The SmPL Grammar (version 1.2)

Research group on Coccinelle

August 7, 2024

This document presents the grammar of the SmPL language used by the Coccinelle tool. For the most part, the
grammar is written using standard notation. In some rules, however, the left-hand side is in all uppercase letters.
These are macros, which take one or more grammar rule right-hand-sides as arguments. The grammar also uses some
unspecified nonterminals, such as id, const, etc. These refer to the sets suggested by the name, i.e., id refers to the set
of possible C-language identifiers, while const refers to the set of possible C-language constants.

A square bracket that is surrounded by spaces in the description of a term should appear explicitly in the term, as
in an array reference. On the other hand, square brackets that surround some other term indicate that the presence of
that term is optional.

An HTML version of this documentation is available online at https://coccinelle.gitlabpages.
inria.fr/website/docs/main_grammar.html.

1 Program

include_cocci* changeset™
#include string
using string

program =
|
| using pathTolsoFile
|
|

include_cocci

virtual id (, id)*
metavariables transformation
script_metavariables script_code

changeset

script_code is any code in the chosen scripting language. Parsing of the semantic patch does not check the validity
of this code; any errors are first detected when the code is executed. Furthermore, @ should not be used in this code.
Spatch scans the script code for the next @ and considers that to be the beginning of the next rule, even if @ occurs
within e.g., a comment.

virtual keyword is used to declare virtual rules. Virtual rules may be subsequently used as a dependency for
the rules in the SmPL file. Whether a virtual rule is defined or not is controlled by the —D option on the command line.

2 Metavariables for Transformations

The rulename portion of the metavariable declaration can specify properties of a rule such as its name, the names of
the rules that it depends on, the isomorphisms to be used in processing the rule, and whether quantification over paths
should be universal or existential. The optional annotation expression indicates that the pattern is to be considered
as matching an expression, and thus can be used to avoid some parsing problems.

The metadecl portion of the metavariable declaration defines various types of metavariables that will be used for
matching in the transformation section.

https://coccinelle.gitlabpages.inria.fr/website/
https://coccinelle.gitlabpages.inria.fr/website/docs/main_grammar.html
https://coccinelle.gitlabpages.inria.fr/website/docs/main_grammar.html

metavariables

rulename
scope

dep

iso

disable-iso

@@ metadecl” @@

@ rulename @ metadecl* QQ
id [extends id] [depends on [scope] dep| [iso] [disable-iso] [exists| [rulekind)]
exists

forall

id

lid

! (dep)

ever id

never id

dep && dep

dep || dep

file in string

(dep)

using string (, string)*
disable COMMA_LIST(id)

exists = exists
| forall
rulekind = expression
| identifier
| type

COMMA_LIST (elem)

elem (, elem)*

The keyword disable is normally used with the names of isomorphisms defined in standard.iso or whatever
isomorphism file has been included. There are, however, some other isomorphisms that are built into the implementa-
tion of Coccinelle and that can be disabled as well. Their names are given below. In each case, the text describes the
standard behavior. Using disable-iso with the given name disables this behavior.

optional_storage: A SmPL function definition that does not specify any visibility (i.e., static or extern),
or a SmPL variable declaration that does not specify any storage (i.e., auto, static, register, or extern), matches a
function declaration or variable declaration with any visibility or storage, respectively.

optional_qualifier: This is similar to optional_storage, except that here it is the qualifier (i.e.,
const or volatile) or sign qualifier (only signed) that does not have to be specified in the SmPL code, but may be
present in the C code.

optional_attributes: This is also similar to optional_storage, except that here it is an attribute
(e.g., __init) that does not have to be specified in the SmPL code, but may be present in the C code.

value_format: Integers in various formats, e.g., 1 and Ox1, are considered to be equivalent in the matching
process.

optional_declarer_semicolon: Some declarers (top-level terms that look like function calls but serve
to declare some variable) don’t require a semicolon. This isomorphism allows a SmPL declarer with a semicolon
to match such a C declarer, if no transformation is specified on the SmPL semicolon.

comm_assoc: An expression of the form exp bin_op . . ., where bin_op is commutative and associative, is
considered to match any top-level sequence of bin_op operators containing exp as the top-level argument.

prototypes: A rule for transforming a function prototype is generated when a function header changes.

The depends on clause indicates conditions under which a semantic patch rule should be applied. Most of these
conditions relate to the success or failure of other rules, which may be virtual rules. Giving the name of a rule implies
that the current rule is applied if the named rule has succeeded in matching in the current environment. Giving ever

followed by a rule name implies that the current rule is applied if the named rule has succeeded in matching in any
environment. Analogously, never means that the named rule should have succeeded in matching in no environment.
The boolean and, or and negation operators combine these declarations in the usual way. The declaration file in
checks that the code being processed comes from the mentioned file, or from a subdirectory of the directory to which
Coccinelle was applied. In the latter case, the string is matched against the complete pathname. A trailing / is added
to the specified subdirectory name, to ensure that a complete subdirectory name is matched. The declaration file
in is only allowed on SmPL code-matching rules. Script rules are not applied to any code in particular, and thus it
doesn’t make sense to check on the file being considered.

As metavariables are bound and inherited across rules, a tree of environments is built up. A rule is processed only
once for all of the branches that have the same metavariable bindings for the set of variables that the rule depends
on. Different branches, however, may be derived from the success or failure of different sets of rules. A depends
on clause can further indicate whether the clause should be satisfied for all the branches (forall) or only for one
(exists). exists is the default. These annotations can for example be useful when one rule binds a metavariable
%, subsequent rules have the effect of testing good and bad properties of x, and a final rule may want to ensure that all
occurrences of x have the good property (forall) or none have the bad property (exists). forall and exists
are currently only supported at top level, not under conjunction and disjunction.

The possible types of metavariable declarations are defined by the grammar rule below. Metavariables should occur
at least once in the transformation code immediately following their declaration. Fresh identifier metavariables must
only be used in + code. These properties are not expressed in the grammar, but are checked by a subsequent analysis.
The metavariables are designated according to the kind of terms they can match, such as a statement, an identifier,
or an expression. An expression metavariable can be further constrained by its type. A declaration metavariable
matches the declaration of one or more variables, all sharing the same type specification (e.g., int a,b,c=3;). A
field metavariable does the same, but for structure fields. In the minus code, a statement list metavariable can only
appear as a complete function body or as the complete body of a sequence statement. In the plus code, a statement list
metavariable can occur anywhere a statement list is allowed, i.e., including as an element of another statement list.

metadecl

fresh identifier pmids_with_seed ;
metavariable pmids_with_constraints ;

identifier pmvids_with_constraints ;

identifier list pmvids_with_constraints ;

field [list] pmids_with_constraints ;

parameter [list] pmids_with_constraints ;

type pmids_with_constraints ;

statement [list] pmids_with_constraints ;
declaration pmids_with_constraints ;

initialiser [list] pmids_with_constraints ;
initializer [list] pmids_with_constraints ;

[local | global] idexpression |[ctype] pmids_with_constraints ;
[local | global] idexpression [{ ctypes } x*| pmids_with_constraints ;
[local | global] idexpression %t pmids_with_constraints ;
expression list pmids_with_constraints ;
expression [enum | struct | union]| ** pmids_with_constraints ;
ctype [[1] pmids_with_constraints ;

{ ctypes } «* [[1] pmids_with_constraints ;
constant [ctype| pmids_with_constraints ;

constant [{ ctypes } **| pmids_with_constraints ;
format [list] pmids_with_constraints;

assignment operator COMMA_LIST (assignopdecl) ;
binary operator COMMA_LIST (binopdecl) ;

unary operator COMMA_LIST (unopdecl) ;
position [any] pmids_with_constraints ;

symbol pmids;

typedef pmids ;

attribute name ids ;

attribute ids ;

declarer name ids ;

declarer pmids_with_constraints ;

iterator name ids ;

iterator pmids_with_constraints ;

list

list [id]

list [integer 1

pmid | = assignop_constraint]

