for bootable products, and affects images produced in createiso
and extra_isos phases.

Note: Source architecture needs to be listed explicitly. Excluding “*’ applies only on binary arches. Jigdo causes
significant increase of time to ISO creation.

4.15.2 Example

createiso_skip = [
(""Workstation$', {
'"x': True,
'src': True

)y

4.15. CreatelSO Settings 27

Pungi Documentation, Release 4.2.1

4.16 Automatic generation of version and release

Version and release values for certain artifacts can be generated automatically based on release version, compose label,
date, type and respin. This can be used to shorten the config and keep it the same for multiple uses.

Compose ID Label Version Date Respin | Release
F-Rawhide-20170406.n. - Rawhide 20170406 | O 20170406.n.
0 0
F-26-20170329.1 Alpha-1.6 26_Alpha | 20170329 | 1 1.6
F-Atomic-25-20170407. RC-20170407. 25 20170407 | 0 20170407.0
0 0

F-Atomic-25-20170407. - 25 20170407 | O 20170407.0
0

All non-RC milestones from label get appended to the version. For release either label is used or date, type and respin.

4.17 Common options for Live Images, Live Media and Image Build

All images can have ksurl, version, release and target specified. Since this can create a lot of duplication,
there are global options that can be used instead.

For each of the phases, if the option is not specified for a particular deliverable, an option named
<PHASE_NAME>_<OPTION> is checked. If that is not specified either, the last fallback is global_<OPTION>. If
even that is unset, the value is considered to not be specified.

The kickstart URL is configured by these options.
* global_ksurl — global fallback setting
e live_media_ksurl
* image_build_ksurl
e live_images_ksurl

Target is specified by these settings.
* global_target — global fallback setting
* live_media_target
* image_build_target
e live_images_target

Version is specified by these options. If no version is set, a default value will be provided according to automatic
versioning.

* global_version — global fallback setting
e live_media_version

* image_build_version

e live_images_version

Release is specified by these options. If set to a magic value to ! RELEASE_FROM_LABEL_DATE_TYPE_RESPIN,
a value will be generated according to automatic versioning.

* global_release — global fallback setting

28 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

e live_media_release
* image_build_release
* live_images_release

Each configuration block can also optionally specify a failable key. For live images it should have a boolean value.
For live media and image build it should be a list of strings containing architectures that are optional. If any deliverable
fails on an optional architecture, it will not abort the whole compose. If the list contains only "+ ", all arches will be
substituted.

4.18 Live Images Settings

live_images (list) — Configuration for the particular image. The elements of the list should be tuples
(variant_uid_regex, {arch|*: config}). The config should be a dict with these keys:

e kickstart (str)

e ksurl (str) [optional] — where to get the kickstart from

* name (str)

e version (str)

* target (str)

* repo (strlfstr]) — repos specified by URL or variant UID

* specfile (str) — for images wrapped in RPM

* scratch (bool) — only RPM-wrapped images can use scratch builds, but by default this is turned off

* type (str) — what kind of task to start in Koji. Defaults to 1ive meaning koji spin-livecd will be
used. Alternative option is appliance corresponding to koji spin-appliance.

e sign (bool) — only RPM-wrapped images can be signed

live_images_no_rename (bool) — When set to True, filenames generated by Koji will be used. When False,
filenames will be generated based on image_name_format configuration option.

4.19 Live Media Settings

live_media (dict) — configuration for koji spin-livemedia; format: {variant_uid_regex:
[{opt:value}l}

Required options:
* name (str)
e version (str)
e arches ([str]) — what architectures to build the media for; by default uses all arches for the variant.
e kickstart (str) — name of the kickstart file
Available options:
e ksurl (str)
* ksversion (str)

e scratch (bool)

4.18. Live Images Settings 29

Pungi Documentation, Release 4.2.1

* target (str)

e release (str) — a string with the release, or ! RELEASE_FROM_LABEL_DATE_TYPE_RESPIN to
automatically generate a suitable value. See automatic versioning for details.

e skip_tag (bool)
* repo (strlfstr]) — repos specified by URL or variant UID
e title (str)

e install_tree_from (str) — variant to take install tree from

4.20 Image Build Settings

image_build (dict) — config for koji image-build; format: {variant_uid_regex: [{opt: value}]}

By default, images will be built for each binary arch valid for the variant. The config can specify a list of arches
to narrow this down.

Note: Config can contain anything what is accepted by koji image-build —--config configfile.ini

Repo can be specified either as a string or a list of strings. It will be automatically transformed into format suitable for
ko7ji. A repo for the currently built variant will be added as well.

If you explicitly set release to !|RELEASE_FROM_LABEL_DATE_TYPE_RESPIN, it will be replaced with a
value generated as described in automatic versioning.

If you explicitly set release to | RELEASE_FROM_DATE_RESPIN, it will be replaced with a value generated as
described in automatic versioning.

If you explicitly set version to ! VERSION_FROM_VERSION, it will be replaced with a value generated as de-
scribed in automatic versioning.

Please don’t set install_tree. This gets automatically set by pungi based on current variant. You can use
install_tree_fromkey to use install tree from another variant.

Both the install tree and repos can use one of following formats:
* URL to the location
* name of variant in the current compose

* absolute path on local filesystem (which will be translated using configured mappings or used unchanged, in
which case you have to ensure the koji builders can access it)

You can set either a single format, or a list of formats. For available values see help output for koji image-build
command.

If ksurl ends with #HEAD, Pungi will figure out the SHA1 hash of current HEAD and use that instead.

Setting scratch to True will run the koji tasks as scratch builds.

4.20.1 Example

30 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

image_build = {
'“"ServerS$': [

{

'image-build': {

'format': ['docker', 'gcow2']

'name': 'fedora-gcow-and-docker-base',

'target': 'koji-target-name',

'ksversion': 'F23', # value from pykickstart

'version': '23',

correct SHAI hash will be put into the URL below automatically

'ksurl': 'https://git.fedorahosted.org/git/spin-kickstarts.git?
—somedirectoryifany#HEAD',

'kickstart': "fedora-docker-base.ks",

'repo': ["http://someextrarepos.org/repo", "ftp://rekcod.oi/repo"],

'distro': 'Fedora-20',

'disk_size': 3,

this is set automatically by pungi to os_dir for given variant

'install_tree': 'http://somepath’,
}I
'factory-parameters': {
'docker_cmd': "['/bin/bash' 1",
'docker_env': "['PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
—bin:/sbin:/bin' 1",
'docker_labels': "{'Name': 'fedora-docker-base', 'License': u'GPLv2',
—'RUN': 'docker run —-it —-rm ${OPT1} --privileged -v \'pwd\':/atomicapp -v /run:/run,
——v /:/host ——net=host —--name ${NAME} —e NAME=S$ {NAME} —e IMAGE=S${IMAGE} ${IMAGE} -v $
—{OPT2} run ${OPT3} /atomicapp', 'Vendor': 'Fedora Project', 'Version': '23"',
—'"Architecture': 'x86_64" }",

