
PyMuPDF Documentation
Release 1.16.7

Jorj X. McKie

Nov 08, 2019

CONTENTS

1 Introduction 11.1 Note on the Name fitz . 21.2 License . 21.3 Covered Version . 2
2 Installation 32.1 Option 1: Install from Sources . 32.1.1 Step 1: Download PyMuPDF . 32.1.2 Step 2: Download and Generate MuPDF . 32.1.3 Step 3: Build / Setup PyMuPDF . 42.2 Option 2: Install from Binaries . 4
3 Tutorial 53.1 Importing the Bindings . 53.2 Opening a Document . 53.3 Some Document Methods and Attributes . 63.4 Accessing Meta Data . 63.5 Working with Outlines . 63.6 Working with Pages . 73.6.1 Inspecting the Links, Annotations or Form Fields of a Page 73.6.2 Rendering a Page . 83.6.3 Saving the Page Image in a File . 83.6.4 Displaying the Image in GUIs . 83.6.4.1 wxPython . 93.6.4.2 Tkinter . 93.6.4.3 PyQt4, PyQt5, PySide . 93.6.5 Extracting Text and Images . 103.6.6 Searching for Text . 103.7 PDF Maintenance . 103.7.1 Modifying, Creating, Re-arranging and Deleting Pages 113.7.2 Joining and Splitting PDF Documents . 113.7.3 Embedding Data . 123.7.4 Saving . 123.8 Closing . 133.9 Further Reading . 13
4 Collection of Recipes 154.1 Images . 154.1.1 How to Make Images from Document Pages . 154.1.2 How to Increase Image Resolution . 15

i

4.1.3 How to Create Partial Pixmaps (Clips) . 164.1.4 How to Create or Suppress Annotation Images . 174.1.5 How to Extract Images: Non-PDF Documents . 174.1.6 How to Extract Images: PDF Documents . 174.1.7 How to Handle Stencil Masks . 194.1.8 How to Make one PDF of all your Pictures (or Files) 194.1.9 How to Create Vector Images . 224.1.10 How to Convert Images . 234.1.11 How to Use Pixmaps: Glueing Images . 244.1.12 How to Use Pixmaps: Making a Fractal . 254.1.13 How to Interface with NumPy . 274.1.14 How to Add Images to a PDF Page . 274.2 Text . 284.2.1 How to Extract all Document Text . 294.2.2 How to Extract Text from within a Rectangle . 294.2.3 How to Extract Text in Natural Reading Order . 314.2.4 How to Extract Tables from Documents . 334.2.5 How to Search for and Mark Text . 334.2.6 How to Analyze Font Characteristics . 354.2.7 How to Insert Text . 364.2.7.1 How to Write Text Lines . 374.2.7.2 How to Fill a Text Box . 384.2.7.3 How to Use Non-Standard Encoding . 394.3 Annotations . 404.3.1 How to Add and Modify Annotations . 414.3.2 How to Mark Text . 444.3.3 How to Use FreeText . 454.3.4 How to Use Ink Annotations . 464.4 Drawing and Graphics . 484.5 Multiprocessing . 504.6 General . 544.6.1 How to Open with a Wrong File Extension . 544.6.2 How to Embed or Attach Files . 554.6.3 How to Delete and Re-Arrange Pages . 554.6.4 How to Join PDFs . 564.6.5 How to Add Pages . 574.6.6 How To Dynamically Clean Up Corrupt PDFs . 584.6.7 How to Split Single Pages . 594.6.8 How to Combine Single Pages . 604.6.9 How to Convert Any Document to PDF . 624.6.10 How to Deal with Messages Issued by MuPDF . 634.6.11 How to Deal with PDF Encryption . 644.7 Common Issues and their Solutions . 664.7.1 Changing Annotations: Unexpected Behaviour . 664.7.1.1 Problem . 664.7.1.2 Cause . 664.7.1.3 Solutions . 664.7.2 Misplaced Item Insertions on PDF Pages . 674.7.2.1 Problem . 674.7.2.2 Cause . 674.7.2.3 Solutions . 674.8 Low-Level Interfaces . 684.8.1 How to Iterate through the xref Table . 694.8.2 How to Handle Object Streams . 70

ii

4.8.3 How to Handle Page Contents . 704.8.4 How to Access the PDF Catalog . 714.8.5 How to Access the PDF File Trailer . 714.8.6 How to Access XML Metadata . 72
5 Classes 735.1 Annot . 735.1.1 Annotation Icons in MuPDF . 785.1.2 Example . 795.2 Colorspace . 805.3 DisplayList . 815.4 Document . 825.4.1 setMetadata() Example . 995.4.2 setToC() Demonstration . 995.4.3 insertPDF() Examples . 1005.4.4 Other Examples . 1005.5 Identity . 1015.6 IRect . 1015.7 Link . 1045.8 linkDest . 1065.9 Matrix . 1075.9.1 Examples . 1115.9.2 Shifting . 1115.9.3 Flipping . 1125.9.4 Shearing . 1135.9.5 Rotating . 1145.10 Outline . 1155.11 Page . 1175.11.1 Adding Page Content . 1175.11.2 Description of getLinks() Entries . 1345.11.3 Notes on Supporting Links . 1355.11.3.1 Reading (pertains to method getLinks() and the firstLink property chain)1355.11.3.2 Writing . 1355.11.4 Homologous Methods of Document and Page . 1355.12 Pixmap . 1365.12.1 Supported Input Image Formats . 1445.12.2 Supported Output Image Formats . 1445.13 Point . 1455.14 Quad . 1475.14.1 Remark . 1495.15 Rect . 1495.16 Shape . 1535.16.1 Usage . 1645.16.2 Examples . 1655.16.3 Common Parameters . 1665.17 TextPage . 1695.17.1 Dictionary Structure of extractDICT() and extractRAWDICT() 1715.17.1.1 Page Dictionary . 1725.17.1.2 Block Dictionaries . 1725.17.1.3 Line Dictionary . 1735.17.1.4 Span Dictionary . 1735.17.1.5 Character Dictionary for extractRAWDICT() 1745.18 Tools . 1745.18.1 Example Session . 177

iii

5.19 Widget . 1785.19.1 Standard Fonts for Widgets . 179
6 Operator Algebra for Geometry Objects 1816.1 General Remarks . 1816.2 Unary Operations . 1816.3 Binary Operations . 1826.4 Some Examples . 1826.4.1 Manipulation with numbers . 1826.4.2 Manipulation with “like” Objects . 183
7 Low Level Functions and Classes 1857.1 Functions . 1857.2 Device . 1987.3 Working together: DisplayList and TextPage . 1997.3.1 Create a DisplayList . 1997.3.2 Generate Pixmap . 1997.3.3 Perform Text Search . 2007.3.4 Extract Text . 2007.3.5 Further Performance improvements . 2007.3.5.1 Pixmap . 2007.3.5.2 TextPage . 200
8 Glossary 203

9 Constants and Enumerations 2079.1 Constants . 2079.2 Document Permissions . 2089.3 PDF encryption method codes . 2089.4 Font File Extensions . 2089.5 Text Alignment . 2099.6 Preserve Text Flags . 2099.7 Link Destination Kinds . 2099.8 Link Destination Flags . 2109.9 Annotation Related Constants . 2119.10 Widget Constants . 2129.10.1 Widget flags (field_flags) . 2129.11 Stamp Annotation Icons . 213
10 Color Database 21510.1 Function getColor() . 21510.2 Printing the Color Database . 216
11 Appendix 1: Performance 21711.1 Part 1: Parsing . 21711.2 Part 2: Text Extraction . 22111.3 Part 3: Image Rendering . 222
12 Appendix 2: Details on Text Extraction 22512.1 General structure of a TextPage . 22512.2 Plain Text . 22512.3 BLOCKS . 22612.4 WORDS . 22612.5 HTML . 22612.6 Controlling Quality of HTML Output . 227

iv

12.7 DICT (or JSON) . 22812.8 RAWDICT . 22812.9 XML . 22912.10XHTML . 23012.11Text Extraction Flags Defaults . 23012.12Performance . 231
13 Appendix 3: Considerations on Embedded Files 23313.1 General . 23313.2 MuPDF Support . 23313.3 PyMuPDF Support . 233
14 Appendix 4: Assorted Technical Information 23514.1 PDF Base 14 Fonts . 23514.2 Adobe PDF Reference 1.7 . 23614.3 Using Python Sequences as Arguments in PyMuPDF . 23614.4 Ensuring Consistency of Important Objects in PyMuPDF . 23714.5 Design of Method Page.showPDFpage() . 23814.5.1 Purpose and Capabilities . 23814.5.2 Technical Implementation . 23914.6 Redirecting Error and Warning Messages . 240
15 Change Logs 24115.1 Changes in Version 1.16.7 . 24115.2 Changes in Version 1.16.6 . 24115.3 Changes in Version 1.16.5 . 24115.4 Changes in Version 1.16.4 . 24215.5 Changes in Version 1.16.3 . 24215.6 Changes in Version 1.16.2 . 24215.7 Changes in Version 1.16.1 . 24215.8 Changes in Version 1.16.0 . 24315.9 No version published for MuPDF v1.15.0 . 24415.10Changes in Version 1.14.20 / 1.14.21 . 24415.11Changes in Version 1.14.19 . 24415.12Changes in Version 1.14.17 . 24415.13Changes in Version 1.14.16 . 24415.14Changes in Version 1.14.15 . 24515.15Changes in Version 1.14.14 . 24515.16Changes in Version 1.14.13 . 24515.17Changes in Version 1.14.12 . 24515.18Changes in Version 1.14.11 . 24615.19Changes in Version 1.14.10 . 24615.20Changes in Version 1.14.9 . 24615.21Changes in Version 1.14.8 . 24615.22Changes in Version 1.14.7 . 24715.23Changes in Version 1.14.5 . 24715.24Changes in Version 1.14.4 . 24715.25Changes in Version 1.14.3 . 24715.26Changes in Version 1.14.1 . 24815.27Changes in Version 1.14.0 . 24815.28Changes in Version 1.13.19 . 24915.29Changes in Version 1.13.18 . 24915.30Changes in Version 1.13.17 . 24915.31Changes in Version 1.13.16 . 249

v

15.32Changes in Version 1.13.15 . 25015.33Changes in Version 1.13.14 . 25015.34Changes in Version 1.13.13 . 25015.35Changes in Version 1.13.12 . 25115.36Changes in Version 1.13.11 . 25115.37Changes in Version 1.13.7 . 25115.38Changes in Version 1.13.6 . 25215.39Changes in Version 1.13.5 . 25215.40Changes in Version 1.13.4 . 25215.41Changes in Version 1.13.3 . 25215.42Changes in Version 1.13.2 . 25215.43Changes in Version 1.13.1 . 25215.44Changes in Version 1.13.0 . 25315.45Changes in Version 1.12.4 . 25315.46Changes in Version 1.12.3 . 25415.47Changes in Version 1.12.2 . 25415.48Changes in Version 1.12.1 . 25415.49Changes in Version 1.12.0 . 25415.50Changes in Version 1.11.2 . 25515.51Changes in Version 1.11.1 . 25515.52Changes in Version 1.11.0 . 25615.53Changes in Version 1.10.0 . 25715.53.1MuPDF v1.10 Impact . 25715.53.2Other Changes compared to Version 1.9.3 . 25715.54Changes in Version 1.9.3 . 25815.55Changes in Version 1.9.2 . 25815.56Changes in Version 1.9.1 . 259

vi

CHAPTER

ONE

INTRODUCTION

PyMuPDF is a Python binding for MuPDF1 – “a lightweight PDF and XPS viewer”.
MuPDF can access files in PDF, XPS, OpenXPS, CBZ (comic book archive), FB2 and EPUB (e-book) formats.
These are files with extensions *.pdf, *.xps, *.oxps, *.cbz, *.fb2 or *.epub (so in essence, with thisbinding you can develop e-book viewers in Python . . .).
PyMuPDF provides access to many important functions of MuPDF from within a Python environment, andwe are continuously seeking to expand this function set.
MuPDF stands out among all similar products for its top rendering capability and unsurpassed processingspeed. At the same time, its “light weight” makes it an excellent choice for platforms where resources aretypically limited, like smartphones.
Check this out yourself and compare the various free PDF-viewers. In terms of speed and rendering qualitySumatraPDF2 ranges at the top (apart from MuPDF’s own standalone viewer) – since it has changed itslibrary basis to MuPDF!
While PyMuPDF has been available since several years for an earlier version of MuPDF (v1.2, called fitz-
python then), it was until only mid May 2015, that its creator and a few co-workers decided to elevate itto support current releases of MuPDF.
PyMuPDF runs and has been tested on Mac, Linux, Windows XP SP2 and up, Python 2.7 through Python3.7 (note that Python supports Windows XP only up to v3.4), 32bit and 64bit versions. Other platformsshould work too, as long as MuPDF and Python support them.
PyMuPDF is hosted on GitHub3. We also are registered on PyPI4.
For MS Windows and popular Python versions on Mac OSX and Linux we have created wheels. So installa-tion should be convenient enough for hopefully most of our users: just issue
pip install --upgrade pymupdf

If your platform is not among those supported with a wheel, your installation consists of two separatesteps:
1 http://www.mupdf.com/2 http://www.sumatrapdfreader.org/3 https://github.com/pymupdf/PyMuPDF4 https://pypi.org/project/PyMuPDF/

1

http://www.mupdf.com/
http://www.sumatrapdfreader.org/
https://github.com/pymupdf/PyMuPDF
https://pypi.org/project/PyMuPDF/

PyMuPDF Documentation, Release 1.16.7

1. Installation of MuPDF: this involves downloading the source from their website and then compilingit on your machine. Adjust setup.py to point to the right directories (next step), before you trygenerating PyMuPDF.
2. Installation of PyMuPDF: this step is normal Python procedure. Usually you will have to adapt the

setup.py to point to correct include and lib directories of your generated MuPDF.
For installation details check out the respective chapter.
There exist several demo5 and example6 programs in the main repository, ranging from simple code snip-pets to full-featured utilities, like text extraction, PDF joiners and bookmark maintenance.
Interesting PDF manipulation and generation functions have been added over time, including metadataand bookmark maintenance, document restructuring, annotation / link handling and document or pagecreation.

1.1 Note on the Name fitz

The standard Python import statement for this library is import fitz. This has a historical reason:
The original rendering library for MuPDF was called Libart.
“After Artifex Software acquired the MuPDF project, the development focus shifted on writing a new modern
graphics library called ‘‘Fitz‘‘. Fitz was originally intended as an R&D project to replace the aging Ghostscript
graphics library, but has instead become the rendering engine powering MuPDF.” (Quoted fromWikipedia7).

1.2 License

PyMuPDF is distributed under GNU GPL V3 (or later, at your choice).
MuPDF is distributed under a separate license, the GNU AFFERO GPL V3.
Both licenses apply, when you use PyMuPDF.
Note: Version 3 of the GNU AFFERO GPL is a lot less restrictive than its earlier versions used to be. Itbasically is an open source freeware license, that obliges your software to also being open source andfreeware. Consult this website8, if you want to create a commercial product with PyMuPDF.

1.3 Covered Version

This documentation covers PyMuPDF v1.16.7 features as of 2019-11-07 10:22:00.
Note: The major and minor versions of PyMuPDF and MuPDF will always be the same. Only the thirdqualifier (patch level) may be di�erent from that of MuPDF.

5 https://github.com/pymupdf/PyMuPDF/tree/master/demo6 https://github.com/pymupdf/PyMuPDF/tree/master/examples7 https://en.wikipedia.org/wiki/MuPDF8 http://artifex.com/licensing/

2 Chapter 1. Introduction

https://github.com/pymupdf/PyMuPDF/tree/master/demo
https://github.com/pymupdf/PyMuPDF/tree/master/examples
https://en.wikipedia.org/wiki/MuPDF
http://artifex.com/licensing/

CHAPTER

TWO

INSTALLATION

PyMuPDF can be installed from sources as follows or from wheels, see Option 2: Install from Binaries.

2.1 Option 1: Install from Sources

This is a three-step process.

2.1.1 Step 1: Download PyMuPDF

Download the sources from https://pypi.org/project/PyMuPDF/#files and decompress them.

2.1.2 Step 2: Download and Generate MuPDF

Download mupdf-x.xx.x-source.tar.gz from https://mupdf.com/downloads/archive and unzip / de-compress it. Make sure to download the (sub-) version for which PyMuPDF has stated its compatibility.
Note: The latest MuPDF development sources are available on https://github.com/ArtifexSoftware/mupdf – this is not what you want here.
Applying any Changes and Hot Fixes to MuPDF Sources

On occasion, vital hot fixes or functional enhancements must be applied to MuPDF sources before it isgenerated.
Any such files are contained in the fitz directory of the PyMuPDF homepage9 – their names all start withan underscore "_". Currently (v1.16.x), these files and their copy destinations are the following:

• _config.h – PyMuPDF’s configuration to control the binary file size and the inclusion of MuPDFfeatures, see next section. This file must renamed and replace MuPDF file /include/mupdf/fitz/
config.h. This file controls the size of the PyMuPDF binary by cutting away unneeded fonts fromMuPDF.

Generate MuPDF

The MuPDF source includes generation procedures / makefiles for numerous platforms. For Windowsplatforms, Visual Studio solution and project definitions are provided.
PyMuPDF’s homepage10 contains additional details and hints.

9 https://github.com/pymupdf/PyMuPDF/tree/master/fitz10 https://github.com/pymupdf/PyMuPDF/

3

https://pypi.org/project/PyMuPDF/#files
https://mupdf.com/downloads/archive
https://github.com/ArtifexSoftware/mupdf
https://github.com/ArtifexSoftware/mupdf
https://github.com/pymupdf/PyMuPDF/tree/master/fitz
https://github.com/pymupdf/PyMuPDF/

PyMuPDF Documentation, Release 1.16.7

2.1.3 Step 3: Build / Setup PyMuPDF

Adjust the setup.py script as necessary. E.g. make sure that:
• the include directory is correctly set in sync with your directory structure
• the object code libraries are correctly defined

Now perform a python setup.py install.
Note: You can also install from the sources of the Github repository. These do not contain the pre-generated files fitz.py or fitz_wrap.c, which instead are generated by the installation script setup.py.To use it, SWIG11 must be installed on your system.

2.2 Option 2: Install from Binaries

This installation option is available for all MS Windows and the most popular 64-bit Mac OS and Linuxplatforms for Python versions 2.7 and 3.4 through 3.7.
Windows binaries are provided for Python 32-bit and 64-bit versions.
Mac OSX wheels are provided with the platform tag macosx_10_6_intel.
Linux wheels are provided with the platform tag manylinux1_x86_64. This makes them usable for mostLinux variants like Debian, Ubuntu, etc.
Older versions can be found in the releases directory of our home page https://github.com/pymupdf/PyMuPDF/releases.

11 https://www.swig.org/

4 Chapter 2. Installation

https://www.swig.org/
https://github.com/pymupdf/PyMuPDF/releases
https://github.com/pymupdf/PyMuPDF/releases

CHAPTER

THREE

TUTORIAL

This tutorial will show you the use of PyMuPDF, MuPDF in Python, step by step.
Because MuPDF supports not only PDF, but also XPS, OpenXPS, CBZ, CBR, FB2 and EPUB formats, so doesPyMuPDF33. Nevertheless, for the sake of brevity we will only talk about PDF files. At places where indeedonly PDF files are supported, this will be mentioned explicitely.

3.1 Importing the Bindings

The Python bindings to MuPDF are made available by this import statement. We also show here how yourversion can be checked:
>>> import fitz
>>> print(fitz.__doc__)
PyMuPDF 1.16.0: Python bindings for the MuPDF 1.16.0 library.
Version date: 2019-07-28 07:30:14.
Built for Python 3.7 on win32 (64-bit).

3.2 Opening a Document

To access a supported document, it must be opened with the following statement:
doc = fitz.open(filename) # or fitz.Document(filename)

This creates the Document object doc. filenamemust be a Python string specifying the name of an existingfile.
It is also possible to open a document from memory data, or to create a new, empty PDF. See Documentfor details.
A document contains many attributes and functions. Among them are meta information (like “author” or“subject”), number of total pages, outline and encryption information.

33 PyMuPDF lets you also open several image file types just like normal documents. See section Supported Input Image Formatsin chapter Pixmap for more comments.

5

PyMuPDF Documentation, Release 1.16.7

3.3 Some Document Methods and Attributes

Method / Attribute Description
Document.pageCount the number of pages (int)
Document.metadata the metadata (dict)
Document.getToC() get the table of contents (list)
Document.loadPage() read a Page

3.4 Accessing Meta Data

PyMuPDF fully supports standard metadata. Document.metadata is a Python dictionary with the followingkeys. It is available for all document types, though not all entries may always contain data. For detailsof their meanings and formats consult the respective manuals, e.g. Adobe PDF Reference 1.7 for PDF.Further information can also be found in chapter Document. The meta data fields are strings or None if nototherwise indicated. Also be aware that not all of them always contain meaningful data – even if they arenot None.
Key Valueproducer producer (producing software)format format: ‘PDF-1.4’, ‘EPUB’, etc.encryption encryption method used if anyauthor authormodDate date of last modificationkeywords keywordstitle titlecreationDate date of creationcreator creating applicationsubject subject

Note: Apart from these standard metadata, PDF documents starting from PDF version 1.4 may alsocontain so-called “metadata streams”. Information in such streams is coded in XML. PyMuPDF deliberatelycontains no XML components, so we do not directly support access to information contained therein. Butyou can extract the stream as a whole, inspect or modify it using a package like lxml12 and then store theresult back into the PDF. If you want, you can also delete these data altogether.

Note: There are two utility scripts in the repository that import (PDF only)13 resp. export14 metadata fromresp. to CSV files.

3.5 Working with Outlines

The easiest way to get all outlines (also called “bookmarks”) of a document, is by creating a table of
contents:

12 https://pypi.org/project/lxml/13 https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2meta.py14 https://github.com/pymupdf/PyMuPDF/blob/master/examples/meta2csv.py

6 Chapter 3. Tutorial

https://pypi.org/project/lxml/
https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2meta.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/meta2csv.py

PyMuPDF Documentation, Release 1.16.7

toc = doc.getToC()

This will return a Python list of lists [[lvl, title, page, ...], ...] which looks much like a conven-tional table of contents found in books.
lvl is the hierarchy level of the entry (starting from 1), title is the entry’s title, and page the page number(1-based!). Other parameters describe details of the bookmark target.
Note: There are two utility scripts in the repository that import (PDF only)15 resp. export16 table ofcontents from resp. to CSV files.

3.6 Working with Pages

Page handling is at the core of MuPDF’s functionality.
• You can render a page into a raster or vector (SVG) image, optionally zooming, rotating, shifting orshearing it.
• You can extract a page’s text and images in many formats and search for text strings.
• For PDF documents many more methods are available to add text or images to pages.

First, a Page must be created. This is a method of Document:
page = doc.loadPage(pno) # loads page number 'pno' of the document (0-based)
page = doc[pno] # the short form

Any integer −∞ < 𝑝𝑛𝑜 < 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡 is possible here. Negative numbers count backwards from the end,so doc[-1] is the last page, like with Python sequences.
Some more advanced way would be using the document as an iterator over its pages:
for page in doc:

do something with 'page'

... or read backwards
for page in reversed(doc):

do something with 'page'

... or even use 'slicing'
for page in doc.pages(start, stop, step):

do something with 'page'

Once you have your page, here is what you would typically do with it:

3.6.1 Inspecting the Links, Annotations or Form Fields of a Page

Links are shown as “hot areas” when a document is displayed with some viewer software. If you click whileyour cursor shows a hand symbol, you will usually be taken to the taget that is encoded in that hot area.Here is how to get all links:
15 https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py16 https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

3.6. Working with Pages 7

https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

PyMuPDF Documentation, Release 1.16.7

get all links on a page
links = page.getLinks()

links is a Python list of dictionaries. For details see Page.getLinks() .
You can also use an iterator which emits one link at a time:
for link in page.links():

do something with 'link'

If dealing with a PDF document page, there may also exist annotations (Annot) or form fields (Widget),each of which have their own iterators:
for annot in page.annots():

do something with 'annot'

for field in page.widgets():
do something with 'field'

3.6.2 Rendering a Page

This example creates a raster image of a page’s content:
pix = page.getPixmap()

pix is a Pixmap object which (in this case) contains an RGB image of the page, ready to be used formany purposes. Method Page.getPixmap() o�ers lots of variations for controlling the image: resolution,colorspace (e.g. to produce a grayscale image or an image with a subtractive color scheme), transparency,rotation, mirroring, shifting, shearing, etc. For example: to create an RGBA image (i.e. containing an alphachannel), specify pix = page.getPixmap(alpha=True).
A Pixmap contains a number of methods and attributes which are referenced below. Among them are theintegers width, height (each in pixels) and stride (number of bytes of one horizontal image line). Attribute
samples represents a rectangular area of bytes representing the image data (a Python bytes object).
Note: You can also create a vector image of a page by using Page.getSVGimage() . Refer to this Wiki17for details.

3.6.3 Saving the Page Image in a File

We can simply store the image in a PNG file:
pix.writeImage("page-%i.png" % page.number)

3.6.4 Displaying the Image in GUIs

We can also use it in GUI dialog managers. Pixmap.samples represents an area of bytes of all the pixelsas a Python bytes object. Here are some examples, find more in the examples18 directory.
17 https://github.com/pymupdf/PyMuPDF/wiki/Vector-Image-Support18 https://github.com/pymupdf/PyMuPDF/tree/master/examples

8 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/wiki/Vector-Image-Support
https://github.com/pymupdf/PyMuPDF/tree/master/examples

PyMuPDF Documentation, Release 1.16.7

3.6.4.1 wxPython

Consult their documentation for adjustments to RGB(A) pixmaps and, potentially, specifics for your wx-Python release:
if pix.alpha:

bitmap = wx.Bitmap.FromBufferRGBA(pix.width, pix.height, pix.samples)
else:

bitmap = wx.Bitmap.FromBuffer(pix.width, pix.height, pix.samples)

3.6.4.2 Tkinter

Please also see section 3.19 of the Pillow documentation19:
from PIL import Image, ImageTk

set the mode depending on alpha
mode = "RGBA" if pix.alpha else "RGB"
img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
tkimg = ImageTk.PhotoImage(img)

The following avoids using Pillow:
remove alpha if present
pix1 = fitz.Pixmap(pix, 0) if pix.alpha else pix # PPM does not support transparency
imgdata = pix1.getImageData("ppm") # extremely fast!
tkimg = tkinter.PhotoImage(data = imgdata)

If you are looking for a complete Tkinter script paging through any supported document, here it is!20 Itcan also zoom into pages, and it runs under Python 2 or 3. It requires the extremely handy PySimpleGUI21pure Python package.
3.6.4.3 PyQt4, PyQt5, PySide

Please also see section 3.16 of the Pillow documentation22:
from PIL import Image, ImageQt

set the mode depending on alpha
mode = "RGBA" if pix.alpha else "RGB"
img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
qtimg = ImageQt.ImageQt(img)

Again, you also can get along without using PIL if you use the pixmap stride property:
from PyQt<x>.QtGui import QImage

set the correct QImage format depending on alpha
fmt = QImage.Format_RGBA8888 if pix.alpha else QImage.Format_RGB888
qtimg = QImage(pix.samples, pix.width, pix.height, pix.stride, fmt)

19 https://Pillow.readthedocs.io20 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/doc-browser.py21 https://pypi.org/project/PySimpleGUI/22 https://Pillow.readthedocs.io

3.6. Working with Pages 9

https://Pillow.readthedocs.io
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/doc-browser.py
https://pypi.org/project/PySimpleGUI/
https://Pillow.readthedocs.io

PyMuPDF Documentation, Release 1.16.7

3.6.5 Extracting Text and Images

We can also extract all text, images and other information of a page in many di�erent forms, and levels ofdetail:
text = page.getText(opt)

Use one of the following strings for opt to obtain di�erent formats34:
• "text": (default) plain text with line breaks. No formatting, no text position details, no images.
• "blocks": generate a list of text blocks (= paragraphs).
• "words": generate a list of words (strings not containing spaces).
• "html": creates a full visual version of the page including any images. This can be displayed withyour internet browser.
• "dict" / "json": same information level as HTML, but provided as a Python dictionary or resp. JSONstring. See TextPage.extractDICT() resp. TextPage.extractJSON() for details of its structure.
• "rawdict": a super-set of TextPage.extractDICT() . It additionally provides character detail infor-mation like XML. See TextPage.extractRAWDICT() for details of its structure.
• "xhtml": text information level as the TEXT version but includes images. Can also be displayed byinternet browsers.
• "xml": contains no images, but full position and font information down to each single text character.Use an XML module to interpret.

To give you an idea about the output of these alternatives, we did text example extracts. See Appendix 2:
Details on Text Extraction.

3.6.6 Searching for Text

You can find out, exactly where on a page a certain text string appears:
areas = page.searchFor("mupdf", hit_max = 16)

This delivers a list of up to 16 rectangles (see Rect), each of which surrounds one occurrence of the string“mupdf” (case insensitive). You could use this information to e.g. highlight those areas (PDF only) orcreate a cross reference of the document.
Please also do have a look at chapter Working together: DisplayList and TextPage and at demo programsdemo.py23 and demo-lowlevel.py24. Among other things they contain details on how the TextPage, Deviceand DisplayList classes can be used for a more direct control, e.g. when performance considerationssuggest it.

3.7 PDF Maintenance

PDFs are the only document type that can be modified using PyMuPDF. Other file types are read-only.
34 Page.getText() is a convenience wrapper for several methods of another PyMuPDF class, TextPage. The names of thesemethods correspond to the argument string passed to Page.getText() : Page.getText("dict") is equivalent to TextPage.

extractDICT() .23 https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo.py24 https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo-lowlevel.py

10 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo.py
https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo-lowlevel.py

PyMuPDF Documentation, Release 1.16.7

However, you can convert any document (including images) to a PDF and then apply all PyMuPDF featuresto the conversion result. Find out more here Document.convertToPDF() , and also look at the demo scriptpdf-converter.py25 which can convert any supported document to PDF.
Document.save() always stores a PDF in its current (potentially modified) state on disk.
You normally can choose whether to save to a new file, or just append your modifications to the existingone (“incremental save”), which often is very much faster.
The following describes ways how you can manipulate PDF documents. This description is by no meanscomplete: much more can be found in the following chapters.

3.7.1 Modifying, Creating, Re-arranging and Deleting Pages

There are several ways to manipulate the so-called page tree (a structure describing all the pages) of aPDF:
Document.deletePage() and Document.deletePageRange() delete pages.
Document.copyPage() , Document.fullcopyPage() and Document.movePage() copy or move a page toother locations within the same document.
Document.select() shrinks a PDF down to selected pages. Parameter is a sequence35 of the page num-bers that you want to keep. These integers must all be in range 0 <= i < pageCount. When executed, allpages missing in this list will be deleted. Remaining pages will occur in the sequence and as many times
(!) as you specify them.
So you can easily create new PDFs with

• the first or last 10 pages,
• only the odd or only the even pages (for doing double-sided printing),
• pages that do or don’t contain a given text,
• reverse the page sequence, . . .

. . . whatever you can think of.
The saved new document will contain links, annotations and bookmarks that are still valid (i.a.w. eitherpointing to a selected page or to some external resource).
Document.insertPage() and Document.newPage() insert new pages.
Pages themselves can moreover be modified by a range of methods (e.g. page rotation, annotation andlink maintenance, text and image insertion).

3.7.2 Joining and Splitting PDF Documents

Method Document.insertPDF() copies pages between di�erent PDF documents. Here is a simple joinerexample (doc1 and doc2 being openend PDFs):
append complete doc2 to the end of doc1
doc1.insertPDF(doc2)

25 https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py35 “Sequences” are Python objects conforming to the sequence protocol. These objects implement a method named
__getitem__(). Best known examples are Python tuples and lists. But array.array, numpy.array and PyMuPDF’s “geometry”objects (Operator Algebra for Geometry Objects) are sequences, too. Refer to Using Python Sequences as Arguments in PyMuPDF fordetails.

3.7. PDF Maintenance 11

https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py

PyMuPDF Documentation, Release 1.16.7

Here is a snippet that splits doc1. It creates a new document of its first and its last 10 pages:
doc2 = fitz.open() # new empty PDF
doc2.insertPDF(doc1, to_page = 9) # first 10 pages
doc2.insertPDF(doc1, from_page = len(doc1) - 10) # last 10 pages
doc2.save("first-and-last-10.pdf")

More can be found in the Document chapter. Also have a look at PDFjoiner.py26.

3.7.3 Embedding Data

PDFs can be used as containers for abitrary data (exeutables, other PDFs, text or binary files, etc.) muchlike ZIP archives.
PyMuPDF fully supports this feature via Document embeddedFile*methods and attributes. For some detailread Appendix 3: Considerations on Embedded Files, consult the Wiki on embedding files27, or the examplescripts embedded-copy.py28, embedded-export.py29, embedded-import.py30, and embedded-list.py31.

3.7.4 Saving

As mentioned above, Document.save() will always save the document in its current state.
You can write changes back to the original PDF by specifying option incremental=True. This process is(usually) extremely fast, since changes are appended to the original file without completely rewriting it.
Document.save() options correspond to options of MuPDF’s command line utility mutool clean, see thefollowing table.

Save Option mutool E�ectgarbage=1 g garbage collect unused objectsgarbage=2 gg in addition to 1, compact xref tablesgarbage=3 ggg in addition to 2, merge duplicate objectsgarbage=4 gggg in addition to 3, skip duplicate streamsclean=1 cs clean and sanitize content streamsdeflate=1 z deflate uncompressed streamsascii=1 a convert binary data to ASCII formatlinear=1 l create a linearized versionexpand=1 i decompress imagesexpand=2 f decompress fontsexpand=255 d decompress all
For example, mutool clean -ggggz file.pdf yields excellent compression results. It corresponds to
doc.save(filename, garbage=4, deflate=1).

26 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py27 https://github.com/pymupdf/PyMuPDF/wiki/Dealing-with-Embedded-Files28 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-copy.py29 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-export.py30 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-import.py31 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py

12 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py
https://github.com/pymupdf/PyMuPDF/wiki/Dealing-with-Embedded-Files
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-copy.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-export.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-import.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py

PyMuPDF Documentation, Release 1.16.7

3.8 Closing

It is often desirable to “close” a document to relinquish control of the underlying file to the OS, while yourprogram continues.
This can be achieved by the Document.close() method. Apart from closing the underlying file, bu�erareas associated with the document will be freed.

3.9 Further Reading

Also have a look at PyMuPDF’s Wiki32 pages. Especially those named in the sidebar under title “Recipes”cover over 15 topics written in “How-To” style.
This document also contains a Collection of Recipes. This chapter has close connection to the aforemen-tioned recipes, and it will be extended with more content over time.

32 https://github.com/pymupdf/PyMuPDF/wiki

3.8. Closing 13

https://github.com/pymupdf/PyMuPDF/wiki

PyMuPDF Documentation, Release 1.16.7

14 Chapter 3. Tutorial

CHAPTER

FOUR

COLLECTION OF RECIPES

A collection of recipes in “How-To” format for using PyMuPDF. We aim to extend this section over time.Where appropriate we will refer to the corresponding Wiki36 pages, but some duplication may still occur.

4.1 Images

4.1.1 How to Make Images from Document Pages

This little script will take a document filename and generate a PNG file from each of its pages.
The document can be any supported type like PDF, XPS, etc.
The script works as a command line tool which expects the filename being supplied as a parameter. Thegenerated image files (1 per page) are stored in the directory of the script:
import sys, fitz # import the binding
fname = sys.argv[1] # get filename from command line
doc = fitz.open(fname) # open document
for page in doc: # iterate through the pages

pix = page.getPixmap(alpha = False) # render page to an image
pix.writePNG("page-%i .png" % page.number) # store image as a PNG

The script directory will now contain PNG image files named page-0.png, page-1.png, etc. Pictures havethe dimension of their pages, e.g. 596 x 842 pixels for an A4 portrait sized page. They will have a resolutionof 96 dpi in x and y dimension and have no transparency. You can change all that – for how to do do this,read the next sections.

4.1.2 How to Increase Image Resolution

The image of a document page is represented by a Pixmap, and the simplest way to create a pixmap is viamethod Page.getPixmap() .
This method has many options for influencing the result. The most important among them is the Matrix,which lets you zoom, rotate, distort or mirror the outcome.

36 https://github.com/pymupdf/PyMuPDF/wiki

15

https://github.com/pymupdf/PyMuPDF/wiki

PyMuPDF Documentation, Release 1.16.7

Page.getPixmap() by default will use the Identity matrix, which does nothing.
In the following, we apply a zoom factor of 2 to each dimension, which will generate an image with a fourtimes better resolution for us.
>>> zoom_x = 2.0 # horizontal zoom
>>> zomm_y = 2.0 # vertical zoom
>>> mat = fitz.Matrix(zoom_x, zomm_y) # zoom factor 2 in each dimension
>>> pix = page.getPixmap(matrix = mat) # use 'mat' instead of the identity matrix

The resulting pixmap will be 4 times bigger than normal.

4.1.3 How to Create Partial Pixmaps (Clips)

You do not always need the full image of a page. This may be the case e.g. when you display the image ina GUI and would like to zoom into a part of the page.
Let’s assume your GUI window has room to display a full document page, but you now want to fill thisroom with the bottom right quarter of your page, thus using a four times better resolution.
To achieve this, we define a rectangle equal to the area we want to appear in the GUI and call it “clip”. Oneway of constructing rectangles in PyMuPDF is by providing two diagonally opposite corners, which is whatwe are doing here.

>>> mat = fitz.Matrix(2, 2) # zoom factor 2 in each direction
>>> rect = page.rect # the page rectangle
>>> mp = rect.tl + (rect.br - rect.tl) * 0.5 # its middle point
>>> clip = fitz.Rect(mp, rect.br) # the area we want
>>> pix = page.getPixmap(matrix=mat, clip=clip)

In the above we construct clip by specifying two diagonally opposite points: the middle point mp of thepage rectangle, and its bottom right, rect.br.

16 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

4.1.4 How to Create or Suppress Annotation Images

Normally, the pixmap of a page also shows the page’s annotations. Occasionally, this may not be desire-able.
To suppress the annotation images on a rendered page, just specify annots=False in Page.getPixmap() .
You can also render annotations separately: Annot objects have their own Annot.getPixmap() method.The resulting pixmap has the same dimensions as the annotation rectangle.

4.1.5 How to Extract Images: Non-PDF Documents

In contrast to the previous sections, this section deals with extracting images contained in documents,so they can be displayed as part of one or more pages.
If you want recreate the original image in file form or as a memory area, you have basically two options:

1. Convert your document to a PDF, and then use one of the PDF-only extraction methods. This snippetwill convert a document to PDF:
>>> pdfbytes = doc.convertToPDF() # this a bytes object
>>> pdf = fitz.open("pdf", pdfbytes) # open it as a PDF document
>>> # now use 'pdf' like any PDF document

2. Use Page.getText() with the “dict” parameter. This will extract all text and images shown on thepage, formatted as a Python dictionary. Every image will occur in an image block, containing metainformation and the binary image data. For details of the dictionary’s structure, see TextPage. Themethod works equally well for PDF files. This creates a list of all images shown on a page:
>>> d = page.getText("dict")
>>> blocks = d["blocks"]
>>> imgblocks = [b for b in blocks if b["type"] == 1]

Each item if “imgblocks” is a dictionary which looks like this:
{"type": 1, "bbox": (x0, y0, x1, y1), "width": w, "height": h, "ext": "png", "image": b"..."}

4.1.6 How to Extract Images: PDF Documents

Like any other “object” in a PDF, images are identified by a cross reference number (xref , an integer). Ifyou know this number, you have two ways to access the image’s data:
1. Create a Pixmap of the image with instruction pix = fitz.Pixmap(doc, xref). This method is veryfast (single digit micro-seconds). The pixmap’s properties (width, height, . . .) will reflect the ones ofthe image. In this case there is no way to tell which image format the embedded original has.
2. Extract the image with img = doc.extractImage(xref). This is a dictionary containing the bi-nary image data as img["image"]. A number of meta data are also provided – mostly the sameas you would find in the pixmap of the image. The major di�erence is string img["ext"], whichspecifies the image format: apart from “png”, strings like “jpeg”, “bmp”, “ti�”, etc. can also oc-cur. Use this string as the file extension if you want to store to disk. The execution speed of thismethod should be compared to the combined speed of the statements pix = fitz.Pixmap(doc,

4.1. Images 17

PyMuPDF Documentation, Release 1.16.7

xref);pix.getPNGData(). If the embedded image is in PNG format, the speed of Document.
extractImage() is about the same (and the binary image data are identical). Otherwise, this methodis thousands of times faster, and the image data is much smaller.

The question remains: “How do I know those ‘xref’ numbers of images?”. There are two answers to this:
a. “Inspect the page objects:” Loop through the items of Page.getImageList() . It is a list of list, andits items look like [xref, smask, ...], containing the xref of an image. This xref can then beused with one of the above methods. Use this method for valid (undamaged) documents. Be waryhowever, that the same image may be referenced multiple times (by di�erent pages), so you mightwant to provide a mechanism avoiding multiple extracts.
b. “No need to know:” Loop through the list of all xrefs of the document and perform a Document.

extractImage() for each one. If the returned dictionary is empty, then continue – this xref is noimage. Use this method if the PDF is damaged (unusable pages). Note that a PDF often contains“pseudo-images” (“stencil masks”) with the special purpose of defining the transparency of someother image. You may want to provide logic to exclude those from extraction. Also have a look at thenext section.
For both extraction approaches, there exist ready-to-use general purpose scripts:
extract-imga.py37 extracts images page by page:

and extract-imgb.py38 extracts images by xref table:

37 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py38 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

18 Chapter 4. Collection of Recipes

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

PyMuPDF Documentation, Release 1.16.7

4.1.7 How to Handle Stencil Masks

Some images in PDFs are accompanied by stencil masks. In their simplest form stencil masks representalpha (transparency) bytes stored as seperate images. In order to reconstruct the original of an image,which has a stencil mask, it must be “enriched” with transparency bytes taken from its stencil mask.
Whether an image does have such a stencil mask can be recognized in one of two ways in PyMuPDF:

1. An item of Document.getPageImageList() has the general format [xref, smask, ...], where xrefis the image’s xref and smask, if positive, is the xref of a stencil mask.
2. The (dictionary) results of Document.extractImage() have a key "smask", which also contains anystencil mask’s xref if positive.

If smask == 0 then the image encountered via xref can be processed as it is.
To recover the original image using PyMuPDF, the procedure depicted as follows must be executed:

>>> pix1 = fitz.Pixmap(doc, xref) # (1) pixmap of image w/o alpha
>>> pix2 = fitz.Pixmap(doc, smask) # (2) stencil pixmap
>>> pix = fitz.Pixmap(pix1) # (3) copy of pix1, empty alpha channel added
>>> pix.setAlpha(pix2.samples) # (4) fill alpha channel

Step (1) creates a pixmap of the “netto” image. Step (2) does the same with the stencil mask. Pleasenote that the Pixmap.samples attribute of pix2 contains the alpha bytes that must be stored in the finalpixmap. This is what happens in step (3) and (4).
The scripts extract-imga.py39, and extract-imgb.py40 above also contain this logic.

4.1.8 How to Make one PDF of all your Pictures (or Files)

We show here three scripts that take a list of (image and other) files and put them all in one PDF.
Method 1: Inserting Images as Pages

The first one converts each image to a PDF page with the same dimensions. The result will be a PDF withone page per image. It will only work for supported image file formats:
39 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py40 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

4.1. Images 19

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

PyMuPDF Documentation, Release 1.16.7

import os, fitz
import PySimpleGUI as psg # for showing a progress bar
doc = fitz.open() # PDF with the pictures
imgdir = "D:/2012_10_05" # where the pics are
imglist = os.listdir(imgdir) # list of them
imgcount = len(imglist) # pic count

for i, f in enumerate(imglist):
img = fitz.open(os.path.join(imgdir, f)) # open pic as document
rect = img[0].rect # pic dimension
pdfbytes = img.convertToPDF() # make a PDF stream
img.close() # no longer needed
imgPDF = fitz.open("pdf", pdfbytes) # open stream as PDF
page = doc.newPage(width = rect.width, # new page with ...

height = rect.height) # pic dimension
page.showPDFpage(rect, imgPDF, 0) # image fills the page
psg.EasyProgressMeter("Import Images", # show our progress

i+1, imgcount)

doc.save("all-my-pics.pdf")

This will generate a PDF only marginally larger than the combined pictures’ size. Some numbers on per-formance:
The above script needed about 1 minute on my machine for 149 pictures with a total size of 514 MB (andabout the same resulting PDF size).

Look here41 for a more complete source code: it o�ers a directory selection dialog and skips unsupportedfiles and non-file entries.
Note: We might have used Page.insertImage() instead of Page.showPDFpage() , and the result wouldhave been a similar looking file. However, depending on the image type, it may store images uncom-
pressed. Therefore, the save option deflate = Truemust be used to achieve a reasonable file size, whichhugely increases the runtime for large numbers of images. So this alternative cannot be recommendedhere.
Method 2: Embedding Files

The second script embeds arbitrary files – not only images. The resulting PDF will have just one (empty)page, required for technical reasons. To later access the embedded files again, you would need a suitable
41 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-inserted.py

20 Chapter 4. Collection of Recipes

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-inserted.py

PyMuPDF Documentation, Release 1.16.7

PDF viewer that can display and / or extract embedded files:
import os, fitz
import PySimpleGUI as psg # for showing progress bar
doc = fitz.open() # PDF with the pictures
imgdir = "D:/2012_10_05" # where my files are

imglist = os.listdir(imgdir) # list of pictures
imgcount = len(imglist) # pic count
imglist.sort() # nicely sort them

for i, f in enumerate(imglist):
img = open(os.path.join(imgdir,f), "rb").read() # make pic stream
doc.embeddedFileAdd(img, f, filename=f, # and embed it

ufilename=f, desc=f)
psg.EasyProgressMeter("Embedding Files", # show our progress

i+1, imgcount)

page = doc.newPage() # at least 1 page is needed

doc.save("all-my-pics-embedded.pdf")

This is by far the fastest method, and it also produces the smallest possible output file size. The abovepictures needed 20 seonds on my machine and yielded a PDF size of 510 MB. Look here42 for a morecomplete source code: it o�ers a direcory selection dialog and skips non-file entries.
Method 3: Attaching Files

A third way to achieve this task is attaching files via page annotations see here43 for the complete sourcecode.
This has a similar performance as the previous script and it also produces a similar file size. It will producePDF pages which show a ‘FileAttachment’ icon for each attached file.

42 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-embedded.py43 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-attached.py

4.1. Images 21

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-embedded.py
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-attached.py

PyMuPDF Documentation, Release 1.16.7

Note: Both, the embed and the attach methods can be used for arbitrary files – not just images.

Note: We strongly recommend using the awesome package PySimpleGUI44 to display a progressmeter fortasks that may run for an extended time span. It’s pure Python, uses Tkinter (no additional GUI package)and requires just one more line of code!

4.1.9 How to Create Vector Images

The usual way to create an image from a document page is Page.getPixmap() . A pixmap represents araster image, so you must decide on its quality (i.e. resolution) at creation time. It cannot be changedlater.
PyMuPDF also o�ers a way to create a vector image of a page in SVG format (scalable vector graphics,defined in XML syntax). SVG images remain precise across zooming levels (of course with the exceptionof any raster graphic elements embedded therein).
Instruction svg = page.getSVGimage(matrix = fitz.Identity) delivers a UTF-8 string svg which canbe stored with extension “.svg”.

44 https://pypi.org/project/PySimpleGUI/

22 Chapter 4. Collection of Recipes

https://pypi.org/project/PySimpleGUI/

PyMuPDF Documentation, Release 1.16.7

4.1.10 How to Convert Images

Just as a feature among others, PyMuPDF’s image conversion is easy. It may avoid using other graphicspackages like PIL/Pillow in many cases.
Notwithstanding that interfacing with Pillow is almost trivial.

Input Formats Output Formats DescriptionBMP . Windows BitmapJPEG . Joint Photographic Experts GroupJXR . JPEG Extended RangeJPX . JPEG 2000GIF . Graphics Interchange FormatTIFF . Tagged Image File FormatPNG PNG Portable Network GraphicsPNM PNM Portable AnymapPGM PGM Portable GraymapPBM PBM Portable BitmapPPM PPM Portable PixmapPAM PAM Portable Arbitrary Map. PSD Adobe Photoshop Document. PS Adobe Postscript
The general scheme is just the following two lines:
pix = fitz.Pixmap("input.xxx") # any supported input format
pix.writeImage("output.yyy") # any supported output format

Remarks

1. The input argument of fitz.Pixmap(arg) can be a file or a bytes / io.BytesIO object containing animage.
2. Instead of an output file, you can also create a bytes object via pix.getImageData("yyy") and passthis around.
3. As a matter of course, input and output formats must be compatible in terms of colorspace andtransparency. The Pixmap class has batteries included if adjustments are needed.

Note: Convert JPEG to Photoshop:
pix = fitz.Pixmap("myfamily.jpg")
pix.writeImage("myfamily.psd")

Note: Save to JPEG using PIL/Pillow:
from PIL import Image
pix = fitz.Pixmap(...)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
img.save("output.jpg", "JPEG")

4.1. Images 23

PyMuPDF Documentation, Release 1.16.7

Note: Convert JPEG to Tkinter PhotoImage. Any RGB / no-alpha image works exactly the same. Conver-sion to one of the Portable Anymap formats (PPM, PGM, etc.) does the trick, because they are supportedby all Tkinter versions:
if str is bytes: # this is Python 2!

import Tkinter as tk
else: # Python 3 or later!

import tkinter as tk
pix = fitz.Pixmap("input.jpg") # or any RGB / no-alpha image
tkimg = tk.PhotoImage(data=pix.getImageData("ppm"))

Note: Convert PNG with alpha to Tkinter PhotoImage. This requires removing the alpha bytes, beforewe can do the PPM conversion:
if str is bytes: # this is Python 2!

import Tkinter as tk
else: # Python 3 or later!

import tkinter as tk
pix = fitz.Pixmap("input.png") # may have an alpha channel
if pix.alpha: # we have an alpha channel!

pix = fitz.Pixmap(pix, 0) # remove it
tkimg = tk.PhotoImage(data=pix.getImageData("ppm"))

4.1.11 How to Use Pixmaps: Glueing Images

This shows how pixmaps can be used for purely graphical, non-document purposes. The script reads animage file and creates a new image which consist of 3 * 4 tiles of the original:
import fitz
src = fitz.Pixmap("img-7edges.png") # create pixmap from a picture
col = 3 # tiles per row
lin = 4 # tiles per column
tar_w = src.width * col # width of target
tar_h = src.height * lin # height of target

create target pixmap
tar_pix = fitz.Pixmap(src.colorspace, (0, 0, tar_w, tar_h), src.alpha)

now fill target with the tiles
for i in range(col):

src.x = src.width * i # modify input's x coord
for j in range(lin):

src.y = src.height * j # modify input's y coord
tar_pix.copyPixmap(src, src.irect) # copy input to new loc

tar_pix.writePNG("tar.png")

This is the input picture:

24 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

Here is the output:

4.1.12 How to Use Pixmaps: Making a Fractal

Here is another Pixmap example that creates Sierpinski’s Carpet – a fractal generalizing the Cantor Setto two dimensions. Given a square carpet, mark its 9 sub-suqares (3 times 3) and cut out the one in thecenter. Treat each of the remaining eight sub-squares in the same way, and continue ad infinitum. The endresult is a set with area zero and fractal dimension 1.8928. . .
This script creates a approximative PNG image of it, by going down to one-pixel granularity. To increasethe image precision, change the value of n (precision):
import fitz, time
if not list(map(int, fitz.VersionBind.split("."))) >= [1, 14, 8]:

raise SystemExit("need PyMuPDF v1.14.8 for this script")
n = 6 # depth (precision)
d = 3**n # edge length

t0 = time.perf_counter()
ir = (0, 0, d, d) # the pixmap rectangle

pm = fitz.Pixmap(fitz.csRGB, ir, False)
pm.setRect(pm.irect, (255,255,0)) # fill it with some background color

color = (0, 0, 255) # color to fill the punch holes

alternatively, define a 'fill' pixmap for the punch holes
(continues on next page)

4.1. Images 25

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
this could be anything, e.g. some photo image ...
fill = fitz.Pixmap(fitz.csRGB, ir, False) # same size as 'pm'
fill.setRect(fill.irect, (0, 255, 255)) # put some color in

def punch(x, y, step):
"""Recursively "punch a hole" in the central square of a pixmap.
Arguments are top-left coords and the step width.
"""
s = step // 3 # the new step
iterate through the 9 sub-squares
the central one will be filled with the color
for i in range(3):

for j in range(3):
if i != j or i != 1: # this is not the central cube

if s >= 3: # recursing needed?
punch(x+i*s, y+j*s, s) # recurse

else: # punching alternatives are:
pm.setRect((x+s, y+s, x+2*s, y+2*s), color) # fill with a color
#pm.copyPixmap(fill, (x+s, y+s, x+2*s, y+2*s)) # copy from fill
#pm.invertIRect((x+s, y+s, x+2*s, y+2*s)) # invert colors

return

#==
main program
#==
now start punching holes into the pixmap
punch(0, 0, d)
t1 = time.perf_counter()
pm.writeImage("sierpinski-punch.png")
t2 = time.perf_counter()
print ("%g sec to create / fill the pixmap" % round(t1-t0,3))
print ("%g sec to save the image" % round(t2-t1,3))

The result should look something like this:

26 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

4.1.13 How to Interface with NumPy

This shows how to create a PNG file from a numpy array (several times faster than most other methods):
import numpy as np
import fitz
#==
create a fun-colored width * height PNG with fitz and numpy
#==
height = 150
width = 100
bild = np.ndarray((height, width, 3), dtype=np.uint8)

for i in range(height):
for j in range(width):

one pixel (some fun coloring)
bild[i, j] = [(i+j)%256, i%256, j%256]

samples = bytearray(bild.tostring()) # get plain pixel data from numpy array
pix = fitz.Pixmap(fitz.csRGB, width, height, samples, alpha=False)
pix.writePNG("test.png")

4.1.14 How to Add Images to a PDF Page

There are two methods to add images to a PDF page: Page.insertImage() and Page.showPDFpage() .Both methods have things in common, but there also exist di�erences.

4.1. Images 27

PyMuPDF Documentation, Release 1.16.7

Criterion Page.insertImage() Page.showPDFpage()displayablecontent image file, image in memory,pixmap PDF page
display res-olution image resolution vectorized (except raster page content)
rotation multiple of 90 degrees any angleclipping no (full image only) yeskeep aspectratio yes (default option) yes (default option)
trans-parency(watermarking)

depends on image yes

location /placement scaled to fit target rectangle scaled to fit target rectangle
perfor-mance automatic prevention of duplicates;MD5 calculation on every execution automatic prevention of duplicates; faster than

Page.insertImage()multi-pageimagesupport
no yes

ease of use simple, intuitive; performance con-siderations apply for multiple inser-tions of same image
simple, intuitive; usable for all document types(including images!) after conversion to PDF via
Document.convertToPDF()

Basic code pattern for Page.insertImage() . Exactly one of the parameters filename / stream / pixmapmust be given:
page.insertImage(

rect, # where to place the image (rect-like)
filename=None, # image in a file
stream=None, # image in memory (bytes)
pixmap=None, # image from pixmap
rotate=0, # rotate (int, multiple of 90)
keep_proportion=True, # keep aspect ratio
overlay=True, # put in foreground

)

Basic code pattern for Page.showPDFpage() . Source and target PDF must be di�erent Document objects(but may be opened from the same file):
page.showPDFpage(

rect, # where to place the image (rect-like)
src, # source PDF
pno=0, # page number in source PDF
clip=None, # only display this area (rect-like)
rotate=0, # rotate (float, any value)
keep_proportion=True, # keep aspect ratio
overlay=True, # put in foreground

)

4.2 Text

28 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

4.2.1 How to Extract all Document Text

This script will take a document filename and generate a text file from all of its text.
The document can be any supported type like PDF, XPS, etc.
The script works as a command line tool which expects the document filename supplied as a parameter.It generates one text file named “filename.txt” in the script directory. Text of pages is separated by a line“—–”:
import sys, fitz # import the bindings
fname = sys.argv[1] # get document filename
doc = fitz.open(fname) # open document
out = open(fname + ".txt", "wb") # open text output
for page in doc: # iterate the document pages

text = page.getText().encode("utf8") # get plain text (is in UTF-8)
out.write(text) # write text of page
out.write(b"\n-----\n") # write page delimiter

out.close()

The output will be plain text as it is coded in the document. No e�ort is made to prettify in any way.Specifally for PDF, this may mean output not in usual reading order, unexpected line breaks and so forth.
You have many options to cure this – see chapter Appendix 2: Details on Text Extraction. Among them are:

1. Extract text in HTML format and store it as a HTML document, so it can be viewed in any browser.
2. Extract text as a list of text blocks via Page.getText("blocks"). Each item of this list containsposition information for its text, which can be used to establish a convenient reading order.
3. Extract a list of single words via Page.getText("words"). Its items are words with position informa-tion. Use it to determine text contained in a given rectangle – see next section.

See the following two section for examples and further explanations.

4.2.2 How to Extract Text from within a Rectangle

Please refer to the script textboxtract.py45.
It demonstrates ways to extract text contained in the following red rectangle,

45 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/textboxtract.py

4.2. Text 29

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/textboxtract.py

PyMuPDF Documentation, Release 1.16.7

by using more or less restrictive conditions to find the relevant words:
Select the words strictly contained in rectangle
--
Die Altersübereinstimmung deutete darauf hin,
engen, nur 50 Millionen Jahre großen
Gesteinshagel auf den Mond traf und dabei
hinterließ – einige größer als Frankreich.
es sich um eine letzte, infernalische Welle
Geburt des Sonnensystems. Daher tauften die
das Ereignis »lunare Katastrophe«. Später
die Bezeichnung Großes Bombardement durch.

Or, more forgiving, respectively:
Select the words intersecting the rectangle

Die Altersübereinstimmung deutete darauf hin, dass
einem engen, nur 50 Millionen Jahre großen Zeitfenster
ein Gesteinshagel auf den Mond traf und dabei unzählige
Krater hinterließ – einige größer als Frankreich. Offenbar
handelte es sich um eine letzte, infernalische Welle nach
der Geburt des Sonnensystems. Daher tauften die Caltech-
Forscher das Ereignis »lunare Katastrophe«. Später setzte
sich die Bezeichnung Großes Bombardement durch.

The latter output also includes words intersecting the rectangle.
What if your rectangle spans across more than one page? Follow this recipe:

• Create a common list of all words of all pages which your rectangle intersects.
• When adding word items to this common list, increase their y-coordinates by the accumulated heightof all previous pages.

30 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

4.2.3 How to Extract Text in Natural Reading Order

One of the common issues with PDF text extraction is, that text may not appear in any particular readingorder.
Responsible for this e�ect is the PDF creator (software or a human). For example, page headers may havebeen inserted in a separate step – after the document had been produced. In such a case, the headertext will appear at the end of a page text extraction (allthough it will be correctly shown by PDF viewersoftware). For example, the following snippet will add some header and footer lines to an existing PDF:
doc = fitz.open("some.pdf")
header = "Header" # text in header
footer = "Page %i of %i " # text in footer
for page in doc:

page.insertText((50, 50), header) # insert header
page.insertText(# insert footer 50 points above page bottom

(50, page.rect.height - 50),
footer % (page.number + 1, len(doc)),

)

The text sequence extracted from a page modified in this way will look like this:
1. original text
2. header line
3. footer line

PyMuPDF has several means to re-establish some reading sequence or even to re-generate a layout closeto the original.
As a starting point take the above mentioned script46 and then use the full page rectangle.
On rare occasions, when the PDF creator has been “over-creative”, extracted text does not even keepthe correct reading sequence of single letters: instead of the two words “DELUXE PROPERTY” you mightsometimes get an anagram, consisting of 8 words like “DEL”, “XE” , “P”, “OP”, “RTY”, “U”, “R” and “E”.
Such a PDF is also not searchable by all PDF viewers, but it is displayed correctly and looks harmless.
In those cases, the following function will help composing the original words of the page. The resultinglist is also searchable and can be used to deliver rectangles for the found text locations:
from operator import itemgetter
from itertools import groupby
import fitz

def recover(words, rect):
""" Word recovery.