{COMMA_LIST (assign_op)}

assign_op

pmid | = binop_constraint|

{COMMA_LIST (bin_op)}

bin_op

pmid | = unop_constraint]

{COMMA_LIST (unary_op)}

| unary_op

list

assignopdecl
assignop_constraint

binopdecl
binop_constraint

unopdecl
unop_constraint

fresh identifier metavariables can only be used in + code and will generate new identifiers according to the
optionally given seed:

« if none is given, then one will be requested on the command line during execution of the semantic patch

« if a single string is given then, that string will be suffixed by an increasing number, ensuring that spatch does
not use the same identifier in multiple instances of a rule or in between rules

* if a concatenation of strings and/or ids is provided using the ## operator, or a single id is given, then the strings
will be kept as is and each id will be replaced by its corresponding content (as string) for each evaluation of the
rule

« if a script is given, then it must return a string and the result will be used as is

Examples are found in demos/plusplusl.cocci and demos/plusplus?2.cocci

metavariable declares a metavariable for which the parser tries to figure out the metavariable type based
on the usage context. Such a metavariable must be used consistently. These metavariables cannot be used in all
contexts; specifically, they cannot be used in context that would make the parsing ambiguous. Some examples are the
leftmost term of an expression, such as the left-hand side of an assignment, or the type in a variable declaration. These
restrictions may seem somewhat arbitrary from the user’s point of view. Thus, it is better to use metavariables with
metavariable types. If Coccinelle is given the argument ——-parse-cocci, it will print information about the type
that is inferred for each metavariable.

An identifier is the name of a structure field, a macro, a function, or a variable. It is the name of something rather
than an expression that has a value. But an identifier can be used in the position of an expression as well, where it
represents a variable.

The list modifier allows to match over multiple (including zero) elements of a given kind in a row and store them
as one metavariable. It is possible to specify its length. If no length element is provided then the list will be the longest
possible. If an integer length is provided, then only lists of the given length are matched. If an id is provided, then
it will store the length of the matched list. This id can be used to ensure other lists have the same length, or can be
manipulated in script code.

An identifier list is only used for the parameter list of a macro. It matches multiple identifiers in a row and stores
them as one metavariable.

A field only matches an identifier that is a structure field.

A parameter matches a parameter declaration. Arguments (values given at function call) are not matched through
this but using other kinds of metavariables (e.g. expression).

A type matches a type appearing in code whether it is in the declaration of a function, a variable, in a cast or
anywhere else where it is explicitly a type. It also matches a type name defined by a typedef.

A statement matches anything that falls into the statement definition of the C99 standard.

A statement list can only match a complete sequence of statements between braces. Therefore, no size can be
specified for it and no statement can contiguously surround it for context (it has to be absorbed).

A declaration matches the declaration of one or more variables sharing the same type specification.

An initialiser or initializer matches the right hand side of a declaration.

An idexpression is a variable used as an expression. It is useful to restrict a match to be both an identifier and to
have a particular type. A more complex description of a location, such as a->b is considered to be an expression not
an idexpression. The optional local modifier restricts the matched variable to be a local variable. The optional global
indicates that the matched variable is not a local one. If neither local or global is specified, then any variable reference
can be matched. It is possible to specify a ctype or a set of them and/or a pointer level using « to restrict the types of
variables that can be matched.

An expression is any piece of code that falls into the expression definition of the C99 standard. Therefore, any
combination of sequences of operators and operands that computes a value, designates an object or a function, or
generates side effects is matched as en expression. It is possible to specify some type information using enum, struct,
or union, and/or a pointer level using * to restrict the types of expressions that can be matched. It is possible to
only match expressions of a specific fype or a set of them with a pointer level using * by writing these instead of
the expression designator pattern. One can also specify that the matched expression must be of array type by adding
brackets after the initial type specification. The ctype and ctypes nonterminals are used by both the grammar of
metavariable declarations and the grammar of transformations, and are defined on page 17.

A constant metavariable matches a constant in the code, such as 27. It also considers an uppercase identifier as a
constant as well, because the names given to macros in Linux usually have this form.

When used, a format or format list metavariable must be enclosed by a pair of @s. A format metavariable matches
the format descriptor part, i.e., 2x in $2x. A format list metavariable matches a sequence of format descriptors as

well as the text between them. Any text around them is matched as well, if it is not matched by the surrounding text
in the semantic patch. Such text is not partially matched. If the length of the format list is specified, that indicates
the number of matched format descriptors. It is also possible to use . . . in a format string, to match a sequence of
text fragments and format descriptors. This only takes effect if the format string contains format descriptors. Note
that this makes it impossible to require . . . to match exactly in a string, if the semantic patch string contains format
descriptors. If that is needed, some processing with a scripting language would be required. And example for the use
of string format metavariables is found in demos/format .cocci.

Matching of various kinds of format strings within strings is supported. With the ——ibm option, matching of
decimal format declarations is supported, but the length and precision arguments are not interpreted. Thus it is not
possible to match metavariables in these fields. Instead, the entire format is matched as a single string.

An assignment operator (resp. binary operator) metavariable matches any assignment (resp. binary) operator.
The list of operators that can be matched can be restricted by adding an operator constraint, i.e. a list of accepted
operators. The matching process follows the parse tree. Thus, for example, for expression metavariables el and e2,
and binary operator metavariable bop, el bop b2 will match against 3 + 4 » 5 with el bound to 3, e2 bound
to4 x 5,and bop bound to +, because + has lower precedence than »*.

A position metavariable is used by attaching it using @ to any token, including another metavariable. Its value
is the position (file, line number, etc.) of the code matched by the token. It is also possible to attach expression,
declaration, type, initialiser, and statement metavariables in this manner. In that case, the metavariable is bound to the
closest enclosing expression, declaration, etc. If such a metavariable is itself followed by a position metavariable, the
position metavariable applies to the metavariable that it follows, and not to the attached token. This makes it possible
to get eg the starting and ending position of £ (. ..), by writing £ (.. .) QEQp, for expression metavariable E and
position metavariable p. This attachment notation for metavariables of type other than position can also be expressed
with a conjunction, but the @ notation may be more concise.

Other kinds of metavariables can also be attached using @ to any token. In this case, the metavariable floats up
to the enclosing appropriate expression. For example, 3 +QE 4, where E is an expression metavariable binds E to
3 + 4. A particular case is Ps@Es, where Ps is a parameter list and Es is an expression list. This pattern matches
a parameter list, and then matches Es to the list of expressions, ie a possible argument list, represented by the names
of the parameters. Another particular case is E@S, where E is any expression and S is a statement metavariable. S
matches the closest enclosing statement, which may be more than what is matches by the semantic match pattern itself.

A symbol declaration specifies that the provided identifiers should be considered to be C identifiers when encoun-
tered in the body of the rule. Identifiers in the body of the rule that are not declared explicitly are by default considered
symbols, thus symbol declarations are optional. It is not required, but it will not cause a parse error, to redeclare a
name as a symbol. A name declared as a symbol can, furthermore, be redeclared as another metavariable. It will be
considered to be a metavariable in such rules, and will revert to being a symbol in subsequent rules. These conditions
also apply to iterator names and declarer names.

A typedef declaration specifies that the provided identifiers should be considered as types when encountered in the
code for match. Such a declaration is useful to ensure spatch will match some identifiers as types properly when the
declaration is not available in the processed code. It is not always necessary to specify a type that has no declaration
in the given code is a type, because spatch can sometimes extrapolate that information from context. A declaration
of a name as a typedef extends through the rest of the semantic patch. It is not required, but it will not cause a parse
error, to redeclare a name as a typedef. A name declared as a typedef can, furthermore, be redeclared as another
metavariable. It will be considered to be a metavariable in such rules, and will revert to being a typedef in subsequent
rules.

An attribute metavariable matches any attribute.

An attribute name declaration indicates that the given identifiers should be considered to be attributes, e.g.,
noinline.

A declarer is a macro call used at top level which generates a declaration. Such macros are used in the Linux
kernel.