}
by
{

'image-build': {

'format': ['docker', 'qgcow2']

'name': 'fedora-gcow—and-docker-base',

'target': 'koji-target-name',

'ksversion': 'F23', # value from pykickstart

'version': '23"',

correct SHAI hash will be put into the URL below automatically

'ksurl': 'https://git.fedorahosted.org/git/spin-kickstarts.git?
—somedirectoryifany#HEAD',

'kickstart': "fedora-docker-base.ks",

'repo': ["http://someextrarepos.org/repo", "ftp://rekcod.oi/repo"l],

'distro': 'Fedora-20',

'disk_size': 3,

this is set automatically by pungi to os_dir for given variant
'install_tree': 'http://somepath’,

'image-build': {
'format': 'gcow2',
'name': 'fedora-gcow-base',
'target': 'koji-target-name',
'ksversion': 'F23', # value from pykickstart
'version': '23"',

(continues on next page)

4.20. Image Build Settings 31

Pungi Documentation, Release 4.2.1

(continued from previous page)

'ksurl': 'https://git.fedorahosted.org/git/spin-kickstarts.git?
—somedirectoryifany#HEAD',

'kickstart': "fedora-docker-base.ks",

'distro': 'Fedora-23',

only build this type of image on x86_64
'arches': ['x86_64"]

Use install tree and repo from Everything variant.
'install _tree_from': 'Everything',
'repo': ['Everything'],

Set release automatically.
"release': '!RELEASE_FROM_LABEL_DATE_TYPE_RESPIN',

4.21 OSTree Settings

The ostree phase of Pungi can create and update ostree repositories. This is done by running rpm-ostree
compose in a Koji runroot environment. The ostree repository itself is not part of the compose and should be located
in another directory. Any new packages in the compose will be added to the repository with a new commit.

ostree (dict) — a mapping of configuration for each. The format should be {variant_ uid_regex:
config_dict}. Itis possible to use a list of configuration dicts as well.

The configuration dict for each variant arch pair must have these keys:
e treefile — (str) Filename of configuration for rom-ostree.
e config_url — (str) URL for Git repository with the treefile.

* repo — (strldictl[strldict]) repos specified by URL or variant UID or a dict of repo options, baseurl is
required in the dict.

* ostree_repo — (str) Where to put the ostree repository
These keys are optional:

* keep_original_sources — (bool) Keep the existing source repos in the tree config file. If not en-
abled, all the original source repos will be removed from the tree config file.

* config_branch — (str) Git branch of the repo to use. Defaults to master.

e arches — ([str]) List of architectures for which to update ostree. There will be one task per architecture.
By default all architectures in the variant are used.

e failable — ([str]) List of architectures for which this deliverable is not release blocking.
* update_summary — (bool) Update summary metadata after tree composing. Defaults to False.
e force_new_commit — (bool) Do not use rpm-ostree’s built-in change detection. Defaults to False.

e version — (str) Version string to be added as versioning metadata. If this option is set to !
OSTREE_VERSION_FROM_LABEL_DATE_TYPE_RESPIN, a value will be generated automatically as
SVERSION.$SRELEASE. If this option is set to ! VERSION_FROM_VERSION_DATE_RESPIN, a value
will be generated automatically as SVERSION. $DATE . SRESPIN. See how those values are created.

32 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

* tag_ref — (bool, default True) If set to False, a git reference will not be created.

e ostree_ref — (str) To override value ref from treefile.

4.21.1 Example config

ostree = {
"AAtomicS": |
"treefile": "fedora-atomic-docker-host.json",
"config_url": "https://git.fedorahosted.org/git/fedora-atomic.git",
"repo": [
"Server",
"http://example.com/repo/x86_64/os",
{"baseurl": "Everything"},
{"baseurl": "http://example.com/linux/repo", "exclude": "systemd-container
;)"}I
:|7
"keep_original_sources": True,
"ostree_repo": "/mnt/koji/compose/atomic/Rawhide/",

"update_summary": True,
Automatically generate a reasonable version

"version": "!OSTREE_VERSION_FROM_LABEL_DATE_TYPE_RESPIN",
Only run this for x86_64 even if Atomic has more arches
"arches": ["x86_64"],

4.22 Ostree Installer Settings

The ostree_installer phase of Pungi can produce installer image bundling an OSTree repository. This always
runs in Koji as a runroot task.

ostree_installer (dict)— a variant/arch mapping of configuration. The format shouldbe [(variant_uid_regex,
{arch|x: config_dict})].

The configuration dict for each variant arch pair must have this key:
These keys are optional:
e repo — (strl[str]) repos specified by URL or variant UID

e release — (str) Release value to set for the installer image. Set to !
RELEASE_FROM_LABEL_DATE_TYPE_RESPIN to generate the value automatically.

e failable — ([str]) List of architectures for which this deliverable is not release blocking.
These optional keys are passed to 1orax to customize the build.

* installpkgs — ([str])

* add_template — ([str])

e add_arch_template — ([str])

e add_template_var — ([str])

* add_arch_template_var — ([str])

e rootfs_size— ([str])

4.22. Ostree Installer Settings 33

Pungi Documentation, Release 4.2.1

* template_repo — (str) Git repository with extra templates.
e template_branch — (str) Branch to use from template_repo.

The templates can either be absolute paths, in which case they will be used as configured; or they can be relative
paths, in which case template_repo needs to point to a Git repository from which to take the templates.

If the templates need to run with additional dependencies, that can be configured with the optional key:
e extra_runroot_pkgs — ([str])

ostree_installer_overwrite = False (bool) — by default if a variant including OSTree installer also creates regular
installer images in buildinstall phase, there will be conflicts (as the files are put in the same place) and Pungi
will report an error and fail the compose.

With this option it is possible to opt-in for the overwriting. The traditional boot . iso will be in the iso/
subdirectory.

4.22.1 Example config

ostree_installer = [
(""Atomics", {
"x86_64": {
"repo": [
"Everything",
"https://example.com/extra-repol.repo",
"https://example.com/extra-repo2.repo",

]I

"release": "!RELEASE_FROM_LABEL_DATE_TYPE_RESPIN",
"installpkgs": ["fedora-productimg-atomic"],
"add_template": ["atomic-installer/lorax-configure-repo.tmpl"],

"add_template_var": [
"ostree_osname=fedora-atomic",
"ostree_ref=fedora—-atomic/Rawhide/x86_64/docker—host",

]I

"add_arch_template": ["atomic-installer/lorax-embed-repo.tmpl"],

"add_arch_template_var": [
"ostree_repo=https://kojipkgs.fedoraproject.org/compose/atomic/

—Rawhide/",

"ostree_osname=fedora-atomic",
"ostree_ref=fedora—-atomic/Rawhide/x86_64/docker—-host",

1

'template_repo': 'https://git.fedorahosted.org/git/spin-kickstarts.git"',

'template_branch': 'f24°',

4.23 OSBS Settings

Pungi can build container images in OSBS. The build is initiated through Koji container-build plugin. The base
image will be using RPMs from the current compose and a Dockerfile from specified Git repository.