Notes:
Method 'getTextWords()' does not try to recover words, if their single
letters do not appear in correct lexical order. This function steps in
here and creates a new list of recovered words.

Args:
words: list of words as created by 'getTextWords()'
rect: rectangle to consider (usually the full page)

Returns:
List of recovered words. Same format as 'getTextWords', but left out
block, line and word number - a list of items of the following format:

(continues on next page)
46 https://github.com/pymupdf/PyMuPDF/wiki/How-to-extract-text-from-a-rectangle

4.2. Text 31

https://github.com/pymupdf/PyMuPDF/wiki/How-to-extract-text-from-a-rectangle

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
[x0, y0, x1, y1, "word"]

"""
build my sublist of words contained in given rectangle
mywords = [w for w in words if fitz.Rect(w[:4]) in rect]

sort the words by lower line, then by word start coordinate
mywords.sort(key=itemgetter(3, 0)) # sort by y1, x0 of word rectangle

build word groups on same line
grouped_lines = groupby(mywords, key=itemgetter(3))

words_out = [] # we will return this

iterate through the grouped lines
for each line coordinate ("_"), the list of words is given
for _, words_in_line in grouped_lines:

for i, w in enumerate(words_in_line):
if i == 0: # store first word

x0, y0, x1, y1, word = w[:5]
continue

r = fitz.Rect(w[:4]) # word rect

Compute word distance threshold as 20% of width of 1 letter.
So we should be safe joining text pieces into one word if they
have a distance shorter than that.
threshold = r.width / len(w[4]) / 5
if r.x0 <= x1 + threshold: # join with previous word

word += w[4] # add string
x1 = r.x1 # new end-of-word coordinate
y0 = max(y0, r.y0) # extend word rect upper bound
continue

now have a new word, output previous one
words_out.append([x0, y0, x1, y1, word])

store the new word
x0, y0, x1, y1, word = w[:5]

output word waiting for completion
words_out.append([x0, y0, x1, y1, word])

return words_out

def search_for(text, words):
""" Search for text in items of list of words

Notes:
Can be adjusted / extended in obvious ways, e.g. using regular
expressions, or being case insensitive, or only looking for complete
words, etc.

Args:
text: string to be searched for
words: list of items in format delivered by 'getTextWords()'.

Returns:
List of rectangles, one for each found locations.

""" (continues on next page)

32 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
rect_list = []
for w in words:

if text in w[4]:
rect_list.append(fitz.Rect(w[:4]))

return rect_list

4.2.4 How to Extract Tables from Documents

If you see a table in a document, you are not normally looking at something like an embedded Excel orother identifyable object. It usually is just text, formatted to appear as appropriate.
Extracting a tabular data from such a page area thereforemeans that youmust find a way to (1) graphicallyindicate table and column borders, and (2) then extract text based on this information.
The wxPython GUI script wxTableExtract.py47 strives to exactly do that. You may want to have a look at itand adjust it to your liking.

4.2.5 How to Search for and Mark Text

There is a standard search function to search for arbitrary text on a page: Page.searchFor() . It returnsa list of Rect objects which surround a found occurrence. These rectangles can for example be used toautomatically insert annotations which visibly mark the found text.
This method has advantages and drawbacks. Pros are

• the search string can contain blanks and wrap across lines
• upper or lower cases are treated equal
• return may also be a list of Quad objects to precisely locate text that is not parallel to either axis.

Disadvantages:
• you cannot determine the number of found items beforehand: if hit_max items are returned you donot know whether you have missed any.

But you have other options:
import sys
import fitz

def mark_word(page, text):
"""Underline each word that contains 'text'.
"""
found = 0
wlist = page.getTextWords() # make the word list
for w in wlist: # scan through all words on page

if text in w[4]: # w[4] is the word's string
found += 1 # count
r = fitz.Rect(w[:4]) # make rect from word bbox

(continues on next page)
47 https://github.com/pymupdf/PyMuPDF/blob/master/examples/wxTableExtract.py

4.2. Text 33

https://github.com/pymupdf/PyMuPDF/blob/master/examples/wxTableExtract.py

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
page.addUnderlineAnnot(r) # underline

return found

fname = sys.argv[1] # filename
text = sys.argv[2] # search string
doc = fitz.open(fname)

print("underlining words containing '%s ' in document '%s '" % (word, doc.name))

new_doc = False # indicator if anything found at all

for page in doc: # scan through the pages
found = mark_word(page, text) # mark the page's words
if found: # if anything found ...

new_doc = True
print("found '%s ' %i times on page %i " % (text, found, page.number + 1))

if new_doc:
doc.save("marked-" + doc.name)

This script uses Page.getTextWords() to look for a string, handed in via cli parameter. This methodseparates a page’s text into “words” using spaces and line breaks as delimiters. Therefore the words inthis lists contain no spaces or line breaks. Further remarks:
• If found, the complete word containing the string is marked (underlined) – not only the searchstring.
• The search string may not contain spaces or other white space.
• As shown here, upper / lower cases are respected. But this can be changed by using the stringmethod lower() (or even regular expressions) in function mark_word.
• There is no upper limit: all occurrences will be detected.
• You can use anything to mark the word: ‘Underline’, ‘Highlight’, ‘StrikeThrough’ or ‘Square’ annota-tions, etc.
• Here is an example snippet of a page of this manual, where “MuPDF” has been used as the searchstring. Note that all strings containing “MuPDF” have been completely underlined (not just thesearch string).

34 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

4.2.6 How to Analyze Font Characteristics

To analyze the characteristics of text in a PDF use this elementary script as a starting point:
import fitz

def flags_decomposer(flags):
"""Make font flags human readable."""
l = []
if flags & 2 ** 0:

l.append("superscript")
if flags & 2 ** 1:

l.append("italic")
if flags & 2 ** 2:

l.append("serifed")
else:

l.append("sans")
if flags & 2 ** 3:

l.append("monospaced")
else:

l.append("proportional")
if flags & 2 ** 4:

l.append("bold")
return ", ".join(l)

doc = fitz.open("text-tester.pdf")
page = doc[0]

read page text as a dictionary, suppressing extra spaces in CJK fonts
blocks = page.getText("dict", flags=11)["blocks"]
for b in blocks: # iterate through the text blocks

for l in b["lines"]: # iterate through the text lines
for s in l["spans"]: # iterate through the text spans

print("")
font_properties = "Font: '%s ' (%s), size %g , color #%06x " % (

s["font"], # font name
flags_decomposer(s["flags"]), # readable font flags
s["size"], # font size
s["color"], # font color

)
print("Text: '%s '" % s["text"]) # simple print of text
print(font_properties)

Here is the PDF page and the script output:

4.2. Text 35

PyMuPDF Documentation, Release 1.16.7

4.2.7 How to Insert Text

PyMuPDF provides ways to insert text on new or existing PDF pages with the following features:
• choose the font, including built-in fonts and fonts that are available as files
• choose text characteristics like bold, italic, font size, font color, etc.
• position the text in multiple ways:

– either as simple line-oriented output starting at a certain point,
– or fitting text in a box provided as a rectangle, in which case text alignment choices are alsoavailable,
– choose whether text should be put in foreground (overlay existing content),
– all text can be arbitrarily “morphed”, i.e. its appearance can be changed via a Matrix, to achievee�ects like scaling, shearing or mirroring,
– independently from morphing and in addition to that, text can be rotated by integer multiplesof 90 degrees.

All of the above is provided by three basic Page, resp. Shape methods:
• Page.insertFont() – install a font for the page for later reference. The result is reflected in theoutput of Document.getPageFontList() . The font can be:

– provided as a file,
– already present somewhere in this or another PDF, or
– be a built-in font.

36 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

• Page.insertText() – write some lines of text. Internally, this uses Shape.insertText() .
• Page.insertTextbox() – fit text in a given rectangle. Here you can choose text alignment features(left, right, centered, justified) and you keep control as to whether text actually fits. Internally, thisuses Shape.insertTextbox() .

Note: Both text insertion methods automatically install the font as necessary.

4.2.7.1 How to Write Text Lines

Output some text lines on a page:
import fitz
doc = fitz.open(...) # new or existing PDF
page = doc.newPage() # new or existing page via doc[n]
p = fitz.Point(50, 72) # start point of 1st line

text = "Some text,\nspread across\nseveral lines."
the same result is achievable by
text = ["Some text", "spread across", "several lines."]

rc = page.insertText(p, # bottom-left of 1st char
text, # the text (honors '\n')
fontname = "helv", # the default font
fontsize = 11, # the default font size
rotate = 0, # also available: 90, 180, 270
)

print("%i lines printed on page %i ." % (rc, page.number))

doc.save("text.pdf")

With this method, only the number of lines will be controlled to not go beyond page height. Surplus lineswill not be written and the number of actual lines will be returned. The calculation uses 1.2 * fontsizeas the line height and 36 points (0.5 inches) as bottom margin.
Line width is ignored. The surplus part of a line will simply be invisible.
However, for built-in fonts there are ways to calculate the line width beforehand - see getTextlength() .
Here is another example. It inserts 4 text strings using the four di�erent rotation options, and therebyexplains, how the text insertion point must be chosen to achieve the desired result:
import fitz
doc = fitz.open()
page = doc.newPage()
the text strings, each having 3 lines
text1 = "rotate=0\nLine 2\nLine 3"
text2 = "rotate=90\nLine 2\nLine 3"
text3 = "rotate=-90\nLine 2\nLine 3"
text4 = "rotate=180\nLine 2\nLine 3"
red = (1, 0, 0) # the color for the red dots
the insertion points, each with a 25 pix distance from the corners
p1 = fitz.Point(25, 25)
p2 = fitz.Point(page.rect.width - 25, 25)
p3 = fitz.Point(25, page.rect.height - 25)
p4 = fitz.Point(page.rect.width - 25, page.rect.height - 25)

(continues on next page)

4.2. Text 37

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
create a Shape to draw on
shape = page.newShape()

draw the insertion points as red, filled dots
shape.drawCircle(p1,1)
shape.drawCircle(p2,1)
shape.drawCircle(p3,1)
shape.drawCircle(p4,1)
shape.finish(width=0.3, color=red, fill=red)

insert the text strings
shape.insertText(p1, text1)
shape.insertText(p3, text2, rotate=90)
shape.insertText(p2, text3, rotate=-90)
shape.insertText(p4, text4, rotate=180)

store our work to the page
shape.commit()
doc.save(...)

This is the result:

4.2.7.2 How to Fill a Text Box

This script fills 4 di�erent rectangles with text, each time choosing a di�erent rotation value:
import fitz
doc = fitz.open(...) # new or existing PDF
page = doc.newPage() # new page, or choose doc[n]
r1 = fitz.Rect(50,100,100,150) # a 50x50 rectangle
disp = fitz.Rect(55, 0, 55, 0) # add this to get more rects
r2 = r1 + disp # 2nd rect
r3 = r1 + disp * 2 # 3rd rect
r4 = r1 + disp * 3 # 4th rect
t1 = "text with rotate = 0." # the texts we will put in
t2 = "text with rotate = 90."
t3 = "text with rotate = -90."

(continues on next page)

38 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
t4 = "text with rotate = 180."
red = (1,0,0) # some colors
gold = (1,1,0)
blue = (0,0,1)
"""We use a Shape object (something like a canvas) to output the text and
the rectangles surounding it for demonstration.
"""
shape = page.newShape() # create Shape
shape.drawRect(r1) # draw rectangles
shape.drawRect(r2) # giving them
shape.drawRect(r3) # a yellow background
shape.drawRect(r4) # and a red border
shape.finish(width = 0.3, color = red, fill = gold)
Now insert text in the rectangles. Font "Helvetica" will be used
by default. A return code rc < 0 indicates insufficient space (not checked here).
rc = shape.insertTextbox(r1, t1, color = blue)
rc = shape.insertTextbox(r2, t2, color = blue, rotate = 90)
rc = shape.insertTextbox(r3, t3, color = blue, rotate = -90)
rc = shape.insertTextbox(r4, t4, color = blue, rotate = 180)
shape.commit() # write all stuff to page /Contents
doc.save("...")

Several default values were used above: font “Helvetica”, font size 11 and text alignment “left”. The resultwill look like this:

4.2.7.3 How to Use Non-Standard Encoding

Since v1.14, MuPDF allows Greek and Russian encoding variants for the Base14_Fonts . In PyMuPDF thisis supported via an additional encoding argument. E�ectively, this is relevant for Helvetica, Times-Romanand Courier (and their bold / italic forms) and characters outside the ASCII code range only. Elsewhere,the argument is ignored. Here is how to request Russian encoding with the standard font Helvetica:
page.insertText(point, russian_text, encoding=fitz.TEXT_ENCODING_CYRILLIC)

The valid encoding values are TEXT_ENCODING_LATIN (0), TEXT_ENCODING_GREEK (1), andTEXT_ENCODING_CYRILLIC (2, Russian) with Latin being the default. Encoding can be specified by allrelevant font and text insertion methods.
By the above statement, the fontname helv is automatically connected to the Russian font variant ofHelvetica. Any subsequent text insertion with this fontname will use the Russian Helvetica encoding.
If you change the fontname just slightly, you can also achieve an encoding “mixture” for the same base
font on the same page:
import fitz
doc=fitz.open()
page = doc.newPage()

(continues on next page)

4.2. Text 39

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
shape = page.newShape()
t="Sômé tèxt wìth nöñ-Lâtîn characterß."
shape.insertText((50,70), t, fontname="helv", encoding=fitz.TEXT_ENCODING_LATIN)
shape.insertText((50,90), t, fontname="HElv", encoding=fitz.TEXT_ENCODING_GREEK)
shape.insertText((50,110), t, fontname="HELV", encoding=fitz.TEXT_ENCODING_CYRILLIC)
shape.commit()
doc.save("t.pdf")

The result:

The snippet above indeed leads to three di�erent copies of the Helvetica font in the PDF. Each copy isuniquely idetified (and referenceable) by using the correct upper-lower case spelling of the reserved word“helv”:
for f in doc.getPageFontList(0): print(f)

[6, 'n/a', 'Type1', 'Helvetica', 'helv', 'WinAnsiEncoding']
[7, 'n/a', 'Type1', 'Helvetica', 'HElv', 'WinAnsiEncoding']
[8, 'n/a', 'Type1', 'Helvetica', 'HELV', 'WinAnsiEncoding']

4.3 Annotations

In v1.14.0, annotation handling has been considerably extended:
• New annotation type support for ‘Ink’, ‘Rubber Stamp’ and ‘Squiggly’ annotations. Ink annots sim-ulate handwritings by combining one or more lists of interconnected points. Stamps are intendedto visuably inform about a document’s status or intended usage (like “draft”, “confidential”, etc.).‘Squiggly’ is a text marker annot, which underlines selected text with a zigzagged line.
• Extended ‘FreeText’ support:

1. all characters from the Latin character set are now available,
2. colors of text, rectangle background and rectangle border can be independently set
3. text in rectangle can be rotated by either +90 or -90 degrees
4. text is automatically wrapped (made multi-line) in available rectangle
5. all Base-14 fonts are now available (normal variants only, i.e. no bold, no italic).

• MuPDF now supports line end icons for ‘Line’ annots (only). PyMuPDF supported that in v1.13.xalready – and for (almost) the full range of applicable types. So we adjusted the appearance of‘Polygon’ and ‘PolyLine’ annots to closely resemble the one of MuPDF for ‘Line’.
• MuPDF now provides its own annotation icons where relevant. PyMuPDF switched to using them (for‘FileAttachment’ and ‘Text’ [“sticky note”] so far).

40 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

• MuPDF now also supports ‘Caret’, ‘Movie’, ‘Sound’ and ‘Signature’ annotations, which wemay includein PyMuPDF at some later time.

4.3.1 How to Add and Modify Annotations

In PyMuPDF, new annotations are added via Page methods. To keep code duplication e�ort small, we onlyo�er a minimal set of options here. For example, to add a ‘Circle’ annotation, only the containing rectanglecan be specified. The result is a circle (or ellipsis) with white interior, black border and a line width of 1,exactly fitting into the rectangle. To adjust the annot’s appearance, Annot methods must then be used.After having made all required changes, the annot’s Annot.update() methods must be invoked to finalizeall your changes.
As an overview for these capabilities, look at the following script that fills a PDF page with most of theavailable annotations. Look in the next sections for more special situations:
-*- coding: utf-8 -*-
from __future__ import print_function
import sys
print("Python", sys.version, "on", sys.platform, "\n")
import fitz
print(fitz.__doc__, "\n")

text = "text in line\ntext in line\ntext in line\ntext in line"
red = (1, 0, 0)
blue = (0, 0, 1)
gold = (1, 1, 0)
colors = {"stroke": blue, "fill": gold}
colors2 = {"fill": blue, "stroke": gold}
border = {"width": 0.3, "dashes": [2]}
displ = fitz.Rect(0, 50, 0, 50)
r = fitz.Rect(50, 100, 220, 135)
t1 = u"têxt üsès Lätiñ charß,\nEUR: €, mu: µ, super scripts: 23!"

def print_descr(rect, annot):
"""Print a short description to the right of an annot rect."""
annot.parent.insertText(rect.br + (10, 0),

"'%s ' annotation" % annot.type[1], color = red)

def rect_from_quad(q):
"""Create a rect envelopping a quad (= rotated rect)."""
return fitz.Rect(q[0], q[1]) | q[2] | q[3]

doc = fitz.open()
page = doc.newPage()
annot = page.addFreetextAnnot(r, t1, rotate = 90)
annot.setBorder(border)
annot.update(fontsize = 10, border_color=red, fill_color=gold, text_color=blue)

print_descr(annot.rect, annot)
r = annot.rect + displ
print("added 'FreeText'")

annot = page.addTextAnnot(r.tl, t1)
annot.setColors(colors2)
annot.update()
print_descr(annot.rect, annot)

(continues on next page)

4.3. Annotations 41

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
print("added 'Sticky Note'")

pos = annot.rect.tl + displ.tl

first insert 4 text lines, rotated clockwise by 15 degrees
page.insertText(pos, text, fontsize=11, morph = (pos, fitz.Matrix(-15)))
now search text to get the quads
rl = page.searchFor("text in line", quads = True)
r0 = rl[0]
r1 = rl[1]
r2 = rl[2]
r3 = rl[3]
annot = page.addHighlightAnnot(r0)
need to convert quad to rect for descriptive text ...
print_descr(rect_from_quad(r0), annot)
print("added 'HighLight'")

annot = page.addStrikeoutAnnot(r1)
print_descr(rect_from_quad(r1), annot)
print("added 'StrikeOut'")

annot = page.addUnderlineAnnot(r2)
print_descr(rect_from_quad(r2), annot)
print("added 'Underline'")

annot = page.addSquigglyAnnot(r3)
print_descr(rect_from_quad(r3), annot)
print("added 'Squiggly'")

r = rect_from_quad(r3) + displ
annot = page.addPolylineAnnot([r.bl, r.tr, r.br, r.tl])
annot.setBorder(border)
annot.setColors(colors)
annot.setLineEnds(fitz.ANNOT_LE_Diamond, fitz.ANNOT_LE_Circle)
annot.update()
print_descr(annot.rect, annot)
print("added 'PolyLine'")

r+= displ
annot = page.addPolygonAnnot([r.bl, r.tr, r.br, r.tl])
annot.setBorder(border)
annot.setColors(colors)
annot.setLineEnds(fitz.ANNOT_LE_Diamond, fitz.ANNOT_LE_Circle)
annot.update()
print_descr(annot.rect, annot)
print("added 'Polygon'")

r+= displ
annot = page.addLineAnnot(r.tr, r.bl)
annot.setBorder(border)
annot.setColors(colors)
annot.setLineEnds(fitz.ANNOT_LE_Diamond, fitz.ANNOT_LE_Circle)
annot.update()
print_descr(annot.rect, annot)
print("added 'Line'")

r+= displ (continues on next page)

42 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
annot = page.addRectAnnot(r)
annot.setBorder(border)
annot.setColors(colors)
annot.update()
print_descr(annot.rect, annot)
print("added 'Square'")

r+= displ
annot = page.addCircleAnnot(r)
annot.setBorder(border)
annot.setColors(colors)
annot.update()
print_descr(annot.rect, annot)
print("added 'Circle'")

r+= displ
annot = page.addFileAnnot(r.tl, b"just anything for testing", "testdata.txt")
annot.setColors(colors2)
annot.update()
print_descr(annot.rect, annot)
print("added 'FileAttachment'")

r+= displ
annot = page.addStampAnnot(r, stamp = 0)
annot.setColors(colors)
annot.setOpacity(0.5)
annot.update()
print_descr(annot.rect, annot)
print("added 'Stamp'")

doc.save("new-annots.pdf", expand=255)

This script should lead to the following output:

4.3. Annotations 43

PyMuPDF Documentation, Release 1.16.7

4.3.2 How to Mark Text

This script searches for text and marks it:
-*- coding: utf-8 -*-
import fitz

the document to annotate
doc = fitz.open("tilted-text.pdf")

the text to be marked
t = "¡La práctica hace el campeón!"

work with first page only
page = doc[0]

(continues on next page)

44 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
get list of text locations
we use "quads", not rectangles because text may be tilted!
rl = page.searchFor(t, quads = True)

mark all found quads with one annotation
page.addSquigglyAnnot(rl)

save to a new PDF
doc.save("a-squiggly.pdf")

The result looks like this:

4.3.3 How to Use FreeText

This script shows a couple of possibilities for ‘FreeText’ annotations:
-*- coding: utf-8 -*-
import fitz

some colors
blue = (0,0,1)
green = (0,1,0)
red = (1,0,0)
gold = (1,1,0)

a new PDF with 1 page
doc = fitz.open()
page = doc.newPage()

3 rectangles, same size, abvove each other
r1 = fitz.Rect(100,100,200,150)
r2 = r1 + (0,75,0,75)
r3 = r2 + (0,75,0,75)

(continues on next page)

4.3. Annotations 45

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
the text, Latin alphabet
t = "¡Un pequeño texto para practicar!"

add 3 annots, modify the last one somewhat
a1 = page.addFreetextAnnot(r1, t, color=red)
a2 = page.addFreetextAnnot(r2, t, fontname="Ti", color=blue)
a3 = page.addFreetextAnnot(r3, t, fontname="Co", color=blue, rotate=90)
a3.setBorder({"width":0.0})
a3.update(fontsize=8, fill_color=gold)

save the PDF
doc.save("a-freetext.pdf")

The result looks like this:

4.3.4 How to Use Ink Annotations

Ink annotations are used to contain freehand scribblings. A typical example maybe an image of yoursignature consisting of first name and last name. Technically an ink annotation is implemented as a list of
lists of points. Each point list is regarded as a continuous line connecting the points. Di�erent point listsrepresent indepndent line segments of the annotation.
The following script creates an ink annotation with two mathematical curves (sine and cosine functiongraphs) as line segments:
import math
import fitz

#--
preliminary stuff: create function value lists for sine and cosine
#--
w360 = math.pi * 2 # go through full circle

(continues on next page)

46 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
deg = w360 / 360 # 1 degree as radiants
rect = fitz.Rect(100,200, 300, 300) # use this rectangle
first_x = rect.x0 # x starts from left
first_y = rect.y0 + rect.height / 2. # rect middle means y = 0
x_step = rect.width / 360 # rect width means 360 degrees
y_scale = rect.height / 2. # rect height means 2
sin_points = [] # sine values go here
cos_points = [] # cosine values go here
for x in range(362): # now fill in the values

x_coord = x * x_step + first_x # current x coordinate
y = -math.sin(x * deg) # sine
p = (x_coord, y * y_scale + first_y) # corresponding point
sin_points.append(p) # append
y = -math.cos(x * deg) # cosine
p = (x_coord, y * y_scale + first_y) # corresponding point
cos_points.append(p) # append

#--
create the document with one page
#--
doc = fitz.open() # make new PDF
page = doc.newPage() # give it a page

#--
add the Ink annotation, consisting of 2 curve segments
#--
annot = page.addInkAnnot((sin_points, cos_points))
let it look a little nicer
annot.setBorder({"width":0.3, "dashes":[1]})# line thickness, some dashing
annot.setColors({"stroke":(0,0,1)}) # make the lines blue
annot.update() # update the appearance

expendable, only shows that we actually hit the rectangle
page.drawRect(rect, width = 0.3) # only to demonstrate we did OK

doc.save("a-inktest.pdf")

This is the result:

4.3. Annotations 47

PyMuPDF Documentation, Release 1.16.7

4.4 Drawing and Graphics

PDF files support elementary drawing operations as part of their syntax. This includes basic geometricalobjects like lines, curves, circles, rectangles including specifying colors.
The syntax for such operations is defined in “A Operator Summary” on page 985 of the Adobe PDF Refer-
ence 1.7. Specifying these operators for a PDF page happens in its contents objects.
PyMuPDF implements a large part of the available features via its Shape class, which is comparable tonotions like “canvas” in other packages (e.g. reportlab48).
A shape is always created as a child of a page, usually with an instruction like shape = page.newShape().The class defines numerous methods that perform drawing operations on the page’s area. For example,
last_point = shape.drawRect(rect) draws a rectangle along the borders of a suitably defined rect =
fitz.Rect(...).
The returned last_point always is the Point where drawing operation ended (“last point”). Every suchelementary drawing requires a subsequent Shape.finish() to “close” it, but there may be multiple draw-ings which have one common finish() method.
In fact, Shape.finish() defines a group of preceding draw operations to form one – potentially rathercomplex – graphics object. PyMuPDF provides several predefined graphics in shapes_and_symbols.py49which demonstrate how this works.
If you import this script, you can also directly use its graphics as in the following exmple:
-*- coding: utf-8 -*-
"""
Created on Sun Dec 9 08:34:06 2018

@author: Jorj
@license: GNU GPL 3.0+

Create a list of available symbols defined in shapes_and_symbols.py

This also demonstrates an example usage: how these symbols could be used
as bullet-point symbols in some text.

"""

import fitz
import shapes_and_symbols as sas

list of available symbol functions and their descriptions
tlist = [

(sas.arrow, "arrow (easy)"),
(sas.caro, "caro (easy)"),
(sas.clover, "clover (easy)"),
(sas.diamond, "diamond (easy)"),
(sas.dontenter, "do not enter (medium)"),
(sas.frowney, "frowney (medium)"),
(sas.hand, "hand (complex)"),
(sas.heart, "heart (easy)"),
(sas.pencil, "pencil (very complex)"),
(sas.smiley, "smiley (easy)"),
]

(continues on next page)
48 https://pypi.org/project/reportlab/49 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/shapes_and_symbols.py

48 Chapter 4. Collection of Recipes

https://pypi.org/project/reportlab/
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/shapes_and_symbols.py

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
r = fitz.Rect(50, 50, 100, 100) # first rect to contain a symbol
d = fitz.Rect(0, r.height + 10, 0, r.height + 10) # displacement to next ret
p = (15, -r.height * 0.2) # starting point of explanation text
rlist = [r] # rectangle list

for i in range(1, len(tlist)): # fill in all the rectangles
rlist.append(rlist[i-1] + d)

doc = fitz.open() # create empty PDF
page = doc.newPage() # create an empty page
shape = page.newShape() # start a Shape (canvas)

for i, r in enumerate(rlist):
tlist[i][0](shape, rlist[i]) # execute symbol creation
shape.insertText(rlist[i].br + p, # insert description text

tlist[i][1], fontsize=r.height/1.2)

store everything to the page's /Contents object
shape.commit()

import os
scriptdir = os.path.dirname(__file__)
doc.save(os.path.join(scriptdir, "symbol-list.pdf")) # save the PDF

This is the script’s outcome:

4.4. Drawing and Graphics 49

PyMuPDF Documentation, Release 1.16.7

4.5 Multiprocessing

MuPDF has no integrated support for threading - they call themselves “threading-agnostic”. While theredo exist tricky possibilities to still use threading with MuPDF, the baseline consequence for PyMuPDF is:
No Python threading support.
Using PyMuPDF in a Python threading environment will lead to blocking e�ects for the main thread.
However, there exists the option to use Python’s multiprocessing module in a variety of ways.
If you are looking to speed up page-oriented processing for a large document, use this script as a startingpoint. It should be at least twice as fast as the corresponding sequential processing.
"""
Demonstrate the use of multiprocessing with PyMuPDF.

Depending on the number of CPUs, the document is divided in page ranges.
Each range is then worked on by one process.
The type of work would typically be text extraction or page rendering. Each
process must know where to put its results, because this processing pattern
does not include inter-process communication or data sharing.

Compared to sequential processing, speed improvements in range of 100% (ie.
twice as fast) or better can be expected.
"""
from __future__ import print_function, division
import sys
import os
import time
from multiprocessing import Pool, cpu_count
import fitz

choose a version specific timer function (bytes == str in Python 2)
mytime = time.clock if str is bytes else time.perf_counter

def render_page(vector):
""" Render a page range of a document.

Notes:
The PyMuPDF document cannot be part of the argument, because that
cannot be pickled. So we are being passed in just its filename.
This is no performance issue, because we are a separate process and
need to open the document anyway.
Any page-specific function can be processed here - rendering is just
an example - text extraction might be another.
The work must however be self-contained: no inter-process communication
or synchronization is possible with this design.
Care must also be taken with which parameters are contained in the
argument, because it will be passed in via pickling by the Pool class.
So any large objects will increase the overall duration.

Args:
vector: a list containing required parameters.

"""
recreate the arguments
idx = vector[0] # this is the segment number we have to process
cpu = vector[1] # number of CPUs

(continues on next page)

50 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
filename = vector[2] # document filename
mat = vector[3] # the matrix for rendering
doc = fitz.open(filename) # open the document
num_pages = len(doc) # get number of pages

pages per segment: make sure that cpu * seg_size >= num_pages!
seg_size = int(num_pages / cpu + 1)
seg_from = idx * seg_size # our first page number
seg_to = min(seg_from + seg_size, num_pages) # last page number

for i in range(seg_from, seg_to): # work through our page segment
page = doc[i]
page.getText("rawdict") # use any page-related type of work here, eg
pix = page.getPixmap(alpha=False, matrix=mat)
store away the result somewhere ...
pix.writePNG("p-%i.png" % i)

print("Processed page numbers %i through %i " % (seg_from, seg_to - 1))

if __name__ == "__main__":
t0 = mytime() # start a timer
filename = sys.argv[1]
mat = fitz.Matrix(0.2, 0.2) # the rendering matrix: scale down to 20%
cpu = cpu_count()

make vectors of arguments for the processes
vectors = [(i, cpu, filename, mat) for i in range(cpu)]
print("Starting %i processes for '%s '." % (cpu, filename))

pool = Pool() # make pool of 'cpu_count()' processes
pool.map(render_page, vectors, 1) # start processes passing each a vector

t1 = mytime() # stop the timer
print("Total time %g seconds" % round(t1 - t0, 2))

Here is a more complex example involving inter-process communication between a main process (showinga GUI) and a child process doing PyMuPDF access to a document.
"""
Created on 2019-05-01

@author: yinkaisheng@live.com
@copyright: 2019 yinkaisheng@live.com
@license: GNU GPL 3.0+

Demonstrate the use of multiprocessing with PyMuPDF

This example shows some more advanced use of multiprocessing.
The main process show a Qt GUI and establishes a 2-way communication with
another process, which accesses a supported document.
"""
import os
import sys
import time
import multiprocessing as mp

(continues on next page)

4.5. Multiprocessing 51

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
import queue
import fitz
from PyQt5 import QtCore, QtGui, QtWidgets

my_timer = time.clock if str is bytes else time.perf_counter

class DocForm(QtWidgets.QWidget):
def __init__(self):

super().__init__()
self.process = None
self.queNum = mp.Queue()
self.queDoc = mp.Queue()
self.pageCount = 0
self.curPageNum = 0
self.lastDir = ""
self.timerSend = QtCore.QTimer(self)
self.timerSend.timeout.connect(self.onTimerSendPageNum)
self.timerGet = QtCore.QTimer(self)
self.timerGet.timeout.connect(self.onTimerGetPage)
self.timerWaiting = QtCore.QTimer(self)
self.timerWaiting.timeout.connect(self.onTimerWaiting)
self.initUI()

def initUI(self):
vbox = QtWidgets.QVBoxLayout()
self.setLayout(vbox)

hbox = QtWidgets.QHBoxLayout()
self.btnOpen = QtWidgets.QPushButton("OpenDocument", self)
self.btnOpen.clicked.connect(self.openDoc)
hbox.addWidget(self.btnOpen)

self.btnPlay = QtWidgets.QPushButton("PlayDocument", self)
self.btnPlay.clicked.connect(self.playDoc)
hbox.addWidget(self.btnPlay)

self.btnStop = QtWidgets.QPushButton("Stop", self)
self.btnStop.clicked.connect(self.stopPlay)
hbox.addWidget(self.btnStop)

self.label = QtWidgets.QLabel("0/0", self)
self.label.setFont(QtGui.QFont("Verdana", 20))
hbox.addWidget(self.label)

vbox.addLayout(hbox)

self.labelImg = QtWidgets.QLabel("Document", self)
sizePolicy = QtWidgets.QSizePolicy(

QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Expanding
)
self.labelImg.setSizePolicy(sizePolicy)
vbox.addWidget(self.labelImg)

self.setGeometry(100, 100, 400, 600)
self.setWindowTitle("PyMuPDF Document Player")
self.show() (continues on next page)

52 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
def openDoc(self):

path, _ = QtWidgets.QFileDialog.getOpenFileName(
self,
"Open Document",
self.lastDir,
"All Supported Files (*.pdf;*.epub;*.xps;*.oxps;*.cbz;*.fb2);;PDF Files (*.pdf);;EPUB␣

→˓Files (*.epub);;XPS Files (*.xps);;OpenXPS Files (*.oxps);;CBZ Files (*.cbz);;FB2 Files (*.fb2)",
options=QtWidgets.QFileDialog.Options(),

)
if path:

self.lastDir, self.file = os.path.split(path)
if self.process:

self.queNum.put(-1) # use -1 to notify the process to exit
self.timerSend.stop()
self.curPageNum = 0
self.pageCount = 0
self.process = mp.Process(

target=openDocInProcess, args=(path, self.queNum, self.queDoc)
)
self.process.start()
self.timerGet.start(40)
self.label.setText("0/0")
self.queNum.put(0)
self.startTime = time.perf_counter()
self.timerWaiting.start(40)

def playDoc(self):
self.timerSend.start(500)

def stopPlay(self):
self.timerSend.stop()

def onTimerSendPageNum(self):
if self.curPageNum < self.pageCount - 1:

self.queNum.put(self.curPageNum + 1)
else:

self.timerSend.stop()

def onTimerGetPage(self):
try:

ret = self.queDoc.get(False)
if isinstance(ret, int):

self.timerWaiting.stop()
self.pageCount = ret
self.label.setText("{}/{}".format(self.curPageNum + 1, self.pageCount))

else: # tuple, pixmap info
num, samples, width, height, stride, alpha = ret
self.curPageNum = num
self.label.setText("{}/{}".format(self.curPageNum + 1, self.pageCount))
fmt = (

QtGui.QImage.Format_RGBA8888
if alpha
else QtGui.QImage.Format_RGB888

)
qimg = QtGui.QImage(samples, width, height, stride, fmt)
self.labelImg.setPixmap(QtGui.QPixmap.fromImage(qimg)) (continues on next page)

4.5. Multiprocessing 53

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
except queue.Empty as ex:

pass

def onTimerWaiting(self):
self.labelImg.setText(

'Loading "{}", {:.2f}s'.format(
self.file, time.perf_counter() - self.startTime

)
)

def closeEvent(self, event):
self.queNum.put(-1)
event.accept()

def openDocInProcess(path, queNum, quePageInfo):
start = my_timer()
doc = fitz.open(path)
end = my_timer()
quePageInfo.put(doc.pageCount)
while True:

num = queNum.get()
if num < 0:

break
page = doc.loadPage(num)
pix = page.getPixmap()
quePageInfo.put(

(num, pix.samples, pix.width, pix.height, pix.stride, pix.alpha)
)

doc.close()
print("process exit")

if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
form = DocForm()
sys.exit(app.exec_())

4.6 General

4.6.1 How to Open with a Wrong File Extension

If you have a document with a wrong file extension for its type, you can still correctly open it.
Assume that “some.file” is actually an XPS. Open it like so:
>>> doc = fitz.open("some.file", filetype = "xps")

Note: MuPDF itself does not try to determine the file type from the file contents. You are responsible forsupplying the filetype info in some way – either implicitely via the file extension, or explicitely as shown.

54 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

There are pure Python packages like filetype50 that help you doing this. Also consult the Document chapterfor a full description.

4.6.2 How to Embed or Attach Files

PDF supports incorporating arbitrary data. This can be done in one of two ways: “embedding” or “attach-ing”. PyMuPDF supports both options.
1. Attached Files: data are attached to a page by way of a FileAttachment annotation with this state-ment: annot = page.addFileAnnot(pos, ...), for details see Page.addFileAnnot() . The first pa-rameter “pos” is the Point, where a “PushPin” icon should be placed on the page.
2. Embedded Files: data are embedded on the document level via method Document.

embeddedFileAdd() .
The basic di�erences between these options are (1) you need edit permission to embed a file, but onlyannotation permission to attach, (2) like all annotations, attachments are visible on a page, embeddedfiles are not.
There exist several example scripts: embedded-list.py51, new-annots.py52.
Also look at the sections above and at chapter Appendix 3: Considerations on Embedded Files.

4.6.3 How to Delete and Re-Arrange Pages

With PyMuPDF you have all options to copy, move, delete or re-arrange the pages of a PDF. Intuitive meth-ods exist that allow you to do this on a page-by-page level, like the Document.copyPage() method.
Or you alternatively prepare a complete new page layout in form of a Python sequence, that containsthe page numbers you want, in the sequence you want, and as many times as you want each page. Thefollowing may illustrate what can be done with Document.select() :
doc.select([1, 1, 1, 5, 4, 9, 9, 9, 0, 2, 2, 2])

Now let’s prepare a PDF for double-sided printing (on a printer not directly supporting this):
The number of pages is given by len(doc) (equal to doc.pageCount). The following lists represent theeven and the odd page numbers, respectively:
>>> p_even = [p in range(len(doc)) if p % 2 == 0]
>>> p_odd = [p in range(len(doc)) if p % 2 == 1]

This snippet creates the respective sub documents which can then be used to print the document:
>>> doc.select(p_even) # only the even pages left over
>>> doc.save("even.pdf") # save the "even" PDF
>>> doc.close() # recycle the file
>>> doc = fitz.open(doc.name) # re-open
>>> doc.select(p_odd) # and do the same with the odd pages
>>> doc.save("odd.pdf")

50 https://pypi.org/project/filetype/51 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py52 https://github.com/pymupdf/PyMuPDF/blob/master/demo/new-annots.py

4.6. General 55

https://pypi.org/project/filetype/
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py
https://github.com/pymupdf/PyMuPDF/blob/master/demo/new-annots.py

PyMuPDF Documentation, Release 1.16.7

For more information also have a look at this Wiki article53.
The following example will reverse the order of all pages (extremely fast: sub-second time for the 1310pages of the Adobe PDF Reference 1.7):
>>> lastPage = len(doc) - 1
>>> for i in range(lastPage):

doc.movePage(lastPage, i) # move current last page to the front

This snippet duplicates the PDF with itself so that it will contain the pages 0, 1, ..., n, 0, 1, ..., n
(extremely fast and without noticeably increasing the file size!):
>>> pageCount = len(doc)
>>> for i in range(pageCount):

doc.copyPage(i) # copy this page to after last page

4.6.4 How to Join PDFs

It is easy to join PDFs with method Document.insertPDF() . Given open PDF documents, you can copypage ranges from one to the other. You can select the point where the copied pages should be placed, youcan revert the page sequence and also change page rotation. This Wiki article54 contains a full description.
The GUI script PDFjoiner.py55 uses this method to join a list of files while also joining the respective tableof contents segments. It looks like this:

53 https://github.com/pymupdf/PyMuPDF/wiki/Rearranging-Pages-of-a-PDF54 https://github.com/pymupdf/PyMuPDF/wiki/Inserting-Pages-from-other-PDFs55 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

56 Chapter 4. Collection of Recipes

https://github.com/pymupdf/PyMuPDF/wiki/Rearranging-Pages-of-a-PDF
https://github.com/pymupdf/PyMuPDF/wiki/Inserting-Pages-from-other-PDFs
https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.16.7

4.6.5 How to Add Pages

There two methods for adding new pages to a PDF: Document.insertPage() and Document.newPage()(and they share a common code base).
newPage

Document.newPage() returns the created Page object. Here is the constructor showing defaults:
>>> doc = fitz.open(...) # some new or existing PDF document
>>> page = doc.newPage(to = -1, # insertion point: end of document

width = 595, # page dimension: A4 portrait
height = 842)

The above could also have been achieved with the short form page = doc.newPage(). The to parameterspecifies the document’s page number (0-based) in front of which to insert.
To create a page in landscape format, just exchange the width and height values.
Use this to create the page with another pre-defined paper format:
>>> w, h = fitz.PaperSize("letter-l") # 'Letter' landscape
>>> page = doc.newPage(width = w, height = h)

The convenience function PaperSize() knows over 40 industry standard paper formats to choose from.To see them, inspect dictionary paperSizes . Pass the desired dictionary key to PaperSize() to retrieve

4.6. General 57

PyMuPDF Documentation, Release 1.16.7

the paper dimensions. Upper and lower case is supported. If you append “-L” to the format name, thelandscape version is returned.
Note: Here is a 3-liner that creates a PDF with one empty page. Its file size is 470 bytes:
>>> doc = fitz.open()
>>> doc.newPage()
>>> doc.save("A4.pdf")

insertPage

Document.insertPage() also inserts a new page and accepts the same parameters to, width and height.But it lets you also insert arbitrary text into the new page and returns the number of inserted lines:
>>> doc = fitz.open(...) # some new or existing PDF document
>>> n = doc.insertPage(to = -1, # default insertion point

text = None, # string or sequence of strings
fontsize = 11,
width = 595,
height = 842,
fontname = "Helvetica", # default font
fontfile = None, # any font file name
color = (0, 0, 0)) # text color (RGB)

The text parameter can be a (sequence of) string (assuming UTF-8 encoding). Insertion will start at Point(50, 72), which is one inch below top of page and 50 points from the left. The number of inserted textlines is returned. See the method definiton for more details.

4.6.6 How To Dynamically Clean Up Corrupt PDFs

This shows a potential use of PyMuPDF with another Python PDF library (the excellent pure Python packagepdfrw56 is used here as an example).
If a clean, non-corrupt / decompressed PDF is needed, one could dynamically invoke PyMuPDF to recoverfrom many problems like so:
import sys
from io import BytesIO
from pdfrw import PdfReader
import fitz

#---------------------------------------
'Tolerant' PDF reader
#---------------------------------------
def reader(fname, password = None):

idata = open(fname, "rb").read() # read the PDF into memory and
ibuffer = BytesIO(idata) # convert to stream
if password is None:

try:
return PdfReader(ibuffer) # if this works: fine!

except:
pass

(continues on next page)
56 https://pypi.python.org/pypi/pdfrw

58 Chapter 4. Collection of Recipes

https://pypi.python.org/pypi/pdfrw

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
either we need a password or it is a problem-PDF
create a repaired / decompressed / decrypted version
doc = fitz.open("pdf", ibuffer)
if password is not None: # decrypt if password provided

rc = doc.authenticate(password)
if not rc > 0:

raise ValueError("wrong password")
c = doc.write(garbage=3, deflate=True)
del doc # close & delete doc
return PdfReader(BytesIO(c)) # let pdfrw retry

#---------------------------------------
Main program
#---------------------------------------
pdf = reader("pymupdf.pdf", password = None) # inlude a password if necessary
print pdf.Info
do further processing

With the command line utility pdftk (available57 for Windows only, but reported to also run under Wine58)a similar result can be achieved, see here59. However, you must invoke it as a separate process via
subprocess.Popen, using stdin and stdout as communication vehicles.

4.6.7 How to Split Single Pages

This deals with splitting up pages of a PDF in arbitrary pieces. For example, you may have a PDF with Letterformat pages which you want to print with a magnification factor of four: each page is split up in 4 pieceswhich each go to a separate PDF page in Letter format again:
'''
Create a PDF copy with split-up pages (posterize)

License: GNU GPL V3
(c) 2018 Jorj X. McKie

Usage

python posterize.py input.pdf

Result

A file "poster-input.pdf" with 4 output pages for every input page.

Notes

(1) Output file is chosen to have page dimensions of 1/4 of input.

(2) Easily adapt the example to make n pages per input, or decide per each
input page or whatever.

Dependencies

(continues on next page)
57 https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/58 https://www.winehq.org/59 http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/

4.6. General 59

https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://www.winehq.org/
http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
PyMuPDF 1.12.2 or later
'''
from __future__ import print_function
import fitz, sys
infile = sys.argv[1] # input file name
src = fitz.open(infile)
doc = fitz.open() # empty output PDF

for spage in src: # for each page in input
xref = 0 # force initial page copy to output
r = spage.rect # input page rectangle
d = fitz.Rect(spage.CropBoxPosition, # CropBox displacement if not

spage.CropBoxPosition) # starting at (0, 0)
#--
example: cut input page into 2 x 2 parts
#--
r1 = r * 0.5 # top left rect
r2 = r1 + (r1.width, 0, r1.width, 0) # top right rect
r3 = r1 + (0, r1.height, 0, r1.height) # bottom left rect
r4 = fitz.Rect(r1.br, r.br) # bottom right rect
rect_list = [r1, r2, r3, r4] # put them in a list

for rx in rect_list: # run thru rect list
rx += d # add the CropBox displacement
page = doc.newPage(-1, # new output page with rx dimensions

width = rx.width,
height = rx.height)

page.showPDFpage(
page.rect, # fill all new page with the image
src, # input document
spage.number, # input page number
subrect = rx, # which part to use of input page

)

that's it, save output file
doc.save("poster-" + src.name,

garbage = 3, # eliminate duplicate objects
deflate = True) # compress stuff where possible

This shows what happens to an input page:

4.6.8 How to Combine Single Pages

This deals with joining PDF pages to form a new PDF with pages each combining two or four original ones(also called “2-up”, “4-up”, etc.). This could be used to create booklets or thumbnail-like overviews:

60 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

'''
Copy an input PDF to output combining every 4 pages

License: GNU GPL V3
(c) 2018 Jorj X. McKie

Usage

python 4up.py input.pdf

Result

A file "4up-input.pdf" with 1 output page for every 4 input pages.

Notes

(1) Output file is chosen to have A4 portrait pages. Input pages are scaled

maintaining side proportions. Both can be changed, e.g. based on input
page size. However, note that not all pages need to have the same size, etc.

(2) Easily adapt the example to combine just 2 pages (like for a booklet) or
make the output page dimension dependent on input, or whatever.

Dependencies

PyMuPDF 1.12.1 or later
'''
from __future__ import print_function
import fitz, sys
infile = sys.argv[1]
src = fitz.open(infile)
doc = fitz.open() # empty output PDF

width, height = fitz.PaperSize("a4") # A4 portrait output page format
r = fitz.Rect(0, 0, width, height)

define the 4 rectangles per page
r1 = r * 0.5 # top left rect
r2 = r1 + (r1.width, 0, r1.width, 0) # top right
r3 = r1 + (0, r1.height, 0, r1.height) # bottom left
r4 = fitz.Rect(r1.br, r.br) # bottom right

put them in a list
r_tab = [r1, r2, r3, r4]

now copy input pages to output
for spage in src:

if spage.number % 4 == 0: # create new output page
page = doc.newPage(-1,

width = width,
height = height)

insert input page into the correct rectangle
page.showPDFpage(r_tab[spage.number % 4], # select output rect

src, # input document
spage.number) # input page number

by all means, save new file using garbage collection and compression
doc.save("4up-" + infile, garbage = 3, deflate = True)

4.6. General 61

PyMuPDF Documentation, Release 1.16.7

Example e�ect:

4.6.9 How to Convert Any Document to PDF

Here is a script that converts any PyMuPDF supported document to a PDF. These include XPS, EPUB, FB2,CBZ and all image formats, including multi-page TIFF images.
It features maintaining any metadata, table of contents and links contained in the source document:
from __future__ import print_function
"""
Demo script: Convert input file to a PDF

Intended for multi-page input files like XPS, EPUB etc.

Features:

Recovery of table of contents and links of input file.
While this works well for bookmarks (outlines, table of contents),
links will only work if they are not of type "LINK_NAMED".
This link type is skipped by the script.

For XPS and EPUB input, internal links however **are** of type "LINK_NAMED".
Base library MuPDF does not resolve them to page numbers.

So, for anyone expert enough to know the internal structure of these
document types, can further interpret and resolve these link types.

Dependencies

PyMuPDF v1.14.0+
"""
import sys
import fitz
if not (list(map(int, fitz.VersionBind.split("."))) >= [1,14,0]):

raise SystemExit("need PyMuPDF v1.14.0+")
fn = sys.argv[1]

print("Converting '%s ' to '%s .pdf'" % (fn, fn))

doc = fitz.open(fn)

b = doc.convertToPDF() # convert to pdf
pdf = fitz.open("pdf", b) # open as pdf

(continues on next page)

62 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
toc= doc.getToC() # table of contents of input
pdf.setToC(toc) # simply set it for output
meta = doc.metadata # read and set metadata
if not meta["producer"]:

meta["producer"] = "PyMuPDF v" + fitz.VersionBind

if not meta["creator"]:
meta["creator"] = "PyMuPDF PDF converter"

meta["modDate"] = fitz.getPDFnow()
meta["creationDate"] = meta["modDate"]
pdf.setMetadata(meta)

now process the links
link_cnti = 0
link_skip = 0
for pinput in doc: # iterate through input pages

links = pinput.getLinks() # get list of links
link_cnti += len(links) # count how many
pout = pdf[pinput.number] # read corresp. output page
for l in links: # iterate though the links

if l["kind"] == fitz.LINK_NAMED: # we do not handle named links
print("named link page", pinput.number, l)
link_skip += 1 # count them
continue

pout.insertLink(l) # simply output the others

save the conversion result
pdf.save(fn + ".pdf", garbage=4, deflate=True)
say how many named links we skipped
if link_cnti > 0:

print("Skipped %i named links of a total of %i in input." % (link_skip, link_cnti))

4.6.10 How to Deal with Messages Issued by MuPDF

Since PyMuPDF v1.16.0, error messages issued by the underlying MuPDF library are being redirected tothe Python standard device sys.stderr. So you can handle them like any other output going to thesedevices.
We always prefix these messages with an identifying string "mupdf:".
MuPDF warnings continue to be stored in an internal bu�er and can be viewed using Tools.
mupdf_warnings() . Please note that MuPDF errors may or may not lead to Python exceptions. In otherwords, you may see error messages from which MuPDF can recover and continue processing.
Example output for a recoverable error. We are opening a damaged PDF, but MuPDF is able to repair it andgives us a few information on what happened. Then we illustrate how to find out whether the documentcan later be saved incrementally:
>>> import fitz
>>> doc = fitz.open("damaged-file.pdf") # leads to a sys.stderr message:
mupdf: cannot find startxref
>>> print(fitz.TOOLS.mupdf_warnings()) # check if there is more info:
trying to repair broken xref

(continues on next page)

4.6. General 63

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
repairing PDF document
object missing 'endobj' token
>>> doc.can_save_incrementally() # this is to be expected:
False
>>> # the document has nevertheless been created:
>>> doc
fitz.Document('damaged-file.pdf')
>>> # we now know that any save must occur to a new file

Example output for an unrecoverable error:
>>> import fitz
>>> doc = fitz.open("does-not-exist.pdf")
mupdf: cannot open does-not-exist.pdf: No such file or directory
Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>
doc = fitz.open("does-not-exist.pdf")

File "C:\Users\Jorj\AppData\Local\Programs\Python\Python37\lib\site-packages\fitz\fitz.py", line␣
→˓2200, in __init__

_fitz.Document_swiginit(self, _fitz.new_Document(filename, stream, filetype, rect, width,␣
→˓height, fontsize))
RuntimeError: cannot open does-not-exist.pdf: No such file or directory
>>>

4.6.11 How to Deal with PDF Encryption

Starting with version 1.16.0, PDF decryption and encryption (using passwords) are fully supported. Youcan do the following:
• Check whether a document is password protected / (still) encrypted (Document.needsPass ,
Document.isEncrypted).

• Gain access authorization to a document (Document.authenticate()).
• Set encryption details for PDF files using Document.save() or Document.write() and

– decrypt or encrypt the content
– set password(s)
– set the encryption method
– set permission details

Note: A PDF document may have two di�erent passwords:
• The owner password provides full access rights, including changing passwords, encryption method,or permission detail.
• The user password provides access to document content according to the established permissiondetails. If present, opening the PDF in a viewer will require providing it.

Method Document.authenticate() will automatically establish access rights according to the passwordused.

64 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

The following snippet creates a new PDF and encrypts it with separate user and owner passwords. Per-missions are granted to print, copy and annotate, but no changes are allowed to someone authenticatingwith the user password:
import fitz

text = "some secret information" # keep this data secret
perm = int(

fitz.PDF_PERM_ACCESSIBILITY # always use this
| fitz.PDF_PERM_PRINT # permit printing
| fitz.PDF_PERM_COPY # permit copying
| fitz.PDF_PERM_ANNOTATE # permit annotations

)
owner_pass = "owner" # owner password
user_pass = "user" # user password
encrypt_meth = fitz.PDF_ENCRYPT_AES_256 # strongest algorithm
doc = fitz.open() # empty pdf
page = doc.newPage() # empty page
page.insertText((50, 72), text) # insert the data
doc.save(

"secret.pdf",
encryption=encrypt_meth, # set the encryption method
owner_pw=owner_pass, # set the owner password
user_pw=user_pass, # set the user password
permissions=perm, # set permissions

)

Opening this document with some viewer (Nitro Reader 5) reflects these settings:

Decrypting will automatically happen on save as before when no encryption parameters are provided.
To keep the encryption method of a PDF save it using encryption=fitz.PDF_ENCRYPT_KEEP. If doc.
can_save_incrementally() == True, an incremental save is also possible.
To change the encryptionmethod specify the full range of options above (encryption, owner_pw, user_pw,permissions). An incremental save is not possible in this case.

4.6. General 65

PyMuPDF Documentation, Release 1.16.7

4.7 Common Issues and their Solutions

4.7.1 Changing Annotations: Unexpected Behaviour

4.7.1.1 Problem

There are two scenarios:
1. Updating an annotation, which has been created by some other software, via a PyMuPDF script.
2. Creating an annotation with PyMuPDF and later changing it using some other PDF application.

In both cases you may experience unintended changes like a di�erent annotation icon or text font, the fillcolor or line dashing have disappeared, line end symbols have changed their size or even have disappearedtoo, etc.
4.7.1.2 Cause

Annotation maintenance is handled di�erently by each PDF maintenance application (if it is supported atall). For any given PDF application, some annotation types may not be supported at all or only partly, orsome details may be handled in a di�erent way than with another application.
Almost always a PDF application also comes with its own icons (file attachments, sticky notes and stamps)and its own set of supported text fonts. For example:

• (Py-) MuPDF only supports these 5 basic fonts for ‘FreeText’ annotations: Helvetica, Times-Roman,Courier, ZapfDingbats and Symbol – no italics / no bold variations. When changing a ‘FreeText’annotation created by some other app, its font will probably not be recognized nor accepted and bereplaced by Helvetica.
• PyMuPDF fully supports the PDF text markers, but these types cannot be updated with Adobe AcrobatReader.

Inmost cases there also exists limited support for line dashing which causes existing dashes to be replacedby straight lines. For example:
• PyMuPDF fully supports all line dashing forms, while other viewers only accept a limited subset.

4.7.1.3 Solutions

Unfortunately there is not much you can do in most of these cases.
1. Stay with the same software for creating and changing an annotation.
2. When using PyMuPDF to change an “alien” annotation, try to avoid Annot.update() . The followingmethods can be used without it so that the original appearance should be maintained:
• Annot.setRect() (location changes)
• Annot.setFlags() (annotation behaviour)
• Annot.setInfo() (meta information, except changes to content)
• Annot.fileUpd() (file attachment changes)

66 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

4.7.2 Misplaced Item Insertions on PDF Pages

4.7.2.1 Problem

You inserted an item (like an image, an annotation or some text) on an existing PDF page, but later youfind it being placed at a di�erent location than intended. For example an image should be inserted at thetop, but it unexpectedly appears near the bottom of the page.
4.7.2.2 Cause

The creator of the PDF has established a non-standard page geometry without keeping it “local” (as theyshould!). Most commonly, the PDF standard point (0,0) at bottom-left has been changed to the top-leftpoint. So top and bottom are reversed – causing your insertion to be misplaced.
The visible image of a PDF page is controlled by commands coded in a special mini-language. For anoverview of this language consult “Operator Summary” on pp. 985 of the Adobe PDF Reference 1.7. Thesecommands are stored in contents objects as strings (bytes in PyMuPDF).
There are commands in that language, which change the coordinate system of the page for all the followingcommands. In order to limit the scope of such commands local, they must be wrapped by the commandpair q (“save graphics state”, or “stack”) and Q (“restore graphics state”, or “unstack”).
So the PDF creator did this:
stream
1 0 0 -1 0 792 cm % <=== change of coordinate system:
... % letter page, top / bottom reversed
... % remains active beyond these lines
endstream

where they should have done this:
stream
q % put the following in a stack
1 0 0 -1 0 792 cm % <=== scope of this is limited by Q command
... % here, a different geometry exists
Q % after this line, geometry of outer scope prevails
endstream

Note:

• In the mini-language’s syntax, spaces and line breaks are equally accepted token delimiters.
• Multiple consecutive delimiters are treated as one.
• Keywords “stream” and “endstream” are inserted automatically – not by the programmer.

4.7.2.3 Solutions

Since v1.16.0, there is the property Page._isWrapped , which lets you check whether a page’s contentsare wrapped in that string pair.
If it is False or if you want to be on the safe side, pick one of the following:

1. The easiest way: in your script, do a Page._cleanContents() before you do your first item insertion.

4.7. Common Issues and their Solutions 67

PyMuPDF Documentation, Release 1.16.7

2. Pre-process your PDF with the MuPDF command line utility mutool clean -c ... and work with itsoutput file instead.
3. Directly wrap the page’s contents with the stacking commands before you do your first item inser-tion.

Solutions 1. and 2. use the same technical basis and do a lot more than what is required in this context:they also clean up other inconsistencies or redundancies that may exist, multiple /Contents objects willbe concatenated into one, and much more.
Note: For incremental saves, solution 1. has an unpleasant implication: it will bloat the update delta,because it changes so many things and, in addition, stores the cleaned contents uncompressed. So, ifyou use Page._cleanContents() you should consider saving to a new file with (at least) garbage=3 and
deflate=True.
Solution 3. is completely under your control and only does the minimum corrective action. There exists ahandy low-level utility function which you can use for this. Suggested procedure:

• Prepend the missing stacking command by executing fitz.TOOLS._insert_contents(page,
b"q\n", False).

• Append an unstacking command by executing fitz.TOOLS._insert_contents(page, b"\nQ",
True).