The name modifier specifies that instead of declaring a metavariable to match over some kind, the identifiers are
to be considered as elements of that kind when they appear in the code.

An iterator is a macro call used in place of an iteration statement header (e.g. for (size_t i = 0; 1 <

10;

++1)) which generates it. Such macros are used in the Linux kernel.

Subsequently, we refer to arbitrary metavariables as metaid”, where ty indicates the metakind used in the decla-
ration of the variable. For example, metaid™P® refers to a metavariable that was declared using type and stands for

any type.

ids

pmids
pmids_with_constraints
pmvids_with_constraints
pmids_with_seed

pmvid

pmid

mid

constraints

constraint

compare_constraint

id_compare_constraint

int_compare_constraint

regexp_constraint

seed

script

ANDAND_LIST(X)
CONCAT_LIST(X)

COMMA_LIST (id)
COMMA_LIST (pmid)
COMMA_LIST (pmid [constraints))
COMMA_LIST (pmvid [constraints])
COMMA_LIST (pmid [seed))
pmid
virtual.id
id
mid
rulename_id. id
ANDAND_LIST (constraint)
compare_constraint
regexp_constraint

script
id_compare_constraint
int_compare_constraint

= pmid

= { COMMA_LIST (pmid) }

'= pmid

= { COMMA_LIST (pmid) }

= integer

= { COMMA_LIST (integer) }

!= integer

!= { COMMA_LIST (integer) }

=" regexp

'™ regexp

= string

= CONCAT_LIST (string | pmid)

= script

script:ocaml (COMMA_LIST(mid)) { expr }
script:python (COMMA_LIST(mid)) { expr }

X [s& ANDAND_LIST(X))
X [## CONCAT_LIST(X)]

A meta identifier with virtual as its “rule name” is given a value on the command line. For example, if a
semantic patch contains a rule that declares an identifier metavariable with the name virtual.alloc, then the

command line could contain -D alloc=kmalloc. There should not be space around the =.

demos/vm.cocci and demos/vm. c.
Most metavariables can be given constraints to indicate authorized/forbidden values. These constraints fall in
different categories:

An example is in

e comparison constraints to indicate that a metavariable must be equal to or different from some integer values or
some other metavariables

* regexp constraints to indicate that a metavariable’s matched code must satisfy or must not satisfy the given
regular expression

* script constraints to indicate that the metavariable must validate some arbitrary constraint written in a script
language. A script constraint must return a boolean value

Multiple constraints can be attached to a single metavariable by separating them using & &, and all the constraints must
be met at the same time for their composition to be true. It is also possible to include inherited identifier metavariables
among the constraints.

Metavariables can be associated with constraints implemented as OCaml or python script code. The form of the
code is somewhat restricted, due to the fact that it passes through the Coccinelle semantic patch lexer, before being
converted back to a string to be passed to the scripting language interpreter. It is thus best to avoid complicated code
in the constraint itself, and instead to define relevant functions in an initialize rule. The code must represent
an expression that has type bool in the scripting language. The script code can be parameterized by any inherited
metavariables. It is implicitly parameterized by the metavariable being declared. In the script, the inherited metavari-
able parameters are referred to by their variable names, without the associated rule name. The script code can also be
parameterized by metavariables defined previously in the same rule. Such metavariables must always all be mentioned
in the same “rule elem” as the metavariable to which the constraint applies. Such a rule elem must also not contain
disjunctions, after disjunction lifting. The result of disjunction lifting can be observed using ——parse-cocci. A
rule elem is eg an atomic statement, such as a return or an assignment, or a loop header, if header, etc. The variable
being declared can also be referenced in the script code by its name. All parameters, except position variables, have
their string representation. An example is in demos/poscon.cocci.

Script constraints may be executed more than once for a given metavariable binding. Executing the script constraint
does not guarantee that the complete match will work out; the constraints are executed within the matching process.

Warning: Each metavariable declaration causes the declared metavariables to be immediately usable, without any
inheritance indication. Thus the following are correct:

@@
type r.T;
T x;

@@

[...] // some semantic patch code

Q@

r. T x;
type r.T;
@@

[...] // some semantic patch code

But the following is not correct:

@@

type r.T;

r. T x;

@@

[...] // some semantic patch code

This applies to position variables, type metavariables, identifier metavariables that may be used in specifying a
structure type, and metavariables used in the initialization of a fresh identifier. In the case of a structure type, any
identifier metavariable indeed has to be declared as an identifier metavariable in advance. The syntax does not permit
r.n as the name of a structure or union type in such a declaration.

3 Metavariables for Scripts

Metavariables for scripts can only be inherited from transformation rules. In the spirit of scripting languages such as
Python that use dynamic typing, metavariables for scripts do not include type declarations. A script is only run if all
metavariables are bound, either by inheritance or by a default value given with =.

script_metavariables Q@ script:language [rulename] [depends on dep] @ script_metadecl* @@
@ initialize:language [depends on dep] @ script_virt_metadecl* Q@
@ finalize:language [depends on dep| @ script_virt_metadecl* @@
python

ocaml

id << rulename_id.id ;

id << rulename_id.id = "..." ;

id << rulename_id.id =
id ;

id << virtual.id ;

language

script_metadecl

|
—
—
~

script_virt_metadecl

Currently, the only scripting languages that are supported are Python and OCaml, indicated using python and
ocaml, respectively. The set of available scripting languages may be extended at some point.

Script rules declared with initialize are run before the treatment of any file. Script rules declared with
finalize are run when the treatment of all of the files has completed. There can be at most one of each per scripting
language. Initialize and finalize script rules do not have access to SmPL metavariables. Nevertheless, a finalize script
rule can access any variables initialized by the other script rules, allowing information to be transmitted from the
matching process to the finalize rule.

Initialize and finalize rules do have access to virtual metavariables, using the usual syntax. As for other scripting
language rules, the rule is not run (and essentially does not exist) if some of the required virtual metavariables are not
bound. In OCaml, a warning is printed in this case. An example is found in demos/initvirt.cocci.

A script metavariable that does not specify an origin, using «, is newly declared by the script. This metavari-
able should be assigned to a string and can be inherited by subsequent rules as an identifier. In Python, the as-
signment of such a metavariable = should refer to the metavariable as coccinelle.z. Examples are in the files
demos/pythontococci.cocci and demos/camltococci.cocci.

In an OCaml script, the following extended form of script_metadecl may be used:

script_metadecl” = (id,id) << rulename_id.id ;
| id << rulename_id.id ;
| id ;

In a declaration of the form (id,id) << rulename_id.id ;, the left component of (id,id) receives a string repre-
sentation of the value of the inherited metavariable while the right component receives its abstract syntax tree. The
file parsing_c/ast_c.ml in the Coccinelle implementation gives some information about the structure of the
abstract syntax tree. Either the left or right component may be replaced by _, indicating that the string representation
or abstract syntax trees representation is not wanted, respectively.

The abstract syntax tree of a metavariable declared using metavariable is not available.

Script metavariables can have default values. This is only allowed if the abstract syntax tree of the metavariable
is not requested. The default value of a position metavariable is written as []. The default value of any other kind
of metavariable is a string. There is no control that the string actually represents the kind of term represented by the
metavariable. Normally, a script rule is only applied if all of the metavariables have values. If default values are
provided, then the script rule is only applied if all of the metavariables for which there are no default values have
values. See demos/defaultscript.cocci for examples of the use of this feature.

4 Control Flow

Rules describe a property that Coccinelle must match, and when the property described is matched the rule is consid-
ered successful. One aspect that is taken into account in determining a match is the program control flow. A control
flow describes a possible run time path taken by a program.

4.1 Basic dots

When using Coccinelle, it is possible to express matches of certain code within certain types of control flows. Ellipses
(““...”) can be used to indicate to Coccinelle that anything can be present in a control-flow graph path between matches
of two statements. For instance the following SmPL patch tells Coccinelle that rule rQ wishes to remove all calls to
function c().