Please note that the image is uploaded to a registry and not exported into compose directory. There will be a metadata
filein compose/metadata/osbs. json with details about the built images (assuming they are not scratch builds).

34 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

osbs

(dict) — a mapping from variant regexes to configuration blocks. The format should be
{variant_uid_regex: [config_dict]}.

The configuration for each image must have at least these keys:

e url — (str) URL pointing to a Git repository with Dockerfile. Please see Git URLs section for more
details.

* target — (str) A Koji target to build the image for.

* git_branch — (str) A branch in SCM for the Dockerfile. This is required by OSBS to avoid race
conditions when multiple builds from the same repo are submitted at the same time. Please note that url
should contain the branch or tag name as well, so that it can be resolved to a particular commit hash.

Optionally you can specify failable. If it has a truthy value, failure to create the image will not abort the
whole compose.

Note: Once OSBS gains support for multiple architectures, the usage of this option will most likely change to
list architectures that are allowed to fail.

The configuration will pass other attributes directly to the Koji task. This includes scratch and priority.

A value for yum_repourls will be created automatically and point at a repository in the current compose.
You can add extra repositories with repo key having a list of urls pointing to . repo files or just variant uid,
Pungi will create the .repo file for that variant. gpgkey can be specified to enable gpgcheck in repo files for
variants.

osbs_registries (dict) — It is possible to configure extra information about where to push the image (unless it is a

scratch build). For each finished build, Pungi will try to match NVR against a key in this mapping (using shell-
style globbing) and take the corresponding value and collect them across all built images. The data will be
saved into logs/global/osbs-registries. json as a mapping from Koji NVR to the registry data.
The same data is also sent to the message bus on osbs—request-push topic once the compose finishes
successfully. Handling the message and performing the actual push is outside of scope for Pungi.

4.23.1 Example config

osbs = {
"A"Server$": {
required
"url": "git://example.com/dockerfiles.git?#HEAD",
"target": "f24-docker-candidate",
"git_branch": "f24-docker",
optional
"repo": ["Everything", "https://example.com/extra-repo.repo"],
This will result in three repo urls being passed to the task.
They will be in this order: Server, Everything, example.com/
"gpgkey": 'file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release',
}
}
4.23. OSBS Settings 35

Pungi Documentation, Release 4.2.1

4.24 Extra ISOs

Create an ISO image that contains packages from multiple variants. Such ISO always belongs to one variant, and will
be stored in ISO directory of that variant.

The ISO will be bootable if buildinstall phase runs for the parent variant. It will reuse boot configuration from that

variant.

extra_isos

L]

(dict) — a mapping from variant UID regex to a list of configuration blocks.

include_variants — (list) list of variant UIDs from which content should be added to the ISO; the
variant of this image is added automatically.

Rest of configuration keys is optional.

filename — (str) template for naming the image. In addition to the regular placeholders £ilename is
available with the name generated using image_name_format option.

volid — (str) template for generating volume ID. Again volid placeholder can be used similarly as for
file name. This can also be a list of templates that will be tried sequentially until one generates a volume
ID that fits into 32 character limit.

extra_files — (list) alist of scm_dict objects. These files will be put in the top level directory of the
image.

arches — (list) a list of architectures for which to build this image. By default all arches from the variant
will be used. This option can be used to limit them.

failable_arches — (list) a list of architectures for which the image can fail to be generated and not
fail the entire compose.

skip_src — (bool) allows to disable creating an image with source packages.

inherit_extra_files — (bool) by default extra files in variants are ignored. If you want to include
them in the ISO, set this option to True.

max_size — (int) expected maximum size in bytes. If the final image is larger, a warning will be issued.

4.24.1 Example config

extra_isos = {
'Server': [{

Will generate foo-DP-1.0-20180510.t.43-Server-x86_64-dvdl.iso

'filename': 'foo- ',

'volid': 'foo- ',

'extra_files': [{
'scm': 'git',
'repo': 'https://pagure.io/pungi.git’',
'file': 'setup.py'

Pl

'include_variants': ['Client']

}H

}
This should create image with the following layout:
.
%77 Client
‘ %77 Packages
(continues on next page)
36 Chapter 4. Configuration

Pungi Documentation, Release 4.2.1

(continued from previous page)

I: a

b

— repodata
— Server

—— Packages
I: a

b

L— repodata
'— setup.py

4.25 Media Checksums Settings

media_checksums (/ist) — list of checksum types to compute, allowed values are anything supported by Python’s
hashlib module (see documentation for details).

media_checksum_one_file (bool) — when True, only one CHECKSUM file will be created per directory; this option
requires media_checksums to only specify one type

media_checksum_base_filename (str) — when not set, all checksums will be save to a file named either CHECKSUM
or based on the digest type; this option allows adding any prefix to that name

It is possible to use format strings that will be replace by actual values. The allowed keys are:
e arch
e compose_id
* date
e label
e label_major_version
¢ release_short
* respin
* type
e type_suffix
* version
¢ dirname (only if media_checksum_one_file is enabled)

For example, for Fedora the prefix should be % (release_short) s-% (variant) s—% (version) s-% (date) s% (type_
% (respin) s.

4.26 Translate Paths Settings

translate_paths (list) — list of paths to translate; format: [(path, translated_path)]

Note: This feature becomes useful when you need to transform compose location into e.g. a HTTP repo which is can
be passed to koji image-build. The path partis normalized via os.path.normpath ().

4.25. Media Checksums Settings 37

https://docs.python.org/2/library/hashlib.html

Pungi Documentation, Release 4.2.1

4.26.1 Example config

translate_paths = [
("/mnt/a", "http://b/dir"),
1

4.26.2 Example usage

>>> from pungi.util import translate_paths
>>> print translate_paths (compose_object_with_mapping, "/mnt/a/c/somefile")
http://b/dir/c/somefile

4.27 Miscellaneous Settings

paths_module (str) — Name of Python module implementing the same interface as pungi.paths. This module
can be used to override where things are placed.

link_type = hardlink—-or—copy (str) — Method of putting packages into compose directory.
Available options:
* hardlink-or-copy
e hardlink
* copy
e symlink
e abspath-symlink

skip_phases (/ist) — List of phase names that should be skipped. The same functionality is available via a command
line option.

release_discinfo_description (str) — Override description in . discinfo files. The value is a format string accept-
ing $ (variant_name) s and % (arch) s placeholders.

symlink_isos_to (str) — If set, the ISO files from buildinstall, createiso and 1ive_images phases will
be put into this destination, and a symlink pointing to this location will be created in actual compose directory.

dogpile_cache_backend (str) — If set, Pungi will use the configured Dogpile cache backend to cache various data
between multiple Pungi calls. This can make Pungi faster in case more similar composes are running regularly
in short time.