• Alternatively, just use Page._wrapContents() , wich executes the previous two functions.
Note: If small incremental update deltas are a concern, this approach is themost e�ective. Other contentsobjects are not touched. The utility method creates two new PDF stream objects and inserts them before,resp. after the page’s other contents . We therefore recommend the following snippet to get this situationunder control:
>>> if not page._isWrapped:

page._wrapContents()
>>> # start inserting text, images or annotations here

4.8 Low-Level Interfaces

Numerousmethods are available to access andmanipulate PDF files on a fairly low level. Admittedly, a cleardistinction between “low level” and “normal” functionality is not always possible or subject to personaltaste.
It also may happen, that functionality previously deemed low-level is lateron assessed as being part ofthe normal interface. This has happened in v1.14.0 for the class Tools – you now find it as an item in theClasses chapter.
Anyway – it is a matter of documentation only: in which chapter of the documentation do you find what.Everything is available always and always via the same interface.

68 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

4.8.1 How to Iterate through the xref Table

A PDF’s xref table is a list of all objects defined in the file. This table may easily contain many thousandentries – the manual Adobe PDF Reference 1.7 for example has over 330‘000 objects. Table entry “0”is reserved and must not be touched. The following script loops through the xref table and prints eachobject’s definition:
>>> xreflen = doc._getXrefLength() # number of objects in file
>>> for xref in range(1, xreflen): # skip item 0!

print("")
print("object %i (stream: %s)" % (xref, doc.isStream(xref)))
print(doc._getXrefString(i, compressed=False))

This produces the following output:
object 1 (stream: False)
<<

/ModDate (D:20170314122233-04'00')
/PXCViewerInfo (PDF-XChange Viewer;2.5.312.1;Feb 9 2015;12:00:06;D:20170314122233-04'00')

>>

object 2 (stream: False)
<<

/Type /Catalog
/Pages 3 0 R

>>

object 3 (stream: False)
<<

/Kids [4 0 R 5 0 R]
/Type /Pages
/Count 2

>>

object 4 (stream: False)
<<

/Type /Page
/Annots [6 0 R]
/Parent 3 0 R
/Contents 7 0 R
/MediaBox [0 0 595 842]
/Resources 8 0 R

>>
...
object 7 (stream: True)
<<

/Length 494
/Filter /FlateDecode

>>
...

A PDF object definition is an ordinary ASCII string.

4.8. Low-Level Interfaces 69

PyMuPDF Documentation, Release 1.16.7

4.8.2 How to Handle Object Streams

Some object types contain additional data apart from their object definition. Examples are images, fonts,embedded files or commands describing the appearance of a page.
Objects of these types are called “stream objects”. PyMuPDF allows reading an object’s stream via method
Document._getXrefStream() with the object’s xref as an argument. And it is also possible to write backa modified version of a stream using Document._updateStream() .
Assume that the following snippet wants to read all streams of a PDF for whatever reason:
>>> xreflen = doc._getXrefLength() # number of objects in file
>>> for xref in range(1, xreflen): # skip item 0!

stream = doc._getXrefStream(xref)
do something with it (it is a bytes object or None)
e.g. just write it back:
if stream:

doc._updateStream(xref, stream)

Document._getXrefStream() automatically returns a stream decompressed as a bytes object – and
Document._updateStream() automatically compresses it (where beneficial).

4.8.3 How to Handle Page Contents

A PDF page can have one or more contents objects – in fact, a page will be empty if it has no such object.These are stream objects describing what appears where on a page (like text and images). They arewritten in a special mini-language desribed e.g. in chapter “APPENDIX A - Operator Summary” on page985 of the Adobe PDF Reference 1.7.
Every PDF reader application must be able to interpret the contents syntax to reproduce the intendedappearance of the page.
If multiple contents objects are provided, they must be read and interpreted in the specified sequence inexactly the same way as if these streams were provided as a concatenation of the several.
There are good technical arguments for having multiple contents objects:

• It is a lot easier and faster to just add new contents objects than maintaining a single big one (whichentails reading, decompressing, modifying, recompressing, and rewriting it for each change).
• When working with incremental updates, a modified big contents object will bloat the update deltaand can thus easily negate the e�ciency of incremental saves.

For example, PyMuPDF adds new, small contents objects in methods Page.insertImage() , Page.
showPDFpage() and the Shape methods.
However, there are also situations when a single contents object is beneficial: it is easier to interpret andbetter compressible than multiple smaller ones.
Here are two ways of combining multiple contents of a page:
>>> # method 1: use the clean function
>>> for i in range(len(doc)):

doc[i]._cleanContents() # cleans and combines multiple Contents
page = doc[i] # re-read the page (has only 1 contents now)
cont = page._getContents()[0]
do something with the cleaned, combined contents

(continues on next page)

70 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
>>> # method 2: concatenate multiple contents yourself
>>> for page in doc:

cont = b"" # initialize contents
for xref in page._getContents(): # loop through content xrefs

cont += doc._getXrefStream(xref)
do something with the combined contents

The clean function Page._cleanContents() does a lot more than just glueing contents objects: it alsocorrects and optimizes the PDF operator syntax of the page and removes any inconsistencies.

4.8.4 How to Access the PDF Catalog

This is a central (“root”) object of a PDF. It serves as a starting point to reach important other objects andit also contains some global options for the PDF:
>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> cat = doc._getPDFroot() # get xref of the /Catalog
>>> print(doc._getXrefString(cat)) # print object definition
<<

/Type/Catalog % object type
/Pages 3593 0 R % points to page tree
/OpenAction 225 0 R % action to perform on open
/Names 3832 0 R % points to global names tree
/PageMode /UseOutlines % initially show the TOC
/PageLabels<</Nums[0<</S/D>>2<</S/r>>8<</S/D>>]>> % names given to pages
/Outlines 3835 0 R % points to outline tree

>>

Note: Indentation, line breaks and comments are inserted here for clarification purposes only and willnot normally appear. For more information on the PDF catalog see section 3.6.1 on page 137 of the Adobe
PDF Reference 1.7.

4.8.5 How to Access the PDF File Trailer

The trailer of a PDF file is a dictionary located towards the end of the file. It contains special objects,and pointers to important other information. See Adobe PDF Reference 1.7 p. 96. Here is an overview:
Key Type ValueSize int Number of entries in the cross-reference table + 1.Prev int O�set to previous xref section (indicates incremental updates).Root dictionary (indirect) Pointer to the catalog. See previous section.Encrypt dictionary Pointer to encryption object (encrypted files only).Info dictionary (indirect) Pointer to information (metadata).ID array File identifier consisting of two byte strings.XRefStm int O�set of a cross-reference stream. See Adobe PDF Reference 1.7 p. 109.

4.8. Low-Level Interfaces 71

PyMuPDF Documentation, Release 1.16.7

Access this information via PyMuPDF with Document._getTrailerString() .
>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> trailer=doc._getTrailerString()
>>> print(trailer)
<</Size 5535/Info 5275 0 R/Root 5274 0 R/ID[(\340\273fE\225^l\226\232O|\003\201\325g\245)(}#1,
→˓\317\205\000\371\251wO6\352Oa\021)]>>
>>>

4.8.6 How to Access XML Metadata

A PDF may contain XML metadata in addition to the standard metadata format. In fact, most PDF readeror modification software adds this type of information when being used to save a PDF (Adobe, Nitro PDF,PDF-XChange, etc.).
PyMuPDF has no way to interpret or change this information directly, because it contains no XML features.The XML metadata is however stored as a stream object, so we do provide a way to read the XML streamand, potentially, also write back a modified stream or even delete it:
>>> metaxref = doc._getXmlMetadataXref() # get xref of XML metadata
>>> # check if metaxref > 0!!!
>>> doc._getXrefString(metaxref) # object definition
'<</Subtype/XML/Length 3801/Type/Metadata>>'
>>> xmlmetadata = doc._getXrefStream(metaxref) # XML data (stream - bytes obj)
>>> print(xmlmetadata.decode("utf8")) # print str version of bytes
<?xpacket begin="\ufeff" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="3.1-702">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
...
omitted data
...
<?xpacket end="w"?>

Using some XML package, the XML data can be interpreted and / or modified and then stored back:
>>> # write back modified XML metadata:
>>> doc._updateStream(metaxref, xmlmetadata)
>>>
>>> # if these data are not wanted, delete them:
>>> doc._delXmlMetadata()

72 Chapter 4. Collection of Recipes

CHAPTER

FIVE

CLASSES

5.1 Annot

This class is supported for PDF documents only.

Quote from the Adobe PDF Reference 1.7: “An annotation associates an object such as a note, sound, ormovie with a location on a page of a PDF document, or provides a way to interact with the user by meansof the mouse and keyboard.”
There is a parent-child relationship between an annotation and its page. If the page object becomesunusable (closed document, any document structure change, etc.), then so does every of its existingannotation objects – an exception is raised saying that the object is “orphaned”, whenever an annotationproperty or method is accessed.

Attribute Short Description
Annot.fileGet() return attached file content
Annot.fileInfo() return attached file information
Annot.fileUpd() set attached file new content
Annot.getPixmap() image of the annotation as a pixmap
Annot.setBorder() change the border
Annot.setColors() change the colors
Annot.setFlags() change the flags
Annot.setInfo() change metadata
Annot.setLineEnds() set line ending styles
Annot.setOpacity() change transparency
Annot.setName() change the “Name” field (e.g. icon name)
Annot.setRect() change the rectangle
Annot.update() apply accumulated annot changes
Annot.border border details
Annot.colors border / background and fill colors
Annot.flags annotation flags
Annot.info various information
Annot.lineEnds start / end appearance of line-type annotations
Annot.next link to the next annotation
Annot.opacity the annot’s transparency
Annot.parent page object of the annotation
Annot.rect rectangle containing the annotation
Annot.type type of the annotation
Annot.vertices point coordinates of Polygons, PolyLines, etc.
Annot.xref the PDF xref number

73

PyMuPDF Documentation, Release 1.16.7

Class API

class Annot

getPixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, alpha=False)Creates a pixmap from the annotation as it appears on the page in untransformed coordinates.The pixmap’s IRect equals Annot.rect.irect (see below).
Parameters

• matrix (Matrix) – a matrix to be used for image creation. Default is the fitz.
Identity matrix.

• colorspace (Colorspace) – a colorspace to be used for image creation. Defaultis fitz.csRGB.
• alpha (bool) – whether to include transparency information. Default is False.

Return type Pixmap

setInfo(d)Changes the info dictionary. This includes dates, contents, subject and author (title). Changesfor name will be ignored.
Parameters d (dict) – a dictionary compatible with the info property (see below). Allentries must be strings.

setLineEnds(start, end)Sets an annotation’s line ending styles. Only ‘FreeText’, ‘Line’, ‘PolyLine’, and ‘Polygon’ anno-tations can have these properties. Each of these annotation types is defined by a list of pointswhich are connected by lines. The symbol identified by start is attached to the first point,and end to the last point of this list. For unsupported annotation types, a no-operation with awarning message results.
Parameters

• start (int) – The symbol number for the first point.
• end (int) – The symbol number for the last point.

setOpacity(value)Change an annotation’s transparency.
Parameters value (float) – a float in range [0, 1]. Any value outside is assumed tobe 1. E.g. a value of 0.5 sets the transparency to 50%.

Three overlapping ‘Circle’ annotations with each opacity set to 0.5:

74 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

setName(name)New in version 1.16.0: Change the name field of any annotation type. For ‘FileAttachment’ and‘Text’ annotations, this is the icon name, for ‘Stamp’ annotations the text in the stamp. Thevisual result (if any) depends on your PDF viewer. See also Annotation Icons in MuPDF.
Parameters name (str) – the new name.

setRect(rect)Change the rectangle of an annotation. The annotation can be moved around and both sides ofthe rectangle can be independently scaled. However, the annotation appearance will never getrotated, flipped or sheared.
Parameters rect (rect_like) – the new rectangle of the annotation (finite and notempty). E.g. using a value of annot.rect + (5, 5, 5, 5) will shift the annot po-sition 5 pixels to the right and downwards.

setBorder(border)Change border width and dashing properties.
Parameters border (dict) – a dictionary with keys "width" (float), "style" (str) and

"dashes" (sequence). Omitted keys will leave the resp. property unchanged. To e.g.remove dashing use: "dashes": []. If dashes is not an empty sequence, “style”will automatically set to “D” (dashed).
setFlags(flags)Changes the annotation flags. Use the | operator to combine several.

Parameters flags (int) – an integer specifying the required flags.
setColors(d)Changes the “stroke” and “fill” colors for supported annotation types.

Parameters d (dict) – a dictionary containing color specifications. For accepted dic-tionary keys and values see below. The most practical way should be to first makea copy of the colors property and then modify this dictionary as required.
update(fontsize=0, text_color=None, border_color=None, fill_color=None, rotate=-1)Synchronize the appearance of an annotation with its properties after any changes.

You can safely omit this method only for the following changes:
• setRect()

• setFlasgs()

• fileUpd()

5.1. Annot 75

PyMuPDF Documentation, Release 1.16.7

• setInfo() (except changes to "content")
All arguments are optional and are reserved for ‘FreeText’ annotations – because of implemen-tation peculiarities of this annotation type. For other types they are ignored.
Color specifications may be made in the usual format used in PuMuPDF as sequences of floatsranging from 0.0 to 1.0 (including both). The sequence length must be 1, 3 or 4 (supportingGRAY, RGB and CMYK colorspaces respectively). For mono-color, just a float is also acceptable.

Parameters

• fontsize (float) – change font size of the text.
• text_color (sequence , float) – change the text color.
• border_color (sequence , float) – change the border color.
• fill_color (sequence , float) – the fill color. If you set (or leave) this to None,then no rectangle at all will be drawn around the text, and the border color willbe ignored. This will leave anything “under” the text visible.
• rotate (int) – new rotation value. Default (-1) means no change.

Return type bool
fileInfo()Basic information of the annot’s attached file.

Return type dict
Returns a dictionary with keys filename, ufilename, desc (description), size (uncom-pressed file size), length (compressed length) for FileAttachment annot types, else

None.
fileGet()Returns attached file content.

Return type bytes
Returns the content of the attached file.

fileUpd(bu�er=None, filename=None, ufilename=None, desc=None)Updates the content of an attached file. All arguments are optional. No arguments lead to ano-op.
Parameters

• buffer (bytes|bytearray|BytesIO) – the new file content. Omit to only changemeta-information.
Changed in version 1.14.13: io.BytesIO is now also supported.

• filename (str) – new filename to associate with the file.
• ufilename (str) – new unicode filename to associate with the file.
• desc (str) – new description of the file content.

opacityThe annotation’s transparency. If set, it is a value in range [0, 1]. The PDF default is 1.0.However, in an e�ort to tell the di�erence, we return -1.0 if not set.
Return type float

parentThe owning page object of the annotation.

76 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Return type Page

rectThe rectangle containing the annotation.
Return type Rect

nextThe next annotation on this page or None.
Return type Annot

typeA number and one or two strings describing the annotation type, like [2, 'FreeText',
'FreeTextCallout']. The second string entry is optional and may be empty. See the appendix
Annotation Related Constants for a list of possible values and their meanings.

Return type list
infoA dictionary containing various information. All fields are (unicode) strings.

• name – e.g. for ‘Stamp’ annotations it will contain the stamp text like “Sold” or “Experimen-tal”, for other annot types you will see the name of the annot’s icon here (“PushPin” forFileAttachment).
• content – a string containing the text for type Text and FreeText annotations. Commonlyused for filling the text field of annotation pop-up windows.
• title – a string containing the title of the annotation pop-up window. By convention, thisis used for the annotation author.
• creationDate – creation timestamp.
• modDate – last modified timestamp.
• subject – subject, an optional string.
Return type dict

flagsAn integer whose low order bits contain flags for how the annotation should be presented.
Return type int

lineEndsA pair of integers specifying start and end symbol of annotations types ‘FreeText’, ‘Line’, ‘Poly-Line’, and ‘Polygon’. None if not applicable. For possible values and descriptions in this list, seethe Adobe PDF Reference 1.7, table 8.27 on page 630.
Return type tuple

verticesA list containing a variable number of point (“vertices”) coordinates (each given by a pair offloats) for various types of annotations:
• Line – the starting and ending coordinates (2 float pairs).
• [2, 'FreeText', 'FreeTextCallout'] – 2 or 3 float pairs designating the starting, the(optional) knee point, and the ending coordinates.
• PolyLine / Polygon – the coordinates of the edges connected by line pieces (n float pairsfor n points).

5.1. Annot 77

PyMuPDF Documentation, Release 1.16.7

• text markup annotations – 4 float pairs specifying the QuadPoints of the marked text span(see Adobe PDF Reference 1.7, page 634).
• Ink – list of one to many sublists of vertex coordinates. Each such sublist represents aseparate line in the drawing.
Return type list

colorsdictionary of two lists of floats in range 0 <= float <= 1 specifying the stroke and the interior(fill) colors. The stroke color is used for borders and everything that is actively painted orwritten (“stroked”). The fill color is used for the interior of objects like line ends, circles andsquares. The lengths of these lists implicitely determine the colorspaces used: 1 = GRAY, 3 =RGB, 4 = CMYK. So [1.0, 0.0, 0.0] stands for RGB color red. Both lists can be [] if no coloris specified. The value of each float f is mapped to the integer value i in range 0 to 255 via f =
i / 255.

Return type dict
xrefThe PDF xref .

Return type int
borderA dictionary containing border characteristics. Empty if no border information exists. The fol-lowing keys may be present:

• width – a float indicating the border thickness in points. The value is -1.0 if no width isspecified.
• dashes – a sequence of integers specifying a line dash pattern. [] means no dashes, [n]means equal on-o� lengths of n points, longer lists will be interpreted as specifying alter-nating on-o� length values. See the Adobe PDF Reference 1.7 page 217 for more details.
• style – 1-byte border style: S (Solid) = solid rectangle surrounding the annotation, D(Dashed) = dashed rectangle surrounding the annotation, the dash pattern is specified bythe dashes entry, B (Beveled) = a simulated embossed rectangle that appears to be raisedabove the surface of the page, I (Inset) = a simulated engraved rectangle that appears tobe recessed below the surface of the page, U (Underline) = a single line along the bottomof the annotation rectangle.
Return type dict

5.1.1 Annotation Icons in MuPDF

This is a list of icons referencable by name for annotation types ‘Text’ and ‘FileAttachment’. You can usethem via the icon parameter when adding an annotation, or use the as argument in Annot.setName() .It is left to your discretion which item to choose when – no mechanism will keep you from using e.g. the“Speaker” icon for a ‘FileAttachment’.

78 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

5.1.2 Example

Change the graphical image of an annotation. Also update the “author” and the text to be shown in thepopup window:
doc = fitz.open("circle-in.pdf")
page = doc[0] # page 0
annot = page.firstAnnot # get the annotation
annot.setBorder({"dashes": [3]}) # set dashes to "3 on, 3 off ..."

set stroke and fill color to some blue
annot.setColors({"stroke":(0, 0, 1), "fill":(0.75, 0.8, 0.95)})
info = annot.info # get info dict
info["title"] = "Jorj X. McKie" # set author

text in popup window ...
info["content"] = "I changed border and colors and enlarged the image by 20%."
info["subject"] = "Demonstration of PyMuPDF" # some PDF viewers also show this
annot.setInfo(info) # update info dict
r = annot.rect # take annot rect
r.x1 = r.x0 + r.width * 1.2 # new location has same top-left
r.y1 = r.y0 + r.height * 1.2 # but 20% longer sides
annot.setRect(r) # update rectangle

(continues on next page)

5.1. Annot 79

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
annot.update() # update the annot's appearance
doc.save("circle-out.pdf") # save

This is how the circle annotation looks like before and after the change (pop-up windows displayed usingNitro PDF viewer):

5.2 Colorspace

Represents the color space of a Pixmap.
Class API

class Colorspace

__init__(self, n)Constructor
Parameters n (int) – A number identifying the colorspace. Possible values are

CS_RGB , CS_GRAY and CS_CMYK .
nameThe name identifying the colorspace. Example: fitz.csCMYK.name = 'DeviceCMYK'.

Type str
n

The number of bytes required to define the color of one pixel. Example: fitz.csCMYK.n
== 4.

type int
Predefined Colorspaces

80 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

For saving some typing e�ort, there exist predefined colorspace objects for the three availablecases.
• csRGB = fitz.Colorspace(fitz.CS_RGB)

• csGRAY = fitz.Colorspace(fitz.CS_GRAY)

• csCMYK = fitz.Colorspace(fitz.CS_CMYK)

5.3 DisplayList

DisplayList is a list containing drawing commands (text, images, etc.). The intent is two-fold:
1. as a caching-mechanism to reduce parsing of a page
2. as a data structure in multi-threading setups, where one thread parses the page and another onerenders pages. This aspect is currently not supported by PyMuPDF.

A DisplayList is populated with objects from a page usually by executing Page.getDisplayList() . Therealso exists an independent constructor.
“Replay” the list (once or many times) by invoking one of its methods run() , getPixmap() or
getTextPage() .

Method Short Description
run() Run a display list through a device.
getPixmap() generate a pixmap
getTextPage() generate a text page
rect mediabox of the display list

Class API

class DisplayList

__init__(self, mediabox)Create a new display list.
Parameters mediabox (Rect) – The page’s rectangle – output of page.bound().
Return type DisplayList

run(device, matrix, area)Run the display list through a device. The device will populate the display list with its “com-mands” (i.e. text extraction or image creation). The display list can later be used to “read” apage many times without having to re-interpret it from the document file.
You will most probably instead use one of the specialized run methods below – getPixmap() or
getTextPage().

Parameters

• device (Device) – Device
• matrix (Matrix) – Transformation matrix to apply to the display list contents.
• area (Rect) – Only the part visible within this area will be considered when thelist is run through the device.

getPixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, alpha=0, clip=None)Run the display list through a draw device and return a pixmap.
5.3. DisplayList 81

PyMuPDF Documentation, Release 1.16.7

Parameters

• matrix (Matrix) – matrix to use. Default is the identity matrix.
• colorspace (Colorspace) – the desired colorspace. Default is RGB.
• alpha (int) – determine whether or not (0, default) to include a transparencychannel.
• clip (IRect or Rect) – an area of the full mediabox to which the pixmap shouldbe restricted.

Return type Pixmap

Returns pixmap of the display list.
getTextPage(flags)Run the display list through a text device and return a text page.

Parameters flags (int) – control which information is parsed into a textpage. Default value in PyMuPDF is 3 = TEXT_PRESERVE_LIGATURES |
TEXT_PRESERVE_WHITESPACE, i.e. ligatures are passed through (“æ” will not
be decomposed into its components “a” and “e”), white spaces are passed
through (not translated to spaces), and images are not included. See Preserve
Text Flags.

Return type TextPage

Returns text page of the display list.
rectContains the display list’s mediabox. This will equal the page’s rectangle if it was created via

page.getDisplayList().
Type Rect

5.4 Document

This class represents a document. It can be constructed from a file or from memory.
Since version 1.9.0 there exists the alias open for this class.
For addional details on embedded files refer to Appendix 3.

Method / Attribute Short Description
Document.authenticate() gain access to an encrypted document
Document.can_save_incrementally() check if incremental save is possible
Document.close() close the document
Document.convertToPDF() write a PDF version to memory
Document.copyPage() PDF only: copy a page reference
Document.deletePage() PDF only: delete a page
Document.deletePageRange() PDF only: delete a page range
Document.embeddedFileAdd() PDF only: add a new embedded file from bu�er
Document.embeddedFileCount() PDF only: number of embedded files
Document.embeddedFileDel() PDF only: delete an embedded file entry
Document.embeddedFileGet() PDF only: extract an embedded file bu�er
Document.embeddedFileInfo() PDF only: metadata of an embedded fileContinued on next page

82 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Table 1 – continued from previous page
Method / Attribute Short Description
Document.embeddedFileNames() PDF only: list of embedded files
Document.embeddedFileUpd() PDF only: change an embedded file
Document.fullcopyPage() PDF only: duplicate a page
Document.getPageFontList() PDF only: make a list of fonts on a page
Document.getPageImageList() PDF only: make a list of images on a page
Document.getPagePixmap() create a pixmap of a page by page number
Document.getPageText() extract the text of a page by page number
Document.getSigFlags() PDF only: determine signature state
Document.getToC() create a table of contents
Document.insertPage() PDF only: insert a new page
Document.insertPDF() PDF only: insert pages from another PDF
Document.layout() re-paginate the document (if supported)
Document.loadPage() read a page
Document.movePage() PDF only: move a page to another location
Document.newPage() PDF only: insert a new empty page
Document.pages() iterator over a page range
Document.save() PDF only: save the document
Document.saveIncr() PDF only: save the document incrementally
Document.searchPageFor() search for a string on a page
Document.select() PDF only: select a subset of pages
Document.setMetadata() PDF only: set the metadata
Document.setToC() PDF only: set the table of contents (TOC)
Document.write() PDF only: writes the document to memory
Document.FormFonts PDF only: list of global widget fonts
Document.isClosed has document been closed?
Document.isEncrypted document (still) encrypted?
Document.isFormPDF is this a Form PDF?
Document.isPDF is this a PDF?
Document.isReflowable is this a reflowable document?
Document.metadata metadata
Document.name filename of document
Document.needsPass require password to access data?
Document.outline first Outline item
Document.pageCount number of pages
Document.permissions permissions to access the document

Class API

class Document

__init__(self, filename=None, stream=None, filetype=None, rect=None, width=0, height=0,
fontsize=11)Creates a Document object.

• With default parameters, a new empty PDF document will be created.
• If stream is given, then the document is created from memory and either filename or
filetype must indicate its type.

• If stream is None, then a document is created from a file given by filename. Its type isinferred from the extension, which can be overruled by specifying filetype.

5.4. Document 83

PyMuPDF Documentation, Release 1.16.7

Parameters

• filename (str , pathlib) – A UTF-8 string or pathlib object containing a filepath (or a file type, see below).
• stream (bytes , bytearray , BytesIO) – A memory area containing a supporteddocument. Its type must be specified by either filename or filetype.
Changed in version 1.14.13: io.BytesIO is now also supported.

• filetype (str) – A string specifying the type of document. This may be some-thing looking like a filename (e.g. "x.pdf"), in which case MuPDF uses the ex-tension to determine the type, or a mime type like application/pdf. Just usingstrings like "pdf" will also work.
• rect (rect_like) – a rectangle specifying the desired page size. This parame-ter is only meaningful for documents with a variable page layout (“reflowable”documents), like e-books or HTML, and ignored otherwise. If specified, it mustbe a non-empty, finite rectangle with top-left coordinates (0, 0). Together withparameter fontsize, each page will be accordingly laid out and hence also de-termine the number of pages.
• width (float) – may used together with height as an alternative to rect to spec-ify layout information.
• height (float) – may used together with width as an alternative to rect to spec-ify layout information.
• fontsize (float) – the default fontsize for reflowable document types. This pa-rameter is ignored if none of the parameters rect or width and height are spec-ified. Will be used to calculate the page layout.

Overview of possible forms (using the open synonym of Document):
>>> # from a file
>>> doc = fitz.open("some.pdf")
>>> doc = fitz.open("some.file", None, "pdf") # copes with wrong extension
>>> doc = fitz.open("some.file", filetype="pdf") # copes with wrong extension

>>> # from memory
>>> doc = fitz.open("pdf", mem_area)
>>> doc = fitz.open(None, mem_area, "pdf")
>>> doc = fitz.open(stream=mem_area, filetype="pdf")

>>> # new empty PDF
>>> doc = fitz.open()

authenticate(password)Decrypts the document with the string "password". If successful, document data can be ac-cessed. For PDF documents, the “owner” and the “user” have di�erent priviledges, and hencedi�erent passwords may exist for these authorization levels. The method will automaticallyestablish the appropriate access rights for the provided password.
Parameters password (str) – owner or user password.
Return type int
Returns

84 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

a positive value if successful, zero otherwise. If successful, the indicator
isEncrypted is set to False. Positive return codes carry the following informationdetail:
• bit 0 set => no password required – happens if method was used although
needsPass() was zero.

• bit 1 set => user password authenticated
• bit 2 set => owner password authenticated

loadPage(pno=0)Create a Page object for further processing (like rendering, text searching, etc.).
Parameters pno (int) – page number, zero-based (0 is default and the first page of thedocument). Any integer −∞ < 𝑝𝑛𝑜 < 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡 is acceptable. If pno is negative,then pageCount will be added until this is no longer the case. For example: to loadthe last page, you can specify doc.loadPage(-1). After this you have page.number

== doc.pageCount - 1.
Return type Page

Note: Documents also follow the Python sequence protocol with page numbers as indices:
doc.loadPage(n) == doc[n]. Consequently, expressions like "for page in doc: ..." and "for
page in reversed(doc): ..." will successively yield the document’s pages. Refer to Document.
range`() which allows processing pages as with slicing.
pages(start=None[, stop=None[, step=None]])New in version 1.16.4: A generator for a given range of pages. Parameters have the samemeaning as in the built-in function "range()". Intended for expressions of the form "for page

in doc.pages(start, stop, step): ...".
Parameters

• start (int) – start iterationwith this page number. Default is zero, allowed valuesare −∞ < 𝑠𝑡𝑎𝑟𝑡 < 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡. While this is negative, pageCount is added beforestarting the iteration.
• stop (int) – stop iteration at this page number. Default is pageCount , possibleare −∞ < 𝑠𝑡𝑜𝑝 ≤ 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡. Larger values are silently replaced by the default.Negative values will cyclically emit the pages in reversed order. As with the built-in "range()", this is the first page not returned.
• step (int) – stepping value. Defaults are 1 if start < stop and -1 if start > stop.Zero is not allowed.

Returns

a generator iterator over the document’s pages. Some examples:
• "for page in doc.pages()" is the same as "for page in doc".
• "for page in doc.pages(4, 9, 2)" emits pages 4, 6, 8.
• "for page in doc.pages(0, None, 2)" emits all pages with even numbers.
• "doc.range(-2)" emits the last two pages.
• "for page in doc.pages(-1, -1)" is the same as "for page in
reversed(doc)".

5.4. Document 85

PyMuPDF Documentation, Release 1.16.7

• "for page in doc.pages(-1, -10)" emits pages in reversed order, startingwith the last document page repeatedly. For a 4-page document the followingpage numbers are emitted: 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3.
convertToPDF(from_page=-1, to_page=-1, rotate=0)Create a PDF version of the current document and write it to memory. All document types(except PDF) are supported. The parameters have the same meaning as in insertPDF() . Inessence, you can restrict the conversion to a page subset, specify page rotation, and revertpage sequence.

Parameters

• from_page (int) – first page to copy (0-based). Default is first page.
• to_page (int) – last page to copy (0-based). Default is last page.
• rotate (int) – rotation angle. Default is 0 (no rotation). Should be n * 90 withan integer n (not checked).

Return type bytes
Returns a Python bytes object containing a PDF file image. It is created by internallyusing write(garbage=4, deflate=True). See write() . You can output it directlyto disk or open it as a PDF via fitz.open("pdf", pdfbytes). Here are some exam-ples:

>>> # convert an XPS file to PDF
>>> xps = fitz.open("some.xps")
>>> pdfbytes = xps.convertToPDF()
>>>
>>> # either do this --->
>>> pdf = fitz.open("pdf", pdfbytes)
>>> pdf.save("some.pdf")
>>>
>>> # or this --->
>>> pdfout = open("some.pdf", "wb")
>>> pdfout.write(pdfbytes)
>>> pdfout.close()

>>> # copy image files to PDF pages
>>> # each page will have image dimensions
>>> doc = fitz.open() # new PDF
>>> imglist = [... image file names ...] # e.g. a directory listing
>>> for img in imglist:

imgdoc=fitz.open(img) # open image as a document
pdfbytes=imgdoc.convertToPDF() # make a 1-page PDF of it
imgpdf=fitz.open("pdf", pdfbytes)
doc.insertPDF(imgpdf) # insert the image PDF

>>> doc.save("allmyimages.pdf")

Note: The method uses the same logic as the mutool convert CLI. This works very well in mostcases – however, beware of the following limitations.
• Image files: perfect, no issues detected. Apparently however, image transparency is ig-nored. If you need that (like for a watermark), use Page.insertImage() instead. Otherwise,this method is recommended for its much better prformance.
• XPS: appearance very good. Links work fine, outlines (bookmarks) are lost, but can easily

86 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

be recovered67.
• EPUB, CBZ, FB2: similar to XPS.
• SVG: medium. Roughly comparable to svglib60.

getToC(simple=True)Creates a table of contents out of the document’s outline chain.
Parameters simple (bool) – Indicates whether a simple or a detailed ToC is required.If simple == False, each entry of the list also contains a dictionary with linkDestdetails for each outline entry.
Return type list
Returns

a list of lists. Each entry has the form [lvl, title, page, dest]. Its entries havethe following meanings:
• lvl – hierarchy level (positive int). The first entry is always 1. Entries in a roware either equal, increase by 1, or decrease by any number.
• title – title (str)
• page – 1-based page number (int). Page numbers < 1 either indicate a targetoutside this document or no target at all (see next entry).
• dest – (dict) included only if simple=False. Contains details of the link destina-tion.

getPagePixmap(pno, *args, **kwargs)Creates a pixmap from page pno (zero-based). Invokes Page.getPixmap() .
Parameters pno (int) – page number, 0-based in −∞ < 𝑝𝑛𝑜 < 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡.
Return type Pixmap

getPageImageList(pno, full=False)PDF only: Return a list of all image descriptions referenced by a page.
Parameters

• pno (int) – page number, 0-based in −∞ < 𝑝𝑛𝑜 < 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡.
• full (bool) – whether to also include the xref of the Form /XObject where theitem is referenced. This is zero if the item is part of page’s /Resources.

Return type list
Returns

a list of images shown on this page. Each entry looks like [xref, smask, width,
height, bpc, colorspace, alt. colorspace, name, filter, form_xref].Where
• xref (int) is the image object number,
• smask (int optional) is the object number of its soft-mask image (if present),
• width and height (ints) are the image dimensions,

67 However, you can use Document.getToC() and Page.getLinks() (which are available for all document types) and copy thisinformation over to the output PDF. See demo pdf-converter.py68.68 https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py60 https://github.com/deeplook/svglib

5.4. Document 87

https://github.com/deeplook/svglib
https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py

PyMuPDF Documentation, Release 1.16.7

• bpc (int) denotes the number of bits per component (a typical value is 8),
• colorspace (str)a string naming the colorspace (like DeviceRGB),
• alt. colorspace (str optional) is any alternate colorspace depending on thevalue of colorspace,
• name (str) is the symbolic name by which the page references the image in itscontent stream, and
• filter (str optional) is the decode filter of the image (Adobe PDF Reference 1.7,pp. 65).
• form_xref (int optional) the xref number of the Form XObject, which referencesthe item. Zero if directly referenced by the page.

See below how this information can be used to extract PDF images as separate files. Anotherdemonstration:
>>> doc = fitz.open("pymupdf.pdf")
>>> doc.getPageImageList(0, full=True)
[[316, 0, 261, 115, 8, 'DeviceRGB', '', 'Im1', 'DCTDecode', 0]]
>>> pix = fitz.Pixmap(doc, 316) # 316 is the xref of the image
>>> pix
fitz.Pixmap(DeviceRGB, fitz.IRect(0, 0, 261, 115), 0)

Note: This list has no duplicate entries: the combination of xref and name is unique. But bythemselves, each of the two may occur multiple times. The same image may well be referencedunder di�erent names within a page. Duplicate name entries on the other hand indicate thepresence of “Form XObjects” on the page, e.g. generated by Page.showPDFpage() .
getPageFontList(pno, full=False)PDF only: Return a list of all fonts referenced by the page.

Parameters

• pno (int) – page number, 0-based, any value < len(doc).
• full (bool) – whether to also include the xref of the Form /XObject where theitem is referenced. This is zero if the item is part of page’s /Resources.

Return type list
Returns

a list of fonts referenced by this page. Each entry looks like [xref, ext, type,
basefont, name, encoding, form_xref]. Where
• xref (int) is the font object number (may be zero if the PDF uses one of the builtinfonts directly),
• ext (str) font file extension (e.g. ttf, see Font File Extensions),
• type (str) is the font type (like Type1 or TrueType etc.),
• basefont (str) is the base font name,
• name (str) is the reference name (or label), by which the page references the fontin its contents stream(s), and
• encoding (str optional) the font’s character encoding if di�erent from its built-inencoding (Adobe PDF Reference 1.7, p. 414):

88 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

• form_xref (int optional) the xref number of the Form XObject, which referencesthe item. Zero if directly referenced by the page.
>>> doc = fitz.open("some.pdf")
>>> for f in doc.getPageFontList(0, full=False): print(f)
[24, 'ttf', 'TrueType', 'DOKBTG+Calibri', 'R10', '']
[17, 'ttf', 'TrueType', 'NZNDCL+CourierNewPSMT', 'R14', '']
[32, 'ttf', 'TrueType', 'FNUUTH+Calibri-Bold', 'R8', '']
[28, 'ttf', 'TrueType', 'NOHSJV+Calibri-Light', 'R12', '']
[8, 'ttf', 'Type0', 'ECPLRU+Calibri', 'R23', 'Identity-H']

Note: This list has no duplicate entries: the combination of xref and name is unique. Butby themselves, each of the two may occur multiple times. Duplicate name entries indicate thepresence of “Form XObjects” on the page, e.g. generated by Page.showPDFpage() .
getPageText(pno, output="text")Extracts the text of a page given its page number pno (zero-based). Invokes Page.getText() .

Parameters

• pno (int) – page number, 0-based, any value < len(doc).
• output (str) – A string specifying the requested output format: text, html, jsonor xml. Default is text.

Return type str
layout(rect=None, width=0, height=0, fontsize=11)Re-paginate (“reflow”) the document based on the given page dimension and fontsize. Thisonly a�ects some document types like e-books and HTML. Ignored if not supported. Supporteddocuments have True in property isReflowable .

Parameters

• rect (rect_like) – desired page size. Must be finite, not empty and start at point(0, 0).
• width (float) – use it together with height as alternative to rect.
• height (float) – use it together with width as alternative to rect.
• fontsize (float) – the desired default fontsize.

select(s)PDF only: Keeps only those pages of the document whose numbers occur in the list. Emptysequences or elements outside range(len(doc)) will cause a ValueError. For more details seeremarks at the bottom or this chapter.
Parameters s (sequence) – The sequence (see Using Python Sequences as Arguments

in PyMuPDF) of page numbers (zero-based) to be included. Pages not in the se-quence will be deleted (from memory) and become unavailable until the documentis reopened. Page numbers can occur multiple times and in any order: the result-ing document will reflect the sequence exactly as specified.
Note:

• Page numbers in the sequence need not be unique nor be in any particular order. Thismakesthe method a versatile utility to e.g. select only the even or the odd pages or meeting someother criteria and so forth.

5.4. Document 89

PyMuPDF Documentation, Release 1.16.7

• On a technical level, the method will always create a new pagetree .
• When dealing with only a few pages, methods copyPage() , movePage() , deletePage() areeasier to use. In fact, they are also much faster – by at least one order of magnitude whenthe document has many pages.

setMetadata(m)PDF only: Sets or updates the metadata of the document as specified in m, a Python dictio-nary. As with select() , these changes become permanent only when you save the document.Incremental save is supported.
Parameters m (dict) – A dictionary with the same keys as metadata (see below). Allkeys are optional. A PDF’s format and encryption method cannot be set or changedand will be ignored. If any value should not contain data, do not specify its key orset the value to None. If you use {} all metadata information will be cleared to thestring "none". If you want to selectively change only some values, modify a copy of

doc.metadata and use it as the argument. Arbitrary unicode values are possible ifspecified as UTF-8-encoded.
setToC(toc)PDF only: Replaces the complete current outline tree (table of contents) with the new oneprovided as the argument. After successful execution, the new outline tree can be accessedas usual via method getToC() or via property outline. Like with other output-oriented meth-ods, changes become permanent only via save() (incremental save supported). Internally, thismethod consists of the following two steps. For a demonstration see example below.

• Step 1 deletes all existing bookmarks.
• Step 2 creates a new TOC from the entries contained in toc.
Parameters toc (sequence) – A Python nested sequence with all bookmark entriesthat should form the new table of contents. Each entry is a list with the followingformat. Output variants of method getToC() are also acceptable as input.

• [lvl, title, page, dest], where
– lvl is the hierarchy level (int > 0) of the item, starting with 1 and being at most1 higher than that of the predecessor,
– title (str) is the title to be displayed. It is assumed to be UTF-8-encoded(relevant for multibyte code points only).
– page (int) is the target page number (attention: 1-based to support getToC()-

output), must be in valid page range if positive. Set this to -1 if there is notarget, or the target is external.
– dest (optional) is a dictionary or a number. If a number, it will be inter-preted as the desired height (in points) this entry should point to on pagein the current document. Use a dictionary (like the one given as outputby getToC(simple=False)) if you want to store destinations that are either“named”, or reside outside this documennt (other files, internet resources,etc.).

Return type int
Returns outline and getToC() will be updated upon successful execution. The returncode will either equal the number of inserted items (len(toc)) or the number ofdeleted items if toc is an empty sequence.

90 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Note: We currently always set the Outline attribute is_open to False. This shows all entriesbelow level 1 as collapsed.
can_save_incrementally()New in version 1.16.0: Check whether the document can be saved using option

incremental=True. Use it to choose the right option without encountering exceptions.
save(outfile, garbage=0, clean=False, deflate=False, incremental=False, ascii=False, ex-

pand=0, linear=False, pretty=False, encryption=PDF_ENCRYPT_NONE, permissions=-1,
owner_pw=None, user_pw=None)PDF only: Saves the document in its current state under the name outfile.

Parameters

• outfile (str) – The file name to save to. Must be di�erent from the originalvalue if “incremental” is false or zero. When saving incrementally, “garbage”and “linear” must be false or zero and this parameter must equal the originalfilename (for convenience use doc.name).
• garbage (int) – Do garbage collection. Positive values exclude incremental.
– 0 = none
– 1 = remove unused objects
– 2 = in addition to 1, compact the xref table
– 3 = in addition to 2, merge duplicate objects
– 4 = in addition to 3, check object streams for duplication (may be slow)

• clean (bool) – Clean and sanitize content streams66. Corresponds to mutool
clean options sc.

• deflate (bool) – Deflate (compress) uncompressed streams.
• incremental (bool) – Only save changed objects. Excludes “garbage” and “lin-ear”. Cannot be used for files that are decrypted or repaired and also in someother cases. To be sure, check Document.can_save_incrementally() . If this isfalse, saving to a new file is required.
• ascii (bool) – Where possible convert binary data to ASCII.
• expand (int) – Decompress objects. Generates versions that can be better readby some other programs.
– 0 = none
– 1 = images
– 2 = fonts
– 255 = all

• linear (bool) – Save a linearised version of the document. This option createsa file format for improved performance when read via internet connections. Ex-cludes “incremental”.
66 Content streams describe what (e.g. text or images) appears where and how on a page. PDF uses a specialized mini languagesimilar to PostScript to do this (pp. 985 in Adobe PDF Reference 1.7), which gets interpreted when a page is loaded.

5.4. Document 91

PyMuPDF Documentation, Release 1.16.7

• pretty (bool) – Prettify the document source for better readability. PDFobjects will be reformatted to look like the default output of Document.
_getXrefString() .

• permissions (int) – New in version 1.16.0: Set the desired permission levels.See Document Permissions for possible values. Default is granting all.
• encryption (int) – New in version 1.16.0: Set the desired encryption method.See PDF encryption method codes for possible values.
• owner_pw (str) – New in version 1.16.0: Set the document’s owner password.
• user_pw (str) – New in version 1.16.0: Set the document’s user password.

saveIncr()PDF only: saves the document incrementally. This is a convenience abbreviation for doc.
save(doc.name, incremental=True, encryption=PDF_ENCRYPT_KEEP).

write(garbage=0, clean=False, deflate=False, ascii=False, expand=0, linear=False,
pretty=False, encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None,
user_pw=None)PDF only: Writes the current content of the document to a bytes object instead of to a filelike save(). Obviously, you should be wary about memory requirements. The meanings of theparameters exactly equal those in save() . Chater Collection of Recipes contains an examplefor using this method as a pre-processor to pdfrw61.

Changed in version 1.16.0.
Return type bytes
Returns a bytes object containing the complete document data.

searchPageFor(pno, text, hit_max=16, quads=False)Search for text on page number pno. Works exactly like the corresponding Page.searchFor() .Any integer -inf < pno < len(doc) is acceptable.
insertPDF(docsrc, from_page=-1, to_page=-1, start_at=-1, rotate=-1, links=True, an-

nots=True)PDF only: Copy the page range [from_page, to_page] (including both) of PDF document docsrcinto the current one. Inserts will start with page number start_at. Negative values can beused to indicate default values. All pages thus copied will be rotated as specified. Links can beexcluded in the target, see below. All page numbers are zero-based.
Parameters

• docsrc (Document) – An opened PDF Document which must not be the currentdocument object. However, it may refer to the same underlying file.
• from_page (int) – First page number in docsrc. Default is zero.
• to_page (int) – Last page number in docsrc to copy. Default is the last page.
• start_at (int) – First copied page will become page number start_at in thedestination. If omitted, the page range will be appended to current document. Ifzero, the page range will be inserted before current first page.
• rotate (int) – All copied pages will be rotated by the provided value (degrees,integer multiple of 90).
• links (bool) – Choose whether (internal and external) links should be includedin the copy. Default is True. An internal link is always excluded, if its destinationis not one of the copied pages.

61 https://pypi.python.org/pypi/pdfrw/0.3

92 Chapter 5. Classes

https://pypi.python.org/pypi/pdfrw/0.3

PyMuPDF Documentation, Release 1.16.7

• annots (bool) – New in version 1.16.1: Choose whether annotations should beincluded in the copy.
Note:

1. If from_page > to_page, pages will be copied in reverse order. If 0 <= from_page ==
to_page, then one page will be copied.

2. docsrc bookmarks will not be copied. It is easy however, to recover a table of contents for theresulting document. Look at the examples below and at program PDFjoiner.py62 in the examplesdirectory: it can join PDF documents and at the same time piece together respective parts ofthe tables of contents.
newPage(pno=-1, width=595, height=842)PDF only: Insert an empty page.

Parameters

• pno (int) – page number in front of which the new page should be inserted. Mustbe in range(-1, len(doc) + 1). Special values -1 and len(doc) insert after thelast page.
• width (float) – page width.
• height (float) – page height.

Return type Page

Returns the created page object.
insertPage(pno, text=None, fontsize=11, width=595, height=842, fontname="helv", font-

file=None, color=None)PDF only: Insert a new page and insert some text. Convenience function which combines
Document.newPage() and (parts of) Page.insertText() .

Parameters pno (int) – page number (0-based) in front of which to insert. Must bein range(-1, len(doc) + 1). Special values -1 and len(doc) insert after the lastpage.
Changed in version 1.14.12: This is now a positional parameter

For the other parameters, please consult the aforementioned methods.
Return type int
Returns the result of Page.insertText() (number of successfully inserted lines).

deletePage(pno=-1)PDF only: Delete a page given by its 0-based number in −∞ < 𝑝𝑛𝑜 < 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡− 1.
Changed in version 1.14.17.

Parameters pno (int) – the page to be deleted. Negative number count backwardsfrom the end of the document (like with indices). Default is the last page.
deletePageRange(from_page=-1, to_page=-1)PDF only: Delete a range of pages given as 0-based numbers. Any -1 parameter will firstbe replaced by len(doc) - 1 (ie. last page number). After that, condition 0 <= from_page

<= to_page < len(doc) must be true. If the parameters are equal, this is equivalent to
deletePage() .

62 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

5.4. Document 93

https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.16.7

Changed in version 1.14.17.
Parameters

• from_page (int) – the first page to be deleted.
• to_page (int) – the last page to be deleted.

Note: In an e�ort to maintain a valid PDF structure, this method and deletePage() will removethe deleted pages from the table of contents.
Similarly, it will scan all pages of the PDF and remove any links that point to deleted pages.Especially this action may have an extended response time for documents with a lot of pages.
In contrast, the number of deleted pages has a very small e�ect. So, whenever possible, youshould delete page ranges instead of single pages.
Example:
>>> import time, fitz
>>> doc = fitz.open("Adobe PDF Reference 1-7.pdf")
>>> t0=time.perf_counter();doc.deletePageRange(500, 520);t1=time.perf_counter()
>>> round(t1 - t0, 2)
0.66
>>>

This is still more than 10 times faster than the corresponding select() :
>>> l = list(range(500)) + list(range(521, 1310))
>>> t0=time.perf_counter();doc.select(l);t1=time.perf_counter()
>>> round(t1 - t0, 2)
7.62
>>>

copyPage(pno, to=-1)PDF only: Copy a page reference within the document.
Parameters

• pno (int) – the page to be copied. Must be in range 0 <= pno < len(doc).
• to (int) – the page number in front of which to copy. The default inserts afterthe last page.

Note: Only a new reference to the page object will be created – not a new page object, allcopied pages will have identical attribute values, including the Page.xref . This implies thatany changes to one of these copies will appear on all of them.
fullcopyPage(pno, to=-1)New in version 1.14.17: PDF only: Make a new copy (duplicate) of a page.

Parameters

• pno (int) – the page to be duplicated. Must be in range 0 <= pno < len(doc).
• to (int) – the page number in front of which to copy. The default inserts afterthe last page.

94 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Note: In contrast to copyPage() , this method creates a completely identical new page object– with the exception of Page.xref of course, which will be di�erent. So changes to a copy willonly show there.
movePage(pno, to=-1)PDF only: Move (copy and then delete original) a page within the document.

Parameters

• pno (int) – the page to be moved. Must be in range 0 <= pno < len(doc).
• to (int) – the page number in front of which to insert the moved page. Thedefault moves after the last page.

getSigFlags()PDF only: Return whether the document contains signature fields.
Return type int
Returns

• -1: not a Form PDF or no signature fields exist.
• 1: at least one signature field exists.
• 3: contains signatures that may be invalidated if the file is saved (written) in away that alters its previous contents, as opposed to an incremental update.

embeddedFileAdd(name, bu�er, filename=None, ufilename=None, desc=None)PDF only: Embed a new file. All string parameters except the name may be unicode (in previousversions, only ASCII worked correctly). File contents will be compressed (where beneficial).
Changed in version 1.14.16: The sequence of positional parameters “name” and “bu�er” hasbeen changed to comply with the layout of other functions.

Parameters

• name (str) – entry identifier, must not already exist.
• buffer (bytes , bytearray , BytesIO) – file contents.
Changed in version 1.14.13: io.BytesIO is now also supported.

• filename (str) – optional filename. Documentation only, will be set to name if
None.

• ufilename (str) – optional unicode filename. Documentation only, will be set to
filename if None.

• desc (str) – optional description. Documentation only, will be set to name if None.
embeddedFileCount()PDF only: Return the number of embedded files.

Changed in version 1.14.16: This is now a method. In previous versions, this was aproperty.
embeddedFileGet(item)PDF only: Retrieve the content of embedded file by its entry number or name. If the documentis not a PDF, or entry cannot be found, an exception is raised.

Parameters item (int , str) – index or name of entry. An integer must be in
range(embeddedFileCount()).

5.4. Document 95

PyMuPDF Documentation, Release 1.16.7

Return type bytes
embeddedFileDel(item)PDF only: Remove an entry from /EmbeddedFiles. As always, physical deletion of the embeddedfile content (and file space regain) will occur only when the document is saved to a new file witha suitable garbage option.

Changed in version 1.14.16: Items can now be deleted by index, too.
Parameters item (int/str) – index or name of entry.

Warning: When specifying an entry name, this function will only delete the first item withthat name. Be aware that PDFs not created with PyMuPDF may contain duplicate names. Soyou may want to take appropriate precautions.
embeddedFileInfo(item)PDF only: Retrieve information of an embedded file given by its number or by its name.

Parameters item (int/str) – index or name of entry. An integer must be in
range(embeddedFileCount()).

Return type dict
Returns

a dictionary with the following keys:
• name – (str) name under which this entry is stored
• filename – (str) filename
• ufilename – (unicode) filename
• desc – (str) description
• size – (int) original file size
• length – (int) compressed file length

embeddedFileNames()New in version 1.14.16: PDF only: Return a list of embedded file names. The sequence of namesequals the physical sequence in the document.
Return type list

embeddedFileUpd(item, bu�er=None, filename=None, ufilename=None, desc=None)PDF only: Change an embedded file given its entry number or name. All parameters are optional.Letting them default leads to a no-operation.
Parameters

• item (int/str) – index or name of entry. An integer must be in range(0,
embeddedFileCount()).

• buffer (bytes , bytearray , BytesIO) – the new file content.
Changed in version 1.14.13: io.BytesIO is now also supported.

• filename (str) – the new filename.
• ufilename (str) – the new unicode filename.
• desc (str) – the new description.

96 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

embeddedFileSetInfo(n, filename=None, ufilename=None, desc=None)PDF only: Change embedded file meta information. All parameters are optional. Letting themdefault will lead to a no-operation.
Parameters

• n (int , str) – index or name of entry. An integer must be in
range(embeddedFileCount()).

• filename (str) – sets the filename.
• ufilename (str) – sets the unicode filename.
• desc (str) – sets the description.

Note: Deprecated subset of embeddedFileUpd() . Will be deleted in a future version.
close()Release objects and space allocations associated with the document. If created from a file, alsocloses filename (releasing control to the OS).
outlineContains the first Outline entry of the document (or None). Can be used as a starting pointto walk through all outline items. Accessing this property for encrypted, not authenticateddocuments will raise an AttributeError.

Type Outline

isClosed
False if document is still open. If closed, most other attributes and methods will have beendeleted / disabled. In addition, Page objects referring to this document (i.e. created with
Document.loadPage()) and their dependent objects will no longer be usable. For referencepurposes, Document.name still exists and will contain the filename of the original document (ifapplicable).

Type bool
isPDF

True if this is a PDF document, else False.
Type bool

isFormPDF
False if this is not a PDF or has no form fields, otherwise the number of root form fields (fieldswith no ancestors).
Changed in version 1.16.4: Returns the total number of (root) form fields.

Type bool,int
isReflowable

True if document has a variable page layout (like e-books or HTML). In this case you can setthe desired page dimensions during document creation (open) or via method layout() .
Type bool

needsPassIndicates whether the document is password-protected against access. This indicator remainsunchanged – even after the document has been authenticated. Precludes incremental savesif true.
Type bool

5.4. Document 97

PyMuPDF Documentation, Release 1.16.7

isEncryptedThis indicator initially equals needsPass. After successful authentication, it is set to False toreflect the situation.
Type bool

permissionsContains the permissions to access the document. This is an integer containing bool values inrespective bit positions. For example, if doc.permissions & fitz.PDF_PERM_MODIFY > 0, youmay change the document. See Document Permissions for details.
Changed in version 1.16.0::: This is now an integer comprised of bit indicators. Was a dictionarypreviously.

Type int
metadataContains the document’s meta data as a Python dictionary or None (if isEncrypted=True and

needPass=True). Keys are format, encryption, title, author, subject, keywords, creator,
producer, creationDate, modDate. All item values are strings or None.
Except format and encryption, for PDF documents, the key names correspond in an obvi-ous way to the PDF keys /Creator, /Producer, /CreationDate, /ModDate, /Title, /Author,
/Subject, and /Keywords respectively.
• format contains the document format (e.g. ‘PDF-1.6’, ‘XPS’, ‘EPUB’).
• encryption either contains None (no encryption), or a string naming an encryption method(e.g. 'Standard V4 R4 128-bit RC4'). Note that an encryption method may be speci-fied even if needsPass=False. In such cases not all permissions will probably have beengranted. Check Document.permissions for details.
• If the date fields contain valid data (which need not be the case at all!), they are strings inthe PDF-specific timestamp format “D:<TS><TZ>”, where

– <TS> is the 12 character ISO timestamp YYYYMMDDhhmmss (YYYY - year, MM - month, DD- day, hh - hour, mm - minute, ss - second), and
– <TZ> is a time zone value (time intervall relative to GMT) containing a sign (‘+’ or ‘-‘),the hour (hh), and the minute ('mm', note the apostrophies!).

• A Paraguayan value might hence look like D:20150415131602-04'00', which correspondsto the timestamp April 15, 2015, at 1:16:02 pm local time Asuncion.
Type dict

nameContains the filename or filetype value with which Document was created.
Type str

pageCountContains the number of pages of the document. May return 0 for documents with no pages.Function len(doc) will also deliver this result.
Type int

FormFontsA list of form field font names defined in the /AcroForm object. None if not a PDF.
Type list

98 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Note: For methods that change the structure of a PDF (insertPDF(), select(), copyPage(),
deletePage() and others), be aware that objects or properties in your program may have been invali-dated or orphaned. Examples are Page objects and their children (links, annotations, widgets), variablesholding old page counts, tables of content and the like. Remember to keep such variables up to date ordelete orphaned objects. Also refer to Ensuring Consistency of Important Objects in PyMuPDF.

