33#ifndef CBC_SYMMETRY_HPP
34#define CBC_SYMMETRY_HPP
52#define NTY_BAD_DEPTH 10
56#define COUENNE_HACKED_EPS 1.e-07
57#define COUENNE_HACKED_EPS_SYMM 1e-8
58#define COUENNE_HACKED_EXPRGROUP 8
77 void node(
int,
double,
double,
double,
int,
int);
86 inline void bounds(
register double a,
register double b)
109 inline bool operator()(
register const char *a,
register const char *b)
const
111 return strcmp(a, b) < 0;
159 int numberColumns,
bool justFixedAtOne)
const;
193 CbcNauty(
int n,
const size_t *v,
const int *d,
const int *e);
287 std::multimap< int, int >::iterator
it;
289 std::pair< std::multimap< int, int >::iterator,
290 std::multimap< int, int >::iterator >
311 int numberExtra,
const int *extraToZero);
330 virtual void fix(OsiSolverInterface *solver,
331 double *lower,
double *upper,
332 int branchState)
const;
#define COUENNE_HACKED_EPS_SYMM
Abstract branching object base class Now just difference with OsiBranchingObject.
virtual void previousBranch()
Reset every information so that the branching object appears to point to the previous child.
virtual double branch()=0
Execute the actions required to branch, as specified by the current state of the branching object,...
CbcModel * model() const
Return model.
int way() const
Get the state of the branching object.
virtual void print() const
Print something about branch - only if log level high.
Simple Branch and bound class.
void addElement(int ix, int jx)
std::vector< std::vector< int > > * getOrbits() const
Returns the orbits in a "convenient" form.
CbcNauty()
Default constructor.
void color_node(int ix, int color)
void getVstat(double *v, int nv)
CbcNauty(int n, const size_t *v, const int *d, const int *e)
Normal constructor (if dense - NULLS)
void insertRHS(int rhs, int cons)
int getNumGenerators() const
CbcNauty(const CbcNauty &)
Copy constructor.
CbcNauty & operator=(const CbcNauty &rhs)
Assignment operator.
std::multimap< int, int > constr_rhs
void deleteElement(int ix, int jx)
void setWriteAutoms(const std::string &afilename)
Methods to classify orbits.
std::pair< std::multimap< int, int >::iterator, std::multimap< int, int >::iterator > ret
double getGroupSize() const
optionblk * options() const
Pointer to options.
std::multimap< int, int >::iterator it
Branching object for Orbital branching.
virtual void previousBranch()
Reset every information so that the branching object appears to point to the previous child.
virtual ~CbcOrbitalBranchingObject()
virtual int compareOriginalObject(const CbcBranchingObject *brObj) const
Compare the original object of this with the original object of brObj.
CbcOrbitalBranchingObject()
virtual void print()
Print something about branch - only if log level high.
virtual CbcBranchingObject * clone() const
Clone.
virtual CbcBranchObjType type() const
Return the type (an integer identifier) of this.
virtual double branch()
Does next branch and updates state.
int column_
Column to go to 1.
CbcOrbitalBranchingObject & operator=(const CbcOrbitalBranchingObject &rhs)
int numberOther_
Number (without column) going to zero on down branch.
int numberExtra_
Number extra.
int * fixToZero_
Fix to zero.
CbcOrbitalBranchingObject(CbcModel *model, int column, int way, int numberExtra, const int *extraToZero)
virtual CbcRangeCompare compareBranchingObject(const CbcBranchingObject *brObj, const bool replaceIfOverlap=false)
Compare the this with brObj.
virtual void fix(OsiSolverInterface *solver, double *lower, double *upper, int branchState) const
Update bounds in solver as in 'branch' and update given bounds.
CbcOrbitalBranchingObject(const CbcOrbitalBranchingObject &)
void bounds(register double a, register double b)
void color_vertex(register int k)
void node(int, double, double, double, int, int)
Class to deal with symmetry.
int numberUsefulOrbits() const
bool compare(register Node &a, register Node &b) const
std::vector< Node > node_info_
int numberUsefulObjects() const
CbcSymmetry()
Default constructor.
int statsOrbits(CbcModel *model, int type) const
void Print_Orbits() const
int orbitalFixing(OsiSolverInterface *solver)
Fixes variables using orbits (returns number fixed)
void ChangeBounds(const double *lower, const double *upper, int numberColumns, bool justFixedAtOne) const
int largestOrbit(const double *lower, const double *upper) const
CbcSymmetry & operator=(const CbcSymmetry &rhs)
Assignment operator.
std::vector< int > * Find_Orbit(int) const
CbcSymmetry(const CbcSymmetry &)
Copy constructor.
void Compute_Symmetry() const
~CbcSymmetry()
Destructor.
void setupSymmetry(CbcModel *model)
empty if no NTY, symmetry data structure setup otherwise
bool operator()(register const char *a, register const char *b) const
bool operator()(register const Node &a, register const Node &b)
bool operator()(register const Node &a, register const Node &b)