For list of available backends, please see the https://dogpilecache.readthedocs.io documentation.
Most typical configuration uses the dogpile.cache.dbm backend.

dogpile_cache_arguments (dict) — Arguments to be used when creating the Dogpile cache backend. See the partic-
ular backend’s configuration for the list of possible key/value pairs.

For the dogpile.cache.dbm backend, the value can be for example following:

{

"filename": "/tmp/pungi_cache_file.dbm"

}

38 Chapter 4. Configuration

https://dogpilecache.readthedocs.io

Pungi Documentation, Release 4.2.1

dogpile_cache_expiration_time (int) — Defines the default expiration time in seconds of data stored in the Dogpile
cache. Defaults to 3600 seconds.

4.27. Miscellaneous Settings 39

Pungi Documentation, Release 4.2.1

40

Chapter 4. Configuration

CHAPTER
FIVE

BIG PICTURE EXAMPLES

Actual Pungi configuration files can get very large. This pages brings two examples of (almost) full configuation for
two different composes.

5.1 Fedora Rawhide compose

This is a shortened configuration for Fedora Radhide compose as of 2019-10-14.

release_name = 'Fedora'
release_short = 'Fedora'
release_version = 'Rawhide'

release_is_layered = False

bootable = True
comps_file {

'scm': 'git',

'repo': 'https://pagure.io/fedora-comps.git',

'branch': 'master',

'file': 'comps-rawhide.xml',

Merge translations by running make. This command will generate the file.
'command': 'make comps-rawhide.xml'

}

module_defaults_dir = {

'scm': 'git',

'repo': 'https://pagure.io/releng/fedora-module-defaults.git',
'branch': 'master',

'dir': "'

variants_file='variants—-fedora.xml'
sigkeys = ['12C944D0"']

Put packages into subdirectories hashed by their initial letter.
hashed_directories = True

There is a special profile for use with compose. It makes Pungi
authenticate automatically as rel-eng user.

koji_profile = 'compose_koji'

RUNROOT settings

runroot = True
runroot_channel = 'compose'
runroot_tag = 'f£32-build’

(continues on next page)

41

Pungi Documentation, Release 4.2.1

(continued from previous page)

PKGSET
pkgset_source = 'koji'
pkgset_koji_tag = "'£32"

pkgset_koji_inherit = False

filter_system_ _release_packages = False

GATHER
gather_method = {
AT | # For all variants
'comps': 'deps', # resolve dependencies for packages from comps file
'module': 'nodeps', # but not for packages from modules
}
}
gather_backend = 'dnf'

gather_profiler = True
check_deps = False
greedy_method = 'build'

repoclosure_backend = 'dnf'
CREATEREPO

createrepo_deltas = False
createrepo_database = True

createrepo_use_xz = True
createrepo_extra_args = ['-—zck', '—-—-zck-dict-dir=/usr/share/fedora-repo-zdicts/
—rawhide']

CHECKSUMS

media_checksums = ['sha256"]

media_checksum_one_file = True

media_checksum_base_filename = '% (release short)s—% (variant)s—%(version)s—% (arch) s—
— % (date)s$ (type_suffix)s.% (respin)s’

CREATEISO
iso_hfs_ppcbdle_compatible = False
create_jigdo = False

BUILDINSTALL
buildinstall _method = 'lorax'
buildinstall_skip = [
No installer for Modular variant
('""Modulars$', {'+': True}),
No 32 bit installer for Everything.
('"Everything$', {'i386': True}),

Enables macboot on x86_64 for all variants and disables upgrade image building
everywhere.
lorax_options = [

("MxST, |
'x86_64": {
'nomacboot': False

by
'ppcbdle'’: {
Use 3GB image size for ppcé64le.

(continues on next page)

42 Chapter 5. Big picture examples

Pungi Documentation, Release 4.2.1

(continued from previous page)

'rootfs_size': 3
by
l*l: {

'noupgrade’': True

b

additional_packages = [
('~ (Server|Everything)$', {
l*l: [
Add all architectures of dracut package.
'dracut.x"',
All all packages matching this pattern
'autocorr—="',
JI
I

('""Everything$', {
Everything should include all packages from the tag. This only
applies to the native arch. Multilib will still be pulled in
according to multilib rules.
Tkt [,

I

filter_packages = [
("~oxS8", {"«": ["glibc32", "libgcc32"]1}),
(' (Server)$', {
l*l: [
'kernelxdebugx',
'kernel-kdump~*',

1)y

multilib = [
(""Everything$', {
'x86_64"': ['devel', 'runtime'],

})

These packages should never be multilib on any arch.
multilib_blacklist = {
I*V: [
'kernel', 'kernel-PAEx', 'kernelxdebugx', 'java-x', 'phpx*', 'mod_x', 'ghc—x'

1,

These should be multilib even if they don't match the rules defined above.
multilib_whitelist = {
'x': ['wine', 'x-static'],

createiso_skip = [
Keep binary ISOs for Server, but not source ones.
('""Server$', {'src': True}),

(continues on next page)

5.1. Fedora Rawhide compose 43

Pungi Documentation, Release 4.2.1

(continued from previous page)

Remove all other ISOs.
('""Everything$', {'x': True, 'src': True}),
('"Modular$', {'«': True, 'src': True}),

Image name respecting Fedora's image naming policy
image_name_format = '$ (release short)s—% (variant)s—-% (disc_type)s—%(arch)s—% (version)s—
—% (date)s% (type_suffix)s.% (respin)s.iso'
Use the same format for volume id
image_volid_formats = [
'$ (release_short)s—% (variant)s—%(disc_type)s—% (arch)s—%(version)s'

1
Used by Pungi to replace 'Cloud' with 'C' (etc.) in ISO volume IDs.

There is a hard 32-character 1limit on ISO volume IDs, SO we use

these to try and produce short enough but legible IDs. Note this 1is

duplicated in Koji for live images, as livemedia-creator does not

allow Pungi to tell it what volume ID to use. Note:

https://fedoraproject.org/wiki/User:Adamwill/Draft_fedora_image_naming_policy
volume_id_substitutions = {

'Beta': 'B',
'Rawhide': 'rawh',
'Silverblue': 'SB',
'Cinnamon': 'Cinn',
'Cloud': 'C',
'Design_suite': 'Dsgn',
'Electronic_Lab': 'Elec',
'Everything': 'E',
'Scientific_KDE': 'SciK',
'Security': 'Sec',
'Server': 'S',
'Workstation': 'WS',
}
disc_types = {
'boot': 'netinst',
'live': 'Live',

translate_paths = [
('/mnt/koji/compose/', 'https://kojipkgs.fedoraproject.org/compose/"'),