5.4.1 setMetadata() Example

Clear metadata information. If you do this out of privacy / data protection concerns, make sure yousave the document as a new file with garbage > 0. Only then the old /Info object will also be physicallyremoved from the file. In this case, you may also want to clear any XML metadata inserted by several PDFeditors:
>>> import fitz
>>> doc=fitz.open("pymupdf.pdf")
>>> doc.metadata # look at what we currently have
{'producer': 'rst2pdf, reportlab', 'format': 'PDF 1.4', 'encryption': None, 'author':
'Jorj X. McKie', 'modDate': "D:20160611145816-04'00'", 'keywords': 'PDF, XPS, EPUB, CBZ',
'title': 'The PyMuPDF Documentation', 'creationDate': "D:20160611145816-04'00'",
'creator': 'sphinx', 'subject': 'PyMuPDF 1.9.1'}
>>> doc.setMetadata({}) # clear all fields
>>> doc.metadata # look again to show what happened
{'producer': 'none', 'format': 'PDF 1.4', 'encryption': None, 'author': 'none',
'modDate': 'none', 'keywords': 'none', 'title': 'none', 'creationDate': 'none',
'creator': 'none', 'subject': 'none'}
>>> doc._delXmlMetadata() # clear any XML metadata
>>> doc.save("anonymous.pdf", garbage = 4) # save anonymized doc

5.4.2 setToC() Demonstration

This shows how to modify or add a table of contents. Also have a look at csv2toc.py63 and toc2csv.py64 inthe examples directory.
>>> import fitz
>>> doc = fitz.open("test.pdf")
>>> toc = doc.getToC()
>>> for t in toc: print(t) # show what we have
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction', 1]
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]
>>> toc[1][1] += " modified by setToC" # modify something
>>> doc.setToC(toc) # replace outline tree
3 # number of bookmarks inserted
>>> for t in doc.getToC(): print(t) # demonstrate it worked
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction modified by setToC', 1] # <<< this has changed
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]

63 https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py64 https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

5.4. Document 99

https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

PyMuPDF Documentation, Release 1.16.7

5.4.3 insertPDF() Examples

(1) Concatenate two documents including their TOCs:

>>> doc1 = fitz.open("file1.pdf") # must be a PDF
>>> doc2 = fitz.open("file2.pdf") # must be a PDF
>>> pages1 = len(doc1) # save doc1's page count
>>> toc1 = doc1.getToC(False) # save TOC 1
>>> toc2 = doc2.getToC(False) # save TOC 2
>>> doc1.insertPDF(doc2) # doc2 at end of doc1
>>> for t in toc2: # increase toc2 page numbers

t[2] += pages1 # by old len(doc1)
>>> doc1.setToC(toc1 + toc2) # now result has total TOC

Obviously, similar ways can be found in more general situations. Just make sure that hierarchy levels ina row do not increase by more than one. Inserting dummy bookmarks before and after toc2 segmentswould heal such cases. A ready-to-use GUI (wxPython) solution can be found in script PDFjoiner.py65 ofthe examples directory.
(2) More examples:

>>> # insert 5 pages of doc2, where its page 21 becomes page 15 in doc1
>>> doc1.insertPDF(doc2, from_page=21, to_page=25, start_at=15)

>>> # same example, but pages are rotated and copied in reverse order
>>> doc1.insertPDF(doc2, from_page=25, to_page=21, start_at=15, rotate=90)

>>> # put copied pages in front of doc1
>>> doc1.insertPDF(doc2, from_page=21, to_page=25, start_at=0)

5.4.4 Other Examples

Extract all page-referenced images of a PDF into separate PNG files:
for i in range(len(doc)):

imglist = doc.getPageImageList(i)
for img in imglist:

xref = img[0] # xref number
pix = fitz.Pixmap(doc, xref) # make pixmap from image
if pix.n - pix.alpha < 4: # can be saved as PNG

pix.writePNG("p%s-%s.png" % (i, xref))
else: # CMYK: must convert first

pix0 = fitz.Pixmap(fitz.csRGB, pix)
pix0.writePNG("p%s-%s.png" % (i, xref))
pix0 = None # free Pixmap resources

pix = None # free Pixmap resources

Rotate all pages of a PDF:

>>> for page in doc: page.setRotation(90)

65 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

100 Chapter 5. Classes

https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.16.7

5.5 Identity

Identity is a Matrix that performs no action – to be used whenever the syntax requires a matrix, but noactual transformation should take place. It has the form fitz.Matrix(1, 0, 0, 1, 0, 0).
Identity is a constant, an “immutable” object. So, all of its matrix properties are read-only and its methodsare disabled.
If you need a mutable identity matrix as a starting point, use one of the following statements:
>>> m = fitz.Matrix(1, 0, 0, 1, 0, 0) # specify the values
>>> m = fitz.Matrix(1, 1) # use scaling by factor 1
>>> m = fitz.Matrix(0) # use rotation by zero degrees
>>> m = fitz.Matrix(fitz.Identity) # make a copy of Identity

5.6 IRect

IRect is a rectangular bounding box similar to Rect, except that all corner coordinates are integers. IRect isused to specify an area of pixels, e.g. to receive image data during rendering. Otherwise, many similaritiesexist, e.g. considerations concerning emptiness and finiteness of rectangles also apply to this class.
Attribute / Method Short Description
IRect.contains() checks containment of another object
IRect.getArea() calculate rectangle area
IRect.getRect() return a Rect with same coordinates
IRect.getRectArea() calculate rectangle area
IRect.intersect() common part with another rectangle
IRect.intersects() checks for non-empty intersection
IRect.norm() the Euclidean norm
IRect.normalize() makes a rectangle finite
IRect.bottom_left bottom left point, synonym bl
IRect.bottom_right bottom right point, synonym br
IRect.height height of the rectangle
IRect.isEmpty whether rectangle is empty
IRect.isInfinite whether rectangle is infinite
IRect.rect equals result of method getRect()
IRect.top_left top left point, synonym tl
IRect.top_right top_right point, synonym tr
IRect.quad Quad made from rectangle corners
IRect.width width of the rectangle
IRect.x0 X-coordinate of the top left corner
IRect.x1 X-coordinate of the bottom right corner
IRect.y0 Y-coordinate of the top left corner
IRect.y1 Y-coordinate of the bottom right corner

Class API

class IRect

__init__(self)

__init__(self, x0, y0, x1, y1)
5.5. Identity 101

PyMuPDF Documentation, Release 1.16.7

__init__(self, irect)
__init__(self, sequence)Overloaded constructors. Also see examples below and those for the Rect class.

If another irect is specified, a new copy will be made.
If sequence is specified, it must be a Python sequence type of 4 numbers (see Using Python
Sequences as Arguments in PyMuPDF). Non-integer numbers will be truncated, non-numericentries will raise an exception.
The other parameters mean integer coordinates.

getRect()A convenience function returning a Rect with the same coordinates. Also available as attribute
rect.

Return type Rect

getRectArea([unit])
getArea([unit])Calculates the area of the rectangle and, with no parameter, equals abs(IRect). Like an emptyrectangle, the area of an infinite rectangle is also zero.

Parameters unit (str) – Specify required unit: respective squares of “px” (pixels, de-fault), “in” (inches), “cm” (centimeters), or “mm” (millimeters).
Return type float

intersect(ir)The intersection (common rectangular area) of the current rectangle and ir is calculated andreplaces the current rectangle. If either rectangle is empty, the result is also empty. If eitherrectangle is infinite, the other one is taken as the result – and hence also infinite if both rectan-gles were infinite.
Parameters ir (rect_like) – Second rectangle.

contains(x)Checks whether x is contained in the rectangle. It may be rect_like , point_like or a number.If x is an empty rectangle, this is always true. Conversely, if the rectangle is empty this is always
False, if x is not an empty rectangle and not a number. If x is a number, it will be checked to beone of the four components. x in irect and irect.contains(x) are equivalent.

Parameters x (IRect or Rect or Point or int) – the object to check.
Return type bool

intersects(r)Checks whether the rectangle and the rect_like “r” contain a common non-empty IRect. Thiswill always be False if either is infinite or empty.
Parameters r (rect_like) – the rectangle to check.
Return type bool

norm()New in version 1.16.0: Return the Euclidean norm of the rectangle treated as a vector of fournumbers.
normalize()Make the rectangle finite. This is done by shu�ing rectangle corners. After this, the bottomright corner will indeed be south-eastern to the top left one. See Rect for a more details.

102 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

top_left

tl Equals Point(x0, y0).
Type Point

top_right

tr Equals Point(x1, y0).
Type Point

bottom_left

bl Equals Point(x0, y1).
Type Point

bottom_right

br Equals Point(x1, y1).
Type Point

quadThe quadrilateral Quad(irect.tl, irect.tr, irect.bl, irect.br).
Type Quad

widthContains the width of the bounding box. Equals abs(x1 - x0).
Type int

heightContains the height of the bounding box. Equals abs(y1 - y0).
Type int

x0 X-coordinate of the left corners.
Type int

y0 Y-coordinate of the top corners.
Type int

x1 X-coordinate of the right corners.
Type int

y1 Y-coordinate of the bottom corners.
Type int

isInfinite
True if rectangle is infinite, False otherwise.

Type bool

5.6. IRect 103

PyMuPDF Documentation, Release 1.16.7

isEmpty
True if rectangle is empty, False otherwise.

Type bool
Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index,too. Also refer to Using Python Sequences as Arguments in PyMuPDF.
• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Ob-
jects.

5.7 Link

Represents a pointer to somewhere (this document, other documents, the internet). Links exist per doc-ument page, and they are forward-chained to each other, starting from an initial link which is accessibleby the Page.firstLink property.
There is a parent-child relationship between a link and its page. If the page object becomes unusable(closed document, any document structure change, etc.), then so does every of its existing link objects –an exception is raised saying that the object is “orphaned”, whenever a link property ormethod is accessed.

Attribute Short Description
Link.setBorder() modify border properties
Link.border border characteristics
Link.colors border line color
Link.dest points to link destination details
Link.isExternal external link destination?
Link.next points to next link
Link.rect clickable area in untransformed coordinates.
Link.uri link destination
Link.xref xref number of the entry

Class API

class Link

setBorder(border)PDF only: Change border width and dashing properties.
Parameters border (dict) – a dictionary as returned by the border property, withkeys "width" (float), "style" (str) and "dashes" (sequence). Omitted keys willleave the resp. property unchanged. To e.g. remove dashing use: "dashes": [].If dashes is not an empty sequence, “style” will automatically set to “D” (dashed).

colorsMeaningful for PDF only: A dictionary of two lists of floats in range 0 <= float <= 1 specifyingthe stroke and the interior (fill) colors. If not a PDF, None is returned. The stroke color is usedfor borders and everything that is actively painted or written (“stroked”). The lengths of theselists implicitely determine the colorspaces used: 1 = GRAY, 3 = RGB, 4 = CMYK. So [1.0, 0.0,
0.0] stands for RGB color red. Both lists can be [] if no color is specified. The value of eachfloat f is mapped to the integer value i in range 0 to 255 via the computation f = i / 255.

104 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Return type dict
borderMeaningful for PDF only: A dictionary containing border characteristics. It will be None for non-PDFs and an empty dictionary if no border information exists. The following keys can occur:

• width – a float indicating the border thickness in points. The value is -1.0 if no width isspecified.
• dashes – a sequence of integers specifying a line dash pattern. [] means no dashes, [n]means equal on-o� lengths of n points, longer lists will be interpreted as specifying alter-nating on-o� length values. See the Adobe PDF Reference 1.7 page 217 for more details.
• style – 1-byte border style: S (Solid) = solid rectangle surrounding the annotation, D(Dashed) = dashed rectangle surrounding the link, the dash pattern is specified by the
dashes entry, B (Beveled) = a simulated embossed rectangle that appears to be raisedabove the surface of the page, I (Inset) = a simulated engraved rectangle that appears tobe recessed below the surface of the page, U (Underline) = a single line along the bottomof the annotation rectangle.
Return type dict

rectThe area that can be clicked in untransformed coordinates.
Type Rect

isExternalA bool specifying whether the link target is outside of the current document.
Type bool

uri A string specifying the link target. The meaning of this property should be evaluated in conjunc-tion with property isExternal. The value may be None, in which case isExternal == False. If
uri starts with file://, mailto:, or an internet resource name, isExternal is True. In all othercases isExternal == False and uri points to an internal location. In case of PDF documents,this should either be #nnnn to indicate a 1-based (!) page number nnnn, or a named location.The format varies for other document types, e.g. uri = '../FixedDoc.fdoc#PG_2_LNK_1' forpage number 2 (1-based) in an XPS document.

Type str
xrefAn integer specifying the PDF xref . Zero if not a PDF.

Type int
nextThe next link or None.

Type Link

destThe link destination details object.
Type linkDest

5.7. Link 105

PyMuPDF Documentation, Release 1.16.7

5.8 linkDest

Class representing the dest property of an outline entry or a link. Describes the destination to which suchentries point.
Attribute Short Description
linkDest.dest destination
linkDest.fileSpec file specification (path, filename)
linkDest.flags descriptive flags
linkDest.isMap is this a MAP?
linkDest.isUri is this a URI?
linkDest.kind kind of destination
linkDest.lt top left coordinates
linkDest.named name if named destination
linkDest.newWindow name of new window
linkDest.page page number
linkDest.rb bottom right coordinates
linkDest.uri URI

Class API

class linkDest

destTarget destination name if linkDest.kind is LINK_GOTOR and linkDest.page is -1.
Type str

fileSpecContains the filename and path this link points to, if linkDest.kind is LINK_GOTOR or
LINK_LAUNCH .

Type str
flagsA bitfield describing the validity and meaning of the di�erent aspects of the destination. As faras possible, link destinations are constructed such that e.g. linkDest.lt and linkDest.rb canbe treated as defining a bounding box. But the flags indicate which of the values were actuallyspecified, see Link Destination Flags.

Type int
isMapThis flag specifies whether to track the mouse position when the URI is resolved. Default value:False.

Type bool
isUriSpecifies whether this destination is an internet resource (as opposed to e.g. a local file speci-fication in URI format).

Type bool
kindIndicates the type of this destination, like a place in this document, a URI, a file launch, an actionor a place in another file. Look at Link Destination Kinds to see the names and numerical values.

106 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Type int
lt The top left Point of the destination.

Type Point

namedThis destination refers to some named action to perform (e.g. a javascript, see Adobe PDF
Reference 1.7). Standard actions provided are NextPage, PrevPage, FirstPage, and LastPage.

Type str
newWindowIf true, the destination should be launched in a new window.

Type bool
pageThe page number (in this or the target document) this destination points to. Only set if

linkDest.kind is LINK_GOTOR or LINK_GOTO . May be -1 if linkDest.kind is LINK_GOTOR . Inthis case linkDest.dest contains the name of a destination in the target document.
Type int

rb The bottom right Point of this destination.
Type Point

uri The name of the URI this destination points to.
Type str

5.9 Matrix

Matrix is a row-major 3x3matrix used by image transformations inMuPDF (which complies with the respec-tive concepts laid down in the Adobe PDF Reference 1.7). With matrices you can manipulate the renderedimage of a page in a variety of ways: (parts of) the page can be rotated, zoomed, flipped, sheared andshifted by setting some or all of just six float values.
Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constantunit vector, and only the remaining six elements are used for manipulations. These six elements are usuallyrepresented by [a, b, c, d, e, f]. Here is how they are positioned in the matrix:

Please note:
• the below methods are just convenience functions – everything they do, can also be achieved bydirectly manipulating the six numerical values

5.9. Matrix 107

PyMuPDF Documentation, Release 1.16.7

• all manipulations can be combined – you can construct a matrix that rotates and shears and scales
and shifts, etc. in one go. If you however choose to do this, do have a look at the remarks furtherdown or at the Adobe PDF Reference 1.7.

Method / Attribute Description
Matrix.preRotate() perform a rotation
Matrix.preScale() perform a scaling
Matrix.preShear() perform a shearing (skewing)
Matrix.preTranslate() perform a translation (shifting)
Matrix.concat() perform a matrix multiplication
Matrix.invert() calculate the inverted matrix
Matrix.norm() the Euclidean norm
Matrix.a zoom factor X direction
Matrix.b shearing e�ect Y direction
Matrix.c shearing e�ect X direction
Matrix.d zoom factor Y direction
Matrix.e horizontal shift
Matrix.f vertical shift
Matrix.isRectilinear true if rect corners will remain rect corners

Class API

class Matrix

__init__(self)

__init__(self, zoom-x, zoom-y)

__init__(self, shear-x, shear-y, 1)
__init__(self, a, b, c, d, e, f)
__init__(self, matrix)

__init__(self, degree)
__init__(self, sequence)Overloaded constructors.

Without parameters, the zero matrix Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) will be created.
zoom-* and shear-* specify zoom or shear values (float) and create a zoom or shear matrix,respectively.
For “matrix” a new copy of another matrix will be made.
Float value “degree” specifies the creation of a rotation matrix which rotates anit-clockwise.
A “sequence”must be any Python sequence object with exactly 6 float entries (seeUsing Python
Sequences as Arguments in PyMuPDF).
fitz.Matrix(1, 1), fitz.Matrix(0.0) and fitz.Matrix(fitz.Identity) create modifyableversions of the Identity matrix, which looks like [1, 0, 0, 1, 0, 0].

norm()New in version 1.16.0: Return the Euclidean norm of the matrix as a vector.
preRotate(deg)Modify the matrix to perform a counter-clockwise rotation for positive deg degrees, else clock-wise. The matrix elements of an identity matrix will change in the following way:

108 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

[1, 0, 0, 1, 0, 0] -> [cos(deg), sin(deg), -sin(deg), cos(deg), 0, 0].
Parameters deg (float) – The rotation angle in degrees (use conventional notationbased on Pi = 180 degrees).

preScale(sx, sy)Modify the matrix to scale by the zoom factors sx and sy. Has e�ects on attributes a thru d only:
[a, b, c, d, e, f] -> [a*sx, b*sx, c*sy, d*sy, e, f].

Parameters

• sx (float) – Zoom factor in X direction. For the e�ect see description of attribute
a.

• sy (float) – Zoom factor in Y direction. For the e�ect see description of attribute
d.

preShear(sx, sy)Modify the matrix to perform a shearing, i.e. transformation of rectangles into parallelograms(rhomboids). Has e�ects on attributes a thru d only: [a, b, c, d, e, f] -> [c*sy, d*sy,
a*sx, b*sx, e, f].

Parameters

• sx (float) – Shearing e�ect in X direction. See attribute c.
• sy (float) – Shearing e�ect in Y direction. See attribute b.

preTranslate(tx, ty)Modify the matrix to perform a shifting / translation operation along the x and / or y axis. Hase�ects on attributes e and f only: [a, b, c, d, e, f] -> [a, b, c, d, tx*a + ty*c, tx*b
+ ty*d].

Parameters

• tx (float) – Translation e�ect in X direction. See attribute e.
• ty (float) – Translation e�ect in Y direction. See attribute f.

concat(m1, m2)Calculate the matrix product m1 * m2 and store the result in the current matrix. Any of m1 or
m2 may be the current matrix. Be aware that matrix multiplication is not commutative. So thesequence of m1, m2 is important.

Parameters

• m1 (Matrix) – First (left) matrix.
• m2 (Matrix) – Second (right) matrix.

invert(m = None)Calculate the matrix inverse of m and store the result in the current matrix. Returns 1 if m isnot invertible (“degenerate”). In this case the current matrix will not change. Returns 0 if m isinvertible, and the current matrix is replaced with the inverted m.
Parameters m (Matrix) – Matrix to be inverted. If not provided, the current matrix willbe used.
Return type int

a Scaling in X-direction (width). For example, a value of 0.5 performs a shrink of the width by afactor of 2. If a < 0, a left-right flip will (additionally) occur.
Type float

5.9. Matrix 109

PyMuPDF Documentation, Release 1.16.7

b Causes a shearing e�ect: each Point(x, y) will become Point(x, y - b*x). Therefore, look-ing from left to right, e.g. horizontal lines will be “tilt” – downwards if b > 0, upwards otherwise(b is the tangens of the tilting angle).
Type float

c Causes a shearing e�ect: each Point(x, y) will become Point(x - c*y, y). Therefore, look-ing upwards, vertical lines will be “tilt” – to the left if c > 0, to the right otherwise (c ist thetangens of the tilting angle).
Type float

d Scaling in Y-direction (height). For example, a value of 1.5 performs a stretch of the height by50%. If d < 0, an up-down flip will (additionally) occur.
Type float

e Causes a horizontal shift e�ect: Each Point(x, y) will become Point(x + e, y). Positive(negative) values of e will shift right (left).
Type float

f Causes a vertical shift e�ect: Each Point(x, y) will become Point(x, y - f). Positive (neg-ative) values of f will shift down (up).
Type float

isRectilinearRectilinear means that no shearing is present and that any rotations are integer multiples of 90degrees. Usually this is used to confirm that (axis-aligned) rectangles before the transformationare still axis-aligned rectangles afterwards.
Type bool

Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index,too. Also refer to Using Python Sequences as Arguments in PyMuPDF.
• A matrix can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.
• Changes of matrix properties and execution of matrix methods can be executed consecutively. Thisis the same as multiplying the respective matrices.
• Matrix multiplication is not commutative – changing the execution sequence in general changes theresult. So it can quickly become unclear which result a transformation will yield.

To keep results foreseeable for a series of matrix operations, Adobe recommends the following approach(Adobe PDF Reference 1.7, page 206):
1. Shift (“translate”)
2. Rotate
3. Scale or shear (“skew”)

110 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

5.9.1 Examples

Here are examples to illustrate some of the e�ects achievable. The following pictures start with a page ofthe PDF version of this help file. We show what happens when a matrix is being applied (though alwaysfull pages are created, only parts are displayed here to save space).
This is the original page image:

5.9.2 Shifting

We transform it with a matrix where e = 100 (right shift by 100 pixels).

Next we do a down shift by 100 pixels: f = 100.

5.9. Matrix 111

PyMuPDF Documentation, Release 1.16.7

5.9.3 Flipping

Flip the page left-right (a = -1).

Flip up-down (d = -1).

112 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

5.9.4 Shearing

First a shear in Y direction (b = 0.5).

Second a shear in X direction (c = 0.5).

5.9. Matrix 113

PyMuPDF Documentation, Release 1.16.7

5.9.5 Rotating

Finally a rotation by 30 clockwise degrees (preRotate(-30)).

114 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

5.10 Outline

outline (or “bookmark”), is a property of Document. If not None, it stands for the first outline item ofthe document. Its properties in turn define the characteristics of this item and also point to other outlineitems in “horizontal” or downward direction. The full tree of all outline items for e.g. a conventional tableof contents (TOC) can be recovered by following these “pointers”.

5.10. Outline 115

PyMuPDF Documentation, Release 1.16.7

Method / Attribute Short Description
Outline.down next item downwards
Outline.next next item same level
Outline.page page number (0-based)
Outline.title title
Outline.uri string further specifying the outline target
Outline.isExternal target is outside this document
Outline.is_open whether sub-outlines are open or collapsed
Outline.isOpen whether sub-outlines are open or collapsed
Outline.dest points to link destination details

Class API

class Outline

downThe next outline item on the next level down. Is None if the item has no kids.
Type Outline

nextThe next outline item at the same level as this item. Is None if this is the last one in its level.
Type Outline

pageThe page number (0-based) this bookmark points to.
Type int

titleThe item’s title as a string or None.
Type str

is_openOr isOpen – an indicator showing whether any sub-outlines should be expanded (True) or becollapsed (False). This information should be interpreted by PDF display software accordingly.
Type bool

isExternalA bool specifying whether the target is outside (True) of the current document.
Type bool

uri A string specifying the link target. The meaning of this property should be evaluated in con-junction with isExternal. The value may be None, in which case isExternal == False. If uristarts with file://, mailto:, or an internet resource name, isExternal is True. In all othercases isExternal == False and uri points to an internal location. In case of PDF documents,this should either be #nnnn to indicate a 1-based (!) page number nnnn, or a named location.The format varies for other document types, e.g. uri = '../FixedDoc.fdoc#PG_21_LNK_84'for page number 21 (1-based) in an XPS document.
Type str

destThe link destination details object.

116 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Type linkDest

5.11 Page

Class representing a document page. A page object is created by Document.loadPage() or, equivalently,via indexing the document like doc[n] - it has no independent constructor.
There is a parent-child relationship between a document and its pages. If the document is closed ordeleted, all page objects (and their respective children, too) in existence will become unusable (“or-phaned”): If a page property or method is being used, an exception is raised.
Several page methods have a Document counterpart for convenience. At the end of this chapter you willfind a synopsis.

5.11.1 Adding Page Content

This is available for PDF documents only. There are basically two groups of methods:
1. Methods making permanent changes. This group contains insertText(), insertTextbox() andall draw*() methods. They provide “stand-alone”, shortcut versions for the same-named methodsof the Shape class. For detailed descriptions have a look in that chapter. Some remarks on therelationship between the Page and Shape methods:
• In contrast to Shape, the results of page methods are not interconnected: they do not share prop-erties like colors, line width / dashing, morphing, etc.
• Each page draw*() method invokes a Shape.finish() and then a Shape.commit() and conse-quently accepts the combined arguments of both these methods.
• Text insertion methods (insertText() and insertTextbox()) do not need Shape.finish() andtherefore only invoke Shape.commit() .
2. Methods adding annotations. Annotations can be added, modified and deleted without necessarilyhaving full document permissions. Their e�ect is not permanent in the sense, that manipulatingthem does not require to rebuild the document. Adding and deleting annotations are page methods.

Changing existing annotations is possible via methods of the Annot class.
Method / Attribute Short Description
Page.addCaretAnnot() PDF only: add a caret annotation
Page.addCircleAnnot() PDF only: add a circle annotation
Page.addFileAnnot() PDF only: add a file attachment annotation
Page.addFreetextAnnot() PDF only: add a text annotation
Page.addHighlightAnnot() PDF only: add a “highlight” annotation
Page.addInkAnnot() PDF only: add an ink annotation
Page.addLineAnnot() PDF only: add a line annotation
Page.addPolygonAnnot() PDF only: add a polygon annotation
Page.addPolylineAnnot() PDF only: add a multi-line annotation
Page.addRectAnnot() PDF only: add a rectangle annotation
Page.addSquigglyAnnot() PDF only: add a “squiggly” annotation
Page.addStampAnnot() PDF only: add a “rubber stamp” annotation
Page.addStrikeoutAnnot() PDF only: add a “strike-out” annotation
Page.addTextAnnot() PDF only: add a comment
Page.addUnderlineAnnot() PDF only: add an “underline” annotationContinued on next page

5.11. Page 117

PyMuPDF Documentation, Release 1.16.7

Table 2 – continued from previous page
Method / Attribute Short Description
Page.addWidget() PDF only: add a PDF Form field
Page.annots() return a generator over the annots on the page
Page.bound() rectangle of the page
Page.deleteAnnot() PDF only: delete an annotation
Page.deleteLink() PDF only: delete a link
Page.drawBezier() PDF only: draw a cubic Bezier curve
Page.drawCircle() PDF only: draw a circle
Page.drawCurve() PDF only: draw a special Bezier curve
Page.drawLine() PDF only: draw a line
Page.drawOval() PDF only: draw an oval / ellipse
Page.drawPolyline() PDF only: connect a point sequence
Page.drawRect() PDF only: draw a rectangle
Page.drawSector() PDF only: draw a circular sector
Page.drawSquiggle() PDF only: draw a squiggly line
Page.drawZigzag() PDF only: draw a zig-zagged line
Page.getFontList() PDF only: get list of used fonts
Page.getImageBbox() PDF only: get bbox of inserted image
Page.getImageList() PDF only: get list of used images
Page.getLinks() get all links
Page.getPixmap() create a Pixmap
Page.getSVGimage() create a page image in SVG format
Page.getText() extract the page’s text
Page.getTextPage() create a TextPage for the page
Page.insertFont() PDF only: insert a font for use by the page
Page.insertImage() PDF only: insert an image
Page.insertLink() PDF only: insert a link
Page.insertText() PDF only: insert text
Page.insertTextbox() PDF only: insert a text box
Page.links() return a generator of the links on the page
Page.loadLinks() return the first link on a page
Page.newShape() PDF only: start a new Shape
Page.searchFor() search for a string
Page.setCropBox() PDF only: modify the visible page
Page.setRotation() PDF only: set page rotation
Page.showPDFpage() PDF only: display PDF page image
Page.updateLink() PDF only: modify a link
Page.widgets() return a generator over the fields on the page
Page.CropBox the page’s /CropBox
Page.CropBoxPosition displacement of the /CropBox
Page.firstAnnot first Annot on the page
Page.firstLink first Link on the page
Page.firstWidget first widget (form field) on the page
Page.MediaBox the page’s /MediaBox
Page.MediaBoxSize bottom-right point of /MediaBox
Page.number page number
Page.parent owning document object
Page.rect rectangle (mediabox) of the page
Page.rotation PDF only: page rotation
Page.xref PDF xref

118 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Class API

class Page

bound()Determine the rectangle (before transformation) of the page. Same as property Page.rectbelow. For PDF documents this usually also coincides with objects /MediaBox and /CropBox,but not always. The best description hence is probably “/CropBox, transformed such that top-left coordinates are (0, 0)”. Also see attributes Page.CropBox and Page.MediaBox .
Return type Rect

addCaretAnnot(point)New in version 1.16.0: PDF only: Add a caret icon. A caret annotation is a visual symbol thatindicates the presence of text edits.
Parameters point (point_like) – the top left point of a 20 x 20 rectangle containingthe MuPDF-provided icon.
Return type Annot

Returns the created annotation.

addTextAnnot(point, text, icon="Note")PDF only: Add a comment icon (“sticky note”) with accompanying text.
Parameters

• point (point_like) – the top left point of a 20 x 20 rectangle containing theMuPDF-provided “note” icon.
• text (str) – the commentary text. This will be shown on double clicking or hov-ering over the icon. May contain any Latin characters.
• icon (str) – New in version 1.16.0: choose one of “Note” (default), “Comment”,“Help”, “Insert”, “Key”, “NewParagraph”, “Paragraph” as the visual symbol forthe embodied text76.

Return type Annot

Returns the created annotation.
addFreetextAnnot(rect, text, fontsize=12, fontname="helv", text_color=0, fill_color=1, ro-

tate=0)PDF only: Add text in a given rectangle.
Parameters

• rect (rect_like) – the rectangle into which the text should be inserted. Text isautomatically wrapped to a new line at box width. Lines not fitting into the boxwill be invisible.
• text (str) – the text. May contain any Latin characters.
• fontsize (float) – the font size. Default is 12.

76 You are generally free to choose any of the Annotation Icons in MuPDF you consider adequate.

5.11. Page 119

PyMuPDF Documentation, Release 1.16.7

• fontname (str) – the font name. Default is “Helv”. Accepted alternatives are“Cour”, “TiRo”, “ZaDb” and “Symb”. The name may be abbreviated to the firsttwo characters, like “Co” for “Cour”. Lower case is also accepted.
• text_color (sequence , float) – New in version 1.16.0: the text color. Defaultis black.
• fill_color (sequence , float) – New in version 1.16.0: the fill color. Default iswhite.
• rotate (int) – the text orientation. Accepted values are 0, 90, 270, invalid en-tries are set to zero.

Return type Annot

Returns the created annotation. Color properties can only be changed using specialparameters of Annot.update() . There, you can also set a border color di�erentfrom the text color.
addFileAnnot(pos, bu�er, filename, ufilename=None, desc=None, icon="PushPin")PDF only: Add a file attachment annotation with a “PushPin” icon at the specified location.

Parameters

• pos (point_like) – the top-left point of a 18x18 rectangle containing theMuPDF-provided “PushPin” icon.
• buffer (bytes , bytearray , BytesIO) – the data to be stored (actual file content,any data, etc.).
Changed in version 1.14.13: io.BytesIO is now also supported.

• filename (str) – the filename to associate with the data.
• ufilename (str) – the optional PDF unicode version of filename. Defaults to file-name.
• desc (str) – an optional description of the file. Defaults to filename.
• icon (str) – New in version 1.16.0: choose one of “PushPin” (default), “Graph”,“Paperclip”, “Tag” as the visual symbol for the attached data76.

Return type Annot

Returns the created annotation. Use methods of Annot to make any changes.
addInkAnnot(list)PDF only: Add a “freehand” scribble annotation.

Parameters list (sequence) – a list of one or more lists, each containing point_likeitems. Each item in these sublists is interpreted as a Point through which a con-necting line is drawn. Separate sublists thus represent separate drawing lines.
Return type Annot

Returns the created annotation in default appearance (black line of width 1). Use an-notation methods with a subsequent Annot.update() to modify.
addLineAnnot(p1, p2)PDF only: Add a line annotation.

Parameters

• p1 (point_like) – the starting point of the line.
• p2 (point_like) – the end point of the line.

120 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Return type Annot

Returns the created annotation. It is drawn with line color black and line width 1. Tochange, or attach other information (like author, creation date, line properties, col-ors, line ends, etc.) use methods of Annot. The rectangle is automatically createdto contain both points, each one surrounded by a circle of radius 3 (= 3 * line width)tomake room for any line end symbols. Usemethods of Annot tomake any changes.
addRectAnnot(rect)

addCircleAnnot(rect)PDF only: Add a rectangle, resp. circle annotation.
Parameters rect (rect_like) – the rectangle in which the circle or rectangle is drawn,must be finite and not empty. If the rectangle is not equal-sided, an ellipse is drawn.
Return type Annot

Returns the created annotation. It is drawn with line color black, no fill color and linewidth 1. Use methods of Annot to make any changes.
addPolylineAnnot(points)

addPolygonAnnot(points)PDF only: Add an annotation consisting of lines which connect the given points. A Polygon’sfirst and last points are automatically connected, which does not happen for a PolyLine. The
rectangle is automatically created as the smallest rectangle containing the points, each onesurrounded by a circle of radius 3 (= 3 * line width). The following shows a ‘PolyLine’ that hasbeen modified with colors and line ends.

Parameters points (list) – a list of point_like objects.
Return type Annot

Returns the created annotation. It is drawn with line color black, no fill color and linewidth 1. Use methods of Annot to make any changes to achieve something like this:

addUnderlineAnnot(quads)

addStrikeoutAnnot(quads)

addSquigglyAnnot(quads)

addHighlightAnnot(quads)PDF only: These annotations are normally used for marking text which has previously beenlocated (for example via searchFor()). But the actual presence of text within the specifiedarea(s) is neither checked nor required. So you are free to “mark” anything.
Standard colors are chosen per annotation type: yellow for highlighting, red for strike out,
green for underlining, and magenta for wavy underlining.
The methods convert the argument into a list of Quad objects. The annotation rectangle iscalculated to envelop these quadrilaterals.

5.11. Page 121

PyMuPDF Documentation, Release 1.16.7

Note: searchFor() supports Quad objects as an output option. Hence the following two state-ments are su�cient to locate andmark every occurrence of string “pymupdf” with one commonannotation:
>>> quads = page.searchFor("pymupdf", hit_max=100, quads=True)
>>> page.addHighlightAnnot(quads)

Parameters quads (rect_like , quad_like , list , tuple) – Changed in version1.14.20: the rectangles or quads containing the to-be-marked text (locations).A list or tuple must consist of rect_like or quad_like items (or even a mixtureof either). You should prefer using quads, because this will automatically supportnon-horizontal text and avoid rectangle-to-quad conversion e�ort.
Return type Annot

Returns the created annotation. To change colors, set the “stroke” color accordingly(Annot.setColors()) and then perform an Annot.update() .

addStampAnnot(rect, stamp=0)PDF only: Add a “rubber stamp” like annotation to e.g. indicate the document’s intended use(“DRAFT”, “CONFIDENTIAL”, etc.).
Parameters

• rect (rect_like) – rectangle where to place the annotation.
• stamp (int) – id number of the stamp text. For available stamps see Stamp An-
notation Icons.

Note: The stamp’s text (e.g. “APPROVED”) and its border line will automatically be sized and putcentered in the given rectangle. Annot.rect is automatically calculated to fit and will usuallybe smaller than this parameter. The appearance can be changed using Annot.setOpacity()and by setting the “stroke” color (no “fill” color supported).

addWidget(widget)PDF only: Add a PDF Form field (“widget”) to a page. This also turns the PDF into a Form PDF.Because of the large amount of di�erent options available for widgets, we have developed a new

122 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

class Widget, which contains the possible PDF field attributes. It must be used for both, formfield creation and updates.
Parameters widget (Widget) – aWidget object which must have been created upfront.
Returns a widget annotation.

deleteAnnot(annot)PDF only: Delete the specified annotation from the page and return the next one.
Changed in version 1.16.6: The removal will now include any bound ‘Popup’ or response anno-tations and related objects.

Parameters annot (Annot) – the annotation to be deleted.
Return type Annot

Returns the annotation following the deleted one. Please remember that physical re-moval will take place only with saving to a new file with a positive garbage collectionoption.
deleteLink(linkdict)PDF only: Delete the specified link from the page. The parameter must be an original item of

getLinks() (see below). The reason for this is the dictionary’s "xref" key, which identifies thePDF object to be deleted.
Parameters linkdict (dict) – the link to be deleted.

insertLink(linkdict)PDF only: Insert a new link on this page. The parameter must be a dictionary of format asprovided by getLinks() (see below).
Parameters linkdict (dict) – the link to be inserted.

updateLink(linkdict)PDF only: Modify the specified link. The parameter must be a (modified) original item of
getLinks() (see below). The reason for this is the dictionary’s "xref" key, which identifiesthe PDF object to be changed.

Parameters linkdict (dict) – the link to be modified.
getLinks()Retrieves all links of a page.

Return type list
Returns A list of dictionaries. For a description of the dictionary entries see below.Always use this or the Page.links() method if you intend to make changes to thelinks of a page.

links(kinds=None)New in version 1.16.4: Return a generator over the page’s links. The results equal the entriesof Page.getLinks() .
Parameters kinds (sequence) – a sequence of integers to down-select to one or morelink kinds. Default is all links. Example: kinds=(fitz.LINK_GOTO,) will only returninternal links.
Return type generator
Returns an entry of Page.getLinks() for each iteration.

annots(types=None)New in version 1.16.4: Return a generator over the page’s annotations.

5.11. Page 123

PyMuPDF Documentation, Release 1.16.7

Parameters types (sequence) – a sequence of integers to down-select to oneor annotation types. Default is all annotations. Example: types=(fitz.
PDF_ANNOT_FREETEXT, fitz.PDF_ANNOT_TEXT)will only return ‘FreeText’ and ‘Text’annotations.

Return type generator
Returns an Annot for each iteration.

widgets(types=None)New in version 1.16.4: Return a generator over the page’s form fields.
Parameters types (sequence) – a sequence of integers to down-select to oneor more widget types. Default is all form fields. Example: types=(fitz.

PDF_WIDGET_TYPE_TEXT,) will only return ‘Text’ fields.
Return type generator
Returns a Widget for each iteration.

insertText(point, text, fontsize=11, fontname="helv", fontfile=None, idx=0, color=None,
fill=None, render_mode=0, border_width=1, encoding=TEXT_ENCODING_LATIN,
rotate=0, morph=None, overlay=True)PDF only: Insert text starting at point_like point. See Shape.insertText() .

insertTextbox(rect, bu�er, fontsize=11, fontname="helv", fontfile=None, idx=0,
color=None, fill=None, render_mode=0, border_width=1, encod-
ing=TEXT_ENCODING_LATIN, expandtabs=8, align=TEXT_ALIGN_LEFT,
charwidths=None, rotate=0, morph=None, overlay=True)PDF only: Insert text into the specified rect_like rect. See Shape.insertTextbox() .

drawLine(p1, p2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True,
morph=None)PDF only: Draw a line from p1 to p2 (point_like s). See Shape.drawLine() .

drawZigzag(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, morph=None)PDF only: Draw a zigzag line from p1 to p2 (point_like s). See Shape.drawZigzag() .

drawSquiggle(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, morph=None)PDF only: Draw a squiggly (wavy, undulated) line from p1 to p2 (point_like s). See Shape.

drawSquiggle() .
drawCircle(center, radius, color=None, fill=None, width=1, dashes=None, lineCap=0, line-

Join=0, overlay=True, morph=None)PDF only: Draw a circle around center (point_like) with a radius of radius. See Shape.
drawCircle() .

drawOval(quad, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, over-
lay=True, morph=None)PDF only: Draw an oval (ellipse) within the given rect_like or quad_like . See Shape.

drawOval() .
drawSector(center, point, angle, color=None, fill=None, width=1, dashes=None, lineCap=0,

lineJoin=0, fullSector=True, overlay=True, closePath=False, morph=None)PDF only: Draw a circular sector, optionally connecting the arc to the circle’s center (like a pieceof pie). See Shape.drawSector() .
drawPolyline(points, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,

overlay=True, closePath=False, morph=None)PDF only: Draw several connected lines defined by a sequence of point_like s. See Shape.
drawPolyline() .

124 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

drawBezier(p1, p2, p3, p4, color=None, fill=None, width=1, dashes=None, lineCap=0, line-
Join=0, overlay=True, closePath=False, morph=None)PDF only: Draw a cubic BÃ©zier curve from p1 to p4 with the control points p2 and p3 (all are:data‘point_like‘ s). See Shape.drawBezier() .

drawCurve(p1, p2, p3, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, closePath=False, morph=None)PDF only: This is a special case of drawBezier(). See Shape.drawCurve() .

drawRect(rect, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, over-
lay=True, morph=None)PDF only: Draw a rectangle. See Shape.drawRect() .

Note: An e�cient way to background-color a PDF page with the old Python paper color is
>>> col = fitz.utils.getColor("py_color")
>>> page.drawRect(page.rect, color=col, fill=col, overlay=False)

insertFont(fontname="helv", fontfile=None, fontbu�er=None, set_simple=False, encod-
ing=TEXT_ENCODING_LATIN)PDF only: Add a new font to be used by text output methods and return its xref . If not alreadypresent in the file, the font definition will be added. Supported are the built-in Base14_Fontsand the CJK fonts via “reserved” fontnames. Fonts can also be provided as a file path or amemory area containing the image of a font file.

Parameters fontname (str) – The name by which this font shall be referenced whenoutputting text on this page. In general, you have a “free” choice here (but consultthe Adobe PDF Reference 1.7, page 56, section 3.2.4 for a formal description ofbuilding legal PDF names). However, if it matches one of the Base14_Fonts or oneof the CJK fonts, fontfile and fontbuffer are ignored.
In other words, you cannot insert a font via fontfile / fontbuffer and also give it a reserved
fontname.
Note: A reserved fontname can be specified in any mixture of upper or lower case and stillmatch the right built-in font definition: fontnames “helv”, “Helv”, “HELV”, “Helvetica”, etc. alllead to the same font definition “Helvetica”. But from a Page perspective, these are di�erent ref-
erences. You can exploit this fact when using di�erent encoding variants (Latin, Greek, Cyrillic)of the same font on a page.

Parameters

• fontfile (str) – a path to a font file. If used, fontname must be di�erent from
all reserved names.

• fontbuffer (bytes/bytearray) – the memory image of a font file. If used,
fontnamemust be di�erent from all reserved names. This parameter would typ-ically be used to transfer fonts between di�erent pages of the same or di�erentPDFs.

• set_simple (int) – applicable for fontfile / fontbuffer cases only: enforcetreatment as a “simple” font, i.e. one that only uses character codes up to 255.
• encoding (int) – applicable for the “Helvetica”, “Courier” and “Times” sets of
Base14_Fonts only. Select one of the available encodings Latin (0), Cyrillic (2)or Greek (1). Only use the default (0 = Latin) for “Symbol” and “ZapfDingBats”.

5.11. Page 125

PyMuPDF Documentation, Release 1.16.7

Rytpe int
Returns the xref of the installed font.

Note: Built-in fonts will not lead to the inclusion of a font file. So the resulting PDF file willremain small. However, your PDF viewer software is responsible for generating an appropriateappearance – and there exist di�erences on whether or how each one of them does this. Thisis especially true for the CJK fonts. But also Symbol and ZapfDingbats are incorrectly handledin some cases. Following are the Font Names and their correspondingly installed Base Fontnames:
Base-14 Fonts73

Font Name Installed Base Font Commentshelv Helvetica normalheit Helvetica-Oblique italichebo Helvetica-Bold boldhebi Helvetica-BoldOblique bold-italiccour Courier normalcoit Courier-Oblique italiccobo Courier-Bold boldcobi Courier-BoldOblique bold-italictiro Times-Roman normaltiit Times-Italic italictibo Times-Bold boldtibi Times-BoldItalic bold-italicsymb Symbol 75
zadb ZapfDingbats 75

CJK Fonts74 (China, Japan, Korea)
Font Name Installed Base Font Commentschina-s Heiti simplified Chinesechina-ss Song simplified Chinese (serif)china-t Fangti traditional Chinesechina-ts Ming traditional Chinese (serif)japan Gothic Japanesejapan-s Mincho Japanese (serif)korea Dotum Koreankorea-s Batang Korean (serif)

insertImage(rect, filename=None, pixmap=None, stream=None, rotate=0,
keep_proportion=True, overlay=True)PDF only: Put an image inside the given rectangle. The image can be taken from a pixmap, a fileor a memory area - of these parameters exactly one must be specified.

73 If your existing code already uses the installed base name as a font reference (as it was supported by PyMuPDF versions earlierthan 1.14), this will continue to work.75 Not all PDF readers display these fonts at all. Some others do, but use a wrong character spacing, etc.74 Not all PDF reader software (including internet browsers and o�ce software) display all of these fonts. And if they do, thedi�erence between the serifed and the non-serifed version may hardly be noticable. But serifed and non-serifed versions lead todi�erent installed base fonts, thus providing an option to be displayable with your specific PDF viewer.

126 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Changed in version 1.14.11: By default, the image keeps its aspect ratio.
Parameters

• rect (rect_like) – where to put the image on the page. Only the rectangle partwhich is inside the page is used. This intersection must be finite and not empty.
Changed in version 1.14.13: The image is now always placed centered in therectangle, i.e. the center of the image and the rectangle coincide.

• filename (str) – name of an image file (all formats supported by MuPDF – see
Supported Input Image Formats). If the same image is to be inserted multipletimes, choose one of the other two options to avoid some overhead.

• stream (bytes , bytearray , io.BytesIO) – image in memory (all formats sup-ported byMuPDF – see Supported Input Image Formats). This is themost e�cientoption.
Changed in version 1.14.13: io.BytesIO is now also supported.

• pixmap (Pixmap) – a pixmap containing the image.
• rotate (int) – New in version v1.14.11: rotate the image. Must be an integermultiple of 90 degrees. If you need a rotation by an arbitrary angle, considerconverting the image to a PDF (Document.convertToPDF()) first and then use
Page.showPDFpage() instead.

• keep_proportion (bool) – New in version v1.14.11: maintain the aspect ratio ofthe image.
For a description of overlay see Common Parameters.
This example puts the same image on every page of a document:
>>> doc = fitz.open(...)
>>> rect = fitz.Rect(0, 0, 50, 50) # put thumbnail in upper left corner
>>> img = open("some.jpg", "rb").read() # an image file
>>> for page in doc:

page.insertImage(rect, stream = img)
>>> doc.save(...)

Note:

1. If that same image had already been present in the PDF, then only a reference to it will beinserted. This of course considerably saves disk space and processing time. But to detectthis fact, existing PDF images need to be compared with the new one. This is achieved bystoring an MD5 code for each image in a table and only compare the new image’s MD5 codeagainst the table entries. Generating this MD5 table, however, is done when the first imageis inserted - which therefore may have an extended response time.
2. You can use this method to provide a background or foreground image for the page, like acopyright, a watermark. Please remember, that watermarks require a transparent image . . .
3. The image may be inserted uncompressed, e.g. if a Pixmap is used or if the image has analpha channel. Therefore, consider using deflate=True when saving the file.
4. The image is stored in the PDF in its original quality. This may be much better than youever need for your display. In this case consider decreasing the image size before insertingit – e.g. by using the pixmap option and then shrinking it or scaling it down (see Pixmapchapter). The file size savings can be very significant.

5.11. Page 127

PyMuPDF Documentation, Release 1.16.7

5. The most e�cient way to display the same image on multiple pages is another method:
showPDFpage() . Consult Document.convertToPDF() for how to obtain intermediary PDFsusable for that method. Demo script fitz-logo.py69 implements a fairly complete approach.

getText(opt="text", flags=None)Retrieves the content of a page in a variety of formats. This is a wrapper for TextPage methodsby choosing the output option as follows:
• “text” – TextPage.extractTEXT() , default
• “blocks” – TextPage.extractBLOCKS()

• “words” – TextPage.extractWORDS()

• “html” – TextPage.extractHTML()

• “xhtml” – TextPage.extractXHTML()

• “xml” – TextPage.extractXML()

• “dict” – TextPage.extractDICT()

• “json” – TextPage.extractJSON()

• “rawdict” – TextPage.extractRAWDICT()

Parameters

• opt (str) – A string indicating the requested format, one of the above. A mixtureof upper and lower case is supported.
Changed in version 1.16.3: Values “words” and “blocks” are now also accepted.

• flags (int) – New in version 1.16.2: indicator bits to control whether to includeimages or how text should be handled with respect to (white) spaces and liga-tures. See Preserve Text Flags for available indicators and Text Extraction Flags
Defaults for default settings.

Return type str, list, dict

Returns The page’s content as a string, list or as a dictionary. Refer to the correspond-ing TextPage method for details.

Note: You can use this method as a document conversion tool from any supported documenttype (not only PDF!) to one of TEXT, HTML, XHTML or XML documents.
getTextPage(flags=3)New in version 1.16.5: Create a TextPage for the page. Thismethod avoids using an intermediate

DisplayList.
Parameters flags (in) – indicator bits controlling the content available for subse-quent extraction – see the parameter of Page.getText() .
Returns TextPage

getFontList(full=False)PDF only: Return a list of fonts referenced by the page. Wrapper for Document.
getPageFontList() .

69 https://github.com/pymupdf/PyMuPDF/blob/master/demo/fitz-logo.py

128 Chapter 5. Classes

https://github.com/pymupdf/PyMuPDF/blob/master/demo/fitz-logo.py

PyMuPDF Documentation, Release 1.16.7

getImageList(full=False)PDF only: Return a list of images referenced by the page. Wrapper for Document.
getPageImageList() .

getImageBbox(item)

Parameters item (list) – an item of the list Page.getImageList() with full=Truespecified.
Return type Rect

Returns the boundary box of the image. .. versionchanged:: 1.16.7 If the page infact does not display this image, an infinite rectangle is returned now. In previousversions, an exception was raised.
Warning: The method internally cleans the page’s /Contents object(s) using Page.
_cleanContents() . Please consult its description for implications.

Note:

• Be aware that Page.getImageList() may contain “dead” entries, i.e. there may be imagereferences which – although present in the PDF – are not displayed by this page. In thiscase an exception is raised.
• This function is still somewhat experimental: it does not yet cover all possibilities of how animage location might have been coded, but instead makes some simplifying assumptions.As a result you occasionally may find the bbox incorrectly calculated. In contrast, imageblocks returned by Page.getText() (“dict” or “rawdict” options) do contain a correct bboxon the one hand, but on the other hand do not allow an (easy) identification of the imageas a PDF object. There are however ways tomatch these information pieces – please consultthe recipes chapter.

getSVGimage(matrix=fitz.Identity)

Create an SVG image from the page. Only full page images are currently supported.
Parameters matrix (matrix_like) – a matrix, default is Identity.
Returns a UTF-8 encoded string that contains the image. Because SVG has XML syntaxit can be saved in a text file with extension .svg.

getPixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, clip=None, alpha=False, annots=True)Create a pixmap from the page. This is probably the most often used method to create a pixmap.
Parameters

• matrix (matrix_like) – default is Identity.
• colorspace (str or Colorspace) – Defines the required colorspace, one of “GRAY”,“RGB” or “CMYK” (case insensitive). Or specify a Colorspace, ie. one of the pre-defined ones: csGRAY , csRGB or csCMYK .
• clip (irect_like) – restrict rendering to this area.
• alpha (bool) – whether to add an alpha channel. Always accept the default Falseif you do not really need transparency. This will save a lot of memory (25% incase of RGB . . . and pixmaps are typically large!), and also processing time. Also

5.11. Page 129

PyMuPDF Documentation, Release 1.16.7

note an important di�erence in how the image will be rendered: with True thepixmap’s samples area will be pre-cleared with 0x00. This results in transparentareas where the page is empty. With False the pixmap’s samples will be pre-cleared with 0xff. This results in white where the page has nothing to show.
Changed in version 1.14.17: The default alpha value is now False.
– Generated with alpha=True

– Generated with alpha=False

• annots (bool) – New in version 1.16.0: whether to also render any annotationson the page. You can create pixmaps for each annotation separately.
Return type Pixmap

Returns Pixmap of the page.
loadLinks()Return the first link on a page. Synonym of property firstLink .

Return type Link

Returns first link on the page (or None).
setRotation(rotate)PDF only: Sets the rotation of the page.

Parameters rotate (int) – An integer specifying the required rotation in degrees.Must be an integer multiple of 90.
showPDFpage(rect, docsrc, pno=0, keep_proportion=True, overlay=True, rotate=0, clip=None)PDF only: Display a page of another PDF as a vector image (otherwise similar to Page.

insertImage()). This is a multi-purpose method. For example, you can use it to

130 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

• create “n-up” versions of existing PDF files, combining several input pages into one output
page (see example 4-up.py70),

• create “posterized” PDF files, i.e. every input page is split up in parts which each create aseparate output page (see posterize.py71),
• include PDF-based vector images like company logos, watermarks, etc., see svg-logo.py72,which puts an SVG-based logo on each page (requires additional packages to deal withSVG-to-PDF conversions).

Changed in version 1.14.11: Parameter reuse_xref has been deprecated.
Parameters

• rect (rect_like) – where to place the image on current page. Must be finite andits intersection with the page must not be empty.
Changed in version 1.14.11: Position the source rectangle centered in this rect-angle.

• docsrc (Document) – source PDF document containing the page. Must be a dif-ferent document object, but may be the same file.
• pno (int) – page number (0-based, in 𝑟𝑎𝑛𝑔𝑒(−∞, 𝑑𝑜𝑐𝑠𝑟𝑐.𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡)) to beshown.
• keep_proportion (bool) – whether to maintain the width-height-ratio (default).If false, all 4 corners are always positioned on the border of the target rectangle– whatever the rotation value. In general, this will deliver distorted and /or non-rectangular images.
• overlay (bool) – put image in foreground (default) or background.
• rotate (float) – New in version 1.14.10: show the source rectangle rotated bysome angle.
Changed in version 1.14.11: Any angle is now supported.

• clip (rect_like) – choose which part of the source page to show. Default is thefull page, else must be finite and its intersection with the source page must notbe empty.
Note: In contrast to method Document.insertPDF() , this method does not copy annotationsor links, so they are not shown. But all its other resources (text, images, fonts, etc.) will be im-ported into the current PDF. They will therefore appear in text extractions and in getFontList()and getImageList() lists – even if they are not contained in the visible area given by clip.
Example: Show the same source page, rotated by 90 and by -90 degrees:
>>> doc = fitz.open() # new empty PDF
>>> page=doc.newPage() # new page in A4 format
>>>
>>> # upper half page
>>> r1 = fitz.Rect(0, 0, page.rect.width, page.rect.height/2)
>>>
>>> # lower half page

(continues on next page)
70 https://github.com/pymupdf/PyMuPDF/blob/master/examples/4-up.py71 https://github.com/pymupdf/PyMuPDF/blob/master/examples/posterize.py72 https://github.com/pymupdf/PyMuPDF/blob/master/examples/svg-logo.py

5.11. Page 131

https://github.com/pymupdf/PyMuPDF/blob/master/examples/4-up.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/posterize.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/svg-logo.py

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
>>> r2 = r1 + (0, page.rect.height/2, 0, page.rect.height/2)
>>>
>>> src = fitz.open("PyMuPDF.pdf") # show page 0 of this
>>>
>>> page.showPDFpage(r1, src, 0, rotate=90)
>>> page.showPDFpage(r2, src, 0, rotate=-90)
>>> doc.save("show.pdf")

newShape()PDF only: Create a new Shape object for the page.
Return type Shape

Returns a new Shape to use for compound drawings. See description there.
searchFor(text, hit_max=16, quads=False, flags=None)Searches for text on a page. Wrapper for TextPage.search() .

Parameters

• text (str) – Text to search for. Upper / lower case is ignored. The string maycontain spaces.
• hit_max (int) – Maximum number of occurrences accepted.
• quads (bool) – Return Quad instead of Rect objects.
• flags (int) – Control the data extracted by the underlying TextPage. Default is 0(ligatures are dissolved, white space is replaced with space and excessive spacesare not suppressed).

Return type list

132 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Returns

A list of Rect s (resp. Quad s) each of which – normally! – surrounds one occurrenceof text. However: if the search string spreads across more than one line, then aseparate item is recorded in the list for each part of the string per line. So, if youare looking for “search string” and the two words happen to be located on separatelines, two entries will be recorded in the list: one for “search” and one for “string”.
Note: In this way, the e�ect supports multi-line text marker annotations.

setCropBox(r)PDF only: change the visible part of the page.
Parameters r (rect_like) – the new visible area of the page.

After execution, Page.rect will equal this rectangle, shifted to the top-left position (0, 0). Ex-ample session:
>>> page = doc.newPage()
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> page.CropBox # CropBox and MediaBox still equal
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> # now set CropBox to a part of the page
>>> page.setCropBox(fitz.Rect(100, 100, 400, 400))
>>> # this will also change the "rect" property:
>>> page.rect
fitz.Rect(0.0, 0.0, 300.0, 300.0)
>>>
>>> # but MediaBox remains unaffected
>>> page.MediaBox
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> # revert everything we did
>>> page.setCropBox(page.MediaBox)
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)

rotationPDF only: contains the rotation of the page in degrees and -1 for other document types.
Type int

CropBoxPositionContains the displacement of the page’s /CropBox for a PDF, otherwise the top-left coordinatesof Page.rect .
Type Point

CropBoxThe page’s /CropBox for a PDF, else Page.rect .
Type Rect

MediaBoxSizeContains the width and height of the page’s /MediaBox for a PDF, otherwise the bottom-rightcoordinates of Page.rect .

5.11. Page 133

PyMuPDF Documentation, Release 1.16.7

Type Point

MediaBoxThe page’s /MediaBox for a PDF, otherwise Page.rect .
Type Rect

Note: For most PDF documents and for all other types, page.rect == page.CropBox == page.
MediaBox is true. However, for some PDFs the visible page is a true subset of /MediaBox. In thiscase the above attributes help to correctly locate page elements.

firstLinkContains the first Link of a page (or None).
Type Link

firstAnnotContains the first Annot of a page (or None).
Type Annot

firstWidgetContains the first Widget of a page (or None).
Type Widget

numberThe page number.
Type int

parentThe owning document object.
Type Document

rectContains the rectangle of the page. Same as result of Page.bound() .
Type Rect

xrefThe page’s PDF xref . Zero if not a PDF.
Type Rect

5.11.2 Description of getLinks() Entries

Each entry of the getLinks() list is a dictionay with the following keys:
• kind: (required) an integer indicating the kind of link. This is one of LINK_NONE, LINK_GOTO,
LINK_GOTOR, LINK_LAUNCH, or LINK_URI. For values and meaning of these names refer to Link Desti-
nation Kinds.

• from: (required) a Rect describing the “hot spot” location on the page’s visible representation (wherethe cursor changes to a hand image, usually).
• page: a 0-based integer indicating the destination page. Required for LINK_GOTO and LINK_GOTOR,else ignored.

134 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

• to: either a fitz.Point, specifying the destination location on the provided page, default is fitz.
Point(0, 0), or a symbolic (indirect) name. If an indirect name is specified, page = -1 is requiredand the name must be defined in the PDF in order for this to work. Required for LINK_GOTO and
LINK_GOTOR, else ignored.

• file: a string specifying the destination file. Required for LINK_GOTOR and LINK_LAUNCH, else ignored.
• uri: a string specifying the destination internet resource. Required for LINK_URI, else ignored.
• xref: an integer specifying the PDF xref of the link object. Do not change this entry in any way. Re-quired for link deletion and update, otherwise ignored. For non-PDF documents, this entry contains
-1. It is also -1 for all entries in the getLinks() list, if any of the links is not supported by MuPDF -see the note below.

5.11.3 Notes on Supporting Links

MuPDF’s support for links has changed in v1.10a. These changes a�ect link types LINK_GOTO and
LINK_GOTOR .
5.11.3.1 Reading (pertains to method getLinks() and the firstLink property chain)

If MuPDF detects a link to another file, it will supply either a LINK_GOTOR or a LINK_LAUNCH link kind. Incase of LINK_GOTOR destination details may either be given as page number (eventually including positioninformation), or as an indirect destination.
If an indirect destination is given, then this is indicated by page = -1, and link.dest.dest will containthis name. The dictionaries in the getLinks() list will contain this information as the to value.
Internal links are always of kind LINK_GOTO. If an internal link specifies an indirect destination, it will
always be resolved and the resulting direct destination will be returned. Names are never returned for
internal links, and undefined destinations will cause the link to be ignored.
5.11.3.2 Writing

PyMuPDF writes (updates, inserts) links by constructing and writing the appropriate PDF object source.This makes it possible to specify indirect destinations for LINK_GOTOR and LINK_GOTO link kinds (pre PDF
1.2 file formats are not supported).
Warning: If a LINK_GOTO indirect destination specifies an undefined name, this link can later on not befound / read again with MuPDF / PyMuPDF. Other readers howeverwill detect it, but flag it as erroneous.

Indirect LINK_GOTOR destinations can in general of course not be checked for validity and are therefore
always accepted.

5.11.4 Homologous Methods of Document and Page

This is an overview of homologous methods on the Document and on the Page level.

5.11. Page 135

PyMuPDF Documentation, Release 1.16.7

Document Level Page Level
Document.getPageFontlist(pno) Page.getFontList()
Document.getPageImageList(pno) Page.getImageList()
Document.getPagePixmap(pno, ...) Page.getPixmap()
Document.getPageText(pno, ...) Page.getText()
Document.searchPageFor(pno, ...) Page.searchFor()

The page number pno is a 0-based integer −∞ < 𝑝𝑛𝑜 < 𝑝𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡.
Note: Most document methods (left column) exist for convenience reasons, and are just wrappers for:
Document[pno].<page method>. So they load and discard the page on each execution.
However, the first two methods work di�erently. They only need a page’s object definition statement - thepage itself will not be loaded. So e.g. Page.getFontList() is a wrapper the other way round and definedas follows: page.getFontList == page.parent.getPageFontList(page.number).

5.12 Pixmap

Pixmaps (“pixel maps”) are objects at the heart of MuPDF’s rendering capabilities. They represent planerectangular sets of pixels. Each pixel is described by a number of bytes (“components”) defining its color,plus an optional alpha byte defining its transparency.
In PyMuPDF, there exist several ways to create a pixmap. Except the first one, all of them are available asoverloaded constructors. A pixmap can be created . . .