1 @ro@
2 @@

« —c();

The context of the rule provides no other guidelines to Coccinelle about any possible control flow other than this
is a statement, and that c() must be called. We can modify the required control flow required for this rule by providing
additional requirements and using ellipses in between. For instance, if we only wanted to remove calls to c() that also
had a prior call to foo() we’d use the following SmPL patch:

1 @rl@
2 @@

[3EET]

Note that the region matched by “...” can be empty.

4.2 Dot variants

There are two possible modifiers to the control flow for ellipses, one (<... ... >) indicates that matching the pattern
in between the ellipses is to be matched 0 or more times, i.e., it is optional, and another (<+... ... +>) indicates that
the pattern in between the ellipses must be matched at least once, on some control-flow path. In the latter, the +
is intended to be reminiscent of the + used in regular expressions. For instance, the following SmPL patch tells
Coccinelle to remove all calls to c() if foo() is present at least once since the beginning of the function.

1 Qr2@
2 @@

4 <+...

Alternatively, the following indicates that foo() is allowed but optional. This case is typically most useful when all
occurrences, if any, of foo() prior to c() should be transformed.

10

1 @r3@
2 @@

4.3 An example

Let’s consider some sample code to review: flowl.c.

2> int main (void)

3 o

4 int ret, a = 2;
5

6 a = foo(a);

7 ret = bar(a);

8 c();

9

10 return ret;

n o}

Applying the SmPL rule 10 to flowl.c would remove the c() line as the control flow provides no specific context
requirements. Applying rule rl would also succeed as the call to foo() is present. Likewise rules r2 and r3 would also
succeed. If the foo() call is removed from flow1.c only rules r0 and r3 would succeed, as foo() would not be present
and only rules r0 and r3 allow for foo() to not be present.

One way to describe code control flow is in terms of McCabe cyclomatic complexity. The program flowl.c
has a linear control flow, i.e., it has no branches. The main routine has a McCabe cyclomatic complexity of 1.
The McCabe cyclomatic complexity can be computed using pmccabe (https://www.gnu.org/software/complexity/-
manual/html_node/pmccabe-parsing.html).

1 pmccabe /flowl.c
2 1 1 5 1 10 flowl.c(l): main

Since programs can use branches, often times you may also wish to annotate requirements for control flows in
consideration for branches, for when the McCabe cyclomatic complexity is > 1. The following program, flow2.c,
enables the control flow to diverge on line 7 due to the branch, if (a) — one control flow possible is if (a) is true, another
when if (a) is false.

1 int main (void)

2 |

3 int ret, a = 2;
4

5 a = foo(a);

6 ret = bar(a);

7 if (a)

8 c();

9

10 return ret;

11

This program has a McCabe cyclomatic complexity of 2.

I pmccabe flow2.c
2 2 2 6 1 11 flow2.c(l): main

Using the McCabe cyclomatic complexity is one way to get an idea of the complexity of the control graph for a
function, another way is to visualize all possible paths. Coccinelle provides a way to visualize control flows of pro-
grams, this however requires dot (http://www.graphviz.org/) and gv to be installed (typically provided by a package
called graphviz). To visualize control flow or a program using Coccinelle you use:

spatch --control-flow-to-file flow1.c
spatch --control-flow-to-file flow2.c

Behind the scenes this generates a dot file and uses gv to generate a PDF file for viewing. To generate and inspect
these manually you can use the following:

spatch --control-flow-to-file flow2.c
dot -Tpdf flow1:main.dot > flow1.pdf

By default properties described in a rule must match all control flows possible within a code section being inspected
by Coccinelle. So for instance, in the following SmPL patch rule r1 would match all the control flow possible on
flowl.c as its linear, however it would not match the control possible on flow2.c. The rule r1 would not be successful
in flow2.c

1 Qrl@
2 @@

The default control flow can be modified by using the keyword “exists” following the rule name. In the following
SmPL patch the rule r2 would be successful on both flow1.c and flow2.c

1 @r2 exists@
2 @@

3

+ foo ()

5 e e e

s —c();

If the rule name is followed by the “forall” keyword, then all control flow paths must match in order for the rule to
succeed. By default when a semantic patch has “-” and “+”, or when it has no annotations at all and only script code,

w9

ellipses (““...”) use the forall semantics. And when the semantic patch uses the context annotation (“*”), the ellipses
(““..””) uses the exists semantics. Using the keyword “forall” or “exists” in the rule header affects all ellipses (*...”)
uses in the rule. You can also annotate each ellipses (*“...”) with “when exists” or “when forall” individually.

Rules can also be not be successful if requirements do not match when a rule name is followed by “depends
on XXX”. When “depends on” is used it means the rule should only apply if rule XXX matched with the current
metavariable environment. Alternatively, “depends on ever XXX” can be used as well, this means this rule should
apply if rule XXX was ever matched at all. A counter to this use is “depends on never XXX, which means that this

rule should apply if rule XXX was never matched at all.

5 Transformation

Coccinelle semantic patches are able to transform C code.

12

5.1 Basic transformations

The transformation specification essentially has the form of C code, except that lines to remove are annotated with —
in the first column, and lines to add are annotated with +. A transformation specification can also use dots, “. . .”,
describing an arbitrary sequence of function arguments or instructions within a control-flow path. Implicitly, “. . .”
matches the shortest path between something that matches the pattern before the dots (or the beginning of the function,
if there is nothing before the dots) and something that matches the pattern after the dots (or the end of the function, if
there is nothing after the dots). Dots may be modified with a when clause, indicating a pattern that should not occur
anywhere within the matched sequence. The shortest path constraint is implemented by requiring that the pattern
(if any) appearing immediately before the dots and the pattern (if any) appearing immediately after the dots are not
matched by the code matched by the dots. when any removes the aforementioned constraint that “. . .” matches the
shortest path. Finally, a transformation can specify a disjunction of patterns, of the form (pat;, | ... | pat,)
where each (, | or) isincolumn O or preceded by \. Similarly, a transformation can specify a conjunction of patterns,
of the form (pat; & ... & pat,) whereeach (, & or) isin column O or preceded by \. All of the patterns must
be matched at the same place in the control-flow graph.

The grammar that we present for the transformation is not actually the grammar of the SmPL code that can be
written by the programmer, but is instead the grammar of the slice of this consisting of the — annotated and the
unannotated code (the context of the transformed lines), or the + annotated code and the unannotated code. For
example, for parsing purposes, the following transformation is split into the two variants shown below and each is
parsed separately.

i proc_info_func(...) {
2 <...
3 = hostno
4+ hostptr—->host_no
5 e
6}
I proc_info_func(...) { 1 proc_info_func(...) {
2 <... 2 <...
3 = hostno 3+ hostptr->host_no
4 D 4 P <

Requiring that both slices parse correctly ensures that the rule matches syntactically valid C code and that it pro-
duces syntactically valid C code. The generated parse trees are then merged for use in the subsequent matching and
transformation process.

The grammar for the minus or plus slice of a transformation is as follows:

13

include™

OPTDOTSEQ(top, when)
#include include_string

expr

decl_stmt™

fundecl

when !'= when_code

when = rule_elem_stmt

when COMMA_LIST (any_strict)
when true != expr

transformation

include
top

when

when false != expr
OPTDOTSEQ(decl_stmt*, when)
OPTDOTSEQ(expr, when)
one_decl

expr;

return [expr];

break;

continue;

\ (rule_elem_stmt (\| rule_elem_stmt)*t\)
any

strict

forall

exists

when_code

rule_elem_stmt ::

any_strict

OPTDOTSEQ(grammar_ds, when_ds) ::=
[... (when_ds)*| grammar_ds (... (when_ds)* grammar_ds)* [... (when_ds)*]

Lines may be annotated with an element of the set {—, +, } or the singleton ?, or one of each set. ? represents at
most one match of the given pattern, ie a match of the pattern is optional. * is used for semantic match, i.e., a pattern
that highlights the fragments annotated with «, but does not perform any modification of the matched code. The code
is presented with lines containing a match of a starred line preceded by —, but this is not intended as a removal and
applying the output as a patch to the original code will likely not result in correct code. * cannot be mixed with — and
+. There are some constraints on the use of these annotations:

e Dots, i.e. ..., cannot occur on a line marked +.
¢ Nested dots, i.e., dots enclosed in < and >, cannot occur on a line marked +.