These will be inherited by live _media, live_images and image_build

global_ksurl = 'git+https://pagure.io/fedora-kickstarts.git?#HEAD'
global_release = '!RELEASE_FROM_LABEL_DATE_TYPE_RESPIN'
global_version = 'Rawhide'

live_images ignores this in favor of live_ target

global_target = 'f£32'

image_build = {
'“ContainerS$': [
{

'image-build': {

'format': [('docker', 'tar.xz')],
'name': 'Fedora-Container-Base',
'kickstart': 'fedora-container-base.ks',

(continues on next page)

44 Chapter 5. Big picture examples

Pungi Documentation, Release 4.2.1

(continued from previous page)

'distro': 'Fedora-22',

'disk_size': 5,

'arches': ['armhfp', 'aarch64', 'ppcbdle', 's390x', 'x86_64"'],
'repo': 'Everything',

'install_tree_from': 'Everything',

'subvariant': 'Container_Base',

'failable': ['x'],

by

'factory-parameters': {

'dockerversion': "1.10.1",
'docker_cmd': '["/bin/bash"]°',
'docker_env': '["DISTTAG=f32container", "FGC=f32", "container=oci"]
‘—"I
'docker_label': '{ "name": "fedora", "license": "MIT", "vendor":
—"Fedora Project", "version": "32"}',
}I
}V
]I
}
live_media = {
'“Workstation$': [
{
'name': 'Fedora-Workstation-Live',
'kickstart': 'fedora-live-workstation.ks',

Variants.xml also contains aarch64 and armhfp, but there
should be no live media for those arches.

'arches': ['x86_64"', 'ppcbdle'],

'failable': ['ppco6bdle'],

Take packages and install tree from Everything repo.
'repo': 'Everything',

'install_tree_from': 'Everything',

1 4

'“Spins': [
There are multiple media for Spins variant. They use subvariant
field so that they can be indentified in the metadata.

{

'name': 'Fedora-KDE-Live',
'kickstart': 'fedora-live-kde.ks',
'arches': ['x86_64"'],
'repo': 'Everything',
'install_tree_from': 'Everything',
'subvariant': 'KDE'

}I

{
'name': 'Fedora—-Xfce-Live',
'kickstart': 'fedora-live-xfce.ks',

'arches': ['x86_64"'],

'failable': ['*'],

'repo': 'Everything',
'install_tree_from': 'Everything',
'subvariant': 'Xfce'

1,

(continues on next page)

5.1. Fedora Rawhide compose 45

Pungi Documentation, Release 4.2.1

(continued from previous page)

failable_deliverables = [
Installer and ISOs for server failing do not abort the compose.
('""Server$', {
'«': ['buildinstall', 'iso'],
1)y
("rexst,
Buildinstall is not blocking
'src': ['buildinstall'],
Nothing on 1386, ppcé64le blocks the compose
'i386': ['buildinstall', 'iso'l],
'ppc6dle': ['buildinstall', 'iso'],
's390x': ['buildinstall', 'iso'],
1)

live_target = '"£32"

live_images_no_rename = True

live_images = [

('*"Workstation$', {
'armhfp': {

'kickstart': 'fedora-arm-workstation.ks',
'name': 'Fedora-Workstation-armhfp',
Again workstation takes packages from Everything.
'repo': 'Everything',
'type': 'appliance',
'failable': True,

1)y
('""Server$', {
But Server has its own repo.

'armhfp': {
'kickstart': 'fedora-arm-server.ks',
'name': 'Fedora-Server—-armhfp',
'type': 'appliance',

'failable': True,

I

ostree = {
"~SilverblueS$": {
"version": "!OSTREE_VERSION_FROM_LABEL_DATE_TYPE_RESPIN",

To get config, clone master branch from this repo and take

treefile from there.

"treefile": "fedora-silverblue.yaml",

"config_url": "https://pagure.io/workstation-ostree-config.git",
"config_branch": "master",

Consume packages from Everything

"repo": "Everything",

Don't create a reference in the ostree repo (signing automation does that).
"tag_ref": False,

Don't use change detection in ostree.

"force_new_commit": True,

This is the location for the repo where new commit will be

created. Note that this is outside of the compose dir.
"ostree_repo": "/mnt/koji/compose/ostree/repo/",

(continues on next page)

46 Chapter 5. Big picture examples

Pungi Documentation, Release 4.2.1

(continued from previous page)

"ostree_ref": "fedora/rawhide/$ {basearch}/silverblue",
"arches": ["x86_64", "ppc6bdle", "aarched"],
"failable": ['%'],
}
}
ostree_installer = [
("*"Silverblues$", {
"x86_64": |
"repo": "Everything",
"release": None,
"rootfs_size": "8",
Take templates from this repository.
'template_repo': 'https://pagure.io/fedora-lorax-templates.git',
'template_branch': 'master',
Use following templates.
"add_template": ["ostree-based-installer/lorax-configure-repo.tmpl",

"ostree-based-installer/lorax—-embed-repo.tmpl",
"ostree-based-installer/lorax-embed-flatpaks.tmpl"],
And add these variables for the templates.
"add_template_var": [
"ostree_install_repo=https://kojipkgs.fedoraproject.org/compose/
—ostree/repo/",
"ostree_update_repo=https://ostree.fedoraproject.org",
"ostree_osname=fedora",
"ostree_oskey=fedora-32-primary",
"ostree_contenturl=mirrorlist=https://ostree.fedoraproject.org/
—mirrorlist",
"ostree_install_ref=fedora/rawhide/x86_64/silverblue",
"ostree_update_ref=fedora/rawhide/x86_64/silverblue",
"flatpak_remote_name=fedora”,
"flatpak_remote_url=oci+https://registry.fedoraproject.org",
"flatpak_remote_refs=runtime/org.fedoraproject.Platform/x86_64/£30
—app/org.gnome.Baobab/x86_64/stable",
1,
'failable': ['x'],
}I
1)

5.2 RCM Tools compose

This is a small compose used to deliver packages to Red Hat internal users. The configuration is split into two files.

rcmtools—-common.conf

release_name = "RCM Tools"
release_short = "RCMTOOLS"
release_version = "2.0"
release_type = "updates"

release_is_layered = True
createrepo_c = True
createrepo_checksum = "sha256"

(continues on next page)

5.2. RCM Tools compose 47

Pungi Documentation, Release 4.2.1

(continued from previous page)

PKGSET
pkgset_source = "koji"
koji_profile = "brew"

pkgset_koji_inherit = True

GENERAL SETTINGS

bootable = False

comps_file = "rcmtools-comps.xml"
variants_file "rcmtools—variants.xml"
sigkeys = ["3A3A33A3"]