1. from a document page (method Page.getPixmap())
2. empty, based on Colorspace and IRect information
3. from a file
4. from an in-memory image
5. from a memory area of plain pixels
6. from an image inside a PDF document
7. as a copy of another pixmap

Note: A number of image formats is supported as input for points 3. and 4. above. See section Supported
Input Image Formats.
Have a look at the Collection of Recipes section to see some pixmap usage “at work”.

136 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Method / Attribute Short Description
Pixmap.clearWith() clear parts of a pixmap
Pixmap.copyPixmap() copy parts of another pixmap
Pixmap.gammaWith() apply a gamma factor to the pixmap
Pixmap.getImageData() return a memory area in a variety of formats
Pixmap.getPNGData() return a PNG as a memory area
Pixmap.invertIRect() invert the pixels of a given area
Pixmap.pixel() return the value of a pixel
Pixmap.setPixel() set the color of a pixel
Pixmap.setRect() set the color of a rectangle
Pixmap.setAlpha() set alpha values
Pixmap.shrink() reduce size keeping proportions
Pixmap.tintWith() tint a pixmap with a color
Pixmap.writeImage() save a pixmap in a variety of formats
Pixmap.writePNG() save a pixmap as a PNG file
Pixmap.alpha transparency indicator
Pixmap.colorspace pixmap’s Colorspace
Pixmap.height pixmap height
Pixmap.interpolate interpolation method indicator
Pixmap.irect IRect of the pixmap
Pixmap.n bytes per pixel
Pixmap.samples pixel area
Pixmap.size pixmap’s total length
Pixmap.stride size of one image row
Pixmap.width pixmap width
Pixmap.x X-coordinate of top-left corner
Pixmap.xres resolution in X-direction
Pixmap.y Y-coordinate of top-left corner
Pixmap.yres resolution in Y-direction

Class API

class Pixmap

__init__(self, colorspace, irect, alpha)
New empty pixmap: Create an empty pixmap of size and origin given by the rectangle. So,
irect.top_left designates the top left corner of the pixmap, and its width and height are
irect.width resp. irect.height. Note that the image area is not initialized and will containcrap data – use eg. clearWith() or setRect() to be sure.

Parameters

• colorspace (Colorspace) – colorspace.
• irect (irect_like) – Tte pixmap’s position and dimension.
• alpha (bool) – Specifies whether transparency bytes should be included. Defaultis False.

__init__(self, colorspace, source)
Copy and set colorspace: Copy source pixmap converting colorspace. Any colorspace combi-nation is possible, but source colorspace must not be None.

Parameters

5.12. Pixmap 137

PyMuPDF Documentation, Release 1.16.7

• colorspace (Colorspace) – desired target colorspace. Thismay also be None. Inthis case, a “masking” pixmap is created: its Pixmap.samples will consist of thesource’s alpha bytes only.
• source (Pixmap) – the source pixmap.

__init__(self, source, width, height[, clip])
Copy and scale: Copy source pixmap choosing new width and height values. Supports partialcopying and the source colorspace may be also None.

Parameters

• source (Pixmap) – the source pixmap.
• width (float) – desired target width.
• height (float) – desired target height.
• clip (irect_like) – a region of the source pixmap to take the copy from.

Note: If width or height are not de facto integers (meaning e.g. round(width) != width), thenpixmap will be created with alpha = 1.
__init__(self, source, alpha = 1)

Copy and add or drop alpha: Copy source and add or drop its alpha channel. Identical copy if
alpha equals source.alpha. If an alpha channel is added, its values will be set to 255.

Parameters

• source (Pixmap) – source pixmap.
• alpha (bool) – whether the target will have an alpha channel, default andmanda-tory if source colorspace is None.

Note: A typical use includes separation of color and transparency bytes in separate pixmaps.Some applications require this like e.g. wx.Bitmap.FromBufferAndAlpha() of wxPython:
>>> # 'pix' is an RGBA pixmap
>>> pixcolors = fitz.Pixmap(pix, 0) # extract the RGB part (drop alpha)
>>> pixalpha = fitz.Pixmap(None, pix) # extract the alpha part
>>> bm = wx.Bitmap.FromBufferAndAlpha(pix.widht, pix.height, pixcolors.samples, pixalpha.
→˓samples)

__init__(self, filename)
From a file: Create a pixmap from filename. All properties are inferred from the input. Theorigin of the resulting pixmap is (0, 0).

Parameters filename (str) – Path of the image file.
__init__(self, stream)

Frommemory: Create a pixmap from a memory area. All properties are inferred from the input.The origin of the resulting pixmap is (0, 0).
Parameters stream (bytes , bytearray , BytesIO) – Data containing a complete, validimage. Could have been created by e.g. stream = bytearray(open('image.

file', 'rb').read()). Type bytes is supported in Python 3 only, because bytes
== str in Python 2 and the method will interpret the stream as a filename.
Changed in version 1.14.13: io.BytesIO is now also supported.

138 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

__init__(self, colorspace, width, height, samples, alpha)
From plain pixels: Create a pixmap from samples. Each pixel must be represented by a numberof bytes as controlled by the colorspace and alpha parameters. The origin of the resultingpixmap is (0, 0). This method is useful when raw image data are provided by some otherprogram – see Collection of Recipes.

Parameters

• colorspace (Colorspace) – Colorspace of image.
• width (int) – image width
• height (int) – image height
• samples (bytes , bytearray , BytesIO) – an area containing all pixels of the im-age. Must include alpha values if specified.
Changed in version 1.14.13: (1) io.BytesIO can now also be used. (2) Data arenow copied to the pixmap, so may safely be deleted or become unavailable.

• alpha (bool) – whether a transparency channel is included.
Note:

1. The following equation must be true: (colorspace.n + alpha) * width * height ==
len(samples).

2. Starting with version 1.14.13, the samples data are copied to the pixmap.
__init__(self, doc, xref)

From a PDF image: Create a pixmap from an image contained in PDF doc identified by its
xref . All pimap properties are set by the image. Have a look at extract-img1.py77 and extract-img2.py78 to see how this can be used to recover all of a PDF’s images.

Parameters

• doc (Document) – an opened PDF document.
• xref (int) – the xref of an image object. For example, you can make a list ofimages used on a particular page with Document.getPageImageList() , whichalso shows the xref numbers of each image.

clearWith([value[, irect]])Initialize the samples area.
Parameters

• value (int) – if specified, values from 0 to 255 are valid. Each color byte of eachpixel will be set to this value, while alpha will be set to 255 (non-transparent) ifpresent. If omitted, then all bytes (including any alpha) are cleared to 0x00.
• irect (irect_like) – the area to be cleared. Omit to clear the whole pixmap.Can only be specified, if value is also specified.

tintWith(red, green, blue)Colorize (tint) a pixmap with a color provided as an integer triple (red, green, blue). Only col-orspaces CS_GRAY and CS_RGB are supported, others are ignored with a warning.
If the colorspace is CS_GRAY , (red + green + blue)/3 will be taken as the tint value.

77 https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img1.py78 https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img2.py

5.12. Pixmap 139

https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img1.py
https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img2.py
https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img2.py

PyMuPDF Documentation, Release 1.16.7

Parameters

• red (int) – red component.
• green (int) – green component.
• blue (int) – blue component.

gammaWith(gamma)Apply a gamma factor to a pixmap, i.e. lighten or darken it. Pixmaps with colorspace None areignored with a warning.
Parameters gamma (float) – gamma = 1.0 does nothing, gamma < 1.0 lightens, gamma

> 1.0 darkens the image.
shrink(n)Shrink the pixmap by dividing both, its width and height by 2n.

Parameters n (int) – determines the new pixmap (samples) size. For example, a valueof 2 divides width and height by 4 and thus results in a size of one 16th of theoriginal. Values less than 1 are ignored with a warning.
Note: Use this methods to reduce a pixmap’s size retaining its proportion. The pixmap ischanged “in place”. If you want to keep original and also have more granular choices, use theresp. copy constructor above.

pixel(x, y)New in version 1.14.5: Return the value of the pixel at location (x, y) (column, line).
Parameters

• x (int) – the column number of the pixel. Must be in range(pix.width).
• y (int) – the line number of the pixel, Must be in range(pix.height).

Return type list
Returns a list of color values and, potentially the alpha value. Its length and con-tent depend on the pixmap’s colorspace and the presence of an alpha. ForRGBA pixmaps the result would e.g. be [r, g, b, a]. All items are integers in

range(256).
setPixel(x, y, color)New in version 1.14.7: Set the color of the pixel at location (x, y) (column, line).

Parameters

• x (int) – the column number of the pixel. Must be in range(pix.width).
• y (int) – the line number of the pixel. Must be in range(pix.height).
• color (sequence) – the desired color given as a sequence of integers in
range(256). The length of the sequence must equal Pixmap.n , which includesany alpha byte.

setRect(irect, color)New in version 1.14.8: Set the pixels of a rectangle to a color.
Parameters

• irect (irect_like) – the rectangle to be filled with the color. The actual area isthe intersection of this parameter and Pixmap.irect . For an empty intersection(or an invalid parameter), no change will happen.

140 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

• color (sequence) – the desired color given as a sequence of integers in
range(256). The length of the sequence must equal Pixmap.n , which includesany alpha byte.

Return type bool
Returns False if the rectangle was invalid or had an empty intersection with Pixmap.

irect , else True.
Note:

1. This method is equivalent to Pixmap.setPixel() executed for each pixel in the rectangle,but is obviously very much faster if many pixels are involved.
2. This method can be used similar to Pixmap.clearWith() to initialize a pixmap with a cer-tain color like this: pix.setRect(pix.irect, (255, 255, 0)) (RGB example, colors thecomplete pixmap with yellow).

setAlpha([alphavalues])Change the alpha values. The pixmap must have an alpha channel.
Parameters alphavalues (bytes , bytearray , BytesIO) – the new alpha values. Ifprovided, its length must be at least width * height. If omitted, all alpha valuesare set to 255 (no transparency).

Changed in version 1.14.13: io.BytesIO is now also supported.
invertIRect([irect])Invert the color of all pixels in IRect irect. Will have no e�ect if colorspace is None.

Parameters irect (irect_like) – The area to be inverted. Omit to invert everything.
copyPixmap(source, irect)Copy the irect part of the source pixmap into the corresponding area of this one. The twopixmaps may have di�erent dimensions and can each have CS_GRAY or CS_RGB colorspaces,but they currently must have the same alpha property84. The copy mechanism automaticallyadjusts discrepancies between source and target like so:

If copying from CS_GRAY to CS_RGB , the source gray-shade value will be put into each of thethree rgb component bytes. If the other way round, (r + g + b) / 3 will be taken as the gray-shade value of the target.
Between irect and the target pixmap’s rectangle, an “intersection” is calculated at first. Thistakes into account the rectangle coordinates and the current attribute values source.x and
source.y (which you are free to modify for this purpose). Then the corresponding data of thisintersection are copied. If the intersection is empty, nothing will happen.

Parameters

• source (Pixmap) – source pixmap.
• irect (irect_like) – The area to be copied.

writeImage(filename, output=None)Save pixmap as an image file. Depending on the output chosen, only some or all colorspacesare supported and di�erent file extensions can be chosen. Please see the table below. SinceMuPDF v1.10a the savealpha option is no longer supported and will be silently ignored.
Parameters

84 To also set the alpha property, add an additional step to this method by dropping or adding an alpha channel to the result.

5.12. Pixmap 141

PyMuPDF Documentation, Release 1.16.7

• filename (str) – The filename to save to. The filename’s extension determinesthe image format, if not overriden by the output parameter.
• output (str) – The requested image format. The default is the filename’s exten-sion. If not recognized, png is assumed. For other possible values see Supported
Output Image Formats.

writePNG(filename)Equal to pix.writeImage(filename, "png").
getImageData(output="png")New in version 1.14.5: Return the pixmap as a bytes memory object of the specified format –similar to writeImage() .

Parameters output (str) – The requested image format. The default is “png” for whichthis function equals getPNGData() . For other possible values see Supported Output
Image Formats.

Return type bytes
getPNGdata()

getPNGData()Equal to pix.getImageData("png").
Return type bytes

alphaIndicates whether the pixmap contains transparency information.
Type bool

colorspaceThe colorspace of the pixmap. This value may be None if the image is to be treated as a so-called
image mask or stencil mask (currently happens for extracted PDF document images only).

Type Colorspace

strideContains the length of one row of image data in Pixmap.samples . This is primarily used forcalculation purposes. The following expressions are true:
• len(samples) == height * stride

• width * n == stride.
Type int

irectContains the IRect of the pixmap.
Type IRect

samplesThe color and (if Pixmap.alpha is true) transparency values for all pixels. It is an area of width
* height * n bytes. Each n bytes define one pixel. Each successive n bytes yield another pixelin scanline order. Subsequent scanlines follow each other with no padding. E.g. for an RGBAcolorspace this means, samples is a sequence of bytes like ..., R, G, B, A, ..., and the fourbyte values R, G, B, A define one pixel.
This area can be passed to other graphics libraries like PIL (Python Imaging Library) to doadditional processing like saving the pixmap in other image formats.

142 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Note:

• The underlying data is a typically large memory area from which a bytes copy is made forthis attribute: for example an RGB-rendered letter page has a samples size of almost 1.4MB. So consider assigning a new variable if you repeatedly use it.
• Any changes to the underlying data are available only after again accessing this attribute.

Type bytes
sizeContains len(pixmap). This will generally equal len(pix.samples) plus some platform-specificvalue for defining other attributes of the object.

Type int
width

w Width of the region in pixels.
Type int

height

h Height of the region in pixels.
Type int

x X-coordinate of top-left corner
Type int

y Y-coordinate of top-left corner
Type int

n Number of components per pixel. This number depends on colorspace and alpha. If colorspaceis not None (stencil masks), then Pixmap.n - Pixmap.aslpha == pixmap.colorspace.n is true.If colorspace is None, then n == alpha == 1.
Type int

xresHorizontal resolution in dpi (dots per inch).
Type int

yresVertical resolution in dpi.
Type int

interpolateAn information-only boolean flag set to True if the image will be drawn using “linear interpola-tion”. If False “nearest neighbour sampling” will be used.
Type bool

5.12. Pixmap 143

PyMuPDF Documentation, Release 1.16.7

5.12.1 Supported Input Image Formats

The following file types are supported as input to construct pixmaps: BMP, JPEG, GIF, TIFF, JXR, JPX, PNG,
PAM and all of the Portable Anymap family (PBM, PGM, PNM, PPM). This support is two-fold:

1. Directly create a pixmap with Pixmap(filename) or Pixmap(byterray). The pixmap will then haveproperties as determined by the image.
2. Open such files with fitz.open(...). The result will then appear as a document containing onesingle page. Creating a pixmap of this page o�ers all the options available in this context: apply amatrix, choose colorspace and alpha, confine the pixmap to a clip area, etc.

SVG images are only supported via method 2 above, not directly as pixmaps. But remember: the result ofthis is a raster image as is always the case with pixmaps79.

5.12.2 Supported Output Image Formats

A number of image output formats are supported. You have the option to either write an image directlyto a file (Pixmap.writeImage()), or to generate a bytes object (Pixmap.getImageData()). Both methodsaccept a 3-letter string identifying the desired format (Format column below). Please note that not allcombinations of pixmap colorspace, transparency support (alpha) and image format are possible.
Format Colorspaces alpha Extensions Descriptionpam gray, rgb, cmyk yes .pam Portable Arbitrary Mappbm gray, rgb no .pbm Portable Bitmappgm gray, rgb no .pgm Portable Graymappng gray, rgb yes .png Portable Network Graphicspnm gray, rgb no .pnm Portable Anymapppm gray, rgb no .ppm Portable Pixmapps gray, rgb, cmyk no .ps Adobe PostScript Imagepsd gray, rgb, cmyk yes .psd Adobe Photoshop Document

Note:

• Not all image file types are supported (or at least common) on all OS platforms. E.g. PAM and thePortable Anymap formats are rare or even unknown on Windows.
• Especially pertaining to CMYK colorspaces, you can always convert a CMYK pixmap to an RGB pixmapwith rgb_pix = fitz.Pixmap(fitz.csRGB, cmyk_pix) and then save that in the desired format.
• As can be seen, MuPDF’s image support range is di�erent for input and output. Among those sup-ported both ways, PNG is probably the most popular. We recommend using Pillow whenever you facea support gap.
• We also recommend using “ppm” formats as input to tkinter’s PhotoImagemethod like this: tkimg =
tkinter.PhotoImage(data=pix.getImageData("ppm")) (also see the tutorial). This is very fast (60
times faster than PNG) and will work under Python 2 or 3.

79 If you need a vector image from the SVG, you must first convert it to a PDF. Try Document.convertToPDF() . If this is not notgood enough, look for other SVG-to-PDF conversion tools like the Python packages svglib80, CairoSVG81, Uniconvertor82 or the Javasolution Apache Batik83. Have a look at our Wiki for more examples.80 https://pypi.org/project/svglib81 https://pypi.org/project/cairosvg82 https://sk1project.net/modules.php?name=Products&product=uniconvertor&op=download83 https://github.com/apache/batik

144 Chapter 5. Classes

https://pypi.org/project/svglib
https://pypi.org/project/cairosvg
https://sk1project.net/modules.php?name=Products&product=uniconvertor&op=download
https://github.com/apache/batik

PyMuPDF Documentation, Release 1.16.7

5.13 Point

Point represents a point in the plane, defined by its x and y coordinates.
Attribute / Method Description
Point.distance_to() calculate distance to point or rect
Point.norm() the Euclidean norm
Point.transform() transform point with a matrix
Point.abs_unit same as unit, but positive coordinates
Point.unit point coordinates divided by abs(point)
Point.x the X-coordinate
Point.y the Y-coordinate

Class API

class Point

__init__(self)

__init__(self, x, y)
__init__(self, point)
__init__(self, sequence)

Overloaded constructors.
Without parameters, Point(0, 0) will be created.
With another point specified, a new copy will be crated, “sequence” is a Python se-quence of 2 numbers (see Using Python Sequences as Arguments in PyMuPDF).
Parameters

• x (float) – x coordinate of the point
• y (float) – y coordinate of the point

distance_to(x[, unit])
Calculate the distance to x, which may be point_like or rect_like . The distance isgiven in units of either pixels (default), inches, centimeters or millimeters.
Parameters

• x (point_like , rect_like) – to which to compute the distance.
• unit (str) – the unit to be measured in. One of “px”, “in”, “cm”, “mm”.

Return type float
Returns

the distance to x. If this is rect_like , then the distance
• is the length of the shortest line connecting to one of the rectangle sides
• is calculated to the finite version of it
• is zero if it contains the point

5.13. Point 145

PyMuPDF Documentation, Release 1.16.7

norm()New in version 1.16.0: Return the Euclidean norm (the length) of the point as a vector. Equalsresult of function abs().
transform(m)

Apply a matrix to the point and replace it with the result.
Parameters m (matrix_like) – The matrix to be applied.
Return type Point

unitResult of dividing each coordinate by norm(point), the distance of the point to (0,0). This isa vector of length 1 pointing in the same direction as the point does. Its x, resp. y values areequal to the cosine, resp. sine of the angle this vector (and the point itself) has with the x axis.

Type Point

abs_unitSame as unit above, replacing the coordinates with their absolute values.
Type Point

x The x coordinate
Type float

y The y coordinate
Type float

Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index,too. Also refer to Using Python Sequences as Arguments in PyMuPDF.
• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Ob-
jects.

146 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

5.14 Quad

Represents a four-sided mathematical shape (also called “quadrilateral” or “tetragon”) in the plane, de-fined as a sequence of four Point objects ul, ur, ll, lr (conveniently called upper left, upper right, lower left,lower right).
Quads can beobtained as results of text searchmethods (Page.searchFor()), and they are used to definetext marker annotations (see e.g. Page.addSquigglyAnnot() and friends), and in several draw methods(like Page.drawQuad() / Shape.drawQuad() , Page.drawOval() / :meth‘Shape.drawQuad‘).
Note:

• If the corners of a rectangle are transformed with a rotation, scale or translation Matrix, then theresulting quad is rectangular, i.e. its corners again enclose angles of 90 degrees. Property Quad.
isRectangular checks whether a quad can be thought of being the result of such an operation. Thisis not true for all matrices: e.g. shear matrices produce parallelograms, and non-invertible matricesdeliver “degenerate” tetragons like triangles or lines.

• Attribute Quad.rect obtains the envelopping rectangle. Vice versa, rectangles now have attributes
Rect.quad , resp. IRect.quad to obtain their respective tetragon versions.

Methods / Attributes Short Description
Quad.transform() transform with a matrix
Quad.ul upper left point
Quad.ur upper right point
Quad.ll lower left point
Quad.lr lower right point
Quad.isConvex true if quad is a convex set
Quad.isEmpty true if quad is an empty set
Quad.isRectangular true if quad is a (rotated) rectangle
Quad.rect smallest containing Rect
Quad.width the longest width value
Quad.height the longest height value

Class API

class Quad

__init__(self)

__init__(self, ul, ur, ll, lr)
__init__(self, quad)
__init__(self, sequence)Overloaded constructors: “ul”, “ur”, “ll”, “lr” stand for point_like objects (the four corners),“sequence” is a Python sequence with four point_like objects.

If “quad” is specified, the constructor creates a new copy of it.
Without parameters, a quad consisting of 4 copies of Point(0, 0) is created.

5.14. Quad 147

PyMuPDF Documentation, Release 1.16.7

transform(matrix)Modify the quadrilateral by transforming each of its corners with a matrix.
Parameters matrix (matrix_like) – the matrix.

rectThe smallest rectangle containing the quad, represented by the blue area in the following pic-ture.

Type Rect

ul Upper left point.
Type Point

ur Upper right point.
Type Point

ll Lower left point.
Type Point

lr Lower right point.
Type Point

isConvexNew in version 1.16.1: True if all lines are contained in the quad which connect two points ofthe quad.
Type bool

isEmptyTrue if enclosed area is zero, whichmeans that all four points are on the same line. If this is false,the quad may still be degenerate or not look like a rectangle at all (triangles, parallelograms,trapezoids, . . .).

148 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Type bool
isRectangularTrue if all angles are 90 degrees. This also implies that the area is not empty and convex.

Type bool
widthThe maximum length of the top and the bottom side.

Type float
heightThe maximum length of the left and the right side.

Type float

5.14.1 Remark

This class adheres to the sequence protocol, so components can be dealt with via their indices, too. Alsorefer to Using Python Sequences as Arguments in PyMuPDF.
We are still in process to extend algebraic operations to quads. Multiplication and division with / by num-bers and matrices are already defined. Addition, subtraction and any unary operations may follow whenwe see an actual need.

5.15 Rect

Rect represents a rectangle defined by four floating point numbers x0, y0, x1, y1. They are treated asbeing coordinates of two diagonally opposite points. The first two numbers are regarded as the “top left”corner Px0,y0 and Px1,y1 as the “bottom right” one. However, these two properties need not coincide withtheir intuitive meanings – read on.
The following remarks are also valid for IRect objects:

• Rectangle borders are always parallel to the respective X- and Y-axes.
• The constructing points can be anywhere in the plane – they need not even be di�erent, and e.g.“top left” need not be the geometrical “north-western” point.
• For any given quadruple of numbers, the geometrically “same” rectangle can be defined in (up to)four di�erent ways: Rect(Px0,y0, Px1,y1), Rect(Px1,y1, Px0,y0), Rect(Px0,y1, Px1,y0), and Rect(Px1,y0, Px0,y1).

Hence some useful classification:
• A rectangle is called finite if x0 <= x1 and y0 <= y1 (i.e. the bottom right point is “south-eastern”to the top left one), otherwise infinite. Of the four alternatives above, only one is finite (disregardingdegenerate cases). Please take into account, that in MuPDF’s coordinate system the y-axis is orientedfrom top to bottom.
• A rectangle is called empty if x0 = x1 or y0 = y1, i.e. if its area is zero.

Note: It sounds like a paradox: a rectangle can be both, infinite and empty . . .

5.15. Rect 149

PyMuPDF Documentation, Release 1.16.7

Methods / Attributes Short Description
Rect.contains() checks containment of another object
Rect.getArea() calculate rectangle area
Rect.getRectArea() calculate rectangle area
Rect.includePoint() enlarge rectangle to also contain a point
Rect.includeRect() enlarge rectangle to also contain another one
Rect.intersect() common part with another rectangle
Rect.intersects() checks for non-empty intersections
Rect.norm() the Euclidean norm
Rect.normalize() makes a rectangle finite
Rect.round() create smallest IRect containing rectangle
Rect.transform() transform rectangle with a matrix
Rect.bottom_left bottom left point, synonym bl
Rect.bottom_right bottom right point, synonym br
Rect.height rectangle height
Rect.irect equals result of method round()
Rect.isEmpty whether rectangle is empty
Rect.isInfinite whether rectangle is infinite
Rect.top_left top left point, synonym tl
Rect.top_right top_right point, synonym tr
Rect.quad Quad made from rectangle corners
Rect.width rectangle width
Rect.x0 top left corner’s X-coordinate
Rect.x1 bottom right corner’s X-coordinate
Rect.y0 top left corner’s Y-coordinate
Rect.y1 bottom right corner’s Y-coordinate

Class API

class Rect

__init__(self)

__init__(self, x0, y0, x1, y1)
__init__(self, top_left, bottom_right)

__init__(self, top_left, x1, y1)
__init__(self, x0, y0, bottom_right)

__init__(self, rect)
__init__(self, sequence)Overloaded constructors: top_left, bottom_right stand for point_like objects, “sequence”is a Python sequence type of 4 numbers (see Using Python Sequences as Arguments in

PyMuPDF), “rect” means another rect_like , while the other parameters mean coordinates.
If “rect” is specified, the constructor creates a new copy of it.
Without parameters, the empty rectangle Rect(0.0, 0.0, 0.0, 0.0) is created.

round()Creates the smallest containing IRect, This is not the same as simply rounding the rectangle’sedges: The top left corner is rounded upwards and left while the bottom right corner is roundeddownwards and to the right.

150 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

>>> fitz.Rect(0.5, -0.01, 123.88, 455.123456).round()
IRect(0, -1, 124, 456)

1. If the rectangle is infinite, the “normalized” (finite) version of it will be taken. The result ofthis method is always a finite IRect.
2. If the rectangle is empty, the result is also empty.
3. Possible paradox: The result may be empty, even if the rectangle is not empty! In suchcases, the result obviously does not contain the rectangle. This is because MuPDF’s algo-rithm allows for a small tolerance (1e-3). Example:

>>> r = fitz.Rect(100, 100, 200, 100.001)
>>> r.isEmpty # rect is NOT empty
False
>>> r.round() # but its irect IS empty!
fitz.IRect(100, 100, 200, 100)
>>> r.round().isEmpty
True

Return type IRect

transform(m)Transforms the rectangle with a matrix and replaces the original. If the rectangle is empty orinfinite, this is a no-operation.
Parameters m (Matrix) – The matrix for the transformation.
Return type Rect

Returns the smallest rectangle that contains the transformed original.
intersect(r)The intersection (common rectangular area) of the current rectangle and r is calculated and

replaces the current rectangle. If either rectangle is empty, the result is also empty. If r isinfinite, this is a no-operation.
Parameters r (Rect) – Second rectangle

includeRect(r)The smallest rectangle containing the current one and r is calculated and replaces the currentone. If either rectangle is infinite, the result is also infinite. If one is empty, the other one willbe taken as the result.
Parameters r (Rect) – Second rectangle

includePoint(p)The smallest rectangle containing the current one and point p is calculated and replaces the
current one. Infinite rectangles remain unchanged. To create a rectangle containing a seriesof points, start with (the empty) fitz.Rect(p1, p1) and successively perform includePointoperations for the other points.

Parameters p (Point) – Point to include.
getRectArea([unit])
getArea([unit])Calculate the area of the rectangle and, with no parameter, equals abs(rect). Like an empty

5.15. Rect 151

PyMuPDF Documentation, Release 1.16.7

rectangle, the area of an infinite rectangle is also zero. So, at least one of fitz.Rect(p1, p2)and fitz.Rect(p2, p1) has a zero area.
Parameters unit (str) – Specify required unit: respective squares of px (pixels, de-fault), in (inches), cm (centimeters), or mm (millimeters).
Return type float

contains(x)Checks whether x is contained in the rectangle. It may be an IRect, Rect, Point or number. If
x is an empty rectangle, this is always true. If the rectangle is empty this is always False forall non-empty rectangles and for all points. If x is a number, it will be checked against the fourcomponents. x in rect and rect.contains(x) are equivalent.

Parameters x (IRect or Rect or Point or number) – the object to check.
Return type bool

intersects(r)Checks whether the rectangle and a rect_like “r” contain a common non-empty Rect. Thiswill always be False if either is infinite or empty.
Parameters r (rect_like) – the rectangle to check.
Return type bool

norm()New in version 1.16.0: Return the Euclidean norm of the rectangle treated as a vector of fournumbers.
normalize()

Replace the rectangle with its finite version. This is done by shu�ing the rectangle corners.After completion of this method, the bottom right corner will indeed be south-eastern to thetop left one.
irectEquals result of method round().
top_left

tl Equals Point(x0, y0).
Type Point

top_right

tr Equals Point(x1, y0).
Type Point

bottom_left

bl Equals Point(x0, y1).
Type Point

bottom_right

br Equals Point(x1, y1).
Type Point

152 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

quadThe quadrilateral Quad(rect.tl, rect.tr, rect.bl, rect.br).
Type Quad

widthWidth of the rectangle. Equals abs(x1 - x0).
Return type float

heightHeight of the rectangle. Equals abs(y1 - y0).
Return type float

x0 X-coordinate of the left corners.
Type float

y0 Y-coordinate of the top corners.
Type float

x1 X-coordinate of the right corners.
Type float

y1 Y-coordinate of the bottom corners.
Type float

isInfinite
True if rectangle is infinite, False otherwise.

Type bool
isEmpty

True if rectangle is empty, False otherwise.
Type bool

Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index,too. Also refer to Using Python Sequences as Arguments in PyMuPDF.
• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Ob-
jects.

5.16 Shape

This class allows creating interconnected graphical elements on a PDF page. Its methods have the samemeaning and name as the corresponding Page methods.
In fact, each Page draw method is just a convenience wrapper for (1) one shape draw method, (2) the
finish() method, and (3) the commit() method. For page text insertion, only the commit() method is

5.16. Shape 153

PyMuPDF Documentation, Release 1.16.7

invoked. If many draw and text operations are executed for a page, you should always consider using aShape object.
Several draw methods can be executed in a row and each one of them will contribute to one drawing. Oncethe drawing is complete, the finish() method must be invoked to apply color, dashing, width, morphingand other attributes.
Draw methods of this class (and insertTextbox()) are logging the area they are covering in a rectangle(Shape.rect). This property can for instance be used to set Page.CropBox .
Text insertions insertText() and insertTextbox() implicitely execute a “finish” and therefore only re-quire commit() to become e�ective. As a consequence, both include parameters for controlling prpertieslike colors, etc.

Method / Attribute Description
Shape.commit() update the page’s contents
Shape.drawBezier() draw a cubic Bezier curve
Shape.drawCircle() draw a circle around a point
Shape.drawCurve() draw a cubic Bezier using one helper point
Shape.drawLine() draw a line
Shape.drawOval() draw an ellipse
Shape.drawPolyline() connect a sequence of points
Shape.drawQuad() draw a quadrilateral
Shape.drawRect() draw a rectangle
Shape.drawSector() draw a circular sector or piece of pie
Shape.drawSquiggle() draw a squiggly line
Shape.drawZigzag() draw a zigzag line
Shape.finish() finish a set of draw commands
Shape.insertText() insert text lines
Shape.insertTextbox() fit text into a rectangle
Shape.doc stores the page’s document
Shape.draw_cont draw commands since last finish()
Shape.height stores the page’s height
Shape.lastPoint stores the current point
Shape.page stores the owning page
Shape.rect rectangle surrounding drawings
Shape.text_cont accumulated text insertions
Shape.totalcont accumulated string to be stored in contents
Shape.width stores the page’s width

Class API

class Shape

__init__(self, page)Create a new drawing. During importing PyMuPDF, the fitz.Page object is being given theconvenience method newShape() to construct a Shape object. During instantiation, a check willbe made whether we do have a PDF page. An exception is otherwise raised.
Parameters page (Page) – an existing page of a PDF document.

drawLine(p1, p2)Draw a line from point_like objects p1 to p2.
Parameters

154 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

• p1 (point_like) – starting point
• p2 (point_like) – end point

Return type Point

Returns the end point, p2.
drawSquiggle(p1, p2, breadth=2)Draw a squiggly (wavy, undulated) line from point_like objects p1 to p2. An integer number offull wave periods will always be drawn, one period having a length of 4 * breadth. The breadthparameter will be adjusted as necessary to meet this condition. The drawn line will always turn“left” when leaving p1 and always join p2 from the “right”.

Parameters

• p1 (point_like) – starting point
• p2 (point_like) – end point
• breadth (float) – the amplitude of each wave. The condition 2 * breadth <
abs(p2 - p1) must be true to fit in at least one wave. See the following picture,which shows two points connected by one full period.

Return type Point

Returns the end point, p2.

Here is an example of three connected lines, forming a closed, filled triangle. Little arrowsindicate the stroking direction.

5.16. Shape 155

PyMuPDF Documentation, Release 1.16.7

Note: Waves drawn are not trigonometric (sine / cosine). If you need that, have a look atdraw-sines.py85.
drawZigzag(p1, p2, breadth=2)Draw a zigzag line from point_like objects p1 to p2. An integer number of full zigzag periodswill always be drawn, one period having a length of 4 * breadth. The breadth parameter willbe adjusted to meet this condition. The drawn line will always turn “left” when leaving p1 andalways join p2 from the “right”.

Parameters

• p1 (point_like) – starting point
• p2 (point_like) – end point
• breadth (float) – the amplitude of the movement. The condition 2 * breadth
< abs(p2 - p1) must be true to fit in at least one period.

Return type Point

Returns the end point, p2.
drawPolyline(points)Draw several connected lines between points contained in the sequence points. This can beused for creating arbitrary polygons by setting the last item equal to the first one.

Parameters points (sequence) – a sequence of point_like objects. Its length mustat least be 2 (in which case it is equivalent to drawLine()).
Return type Point

Returns points[-1] – the last point in the argument sequence.
drawBezier(p1, p2, p3, p4)Draw a standard cubic Bezier curve from p1 to p4, using p2 and p3 as control points.

All arguments are point_like s.
85 https://github.com/pymupdf/PyMuPDF/blob/master/demo/draw-sines.py

156 Chapter 5. Classes

https://github.com/pymupdf/PyMuPDF/blob/master/demo/draw-sines.py

PyMuPDF Documentation, Release 1.16.7

Return type Point

Returns the end point, p4.
Note: The points do not need to be di�erent – experiment a bit with some of them being equal!
Example:

drawOval(tetra)Draw an “ellipse” inside the given tetragon (quadrilateral). If it is a square, a regular circle isdrawn, a general rectangle will result in an ellipse. If a quadrilateral is used instead, a plethoraof shapes can be the result.
The drawing starts and ends at the middle point of the line connecting bottom-left and top-leftcorners in an anti-clockwise movement.

Parameters tetra (rect_like , quad_like) – rect_like or quad_like .
Changed in version 1.14.5: tetragons are now also supported.

Return type Point

Returns the middle point of line from rect.bl to rect.tl, or from quad.ll to quad.ul,respectively. Look at just a few examples here, or at the quad-show?.py scripts inthe PyMuPDF-Utilities repository.

drawCircle(center, radius)Draw a circle given its center and radius. The drawing starts and ends at point center -
(radius, 0) in an anti-clockwise movement. This corresponds to the middle point of the en-closing rectangle’s left side.
The method is a shortcut for drawSector(center, start, 360, fullSector=False). To drawa circle in a clockwise movement, change the sign of the degree.

Parameters

5.16. Shape 157

PyMuPDF Documentation, Release 1.16.7

• center (point_like) – the center of the circle.
• radius (float) – the radius of the circle. Must be positive.

Return type Point

Returns center - (radius, 0).

drawCurve(p1, p2, p3)A special case of drawBezier(): Draw a cubic Bezier curve from p1 to p3. On each of the twolines from p1 to p2 and from p2 to p3 one control point is generated. This guaranties that thecurve’s curvature does not change its sign. If these two connecting lines intersect with an angleof 90 degrees, then the resulting curve is a quarter ellipse (or quarter circle, if of same length)circumference.
All arguments are point_like .

Return type Point

Returns the end point, p3.
Example: a filled quarter ellipse segment.

drawSector(center, point, angle, fullSector=True)Draw a circular sector, optionally connecting the arc to the circle’s center (like a piece of pie).
Parameters

• center (point_like) – the center of the circle.
• point (point_like) – one of the two end points of the pie’s arc segment. Theother one is calculated from the angle.
• angle (float) – the angle of the sector in degrees. Used to calculate the otherend point of the arc. Depending on its sign, the arc is drawn anti-clockwise (pos-tive) or clockwise.
• fullSector (bool) – whether to draw connecting lines from the ends of the arcto the circle center. If a fill color is specified, the full “pie” is colored, otherwisejust the sector.

158 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Returns the other end point of the arc. Can be used as starting point for a followinginvocation to create logically connected pies charts.
Return type Point

Examples:

drawRect(rect)Draw a rectangle. The drawing starts and ends at the top-left corner in an anti-clockwise move-ment.
Parameters rect (rect_like) – where to put the rectangle on the page.
Return type Point

Returns top-left corner of the rectangle.
drawQuad(quad)Draw a quadrilateral. The drawing starts and ends at the top-left corner (Quad.ul) in an anti-clockwise movement. It invokes drawPolyline() with the argument [ul, ll, lr, ur, ul].

Parameters quad (quad_like) – where to put the tetragon on the page.
Return type Point

Returns Quad.ul .
insertText(point, text, fontsize=11, fontname="helv", fontfile=None, set_simple=False, en-

coding=TEXT_ENCODING_LATIN, color=None, fill=None, render_mode=0, bor-
der_width=1, rotate=0, morph=None)Insert text lines start at point.

Parameters

• point (point_like) – the bottom-left position of the first character of textin pixels. It is important to understand, how this works in conjunction withthe rotate parameter. Please have a look at the following picture. The smallred dots indicate the positions of point in each of the four possible cases.

5.16. Shape 159

PyMuPDF Documentation, Release 1.16.7

• text (str/sequence) – the text to be inserted. May be specified as either a stringtype or as a sequence type. For sequences, or strings containing line breaks \n,several lines will be inserted. No care will be taken if lines are too wide, but thenumber of inserted lines will be limited by “vertical” space on the page (in thesense of reading direction as established by the rotate parameter). Any restof text is discarded – the return code however contains the number of insertedlines.
• rotate (int) – determines whether to rotate the text. Acceptable values aremultiples of 90 degrees. Default is 0 (no rotation), meaning horizontal text linesoriented from left to right. 180 means text is shown upside down from right
to left. 90 means anti-clockwise rotation, text running upwards. 270 (or -90)means clockwise rotation, text running downwards. In any case, point specifiesthe bottom-left coordinates of the first character’s rectangle. Multiple lines, ifpresent, always follow the reading direction established by this parameter. Soline 2 is located above line 1 in case of rotate = 180, etc.

Return type int
Returns number of lines inserted.

For a description of the other parameters see Common Parameters.
insertTextbox(rect, bu�er, fontsize=11, fontname="helv", fontfile=None, set_simple=False,

encoding=TEXT_ENCODING_LATIN, color=None, fill=None, render_mode=0,
border_width=1, expandtabs=8, align=TEXT_ALIGN_LEFT, rotate=0,
morph=None)PDF only: Insert text into the specified rectangle. The text will be split into lines and wordsand then filled into the available space, starting from one of the four rectangle corners, whichdepends on rotate. Line feeds will be respected as well as multiple spaces will be.

Parameters

• rect (rect_like) – the area to use. It must be finite and not empty.
• buffer (str/sequence) – the text to be inserted. Must be specified as a stringor a sequence of strings. Line breaks are respected also when occurring in asequence entry.
• align (int) – align each text line. Default is 0 (left). Centered, right and justifiedare the other supported options, see Text Alignment. Please note that the e�ectof parameter value TEXT_ALIGN_JUSTIFY is only achievable with “simple” (single-byte) fonts (including the PDF Base 14 Fonts). Refer to Adobe PDF Reference 1.7,

160 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

section 5.2.2, page 399.
• expandtabs (int) – controls handling of tab characters \t using the string.
expandtabs() method per each line.

• rotate (int) – requests text to be rotated in the rectangle. This value must bea multiple of 90 degrees. Default is 0 (no rotation). E�ectively, four di�erentvalues are processed: 0, 90, 180 and 270 (= -90), each causing the text to startin a di�erent rectangle corner. Bottom-left is 90, bottom-right is 180, and -90 /270 is top-right. See the example how text is filled in a rectangle. This argumenttakes precedence over morphing. See the second example, which shows text firstrotated left by 90 degrees and then the whole rectangle rotated clockwise aroundis lower left corner.
Return type float
Returns

If positive or zero: successful execution. The value returned is the unused rect-angle line space in pixels. This may safely be ignored – or be used to optimize therectangle, position subsequent items, etc.
If negative: no execution. The value returned is the space deficit to store text lines.Enlarge rectangle, decrease fontsize, decrease text amount, etc.

For a description of the other parameters see Common Parameters.
finish(width=1, color=None, fill=None, lineCap=0, lineJoin=0, dashes=None, closePath=True,

even_odd=False, morph=(pivot, matrix))Finish a set of draw*() methods by applying Common Parameters to all of them. This methodalso supports morphing the resulting compound drawing using a pivotal Point.
Parameters

• morph (sequence) – morph the text or the compound drawing around some arbi-trary pivotal Point pivot by applying Matrix matrix to it. This implies that pivotis a fixed point of this operation. Default is no morphing (None). The matrix cancontain any values in its first 4 components, matrix.e == matrix.f == 0 must

5.16. Shape 161

PyMuPDF Documentation, Release 1.16.7

be true, however. This means that any combination of scaling, shearing, rotating,flipping, etc. is possible, but translations are not.
• even_odd (bool) – request the “even-odd rule” for filling operations. Defaultis False, so that the “nonzero winding number rule” is used. These rules arealternative methods to apply the fill color where areas overlap. Only with fairlycomplex shapes a di�erent behavior is to be expected with these rules. For an in-depth explanation, see Adobe PDF Reference 1.7, pp. 232 �. Here is an exampleto demonstrate the di�erence.

Note: For each pixel in a drawing the following will happen:
1. Rule “even-odd” counts, how many areas are overlapping at a pixel. If this count is oddthe pixel is regarded inside, if it is even, the pixel is outside.
2. Default rule “nonzero winding” also looks at the orientation of overlapping areas: it adds

1 if an area is drawn anit-clockwise and it subtracts 1 for clockwise areas. If the result iszero, the pixel is regarded outside, pixels with a non-zero count are inside.
In the top two shapes, three circles are drawn in standard manner (anti-clockwise, look at the

162 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

arrows). The lower two shapes contain one (top-left) circle drawn clockwise. As can be seen,area orientation is irrelevant for the even-odd rule.
commit(overlay=True)Update the page’s contents with the accumulated draw commands and text insertions. If a

Shape is not committed, the page will not be changed.
The method will reset attributes Shape.rect , lastPoint , draw_cont , text_cont and
totalcont . Afterwards, the shape object can be reused for the same page.

Parameters overlay (bool) – determine whether to put content in foreground (de-fault) or background. Relevant only, if the page already has a non-empty contentsobject.
doc For reference only: the page’s document.

Type Document

pageFor reference only: the owning page.
Type Page

heightCopy of the page’s height
Type float

widthCopy of the page’s width.
Type float

draw_contAccumulated command bu�er for draw methods since last finish.
Type str

text_contAccumulated text bu�er. All text insertions go here. On commit() this bu�er will be appendedto totalcont , so that text will never be covered by drawings in the same Shape.
Type str

rectRectangle surrounding drawings. This attribute is at your disposal and may be changed at anytime. Its value is set to None when a shape is created or committed. Every draw* method, and
Shape.insertTextbox() update this property (i.e. enlarge the rectangle as needed). Morphingoperations, however (Shape.finish() , Shape.insertTextbox()) are ignored.
A typical use of this attribute would be setting Page.CropBox to this value, when you are creatingshapes for later or external use. If you have not manipulated the attribute yourself, it shouldreflect a rectangle that contains all drawings so far.
If you have used morphing and need a rectangle containing the morphed objects, use the fol-lowing code:
>>> # assuming ...
>>> morph = (point, matrix)
>>> # ... recalculate the shape rectangle like so:
>>> shape.rect = (shape.rect - fitz.Rect(point, point)) * ~matrix + fitz.Rect(point,␣
→˓point) (continues on next page)

5.16. Shape 163

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)

Type Rect

totalcontTotal accumulated command bu�er for draws and text insertions. This will be used by Shape.
commit() .

Type str
lastPointFor reference only: the current point of the drawing path. It is None at Shape creation and aftereach finish() and commit().

Type Point

5.16.1 Usage

A drawing object is constructed by shape = page.newShape(). After this, as many draw, finish and textinsertions methods as required may follow. Each sequence of draws must be finished before the drawingis committed. The overall coding pattern looks like this:
>>> shape = page.newShape()
>>> shape.draw1(...)
>>> shape.draw2(...)
>>> ...
>>> shape.finish(width=..., color=..., fill=..., morph=...)
>>> shape.draw3(...)
>>> shape.draw4(...)
>>> ...
>>> shape.finish(width=..., color=..., fill=..., morph=...)
>>> ...
>>> shape.insertText*
>>> ...
>>> shape.commit()
>>>

Note:

1. Each finish() combines the preceding draws into one logical shape, giving it common colors, linewidth, morphing, etc. If closePath is specified, it will also connect the end point of the last drawwith the starting point of the first one.
2. To successfully create compound graphics, let each draw method use the end point of the previousone as its starting point. In the above pseudo code, draw2 should hence use the returned Point of

draw1 as its starting point. Failing to do so, would automatically start a new path and finish() maynot work as expected (but it won’t complain either).
3. Text insertions may occur anywhere before the commit (they neither touch Shape.draw_cont nor

Shape.lastPoint). They are appended to Shape.totalcont directly, whereas draws will be ap-pended by Shape.finish.
4. Each commit takes all text insertions and shapes and places them in foreground or background onthe page – thus providing a way to control graphical layers.
5. Only commit will update the page’s contents, the other methods are basically string manipulations.

164 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

5.16.2 Examples

1. Create a full circle of pieces of pie in di�erent colors:
>>> shape = page.newShape() # start a new shape
>>> cols = (...) # a sequence of RGB color triples
>>> pieces = len(cols) # number of pieces to draw
>>> beta = 360. / pieces # angle of each piece of pie
>>> center = fitz.Point(...) # center of the pie
>>> p0 = fitz.Point(...) # starting point
>>> for i in range(pieces):

p0 = shape.drawSector(center, p0, beta,
fullSector=True) # draw piece

now fill it but do not connect ends of the arc
shape.finish(fill=cols[i], closePath=False)

>>> shape.commit() # update the page

Here is an example for 5 colors:

2. Create a regular n-edged polygon (fill yellow, red border). We use drawSector() only to calculatethe points on the circumference, and empty the draw command bu�er before drawing the polygon:
>>> shape = page.newShape() # start a new shape
>>> beta = -360.0 / n # our angle, drawn clockwise
>>> center = fitz.Point(...) # center of circle
>>> p0 = fitz.Point(...) # start here (1st edge)
>>> points = [p0] # store polygon edges
>>> for i in range(n): # calculate the edges

p0 = shape.drawSector(center, p0, beta)
points.append(p0)

>>> shape.draw_cont = "" # do not draw the circle sectors
>>> shape.drawPolyline(points) # draw the polygon
>>> shape.finish(color=(1,0,0), fill=(1,1,0), closePath=False)
>>> shape.commit()

Here is the polygon for n = 7:

5.16. Shape 165

PyMuPDF Documentation, Release 1.16.7

5.16.3 Common Parameters

fontname (str)
In general, there are three options:
1. Use one of the standard PDF Base 14 Fonts. In this case, fontfile must not be specifiedand "Helvetica" is used if this parameter is omitted, too.
2. Choose a font already in use by the page. Then specify its reference name prefixed witha slash “/”, see example below.
3. Specify a font file present on your system. In this case choose an arbitrary, but new namefor this parameter (without “/” prefix).

If inserted text should re-use one of the page’s fonts, use its reference name appearing in
getFontList() like so:
Suppose the font list has the entry [1024, 0, 'Type1', 'CJXQIC+NimbusMonL-Bold',
'R366'], then specify fontname = "/R366", fontfile = None to use font
CJXQIC+NimbusMonL-Bold.

fontfile (str)
File path of a font existing on your computer. If you specify fontfile, make sure you use a
fontname not occurring in the above list. This new font will be embedded in the PDF upon doc.
save(). Similar to new images, a font file will be embedded only once. A table of MD5 codesfor the binary font contents is used to ensure this.

set_simple (bool)
Fonts installed from files are installed as Type0 fonts by default. If you want to use 1-bytecharacters only, set this to true. This setting cannot be reverted. Subsequent changes areignored.

fontsize (float)
Font size of text. This also determines the line height as fontsize * 1.2.

dashes (str)
166 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Causes lines to be dashed. A continuous line with no dashes is drawn with "[]0" or None. For(the rather complex) details on how to achieve dashing e�ects, see Adobe PDF Reference 1.7,page 217. Simple versions look like "[3 4]", which means dashes of 3 and gaps of 4 pixelslength follow each other. "[3 3]" and "[3]" do the same thing.

color / fill (list, tuple)
Line and fill colors can be specified as tuples or list of of floats from 0 to 1. These sequencesmust have a length of 1 (GRAY), 3 (RGB) or 4 (CMYK). For GRAY colorspace, a single floatinstead of the unwieldy (float,) tuple spec is also accepted.
To simplify color specification, method getColor() in fitz.utils may be used to get prede-fined RGB color triples by name. It accepts a string as the name of the color and returns thecorresponding triple. The method knows over 540 color names – see section Color Database.

border_width (float)
Set the border width for text insertions. New in v1.14.9. Relevant only if the render modeargument is used with a value greater zero.

render_mode (int)
New in version 1.14.9: Integer in range(8) which controls the text appearance (Shape.
insertText() and Shape.insertTextbox()). See page 398 in Adobe PDF Reference 1.7. Newin v1.14.9. These methods now also di�erentiate between fill and stroke colors.

• For default 0, only the text fill color is used to paint the text. For backward compatibility,using the color parameter instead also works.
• For render mode 1, only the border of each glyph (i.e. text character) is drawn with athickness as set in argument border_width. The color chosen in the color argument istaken for this, the fill parameter is ignored.
• For render mode 2, the glyphs are filled and stroked, using both color parameters andthe specified border width. You can use this value to simulate bold text without usinganother font: choose the same value for fill and color and an appropriate value for
border_width.

• For render mode 3, the glyphs are neither stroked nor filled: the text becomes invisible.
Note: This version 1.14.0 of the base library MuPDF contains a bug: text with render modes2 and 6 is returned twice and must be dealt with in your script. A fix can be expected with thenext MuPDF version.
The following examples use border_width=0.3, together with a fontsize of 15. Stroke color isblue and fill color is some yellow.

5.16. Shape 167

PyMuPDF Documentation, Release 1.16.7

overlay (bool)
Causes the item to appear in foreground (default) or background.

morph (sequence)
Causes “morphing” of either a shape, created by the draw*() methods, or the text insertedby page methods insertTextbox() / insertText(). If not None, it must be a pair (pivot,
matrix), where pivot is a Point and matrix is a Matrix. The matrix can be anything excepttranslations, i.e. matrix.e == matrix.f == 0 must be true. The point is used as a pivotalpoint for the matrix operation. For example, if matrix is a rotation or scaling operation, then
pivot is its center. Similarly, if matrix is a left-right or up-down flip, then the mirroring axiswill be the vertical, respectively horizontal line going through pivot, etc.
Note: Several methods contain checks whether the to be inserted items will actually fit into thepage (like Shape.insertText() , or Shape.drawRect()). For the result of amorphing operationthere is however no such guaranty: this is entirely the rpogrammer’s responsibility.

lineCap (deprecated: “roundCap”) (int)
Controls the look of line ends. The default value 0 lets each line end at exactly the givencoordinate in a sharp edge. A value of 1 adds a semi-circle to the ends, whose center is theend point and whose diameter is the line width. Value 2 adds a semi-square with an edge lengthof line width and a center of the line end.
Changed in version 1.14.15.

lineJoin (int)
New in version 1.14.15: Controls the way how line connections look like. This may be either asa sharp edge (0), a rounded join (1), or a cut-o� edge (2, “butt”).

closePath (bool)
Causes the end point of a drawing to be automatically connected with the starting point (by astraight line).

168 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

5.17 TextPage

This class represents text and images shown on a document page. All MuPDF document types are sup-ported.
The usual ways to create a textpage are DisplayList.getTextPage() and Page.getTextPage() . Becausethere is a limited set of methods in this class, there exist wrappers in the Page class, which incorporatecreating an intermediate text page and then invoke one of the following methods. The last column of thistable shows these corresponding Page methods.
For a description of what this class is all about, see Appendix 2.

Method Description Page wrapper
extractText() extract plain text getText("text")
extractTEXT() synonym of previous getText("text")
extractBLOCKS() plain text grouped in blocks getText("blocks")
extractWORDS() all words with their bbox getText("words")
extractHTML() page content in HTML format getText("html")
extractJSON() page content in JSON format getText("json")
extractXHTML() page content in XHTML format getText("xhtml")
extractXML() page text in XML format getText("xml")
extractDICT() page content in dict format getText("dict")
extractRAWDICT() page content in dict format getText("rawdict")
search() Search for a string in the page searchFor()

Class API

class TextPage

extractText()

extractTEXT()Return a string of the page’s complete text. The text is UTF-8 unicode and in the same sequenceas specified at the time of document creation.
Return type str

extractBLOCKS()Textpage content as a list of text lines grouped by block. Each list items looks like this:
(x0, y0, x1, y1, "lines in blocks", block_type, block_no)

The first four entries are the block’s bbox coordinates, block_type is 1 for an image block, 0for text. block_no is the block sequence number.
For an image block, its bbox and a text line with image meta information is included – not theimage data itself.
This is a high-speed method with enough information to rebuild a desired text sequence.

Return type list
extractWORDS()Textpage content as a list of single words with bbox information. An item of this list looks likethis:

5.17. TextPage 169

PyMuPDF Documentation, Release 1.16.7

(x0, y0, x1, y1, "word", block_no, line_no, word_no)

Everything wrapped in spaces is treated as a “word” with this method.
This is a high-speed method which e.g. allows extracting text from within a given rectangle.

Return type list
extractHTML()Textpage content in HTML format. This version contains complete formatting and positioninginformation. Images are included (encoded as base64 strings). You need an HTML package tointerpret the output in Python. Your internet browser should be able to adequately display thisinformation, but see Controlling Quality of HTML Output.

Return type str
extractDICT()Textpage content as a Python dictionary. Provides same information detail as HTML. See belowfor the structure.

Return type dict
extractJSON()Textpage content in JSON format. Created by json.dumps(TextPage.extractDICT()). It isincluded for backlevel compatibility. You will probably use this method ever only for outputtingthe result in some file. Themethod detects binary image data, like bytearray and bytes (Python3 only) and converts them to base64 encoded strings on JSON output.

Return type str
extractXHTML()Textpage content in XHTML format. Text information detail is comparable with extractTEXT() ,but also contains images (base64 encoded). This method makes no attempt to re-create theoriginal visual appearance.

Return type str
extractXML()Textpage content in XML format. This contains complete formatting information about everysingle character on the page: font, size, line, paragraph, location, color, etc. Contains no images.You probably need an XML package to interpret the output in Python.

Return type str
extractRAWDICT()Textpage content as a Python dictionary – technically similar to extractDICT() , and it containsthat information as a subset (including any images). It provides additional detail down to eachcharacter, which makes using XML obsolete in many cases. See below for the structure.

Return type dict
search(string, hit_max = 16, quads = False)Search for string and return a list of found locations.

Parameters

• string (str) – the string to search for. Upper / lower cases will all match.
• hit_max (int) – maximum number of returned hits (default 16).
• quads (bool) – return quadrilaterals instead of rectangles.

Return type list

170 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Returns a list of Rect or Quad objects, each surrounding a found string occurrence.The search string may contain spaces, it may therefore happen, that its parts arelocated on di�erent lines. In this case, more than one rectangle (resp. quadrilateral)are returned. The method does not support hyphenation, so it will not find “meth-od” when searching for “method”.
Example: If the search for string “pymupdf” contains a hit like shown, then the correspondingentry will either be the blue rectangle, or, if quads was specified, Quad(ul, ur, ll, lr).

5.17.1 Dictionary Structure of extractDICT() and extractRAWDICT()

5.17. TextPage 171

PyMuPDF Documentation, Release 1.16.7

5.17.1.1 Page Dictionary

Key Valuewidth page width in pixels (float)height page height in pixels (float)blocks list of block dictionaries

5.17.1.2 Block Dictionaries

Blocks come in two di�erent formats: image blocks and text blocks.
Image block:

Key Valuetype 1 = image (int)bbox block / image rectangle, formatted as tuple(fitz.Rect)ext image type (str), as file extension, see belowwidth original image width (int)height original image height (int)colorspace colorspace.n (int)xres resolution in x-direction (int)yres resolution in y-direction (int)bpc bits per component (int)image image content (bytes or bytearray)
Possible values of key “ext” are “bmp”, “gif”, “jpeg”, “jpx” (JPEG 2000), “jxr” (JPEG XR), “png”, “pnm”,and “ti�”.
Note:

1. In some error situations, all of the above values may be zero or empty. So, please be prepared todigest items like:
{"type": 1, "bbox": (0.0, 0.0, 0.0, 0.0), ..., "image": b""}

2. TextPage and corresponding method Page.getText`() are available for all document types. Onlyfor PDF documents, methods Document.getPageImageList() / :meth‘Page.getImageList‘ o�er someoverlapping functionality as far as image lists are concerned. But both lists may or may not containthe same items. Any di�erences are most probably caused by one of the following:
• “Inline” images (see page 352 of the Adobe PDF Reference 1.7) of a PDF page are contained ina textpage, but not in Page.getImageList() .
• Image blocks in a textpage are generated for every image location – whether or not there areany duplicates. This is in contrast to Page.getImageList() , which will contain each image onlyonce.
• Images mentioned in the page’s object definition will always appear in Page.
getImageList() 86. But it may happen, that there is no “display” command in the page’s

86 Image specifications for a PDF page are done in the page’s sub-dictionary /Resources. Being a text format specification, PDFdoes not prevent one from having arbitrary image entries in this dictionary – whether actually in use by the page or not. On topof this, resource dictionaries can be inherited from the page’s parent object – like a node of the PDF’s pagetree or the catalogobject. So the PDF creator may e.g. define one file level /Resources naming all images and fonts ever used by any page. In thiscase, Page.getImageList() and Page.getFontList() will always return the same lists for all pages.

172 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

contents (erroneously or on purpose). In this case the image will not appear in the textpage.
Text block:

Key Valuetype 0 = text (int)bbox block rectangle, formatted as tuple(fitz.Rect)lines list of text line dictionaries

5.17.1.3 Line Dictionary

Key Valuebbox line rectangle, formatted as tuple(fitz.Rect)wmode writing mode (int): 0 = horizontal, 1 = verticaldir writing direction (list of floats): [x, y]spans list of span dictionaries
The value of key "dir" is a unit vetor and should be interpreted as follows:

• x: positive = “left-right”, negative = “right-left”, 0 = neither
• y: positive = “top-bottom”, negative = “bottom-top”, 0 = neither

The values indicate the “relative writing speed” in each direction, such that 𝑥2 + 𝑦2 = 1. In other words
dir = [cos(beta), sin(beta)], where beta is the writing angle relative to the horizontal.
5.17.1.4 Span Dictionary

Spans contain the actual text. A line contains more than one span only, if it contains text with di�erentfont properties.
Changed in version 1.14.17: Spans now also have a bbox key (again).