An #include may be followed by "...", <...> or simply With either quotes or angle brackets, it is
possible to put a partial path, ending with ..., such as <include/. . .>, or to put a complete path. A #include with

. matches any include, with either quotes or angle brackets. Partial paths or complete are not allowed in the latter
case. Something that is added before an include will be put before the last matching include that is not under an ifdef
in the file. Likewise, something that is added after an include will be put after the last matching include that is not
under an ifdef in the file.

Each element of a disjunction must be a proper term like an expression, a statement, an identifier or a declaration.
The constraint on a conjunction is similar. Thus, the rule on the left below is not a syntactically correct SmPL rule.
One may use the rule on the right instead.

14

1 Q@

1 Q@
: type T; z ;yg? Ti
3 T b; !
. ee 4 Q0@
5
5 o (
o . 7 read
7 writeb (..., . |
s | .
9 readb (..., > write
0) I(:) (
n —(T) . (T),
2 b) . b)

It is also not possible to factorize common added code out over a disjunction. The following semantic patch rule
is thus not allowed.

1 Q@
2 @@

4

s —foo () ;

o |

7 —abc () ;

s —def ();

9)

10 + newcode () ;

Some kinds of terms can only appear in + code. These include comments, and ifdefs.

5.2 Advanced transformations

You may run into the situation where a semantic patch needs to add several disjoint terms at the same place in the code.
Coccinelle does not know in which order these terms should appear, and thus gives an “already tagged token” error in
this situation. If you are sure that order does not matter you can use the optional double addition token ++ to indicate
to Coccinelle that it may add things in any order. This may be for instance safe in situations such as extending a data
structure with more members, based on existing members of the data structure. The following rule helps to extend a
data structure with a respective float for a present int. If there is only one int field in the data structure, this semantic
patch works well with the simple +.

@simpleplus@

identifier x,v;

fresh identifier xx = v ## "_float";
4 @@

)

w

¢ struct x {
7 + float xx;

9 int wv;

This semantic patch works fine, for example, on the following code (plusplus1.c):

15

struct x {
int z;
char b;
}i

If however there are multiple int fields tokens that Coccinelle can transform, order cannot be guaranteed for how
Coccinelle makes additions. If you are sure order does not matter for the transformation you may use ++ instead, as
follows:

@plusplus@
identifier x,v;
fresh identifier xx = v ## "_float";

@@

struct x {
+4 float xx;

int v;

This rule would work against a file plusplus2.c that has three int fields:

struct x {
int z;
int aj;
char b;
int c;
int *d;

}i

A possible result is as shown below. The precise order of the float fields is however not guaranteed with respect to
each other:

struct x {
float a_float;
float c_float;
float z_float;
int z;
int a;
char b;
int c;
int xd;

}i

If you used simpleplus rule on plusplus2.c you would end up with an “already tagged token” error due to the
ordering considerations explained in this section.

16

6 Types

ctypes := COMMA_LIST (ctype)
ctype = [const_vol| generic_ctype **
| [const_vol] void «*
| (ctype (I ctype)*)
const_vol = const
| volatile

ctype_qualif

[ctype_qualif] char
[ctype_qualif] short
[ctype_qualif] short int
[ctype_qualif] int
[ctype_qualif] long

[

[

[

generic_ctype

ctype_qualif] long int
ctype_qualif] long long
ctype_qualif] long long int
double
long double
float
long double complex
double complex
float complex
size_t
ssize_t
ptrdiff_t
enum id { PARAMSEQ(dot_expr, exp_whencode) [,] }
[struct| union] id [{ struct_decl list* }]
typeof (exp)
typeof (ctype)
unsigned
signed
struct_decl_list_start
struct_decl
struct_decl struct_decl_list_start
[when != strl,tcl‘_decl]Jr [continue_struct_decl_list]
struct_decl struct_decl_list_start
struct_decl
ctype d_ident;
fn_ctype (x d_ident) (PARAMSEQ(name_opt_decl, €)) ;)
[const_vol] id d_ident;

ctype_qualif

struct_decl_list
struct_decl_list_start

continue_struct_decl_list ::

struct_decl

d_ident id [[expr]1*
fn_ctype := generic_ctype **

| void «*
name_opt_decl = decl

| ctype

| fi_ctype

T The optional when construct ends at the end of the line.

17

)

7 Function Declarations

fundecl
funproto

funinfo

[fn_ctype] funinfo* funid ([PARAMSEQ(param, ¢€)]) { [stmt_seq] }
Jfn_ctype funinfo* funid ([PARAMSEQ(param, ¢)]);

= inline

| storage

| attribute

= static

| auto

| register
| extern
|

|

|

|

storage

funid id

metaid'd
OR(funid)
type id
metaidhaam
metaidParam List

param

decl = ctype id

| fu_ctype (* id) (PARAMSEQ(name_opt_decl, ¢))
| wvoid

|

metaighaam

PARAMSEQ(gram_p, when_p) == COMMA_LIST (gram_p | .. .|when_p])

To match a function it is not necessary to provide all of the annotations that appear before the function name. For
example, the following semantic patch:

Q@
@@

foo() { ... }
matches a function declared as follows:
static int foo () { return 12; }

This behavior can be turned off by disabling the optional_storage isomorphism. If one adds code before a
function declaration, then the effect depends on the kind of code that is added. If the added code is a function definition
or CPP code, then the new code is placed before all information associated with the function definition, including any
comments preceding the function definition. On the other hand, if the new code is associated with the function, such
as the addition of the keyword stat ic, the new code is placed exactly where it appears with respect to the rest of the
function definition in the semantic patch. For example,

Q@

Q@

+ static
foo() { ... }

causes static to be placed just before the function name. The following causes it to be placed just before the type

Q@
type T;
Q@

18

s + static
¢ T foo() { ... }

It may be necessary to consider several cases to ensure that the added code is placed in the right position. For example,
one may need one pattern that considers that the function is declared inline and another that considers that it is not.

Varargs are written in C using Unfortunately, this notation is already used in the semantic patch language. A
pattern for a varargs parameter is written as a sequence of 6 dots.

The C parser allows functions that have no return type, and assumes that the return type is int. The support for
parsing such functions is limited. In particular, the parameter list must contain a type for each parameter, and may not
contain varargs.

For a function prototype, unlike a function definition, a specification of the return type is obligatory.

8 Declarations

decl_var = common_decl
| [storage] ctype COMMA_LIST (d_ident) ;
| [storage] [const_vol] id COMMA_LIST (d_ident) ;
| [storage] fn_ctype (= d_ident) (PARAMSEQ(name_opt_decl, &)) = initialize ;
| typedef ctype COMMA_LIST (typedef ident) ;
| typedef ctype typedef_ ident [expr];
| typedef ctype typedef ident [expr] [expr];
| OR(decl_var)
| AND(decl_var)

common_decl

[storage] ctype id [attribute];

OR(one_decl)

AND(one_decl)

[storage] [const_vol] id d_ident ;

one_decl

common_decl ::= ctype;
funproto
[storage] ctype d_ident [attribute] = initialize ;
[storage] [const_vol| id d_ident [attribute] = initialize ;

|
|
|
|
|
|
|
| [storage] fn_ctype (= d_ident) (PARAMSEQ(name_opt_decl, €)) ;
| decl_ident ([COMMA_LIST (expr)]) ;
initialize = dot_expr
| metaidlnitialiser
| { [COMMA_LIST (init_list_elem)] }
init_list_elem = dot_expr
|
|
|
|
|
|
|
|
|
|

designator = initialize
metaidlnitialiser

metaidlnitialiserList

id : dot_expr

.oid

[dot_expr]

[dot_expr ... dot_expr]

Declarerld
dDecIarer

designator

decl_ident
metai
Attributeld

Attributeld ([PARAMSEQ(arg, exp_whencode)))
metaidAttribute

__attribute__ (([PARAMSEQ(arg, exp_whencode)]))

attribute

19

An initializer for a structure can be ordered or unordered. It is considered to be unordered if there is at least one
key-value pair initializer, e.g., .x = e.