RUNROOT settings
runroot = False

GATHER
gather_method = "deps"
check_deps = True

additional_packages = [
("*'I {
'x': ['puddle', 'rcm-nexus'],
}
) s

Set repoclosure_strictness to fatal to avoid installation
issues in production composes
repoclosure_strictness = [
("hxsm,
ll*": llfatal"

})

dependency

Configuration specific for different base products is split into separate files.

rcmtools-common.conf
from rcmtools-common import =

BASE PRODUCT

base_product_name = "Red Hat Enterprise Linux"
base_product_short = "RHEL"
base_product_version = "7"

PKGSET

pkgset_koji_tag = "rcmtools-rhel-7-compose"

remove 1386 arch on rhel7
tree_arches = ["aarch64", "ppc64dle", "s390x", "x86_64"]

check_deps = False

Packages in these repos are available to satisfy dependencies inside the

compose, but will not be pulled in.
gather_lookaside_repos = [

(continues on next page)

48 Chapter 5. Big picture examples

Pungi Documentation, Release 4.2.1

(continued from previous page)

("~"Client|Client-optionals$", {
"x86_64": [
"http://example.redhat.com/rhel/7/Client/x86_64/0s/",
"http://example.redhat.com/rhel/7/Client/x86_64/optional/os/",
JV
1),
(""Workstation|Workstation-optionals$", {

"x86_64": [
"http://example.redhat.com/rhel/7/Workstation/x86_64/0s/",
"http://example.redhat.com/rhel/7/Workstation/x86_64/optional/os/",

JV

1),
("~"Server|Server-optionals$", {

"aarchod": [
"http://example.redhat.com/rhel/7/Server/aarch6d/os/",
"http://example.redhat.com/rhel/7/Server/aarché64/optional/os/",

JV

"ppcod": [

"http://example.redhat.com/rhel/7/Server/ppcé64d/os/",
"http://example.redhat.com/rhel/7/Server/ppc64/optional/os/",

JI

"ppcodle": [
"http://example.redhat.com/rhel/7/Server/ppc6dle/os/",
"http://example.redhat.com/rhel/7/Server/ppc6dle/optional/os/",

JI

"s390x": [

"http://example.redhat.com/rhel/7/Server/s390x/os/",
"http://example.redhat.com/rhel/7/Server/s390x/optional/os/",
Iy
"x86_64": [
"http://example.redhat.com/rhel/7/Server/x86_64/0s/",
"http://example.redhat.com/rhel/7/Server/x86_64/optional/os/",
JI
})

5.2. RCM Tools compose 49

Pungi Documentation, Release 4.2.1

50

Chapter 5. Big picture examples

CHAPTER
SIX

EXPORTING FILES FROM SCM

Multiple places in Pungi can use files from external storage. The configuration is similar independently of the backend
that is used, although some features may be different.

The so-called scm_dict is always put into configuration as a dictionary, which can contain following keys.
* scm — indicates which SCM system is used. This is always required. Allowed values are:

— file — copies files from local filesystem

git — copies files from a Git repository

cvs — copies files from a CVS repository

— rpm - copies files from a package in the compose

— koJji —downloads archives from a given build in Koji build system
* repo

for Git and CVS backends this should be URL to the repository

for RPM backend this should be a shell style glob matching package names (or a list of such globs)

for file backend this should be empty

for Koji backend this should be an NVR or package name

* branch
— branch name for Git and CVS backends, with master and HEAD as defaults
— Kaoji tag for koji backend if only package name is given
— otherwise should not be specified

» file —alist of files that should be exported.

e dir — adirectory that should be exported. All its contents will be exported. This option is mutually exclusive
with file.

* command — defines a shell command to run after Git clone to generate the needed file (for example to run
make). Only supported in Git backend.

6.1 Koji examples

There are two different ways how to configure the Koji backend.

51

Pungi Documentation, Release 4.2.1

Download all *.tar files from build my-image-1.0-1.

"SCm"Z llkoji",
"repo": "my-image-1.0-1",
"file": "x.tar",

Find latest build of my-image in tag my-tag and take files from

there.
"Scm". llkoji"

. 14
"repo": "my-image",
"branch": "my-tag",
"file": "x.tar",

Using both tag name and exact NVR will result in error: the NVR would be interpreted as a package name, and would
not match anything.

6.2 file vs. dir

Exactly one of these two options has to be specified. Documentation for each configuration option should specify
whether it expects a file or a directory.

For extra_files phase either key is valid and should be chosen depending on what the actual use case.

6.3 Caveats

The rpm backend can only be used in phases that would extract the files after pkgset phase finished. You can’t get
comps file from a package.

Depending on Git repository URL configuration Pungi can only export the requested content using git archive.
When a command should run this is not possible and a clone is always needed.

When using ko ji backend, it is required to provide configuration for Koji profile to be used (koji_profile). It
is not possible to contact multiple different Koji instances.

52 Chapter 6. Exporting files from SCM

CHAPTER
SEVEN

PROGRESS NOTIFICATION

Pungi has the ability to emit notification messages about progress and general status of the compose. These can be
used to e.g. send messages to fedmsg. This is implemented by actually calling a separate script.

The script will be called with one argument describing action that just happened. A JSON-encoded object will be
passed to standard input to provide more information about the event. At the very least, the object will contain a
compose_id key.

The script is invoked in compose directory and can read other information there.
Currently these messages are sent:
* status—change — when composing starts, finishes or fails; a status key is provided to indicate details
* phase-start — on start of a phase
* phase-stop — when phase is finished
* createiso-targets — with a list of images to be created
* createiso-imagedone — when any single image is finished
* createiso—imagefail — when any single image fails to create

e fail-to-start — when there are incorrect CLI options or errors in configuration file; this message does not
contain compose__id nor is it started in the compose directory (which does not exist yet)

* ostree — when a new commit is created, this message will announce its hash and the name of ref it is meant
for.

For phase related messages phase_name key is provided as well.

A pungi-fedmsg-notification scriptis provided and understands this interface.

7.1 Setting it up

The script should be provided as a command line argument ——notification-script.

’ —-notification-script=pungi-fedmsg-notification

53

Pungi Documentation, Release 4.2.1

54

Chapter 7. Progress notification

CHAPTER
EIGHT

GATHERING PACKAGES

A compose created by Pungi consists of one or more variants. A variant contains a subset of the content targeted at a
particular use case.

There are different types of variants. The type affects how packages are gathered into the variant.

The inputs for gathering are defined by various gather sources. Packages from all sources are collected to create a big
list of package names, comps groups names and a list of packages that should be filtered out.

Note: The inputs for both explicit package list and comps file are interpreted as RPM names, not any arbitrary
provides nor source package name.

Next, gather_method defines how the list is processed. For nodeps, the results from source are used pretty much
as is'. For deps method, a process will be launched to figure out what dependencies are needed and those will be
pulled in.