Key Valuebbox span rectangle, formatted as tuple(fitz.Rect)font font name (str)size font size (float)flags font characteristics (int)color text color in sRGB format (int)text (only for extractDICT()) text (str)chars (only for extractRAWDICT()) list of character dictionaries
New in version 1.16.0: "color" is the text color encoded in sRGB format, e.g. 0xFF0000 for red.
"flags" is an integer, encoding bools of font properties:

• bit 0: superscripted (20)
• bit 1: italic (21)
• bit 2: serifed (22)
• bit 3: monospaced (23)
• bit 4: bold (24)

5.17. TextPage 173

PyMuPDF Documentation, Release 1.16.7

Test these characteristics like so:
>>> if flags & 2**1: print("italic")
>>> # etc.

5.17.1.5 Character Dictionary for extractRAWDICT()

We are currently providing the bbox in rect_like format. In a future version, we might changethat to quad_like . This image shows the relationship between items in the following table:

Key Valueorigin tuple coordinates of the character’s bottom left pointbbox character rectangle, formatted as tuple(fitz.Rect)c the character (unicode)

5.18 Tools

This class is a collection of utility methods and attributes, mainly aroundmemorymanagement. To simplifyand speed up its use, it is automatically instantiated under the name TOOLS when PyMuPDF is imported.
Method / Attribute Description
Tools.gen_id() generate a unique identifyer
Tools.store_shrink() shrink the storables cache88
Tools.mupdf_warnings() return the accumulated MuPDF warnings
Tools.reset_mupdf_warnings() empty MuPDF messages on STDOUT
Tools.fitz_config configuration settings of PyMuPDF
Tools.store_maxsize maximum storables cache size
Tools.store_size current storables cache size

Class API

class Tools

gen_id()A convenience method returning a unique positive integer which will increase by 1 on everyinvocation. Example usages include creating unique keys in databases - its creation should befaster than using timestamps by an order of magnitude.
88 This memory area is internally used by MuPDF, and it serves as a cache for objects that have already been read and interpreted,thus improving performance. The most bulky object types are images and also fonts. When an application starts up the MuPDFlibrary (in our case this happens as part of import fitz), it must specify a maximum size for this area. PyMuPDF’s uses the defaultvalue (256 MB) to limit memory consumption. Use the methods here to control or investigate store usage. For example: even after adocument has been closed and all related objects have been deleted, the store usage may still not drop down to zero. So you mightwant to enforce that before opening another document.

174 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

Note: MuPDF has dropped support for this in v1.14.0, so we have re-implemented a similarfunction with the following di�erences:
• It is not part of MuPDF’s global context and not threadsafe (because we do not supportthreads in PyMuPDF yet).
• It is implemented as int. This means that the maximum number is sys.maxsize. Shouldthis number ever be exceeded, the counter is reset to 1.

Return type int
Returns a unique positive integer.

store_shrink(percent)Reduce the storables cache by a percentage of its current size.
Parameters percent (int) – the percentage of current size to free. If 100+ the storewill be emptied, if zero, nothing will happen. MuPDF’s caching strategy is “leastrecently used”, so low-usage elements get deleted first.
Return type int
Returns the new current store size. Depending on the situation, the size reduction maybe larger than the requested percentage.

reset_mupdf_warnings()New in version 1.16.0: Empty MuPDF warnings message bu�er.
mupdf_warnings(reset=True)New in version 1.16.0: Return all stored MuPDF messages as a string with interspersed \n.

Parameters reset (bool) – New in version 1.16.7: whether to automatically empty thestore.
fitz_configA dictionary containing the actual values used for configuring PyMuPDF and MuPDF. Also referto the installation chapter. This is an overview of the keys, each of which describes the statusof a support aspect.

5.18. Tools 175

PyMuPDF Documentation, Release 1.16.7

Key Support included for . . .plotter-g Gray colorspace renderingplotter-rgb RGB colorspace renderingplotter-cmyk CMYK colorspcae renderingplotter-n overprint renderingpdf PDF documentsxps XPS documentssvg SVG documentscbz CBZ documentsimg IMG documentshtml HTML documentsepub EPUB documentsjpx JPEG2000 imagesjs JavaScripttofu all TOFU fontstofu-cjk CJK font subset (China, Japan, Korea)tofu-cjk-ext CJK font extensionstofu-cjk-lang CJK font language extensionstofu-emoji TOFU emoji fontstofu-historic TOFU historic fontstofu-symbol TOFU symbol fontstofu-sil TOFU SIL fontsicc ICC profilespy-memory using Python memory management89base14 Base-14 fonts (should always be true)
For an explanation of the term “TOFU” see this Wikipedia article87.:
In [1]: import fitz
In [2]: TOOLS.fitz_config
Out[2]:
{'plotter-g': True,
'plotter-rgb': True,
'plotter-cmyk': True,
'plotter-n': True,
'pdf': True,
'xps': True,
'svg': True,
'cbz': True,
'img': True,
'html': True,
'epub': True,
'jpx': True,
'js': True,
'tofu': False,
'tofu-cjk': True,
'tofu-cjk-ext': False,
'tofu-cjk-lang': False,

(continues on next page)
89 Optionally, all dynamic management of memory can be done using Python C-level calls. MuPDF o�ers a hook to insert user-preferred memory managers. We are using option this for Python version 3 since PyMuPDF v1.13.19. At the same time, all memoryallocation in PyMuPDF itself is also routed to Python (i.e. no more direct malloc() calls in the code). We have seen improved memoryusage and slightly reduced runtimes with this option set. If you want to change this, you can set #define JM_MEMORY 0 (usesstandard C malloc, or 1 for Python allocation)in file fitz.i and then generate PyMuPDF.87 https://en.wikipedia.org/wiki/Noto_fonts

176 Chapter 5. Classes

https://en.wikipedia.org/wiki/Noto_fonts

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
'tofu-emoji': False,
'tofu-historic': False,
'tofu-symbol': False,
'tofu-sil': False,
'icc': False,
'py-memory': True, # (False if Python 2)
'base14': True}

Return type dict
store_maxsizeMaximum storables cache size in bytes. PyMuPDF is generated with a value of 268‘435‘456(256 MB, the default value), which you should therefore always see here. If this value is zero,then an “unlimited” growth is permitted.

Return type int
store_sizeCurrent storables cache size in bytes. This value may change (and will usually increase) with ev-ery use of a PyMuPDF function. It will (automatically) decrease only when Tools.store_maxizeis going to be exceeded: in this case, MuPDF will evict low-usage objects until the value is againin range.

Return type int

5.18.1 Example Session

>>> import fitz
print the maximum and current cache sizes
>>> fitz.TOOLS.store_maxsize
268435456
>>> fitz.TOOLS.store_size
0
>>> doc = fitz.open("demo1.pdf")
pixmap creation puts lots of object in cache (text, images, fonts),
apart from the pixmap itself
>>> pix = doc[0].getPixmap(alpha=False)
>>> fitz.TOOLS.store_size
454519
release (at least) 50% of the storage
>>> fitz.TOOLS.store_shrink(50)
13471
>>> fitz.TOOLS.store_size
13471
get a few unique numbers
>>> fitz.TOOLS.gen_id()
1
>>> fitz.TOOLS.gen_id()
2
>>> fitz.TOOLS.gen_id()
3
close document and see how much cache is still in use
>>> doc.close()
>>> fitz.TOOLS.store_size

(continues on next page)

5.18. Tools 177

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
0
>>>

5.19 Widget

This class represents a PDF Form field, also called “widget”. Fields are a special case of annotations,which allow users with limited permissions to enter information in a PDF. This is primarily used for fillingout forms.
Like annotations, widgets live on PDF pages. Similar to annotations, the first widget on a page is accessiblevia Page.firstWidget and subsequent widgets can be accessed via the Widget.next property.
Changed in version 1.16.0: Widgets are no longer mixed with annotations. Page.firstAnnot and Annot.
next() will deliver non-widget annotations exclusively, and be None if only form fields exist on a page.Vice versa, Page.firstWidget and Widget.next() will only show widgets.
Class API

class Widget

nextPoint to the next form field on the page.
update()After any changes to a widget, this method must be used to store them in the PDF.
border_colorA list of up to 4 floats defining the field’s border. Default value is None which causes border styleand border width to be ignored.
border_styleA string defining the line style of the field’s border. See Annot.border . Default is “s” (“Solid”) –a continuous line. Only the first character (upper or lower case) will be regarded when creatinga widget.
border_widthA float defining the width of the border line. Default is 1.
border_dashesA list of integers defining the dash properties of the border line. This is only meaningful if

border_style == "D" and border_color is provided.
choice_valuesPython sequence of strings defining the valid choices of list boxes and combo boxes. For thesewidget types the property is mandatory. Ignored for other types. The sequence must containat least two items. When updating the widget, this sequence will always the complete new listof values must be specified.
field_nameA mandatory string defining the field’s name. No checking for duplicates takes place.
field_labelAn optional string containing an “alternate” field name. Typically used for any notes, help onfield usage, etc. Default is the field name.
field_valueThe value of the field.

178 Chapter 5. Classes

PyMuPDF Documentation, Release 1.16.7

field_flagsAn integer defining a large amount of proprties of a field. Handle this attribute with care.
field_typeA mandatory integer defining the field type. This is a value in the range of 0 to 6. It cannot bechanged when updating the widget.
field_type_stringA string describing (and derived from) the field type.
fill_colorA list of up to 4 floats defining the field’s background color.
button_captionThe caption string of a button-type field.
is_signedA bool indicating the status of a signature field, else None.
rectThe rectangle containing the field.
text_colorA list of 1, 3 or 4 floats defining the text color. Default value is black ([0, 0, 0]).
text_fontA string defining the font to be used. Default and replacement for invalid values is "Helv". Forvalid font reference names see the table below.
text_fontsizeA float defining the text fontsize. Default value is zero, which causes PDF viewer software todynamically choose a size suitable for the annotation’s rectangle and text amount.
text_maxlenAn integer defining the maximum number of text characters. PDF viewers will (should) notaccept a longer text.
text_typeAn integer defining acceptable text types (e.g. numeric, date, time, etc.). For reference only forthe time being – will be ignored when creating or updating widgets.
xrefAn integer defining the PDF cross reference number of the widget.

5.19.1 Standard Fonts for Widgets

Widgets use their own resources object /DR. A widget resources object must at least contain a /Fontobject. Widget fonts are independent from page fonts. We currently support the 14 PDF base fonts usingthe following fixed reference names, or any name of an already existing field font. When specifying atext font for new or changed widgets, either choose one in the first table column (upper and lower casesupported), or one of the already existing form fonts. In the latter case, spelling must exactly match.
To find out already existing field fonts, inspect the list Document.FormFonts .

5.19. Widget 179

PyMuPDF Documentation, Release 1.16.7

Reference Base14 FontnameCoBI Courier-BoldObliqueCoBo Courier-BoldCoIt Courier-ObliqueCour CourierHeBI Helvetica-BoldObliqueHeBo Helvetica-BoldHeIt Helvetica-ObliqueHelv Helvetica (default)Symb SymbolTiBI Times-BoldItalicTiBo Times-BoldTiIt Times-ItalicTiRo Times-RomanZaDb ZapfDingbats
You are generally free to use any font for every widget. However, we recommend using ZaDb (“ZapfD-ingbats”) and fontsize 0 for check boxes: typical viewers will put a correctly sized tickmark in the field’srectangle, when it is clicked.

180 Chapter 5. Classes

CHAPTER

SIX

OPERATOR ALGEBRA FOR GEOMETRY OBJECTS

Instances of classes Point, IRect, Rect and Matrix are collectively also called “geometry” objects.
They all are special cases of Python sequences, see Using Python Sequences as Arguments in PyMuPDFfor more background.
We have defined operators for these classes that allow dealing with them (almost) like ordinary numbersin terms of addition, subtraction, multiplication, division, and some others.
This chapter is a synopsis of what is possible.

6.1 General Remarks

1. Operators can be either binary (i.e. involving two objects) or unary.
2. The resulting type of binary operations is either a new object of the left operand’s class or a bool.
3. The result of unary operations is either a new object of the same class, a bool or a float.
4. The binary operators +, -, *, / are defined for all classes. They roughly do what you would expect– except, that the second operand . . .

• may always be a number which then performs the operation on every component of the firstone,
• may always be a numeric sequence of the same length (2, 4 or 6) – we call such sequences
point_like , rect_like or matrix_like , respectively.

5. Rectangles support additional binary operations: intersection (operator "&"), union (operator "|")and containment checking.
6. Binary operators fully support in-place operations, so expressions like "a /= b" are valid if b isnumeric or “a_like”.

6.2 Unary Operations

Oper. Resultbool(OBJ) is false exactly if all components of OBJ are zeroabs(OBJ) the rectangle area – equal to norm(OBJ) for the other tyesnorm(OBJ) square root of the component squares (Euclidean norm)+OBJ new copy of OBJ-OBJ new copy of OBJ with negated components~m inverse of Matrix “m”, or the null matrix if not invertible

181

PyMuPDF Documentation, Release 1.16.7

6.3 Binary Operations

For every geometry object “a” and every number “b”, the operations “a ° b” and “a °= b” are always definedfor the operators +, -, *, /. The respective operation is simply executed for each component of “a”. Ifthe second operand is not a number, then the following is defined:
Oper. Resulta+b,a-b component-wise execution, “b” must be “a-like”.
a*m,a/m “a” can be a point, rectangle or matrix, but “m” must be matrix_like . "a/m" is treated as

"a*~m" (see note below for non-invertible matrices). If “a” is a point or a rectangle, then "a.
transform(m)" is executed. If “a” is a matrix, then matrix concatenation takes place.a&b intersection rectangle: “a” must be a rectangle and “b” rect_like . Delivers the largest rectan-
gle contained in both operands.a|b union rectangle: “a” must be a rectangle, and “b” may be point_like or rect_like . Deliversthe smallest rectangle containing both operands.bina
if “b” is a number, then "b in tuple(a)" is returned. If “b” is point_like or rect_like , then“a” must be a rectangle, and "a.contains(b)" is returned.

a==b
True if bool(a-b) is False (“b” may be “a-like”).

Note: Please note an important di�erence to usual arithmetics:
Matrix multiplication is not commutative, i.e. in general we have 𝑚 * 𝑛 ̸= 𝑛 * 𝑚 for two matrices. Also,there are non-zero matrices which have no inverse, for example m = Matrix(1, 0, 1, 0, 1, 0). If youtry to divide by any of these you will receive a ZeroDivisionError exception using operator "/", e.g. for
fitz.Identity / m. But if you formulate fitz.Identity * ~m, the result will be fitz.Matrix() (the nullmatrix).
Admittedly, this represents an inconsistency, and we are considering to remove it. For the time being,you can choose to avoid an exception and check whether ~m is the null matrix, or accept a potentialZeroDivisionError by using fitz.Identity / m.

6.4 Some Examples

6.4.1 Manipulation with numbers

For the usual arithmetic operations, numbers are always allowed as second operand. In addition, you canformulate "x in OBJ", where x is a number. It is implemented as "x in tuple(OBJ)".
>>> fitz.Rect(1, 2, 3, 4) + 5
fitz.Rect(6.0, 7.0, 8.0, 9.0)
>>> 3 in fitz.Rect(1, 2, 3, 4)
True
>>>

The following will create the upper left quarter of a document page rectangle:

182 Chapter 6. Operator Algebra for Geometry Objects

PyMuPDF Documentation, Release 1.16.7

>>> page.rect
Rect(0.0, 0.0, 595.0, 842.0)
>>> page.rect / 2
Rect(0.0, 0.0, 297.5, 421.0)
>>>

The following will deliver the middle point of a line connecting two points p1 and p2:
>>> p1 = fitz.Point(1, 2)
>>> p2 = fitz.Point(4711, 3141)
>>> mp = p1 + (p2 - p1) / 2
>>> mp
Point(2356.0, 1571.5)
>>>

6.4.2 Manipulation with “like” Objects

The second operand of a binary operation can always be “like” the left operand. “Like” in this contextmeans “a sequence of numbers of the same length”. With the above examples:
>>> p1 + p2
Point(4712.0, 3143.0)
>>> p1 + (4711, 3141)
Point(4712.0, 3143.0)
>>> p1 += (4711, 3141)
>>> p1
Point(4712.0, 3143.0)
>>>

To shift a rectangle for 5 pixels to the right, do this:
>>> fitz.Rect(100, 100, 200, 200) + (5, 0, 5, 0) # add 5 to the x coordinates
Rect(105.0, 100.0, 205.0, 200.0)
>>>

Points, rectangles and matrices can be transformed with matrices. In PyMuPDF, we treat this like a “multi-
plication” (or resp. “division”), where the second operand may be “like” a matrix. Division in this contextmeans “multiplication with the inverted matrix”.
>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>> n = fitz.Matrix(6, 5, 4, 3, 2, 1)
>>> p = fitz.Point(1, 2)
>>> p * m
Point(12.0, 16.0)
>>> p * (1, 2, 3, 4, 5, 6)
Point(12.0, 16.0)
>>> p / m
Point(2.0, -2.0)
>>> p / (1, 2, 3, 4, 5, 6)
Point(2.0, -2.0)
>>>
>>> m * n # matrix multiplication
Matrix(14.0, 11.0, 34.0, 27.0, 56.0, 44.0)
>>> m / n # matrix division
Matrix(2.5, -3.5, 3.5, -4.5, 5.5, -7.5)

(continues on next page)

6.4. Some Examples 183

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
>>>
>>> m / m # result is equal to the Identity matrix
Matrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
>>>
>>> # look at this non-invertible matrix:
>>> m = fitz.Matrix(1, 0, 1, 0, 1, 0)
>>> ~m
Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
>>> # we try dividing by it in two ways:
>>> p = fitz.Point(1, 2)
>>> p * ~m # this delivers point (0, 0):
Point(0.0, 0.0)
>>> p / m # but this is an exception:
Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>
p / m

File "... /site-packages/fitz/fitz.py", line 869, in __truediv__
raise ZeroDivisionError("matrix not invertible")

ZeroDivisionError: matrix not invertible
>>>

As a specialty, rectangles support additional binary operations:
• intersection – the common area of rectangle-likes, operator "&"
• inclusion – enlarge to include a point-like or rect-like, operator "|"
• containment check – whether a point-like or rect-like is inside

Here is an example for creating the smallest rectangle enclosing given points:
>>> # first define some point-likes
>>> points = []
>>> for i in range(10):

for j in range(10):
points.append((i, j))

>>>
>>> # now create a rectangle containing all these 100 points
>>> # start with an empty rectangle
>>> r = fitz.Rect(points[0], points[0])
>>> for p in points[1:]: # and include remaining points one by one

r |= p
>>> r # here is the to be expected result:
Rect(0.0, 0.0, 9.0, 9.0)
>>> (4, 5) in r # this point-like lies inside the rectangle
True
>>> # and this rect-like is also inside
>>> (4, 4, 5, 5) in r
True
>>>

184 Chapter 6. Operator Algebra for Geometry Objects

CHAPTER

SEVEN

LOW LEVEL FUNCTIONS AND CLASSES

Contains a number of functions and classes for the experienced user. To be used for special needs orperformance requirements.

7.1 Functions

The following are miscellaneous functions on a fairly low-level technical detail.
Some functions provide detail access to PDF structures. Others are stripped-down, high performanceversions of functions providing more information.
Yet others are handy, general-purpose utilities.

Function Short Description
Document.FontInfos PDF only: information on inserted fonts
Annot._cleanContents() PDF only: clean the annot’s contents objects
ConversionHeader() return header string for getText methods
ConversionTrailer() return trailer string for getText methods
Document._delXmlMetadata() PDF only: remove XML metadata
Document._deleteObject() PDF only: delete an object
Document._getNewXref() PDF only: create and return a new xref entry
Document._getOLRootNumber() PDF only: return / create xref of /Outline
Document._getPDFroot() PDF only: return the xref of the catalog
Document._getPageObjNumber() PDF only: return xref and generation number of a page
Document._getPageXref() PDF only: same as _getPageObjNumber()
Document._getTrailerString() PDF only: return the PDF file trailer string
Document._getXmlMetadataXref() PDF only: return XML metadata xref number
Document._getXrefLength() PDF only: return length of xref table
Document._getXrefStream() PDF only: return content of a stream object
Document._getXrefString() PDF only: return object definition “source”
Document._make_page_map() PDF only: create a fast-access array of page numbers
Document._updateObject() PDF only: insert or update a PDF object
Document._updateStream() PDF only: replace the stream of an object
Document.extractFont() PDF only: extract embedded font
Document.extractImage() PDF only: extract embedded image
Document.getCharWidths() PDF only: return a list of glyph widths of a font
Document.isStream() PDF only: check whether an xref is a stream object
ImageProperties() return a dictionary of basic image properties
getPDFnow() return the current timestamp in PDF formatContinued on next page

185

PyMuPDF Documentation, Release 1.16.7

Table 1 – continued from previous page
Function Short Description
getPDFstr() return PDF-compatible string
getTextlength() return string length for a given font & fontsize
Page._cleanContents() PDF only: clean the page’s contents objects
Page._getContents() PDF only: return a list of content numbers
Page._setContents() PDF only: set page’s contents object to specified xref
Page.getDisplayList() create the page’s display list
Page.getTextBlocks() extract text blocks as a Python list
Page.getTextWords() extract text words as a Python list
Page.run() run a page through a device
Page._wrapContents() wrap contents with stacking commands
Page._isWrapped check whether contents wrapping is present
planishLine() matrix to map a line to the x-axis
PaperSize() return width, height for a known paper format
PaperRect() return rectangle for a known paper format
paperSizes dictionary of pre-defined paper formats
PaperSize(s)Convenience function to return width and height of a known paper format code. Thesevalues are given in pixels for the standard resolution 72 pixels = 1 inch.

Currently defined formats include ‘A0’ through ‘A10’, ‘B0’ through ‘B10’, ‘C0’ through
‘C10’, ‘Card-4x6’, ‘Card-5x7’, ‘Commercial’, ‘Executive’, ‘Invoice’, ‘Ledger’, ‘Legal’,
‘Legal-13’, ‘Letter’, ‘Monarch’ and ‘Tabloid-Extra’, each in either portrait or landscapeformat.
A format name must be supplied as a string (case in sensitive), optionally su�xed with“-L” (landscape) or “-P” (portrait). No su�x defaults to portrait.

Parameters s (str) – any format name from above (upper or lower case), like
"A4" or "letter-l".

Return type tuple
Returns (width, height) of the paper format. For an unknown format (-1, -1)is returned. Esamples: fitz.PaperSize("A4") returns (595, 842) and fitz.

PaperSize("letter-l") delivers (792, 612).

PaperRect(s)Convenience function to return a Rect for a known paper format.
Parameters s (str) – any format name supported by PaperSize() .
Return type Rect

Returns fitz.Rect(0, 0, width, height) with width, height=fitz.
PaperSize(s).

>>> import fitz
>>> fitz.PaperRect("letter-l")
fitz.Rect(0.0, 0.0, 792.0, 612.0)
>>>

186 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

planishLine(p1, p2)New in version 1.16.2: Return a matrix which maps the line from p1 to p2 to the x-axissuch that p1 will become (0,0) and p2 a point with the same distance to (0,0).
Parameters

• p1 (point_like) – starting point of the line.
• p2 (point_like) – end point of the line.

Return type Matrix

Returns a matrix which combines a rotation and a translation.
>>> p1 = fitz.Point(1, 1)
>>> p2 = fitz.Point(4, 5)
>>> abs(p2 - p1) # distance of points
5.0
>>> m = fitz.planishLine(p1, p2)
>>> p1 * m
Point(0.0, 0.0)
>>> p2 * m
Point(5.0, -5.960464477539063e-08)
>>> # distance of the resulting points
>>> abs(p2 * m - p1 * m)
5.0

paperSizesA dictionary of pre-defines paper formats. Used as basis for PaperSize() .

getPDFnow()Convenience function to return the current local timestamp in PDF compatible format,e.g. D:20170501121525-04'00' for local datetime May 1, 2017, 12:15:25 in a timezone 4hours westward of the UTC meridian.
Return type str
Returns current local PDF timestamp.

getTextlength(text, fontname="helv", fontsize=11, encoding=TEXT_ENCODING_LATIN)New in version 1.14.7: Calculate the length of text on output with a given builtin font,fontsize and encoding.
7.1. Functions 187

PyMuPDF Documentation, Release 1.16.7

Parameters

• text (str) – the text string.
• fontname (str) – the fontname. Must be one of either the PDF Base 14
Fonts or the CJK fonts, identified by their “reserved” fontnames (see tablein :meth.‘Page.insertFont‘).

• fontsize (float) – size of the font.
• encoding (int) – the encoding to use. Besides 0 = Latin, 1 = Greek and 2= Cyrillic (Russian) are available. Relevant for Base-14 fonts “Helvetica”,“Courier” and “Times” and their variants only. Make sure to use the samevalue as in the corresponding text insertion.

Return type float
Returns the length in points the string will have (e.g. when used in Page.

insertText()).
Note: This function will only does the calculation – neither does it insert the font nor writethe text.

Warning: If you use this function to determine the required rectangle widthfor the (Page or Shape) insertTextbox methods, be aware that they calculateon a by-character level. Because of rounding e�ects, this will mostly lead toa slightly larger number: sum([fitz.getTextlength(c) for c in text]) > fitz.
getTextlength(text). So either (1) do the same, or (2) use something like fitz.
getTextlength(text + "'") for your calculation.

getPDFstr(text)Make a PDF-compatible string: if the text contains code points ord(c) > 255, then it willbe converted to UTF-16BE with BOM as a hexadecimal character string enclosed in “<>”brackets like <feff...>. Otherwise, it will return the string enclosed in (round) brackets,replacing any characters outside the ASCII range with some special code. Also, every “(“,“)” or backslash is escaped with an additional backslash.
Parameters text (str) – the object to convert
Return type str
Returns PDF-compatible string enclosed in either () or <>.

ImageProperties(image)

Parameters image (bytes|bytearray|BytesIO|file) – an image either in mem-ory or an opened file. A memory resident image maybe any of the formats
bytes, bytearray or io.BytesIO.

Returns

a dictionary with the following keys (an empty dictionary for any error):

188 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

Key Valuewidth (int) width in pixelsheight (int) height in pixelscolorspace (int) colorspace.n (e.g. 3 = RGB)bpc (int) bits per component (usually 8)format (int) image format in range(15)ext (str) suggested image file extension for the formatsize (int) length of the image in bytes
Example:
>>> fitz.ImageProperties(open("img-clip.jpg","rb"))
{'bpc': 8, 'format': 9, 'colorspace': 3, 'height': 325, 'width': 244, 'ext': 'jpeg',
→˓ 'size': 14161}
>>>

ConversionHeader("text", filename="UNKNOWN")Return the header string required to make a valid document out of page text outputs.
Parameters

• output (str) – type of document. Use the same as the output parameterof getText().
• filename (str) – optional arbitrary name to use in output types “json” and“xml”.

Return type str

ConversionTrailer(output)Return the trailer string required to make a valid document out of page text outputs. See
Page.getText() for an example.

Parameters output (str) – type of document. Use the same as the output pa-rameter of getText().
Return type str

Document._deleteObject(xref)PDF only: Delete an object given by its cross reference number.
Parameters xref (int) – the cross reference number. Must be within the docu-ment’s valid xref range.

Warning: Only use with extreme care: this may make the PDF unreadable.

Document._delXmlMetadata()Delete an object containing XML-based metadata from the PDF. (Py-) MuPDF does notsupport XML-based metadata. Use this if you want to make sure that the conventionalmetadata dictionary will be used exclusively. Many thirdparty PDF programs insert their
7.1. Functions 189

PyMuPDF Documentation, Release 1.16.7

own metadata in XML format and thus may override what you store in the conventionaldictionary. This method deletes any such reference, and the corresponding PDF objectwill be deleted during next garbage collection of the file.

Document._getTrailerString(compressed=False)New in version 1.14.9: Return the trailer of the PDF (UTF-8), which is usually located atthe PDF file’s end. If not a PDF or the PDF has no trailer (because of irrecoverable errors),
None is returned.

Parameters compressed (bool) – New in version 1.14.14: whether to generatea compressed output or one with nice indentations to ease reading (default).
Returns a string with the PDF trailer information. This is the analogousmethod to

Document._getXrefString() except that the trailer has no identifying xrefnumber. As can be seen here, the trailer object points to other importantobjects:
>>> doc=fitz.open("adobe.pdf")
>>> # compressed output
>>> print(doc._getTrailerString(True))
<</Size 334093/Prev 25807185/XRefStm 186352/Root 333277 0 R/Info 109959 0 R
/ID[(\\227\\366/gx\\016ds\\244\\207\\326\\261\\\\\\305\\376u)
(H\\323\\177\\346\\371pkF\\243\\262\\375\\346\\325\\002)]>>
>>> # non-compressed otput:
>>> print(doc._getTrailerString(False))
<<

/Size 334093
/Prev 25807185
/XRefStm 186352
/Root 333277 0 R
/Info 109959 0 R
/ID [(\227\366/gx\016ds\244\207\326\261\\\305\376u)␣

→˓(H\323\177\346\371pkF\243\262\375\346\325\002)]
>>

Note: MuPDF is capable of recovering from a number of damages a PDFmay have. This in-cludes re-generating a trailer, where the end of a file has been lost (e.g. because of incom-plete downloads). If however None is returned for a PDF, then the recovery mechanismswere unsuccessful and you should check for any error messages (Document.openErrCode,
Document.openErrMsg, Tools.fitz_stderr).

Document._make_page_map()Create an internal array of page numbers, which significantly speeds up page lookup(Document.loadPage()). If this array exists, finding a page object will be up to two timesfaster. Functions which change the PDF’s page layout (copy, delete, move, select pages)will destroy this array again.

Document._getXmlMetadataXref()Return the XML-based metadata xref of the PDF if present – also refer to
Document._delXmlMetadata() . You can use it to retrieve the content via Document.
_getXrefStream() and then work with it using some XML software.

190 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

Return type int
Returns xref of PDF file level XML metadata.

Document._getPageObjNumber(pno)or
Document._getPageXref(pno)

Return the xref and generation number for a given page.
Parameters pno (int) – Page number (zero-based).
Return type list
Returns xref and generation number of page pno as a list [xref, gen].

Document._getPDFroot()

Return the xref of the PDF catalog.
Return type int
Returns xref of the PDF catalog – a central dictionary pointing to many otherPDF information.

Page.run(dev, transform)Run a page through a device.
Parameters

• dev (Device) – Device, obtained from one of the Device constructors.
• transform (Matrix) – Transformation to apply to the page. Set it to Identityif no transformation is desired.

Page._wrapContents()Put string pair “q” / “Q” before, resp. after a page’s /Contents object(s) to ensure thatany “geometry” changes are local only.
Use this method as an alternative, minimalistic version of Page._cleanContents() . Itsadvantage is a small footprint in terms of processing time and impact on incrementalsaves.

Page._isWrappedIndicate whether Page._wrapContents() may be required for object insertions in stan-dard PDF geometry. Please note that this is a quick, basic check only: a value of Falsemay still be a false alarm.

Page.getTextBlocks(flags=None)Deprecated wrapper for TextPage.extractBLOCKS() .

7.1. Functions 191

PyMuPDF Documentation, Release 1.16.7

Page.getTextWords(flags=None)Deprecated wrapper for TextPage.extractWORDS() .

Page.getDisplayList()Run a page through a list device and return its display list.
Return type DisplayList

Returns the display list of the page.

Page._getContents()Return a list of xref numbers of contents objects belonging to the page.
Return type list
Returns a list of xref integers.

Each page may have zero to many associated contents objects (stream s) which containsome operator syntax describing what appears where and how on the page (like text orimages, etc. See the Adobe PDF Reference 1.7, chapter “Operator Summary”, page 985).This function only enumerates the number(s) of such objects. To get the actual streamsource, use function Document._getXrefStream() with one of the numbers in this list.Use Document._updateStream() to replace the content.

Page._setContents(xref)PDF only: Set a given object (identified by its xref) as the page’s one and only contentsobject. Useful for joining mutiple contents objects as in the following snippet:
>>> c = b""
>>> xreflist = page._getContents()
>>> for xref in xreflist:

c += doc._getXrefStream(xref)
>>> doc._updateStream(xreflist[0], c)
>>> page._setContents(xreflist[0])
>>> # doc.save(..., garbage=1) will remove the unused objects

Parameters xref (int) – the cross reference number of a contents object. Anexception is raised if outside the valid xref range or not a stream object.

Page._cleanContents()Clean and concatenate all contents objects associated with this page. “Cleaning” in-cludes syntactical corrections, standardizations and “pretty printing” of the contentsstream. Discrepancies between contents and resources objects will also be corrected.See Page._getContents() for more details.
Changed in version 1.16.0: Annotations are no longer implicitely cleaned by this method.Use Annot._cleanContents() separately.

192 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

Warning: This is a complex function which may generate large amounts of new dataand render other data unused. It is not recommended using it together with the in-
cremental save option. Also note that the resulting singleton new /Contents objectis uncompressed. So you should save to a new file using options "deflate=True,
garbage=3".

Annot._cleanContents()Clean the contents streams associated with the annotation. This is the same type ofaction which Page._cleanContents() performs – just restricted to this annotation.

Document.getCharWidths(xref=0, limit=256)Return a list of character glyphs and their widths for a font that is present in the document.A font must be specified by its PDF cross reference number xref . This function is calledautomatically from Page.insertText() and Page.insertTextbox() . So you should rarelyneed to do this yourself.
Parameters

• xref (int) – cross reference number of a font embedded in the PDF. To finda font xref , use e.g. doc.getPageFontList(pno) of page number pno andtake the first entry of one of the returned list entries.
• limit (int) – limits the number of returned entries. The default of 256 isenforced for all fonts that only support 1-byte characters, so-called “simplefonts” (checked by this method). All PDF Base 14 Fonts are simple fonts.

Return type list
Returns a list of limit tuples. Each character c has an entry (g, w) in this listwith an index of ord(c). Entry g (integer) of the tuple is the glyph id of thecharacter, and float w is its normalized width. The actual width for some font-size can be calculated as w * fontsize. For simple fonts, the g entry canalways be safely ignored. In all other cases g is the basis for graphically rep-resenting c.

This function calculates the pixel width of a string called text:
def pixlen(text, widthlist, fontsize):
try:

return sum([widthlist[ord(c)] for c in text]) * fontsize
except IndexError:

m = max([ord(c) for c in text])
raise ValueError:("max. code point found: %i, increase limit" % m)

Document._getXrefString(xref, compressed=False)Return the string (“source code”) representing an arbitrary object. For stream objects,only the non-stream part is returned. To get the stream data, use _getXrefStream() .
Parameters

• xref (int) – xref number.

7.1. Functions 193

PyMuPDF Documentation, Release 1.16.7

• compressed (bool) – New in version 1.14.14: whether to generate a com-pressed output or one with nice indentations to ease reading or parsing(default).
Return type string
Returns the string defining the object identified by xref . Example:

>>> doc = fitz.open("Adobe PDF Reference 1-7.pdf") # the PDF
>>> page = doc[100] # some page in it
>>> print(doc._getXrefString(page.xref, compressed=True))
<</CropBox[0 0 531 666]/Annots[4795 0 R 4794 0 R 4793 0 R 4792 0 R 4797 0 R 4796 0␣
→˓R]
/Parent 109820 0 R/StructParents 941/Contents 229 0 R/Rotate 0/MediaBox[0 0 531 666]
/Resources<</Font<</T1_0 3914 0 R/T1_1 3912 0 R/T1_2 3957 0 R/T1_3 3913 0 R/T1_4␣
→˓4576 0 R
/T1_5 3931 0 R/T1_6 3944 0 R>>/ProcSet[/PDF/Text]/ExtGState<</GS0 333283 0 R>>>>
/Type/Page>>
>>> print(doc._getXrefString(page.xref, compressed=False))
<<

/CropBox [0 0 531 666]
/Annots [4795 0 R 4794 0 R 4793 0 R 4792 0 R 4797 0 R 4796 0 R]
/Parent 109820 0 R
/StructParents 941
/Contents 229 0 R
/Rotate 0
/MediaBox [0 0 531 666]
/Resources <<

/Font <<
/T1_0 3914 0 R
/T1_1 3912 0 R
/T1_2 3957 0 R
/T1_3 3913 0 R
/T1_4 4576 0 R
/T1_5 3931 0 R
/T1_6 3944 0 R

>>
/ProcSet [/PDF /Text]
/ExtGState <<

/GS0 333283 0 R
>>

>>
/Type /Page

>>

Document.isStream(xref)New in version 1.14.14: PDF only: Check whether the object represented by xref is a
stream type. Return is False if not a PDF or if the number is outside the valid xref range.

Parameters xref (int) – xref number.
Returns True if the object definition is followed by data wrapped in keyword pair

stream, endstream.

Document._getNewXref()Increase the xref by one entry and return that number. This can then be used to insert anew object.
194 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

Return type int
Returns the number of the new xref entry.

Document._updateObject(xref, obj_str, page=None)Associate the object identified by string obj_str with xref, which must already exist. If
xref pointed to an existing object, this will be replaced with the new object. If a pageobject is specified, links and other annotations of this page will be reloaded after theobject has been updated.

Parameters

• xref (int) – xref number.
• obj_str (str) – a string containing a valid PDF object definition.
• page (Page) – a page object. If provided, indicates, that annotations of thispage should be refreshed (reloaded) to reflect changes incurred with linksand / or annotations.

Return type int
Returns zero if successful, otherwise an exception will be raised.

Document._getXrefLength()Return length of xref table.
Return type int
Returns the number of entries in the xref table.

Document._getXrefStream(xref)Return the decompressed stream of the object referenced by xref. For non-stream objects
None is returned.

Parameters xref (int) – xref number.
Return type bytes
Returns the (decompressed) stream of the object.

Document._updateStream(xref, stream, new=False)Replace the stream of an object identified by xref. If the object has no stream, an excep-tion is raised unless new=True is used. The function automatically performs a compressoperation (“deflate”) where beneficial.
Parameters

• xref (int) – xref number.
• stream (bytes|bytearray|BytesIO) – the new content of the stream.
Changed in version 1.14.13: io.BytesIO objects are now also supported.

• new (bool) – whether to force accepting the stream, and thus turning it into
a stream object.

7.1. Functions 195

PyMuPDF Documentation, Release 1.16.7

This method is intended to manipulate streams containing PDF operator syntax (see pp.985 of the Adobe PDF Reference 1.7) as it is the case for e.g. page content streams.
If you update a contents stream, you should use save parameter clean=True. This ensuresconsistency between PDF operator source and the object structure.
Example: Let us assume that you no longer want a certain image appear on a page. Thiscan be achieved by deleting the respective reference in its contents source(s) – and in-deed: the image will be gone after reloading the page. But the page’s resources objectwould still show the image as being referenced by the page. This save option will clean upany such mismatches.

Document._getOLRootNumber()

Return xref number of the /Outlines root object (this is not the first outline en-try!). If this object does not exist, a new one will be created.
Return type int
Returns xref number of the /Outlines root object.

Document.extractImage(xref=0)PDF Only: Extract data and meta information of an image stored in the document. Theoutput can directly be used to be stored as an image file, as input for PIL, Pixmap creation,etc. This method avoids using pixmaps wherever possible to present the image in itsoriginal format (e.g. as JPEG).
Parameters xref (int) – xref of an image object. Must be in range(1, doc.

_getXrefLength()), else an exception is raised. If the object is no image orother errors occur, an empty dictionary is returned and no exception occurs.
Return type dict
Returns

a dictionary with the following keys
• ext (str) image type (e.g. 'jpeg'), usable as image file extension
• smask (int) xref number of a stencil (/SMask) image or zero
• width (int) image width
• height (int) image height
• colorspace (int) the image’s pixmap.n number (indicative only: dependson whether internal pixmaps had to be used). Zero for JPX images.
• cs-name (str) the image’s colorspace.name.
• xres (int) resolution in x direction. Zero for JPX images.
• yres (int) resolution in y direction. Zero for JPX images.
• image (bytes) image data, usable as image file content

>>> d = doc.extractImage(25)
>>> d
{}
>>> d = doc.extractImage(1373)
>>> d

(continues on next page)

196 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
{'ext': 'png', 'smask': 2934, 'width': 5, 'height': 629, 'colorspace': 3, 'xres':␣
→˓96,
'yres': 96, 'cs-name': 'DeviceRGB',
'image': b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x05\ ...'}
>>> imgout = open("image." + d["ext"], "wb")
>>> imgout.write(d["image"])
102
>>> imgout.close()

Note: There is a functional overlap with pix = fitz.Pixmap(doc, xref), followed by a
pix.getPNGData(). Main di�erences are that extractImage (1) does not only deliver PNGimage formats, (2) is very much faster with non-PNG images, (3) usually results in muchless disk storage for extracted images, (4) generates an empty dict for non-image xrefs(generates no exception). Look at the following example images within the same PDF.
• xref 1268 is a PNG – Comparable execution time and identical output:
In [23]: %timeit pix = fitz.Pixmap(doc, 1268);pix.getPNGData()
10.8 ms ± 52.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [24]: len(pix.getPNGData())
Out[24]: 21462

In [25]: %timeit img = doc.extractImage(1268)
10.8 ms ± 86 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [26]: len(img["image"])
Out[26]: 21462

• xref 1186 is a JPEG – Document.extractImage() is thousands of times faster andproduces a much smaller output (2.48 MB vs. 0.35 MB):
In [27]: %timeit pix = fitz.Pixmap(doc, 1186);pix.getPNGData()
341 ms ± 2.86 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [28]: len(pix.getPNGData())
Out[28]: 2599433

In [29]: %timeit img = doc.extractImage(1186)
15.7 µs ± 116 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [30]: len(img["image"])
Out[30]: 371177

Document.extractFont(xref, info_only=False)PDF Only: Return an embedded font file’s data and appropriate file extension. This can beused to store the font as an external file. The method does not throw exceptions (otherthan via checking for PDF and valid xref).
Parameters

• xref (int) – PDF object number of the font to extract.
• info_only (bool) – only return font information, not the bu�er. To be usedfor information-only purposes, avoids allocation of large bu�er areas.

Return type tuple
Returns

7.1. Functions 197

PyMuPDF Documentation, Release 1.16.7

a tuple (basename, ext, subtype, buffer), where ext is a 3-byte sug-gested file extension (str), basename is the font’s name (str), subtype is thefont’s type (e.g. “Type1”) and buffer is a bytes object containing the fontfile’s content (or b""). For possible extension values and their meaning see
Font File Extensions. Return details on error:
• ("", "", "", b"") – invalid xref or xref is not a (valid) font object.
• (basename, "n/a", "Type1", b"") – basename is one of the PDF Base 14
Fonts, which cannot be extracted.

Example:
>>> # store font as an external file
>>> name, ext, buffer = doc.extractFont(4711)
>>> # assuming buffer is not None:
>>> ofile = open(name + "." + ext, "wb")
>>> ofile.write(buffer)
>>> ofile.close()

Warning: The basename is returned unchanged from the PDF. So it may contain char-acters (such as blanks) which may disqualify it as a filename for your operating system.Take appropriate action.
Document.FontInfos

Contains following information for any font inserted via Page.insertFont() in
this session of PyMuPDF:
• xref (int) – XREF number of the /Type/Font object.
• info (dict) – detail font information with the following keys:
– name (str) – name of the basefont
– idx (int) – index number for multi-font files
– type (str) – font type (like “TrueType”, “Type0”, etc.)
– ext (str) – extension to be used, when font is extracted to a file (see Font

File Extensions).
– glyphs (list) – list of glyph numbers and widths (filled by textinsertion meth-ods).

Return type list

7.2 Device

The di�erent format handlers (pdf, xps, etc.) interpret pages to a “device”. Devices are the basis foreverything that can be done with a page: rendering, text extraction and searching. The device type isdetermined by the selected construction method.
Class API

class Device

198 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

__init__(self, object, clip)Constructor for either a pixel map or a display list device.
Parameters

• object (Pixmap or DisplayList) – either a Pixmap or a DisplayList.
• clip (IRect) – An optional IRect for Pixmap devices to restrict rendering to acertain area of the page. If the complete page is required, specify None. Fordisplay list devices, this parameter must be omitted.

__init__(self, textpage, flags=0)Constructor for a text page device.
Parameters

• textpage (TextPage) – TextPage object
• flags (int) – control the way how text is parsed into the text page. Currently 3options can be coded into this parameter, see Preserve Text Flags. To set theseoptions use something like flags=0 | TEXT_PRESERVE_LIGATURES |

Note: In higher level code (Page.getText() , Document.getPageText()), the following de-cisions for creating text devices have been implemented: (1) TEXT_PRESERVE_LIGATURES and
TEXT_PRESERVE_WHITESPACES are always set, (2) TEXT_PRESERVE_IMAGES is set for JSON and HTML, oth-erwise o�.

7.3 Working together: DisplayList and TextPage

Here are some instructions on how to use these classes together.
In some situations, performance improvements may be achievable, when you fall back to the detail levelexplained here.

7.3.1 Create a DisplayList

A DisplayList represents an interpreted document page. Methods for pixmap creation, text extractionand text search are – behind the curtain – all using the page’s display list to perform their tasks. If a pagemust be rendered several times (e.g. because of changed zoom levels), or if text search and text extractionshould both be performed, overhead can be saved, if the display list is created only once and then usedfor all other tasks.
>>> dl = page.getDisplayList() # create the display list

You can also create display lists for many pages “on stack” (in a list), may be during document open,during idling times, or you store it when a page is visited for the first time (e.g. in GUI scripts).
Note, that for everything what follows, only the display list is needed – the corresponding Page objectcould have been deleted.

7.3.2 Generate Pixmap

The following creates a Pixmap from a DisplayList. Parameters are the same as for Page.getPixmap() .

7.3. Working together: DisplayList and TextPage 199

PyMuPDF Documentation, Release 1.16.7

>>> pix = dl.getPixmap() # create the page's pixmap

The execution time of this statement may be up to 50% shorter than that of Page.getPixMap().

7.3.3 Perform Text Search

With the display list from above, we can also search for text.
For this we need to create a TextPage.
>>> tp = dl.getTextPage() # display list from above
>>> rlist = tp.search("needle") # look up "needle" locations
>>> for r in rlist: # work with the found locations, e.g.

pix.invertIRect(r.irect) # invert colors in the rectangles

7.3.4 Extract Text

With the same TextPage object from above, we can now immediately use any or all of the 5 text extractionmethods.
Note: Above, we have created our text page without argument. This leads to a default argument of 3 =
fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE, IAW images will not be extracted– see below.
>>> txt = tp.extractText() # plain text format
>>> json = tp.extractJSON() # json format
>>> html = tp.extractHTML() # HTML format
>>> xml = tp.extractXML() # XML format
>>> xml = tp.extractXHTML() # XHTML format

7.3.5 Further Performance improvements

7.3.5.1 Pixmap

As explained in the Page chapter:
If you do not need transparency set alpha = 0 when creating pixmaps. This will save 25% memory (ifRGB, the most common case) and possibly 5% execution time (depending on the GUI software).
7.3.5.2 TextPage

If you do not need images extracted alongside the text of a page, you can set the following option:
>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE
>>> tp = dl.getTextPage(flags)

This will save ca. 25% overall execution time for the HTML, XHTML and JSON text extractions and hugelyreduce the amount of storage (both, memory and disk space) if the document is graphics oriented.
If you however do need images, use a value of 7 for flags:

200 Chapter 7. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.7

>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE | fitz.TEXT_PRESERVE_
→˓IMAGES

7.3. Working together: DisplayList and TextPage 201

PyMuPDF Documentation, Release 1.16.7

202 Chapter 7. Low Level Functions and Classes

CHAPTER

EIGHT

GLOSSARY

matrix_likeA Python sequence of 6 numbers.
rect_likeA Python sequence of 4 numbers.
irect_likeA Python sequence of 4 integers.
point_likeA Python sequence of 2 numbers.
quad_likeA Python sequence of 4 point_like items.
catalogA central PDF dictionary containing pointers to many other information.
contents“A content stream is a PDF stream object whose data consists of a sequence of instructions de-scribing the graphical elements to be painted on a page.” (Adobe PDF Reference 1.7 p. 151). Foran overview of the mini-language used in these streams see chapter “Operator Summary” on page985 of the Adobe PDF Reference 1.7. A PDF page can have none to many contents objects. If it hasnone, the page is empty (but still may show annotations). If it has several, they will be interpretedin sequence as if their instructions had been present in one such object (i.e. like in a concatenatedstring). It should be noted that there are more stream object types which use the same syntax: e.g.appearance dictionaries associated with annotations and Form XObjects.
resourcesA dictionary containing references to any resources (like images or fonts) required by a PDF page(required, inheritable, Adobe PDF Reference 1.7 p. 145) and certain other objects (Form XObjects).This dictionary appears as a sub-dictionary in the object definition under the key /Resources. Beingan inheritable object type, there may exist “global” resources for all pages or certain subsets ofpages.
dictionaryA PDF object type, which is somewhat comparable to the same-named Python notion: “A dictionaryobject is an associative table containing pairs of objects, known as the dictionary’s entries. The firstelement of each entry is the key and the second element is the value. The key must be a name (. . .).The value can be any kind of object, including another dictionary. A dictionary entry whose value isnull (. . .) is equivalent to an absent entry.” (Adobe PDF Reference 1.7 p. 59).

Dictionaries are the most important object type in PDF. Here is an example (describing a page):

203

PyMuPDF Documentation, Release 1.16.7

<<
/Contents 40 0 R % value: an indirect object
/Type/Page % value: a name object
/MediaBox[0 0 595.32 841.92] % value: an array object
/Rotate 0 % value: a number object
/Parent 12 0 R % value: an indirect object
/Resources<< % value: a dictionary object

/ExtGState<</R7 26 0 R>>
/Font<<

/R8 27 0 R/R10 21 0 R/R12 24 0 R/R14 15 0 R
/R17 4 0 R/R20 30 0 R/R23 7 0 R /R27 20 0 R
>>

/ProcSet[/PDF/Text] % value: array of two name objects
>>

/Annots[55 0 R] % value: array, one entry (indirect object)
>>

/Contents, /Type, /MediaBox, etc. are keys, 40 0 R, /Page, [0 0 595.32 841.92], etc. are therespective values. The strings << and >> are used to enclose object definitions.
This example also shows the syntax of nested dictionary values: /Resources has an object as itsvalue, which in turn is a dictionary with keys like /ExtGState (with the value <</R7 26 0 R>>, whichis another dictionary), etc.

page A PDF page is a dictionary object which defines one page in the document, see Adobe PDF Reference
1.7 p. 145.

pagetree“The pages of a document are accessed through a structure known as the page tree, which definesthe ordering of pages in the document. The tree structure allows PDF consumer applications, usingonly limited memory, to quickly open a document containing thousands of pages. The tree containsnodes of two types: intermediate nodes, called page tree nodes, and leaf nodes, called page objects.”(Adobe PDF Reference 1.7 p. 143).
While it is possible to list all page references in just one array, PDFs withmany pages are often createdusing balanced tree structures (“page trees”) for faster access to any single page. In relation to thetotal number of pages, this can reduce the average page access time by page number from a linearto some logarithmic order of magnitude.
For fast page access, MuPDF can use its own array in memory – independently from what may ormay not be present in the document file. This array is indexed by page number and therefore muchfaster than even the access via a perfectly balanced page tree.

objectSimilar to Python, PDF supports the notion object, which can come in eight basic types: booleanvalues, integer and real numbers, strings, names, arrays, dictionaries, streams, and the null object(Adobe PDF Reference 1.7 p. 51). Objects can be made identifyable by assigning a label. This label isthen called indirect object. PyMuPDF supports retrieving definitions of indirect objects via their label(the cross reference number) via Document._getXrefString() .
streamA PDF object type which is a sequence of bytes, similar to a string. “However, a PDF application canread a stream incrementally, while a string must be read in its entirety. Furthermore, a stream can beof unlimited length, whereas a string is subject to an implementation limit. For this reason, objectswith potentially large amounts of data, such as images and page descriptions, are represented asstreams.” “A stream consists of a dictionary followed by zero or more bytes bracketed between thekeywords stream and endstream”:

204 Chapter 8. Glossary

PyMuPDF Documentation, Release 1.16.7

nnn 0 obj
<<

dictionary definition
>>
stream
... zero or more bytes ...
endstream
endobj

See Adobe PDF Reference 1.7 p. 60. PyMuPDF supports retrieving stream content via Document.
_getXrefStream() . Use Document.isStream() to determine whether an object is of stream type.

unitvectorAmathematical notionmeaning a vector of norm (“length”) 1 – usually the Euclidean norm is implied.In PyMuPDF, this term is restricted to Point objects, see Point.unit .
xref Abbreviation for cross-reference number: this is an integer unique identification for objects in a PDF.There exists a cross-reference table (which may consist of several separate segments) in each PDF,which stores the relative position of each object for quick lookup. The cross-reference table is oneentry longer than the number of existing object: item zero is reserved and must not be used in anyway. Many PyMuPDF classes have an xref attribute (which is zero for non-PDFs), and one can findout the total number of objects in a PDF via Document._getXrefLength() .

205

PyMuPDF Documentation, Release 1.16.7

206 Chapter 8. Glossary

CHAPTER

NINE

CONSTANTS AND ENUMERATIONS

Constants and enumerations of MuPDF as implemented by PyMuPDF. Each of the following variables isaccessible as fitz.variable.

9.1 Constants

Base14_FontsPredefined Python list of valid PDF Base 14 Fonts.
Return type list

csRGBPredefined RGB colorspace fitz.Colorspace(fitz.CS_RGB).
Return type Colorspace

csGRAYPredefined GRAY colorspace fitz.Colorspace(fitz.CS_GRAY).
Return type Colorspace

csCMYKPredefined CMYK colorspace fitz.Colorspace(fitz.CS_CMYK).
Return type Colorspace

CS_RGB1 – Type of Colorspace is RGBA
Return type int

CS_GRAY2 – Type of Colorspace is GRAY
Return type int

CS_CMYK3 – Type of Colorspace is CMYK
Return type int

VersionBind‘x.xx.x’ – version of PyMuPDF (these bindings)
Return type string

VersionFitz‘x.xxx’ – version of MuPDF

207

PyMuPDF Documentation, Release 1.16.7

Return type string
VersionDateISO timestamp YYYY-MM-DD HH:MM:SS when these bindings were built.

Return type string
Note: The docstring of fitz contains information of the above which can be retrieved like so: print(fitz.
__doc__), and should look like: PyMuPDF 1.10.0: Python bindings for the MuPDF 1.10 library,
built on 2016-11-30 13:09:13.
version(VersionBind, VersionFitz, timestamp) – combined version information where timestamp is the gen-eration point in time formatted as “YYYYMMDDhhmmss”.

Return type tuple

9.2 Document Permissions

Code Permitted ActionPDF_PERM_PRINT Print the documentPDF_PERM_MODIFY Modify the document’s contentsPDF_PERM_COPY Copy or otherwise extract text and graphicsPDF_PERM_ANNOTATE Add or modify text annotations and interactive form fieldsPDF_PERM_FORM Fill in forms and sign the documentPDF_PERM_ACCESSIBILITY Obsolete, always permittedPDF_PERM_ASSEMBLE Insert, rotate, or delete pages, bookmarks, thumbnail imagesPDF_PERM_PRINT_HQ High quality printing

9.3 PDF encryption method codes

Code MeaningPDF_ENCRYPT_KEEP do not changePDF_ENCRYPT_NONE remove any encryptionPDF_ENCRYPT_RC4_40 RC4 40 bitPDF_ENCRYPT_RC4_128 RC4 128 bitPDF_ENCRYPT_AES_128 Advanced Encryption Standard 128 bitPDF_ENCRYPT_AES_256 Advanced Encryption Standard 256 bitPDF_ENCRYPT_UNKNOWN unknown

9.4 Font File Extensions

The table show file extensions you should use when extracting fonts from a PDF file.

208 Chapter 9. Constants and Enumerations

PyMuPDF Documentation, Release 1.16.7

Ext Descriptionttf TrueType fontpfa Postscript for ASCII font (various subtypes)c� Type1C font (compressed font equivalent to Type1)cid character identifier font (postscript format)otf OpenType fontn/a built-in font (PDF Base 14 Fonts or CJK: cannot be extracted)

9.5 Text Alignment

TEXT_ALIGN_LEFT0 – align left.
TEXT_ALIGN_CENTER1 – align center.
TEXT_ALIGN_RIGHT2 – align right.
TEXT_ALIGN_JUSTIFY3 – align justify.

9.6 Preserve Text Flags

Options controlling the amount of data a text device parses into a TextPage.
TEXT_PRESERVE_LIGATURES1 – If set, ligatures are passed through to the application in their original form. Otherwise liga-tures are expanded into their constituent parts, e.g. the ligature � is expanded into three eparatecharacters f, f and i.
TEXT_PRESERVE_WHITESPACE2 – If set, whitespace is passed through to the application in its original form. Otherwise any type ofhorizontal whitespace (including horizontal tabs) will be replaced with space characters of variablewidth.
TEXT_PRESERVE_IMAGES4 – If set, then images will be stored in the structured text structure.
TEXT_INHIBIT_SPACES8 – If set, we will not try to add missing space characters where there are large gaps between char-acters.

9.7 Link Destination Kinds

Possible values of linkDest.kind (link destination kind). For details consult Adobe PDF Reference 1.7,chapter 8.2 on pp. 581.
LINK_NONE0 – No destination. Indicates a dummy link.