A declaration can have e.g. the form register x;. In this case, the variable implicitly has type int, and SmPL
code that declares an int variable will match such a declaration. On the other hand, the implicit int type has no position.
If the SmPL code tries to record the position of the type, the match will fail.

In practice, only one attribute is currently allowed in a variable declaration and a function declaration and defini-
tion. Note that an Attributeld begins with ___or is declared as an attribute name in the semantic patch.

Coccinelle supports declaring multiple variables or structure fields in the C code, but not in the SmPL code. It is
possible to remove a variable from within a declaration of multiple variables with a pattern that removes a complete
single-variable declaration, e.g., — int x;. The type and the semicolon are only removed if all of the variables
are removed. It is also possible to specify to entirely remove such a declaration and replace it with something else.
The replacement of a declaration only matches if the addition is done with ++, allowing multiple additions. This is
also only allowed if there is no implicitly matched information on the type, such as extern or static. When
the transformation cannot be made, there is no crash, simply a match failure. A message is given for this with the
—-—-debug option.

9 Statements
The first rule statement describes the various forms of a statement. The remaining rules implement the constraints that

are sensitive to the context in which the statement occurs: single_statement for a context in which only one statement
is allowed, and decl_statement for a context in which a declaration, statement, or sequence thereof is allowed.

20

stmt =

directive

single_stmt ::

decl_stmt

stmt_seq

case_line

iter_ident
OR(gram_o)
AND(gram_o)

DOTSEQ(gram_d, when_d)
NEST(gram_n, when_n)

directive

metaidSt™

expr;

if (dot_expr) single_stmt [else single_stmi]
for ([dot_expr]; [dot_expr]; [dot_expr]) single_stmt
while (dot_expr) single_stmt

do single_stmt while (dot_expr) ;
iter_ident (dot_expr*) single_stmt

switch ([dot_expr]) {case_line* '}
return [dot_expr];

{ [stmit_seq] }

NEST (decl_stmt™, when)

NEST (expr, when)

break;

continue;

id:

goto id;

{stmt_seq }

include

#define id [top]

#define id (PARAMSEQ(id, ¢€)) [top]
#undef id

#pragma id id"

#pragma id

stmt

OR(stmt)

AND(stmt)

metaidStthist

decl_var

stmt

expr

OR(stmt_seq)

AND(stmt_seq)

decl_stmt* [DOTSEQ(decl_stmt™, when) decl_stmr*]
decl_stmt* [DOTSEQ(expr, when) decl_stmt*)
default : stmt_seq

case dot_expr : stmt_seq

Iteratorld

metaidlterator

(gram_o (|gram_o)*)
= (gram_o (&gram_o)*)

= .. .[when_d] (gram_d .. .[when_d])*
= <...|when_n] gram_n (...|when_n| gram_n)* ...>
| <+...[when_n] gram_n (...[when_n] gram_n)* ...+>

OR is a macro that generates a disjunction of patterns. The three tokens (, |, and) must appear in the leftmost column,
to differentiate them from the parentheses and bit-or tokens that can appear within expressions (and cannot appear in
the leftmost column). These token may also be preceded by \ when they are used in an other column. These tokens
are furthermore different from (, |, and), which are part of the grammar metalanguage.

OR(stmt_seq) and AND(stmt_seq)
sion appears there, they are parsed as their expr counterparts, i.e., all branches must be expressions.

must have something other than an expression in the first branch. If an expres-

21

All matching done by a SmPL rule is done intraprocedurally. Thus “...” does not extend from one function to the
next one in the same file and it does not extend from one function over a function call into the called function.

#pragma C code can only be matched against when the entire pragma is on one line in the C code. The use of
continuation lines, via a backslash, will cause the matching to fail.

10 Expressions

A nest or a single ellipsis is allowed in some expression contexts, and causes ambiguity in others. For example, in

a sequence . ..expr ..., the nonterminal expr must be instantiated as an explicit C-language expression, while
in an array reference, expr; [expr, 1, the nonterminal expry, because it is delimited by brackets, can be also
instantiated as . . ., representing an arbitrary expression. To distinguish between the various possibilities, we define

three nonterminals for expressions: expr does not allow either top-level nests or ellipses, nest_expr allows a nest but
not an ellipsis, and dot_expr allows both. The EXPR macro is used to express these variants in a concise way.

EXPR(expr)

EXPR(nest_expr)

NEST (nest_expr, exp_whencode)
EXPR(dot_expr)

NEST (dot_expr, exp_whencode)

expr
nest_expr

dot_expr

N~ N~

exp assign_op exp
exp metaid?SSiInOP oy
exp++
exp—
unary_op exp
exp bin_op exp
exp metaid®nOP exp
exp ? dot_expr : exp
(type) exp
exp [dot_expr]
exp . id
exp —> id
exp ([PARAMSEQ(arg, exp_whencode)))
id
(type) { COMMA_LIST (init_list_elem) }
metaid=P
metaid'@E®
metaid®onst
const
(dot_expr)
OR(exp)
AND (exp)
arg = nest_expr
| metaidExpList

EXPR(exp)

exp_whencode
assign_op

i
=
oy
()
o}

—
o

S
~

bin_op

1l 1l 11
*

unary_op

11 Constants, Identifiers and Types for Transformations

const = string
| [0-9]+
| .
string N L
id n= id | metaid¥ | OR(id) | AND(id)

typedef_ident id | metaid™P®

type = ctype | metaid™P®
pathTolsoFile ::= <.x>
regexp e_ N [~n] *n

Conjunctions for identifiers are, as indicated by the BNF, not currently supported.

12 Comments and Preprocessor Directives

A // or /+ =/ comment that is annotated with + in the leftmost column is considered to be added code. A // or
/* %/ comment without such an annotation is considered to be a comment about the SmPL code, and thus is not
matched in the C code.

The following preprocessor directives can likewise be added. They cannot be matched against. The entire line is
added, but it is not parsed.

e if

e ifdef
e ifndef
* else

e elif

e endif
* error

e line

13 Command-Line Semantic Match

It is possible to specify a semantic match on the spatch command line, using the argument ——sp. In such a semantic
match, any token beginning with a capital letter is assumed to be a metavariable of type metavariable. In this
case, the parser must be able to figure out what kind of metavariable it is. It is also possible to specify the type of a
metavariable by enclosing the type in :’s, concatenated directly to the metavariable name.

Some examples of semantic matches that can be given as an argument to ——sp are as follows:

e f (e): This only matches the expression £ (e).
e £ (E): This matches a call to f with any argument.
e F (E): This gives a parse error; the semantic patch parser cannot figure out what kind of metavariable F is.

e F:identifier: (E): This matches any one argument function call.

23

e f:identifier: (e:struct foo =*:): This matches any one argument function call where the argu-
ment has type struct foo =*. Since the types of the metavariables are specified, it is not necessary for the
metavariable names to begin with a capital letter.

e F:identifier: (F): This matches any one argument function call where the argument is the name of the
function itself. This example shows that it is not necessary to repeat the metavariable type name.

e F:identifier: (F:identifier:): This matches any one argument function call where the argument is
the name of the function itself. This example shows that it is possible to repeat the metavariable type name.

When constraints, e.g. when != e, are allowed but the expression e must be represented as a single token.
The generated semantic match behaves as though there were a = in front of every token.