8.1 Variant types

Variant is a base type that has no special behaviour.

Addon is built on top of a regular variant. Any packages that should go to both the addon and its parent will be
removed from addon. Packages that are only in addon but pulled in because of gather_fulltree option
will be moved to parent.

Integrated Layered Product works similarly to addon. Additionally, all packages from addons on the same parent
variant are removed integrated layered products.

The main difference between an addon and integrated layered product is that integrated layered product has its
own identity in the metadata (defined with product name and version).

Note: There’s also Layered Product as a term, but this is not related to variants. It’s used to describe a product
that is not a standalone operating system and is instead meant to be used on some other base system.

Optional contains packages that complete the base variants’ package set. It always has fulltree and
selfhosting enabled, so it contains build dependencies and packages which were not specifically requested
for base variant.

Some configuration options are overridden for particular variant types.

! The lists are filtered based on what packages are available in the package set, but nothing else will be pulled in.

55

Pungi Documentation, Release 4.2.1

Table 1: Depsolving configuration

Variant Fulltree Selfhosting
base configurable | configurable
addon/ILP | enabled disabled
optional enabled enabled

8.2 Profiling

Profiling data on the pungi-gather tool can be enabled by setting the gather_profiler configuration option

to True.

8.3 Modular compose

A compose with gather_source set to module is called modular. The package list is determined by a list of

modules.

The list of modules that will be put into a variant is defined in the variants.xml file. The file can contain either
Name:Stream or Name:Stream: Version references. See Module Naming Policy for details. When Version is missing
from the specification, Pungi will ask PDC for the latest one.

The module metadata in PDC contains a list of RPMs in the module as well as Koji tag from which the packages can

be retrieved.

8.3.1 Restrictions

* A modular compose must always use Koji as a package set source.

56

Chapter 8. Gathering packages

https://pagure.io/modularity/blob/master/f/source/development/building-modules/naming-policy.rst

CHAPTER
NINE

PROCESSING COMPS FILES

The comps file that Pungi takes as input is not really pure comps as used by tools like DNF. There are extensions used
to customize how the file is processed.

The first step of Pungi processing is to retrieve the actual file. This can use anything that Exporting files from SCM
supports.

Pungi extensions are arch attribute on packageref, group and environment tags. The value of this attribute
is a comma separated list of architectures.

Second step Pungi performs is creating a file for each architecture. This is done by removing all elements with
incompatible arch attribute. No additional clean up is performed on this file. The resulting file is only used internally
for the rest of the compose process.

Third and final step is to create comps file for each Variant.Arch combination. This is the actual file that will be in-
cluded in the compose. The start file is the original input file, from which all elements with incompatible architecture
are removed. Then clean up is performed by removing all empty groups, removing non-existing groups from environ-
ments and categories and finally removing empty environments and categories. As a last step groups not listed in the
variants file are removed.

57

Pungi Documentation, Release 4.2.1

58

Chapter 9. Processing comps files

CHAPTER
TEN

CONTRIBUTING TO PUNGI

10.1 Set up development environment

In order to work on Pungi, you should install recent version of Fedora. These packages will have to installed:
* createrepo_c
* CVs
* gcc
* genisoimage
* gettext
e git
* gobject-introspection
* isomdSsum
* jigdo
* kobo
* krb5-devel
* libcurl-devel
* libmodulemd
¢ libselinux-python
* lorax
* python-dogpile-cache
* python-jsonschema
* python-kickstart
¢ python-libcomps
* python-lockfile
* python-lxml
* python2-multilib
* python-productmd
* PyYAML

* repoview

59

Pungi Documentation, Release 4.2.1

e rpm-devel
* syslinux
* yum
e yum-utils
For running unit tests, these packages are recommended as well:
* python-mock
* python-nose
* python-nose-cov
* python-unittest2
* rpmdevtools
* python-parameterized

While being difficult, it is possible to work on Pungi using virtualenv. Install python-virtualenvwrapper (after instal-
lation you have to add the command to source /usr/local/bin/virtualenvwrapper.sh to your shell startup file, depending
on where it was installed by package manager) and use following steps. It will link system libraries into the virtual
environment and install all packages preferably from PyPI or from tarball. You will still need to install all of the
non-Python packages above as they are used by calling an executable.

$ mkvirtualenv pungienv

$ for pkg in gi libcomps pykickstart rpmUtils selinux urlgrabber yum; do 1ln -vs "
—$ (deactivate && python -c 'import os, 'S$Spkg'; print (os.path.dirname ('S$pkg'._ file_
—))")" "$(virtualenvwrapper_get_site_packages_dir)"; done

$ for pkg in _deltarpm krbV _selinux deltarpm sglitecachec _sglitecache; do 1n -vs "
—$ (deactivate && python -c 'import os, 'S$pkg'; print('Spkg'._ file_)")" "

—$ (virtualenvwrapper_get_site_packages_dir)"; done

$ pip install -U pip

$ PYCURL_SSL_LIBRARY=nss pip install pycurl —--no-binary :all:

$ pip install beanbag jsonschema 'kobo>=0.6.0' lockfile lxml mock nose nose-cov,
—productmd pyopenssl python-multilib requests requests-kerberos setuptools sphinx
—ordered_set koji PyYAML dogpile.cache parameterized

Now you should be able to run all existing tests.

10.2 Developing

Currently the development workflow for Pungi is on master branch:
* Make your own fork at https://pagure.io/pungi
¢ Clone your fork locally (replacing SUSERNAME with your own):

git clone git@pagure.io:forks/$USERNAME/pungi.git

* cd into your local clone and add the remote upstream for rebasing:

cd pungi
git remote add upstream git@pagure.io:pungi.git

60 Chapter 10. Contributing to Pungi

https://pagure.io/pungi

Pungi Documentation, Release 4.2.1

Note: This workflow assumes that you never git commit directly to the master branch of your fork. This
will make more sense when we cover rebasing below.

* create a topic branch based on master:

git branch my_topic_branch master
git checkout my_topic_branch

* Make edits, changes, add new features, etc. and then make sure to pull from upstream master and rebase before
submitting a pull request:

lets just say you edited setup.py for sake of argument
git checkout my_topic_branch

make changes to setup.py

black setup.py

tox

git add setup.py

git commit -s -m "added awesome feature to setup.py"

now we rebase

git checkout master

git pull —--rebase upstream master
git push origin master

git push origin --tags

git checkout my_topic_branch

git rebase master

resolve merge conflicts if any as a result of your development in
your topic branch
git push origin my_topic_branch

Note: In order to for your commit to be merged:
— you must sign-off on it. Use —s option when running git commit.