Return type int

9.5. Text Alignment 209

PyMuPDF Documentation, Release 1.16.7

LINK_GOTO1 – Points to a place in this document.
Return type int

LINK_URI2 – Points to a URI – typically a resource specified with internet syntax.
Return type int

LINK_LAUNCH3 – Launch (open) another file (of any “executable” type).
Return type int

LINK_GOTOR5 – Points to a place in another PDF document.
Return type int

9.8 Link Destination Flags

Note: The rightmost byte of this integer is a bit field, so test the truth of these bits with the & operator.
LINK_FLAG_L_VALID1 (bit 0) Top left x value is valid

Return type bool
LINK_FLAG_T_VALID2 (bit 1) Top left y value is valid

Return type bool
LINK_FLAG_R_VALID4 (bit 2) Bottom right x value is valid

Return type bool
LINK_FLAG_B_VALID8 (bit 3) Bottom right y value is valid

Return type bool
LINK_FLAG_FIT_H16 (bit 4) Horizontal fit

Return type bool
LINK_FLAG_FIT_V32 (bit 5) Vertical fit

Return type bool
LINK_FLAG_R_IS_ZOOM64 (bit 6) Bottom right x is a zoom figure

Return type bool

210 Chapter 9. Constants and Enumerations

PyMuPDF Documentation, Release 1.16.7

9.9 Annotation Related Constants

See chapter 8.4.5, pp. 615 of the Adobe PDF Reference 1.7 for more details.
Annotation Types:
PDF_ANNOT_TEXT 0
PDF_ANNOT_LINK 1
PDF_ANNOT_FREETEXT 2
PDF_ANNOT_LINE 3
PDF_ANNOT_SQUARE 4
PDF_ANNOT_CIRCLE 5
PDF_ANNOT_POLYGON 6
PDF_ANNOT_POLYLINE 7
PDF_ANNOT_HIGHLIGHT 8
PDF_ANNOT_UNDERLINE 9
PDF_ANNOT_SQUIGGLY 10
PDF_ANNOT_STRIKEOUT 11
PDF_ANNOT_REDACT 12
PDF_ANNOT_STAMP 13
PDF_ANNOT_CARET 14
PDF_ANNOT_INK 15
PDF_ANNOT_POPUP 16
PDF_ANNOT_FILEATTACHMENT 17
PDF_ANNOT_SOUND 18
PDF_ANNOT_MOVIE 19
PDF_ANNOT_WIDGET 20
PDF_ANNOT_SCREEN 21
PDF_ANNOT_PRINTERMARK 22
PDF_ANNOT_TRAPNET 23
PDF_ANNOT_WATERMARK 24
PDF_ANNOT_3D 25

Annotation Flag Bits:
PDF_ANNOT_IS_Invisible 1 << (1-1)
PDF_ANNOT_IS_Hidden 1 << (2-1)
PDF_ANNOT_IS_Print 1 << (3-1)
PDF_ANNOT_IS_NoZoom 1 << (4-1)
PDF_ANNOT_IS_NoRotate 1 << (5-1)
PDF_ANNOT_IS_NoView 1 << (6-1)
PDF_ANNOT_IS_ReadOnly 1 << (7-1)
PDF_ANNOT_IS_Locked 1 << (8-1)
PDF_ANNOT_IS_ToggleNoView 1 << (9-1)
PDF_ANNOT_IS_LockedContents 1 << (10-1)

Annotation Line Ending Styles:
PDF_ANNOT_LE_NONE 0
PDF_ANNOT_LE_SQUARE 1
PDF_ANNOT_LE_CIRCLE 2
PDF_ANNOT_LE_DIAMOND 3
PDF_ANNOT_LE_OPEN_ARROW 4
PDF_ANNOT_LE_CLOSED_ARROW 5
PDF_ANNOT_LE_BUTT 6
PDF_ANNOT_LE_R_OPEN_ARROW 7
PDF_ANNOT_LE_R_CLOSED_ARROW 8
PDF_ANNOT_LE_SLASH 9

9.9. Annotation Related Constants 211

PyMuPDF Documentation, Release 1.16.7

9.10 Widget Constants

Widget types (field_type):
PDF_WIDGET_TYPE_UNKNOWN 0
PDF_WIDGET_TYPE_BUTTON 1
PDF_WIDGET_TYPE_CHECKBOX 2
PDF_WIDGET_TYPE_COMBOBOX 3
PDF_WIDGET_TYPE_LISTBOX 4
PDF_WIDGET_TYPE_RADIOBUTTON 5
PDF_WIDGET_TYPE_SIGNATURE 6
PDF_WIDGET_TYPE_TEXT 7

Text Widget Subtypes (text_format):
PDF_WIDGET_TX_FORMAT_NONE 0
PDF_WIDGET_TX_FORMAT_NUMBER 1
PDF_WIDGET_TX_FORMAT_SPECIAL 2
PDF_WIDGET_TX_FORMAT_DATE 3
PDF_WIDGET_TX_FORMAT_TIME 4

9.10.1 Widget flags (field_flags)

Common to all field types:
PDF_FIELD_IS_READ_ONLY 1
PDF_FIELD_IS_REQUIRED 1 << 1
PDF_FIELD_IS_NO_EXPORT 1 << 2

Text widgets:
PDF_TX_FIELD_IS_MULTILINE 1 << 12
PDF_TX_FIELD_IS_PASSWORD 1 << 13
PDF_TX_FIELD_IS_FILE_SELECT 1 << 20
PDF_TX_FIELD_IS_DO_NOT_SPELL_CHECK 1 << 22
PDF_TX_FIELD_IS_DO_NOT_SCROLL 1 << 23
PDF_TX_FIELD_IS_COMB 1 << 24
PDF_TX_FIELD_IS_RICH_TEXT 1 << 25

Button widgets:
PDF_BTN_FIELD_IS_NO_TOGGLE_TO_OFF 1 << 14
PDF_BTN_FIELD_IS_RADIO 1 << 15
PDF_BTN_FIELD_IS_PUSHBUTTON 1 << 16
PDF_BTN_FIELD_IS_RADIOS_IN_UNISON 1 << 25

Choice widgets:
PDF_CH_FIELD_IS_COMBO 1 << 17
PDF_CH_FIELD_IS_EDIT 1 << 18
PDF_CH_FIELD_IS_SORT 1 << 19
PDF_CH_FIELD_IS_MULTI_SELECT 1 << 21
PDF_CH_FIELD_IS_DO_NOT_SPELL_CHECK 1 << 22
PDF_CH_FIELD_IS_COMMIT_ON_SEL_CHANGE 1 << 26

212 Chapter 9. Constants and Enumerations

PyMuPDF Documentation, Release 1.16.7

9.11 Stamp Annotation Icons

MuPDF has defined the following icons for rubber stamp annotations:
STAMP_Approved 0
STAMP_AsIs 1
STAMP_Confidential 2
STAMP_Departmental 3
STAMP_Experimental 4
STAMP_Expired 5
STAMP_Final 6
STAMP_ForComment 7
STAMP_ForPublicRelease 8
STAMP_NotApproved 9
STAMP_NotForPublicRelease 10
STAMP_Sold 11
STAMP_TopSecret 12
STAMP_Draft 13

9.11. Stamp Annotation Icons 213

PyMuPDF Documentation, Release 1.16.7

214 Chapter 9. Constants and Enumerations

CHAPTER

TEN

COLOR DATABASE

Since the introduction of methods involving colors (like Page.drawCircle()), a requirement may be tohave access to predefined colors.
The fabulous GUI package wxPython90 has a database of over 540 predefined RGB colors, which are givenmore or less memorizable names. Among them are not only standard names like “green” or “blue”, butalso “turquoise”, “skyblue”, and 100 (not only 50 . . .) shades of “gray”, etc.
We have taken the liberty to copy this database (a list of tuples) modified into PyMuPDF and make itscolors available as PDF compatible float triples: for wxPython’s ("WHITE", 255, 255, 255) we return (1,
1, 1), which can be directly used in color and fill parameters. We also accept anymixed case of “wHiTe”to find a color.

10.1 Function getColor()

As the color database may not be needed very often, one additional import statement seems acceptableto get access to it:
>>> # "getColor" is the only method you really need
>>> from fitz.utils import getColor
>>> getColor("aliceblue")
(0.9411764705882353, 0.9725490196078431, 1.0)
>>> #
>>> # to get a list of all existing names
>>> from fitz.utils import getColorList
>>> cl = getColorList()
>>> cl
['ALICEBLUE', 'ANTIQUEWHITE', 'ANTIQUEWHITE1', 'ANTIQUEWHITE2', 'ANTIQUEWHITE3',
'ANTIQUEWHITE4', 'AQUAMARINE', 'AQUAMARINE1'] ...
>>> #
>>> # to see the full integer color coding
>>> from fitz.utils import getColorInfoList
>>> il = getColorInfoList()
>>> il
[('ALICEBLUE', 240, 248, 255), ('ANTIQUEWHITE', 250, 235, 215),
('ANTIQUEWHITE1', 255, 239, 219), ('ANTIQUEWHITE2', 238, 223, 204),
('ANTIQUEWHITE3', 205, 192, 176), ('ANTIQUEWHITE4', 139, 131, 120),
('AQUAMARINE', 127, 255, 212), ('AQUAMARINE1', 127, 255, 212)] ...

90 https://wxpython.org/

215

https://wxpython.org/

PyMuPDF Documentation, Release 1.16.7

10.2 Printing the Color Database

If you want to actually see how the many available colors look like, use scripts colordbRGB.py91 or col-ordbHSV.py92 in the examples directory. They create PDFs (already existing in the same directory) withall these colors. Their only di�erence is sorting order: one takes the RGB values, the other one the Hue-Saturation-Values as sort criteria. This is a screen print of what these files look like.

91 https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbRGB.py92 https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbHSV.py

216 Chapter 10. Color Database

https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbRGB.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbHSV.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbHSV.py

CHAPTER

ELEVEN

APPENDIX 1: PERFORMANCE

We have tried to get an impression on PyMuPDF’s performance. While we know this is very hard and a faircomparison is almost impossible, we feel that we at least should provide some quantitative information tojustify our bold comments on MuPDF’s top performance.
Following are three sections that deal with di�erent aspects of performance:

• document parsing
• text extraction
• image rendering

In each section, the same fixed set of PDF files is being processed by a set of tools. The set of tools varies– for reasons we will explain in the section.
Here is the list of files we are using. Each file name is accompanied by further in-formation: size in bytes, number of pages, number of bookmarks (toc entries), num-ber of links, text size as a percentage of file size, KB per page, PDF version and re-marks. text % and KB index are indicators for whether a file is text or graphics oriented.

E.g. Adobe.pdf and PyMuPDF.pdf are clearly text oriented, all other files contain many more images.

11.1 Part 1: Parsing

How fast is a PDF file read and its content parsed for further processing? The sheer parsing performancecannot directly be compared, because batch utilities always execute a requested task completely, in one

217

PyMuPDF Documentation, Release 1.16.7

go, front to end. pdfrw too, has a lazy strategy for parsing, meaning it only parses those parts of adocument that are required in any moment.
To yet find an answer to the question, we therefore measure the time to copy a PDF file to an output filewith each tool, and doing nothing else.
These were the tools

All tools are either platform independent, or at least can run both, on Windows and Unix / Linux (pdftk).
Poppler is missing here, because it specifically is a Linux tool set, although we know there exist Windowsports (created with considerable e�ort apparently). Technically, it is a C/C++ library, for which a Pythonbinding exists – in so far somewhat comparable to PyMuPDF. But Poppler in contrast is tightly coupled to
Qt and Cairo. We may still include it in future, when a more handy Windows installation is available. Wehave seen however some analysis93, that hints at a much lower performance than MuPDF. Our comparisonof text extraction speeds also show a much lower performance of Poppler’s PDF code base Xpdf.
Image rendering of MuPDF also is about three times faster than the one of Xpdf when comparing thecommand line tools mudraw of MuPDF and pdftopng of Xpdf – see part 3 of this chapter.

Tool DescriptionPyMuPDF tool of this manual, appearing as “fitz” in reportspdfrw a pure Python tool, is being used by rst2pdf, has interface to ReportLabPyPDF2 a pure Python tool with a very complete function setpdftk a command line utility with numerous functions
This is how each of the tools was used:
PyMuPDF:
doc = fitz.open("input.pdf")
doc.save("output.pdf")

pdfrw:
doc = PdfReader("input.pdf")
writer = PdfWriter()
writer.trailer = doc
writer.write("output.pdf")

PyPDF2:
pdfmerge = PyPDF2.PdfFileMerger()
pdfmerge.append("input.pdf")
pdfmerge.write("output.pdf")
pdfmerge.close()

pdftk:
pdftk input.pdf output output.pdf

Observations

These are our run time findings (in seconds, please note the European number convention: meaning ofdecimal point and comma is reversed):
93 http://hzqtc.github.io/2012/04/poppler-vs-mupdf.html

218 Chapter 11. Appendix 1: Performance

http://hzqtc.github.io/2012/04/poppler-vs-mupdf.html

PyMuPDF Documentation, Release 1.16.7

If we leave out the Adobe manual, this table looks like

11.1. Part 1: Parsing 219

PyMuPDF Documentation, Release 1.16.7

PyMuPDF is by far the fastest: on average 4.5 times faster than the second best (the pure Python toolpdfrw, chapeau pdfrw!), and almost 20 times faster than the command line tool pdftk.
Where PyMuPDF only requires less than 13 seconds to process all files, pdftk a�ords itself almost 4 min-utes.
By far the slowest tool is PyPDF2 – it is more than 66 times slower than PyMuPDF and 15 times slowerthan pdfrw! The main reason for PyPDF2’s bad look comes from the Adobe manual. It obviously is sloweddown by the linear file structure and the immense amount of bookmarks of this file. If we take out thisspecial case, then PyPDF2 is only 21.5 times slower than PyMuPDF, 4.5 times slower than pdfrw and 1.2times slower than pdftk.
If we look at the output PDFs, there is one surprise:
Each tool created a PDF of similar size as the original. Apart from the Adobe case, PyMuPDF always createdthe smallest output.
Adobe’s manual is an exception: The pure Python tools pdfrw and PyPDF2 reduced its size by more than20% (and yielded a document which is no longer linearized)!
PyMuPDF and pdftk in contrast drastically increased the size by 40% to about 50 MB (also no longerlinearized).
So far, we have no explanation of what is happening here.

220 Chapter 11. Appendix 1: Performance

PyMuPDF Documentation, Release 1.16.7

11.2 Part 2: Text Extraction

We also have compared text extraction speed with other tools.
The following table shows a run time comparison. PyMuPDF’s methods appear as “fitz (TEXT)” and “fitz(JSON)” respectively. The tool pdftotext.exe of the Xpdf94 toolset appears as “xpdf”.

• extractText(): basic text extraction without layout re-arrangement (using GetText(..., output =
"text"))

• pdftotext: a command line tool of the Xpdf toolset (which also is the basis of Poppler’s library95)
• extractJSON(): text extraction with layout information (using GetText(..., output = "json"))
• pdfminer: a pure Python PDF tool specialized on text extraction tasks

All tools have been used with their most basic, fanciless functionality – no layout re-arrangements, etc.
For demonstration purposes, we have included a version of GetText(doc, output = "json"), that alsore-arranges the output according to occurrence on the page.
Here are the results using the same test files as above (again: decimal point and comma reversed):

Again, (Py-) MuPDF is the fastest around. It is 2.3 to 2.6 times faster than xpdf.
pdfminer, as a pure Python solution, of course is comparatively slow: MuPDF is 50 to 60 times faster andxpdf is 23 times faster. These observations in order of magnitude coincide with the statements on this web

94 http://www.foolabs.com/xpdf/95 http://poppler.freedesktop.org/

11.2. Part 2: Text Extraction 221

http://www.foolabs.com/xpdf/
http://poppler.freedesktop.org/
http://www.unixuser.org/~euske/python/pdfminer/
http://www.unixuser.org/~euske/python/pdfminer/
http://www.unixuser.org/~euske/python/pdfminer/
http://www.unixuser.org/~euske/python/pdfminer/

PyMuPDF Documentation, Release 1.16.7

site96.

11.3 Part 3: Image Rendering

We have tested rendering speed of MuPDF against the pdftopng.exe, a command lind tool of the Xpdftoolset (the PDF code basis of Poppler).
MuPDF invocation using a resolution of 150 pixels (Xpdf default):

mutool draw -o t%d.png -r 150 file.pdf

PyMuPDF invocation:

zoom = 150.0 / 72.0
mat = fitz.Matrix(zoom, zoom)
def ProcessFile(datei):

print "processing:", datei
doc=fitz.open(datei)
for p in fitz.Pages(doc):

pix = p.getPixmap(matrix=mat, alpha = False)
pix.writePNG("t-%s.png" % p.number)
pix = None

doc.close()
return

Xpdf invocation:

pdftopng.exe file.pdf ./

The resulting runtimes can be found here (again: meaning of decimal point and comma reversed):
96 http://www.unixuser.org/~euske/python/pdfminer/

222 Chapter 11. Appendix 1: Performance

http://www.unixuser.org/~euske/python/pdfminer/
http://www.unixuser.org/~euske/python/pdfminer/

PyMuPDF Documentation, Release 1.16.7

• MuPDF and PyMuPDF are both about 3 times faster than Xpdf.
• The 2% speed di�erence betweenMuPDF (a utility written in C) and PyMuPDF is the Python overhead.

11.3. Part 3: Image Rendering 223

PyMuPDF Documentation, Release 1.16.7

224 Chapter 11. Appendix 1: Performance

CHAPTER

TWELVE

APPENDIX 2: DETAILS ON TEXT EXTRACTION

This chapter provides background on the text extraction methods of PyMuPDF.
Information of interest are

• what do they provide?
• what do they imply (processing time / data sizes)?

12.1 General structure of a TextPage

TextPage is one of PyMuPDF’s classes. It is normally created behind the curtain, when Page text extractionmethods are used, but it is also available directly. In any case, an intermediate class, DisplayList must becreated first (display lists contain interpreted pages, they also provide the input for Pixmap creation).Information contained in a TextPage has the following hierarchy. Other than its name suggests, imagesmay optionally also be part of a text page:
<page>

<text block>
<line>

<char>

<image block>

A text page consists of blocks (= roughly paragraphs).
A block consists of either lines and their characters, or an image.
A line consists of spans.
A span consists of adjacent characters with identical font properties: name, size, flags and color.

12.2 Plain Text

Function TextPage.extractText() (or Page.getText("text")) extracts a page’s plain text in original
order as specified by the creator of the document (which may not equal a natural reading order).
An example output:
>>> print(page.getText("text"))
Some text on first page.

225

PyMuPDF Documentation, Release 1.16.7

12.3 BLOCKS

Function TextPage.extractBLOCKS() (or Page.getText("blocks")) extracts a page’s text blocks as a listof items like:
(x0, y0, x1, y1, "lines in block", block_type, block_no)

Where the first 4 items are the float coordinates of the block’s bbox. The lines within each block areconcatenated by a new-line character.
This is a high-speed method with enough information to re-arrange the page’s text in natural readingorder where required.
Example output:
>>> print(page.getText("blocks"))
[(50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'Some text on first page.', 0, 0)]

12.4 WORDS

Function TextPage.extractWORDS() (or Page.getText("words")) extracts a page’s text words as a listof items like:
(x0, y0, x1, y1, "word", block_no, line_no, word_no)

Where the first 4 items are the float coordinates of the words’s bbox. The last three integers provide somemore information on the word’s whereabouts.
This is a high-speed method with enough information to extract text contained in a given rectangle.
Example output:
>>> for word in page.getText("words"):

print(word)
(50.0, 88.17500305175781, 78.73200225830078, 103.28900146484375,
'Some', 0, 0, 0)
(81.79000091552734, 88.17500305175781, 99.5219955444336, 103.28900146484375,
'text', 0, 0, 1)
(102.57999420166016, 88.17500305175781, 114.8119888305664, 103.28900146484375,
'on', 0, 0, 2)
(117.86998748779297, 88.17500305175781, 135.5909881591797, 103.28900146484375,
'first', 0, 0, 3)
(138.64898681640625, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'page.', 0, 0, 4)

12.5 HTML

TextPage.extractHTML() (or Page.getText("html") output fully reflects the structure of the page’s
TextPage – much like DICT / JSON below. This includes images, font information and text positions. Ifwrapped in HTML header and trailer code, it can readily be displayed by an internate browser. Our aboveexample:

226 Chapter 12. Appendix 2: Details on Text Extraction

PyMuPDF Documentation, Release 1.16.7

>>> for line in page.getText("html").splitlines():
print(line)

<div id="page0" style="position:relative;width:300pt;height:350pt;
background-color:white">
<p style="position:absolute;white-space:pre;margin:0;padding:0;top:88pt;
left:50pt"><span style="font-family:Helvetica,sans-serif;
font-size:11pt">Some text on first page.</p>
</div>

12.6 Controlling Quality of HTML Output

While HTML output has improved a lot in MuPDF v1.12.0, it is not yet bug-free: we have found problemsin the areas font support and image positioning.
• HTML text contains references to the fonts used of the original document. If these are not knownto the browser (a fat chance!), it will replace them with his assumptions, which probably will letthe result look awkward. This issue varies greatly by browser – on my Windows machine, MS Edgeworked just fine, whereas Firefox looked horrible.
• For PDFs with a complex structure, imagesmay not be positioned and / or sized correctly. This seemsto be the case for rotated pages and pages, where the various possible page bbox variants do notcoincide (e.g. MediaBox != CropBox). We do not know yet, how to address this – we filed a bug atMuPDF’s site.

To address the font issue, you can use a simple utility script to scan through the HTML file and replace fontreferences. Here is a little example that replaces all fonts with one of the PDF Base 14 Fonts: serifed fontswill become “Times”, non-serifed “Helvetica” and monospaced will become “Courier”. Their respectivevariations for “bold”, “italic”, etc. are hopefully done correctly by your browser:
import sys
filename = sys.argv[1]
otext = open(filename).read() # original html text string
pos1 = 0 # search start poition
font_serif = "font-family:Times" # enter ...
font_sans = "font-family:Helvetica" # ... your choices ...
font_mono = "font-family:Courier" # ... here
found_one = False # true if search successfull

while True:
pos0 = otext.find("font-family:", pos1) # start of a font spec
if pos0 < 0: # none found - we are done

break
pos1 = otext.find(";", pos0) # end of font spec
test = otext[pos0 : pos1] # complete font spec string
testn = "" # the new font spec string
if test.endswith(",serif"): # font with serifs?

testn = font_serif # use Times instead
elif test.endswith(",sans-serif"): # sans serifs font?

testn = font_sans # use Helvetica
elif test.endswith(",monospace"): # monospaced font?

testn = font_mono # becomes Courier

if testn != "": # any of the above found?
otext = otext.replace(test, testn) # change the source

(continues on next page)

12.6. Controlling Quality of HTML Output 227

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
found_one = True
pos1 = 0 # start over

if found_one:
ofile = open(filename + ".html", "w")
ofile.write(otext)
ofile.close()

else:
print("Warning: could not find any font specs!")

12.7 DICT (or JSON)

TextPage.extractDICT() (or Page.getText("dict")) output fully reflects the structure of a TextPageand provides image content and position details (bbox – boundary boxes in pixel units) for every blockand line. This information can be used to present text in another reading order if required (e.g. from top-left to bottom-right). Images are stored as bytes (bytearray in Python 2) for DICT output and base64encoded strings for JSON output.
For a visuallization of the dictionary structure have a look at Dictionary Structure of extractDICT() and
extractRAWDICT().
Here is how this looks like:
{

"width": 300.0,
"height": 350.0,
"blocks": [{

"type": 0,
"bbox": [50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375],
"lines": [{

"wmode": 0,
"dir": [1.0, 0.0],
"bbox": [50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375],
"spans": [{

"size": 11.0,
"flags": 0,
"font": "Helvetica",
"color": 0,
"text": "Some text on first page.",
"bbox": [50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375]

}]
}]

}]
}

12.8 RAWDICT

TextPage.extractRAWDICT() (or Page.getText("rawdict")) is an information superset of DICT andtakes the detail level one step deeper. It looks exactly like the above, except that the "text" items (string)are replaced by "chars" items (list). Each "chars" entry is a character dict. For example, here is what youwould see in place of item "text": "Text in black color." above:

228 Chapter 12. Appendix 2: Details on Text Extraction

PyMuPDF Documentation, Release 1.16.7

"chars": [{
"origin": [50.0, 100.0],
"bbox": [50.0, 88.17500305175781, 57.336997985839844, 103.28900146484375],
"c": "S"

}, {
"origin": [57.33700180053711, 100.0],
"bbox": [57.33700180053711, 88.17500305175781, 63.4530029296875, 103.28900146484375],
"c": "o"

}, {
"origin": [63.4530029296875, 100.0],
"bbox": [63.4530029296875, 88.17500305175781, 72.61600494384766, 103.28900146484375],
"c": "m"

}, {
"origin": [72.61600494384766, 100.0],
"bbox": [72.61600494384766, 88.17500305175781, 78.73200225830078, 103.28900146484375],
"c": "e"

}, {
"origin": [78.73200225830078, 100.0],
"bbox": [78.73200225830078, 88.17500305175781, 81.79000091552734, 103.28900146484375],
"c": " "

< ... deleted ... >
}, {

"origin": [163.11297607421875, 100.0],
"bbox": [163.11297607421875, 88.17500305175781, 166.1709747314453, 103.28900146484375],
"c": "."

}],

12.9 XML

The TextPage.extractXML() (or Page.getText("xml")) version extracts text (no images) with the detaillevel of RAWDICT:
>>> for line in page.getText("xml").splitlines():

print(line)

<page id="page0" width="300" height="350">
<block bbox="50 88.175 166.17098 103.289">
<line bbox="50 88.175 166.17098 103.289" wmode="0" dir="1 0">

<char quad="50 88.175 57.336999 88.175 50 103.289 57.336999 103.289" x="50"
y="100" color="#000000" c="S"/>
<char quad="57.337 88.175 63.453004 88.175 57.337 103.289 63.453004 103.289" x="57.337"
y="100" color="#000000" c="o"/>
<char quad="63.453004 88.175 72.616008 88.175 63.453004 103.289 72.616008 103.289" x="63.453004"
y="100" color="#000000" c="m"/>
<char quad="72.616008 88.175 78.732 88.175 72.616008 103.289 78.732 103.289" x="72.616008"
y="100" color="#000000" c="e"/>
<char quad="78.732 88.175 81.79 88.175 78.732 103.289 81.79 103.289" x="78.732"
y="100" color="#000000" c=" "/>

... deleted ...

<char quad="163.11298 88.175 166.17098 88.175 163.11298 103.289 166.17098 103.289" x="163.11298"
y="100" color="#000000" c="."/>
 (continues on next page)

12.9. XML 229

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
</line>
</block>
</page>

Note: We have successfully tested lxml97 to interpret this output.

12.10 XHTML

TextPage.extractXHTML() (or Page.getText("xhtml")) is a variation of TEXT but in HTML format, con-taining the bare text and images (“semantic” output):
<div id="page0">
<p>Some text on first page.</p>
</div>

12.11 Text Extraction Flags Defaults

New in version 1.16.2: Method Page.getText() supports a keyword parameter flags (int) to control theamount and the quality of extracted data. The following table shows the defaults settings (flags parameteromitted or None) for each extraction variant. A description of the respective bit settings can be found in
Preserve Text Flags.

Indicator text html xhtml xml dict rawdict words blockspreserve ligatures 1 1 1 1 1 1 1 1preserve whitespace 1 1 1 1 1 1 1 1preserve images n/a 1 1 n/a 1 1 n/a 0inhibit spaces 0 0 0 0 0 0 0 0
• “json” is handled exactly like “dict” and is hence left out.
• An “n/a” specification means a value of 0 and setting this bit never has any e�ect on the output (butan adverse e�ect on performance).
• If you are not interested in images when using an output variant which includes them by default,then by all means set the respective bit o�: You will experience a better performance and muchlower space requirements.

To show the e�ect of TEXT_INHIBIT_SPACES have a look at this example:
>>> print(page.getText("text"))
H a l l o !
Mo r e t e x t
i s f o l l o w i n g
i n E n g l i s h
. . . l e t ' s s e e
w h a t h a p p e n s .
>>> print(page.getText("text", flags=fitz.TEXT_INHIBIT_SPACES))

(continues on next page)
97 https://pypi.org/project/lxml/

230 Chapter 12. Appendix 2: Details on Text Extraction

https://pypi.org/project/lxml/

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
Hallo!
More text
is following
in English
... let's see
what happens.
>>>

12.12 Performance

The text extraction methods di�er significantly: in terms of information they supply, and in terms of re-source requirements and runtimes. Generally, more information of course means that more processing isrequired and a higher data volume is generated.
Note: Especially images have a very significant impact. Make sure to exclude them (via the flags pa-rameter) whenever you do not need them. To process the below mentioned 2‘700 total pages with defaultflags settings required 160 seconds across all extraction methods. When all images where excluded, lessthan 50% of that time (77 seconds) were needed.
To begin with, all methods are very fast in relation to other products out there in the market. In termsof processing speed, we are not aware of a faster (free) tool. Even the most detailed method, RAWDICT,processes all 1‘310 pages of the Adobe PDF Reference 1.7 in less than 5 seconds (simple text needs lessthan 2 seconds here).
The following table shows average relative speeds (“RSpeed”, baseline 1.00 is TEXT), taken across ca.1400 text-heavy and 1300 image-heavy pages.

Method RSpeed Comments no imagesTEXT 1.00 no images, plain text, line breaks 1.00BLOCKS 1.00 image bboxes (only), block level text with bboxes, line breaks 1.00WORDS 1.02 no images, word level text with bboxes 1.02XML 2.72 no images, char level text, layout and font details 2.72XHTML 3.32 base64 images, span level text, no layout info 1.00HTML 3.54 base64 images, span level text, layout and font details 1.01DICT 3.93 binary images, span level text, layout and font details 1.04RAWDICT 4.50 binary images, char level text, layout and font details 1.68
As mentioned: when excluding all images (last column), the relative speeds are changing drastically: ex-cept RAWDICT and XML, the other methods are almost equally fast, and RAWDICT requires 40% lessexecution time than the now slowest XML.
Look at chapter Appendix 1 for more performance information.

12.12. Performance 231

PyMuPDF Documentation, Release 1.16.7

232 Chapter 12. Appendix 2: Details on Text Extraction

CHAPTER

THIRTEEN

APPENDIX 3: CONSIDERATIONS ON EMBEDDED FILES

This chapter provides some background on embedded files support in PyMuPDF.

13.1 General

Starting with version 1.4, PDF supports embedding arbitrary files as part (“Embedded File Streams”) of aPDF document file (see chapter 3.10.3, pp. 184 of the Adobe PDF Reference 1.7).
Inmany aspects, this is comparable to concepts also found in ZIP files or the OLE technique inMSWindows.PDF embedded files do, however, not support directory structures as does the ZIP format. An embeddedfile can in turn contain embedded files itself.
Advantages of this concept are that embedded files are under the PDF umbrella, benefitting from its per-missions / password protection and integrity aspects: all data, which a PDF may reference or even may bedependent on, can be bundled into it and so form a single, consistent unit of information.
In addition to embedded files, PDF 1.7 adds collections to its support range. This is an advanced way ofstoring and presenting meta information (i.e. arbitrary and extensible properties) of embedded files.

13.2 MuPDF Support

After adding initial support for collections (portfolios) and /EmbeddedFiles in MuPDF version 1.11, thissupport was dropped again in version 1.15.
As a consequence, the cli utility mutool no longer o�ers access to embedded files.
PyMuPDF – having implemented an /EmbeddedFiles API in response in its version 1.11.0 – was thereforeforced to change gears starting with its version 1.16.0 (we never published a MuPDF v1.15.x compatiblePyMuPDF).
We are now maintaining our own code basis supporting embedded files. This code makes use of basicMuPDF dictionary and array functions only.

13.3 PyMuPDF Support

We continue to support the full old API with respect to embedded files – with only minor, cosmetic changes.
There even also is a new function, which delivers a list of all names under which embedded data areresgistered in a PDF, Document.embeddedFileNames() .

233

PyMuPDF Documentation, Release 1.16.7

234 Chapter 13. Appendix 3: Considerations on Embedded Files

CHAPTER

FOURTEEN

APPENDIX 4: ASSORTED TECHNICAL INFORMATION

14.1 PDF Base 14 Fonts

The following 14 builtin font namesmustbe supportedbyeveryPDFviewer application. They are availableas a dictionary, whichmaps their full names amd their abbreviations in lower case to the full font basename.Whereever a fontname must be provided in PyMuPDF, any key or value from the dictionary may be used:
In [2]: fitz.Base14_fontdict
Out[2]:
{'courier': 'Courier',
'courier-oblique': 'Courier-Oblique',
'courier-bold': 'Courier-Bold',
'courier-boldoblique': 'Courier-BoldOblique',
'helvetica': 'Helvetica',
'helvetica-oblique': 'Helvetica-Oblique',
'helvetica-bold': 'Helvetica-Bold',
'helvetica-boldoblique': 'Helvetica-BoldOblique',
'times-roman': 'Times-Roman',
'times-italic': 'Times-Italic',
'times-bold': 'Times-Bold',
'times-bolditalic': 'Times-BoldItalic',
'symbol': 'Symbol',
'zapfdingbats': 'ZapfDingbats',
'helv': 'Helvetica',
'heit': 'Helvetica-Oblique',
'hebo': 'Helvetica-Bold',
'hebi': 'Helvetica-BoldOblique',
'cour': 'Courier',
'coit': 'Courier-Oblique',
'cobo': 'Courier-Bold',
'cobi': 'Courier-BoldOblique',
'tiro': 'Times-Roman',
'tibo': 'Times-Bold',
'tiit': 'Times-Italic',
'tibi': 'Times-BoldItalic',
'symb': 'Symbol',
'zadb': 'ZapfDingbats'}

In contrast to their obligation, not all PDF viewers support these fonts correctly and completely – thisis especially true for Symbol and ZapfDingbats. Also, the glyph (visual) images will be specific to everyreader.
To see how these fonts can be used – including the CJK built-in fonts – look at the table in Page.
insertFont() .

235

PyMuPDF Documentation, Release 1.16.7

14.2 Adobe PDF Reference 1.7

This PDF Reference manual published by Adobe is frequently quoted throughout this documentation. Itcan be viewed and downloaded from here98.

14.3 Using Python Sequences as Arguments in PyMuPDF

When PyMuPDF objects and methods require a Python list of numerical values, other Python sequence
types are also allowed. Python classes are said to implement the sequence protocol, if they have a
__getitem__() method.
This basically means, you can interchangeably use Python list or tuple or even array.array, numpy.
array and bytearray types in these cases.
For example, specifying a sequence "s" in any of the following ways

• s = [1, 2]

• s = (1, 2)

• s = array.array("i", (1, 2))

• s = numpy.array((1, 2))

• s = bytearray((1, 2))

will make it usable in the following example expressions:
• fitz.Point(s)

• fitz.Point(x, y) + s

• doc.select(s)

Similarly with all geometry objects Rect, IRect, Matrix and Point.
Because all PyMuPDF geometry classes themselves are special cases of sequences, they (with the excep-tion of Quad – see below) can be freely used where numerical sequences can be used, e.g. as argumentsfor functions like list(), tuple(), array.array() or numpy.array(). Look at the following snippet to seethis work.
>>> import fitz, array, numpy as np
>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>>
>>> list(m)
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
>>>
>>> tuple(m)
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
>>>
>>> array.array("f", m)
array('f', [1.0, 2.0, 3.0, 4.0, 5.0, 6.0])

(continues on next page)
98 http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

236 Chapter 14. Appendix 4: Assorted Technical Information

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

PyMuPDF Documentation, Release 1.16.7

(continued from previous page)
>>>
>>> np.array(m)
array([1., 2., 3., 4., 5., 6.])

Note: Quad is a Python sequence object as well and has a length of 4. Its items however are point_like– not numbers. Therefore, the above remarks do not apply.

14.4 Ensuring Consistency of Important Objects in PyMuPDF

PyMuPDF is a Python binding for the C library MuPDF. While a lot of e�ort has been invested by MuPDF’screators to approximate some sort of an object-oriented behavior, they certainly could not overcome basicshortcomings of the C language in that respect.
Python on the other hand implements the OO-model in a very clean way. The interface code betweenPyMuPDF and MuPDF consists of two basic files: fitz.py and fitz_wrap.c. They are created by theexcellent SWIG tool for each new version.
When you use one of PyMuPDF’s objects or methods, this will result in excution of some code in fitz.py,which in turn will call some C code compiled with fitz_wrap.c.
Because SWIG goes a long way to keep the Python and the C level in sync, everything works fine, if acertain set of rules is being strictly followed. For example: never access a Page object, after you haveclosed (or deleted or set to None) the owning Document. Or, less obvious: never access a page or anyof its children (links or annotations) after you have executed one of the document methods select(),
deletePage(), insertPage() . . . and more.
But just no longer accessing invalidated objects is actually not enough: They should rather be activelydeleted entirely, to also free C-level resources (meaning allocated memory).
The reason for these rules lies in the fact that there is a hierachical 2-level one-to-many relationship be-tween a document and its pages and also between a page and its links / annotations. To maintain a con-sistent situation, any of the above actions must lead to a complete reset – in Python and, synchronously,
in C.
SWIG cannot know about this and consequently does not do it.
The required logic has therefore been built into PyMuPDF itself in the following way.

1. If a page “loses” its owning document or is being deleted itself, all of its currently existing annota-tions and links will be made unusable in Python, and their C-level counterparts will be deleted anddeallocated.
2. If a document is closed (or deleted or set to None) or if its structure has changed, then simi-larly all currently existing pages and their children will be made unusable, and corresponding C-level deletions will take place. “Structure changes” include methods like select(), delePage(),

insertPage(), insertPDF() and so on: all of these will result in a cascade of object deletions.
The programmer will normally not realize any of this. If he, however, tries to access invalidated objects,exceptions will be raised.
Invalidated objects cannot be directly deleted as with Python statements like del page or page = None,etc. Instead, their __del__ method must be invoked.

14.4. Ensuring Consistency of Important Objects in PyMuPDF 237

PyMuPDF Documentation, Release 1.16.7

All pages, links and annotations have the property parent, which points to the owning object. This isthe property that can be checked on the application level: if obj.parent == None then the object’s par-ent is gone, and any reference to its properties or methods will raise an exception informing about this“orphaned” state.
A sample session:
>>> page = doc[n]
>>> annot = page.firstAnnot
>>> annot.type # everything works fine
[5, 'Circle']
>>> page = None # this turns 'annot' into an orphan
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>>
>>> # same happens, if you do this:
>>> annot = doc[n].firstAnnot # deletes the page again immediately!
>>> annot.type # so, 'annot' is 'born' orphaned
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

This shows the cascading e�ect:
>>> doc = fitz.open("some.pdf")
>>> page = doc[n]
>>> annot = page.firstAnnot
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>> annot.type
[5, 'Circle']
>>> del doc # or doc = None or doc.close()
>>> page.rect
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

Note: Objects outside the above relationship are not included in this mechanism. If you e.g. created atable of contents by toc = doc.getToC(), and later close or change the document, then this cannot anddoes not change variable toc in any way. It is your responsibility to refresh such variables as required.

14.5 Design of Method Page.showPDFpage()

14.5.1 Purpose and Capabilities

The method displays an image of a (“source”) page of another PDF document within a specified rectangleof the current (“containing”, “target”) page.
• In contrast to Page.insertImage() , this display is vector-based and hence remains accurate acrosszooming levels.

238 Chapter 14. Appendix 4: Assorted Technical Information

PyMuPDF Documentation, Release 1.16.7

• Just like Page.insertImage() , the size of the display is adjusted to the given rectangle.
The following variations of the display are currently supported:

• Bool parameter keep_proportion controls whether to maintain the aspect ratio (default) or not.
• Rectangle parameter clip restricts the visible part of the source page rectangle. Default is the fullpage.
• float rotation rotates the display by an arbitrary angle (degrees). If the angle is not an integermultiple of 90, only 2 of the 4 cornersmay be positioned on the target border if also keep_proportionis true.
• Bool parameter overlay controls whether to put the image on top (foreground, default) of currentpage content or not (background).

Use cases include (but are not limited to) the following:
1. “Stamp” a series of pages of the current document with the same image, like a company logo or awatermark.
2. Combine arbitrary input pages into one output page to support “booklet” or double-sided printing(known as “4-up”, “n-up”).
3. Split up (large) input pages into several arbitrary pieces. This is also called “posterization”, becauseyou e.g. can split an A4 page horizontally and vertically, print the 4 pieces enlarged to separate A4pages, and end up with an A2 version of your original page.

14.5.2 Technical Implementation

This is done using PDF “Form XObjects”, see section 4.9 on page 355 of Adobe PDF Reference 1.7. Onexecution of a Page.showPDFpage(rect, src, pno, ...), the following things happen:
1. The resources and contents objects of page pno in document src are copied over to the currentdocument, jointly creating a new Form XObject with the following properties. The PDF xref numberof this object is returned by the method.

a. /BBox equals /Mediabox of the source page
b. /Matrix equals the identity matrix [1 0 0 1 0 0]

c. /Resources equals that of the source page. This involves a “deep-copy” of hierarchi-cally nested other objects (including fonts, images, etc.). The complexity involved hereis covered by MuPDF’s grafting99 technique functions.
d. This is a stream object type, and its stream is an exact copy of the combined data ofthe source page’s /Contents objects.

This step is only executed once per shown source page. Subsequent displays of the samepage only create pointers (done in next step) to this object.
99 MuPDF supports “deep-copying” objects between PDF documents. To avoid duplicate data in the target, it uses so-called“graftmaps”, like a form of scratchpad: for each object to be copied, its xref number is looked up in the graftmap. If found,copying is skipped. Otherwise, the new xref is recorded and the copy takes place. PyMuPDF makes use of this technique in twoplaces so far: Document.insertPDF() and Page.showPDFpage() . This process is fast and very e�cient, because it prevents multiplecopies of typically large and frequently referenced data, like images and fonts. However, you may still want to consider using garbagecollection (option 4) in any of the following cases:1. The target PDF is not new / empty: grafting does not check for resource types that already existed (e.g. images, fonts) in thetarget document
2. Using Page.showPDFpage() for more than one source document: each grafting occurs within one source PDF only, not acrossmultiple.

14.5. Design of Method Page.showPDFpage() 239

PyMuPDF Documentation, Release 1.16.7

2. A second Form XObject is then created which the target page uses to invoke the display. This objecthas the following properties:
a. /BBox equals the /CropBox of the source page (or clip).
b. /Matrix represents the mapping of /BBox to the target rectangle.
c. /XObject references the previous XObject via the fixed name fullpage.
d. The stream of this object contains exactly one fixed statement: /fullpage Do.

3. The resources and contents objects of the target page are now modified as follows.
a. Add an entry to the /XObject dictionary of /Resources with the name fzFrm<n> (with n chosensuch that this entry is unique on the page).
b. Depending on overlay, prepend or append a new object to the page’s /Contents array, con-taining the statement q /fzFrm<n> Do Q.

14.6 Redirecting Error and Warning Messages

Since MuPDF version 1.16 error and warning messages can be redirected via an o�cial plugin.
PyMuPDF will put error messages to sys.stderr prefixed with the string “mupdf:”. Warnings are internallystored and can be accessed via fitz.TOOLS.mupdf_warnings(). There also is a function to empty thisstore.

240 Chapter 14. Appendix 4: Assorted Technical Information

CHAPTER

FIFTEEN

CHANGE LOGS

15.1 Changes in Version 1.16.7

Minor changes to better synchronize the binary image streams of TextPage image blocks and Document.
extractImage() images.

• Fixed issue #394 (“PyMuPDF Segfaults when using TOOLS.mupdf_warnings()”).
• Changed redirection of MuPDF error messages: apart from writing them to Python sys.stderr, theyare now also stored with the MuPDF warnings.
• Changed Tools.mupdf_warnings() to automatically empty the store (if not deactivated via a pa-rameter).
• Changed Page.getImageBbox() to return an infinite rectangle if the image could not be located onthe page – instead of raising an exception.

15.2 Changes in Version 1.16.6

• Fixed issue #390 (“Incomplete deletion of annotations”).
• Changed Page.searchFor() / Document.searchPageFor() to also support the flags parameter,which controls the data included in a TextPage.
• Changed Document.getPageImageList() , Document.getPageFontList() and their Page counter-parts to support a new parameter full. If true, the returned items will contain the xref of the Form
XObject where the font or image is referenced.

15.3 Changes in Version 1.16.5

More performance improvements for text extraction.
• Fixed second part of issue #381 (see item in v1.16.4).
• Added Page.getTextPage() , so it is no longer required to create an intermediate display list for textextractions. Page level wrappers for text extraction and text searching are now based on this, whichshould improve performance by ca. 5%.

241

PyMuPDF Documentation, Release 1.16.7

15.4 Changes in Version 1.16.4

• Fixed issue #381 (“TextPage.extractDICT . . . failed . . . after upgrading . . . to 1.16.3”)
• Added method Document.pages() which delivers a generator iterator over a page range.
• Added method Page.links() which delivers a generator iterator over the links of a page.
• Added method Page.annots() which delivers a generator iterator over the annotations of a page.
• Added method Page.widgets() which delivers a generator iterator over the form fields of a page.
• Changed Document.isFormPDF to now contain the number of widgets, and False if not a PDF or thisnumber is zero.

15.5 Changes in Version 1.16.3

Minor changes compared to version 1.16.2. The code of the “dict” and “rawdict” variants of Page.
getText() has been ported to C which has greatly improved their performance. This improvement ismostly noticeable with text-oriented documents, where they now should execute almost two times faster.

• Fixed issue #369 (“mupdf: cmsCreateTransform failed”) by removing ICC colorspace support.
• Changed Page.getText() to accept additional keywords “blocks” and “words”. These will deliverthe results of Page.getTextBlocks() and Page.getTextWords() , respectively. So all text extrac-tion methods are now available via a uniform API. Correspondingly, there are now new methods
TextPage.extractBLOCKS() and TextPage.extractWords().

• Changed Page.getText() to default bit indicator TEXT_INHIBIT_SPACES to o�. Insertion of addi-tional spaces is not suppressed by default.

15.6 Changes in Version 1.16.2

• Changed text extraction methods of Page to allow detail control of the amount of extracted data.
• Added planishLine() which maps a given line (defined as a pair of points) to the x-axis.
• Fixed an issue (w/o Github number) which brought down the interpreter when encountering certainnon-UTF-8 encodable characters while using Page.getText() with te “dict” option.
• Fixed issue #362 (“Memory Leak with getText(‘rawDICT’)”).

15.7 Changes in Version 1.16.1

• Added property Quad.isConvex which checks whether a line is contained in the quad if it connectstwo points of it.
• Changed Document.insertPDF() to now allow dropping or including links and annotations indepen-dently during the copy. Fixes issue #352 (“Corrupt PDF data and . . . ”), which seemed to intermit-tently occur when using the method for some problematic PDF files.
• Fixed a bug which, in matrix division using the syntax "m1/m2", caused matrix "m1" to be replacedby the result instead of delivering a new matrix.

242 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

• Fixed issue #354 (“SyntaxWarning with Python 3.8”). We now always use "==" for literals (insteadof the "is" Python keyword).
• Fixed issue #353 (“mupdf version check”), to no longer refuse the import when there are only patchlevel deviations from MuPDF.

15.8 Changes in Version 1.16.0

This major new version of MuPDF comes with several nice new or changed features. Some of them implyprogramming API changes, however. This is a synopsis of what has changed:
• PDF document encryption and decryption is now fully supported. This includes setting permissions,
passwords (user and owner passwords) and the desired encryption method.

• In response to the new encryption features, PyMuPDF returns an integer (ie. a combination of bits)for document permissions, and no longer a dictionary.
• Redirection of MuPDF errors and warnings is now natively supported. PyMuPDF redirects error mes-sages from MuPDF to sys.stderr and no longer bu�ers them. Warnings continue to be bu�ered andwill not be displayed. Functions exist to access and reset the warnings bu�er.
• Annotations are now only supported for PDF.
• Annotations and widgets (form fields) are now separate object chains on a page (although widgetstechnically still are PDF annotations). This means, that you will never encounterwidgetswhen using
Page.firstAnnot or Annot.next() . Youmust use Page.firstWidget and Widget.next() to accessform fields.

• As part of MuPDF’s changes regarding widgets, only the following four fonts are supported, when
adding or changing form fields: Courier, Helvetica, Times-Roman and ZapfDingBats.

List of change details:
• Added Document.can_save_incrementally() which checks conditions that are preventing use ofoption incremental=True of Document.save() .
• Added Page.firstWidget which points to the first field on a page.
• Added Page.getImageBbox() which returns the rectangle occupied by an image shown on the page.
• Added Annot.setName() which lets you change the (icon) name field.
• Added outputting the text color in Page.getText() : the "dict", "rawdict" and "xml" options nowalso show the color in sRGB format.
• Changed Document.permissions to now contain an integer of bool indicators – was a dictionarybefore.
• Changed Document.save() , Document.write() , which now fully support password-based decryp-tion and encryption of PDF files.
• Changed the names of all Python constants related to annotations and widgets. Please make sureto consult the Constants and Enumerations chapter if your script is dealing with these two classes.This decision goes back to the dropped support for non-PDF annotations. The old names (startingwith “ANNOT_*” or “WIDGET_*”) will be available as deprecated synonyms.
• Changed font support for widgets: only Cour (Courier), Helv (Helvetica, default), TiRo (Times-Roman) and ZaDb (ZapfDingBats) are accepted when adding or changing form fields. Only the plainversions are possible – not their italic or bold variations. Reading widgets, however will show itsoriginal font.

15.8. Changes in Version 1.16.0 243

PyMuPDF Documentation, Release 1.16.7

• Changed the name of the warnings bu�er to Tools.mupdf_warnings() and the function to emptythis bu�er is now called Tools.reset_mupdf_warnings() .
• Changed Page.getPixmap() , Document.getPagePixmap() : a new bool argument annots can nowbe used to suppress the rendering of annotations on the page.
• Changed Page.addFileAnnot() and Page.addTextAnnot() to enable setting an icon.
• Removed widget-related methods and attributes from the Annot object.
• Removed Document attributes openErrCode, openErrMsg, and Tools attributes / methods stderr,
reset_stderr, stdout, and reset_stdout.

• Removed thirdparty zlib dependency in PyMuPDF: there are now compression functions available inMuPDF. Source installers of PyMuPDF may now omit this extra installation step.

15.9 No version published for MuPDF v1.15.0

15.10 Changes in Version 1.14.20 / 1.14.21

• Changed text marker annotations to support multiple rectangles / quadrilaterals. This fixes issue#341 (“Question : How to addhighlight so that a string spread across more than a line is covered byone highlight?”) and similar (#285).
• Fixed issue #331 (“Importing PyMuPDF changes warning filtering behaviour globally”).

15.11 Changes in Version 1.14.19

• Fixed issue #319 (“InsertText function error when use custom font”).
• Added newmethod Document.getSigFlags() which returns information on whether a PDF is signed.Resolves issue #326 (“How to detect signature in a form pdf?”).

15.12 Changes in Version 1.14.17

• Added Document.fullcopyPage() to make full page copies within a PDF (not just copied referencesas Document.copyPage() does).
• Changed Page.getPixmap() , Document.getPagePixmap() now use alpha=False as default.
• Changed text extraction: the span dictionary now (again) contains its rectangle under the bbox key.
• Changed Document.movePage() and Document.copyPage() to use direct functions instead of wrap-ping Document.select() – similar to Document.deletePage() in v1.14.16.

15.13 Changes in Version 1.14.16

• Changed Documentmethods around PDF /EmbeddedFiles to no longer useMuPDF’s “portfolio” func-tions. That support will be dropped in MuPDF v1.15 – therefore another solution was required.
• Changed Document.embeddedFileCount() to be a function (was an attribute).

244 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

• Added new method Document.embeddedFileNames() which returns a list of names of embeddedfiles.
• Changed Document.deletePage() and Document.deletePageRange() to internally no longer use
Document.select() , but instead use functions to perform the deletion directly. As it has turned out,the Document.select() method yields invalid outline trees (tables of content) for very complex PDFsand sophisticated use of annotations.

15.14 Changes in Version 1.14.15

• Fixed issues #301 (“Line cap and Line join”), #300 (“How to draw a shape without outlines”) and#298 (“utils.updateRect exception”). These bugs pertain to drawing shapes with PyMuPDF. Drawingshapes without any border is fully supported. Line cap styles and line line join style are now dif-ferentiated and support all possible PDF values (0, 1, 2) instead of just being a bool. The previousparameter roundCap is deprecated in favor of lineCap and lineJoin and will be deleted in the nextrelease.
• Fixed issue #290 (“Memory Leak with getText(‘rawDICT’)”). This bug caused memory not being(completely) freed after invoking the “dict”, “rawdict” and “json” versions of Page.getText() .

15.15 Changes in Version 1.14.14

• Added new low-level function ImageProperties() to determine a number of characteristics for animage.
• Added new low-level function Document.isStream() , which checks whether an object is of streamtype.
• Changed low-level functions Document._getXrefString() and Document._getTrailerString()now by default return object definitions in a formatted form which makes parsing easy.

15.16 Changes in Version 1.14.13

• Changed methods working with binary input: while ever supporting bytes and bytearray objects,they now also accept io.BytesIO input, using their getvalue() method. This pertains to documentcreation, embedded files, FileAttachment annotations, pixmap creation and others. Fixes issue #274(“Segfault when using BytesIO as a stream for insertImage”).
• Fixed issue #278 (“Is insertImage(keep_proportion=True) broken?”). Images are now correctlypresented when keeping aspect ratio.

15.17 Changes in Version 1.14.12

• Changed the draw methods of Page and Shape to support not only RGB, but also GRAY and CMYKcolorspaces. This solves issue #270 (“Is there a way to use CMYK color to draw shapes?”). Thischange also applies to text insertion methods of Shape, resp. Page.
• Fixed issue #269 (“AttributeError in Document.insertPage()”), which occurred when using
Document.insertPage() with text insertion.

15.14. Changes in Version 1.14.15 245

PyMuPDF Documentation, Release 1.16.7

15.18 Changes in Version 1.14.11

• Changed Page.showPDFpage() to always position the source rectangle centered in the target. Thismethod now also supports rotation by arbitrary angles. The argument reuse_xref has been dep-recated: prevention of duplicates is now handled internally.
• Changed Page.insertImage() to support rotated display of the image and keeping the aspect ratio.Only rotations by multiples of 90 degrees are supported here.
• Fixed issue #265 (“TypeError: insertText() got an unexpected keyword argument ‘idx’”). This issueonly occurred when using Document.insertPage() with also inserting text.

15.19 Changes in Version 1.14.10

• Changed Page.showPDFpage() to support rotation of the source rectangle. Fixes #261 (“Cannotrotate insterted pages”).
• Fixed a bug in Page.insertImage() which prevented insertion of multiple images provided asstreams.

15.20 Changes in Version 1.14.9

• Added new low-level method Document._getTrailerString() , which returns the trailer object of aPDF. This is much like Document._getXrefString() except that the PDF trailer has no / needs no
xref to identify it.

• Added new parameters for text insertion methods. You can now set stroke and fill colors of glyphs(text characters) independently, as well as the thickness of the glyph border. A new parameter
render_mode controls the use of these colors, and whether the text should be visible at all.

• Fixed issue #258 (“Copying image streams to new PDF without size increase”): For JPX imagesembedded in a PDF, Document.extractImage() will now return them in their original format. Previ-ously, the MuPDF base library was used, which returns them in PNG format (entailing a massive sizeincrease).
• Fixed issue #259 (“Morphing text to fit inside rect”). Clarified use of getTextlength() and removedextra line breaks for long words.

15.21 Changes in Version 1.14.8

• Added Pixmap.setRect() to change the pixel values in a rectangle. This is also an alternative tosetting the color of a complete pixmap (Pixmap.clearWith()).
• Fixed an image extraction issue with JBIG2 (monochrome) encoded PDF images. The issue occurredin Page.getText() (parameters “dict” and “rawdict”) and in Document.extractImage() methods.
• Fixed an issue with not correctly clearing a non-alpha Pixmap (Pixmap.clearWith()).
• Fixed an issue with not correctly inverting colors of a non-alpha Pixmap (Pixmap.invertIRect()).

246 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

15.22 Changes in Version 1.14.7

• Added Pixmap.setPixel() to change one pixel value.
• Added documentation for image conversion in the Collection of Recipes.
• Added new function getTextlength() to determine the string length for a given font.
• Added Postscript image output (changed Pixmap.writeImage() and Pixmap.getImageData()).
• Changed Pixmap.writeImage() and Pixmap.getImageData() to ensure valid combinations of col-orspace, alpha and output format.
• Changed Pixmap.writeImage() : the desired format is now inferred from the filename.
• Changed FreeText annotations can now have a transparent background - see Annot.update() .

15.23 Changes in Version 1.14.5

• Changed: Shapemethods now strictly use the transformation matrix of the Page – instead of “man-ually” calculating locations.
• Added method Pixmap.pixel() which returns the pixel value (a list) for given pixel coordinates.
• Added method Pixmap.getImageData() which returns a bytes object representing the pixmap in avariety of formats. Previously, this could be done for PNG outputs only (Pixmap.getPNGData()).
• Changed: output of methods Pixmap.writeImage() and (the new) Pixmap.getImageData() maynow also be PSD (Adobe Photoshop Document).
• Added method Shape.drawQuad() which draws a Quad. This actually is a shorthand for a Shape.
drawPolyline() with the edges of the quad.

• Changed method Shape.drawOval() : the argument can now be either a rectangle (rect_like) ora quadrilateral (quad_like).

15.24 Changes in Version 1.14.4

• Fixes issue #239 “Annotation coordinate consistency”.

15.25 Changes in Version 1.14.3

This patch version contains minor bug fixes and CJK font output support.
• Added support for the four CJK fonts as PyMuPDF generated text output. This pertains to meth-ods Page.insertFont() , Shape.insertText() , Shape.insertTextbox() , and corresponding Pagemethods. The new fonts are available under “reserved” fontnames “china-t” (traditional Chinese),“china-s” (simplified Chinese), “japan” (Japanese), and “korea” (Korean).
• Added full support for the built-in fonts ‘Symbol’ and ‘Zapfdingbats’.
• Changed: The 14 standard fonts can now each be referenced by a 4-letter abbreviation.

15.22. Changes in Version 1.14.7 247

PyMuPDF Documentation, Release 1.16.7

15.26 Changes in Version 1.14.1

This patch version contains minor performance improvements.
• Added support for Document filenames given as pathlib object by using the Python str() function.

15.27 Changes in Version 1.14.0

To support MuPDF v1.14.0, massive changes were required in PyMuPDF – most of them purely technical,with little visibility to developers. But there are also quite a lot of interesting new and improved features.Following are the details:
• Added “ink” annotation.
• Added “rubber stamp” annotation.
• Added “squiggly” text marker annotation.
• Added new class Quad (quadrilateral or tetragon) – which represents a general four-sided shape inthe plane. The special subtype of rectangular, non-empty tetragons is used in text marker annota-tions and as returned objects in text search methods.
• Added a new option “decrypt” to Document.save() and Document.write() . Now you can keep
encryption when saving a password protected PDF.

• Added suppression and redirection of unsolicited messages issued by the underlying C-libraryMuPDF. Consult Redirecting Error and Warning Messages for details.
• Changed: Changes to annotations now always require Annot.update() to become e�ective.
• Changed free text annotations to support the full Latin character set and range of appearance op-tions.
• Changed text searching, Page.searchFor() , to optionally return Quad instead Rect objects sur-rounding each search hit.
• Changed plain text output: we now add a \n to each line if it does not itself end with this character.
• Fixed issue 211 (“Something wrong in the doc”).
• Fixed issue 213 (“Rewritten outline is displayed only by mupdf-based applications”).
• Fixed issue 214 (“PDF decryption GONE!”).
• Fixed issue 215 (“Formatting of links added with pyMuPDF”).
• Fixed issue 217 (“extraction through json is failing for my pdf”).

Behind the curtain, we have changed the implementation of geometry objects: they now purely exist inPython and no longer have “shadow” twins on the C-level (in MuPDF). This has improved processing speedin that area by more than a factor of two.
Because of the same reason, most methods involving geometry parameters now also accept the corre-sponding Python sequence. For example, in method "page.showPDFpage(rect, ...)" parameter rectmay now be any rect_like sequence.
We also invested considerable e�ort to further extend and improve the Collection of Recipes chapter.

248 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

15.28 Changes in Version 1.13.19

This version contains some technical / performance improvements and bug fixes.
• Changed memory management: for Python 3 builds, Python memory management is exclusivelyused across all C-level code (i.e. no more native malloc() in MuPDF code or PyMuPDF interfacecode). This leads to improved memory usage profiles and also some runtime improvements: wehave seen > 2% shorter runtimes for text extractions and pixmap creations (on Windows machinesonly to date).
• Fixed an error occurring in Python 2.7, which crashed the interpreter when using TextPage.
extractRAWDICT() (= Page.getText("rawdict")).

• Fixed an error occurring in Python 2.7, when creating link destinations.
• Extended the Collection of Recipes chapter with more examples.

15.29 Changes in Version 1.13.18

• Added method TextPage.extractRAWDICT() , and a corresponding new string parameter “rawdict”to method Page.getText() . It extracts text and images from a page in Python dict form like
TextPage.extractDICT() , but with the detail level of TextPage.extractXML() , which is positioninformation down to each single character.