14 Iteration

It is possible to iterate Coccinelle, giving the subsequent iterations a different set of virtual rules or virtual identifier

bindings. Coccinelle currently supports iteration with both OCaml and Python scripting. An example with OCaml is

found in demos/iteration.cocci, a Python example is found in demos/python_iteration.cocci.
The OCaml scripting iteration example starts as follows.

virtual after_start

@initialize:ocaml@
@@

let tbl = Hashtbl.create(100)

let add_if_not_present from f file =
try let _ = Hashtbl.find tbl (f,file) in ()
with Not_found ->
Hashtbl.add tbl (f,file) file;
let it = new iteration() in
(match file with
Some fl -> it#set_files [f1l]
| None —-> ());
it#add_virtual_rule After_start;
it#add_virtual_identifier Err_ptr_function f;
it#register ()

The respective Python scripting iteration example starts as follows:

virtual after_start

@initialize:pythona@
Qe

seen = set ()

def add_if_not_present (source, f, file):
if (f, file) not in seen:
seen.add((f, file))
it = Iteration|()
if file != None:

24

it.set_files([file])
it.add_virtual_rule (after_start)
it.add_virtual_identifier (err_ptr_function, f)
it.register()

The virtual rule after_start is used to distinguish between the first iteration (in which it is not considered to
have matched) and all others. This is done by not mentioning after_start in the command line, but adding it on
each iteration.

The main code for performing the iteration is found in the function add_if_ not_present, between the
lines calling new iteration and register. New iteration creates a structure representing the new it-
eration. set_files sets the list of files to be considered on the new iteration. If this function is not called,
the new iteration treats the same files as the current iteration. add_virtual_rule a has the same effect as
putting -D a on the command line. If using OCaml scripting instead of Python scripting the first letter of the
rule name is capitalized, although this is not done elsewhere (technically, the rule name is an OCaml constructor).
add_virtual_identifier x v has the same effect as putting -D x=v on the command line. Again, when
using OCaml scripting there is a case change. extend_virtual_identifiers () (not shown) preserves all
virtual identifiers of the current iteration that are not overridden by calls to add_virtual_identifier. Finally,
the call to register queues the collected information to trigger a new iteration at some time in the future.

Modification is not allowed when using iteration. Thus, it is required to use the ——no—-show-diff, unless the
semantic patch contains *s (a semantic match rather than a semantic patch). This restriction does not hold if the
argument ——in-place is used.

When using Python scripting a tuple may be used to ensure that the same information is not enqueued more than
once. When using OCaml scripting a hash table may be used for the same purpose. Coccinelle itself provides no
support for obtaining information about what work has been queued and as such addressing this with scripting is
necessary.

15 .cocciconfig Support

Coccinelle supports enabling custom options to be preferred when running spatch. This is supported through the
search of . cocciconfig files in each of the following directories, later lines extend and may override earlier ones:

* Your current user’s home directory is processed first.
* Your directory from which spatch is called is processed next.

* The directory provided with the --dir option is processed last, if used.

Newlines, even with \, are not tolerated in attribute values. An example follows:

[spatch]
options = —-—-jobs 4
options = —--show-trying

25

16 Examples

This section presents a range of examples. Each example is presented along with some C code to which it is applied.
The description explains the rules and the matching process.

16.1 Function renaming

One of the primary goals of Coccinelle is to perform software evolution. For instance, Coccinelle could be used to
perform function renaming. In the following example, every occurrence of a call to the function foo is replaced by a
call to the function bar.

Before Semantic patch After
i #DEFINE TEST "foo" 1 @@ i #DEFINE TEST "foo"
2 2 2
s printf ("foo"); 3 @@ 3 printf ("foo");
4 4 4
s int main(int i) { s — fool() s int main(int i) {
¢ //Test 6 + bar () s //Test
7 int k = foo(); 7 int k = bar();
8 8
9 1if(1) { 9 1if (1) {
10 foo(); 10 bar();
1 } else { 1 } else {
12 foo(); 12 bar();
13 } 13 }
14 14
15 foo(); 15 bar () ;

26

16.2 Removing a function argument

Another important kind of evolution is the introduction or deletion of a function argument. In the following example,
the rule rulel looks for definitions of functions having return type i rgreturn_t and two parameters. A second
anonymous rule then looks for calls to the previously matched functions that have three arguments. The third argument
is then removed to correspond to the new function prototype.

1 @ rulel @

» identifier fn;
identifier irqg, dev_id;
4+ typedef irqgreturn_t;

s @@

w

7 static irgreturn_t fn (int irqg, void =*dev_id)

s {

2 @@

3 identifier rulel.fn;

4 expression El1, E2, E3;
15 @@

7 fn(El, E2
s — ,E3
19)

drivers/atm/firestream. c atline 1653 before transformation

1 static void fs_poll (unsigned long data)
2 |

3 struct fs_dev xdev = (struct fs_dev) data;
4

5 fs_irg (0, dev, NULL);

6 dev->timer.expires = jiffies + FS_POLL_FREQ;
7 add_timer (&dev->timer);

drivers/atm/firestream. c atline 1653 after transformation

static void fs_poll (unsigned long data)
2 |

3 struct fs_dev xdev = (struct fs_dev =*) data;
4

5 fs_irg (0, dev);

6 dev->timer.expires = jiffies + FS_POLL_FREQ;
7 add_timer (&dev->timer);

27

16.3 Introduction of a macro

To avoid code duplication or error prone code, the kernel provides macros such as BUG_ON, DIV_ROUND_UP and
FIELD_SIZE. In these cases, the semantic patches look for the old code pattern and replace it by the new code.

A semantic patch to introduce uses of the DIV_ROUND_UP macro looks for the corresponding expression, i.e.,
(n+d—1)/d. When some code is matched, the metavariables n and d are bound to their corresponding expressions.
Finally, Coccinelle rewrites the code with the DIV_ROUND_UP macro using the values bound to n and d, as illustrated
in the patch that follows.

Semantic patch to introduce uses of the DIV_ROUND_UP macro

1 @ haskernel @

» @@

3

#include <linux/kernel.h>

IS

¢ @ depends on haskernel @
7 expression n,d;
s @@

10
(
n = (((n) + (d)) - 1) / (d))
2 + DIV_ROUND_UP (n,d)
13|
= (((n) + ((d) = 1)) / (d))
15 + DIV_ROUND_UP (n, d)
16
)

Example of a generated patch hunk

1 ——— a/drivers/atm/horizon.c
2 +++ b/drivers/atm/horizon.c
3 @@ -698,7 +698,7 @@ got_it:

4 if (bits)

5 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
6 if (actual) {

7 = xractual = (br + (pre<<div) - 1) / (pre<<div);
s + xactual = DIV_ROUND_UP (br, pre<<div);

9 PRINTD (DBG_QOS, "actual_rate:_%u", =xactual);

10 }

1 return 0;

28

The BUG_ON macro makes an assertion about the value of an expression. However, because some parts of the
kernel define BUG_ON to be the empty statement when debugging is not wanted, care must be taken when the asserted
expression may have some side-effects, as is the case of a function call. Thus, we create a rule introducing BUG_ON
only in the case when the asserted expression does not perform a function call.

One particular piece of code that has the form of a function call is a use of unlikely, which informs the com-
piler that a particular expression is unlikely to be true. In this case, because unlikely does not perform any side
effect, it is safe to use BUG_ON. The second rule takes care of this case. It furthermore disables the isomorphism that
allows a call to unlikely to be replaced with its argument, as then the second rule would be the same as the first one.

1 Q@

» expression E, f;

3 @@

4

s (

6 if (<+... £(...) ...+>) { BUG(); }

7|

g — 1f (E) { BUG(); }
9 + BUG_ON(E) ;

0)

2 @ disable unlikely @
3 expression E, f;
14 @@

17 if (<400 £(..0) oo.4>) { BUG(); }

v — 1f (unlikely (E)) { BUG(); }
0 + BUG_ON(E) ;
)

For instance, using the semantic patch above, Coccinelle generates patches like the following one.