— The code must be well formatted via black and pass £1ake8 checking. Run t ox to do the check.

e Create pull request in the pagure.io web Ul

* For convenience, here is a bash shell function that can be placed in your ~/.bashrc and called such as
pullupstream pungi-4-devel that will automate a large portion of the rebase steps from above:

pullupstream () |
if [[-z "$1"]1]; then
printf "Error: must specify a branch name (e.g. - master, devel)\n"
else

pullup_startbranch=$ (git describe —--contains —--all HEAD)
git checkout $1
git pull --rebase upstream master
git push origin $1
git push origin --tags
git checkout ${pullup_startbranch}
fi

10.2. Developing 61

Pungi Documentation, Release 4.2.1

10.3 Testing

You must write unit tests for any new code (except for trivial changes). Any code without sufficient test coverage may
not be merged.

To run all existing tests, suggested method is to use nosetests. With additional options, it can generate code coverage.
To make sure even tests from executable files are run, don’t forget to use the ——exe option.

$ make test
$ make test-cover

Running single test file
$ python tests/test_arch.py [TestCase...]

In the tests/ directory there is a shell script test_compose. sh that you can use to try and create a miniature
compose on dummy data. The actual data will be created by running make test-data in project root.

$ python setup.py develop
$ make test-data
$ make test-compose

This testing compose does not actually use all phases that are available, and there is no checking that the result is
correct. It only tells you whether it crashed or not.

Note: Even when it finishes successfully, it may print errors about repoclosure on Server-Gluster.x86_64 in test
phase. This is not a bug.

10.4 Documenting

You must write documentation for any new features and functional changes. Any code without sufficient documenta-
tion may not be merged.

To generate the documentation, run make doc in project root.

62 Chapter 10. Contributing to Pungi

CHAPTER
ELEVEN

TESTING PUNGI

11.1 Test Data

Tests require test data and not all of it is available in git. You must create test repositories before running the tests:

’make test-data

Requirements: createrepo_c, rpmbuild

11.2 Unit Tests

Unit tests cover functionality of Pungi python modules. You can run all of them at once:

’make test

which is shortcut to:

python2 setup.py test
python3 setup.py test

You can alternatively run individual tests:

cd tests
./<test>.py [<class>[.<test>]]

11.3 Functional Tests

Because compose is quite complex process and not everything is covered with unit tests yet, the easiest way how to
test if your changes did not break anything badly is to start a compose on a relatively small and well defined package
set:

cd tests
./test_compose.sh

63

Pungi Documentation, Release 4.2.1

64

Chapter 11. Testing Pungi

CHAPTER
TWELVE

MANAGING COMPOSE FROM MULTIPLE PARTS

There may be cases where it makes sense to split a big compose into separate parts, but create a compose output that
links all output into one familiar structure.

The pungi-orchestrate tools allows that.

It works with an INI-style configuration file. The [general] section contains information about identity of the main
compose. Other sections define individual parts.

The parts are scheduled to run in parallel, with the minimal amount of serialization. The final compose directory will
contain hard-links to the files.

12.1 General settings

target Path to directory where the final compose should be created.

compose_type Type of compose to make.

release_name Name of the product for the final compose.

release_short Short name of the product for the final compose.

release_version Version of the product for the final compose.

release_type Type of the product for the final compose.

extra_args Additional arguments that wil be passed to the child Pungi processes.

koji_profile If specified, a current event will be retrieved from the Koji instance and used for all parts.
kerberos If set to yes, a kerberos ticket will be automatically created at the start. Set keytab and principal as well.
kerberos_keytab Path to keytab file used to create the kerberos ticket.

kerberos_principal Kerberos principal for the ticket

pre_compose_script Commands to execute before first part is started. Can contain multiple commands on separate
lines.

post_compose_script Commands to execute after the last part finishes and final status is updated. Can contain mul-
tiple commands on separate lines.

post_compose_script =
compose-latest-symlink $COMPOSE_PATH
custom-post-compose-script.sh

Multiple environment variables are defined for the scripts:

¢ COMPOSE_PATH

65

Pungi Documentation, Release 4.2.1

¢ COMPOSE_ID

* COMPOSE_DATE

e COMPOSE_TYPE

¢ COMPOSE_RESPIN

¢ COMPOSE_LABEL

e RELEASE_ID

e RELEASE_NAME

e RELEASE_SHORT

¢ RELEASE_VERSION

e RELEASE_TYPE

e RELEASE_IS_LAYERED — YES for layered products, empty otherwise
* BASE_PRODUCT_NAME — only set for layered products

e BASE_PRODUCT_SHORT — only set for layered products

* BASE_PRODUCT_VERSION — only set for layered products
* BASE_PRODUCT_TYPE — only set for layered products

notification_script Executable name (or path to a script) that will be used to send a message once the compose is
finished. In order for a valid URL to be included in the message, at least one part must configure path translation
that would apply to location of main compose.

Only two messages will be sent, one for start and one for finish (either successful or not).

12.2 Partial compose settings

Each part should have a separate section in the config file.
It can specify these options:

config Path to configuration file that describes this part. If relative, it is resolved relative to the file with parts config-
uration.

just_phase, skip_phase Customize which phases should run for this part.
depends_on A comma separated list of other parts that must be finished before this part starts.

failable A boolean toggle to mark a part as failable. A failure in such part will mark the final compose as incomplete,
but still successful.

66 Chapter 12. Managing compose from multiple parts

	About Pungi
	Tool overview
	Links
	Origin of name

	Phases
	Init
	Pkgset
	Buildinstall
	Gather
	ExtraFiles
	Createrepo
	OSTree
	Createiso
	ExtraIsos
	LiveImages, LiveMedia
	ImageBuild
	OSBS
	OSTreeInstaller
	ImageChecksum
	Test

	Config file format
	Importing other files
	Formatting strings

	Configuration
	Minimal Config Example
	Release
	Base Product
	General Settings
	Image Naming
	Signing
	Git URLs
	Createrepo Settings
	Package Set Settings
	Buildinstall Settings
	Gather Settings
	Koji Settings
	Runroot “openssh” method settings
	Extra Files Settings
	CreateISO Settings
	Automatic generation of version and release
	Common options for Live Images, Live Media and Image Build
	Live Images Settings
	Live Media Settings
	Image Build Settings
	OSTree Settings
	Ostree Installer Settings
	OSBS Settings
	Extra ISOs
	Media Checksums Settings
	Translate Paths Settings
	Miscellaneous Settings

	Big picture examples
	Fedora Rawhide compose
	RCM Tools compose

	Exporting files from SCM
	Koji examples
	file vs. dir
	Caveats

	Progress notification
	Setting it up

	Gathering packages
	Variant types
	Profiling
	Modular compose

	Processing comps files
	Contributing to Pungi
	Set up development environment
	Developing
	Testing
	Documenting

	Testing Pungi
	Test Data
	Unit Tests
	Functional Tests

	Managing compose from multiple parts
	General settings
	Partial compose settings