15.30 Changes in Version 1.13.17

• Fixed an error that intermittently caused an exception in Page.showPDFpage() , when pages frommany di�erent source PDFs were shown.
• Changed method Document.extractImage() to now return more meta information about the ex-tracted imgage. Also, its performance has been greatly improved. Several demo scripts have beenchanged to make use of this method.
• Changedmethod Document._getXrefStream() to now return None if the object is no stream and nolonger raise an exception if otherwise.
• Added method Document._deleteObject() which deletes a PDF object identified by its xref . Onlyto be used by the experienced PDF expert.
• Added a method PaperRect() which returns a Rect for a supplied paper format string. Example:
fitz.PaperRect("letter") = fitz.Rect(0.0, 0.0, 612.0, 792.0).

• Added a Collection of Recipes chapter to this document.

15.31 Changes in Version 1.13.16

• Added support for correctly setting transparency (opacity) for certain annotation types.
• Added a tool property (Tools.fitz_config) showing the configuration of this PyMuPDF version.
• Fixed issue #193 (‘insertText(overlay=False) gives “cannot resize a bu�er with shared storage” er-ror’) by avoiding read-only bu�ers.

15.28. Changes in Version 1.13.19 249

PyMuPDF Documentation, Release 1.16.7

15.32 Changes in Version 1.13.15

• Fixed issue #189 (“cannot find builtin CJK font”), so we are supporting builtin CJK fonts now (CJK= China, Japan, Korea). This should lead to correctly generated pixmaps for documents using theselanguages. This change has consequences for our binary file size: it will now range between 8 and10 MB, depending on the OS.
• Fixed issue #191 (“Jupyter notebook kernel dies after ca. 40 pages”), which occurred when modi-fying the contents of an annotation.

15.33 Changes in Version 1.13.14

This patch version contains several improvements, mainly for annotations.
• Changed Annot.lineEnds is now a list of two integers representing the line end symbols. Previouslywas a dict of strings.
• Added support of line end symbols for applicable annotations. PyMuPDF now can generate theseannotations including the line end symbols.
• Added Annot.setLineEnds() adds line end symbols to applicable annotation types (‘Line’, ‘Poly-Line’, ‘Polygon’).
• Changed technical implementation of Page.insertImage() and Page.showPDFpage() : they nowcreate there own contents objects, thereby avoiding changes of potentially large streams with con-sequential compression / decompression e�orts and high change volumes with incremental updates.

15.34 Changes in Version 1.13.13

This patch version contains several improvements for embedded files and file attachment annotations.
• Added Document.embeddedFileUpd() which allows changing file content and metadata of an em-bedded file. It supersedes the old method Document.embeddedFileSetInfo() (which will be deletedin a future version). Content is automatically compressed and metadata may be unicode.
• Changed Document.embeddedFileAdd() to now automatically compress file content. Accompanyingmetadata can now be unicode (had to be ASCII in the past).
• Changed Document.embeddedFileDel() to now automatically delete all entries having the suppliedidentifying name. The return code is now an integer count of the removed entries (was None previ-ously).
• Changed embedded file methods to now also accept or show the PDF unicode filename as additionalparameter ufilename.
• Added Page.addFileAnnot() which adds a new file attachment annotation.
• Changed Annot.fileUpd() (file attachment annot) to now also accept the PDF unicode ufilenameparameter. The description parameter desc correctly works with unicode. Furthermore, all parame-ters are optional, so metadata may be changed without also replacing the file content.
• Changed Annot.fileInfo() (file attachment annot) to now also show the PDF unicode filename asparameter ufilename.
• Fixed issue #180 (“page.getText(output=’dict’) return invalid bbox”) to now also work for verticaltext.

250 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

• Fixed issue #185 (“Can’t render the annotations created by PyMuPDF”). The issue’s cause was theminimalistic MuPDF approachwhen creating annotations. Several annotation types have no /AP (“ap-pearance”) object when created by MuPDF functions. MuPDF, SumatraPDF and hence also PyMuPDFcannot render annotations without such an object. This fix now ensures, that an appearance objectis always created together with the annotation itself. We still do not support line end styles.

15.35 Changes in Version 1.13.12

• Fixed issue #180 (“page.getText(output=’dict’) return invalid bbox”). Note that this is a circumven-tion of an MuPDF error, which generates zero-height character rectangles in some cases. When thishappens, this fix ensures a bbox height of at least fontsize.
• Changed for ListBox and ComboBox widgets, the attribute list of selectable values has been renamedto Widget.choice_values .
• Changed when adding widgets, any missing of the PDF Base 14 Fonts is automatically added to thePDF. Widget text fonts can now also be chosen from existing widget fonts. Any specified field valuesare now honored and lead to a field with a preset value.
• Added Annot.updateWidget() which allows changing existing form fields – including the field value.

15.36 Changes in Version 1.13.11

While the preceeding patch subversions only contained various fixes, this version again introduces majornew features:
• Added basic support for PDF widget annotations. You can now add PDF form fields of types Text,CheckBox, ListBox and ComboBox. Where necessary, the PDF is tranformed to a Form PDF with thefirst added widget.
• Fixed issues #176 (“wrong file embedding”), #177 (“segment fault when invokingpage.getText()”)and #179 (“Segmentation fault using page.getLinks() on encrypted PDF”).

15.37 Changes in Version 1.13.7

• Added support of variable page sizes for reflowable documents (e-books, HTML, etc.): new parame-ters rect and fontsize in Document creation (open), and as a separate method Document.layout() .
• Added Annot creation of many annotations types: sticky notes, free text, circle, rectangle, line, poly-gon, polyline and text markers.
• Added support of annotation transparency (Annot.opacity , Annot.setOpacity()).
• Changed Annot.vertices : point coordinates are now grouped as pairs of floats (no longer as sep-arate floats).
• Changed annotation colors dictionary: the two keys are now named "stroke" (formerly "common")and "fill".
• Added Document.isDirty which is True if a PDF has been changed in this session. Reset to Falseon each Document.save() or Document.write() .

15.35. Changes in Version 1.13.12 251

PyMuPDF Documentation, Release 1.16.7

15.38 Changes in Version 1.13.6

• Fix #173: for memory-resident documents, ensure the stream object will not be garbage-collectedby Python before document is closed.

15.39 Changes in Version 1.13.5

• New low-level method Page._setContents() defines an object given by its xref to serve as the
contents object.

• Changed and extended PDF form field support: the attribute widget_text has been renamed to
Annot.widget_value. Values of all form field types (except signatures) are now supported. A newattribute Annot.widget_choices contains the selectable values of listboxes and comboboxes. Allthese attributes now contain None if no value is present.

15.40 Changes in Version 1.13.4

• Document.convertToPDF() now supports page ranges, reverted page sequences and page rotation.If the document already is a PDF, an exception is raised.
• Fixed a bug (introduced with v1.13.0) that prevented Page.insertImage() for transparent images.

15.41 Changes in Version 1.13.3

Introduces a way to convert any MuPDF supported document to a PDF. If you ever wanted PDF versionsof your XPS, EPUB, CBZ or FB2 files – here is a way to do this.
• Document.convertToPDF() returns a Python bytes object in PDF format. Can be opened like normalin PyMuPDF, or be written to disk with the ".pdf" extension.

15.42 Changes in Version 1.13.2

The major enhancement is PDF form field support. Form fields are annotations of type (19, 'Widget').There is a new document method to check whether a PDF is a form. The Annot class has new propertiesdescribing field details.
• Document.isFormPDF is true if object type /AcroForm and at least one form field exists.
• Annot.widget_type, Annot.widget_text and Annot.widget_name contain the details of a form field(i.e. a “Widget” annotation).

15.43 Changes in Version 1.13.1

• TextPage.extractDICT() is a new method to extract the contents of a document page (text andimages). All document types are supported as with the other TextPage extract*() methods. The

252 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

returned object is a dictionary of nested lists and other dictionaries, and exactly equal to the JSON-deserialization of the old TextPage.extractJSON() . The di�erence is that the result is created di-rectly – no JSONmodule is used. Because the user needs no JSONmodule to interpet the information,it should be easier to use, and also have a better performance, because it contains images in theiroriginal binary format – they need not be base64-decoded.
• Page.getText() correspondingly supports the new parameter value "dict" to invoke the abovemethod.
• TextPage.extractJSON() (resp. Page.getText("json")) is still supported for convenience, but itsuse is expected to decline.

15.44 Changes in Version 1.13.0

This version is based on MuPDF v1.13.0. This release is “primarily a bug fix release”.
In PyMuPDF, we are also doing some bug fixes while introducing minor enhancements. There only veryminimal changes to the user’s API.

• Document construction is more flexible: the new filetype parameter allows setting the documenttype. If specified, any extension in the filename will be ignored. More completely addresses issue#156100. As part of this, the documentation has been reworked.
• Changes to Pixmap constructors:

– Colorspace conversion no longer allows dropping the alpha channel: source and target
alpha will now always be the same. We have seen exceptions and even interpreter crasheswhen using alpha = 0.

– As a replacement, the simple pixmap copy lets you choose the target alpha.
• Document.save() again o�ers the full garbage collection range 0 thru 4. Because of a bug in xrefmaintenance, we had to temporarily enforce garbage > 1. Finally resolves issue #148101.
• Document.save() now o�ers to “prettify” PDF source via an additional argument.
• Page.insertImage() has the additional stream -parameter, specifying a memory area holding animage.
• Issue with garbled PNGs on Linux systems has been resolved (“Problem writing PNG” #133)102.

15.45 Changes in Version 1.12.4

This is an extension of 1.12.3.
• Fix of issue #147103: methods Document.getPageFontlist() and Document.getPageImagelist()now also show fonts and images contained in resources nested via “Form XObjects”.
• Temporary fix of issue #148104: Saving to new PDF files will now automatically use garbage = 2 ifa lower value is given. Final fix is to be expected with MuPDF’s next version. At that point we willremove this circumvention.
• Preventive fix of illegally using stencil / image mask pixmaps in some methods.

100 https://github.com/rk700/PyMuPDF/issues/156101 https://github.com/rk700/PyMuPDF/issues/148102 https://github.com/rk700/PyMuPDF/issues/133103 https://github.com/rk700/PyMuPDF/issues/147104 https://github.com/rk700/PyMuPDF/issues/148

15.44. Changes in Version 1.13.0 253

https://github.com/rk700/PyMuPDF/issues/156
https://github.com/rk700/PyMuPDF/issues/156
https://github.com/rk700/PyMuPDF/issues/148
https://github.com/rk700/PyMuPDF/issues/133
https://github.com/rk700/PyMuPDF/issues/147
https://github.com/rk700/PyMuPDF/issues/148

PyMuPDF Documentation, Release 1.16.7

• Method Document.getPageFontlist() now includes the encoding name for each font in the list.
• Method Document.getPageImagelist() now includes the decode method name for each image inthe list.

15.46 Changes in Version 1.12.3

This is an extension of 1.12.2.
• Many functions now return None instead of 0, if the result has no other meaning than just indi-cating successful execution (Document.close() , Document.save() , Document.select() , Pixmap.
writePNG() and many others).

15.47 Changes in Version 1.12.2

This is an extension of 1.12.1.
• Method Page.showPDFpage() now accepts the new clip argument. This specifies an area of thesource page to which the display should be restricted.
• New Page.CropBox and Page.MediaBox have been included for convenience.

15.48 Changes in Version 1.12.1

This is an extension of version 1.12.0.
• Newmethod Page.showPDFpage() displays another’s PDF page. This is a vector image and thereforeremains precise across zooming. Both involved documents must be PDF.
• New method Page.getSVGimage() creates an SVG image from the page. In contrast to the rasterimage of a pixmap, this is a vector image format. The return is a unicode text string, which can besaved in a .svg file.
• Method Page.getTextBlocks() now accepts an additional bool parameter “images”. If set to true(default is false), image blocks (metadata only) are included in the produced list and thus allowdetecting areas with rendered images.
• Minor bug fixes.
• “text” result of Page.getText() concatenates all lines within a block using a single space character.MuPDF’s original uses “\n” instead, producing a rather ragged output.
• New properties of Page objects Page.MediaBoxSize and Page.CropBoxPosition provide more in-formation about a page’s dimensions. For non-PDF files (and for most PDF files, too) these will beequal to Page.rect.bottom_right, resp. Page.rect.top_left. For example, class Shapemakes useof them to correctly position its items.

15.49 Changes in Version 1.12.0

This version is based on and requires MuPDF v1.12.0. The new MuPDF version contains quite a number ofchanges – most of them around text extraction. Some of the changes impact the programmer’s API.

254 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

• Outline.saveText() and Outline.saveXML() have been deleted without replacement. You probablyhaven’t used them much anyway. But if you are looking for a replacement: the output of Document.
getToC() can easily be used to produce something equivalent.

• Class TextSheet does no longer exist.
• Text “spans” (one of the hierarchy levels of TextPage) no longer contain positioning information (i.e.no “bbox” key). Instead, spans now provide the font information for its text. This impacts our JSONoutput variant.
• HTML output has improved very much: it now creates valid documents which can be displayed bybrowsers to produce a similar view as the original document.
• There is a new output format XHTML, which provides text and images in a browser-readable format.The di�erence to HTML output is, that no e�ort is made to reproduce the original layout.
• All output formats of Page.getText() now support creating complete, valid documents, by wrappingthem with appropriate header and trailer information. If you are interested in using the HTML output,please make sure to read Controlling Quality of HTML Output.
• To support finding text positions, we have added special methods that don’t need detours like
TextPage.extractJSON() or TextPage.extractXML() : use Page.getTextBlocks() or resp. Page.
getTextWords() to create lists of text blocks or resp. words, which are accompanied by their rect-angles. This should be much faster than the standard text extraction methods and also avoids usingadditional packages for interpreting their output.

15.50 Changes in Version 1.11.2

This is an extension of v1.11.1.
• New Page.insertFont() creates a PDF /Font object and returns its object number.
• New Document.extractFont() extracts the content of an embedded font given its object number.
• Methods *FontList(...) items no longer contain the PDF generation number. This value never hadany significance. Instead, the font file extension is included (e.g. “pfa” for a “PostScript Font forASCII”), which is more valuable information.
• Fonts other than “simple fonts” (Type1) are now also supported.
• New options to change Pixmap size:

– Method Pixmap.shrink() reduces the pixmap proportionally in place.
– A new Pixmap copy constructor allows scaling via setting target width and height.

15.51 Changes in Version 1.11.1

This is an extension of v1.11.0.
• New class Shape. It facilitates and extends the creation of image shapes on PDF pages. It containsmultiple methods for creating elementary shapes like lines, rectangles or circles, which can be com-bined into more complex ones and be given common properties like line width or colors. Combinedshapes are handled as a unit and e.g. be “morphed” together. The class can accumulate multiplecomplex shapes and put them all in the page’s foreground or background – thus also reducing thenumber of updates to the page’s contents object.
• All Page draw methods now use the new Shape class.

15.50. Changes in Version 1.11.2 255

PyMuPDF Documentation, Release 1.16.7

• Text insertion methods insertText() and insertTextBox() now support morphing in addition totext rotation. They have become part of the Shape class and thus allow text to be freely combinedwith graphics.
• A new Pixmap constructor allows creating pixmap copies with an added alpha channel. A newmethodalso allows directly manipulating alpha values.
• Binary algebraic operations with geometry objects (matrices, rectangles and points) now generallyalso support lists or tuples as the second operand. You can add a tuple (x, y) of numbers to a Point.In this context, such sequences are called “point_like ” (resp. matrix_like , rect_like).
• Geometry objects now fully support in-place operators. For example, p /= m replaces point p with
p * 1/m for a number, or p * ~m for a matrix_like object m. Similarly, if r is a rectangle, then r
|= (3, 4) is the new rectangle that also includes fitz.Point(3, 4), and r &= (1, 2, 3, 4) is itsintersection with fitz.Rect(1, 2, 3, 4).

15.52 Changes in Version 1.11.0

This version is based on and requires MuPDF v1.11.
ThoughMuPDF has declared it as beingmostly a bug fix version, onemajor new feature is indeed contained:support of embedded files – also called portfolios or collections. We have extended PyMuPDF functionalityto embrace this up to an extent just a little beyond the mutool utility as follows.

• The Document class now support embedded files with several new methods and one new property:
– embeddedFileInfo() returns metadata information about an entry in the list of embedded files.This is more than mutool currently provides: it shows all the information that was used to embedthe file (not just the entry’s name).
– embeddedFileGet() retrieves the (decompressed) content of an entry into a bytes bu�er.
– embeddedFileAdd(...) inserts new content into the PDF portfolio. We (in contrast to mutool)

restrict this to entries with a new name (no duplicate names allowed).
– embeddedFileDel(...) deletes an entry from the portfolio (function not o�ered in MuPDF).
– embeddedFileSetInfo() – changes filename or description of an embedded file.
– embeddedFileCount – contains the number of embedded files.

• Several enhancements deal with streamlining geometry objects. These are not connected to thenew MuPDF version and most of them are also reflected in PyMuPDF v1.10.0. Among them are newproperties to identify the corners of rectangles by name (e.g. Rect.bottom_right) and newmethodsto deal with set-theoretic questions like Rect.contains(x) or IRect.intersects(x). Special e�ortfocussed on supporting more “Pythonic” language constructs: if x in rect ... is equivalent to
rect.contains(x).

• The Rect chapter now has more background on empty amd infinite rectangles and how we handlethem. The handling itself was also updated for more consistency in this area.
• We have started basic support for generation of PDF content:

– Document.insertPage() adds a new page into a PDF, optionally containing some text.
– Page.insertImage() places a new image on a PDF page.
– Page.insertText() puts new text on an existing page

• For FileAttachment annotations, content and name of the attached file can extracted and changed.

256 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

15.53 Changes in Version 1.10.0

15.53.1 MuPDF v1.10 Impact

MuPDF version 1.10 has a significant impact on our bindings. Some of the changes also a�ect the API –in other words, you as a PyMuPDF user.
• Link destination information has been reduced. Several properties of the linkDest class no longercontain valuable information. In fact, this class as a whole has been deleted from MuPDF’s libraryand we in PyMuPDF only maintain it to provide compatibilty to existing code.
• In an e�ort to minimize memory requirements, several improvements have been built into MuPDFv1.10:

– A new config.h file can be used to de-select unwanted features in the C base code. Using thisfeature we have been able to reduce the size of our binary _fitz.o / _fitz.pyd by about 50%(from 9 MB to 4.5 MB). When UPX-ing this, the size goes even further down to a very handy 2.3MB.
– The alpha (transparency) channel for pixmaps is now optional. Letting alpha default to Falsesignificantly reduces pixmap sizes (by 20% – CMYK, 25% – RGB, 50% – GRAY). Many Pixmapconstructors therefore now accept an alpha boolean to control inclusion of this channel. Otherpixmap constructors (e.g. those for file and image input) create pixmaps with no alpha allto-gether. On the downside, save methods for pixmaps no longer accept a savealpha option: thischannel will always be saved when present. To minimize code breaks, we have left this param-eter in the call patterns – it will just be ignored.

• DisplayList and TextPage class constructors now require themediabox of the page they are refer-ring to (i.e. the page.bound() rectangle). There is no way to construct this information from othersources, therefore a source code change cannot be avoided in these cases. We assume however,that not many users are actually employing these rather low level classes explixitely. So the impactof that change should be minor.

15.53.2 Other Changes compared to Version 1.9.3

• The new Document method write() writes an opened PDF to memory (as opposed to a file, like
save() does).

• An annotation can now be scaled and moved around on its page. This is done by modifying itsrectangle.
• Annotations can now be deleted. Page contains the new method deleteAnnot().
• Various annotation attributes can now be modified, e.g. content, dates, title (= author), border,colors.
• Method Document.insertPDF() now also copies annotations of source pages.
• The Pages class has been deleted. As documents can now be accessed with page numbers as indices(like doc[n] = doc.loadPage(n)), and document object can be used as iterators, the benefit of thisclass was too low to maintain it. See the following comments.
• loadPage(n) / doc[n] now accept arbitrary integers to specify a page number, as long as n <
pageCount. So, e.g. doc[-500] is always valid and will load page (-500) % pageCount.

• A document can now also be used as an iterator like this: for page in doc: ...<do something
with "page"> This will yield all pages of doc as page.

15.53. Changes in Version 1.10.0 257

PyMuPDF Documentation, Release 1.16.7

• The Pixmap method getSize() has been replaced with property size. As before Pixmap.size ==
len(Pixmap) is true.

• In response to transparency (alpha) being optional, several new parameters and properties havebeen added to Pixmap and Colorspace classes to support determining their characteristics.
• The Page class now contains new properties firstAnnot and firstLink to provide starting points tothe respective class chains, where firstLink is just a mnemonic synonym to method loadLinks()which continues to exist. Similarly, the new property rect is a synonym for method bound(), whichalso continues to exist.
• Pixmap methods samplesRGB() and samplesAlpha() have been deleted because pixmaps can nowbe created without transparency.
• Rect now has a property irect which is a synonym of method round(). Likewise, IRect now hasproperty rect to deliver a Rect which has the same coordinates as floats values.
• Document has the new method searchPageFor() to search for a text string. It works exactly like thecorresponding Page.searchFor() with page number as additional parameter.

15.54 Changes in Version 1.9.3

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.2:
• As a major enhancement, annotations are now supported in a similar way as links. Annotations canbe displayed (as pixmaps) and their properties can be accessed.
• In addition to the document select()method, some simplermethods can now be used tomanipulatea PDF:

– copyPage() copies a page within a document.
– movePage() is similar, but deletes the original.
– deletePage() deletes a page
– deletePageRange() deletes a page range

• rotation or setRotation() access or change a PDF page’s rotation, respectively.
• Available but undocumented before, IRect, Rect, Point and Matrix support the len() method andtheir coordinate properties can be accessed via indices, e.g. IRect.x1 == IRect[2].
• For convenience, documents now support simple indexing: doc.loadPage(n) == doc[n]. The indexmay however be in range -pageCount < n < pageCount, such that doc[-1] is the last page of thedocument.

15.55 Changes in Version 1.9.2

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.1:
• fitz.open() (no parameters) creates a new empty PDF document, i.e. if saved afterwards, it mustbe given a .pdf extension.
• Document now accepts all of the following formats (Document and open are synonyms):

– open(),
– open(filename) (equivalent to open(filename, None)),

258 Chapter 15. Change Logs

PyMuPDF Documentation, Release 1.16.7

– open(filetype, area) (equivalent to open(filetype, stream = area)).
Type of memory area stream may be bytes or bytearray. Thus, e.g. area = open("file.pdf",
"rb").read() may be used directly (without first converting it to bytearray).

• New method Document.insertPDF() (PDFs only) inserts a range of pages from another PDF.
• Document objects doc now support the len() function: len(doc) == doc.pageCount.
• New method Document.getPageImageList() creates a list of images used on a page.
• New method Document.getPageFontList() creates a list of fonts referenced by a page.
• New pixmap constructor fitz.Pixmap(doc, xref) creates a pixmap based on an opened PDF doc-ument and an xref number of the image.
• New pixmap constructor fitz.Pixmap(cspace, spix) creates a pixmap as a copy of another one
spix with the colorspace converted to cspace. This works for all colorspace combinations.

• Pixmap constructor fitz.Pixmap(colorspace, width, height, samples) now allows samples toalso be bytes, not only bytearray.

15.56 Changes in Version 1.9.1

This version of PyMuPDF is based on MuPDF library source code version 1.9a published on April 21, 2016.
Please have a look at MuPDF’s website to see which changes and enhancements are contained herein.
Changes in version 1.9.1 compared to version 1.8.0 are the following:

• New methods getRectArea() for both fitz.Rect and fitz.IRect

• Pixmaps can now be created directly from files using the new constructor fitz.Pixmap(filename).
• The Pixmap constructor fitz.Pixmap(image) has been extended accordingly.
• fitz.Rect can now be created with all possible combinations of points and coordinates.
• PyMuPDF classes and methods now all contain __doc__ strings, most of them created by SWIG au-tomatically. While the PyMuPDF documentation certainly is more detailed, this feature should help alot when programming in Python-aware IDEs.
• A new document method of getPermits() returns the permissions associated with the current ac-cess to the document (print, edit, annotate, copy), as a Python dictionary.
• The identity matrix fitz.Identity is now immutable.
• The new document method select(list) removes all pages from a document that are not containedin the list. Pages can also be duplicated and re-arranged.
• Various improvements and new members in our demo and examples collections. Perhaps mostprominently: PDF_display now supports scrolling with the mouse wheel, and there is a new exampleprogram wxTableExtract which allows to graphically identify and extract table data in documents.
• fitz.open() is now an alias of fitz.Document().
• New pixmap method getPNGData() which will return a bytearray formatted as a PNG image of thepixmap.
• New pixmap method samplesRGB() providing a samples version with alpha bytes stripped o� (RGBcolorspaces only).
• New pixmap method samplesAlpha() providing the alpha bytes only of the samples area.

15.56. Changes in Version 1.9.1 259

PyMuPDF Documentation, Release 1.16.7

• New iterator fitz.Pages(doc) over a document’s set of pages.
• New matrix methods invert() (calculate inverted matrix), concat() (calculate matrix product),
preTranslate() (perform a shift operation).

• New IRect methods intersect() (intersection with another rectangle), translate() (perform ashift operation).
• New Rectmethods intersect() (intersection with another rectangle), transform() (transformationwith a matrix), includePoint() (enlarge rectangle to also contain a point), includeRect() (enlargerectangle to also contain another one).
• Documented Point.transform() (transform a point with a matrix).
• Matrix, IRect, Rect and Point classes now support compact, algebraic formulations for manipulat-ing such objects.
• Incremental saves for changes are possible now using the call pattern doc.save(doc.name,
incremental=True).

• A PDF’s metadata can now be deleted, set or changed by document method setMetadata(). Sup-ports incremental saves.
• A PDF’s bookmarks (or table of contents) can now be deleted, set or changed with the entries of alist using document method setToC(list). Supports incremental saves.

260 Chapter 15. Change Logs

INDEX

__init__()Colorspace method, 80__init__()Device method, 198, 199__init__()DisplayList method, 81__init__()Document method, 83__init__()IRect method, 101, 102__init__()Matrix method, 108__init__()Pixmap method, 137–139__init__()Point method, 145__init__()Quad method, 147__init__()Rect method, 150__init__()Shape method, 154_cleanContents()Annot method, 193_cleanContents()Page method, 192_delXmlMetadata()Document method, 189_deleteObject()Document method, 189_getContents()Page method, 192_getNewXref()Document method, 194_getOLRootNumber()Document method, 196_getPDFroot()Document method, 191_getPageObjNumber()Document method, 191_getPageXref()Document method, 191_getTrailerString()Document method, 190_getXmlMetadataXref()Document method, 190_getXrefLength()Document method, 195_getXrefStream()Document method, 195_getXrefString()Document method, 193_isWrappedPage attribute, 191_make_page_map()Document method, 190_setContents()Page method, 192_updateObject()Document method, 195_updateStream()Document method, 195_wrapContents()Page method, 191
aMatrix attribute, 109abs_unitPoint attribute, 146addCaretAnnot()Page method, 119addCircleAnnot()Page method, 121addFileAnnotexamples, 19addFileAnnot()Page method, 120addFreetextAnnot()Page method, 119addHighlightAnnot()Page method, 121addInkAnnot()Page method, 120

addLineAnnot()Page method, 120addPolygonAnnot()Page method, 121addPolylineAnnot()Page method, 121addRectAnnot()Page method, 121addSquigglyAnnot()Page method, 121addStampAnnot()Page method, 122addStrikeoutAnnot()Page method, 121addTextAnnot()Page method, 119addUnderlineAnnot()Page method, 121addWidget()Page method, 122alignPage.insertTextbox args, 124Shape.insertTextbox args, 160alphaAnnot.getPixmap args, 74DisplayList.getPixmap args, 81Page.getPixmap args, 129alphaPixmap attribute, 142Annotbuilt-in class, 74Annot.fileUpd argsbu�er, 76desc, 76filename, 76ufilename, 76Annot.getPixmap argsalpha, 74colorspace, 74matrix, 74Annot.update argsborder_color, 75fill_color, 75fontsize, 75rotate, 75text_color, 75annotsDocument.insertPDF args, 92Page.getPixmap args, 129annots()Page method, 123attachembed file, 55authenticate()Document method, 84
bMatrix attribute, 109

261

PyMuPDF Documentation, Release 1.16.7

Base14_Fontsbuilt-in variable, 207blIRect attribute, 103blRect attribute, 152blocksPage.getText args, 128borderAnnot attribute, 78borderLink attribute, 105border_colorAnnot.update args, 75border_colorWidget attribute, 178border_dashesWidget attribute, 178border_styleWidget attribute, 178border_widthPage.insertText args, 124, 159Page.insertTextbox args, 124, 160border_widthWidget attribute, 178bottom_leftIRect attribute, 103bottom_leftRect attribute, 152bottom_rightIRect attribute, 103bottom_rightRect attribute, 152bound()Page method, 119brIRect attribute, 103brRect attribute, 152breadthShape.drawSquiggle args, 155Shape.drawZigzag args, 156bu�erAnnot.fileUpd args, 76button_captionWidget attribute, 179
cMatrix attribute, 110can_save_incrementally()Document method, 91catalogbuilt-in variable, 203choice_valuesWidget attribute, 178clearWith()Pixmap method, 139clip DisplayList.getPixmap args, 81Page.getPixmap args, 129Page.showPDFpage args, 130close()Document method, 97closePathPage.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigzag args, 124Shape.finish args, 161colorDocument.insertPage args, 93

Page.addFreetextAnnot args, 119Page.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigzag args, 124Page.insertText args, 124Page.insertTextbox args, 124Shape.finish args, 161Shape.insertText args, 159Shape.insertTextbox args, 160colorsAnnot attribute, 78colorsLink attribute, 104colorspaceAnnot.getPixmap args, 74DisplayList.getPixmap args, 81Page.getPixmap args, 129Colorspacebuilt-in class, 80colorspacePixmap attribute, 142commit()Shape method, 163concat()Matrix method, 109contains()IRect method, 102contains()Rect method, 152contentsbuilt-in variable, 203ConversionHeader(), 189ConversionTrailer(), 189convertToPDFexamples, 17convertToPDF()Document method, 86copyPage()Document method, 94copyPixmapexamples, 24, 25copyPixmap()Pixmap method, 141CropBoxPage attribute, 133CropBoxPositionPage attribute, 133CS_CMYKbuilt-in variable, 207CS_GRAYbuilt-in variable, 207CS_RGBbuilt-in variable, 207csCMYKbuilt-in variable, 207csGRAYbuilt-in variable, 207csRGBbuilt-in variable, 207
dMatrix attribute, 110dashesPage.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124

262 Index

PyMuPDF Documentation, Release 1.16.7

Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigzag args, 124Shape.finish args, 161deletepages, 55deleteAnnot()Page method, 123deleteLink()Page method, 123deletePage()Document method, 93deletePageRange()Document method, 93descAnnot.fileUpd args, 76Document.embeddedFileAdd args, 95Document.embeddedFileUpd args, 96destLink attribute, 105destlinkDest attribute, 106destOutline attribute, 116Devicebuilt-in class, 198dict Page.getText args, 128dictionarybuilt-in variable, 203DisplayListbuilt-in class, 81DisplayList.getPixmap argsalpha, 81clip, 81colorspace, 81matrix, 81distance_to()Point method, 145docShape attribute, 163Documentopen, 83Documentbuilt-in class, 83Document argsfilename, 83filetype, 83fontsize, 83rect, 83stream, 83Document.convertToPDF argsfrom_page, 86rotate, 86to_page, 86Document.embeddedFileAdd argsdesc, 95filename, 95ufilename, 95Document.embeddedFileUpd argsdesc, 96filename, 96ufilename, 96Document.insertPage argscolor, 93

fontfile, 93fontname, 93fontsize, 93height, 93width, 93Document.insertPDF argsannots, 92from_page, 92links, 92rotate, 92start_at, 92to_page, 92Document.layout argsfontsize, 89height, 89rect, 89width, 89Document.newPage argsheight, 93width, 93downOutline attribute, 116draw_contShape attribute, 163drawBezier()Page method, 125drawBezier()Shape method, 156drawCircle()Page method, 124drawCircle()Shape method, 157drawCurve()Page method, 125drawCurve()Shape method, 158drawLine()Page method, 124drawLine()Shape method, 154drawOval()Page method, 124drawOval()Shape method, 157drawPolyline()Page method, 124drawPolyline()Shape method, 156drawQuad()Shape method, 159drawRect()Page method, 125drawRect()Shape method, 159drawSector()Page method, 124drawSector()Shape method, 158drawSquiggle()Page method, 124drawSquiggle()Shape method, 155drawZigzag()Page method, 124drawZigzag()Shape method, 156
eMatrix attribute, 110embedfile, attach, 55PDF, picture, 19embeddedFileAddexamples, 19, 22embeddedFileAdd()Document method, 95embeddedFileCount()Document method, 95embeddedFileDel()Document method, 96embeddedFileGet()Document method, 95

Index 263

PyMuPDF Documentation, Release 1.16.7

embeddedFileInfo()Document method, 96embeddedFileNames()Document method, 96embeddedFileSetInfo()Document method, 96embeddedFileUpd()Document method, 96encodingPage.insertFont args, 125Page.insertText args, 124Page.insertTextbox args, 124Shape.insertText args, 159Shape.insertTextbox args, 160even_oddShape.finish args, 161examplesaddFileAnnot, 19convertToPDF, 17copyPixmap, 24, 25embeddedFileAdd, 19, 22extractImage, 17getImageData, 22insertImage, 19, 22invertIRect, 25JPEG, 22PhotoImage, 22Photoshop, 22Postscript, 22setRect, 25showPDFpage, 19, 22writeImage, 22, 25expandtabsPage.insertTextbox args, 124Shape.insertTextbox args, 160extractimage non-PDF, 17image PDF, 17table, 33text rectangle, 29extractBLOCKS()TextPage method, 169extractDICT()TextPage method, 170extractFont()Document method, 197extractHTML()TextPage method, 170extractImageexamples, 17extractImage()Document method, 196extractJSON()TextPage method, 170extractRAWDICT()TextPage method, 170extractTEXT()TextPage method, 169extractText()TextPage method, 169extractWORDS()TextPage method, 169extractXHTML()TextPage method, 170extractXML()TextPage method, 170
fMatrix attribute, 110field_flagsWidget attribute, 178field_labelWidget attribute, 178

field_nameWidget attribute, 178field_typeWidget attribute, 179field_type_stringWidget attribute, 179field_valueWidget attribute, 178file attach embed, 55file extensionwrong, 54fileGet()Annot method, 76fileInfo()Annot method, 76filenameAnnot.fileUpd args, 76Document args, 83Document.embeddedFileAdd args, 95Document.embeddedFileUpd args, 96open args, 83Page.insertImage args, 126fileSpeclinkDest attribute, 106filetypeDocument args, 83open args, 83fileUpd()Annot method, 76fill Page.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigzag args, 124Page.insertText args, 124, 159Page.insertTextbox args, 124, 160Shape.finish args, 161fill_colorAnnot.update args, 75fill_colorWidget attribute, 179finish()Shape method, 161firstAnnotPage attribute, 134firstLinkPage attribute, 134firstWidgetPage attribute, 134fitz_configTools attribute, 175flagsPage.getText args, 128Page.getTextPage args, 128Page.searchFor args, 132flagsAnnot attribute, 77flagslinkDest attribute, 106fontbu�erPage.insertFont args, 125fontfileDocument.insertPage args, 93

264 Index

PyMuPDF Documentation, Release 1.16.7

Page.insertFont args, 125Page.insertText args, 124Page.insertTextbox args, 124Shape.insertText args, 159Shape.insertTextbox args, 160FontInfosDocument attribute, 198fontnameDocument.insertPage args, 93Page.addFreetextAnnot args, 119Page.insertFont args, 125Page.insertText args, 124Page.insertTextbox args, 124Shape.insertText args, 159Shape.insertTextbox args, 160fontsizeAnnot.update args, 75Document args, 83Document.insertPage args, 93Document.layout args, 89open args, 83Page.addFreetextAnnot args, 119Page.insertText args, 124Page.insertTextbox args, 124Shape.insertText args, 159Shape.insertTextbox args, 160FormFontsDocument attribute, 98from_pageDocument.convertToPDF args, 86Document.insertPDF args, 92fullcopyPage()Document method, 94fullSectorPage.drawSector args, 124Shape.drawSector args, 158
gammaWith()Pixmap method, 140gen_id()Tools method, 174getArea()IRect method, 102getArea()Rect method, 151getCharWidths()Document method, 193getDisplayList()Page method, 192getFontList()Page method, 128getImageBbox()Page method, 129getImageDataexamples, 22getImageData()Pixmap method, 142getImageList()Page method, 128getLinks()Page method, 123getPageFontList()Document method, 88getPageImageList()Document method, 87getPagePixmap()Document method, 87getPageText()Document method, 89getPDFnow(), 187getPDFstr(), 188getPixmap()Annot method, 74

getPixmap()DisplayList method, 81getPixmap()Page method, 129getPNGData()Pixmap method, 142getPNGdata()Pixmap method, 142getRect()IRect method, 102getRectArea()IRect method, 102getRectArea()Rect method, 151getSigFlags()Document method, 95getSVGimage()Page method, 129getText()Page method, 128getTextBlocks()Page method, 191getTextlength(), 187getTextPage()DisplayList method, 82getTextPage()Page method, 128getTextWords()Page method, 192getToC()Document method, 87
hPixmap attribute, 143heightDocument.insertPage args, 93Document.layout args, 89Document.newPage args, 93open args, 83heightIRect attribute, 103heightPixmap attribute, 143heightQuad attribute, 149heightRect attribute, 153heightShape attribute, 163hit_maxPage.searchFor args, 132htmlPage.getText args, 128
imagenon-PDF, extract, 17PDF, extract, 17resolution, 15SVG, vector, 22ImageProperties(), 188includePoint()Rect method, 151includeRect()Rect method, 151infoAnnot attribute, 77insertFont()Page method, 125insertImageexamples, 19, 22insertImage()Page method, 126insertLink()Page method, 123insertPage()Document method, 93insertPDF()Document method, 92insertText()Page method, 124insertText()Shape method, 159insertTextbox()Page method, 124insertTextbox()Shape method, 160interpolatePixmap attribute, 143

Index 265

PyMuPDF Documentation, Release 1.16.7

intersect()IRect method, 102intersect()Rect method, 151intersects()IRect method, 102intersects()Rect method, 152invert()Matrix method, 109invertIRectexamples, 25invertIRect()Pixmap method, 141IRectbuilt-in class, 101irectPixmap attribute, 142irectRect attribute, 152irect_likebuilt-in variable, 203is_openOutline attribute, 116is_signedWidget attribute, 179isClosedDocument attribute, 97isConvexQuad attribute, 148isEmptyIRect attribute, 103isEmptyQuad attribute, 148isEmptyRect attribute, 153isEncryptedDocument attribute, 97isExternalLink attribute, 105isExternalOutline attribute, 116isFormPDFDocument attribute, 97isInfiniteIRect attribute, 103isInfiniteRect attribute, 153isMaplinkDest attribute, 106isPDFDocument attribute, 97isRectangularQuad attribute, 149isRectilinearMatrix attribute, 110isReflowableDocument attribute, 97isStream()Document method, 194isUrilinkDest attribute, 106
JPEGexamples, 22jsonPage.getText args, 128
keep_proportionPage.insertImage args, 126Page.showPDFpage args, 130kindlinkDest attribute, 106
lastPointShape attribute, 164layout()Document method, 89lineCapPage.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124

Page.drawZigzag args, 124Shape.finish args, 161lineEndsAnnot attribute, 77lineJoinPage.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigZag args, 124Shape.finish args, 161Linkbuilt-in class, 104LINK_FLAG_B_VALIDbuilt-in variable, 210LINK_FLAG_FIT_Hbuilt-in variable, 210LINK_FLAG_FIT_Vbuilt-in variable, 210LINK_FLAG_L_VALIDbuilt-in variable, 210LINK_FLAG_R_IS_ZOOMbuilt-in variable, 210LINK_FLAG_R_VALIDbuilt-in variable, 210LINK_FLAG_T_VALIDbuilt-in variable, 210LINK_GOTObuilt-in variable, 209LINK_GOTORbuilt-in variable, 210LINK_LAUNCHbuilt-in variable, 210LINK_NONEbuilt-in variable, 209LINK_URIbuilt-in variable, 210linkDestbuilt-in class, 106linksDocument.insertPDF args, 92links()Page method, 123llQuad attribute, 148loadLinks()Page method, 130loadPage()Document method, 85lrQuad attribute, 148ltlinkDest attribute, 107
matrixAnnot.getPixmap args, 74DisplayList.getPixmap args, 81Page.getPixmap args, 129Page.getSVGimage args, 129Matrixbuilt-in class, 108matrix_likebuilt-in variable, 203MediaBoxPage attribute, 134MediaBoxSizePage attribute, 133metadataDocument attribute, 98morphPage.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124

266 Index

PyMuPDF Documentation, Release 1.16.7

Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigzag args, 124Page.insertText args, 124Page.insertTextbox args, 124Shape.finish args, 161Shape.insertText args, 159Shape.insertTextbox args, 160movePage()Document method, 95mupdf_warnings()Tools method, 175
nColorspace attribute, 80nPixmap attribute, 143nameColorspace attribute, 80nameDocument attribute, 98namedlinkDest attribute, 107needsPassDocument attribute, 97newPage()Document method, 93newShape()Page method, 132newWindowlinkDest attribute, 107nextAnnot attribute, 77nextLink attribute, 105nextOutline attribute, 116nextWidget attribute, 178non-PDFextract image, 17norm()IRect method, 102norm()Matrix method, 108norm()Point method, 145norm()Rect method, 152normalize()IRect method, 102normalize()Rect method, 152numberPage attribute, 134
objectbuilt-in variable, 204opacityAnnot attribute, 76openDocument, 83open argsfilename, 83filetype, 83fontsize, 83height, 83rect, 83stream, 83width, 83Outlinebuilt-in class, 116outlineDocument attribute, 97overlayPage.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125

Page.drawLine args, 124Page.drawOval args, 124Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigzag args, 124Page.insertImage args, 126Page.insertText args, 124Page.insertTextbox args, 124Page.showPDFpage args, 130Shape.commit args, 163
Pagebuilt-in class, 119pagebuilt-in variable, 204pagelinkDest attribute, 107pageOutline attribute, 116pageShape attribute, 163Page.addFreetextAnnot argscolor, 119fontname, 119fontsize, 119rect, 119rotate, 119Page.drawBezier argsclosePath, 125color, 125dashes, 125fill, 125lineCap, 125lineJoin, 125morph, 125overlay, 125width, 125Page.drawCircle argsclosePath, 124color, 124dashes, 124fill, 124lineCap, 124lineJoin, 124morph, 124overlay, 124width, 124Page.drawCurve argsclosePath, 125color, 125dashes, 125fill, 125lineCap, 125lineJoin, 125morph, 125overlay, 125width, 125

Index 267

PyMuPDF Documentation, Release 1.16.7

Page.drawLine argsclosePath, 124color, 124dashes, 124fill, 124lineCap, 124lineJoin, 124morph, 124overlay, 124width, 124Page.drawOval argsclosePath, 124color, 124dashes, 124fill, 124lineCap, 124lineJoin, 124morph, 124overlay, 124width, 124Page.drawPolyline argsclosePath, 124color, 124dashes, 124fill, 124lineCap, 124lineJoin, 124morph, 124overlay, 124width, 124Page.drawRect argsclosePath, 125color, 125dashes, 125fill, 125lineCap, 125lineJoin, 125morph, 125overlay, 125width, 125Page.drawSector argsclosePath, 124color, 124dashes, 124fill, 124fullSector, 124lineCap, 124lineJoin, 124morph, 124overlay, 124width, 124Page.drawSquiggle argsclosePath, 124color, 124

dashes, 124fill, 124lineCap, 124lineJoin, 124morph, 124overlay, 124width, 124Page.drawZigZag argslineJoin, 124Page.drawZigzag argsclosePath, 124color, 124dashes, 124fill, 124lineCap, 124morph, 124overlay, 124width, 124Page.getPixmap argsalpha, 129annots, 129clip, 129colorspace, 129matrix, 129Page.getSVGimage argsmatrix, 129Page.getText argsblocks, 128dict, 128flags, 128html, 128json, 128rawdict, 128text, 128words, 128xhtml, 128xml, 128Page.getTextPage argsflags, 128Page.insertFont argsencoding, 125fontbu�er, 125fontfile, 125fontname, 125set_simple, 125Page.insertImage argsfilename, 126keep_proportion, 126overlay, 126pixmap, 126rotate, 126stream, 126Page.insertText argsborder_width, 124, 159

268 Index

PyMuPDF Documentation, Release 1.16.7

color, 124encoding, 124fill, 124, 159fontfile, 124fontname, 124fontsize, 124morph, 124overlay, 124render_mode, 124, 159rotate, 124Page.insertTextbox argsalign, 124border_width, 124, 160color, 124encoding, 124expandtabs, 124fill, 124, 160fontfile, 124fontname, 124fontsize, 124morph, 124overlay, 124render_mode, 124, 160rotate, 124Page.searchFor argsflags, 132hit_max, 132quads, 132Page.setRotation argsrotate, 130Page.showPDFpage argsclip, 130keep_proportion, 130overlay, 130rotate, 130pageCountDocument attribute, 98pagesdelete, 55rearrange, 55pages()Document method, 85pagetreebuilt-in variable, 204PaperRect(), 186PaperSize(), 186paperSizes, 187parentAnnot attribute, 76parentPage attribute, 134Partial Pixmaps, 16PDF extract image, 17picture embed, 19permissionsDocument attribute, 98PhotoImageexamples, 22Photoshop

examples, 22pictureembed PDF, 19pixel()Pixmap method, 140pixmapPage.insertImage args, 126Pixmapbuilt-in class, 137planishLine(), 187Pointbuilt-in class, 145point_likebuilt-in variable, 203Postscriptexamples, 22preRotate()Matrix method, 108preScale()Matrix method, 109preShear()Matrix method, 109preTranslate()Matrix method, 109
Quadbuilt-in class, 147quadIRect attribute, 103quadRect attribute, 152quad_likebuilt-in variable, 203quadsPage.searchFor args, 132
rawdictPage.getText args, 128rblinkDest attribute, 107reading ordertext, 30rearrangepages, 55rect Document args, 83Document.layout args, 89open args, 83Page.addFreetextAnnot args, 119rectAnnot attribute, 77Rectbuilt-in class, 150rectDisplayList attribute, 82rectLink attribute, 105rectPage attribute, 134rectQuad attribute, 148rectShape attribute, 163rectWidget attribute, 179rect_likebuilt-in variable, 203rectangleextract text, 29render_modePage.insertText args, 124, 159Page.insertTextbox args, 124, 160reset_mupdf_warnings()Tools method, 175resolutionimage, 15zoom, 16

Index 269

PyMuPDF Documentation, Release 1.16.7

resourcesbuilt-in variable, 203rotateAnnot.update args, 75Document.convertToPDF args, 86Document.insertPDF args, 92Page.addFreetextAnnot args, 119Page.insertImage args, 126Page.insertText args, 124Page.insertTextbox args, 124Page.setRotation args, 130Page.showPDFpage args, 130Shape.insertText args, 159Shape.insertTextbox args, 160rotationPage attribute, 133round()Rect method, 150run()DisplayList method, 81run()Page method, 191
samplesPixmap attribute, 142save()Document method, 91saveIncr()Document method, 92search()TextPage method, 170searchFor()Page method, 132searchPageFor()Document method, 92select()Document method, 89set_simplePage.insertFont args, 125setAlpha()Pixmap method, 141setBorder()Annot method, 75setBorder()Link method, 104setColors()Annot method, 75setCropBox()Page method, 133setFlags()Annot method, 75setInfo()Annot method, 74setLineEnds()Annot method, 74setMetadata()Document method, 90setName()Annot method, 75setOpacity()Annot method, 74setPixel()Pixmap method, 140setRectexamples, 25setRect()Annot method, 75setRect()Pixmap method, 140setRotation()Page method, 130setToC()Document method, 90Shapebuilt-in class, 154Shape.commit argsoverlay, 163Shape.drawSector argsfullSector, 158Shape.drawSquiggle argsbreadth, 155Shape.drawZigzag argsbreadth, 156

Shape.finish argsclosePath, 161color, 161dashes, 161even_odd, 161fill, 161lineCap, 161lineJoin, 161morph, 161width, 161Shape.insertText argscolor, 159encoding, 159fontfile, 159fontname, 159fontsize, 159morph, 159rotate, 159Shape.insertTextbox argsalign, 160color, 160encoding, 160expandtabs, 160fontfile, 160fontname, 160fontsize, 160morph, 160rotate, 160showPDFpageexamples, 19, 22showPDFpage()Page method, 130shrink()Pixmap method, 140sizePixmap attribute, 143start_atDocument.insertPDF args, 92store_maxsizeTools attribute, 177store_shrink()Tools method, 175store_sizeTools attribute, 177streamDocument args, 83open args, 83Page.insertImage args, 126streambuilt-in variable, 204stridePixmap attribute, 142SVGvector image, 22
tableextract, 33text Page.getText args, 128reading order, 30rectangle, extract, 29TEXT_ALIGN_CENTERbuilt-in variable, 209

270 Index

PyMuPDF Documentation, Release 1.16.7

TEXT_ALIGN_JUSTIFYbuilt-in variable, 209TEXT_ALIGN_LEFTbuilt-in variable, 209TEXT_ALIGN_RIGHTbuilt-in variable, 209text_colorAnnot.update args, 75text_colorWidget attribute, 179text_contShape attribute, 163text_fontWidget attribute, 179text_fontsizeWidget attribute, 179TEXT_INHIBIT_SPACESbuilt-in variable, 209text_maxlenWidget attribute, 179TEXT_PRESERVE_IMAGESbuilt-in variable, 209TEXT_PRESERVE_LIGATURESbuilt-in variable, 209TEXT_PRESERVE_WHITESPACEbuilt-in variable,209text_typeWidget attribute, 179TextPagebuilt-in class, 169tintWith()Pixmap method, 139titleOutline attribute, 116tlIRect attribute, 103tlRect attribute, 152to_pageDocument.convertToPDF args, 86Document.insertPDF args, 92Toolsbuilt-in class, 174top_leftIRect attribute, 102top_leftRect attribute, 152top_rightIRect attribute, 103top_rightRect attribute, 152totalcontShape attribute, 164trIRect attribute, 103trRect attribute, 152transform()Point method, 146transform()Quad method, 147transform()Rect method, 151typeAnnot attribute, 77
ufilenameAnnot.fileUpd args, 76Document.embeddedFileAdd args, 95Document.embeddedFileUpd args, 96ulQuad attribute, 148unitPoint attribute, 146unitvectorbuilt-in variable, 205update()Annot method, 75update()Widget method, 178updateLink()Page method, 123urQuad attribute, 148uriLink attribute, 105urilinkDest attribute, 107uriOutline attribute, 116
vectorimage SVG, 22

versionbuilt-in variable, 208VersionBindbuilt-in variable, 207VersionDatebuilt-in variable, 208VersionFitzbuilt-in variable, 207verticesAnnot attribute, 77
wPixmap attribute, 143Widgetbuilt-in class, 178widgets()Page method, 124widthDocument.insertPage args, 93Document.layout args, 89Document.newPage args, 93open args, 83Page.drawBezier args, 125Page.drawCircle args, 124Page.drawCurve args, 125Page.drawLine args, 124Page.drawOval args, 124Page.drawPolyline args, 124Page.drawRect args, 125Page.drawSector args, 124Page.drawSquiggle args, 124Page.drawZigzag args, 124Shape.finish args, 161widthIRect attribute, 103widthPixmap attribute, 143widthQuad attribute, 149widthRect attribute, 153widthShape attribute, 163wordsPage.getText args, 128write()Document method, 92writeImageexamples, 22, 25writeImage()Pixmap method, 141writePNG()Pixmap method, 142wrongfile extension, 54
xPixmap attribute, 143xPoint attribute, 146x0IRect attribute, 103x0Rect attribute, 153x1IRect attribute, 103x1Rect attribute, 153xhtmlPage.getText args, 128xml Page.getText args, 128xrefAnnot attribute, 78xrefbuilt-in variable, 205xrefLink attribute, 105xrefPage attribute, 134

Index 271

PyMuPDF Documentation, Release 1.16.7

xrefWidget attribute, 179xresPixmap attribute, 143
yPixmap attribute, 143yPoint attribute, 146y0IRect attribute, 103y0Rect attribute, 153y1IRect attribute, 103y1Rect attribute, 153yresPixmap attribute, 143
zoom, 15resolution, 16

272 Index

	PyMuPDF Documentation
	Introduction
	Note on the Name fitz
	License
	Covered Version

	Installation
	Option 1: Install from Sources
	Step 1: Download PyMuPDF
	Step 2: Download and Generate MuPDF
	Step 3: Build / Setup PyMuPDF

	Option 2: Install from Binaries

	Tutorial
	Importing the Bindings
	Opening a Document
	Some Document Methods and Attributes
	Accessing Meta Data
	Working with Outlines
	Working with Pages
	Inspecting the Links, Annotations or Form Fields of a Page
	Rendering a Page
	Saving the Page Image in a File
	Displaying the Image in GUIs
	wxPython
	Tkinter
	PyQt4, PyQt5, PySide

	Extracting Text and Images
	Searching for Text

	PDF Maintenance
	Modifying, Creating, Re-arranging and Deleting Pages
	Joining and Splitting PDF Documents
	Embedding Data
	Saving

	Closing
	Further Reading

	Collection of Recipes
	Images
	How to Make Images from Document Pages
	How to Increase Image Resolution
	How to Create Partial Pixmaps (Clips)
	How to Create or Suppress Annotation Images
	How to Extract Images: Non-PDF Documents
	How to Extract Images: PDF Documents
	How to Handle Stencil Masks
	How to Make one PDF of all your Pictures (or Files)
	How to Create Vector Images
	How to Convert Images
	How to Use Pixmaps: Glueing Images
	How to Use Pixmaps: Making a Fractal
	How to Interface with NumPy
	How to Add Images to a PDF Page

	Text
	How to Extract all Document Text
	How to Extract Text from within a Rectangle
	How to Extract Text in Natural Reading Order
	How to Extract Tables from Documents
	How to Search for and Mark Text
	How to Analyze Font Characteristics
	How to Insert Text
	How to Write Text Lines
	How to Fill a Text Box
	How to Use Non-Standard Encoding

	Annotations
	How to Add and Modify Annotations
	How to Mark Text
	How to Use FreeText
	How to Use Ink Annotations

	Drawing and Graphics
	Multiprocessing
	General
	How to Open with a Wrong File Extension
	How to Embed or Attach Files
	How to Delete and Re-Arrange Pages
	How to Join PDFs
	How to Add Pages
	How To Dynamically Clean Up Corrupt PDFs
	How to Split Single Pages
	How to Combine Single Pages
	How to Convert Any Document to PDF
	How to Deal with Messages Issued by MuPDF
	How to Deal with PDF Encryption

	Common Issues and their Solutions
	Changing Annotations: Unexpected Behaviour
	Problem
	Cause
	Solutions

	Misplaced Item Insertions on PDF Pages
	Problem
	Cause
	Solutions

	Low-Level Interfaces
	How to Iterate through the xref Table
	How to Handle Object Streams
	How to Handle Page Contents
	How to Access the PDF Catalog
	How to Access the PDF File Trailer
	How to Access XML Metadata

	Classes
	Annot
	Annotation Icons in MuPDF
	Example

	Colorspace
	DisplayList
	Document
	setMetadata() Example
	setToC() Demonstration
	insertPDF() Examples
	Other Examples

	Identity
	IRect
	Link
	linkDest
	Matrix
	Examples
	Shifting
	Flipping
	Shearing
	Rotating

	Outline
	Page
	Adding Page Content
	Description of getLinks() Entries
	Notes on Supporting Links
	Reading (pertains to method getLinks() and the firstLink property chain)
	Writing

	Homologous Methods of Document and Page

	Pixmap
	Supported Input Image Formats
	Supported Output Image Formats

	Point
	Quad
	Remark

	Rect
	Shape
	Usage
	Examples
	Common Parameters

	TextPage
	Dictionary Structure of extractDICT() and extractRAWDICT()
	Page Dictionary
	Block Dictionaries
	Line Dictionary
	Span Dictionary
	Character Dictionary for extractRAWDICT()

	Tools
	Example Session

	Widget
	Standard Fonts for Widgets

	Operator Algebra for Geometry Objects
	General Remarks
	Unary Operations
	Binary Operations
	Some Examples
	Manipulation with numbers
	Manipulation with “like” Objects

	Low Level Functions and Classes
	Functions
	Device
	Working together: DisplayList and TextPage
	Create a DisplayList
	Generate Pixmap
	Perform Text Search
	Extract Text
	Further Performance improvements
	Pixmap
	TextPage

	Glossary
	Constants and Enumerations
	Constants
	Document Permissions
	PDF encryption method codes
	Font File Extensions
	Text Alignment
	Preserve Text Flags
	Link Destination Kinds
	Link Destination Flags
	Annotation Related Constants
	Widget Constants
	Widget flags (field_flags)

	Stamp Annotation Icons

	Color Database
	Function getColor()
	Printing the Color Database

	Appendix 1: Performance
	Part 1: Parsing
	Part 2: Text Extraction
	Part 3: Image Rendering

	Appendix 2: Details on Text Extraction
	General structure of a TextPage
	Plain Text
	BLOCKS
	WORDS
	HTML
	Controlling Quality of HTML Output
	DICT (or JSON)
	RAWDICT
	XML
	XHTML
	Text Extraction Flags Defaults
	Performance

	Appendix 3: Considerations on Embedded Files
	General
	MuPDF Support
	PyMuPDF Support

	Appendix 4: Assorted Technical Information
	PDF Base 14 Fonts
	Adobe PDF Reference 1.7
	Using Python Sequences as Arguments in PyMuPDF
	Ensuring Consistency of Important Objects in PyMuPDF
	Design of Method Page.showPDFpage()
	Purpose and Capabilities
	Technical Implementation

	Redirecting Error and Warning Messages

	Change Logs
	Changes in Version 1.16.7
	Changes in Version 1.16.6
	Changes in Version 1.16.5
	Changes in Version 1.16.4
	Changes in Version 1.16.3
	Changes in Version 1.16.2
	Changes in Version 1.16.1
	Changes in Version 1.16.0
	No version published for MuPDF v1.15.0
	Changes in Version 1.14.20 / 1.14.21
	Changes in Version 1.14.19
	Changes in Version 1.14.17
	Changes in Version 1.14.16
	Changes in Version 1.14.15
	Changes in Version 1.14.14
	Changes in Version 1.14.13
	Changes in Version 1.14.12
	Changes in Version 1.14.11
	Changes in Version 1.14.10
	Changes in Version 1.14.9
	Changes in Version 1.14.8
	Changes in Version 1.14.7
	Changes in Version 1.14.5
	Changes in Version 1.14.4
	Changes in Version 1.14.3
	Changes in Version 1.14.1
	Changes in Version 1.14.0
	Changes in Version 1.13.19
	Changes in Version 1.13.18
	Changes in Version 1.13.17
	Changes in Version 1.13.16
	Changes in Version 1.13.15
	Changes in Version 1.13.14
	Changes in Version 1.13.13
	Changes in Version 1.13.12
	Changes in Version 1.13.11
	Changes in Version 1.13.7
	Changes in Version 1.13.6
	Changes in Version 1.13.5
	Changes in Version 1.13.4
	Changes in Version 1.13.3
	Changes in Version 1.13.2
	Changes in Version 1.13.1
	Changes in Version 1.13.0
	Changes in Version 1.12.4
	Changes in Version 1.12.3
	Changes in Version 1.12.2
	Changes in Version 1.12.1
	Changes in Version 1.12.0
	Changes in Version 1.11.2
	Changes in Version 1.11.1
	Changes in Version 1.11.0
	Changes in Version 1.10.0
	MuPDF v1.10 Impact
	Other Changes compared to Version 1.9.3

	Changes in Version 1.9.3
	Changes in Version 1.9.2
	Changes in Version 1.9.1

	Cross Reference