1 ——— a/fs/ext3/balloc.c
2 +++ b/fs/ext3/balloc.c
3 @@ -232,8 +232,7 @R restart:

2

4 prev = rsv;
5 }

6 printk ("Window,_map complete.\n");
7 = if (bad)

8 — BUG () ;

9 + BUG_ON (bad) ;

1 #define rsv_window_dump (root, verbose) \
12 __rsv_window_dump ((root), (verbose), __ _FUNCTION_)

29

16.4 Look for NULL dereference

This SmPL match looks for NULL dereferences. Once an expression has been compared to NULL, a dereference to
this expression is prohibited unless the pointer variable is reassigned.

Original
1 foo = kmalloc (1024);
> 1f (!'foo) {
3 printk ("Error_%s", foo->here);
4 return;
s}
¢ foo—>o0k = 1;
7 return;

Semantic match

1 Q@

: expression E, EI1;

3 identifier f;

4+ statement S1,S52,S53;

s @@

6

7 %« 1f (== NULL)

8

9 ... when != if (E == NULL) S1 else S2
10 when != E = E1
n *x EBE->f

12 ... when any

13 return ...;

4}

5 else S3

Matched lines

1 foo = kmalloc (1024);

2 if (!'foo) |

3 printk ("Error %s", foo->here);
4 return;

s}

¢ foo—>o0k = 1;

7 return;

30

16.5 Reference counter: the of xxx API

Coccinelle can embed Python code. Python code is used inside special SmPL rule annotated with script :python.
Python rules inherit metavariables, such as identifier or token positions, from other SmPL rules. The inherited
metavariables can then be manipulated by Python code.

The following semantic match looks for a call to the of_find_node_by_name function. This call increments
a counter which must be decremented to release the resource. Then, when there is no call to of_node_put, no new
assignment to the device_node variable n and a return statement is reached, a bug is detected and the position
pl and p2 are initialized. As the Python script rule depends only on the positions pl and p2, it is evaluated. In
the following case, some Emacs Org mode data are produced. This example illustrates the various fields that can be
accessed in the Python code from a position variable.

1 @ r exists @

local idexpression struct device_node =n;
position pl, p2;

statement S1,S2;

expression E,E1l;

s Q@

[N

w

IS

o

g (

o if (! (n@pl = of_find_node_by_name(...))) S1
0 |

1 n@pl = of_find_node_by_ name(...)

2)

3 <... when != of_node_put (n)
14 when != if (...) { <+... of_node_put(n) ...+> }
15 when != true !'n ||
16 when != n = E
17 when != E = n
8 1f (!In || ...) S2
19 oo o>
20 (
21 return <+...n...+>;
2 |
» return@p2 ...;
u |
» n = E1
2% |
7 E1l = n
)

28

29

» @ script:python @
pl << r.pl;

»n p2 << r.p2;

33 @ @

34

3

view:%s::face=ovl-facel::linb=%s::colb=%s::cole=%s] [inc.

%

print "% TODO [

3;

b3

counter:%s::%s]]1" % (pl[0].file,pl[0].1line,pl[0].column,pl[0].column_end,
pl[0].file,pl[0].1line)

3

=8

print "[[view:%s::face=ovl-face2::1linb=%s::colb=%s::cole=%s] [return]]" % (p2
[0].file,p2[0].1line,p2[0] .column,p2[0].column_end)

31

Lines 13 to 17 list a variety of constructs that should not appear between a call to of_find_node_by_name
and a buggy return site. Examples are a call to of_node_put (line 13) and a transition into the then branch of a
conditional testing whether n is NULL (line 15). Any number of conditionals testing whether n is NULL are allowed
as indicated by the use of anest <.>to describe the path between the call to of_find_node_by_name,
the return and the conditional in the pattern on line 18.

The previous semantic match has been used to generate the following lines. They may be edited using the emacs
Org mode to navigate in the code from a site to another.

x TODO [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-
facel::1inb=236::co0lb=18::cole=20] [inc. counter:/linux—-next/arch/powerpc/
platforms/pseries/setup.c::236]]

[[view:/linux—next/arch/powerpc/platforms/pseries/setup.c::face=ovl-face2::
1inb=250::colb=3::cole=9] [return]]

3 # TODO [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-
facel::1inb=236::colb=18::co0le=20] [inc. counter:/linux—-next/arch/powerpc/
platforms/pseries/setup.c::236]]

[[view:/linux—-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-face2::
1inb=245::colb=3::co0le=9] [return]]

Note : Coccinelle provides some predefined Python functions, i.e., cocci.print_main, cocci.print_sec
and cocci.print_secs. One could alternatively write the following SmPL rule instead of the previously pre-
sented one.

1 @ script:python @

» pl << r.pl;

3 p2 << r.p2;

4 @@

6 coccl.print_main (pl)

7 coccl.print_sec (p2, "return")

The function cocci.print_secs is used when several positions are matched by a single position variable and
every matched position should be printed.

Any metavariable could be inherited in the Python code. However, accessible fields are not currently equally
supported among them.

32

16.6 Filtering identifiers, declarers or iterators with regular expressions

If you consider the following SmPL file which uses the regexp functionality to filter the identifiers that contain, begin
or end by foo,

3 @endsby@

: SanZlS? u type t;
2 type i s identifier foo =~ ".xfoo$";
3 identifier id;
2% @@
4+ @@
tid O {...) ;
’ %t foo () {...}

29

0 @script:python@

31 X << endsby.foo;

» @@

» print "Ends by foo: %$s" % x

7 @script:pythona@

s X << anyid.id;

o @@

o print "Identifier: %$s" % x

34

2 @contains(@ @beginsby@

3 type t;

w identifier foo =~ ".xfoo"; © type t;
ee » identifier foo =~ "*foo";
15
’ 3 @@
ot f
vt foo () {...} vt foo () {...}

40

s @script:python@

v x << contains.foo;

0 @@

print "Contains foo: %s

4 @script:python@

2 X << beginsby.foo;

s Q@

4 print "Begins by foo: %$s" % x

n oo
s X

)

and the following C program, on the left, which defines the functions foo, bar, foobar, barfoobar and
barfoo, you will get the result on the right.

1 Identifier: foo

» Identifier: bar

3 Identifier: foobar

4+ Identifier: barfoobar

1 int foo () { return 0; } s Identifier: barfoo

> int bar () { return 0; } ¢ Contains foo: foo

3 int foobar () { return 0; } 7 Contains foo: foobar

4+ int barfoobar () { return 0; } s Contains foo: barfoobar
s int barfoo () { return 0; } 9 Contains foo: barfoo

0w Ends by foo: foo

n Ends by foo: barfoo

2 Begins by foo: foo

13 Begins by foo: foobar

33

17 Tips and Tricks

This section presents some tips and tricks for using Coccinelle.

17.1 How to remove useless parentheses?
If you want to rewrite any access to a pointer value by a function call, you may use the following semantic patch.

- a = *b
+ a = readb(b)
However, if for some reason your code looks like bar = * (foo),youwillendup withbar = readb ((foo))
as the extra parentheses around foo are capture by the metavariable b.
In order to generate better output code, you can use the following semantic patch instead.
- a = *(b)
+ a = readb (b)

And rely on your standard.iso isomorphism file which should contain:

Expression
@ paren @
3 expression E;

@@

(E) => E

Coccinelle will then consider bar = x (foo) asequivalenttobar = =foo (butnot the other way around) and
capture both. Finally, it will generate bar = readb (foo) as expected.

34

	Program
	Metavariables for Transformations
	Metavariables for Scripts
	Control Flow
	Basic dots
	Dot variants
	An example

	Transformation
	Basic transformations
	Advanced transformations

	Types
	Function Declarations
	Declarations
	Statements
	Expressions
	Constants, Identifiers and Types for Transformations
	Comments and Preprocessor Directives
	Command-Line Semantic Match
	Iteration
	.cocciconfig Support
	Examples
	Function renaming
	Removing a function argument
	Introduction of a macro
	Look for NULL dereference
	Reference counter: the of_xxx API
	Filtering identifiers, declarers or iterators with regular expressions

	Tips and Tricks
	How to remove useless parentheses?

