connect {igraph} | R Documentation |
These functions find the vertices not farther than a given limit from another fixed vertex, these are called the neighborhood of the vertex.
connect(graph, order, mode = c("all", "out", "in", "total"))
ego_size(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
ego(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
make_ego_graph(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0
)
graph |
The input graph. |
order |
Integer giving the order of the neighborhood. |
mode |
Character constant, it specifies how to use the direction of
the edges if a directed graph is analyzed. For ‘out’ only the
outgoing edges are followed, so all vertices reachable from the source
vertex in at most |
nodes |
The vertices for which the calculation is performed. |
mindist |
The minimum distance to include the vertex in the result. |
The neighborhood of a given order r
of a vertex v
includes all
vertices which are closer to v
than the order. I.e. order 0 is always
v
itself, order 1 is v
plus its immediate neighbors, order 2
is order 1 plus the immediate neighbors of the vertices in order 1, etc.
ego_size()
returns the size of the neighborhoods of the given order,
for each given vertex.
ego()
returns the vertices belonging to the neighborhoods of the given
order, for each given vertex.
make_ego_graph()
is creates (sub)graphs from all neighborhoods of
the given vertices with the given order parameter. This function preserves
the vertex, edge and graph attributes.
connect()
creates a new graph by connecting each vertex to
all other vertices in its neighborhood.
ego_size()
returns with an integer vector.
ego()
returns A list of igraph.vs
or a list of numeric
vectors depending on the value of igraph_opt("return.vs.es")
,
see details for performance characteristics.
make_ego_graph()
returns with a list of graphs.
connect()
returns with a new graph object.
Gabor Csardi csardi.gabor@gmail.com, the first version was done by Vincent Matossian
Other functions for manipulating graph structure:
+.igraph()
,
add_edges()
,
add_vertices()
,
complementer()
,
compose()
,
contract()
,
delete_edges()
,
delete_vertices()
,
difference.igraph()
,
difference()
,
disjoint_union()
,
edge()
,
igraph-minus
,
intersection.igraph()
,
intersection()
,
path()
,
permute()
,
rep.igraph()
,
reverse_edges()
,
simplify()
,
union.igraph()
,
union()
,
vertex()
Other structural.properties:
bfs()
,
component_distribution()
,
constraint()
,
coreness()
,
degree()
,
dfs()
,
distance_table()
,
edge_density()
,
feedback_arc_set()
,
girth()
,
is_dag()
,
is_matching()
,
knn()
,
laplacian_matrix()
,
reciprocity()
,
subcomponent()
,
subgraph()
,
topo_sort()
,
transitivity()
,
unfold_tree()
,
which_multiple()
,
which_mutual()
Other structural.properties:
bfs()
,
component_distribution()
,
constraint()
,
coreness()
,
degree()
,
dfs()
,
distance_table()
,
edge_density()
,
feedback_arc_set()
,
girth()
,
is_dag()
,
is_matching()
,
knn()
,
laplacian_matrix()
,
reciprocity()
,
subcomponent()
,
subgraph()
,
topo_sort()
,
transitivity()
,
unfold_tree()
,
which_multiple()
,
which_mutual()
Other structural.properties:
bfs()
,
component_distribution()
,
constraint()
,
coreness()
,
degree()
,
dfs()
,
distance_table()
,
edge_density()
,
feedback_arc_set()
,
girth()
,
is_dag()
,
is_matching()
,
knn()
,
laplacian_matrix()
,
reciprocity()
,
subcomponent()
,
subgraph()
,
topo_sort()
,
transitivity()
,
unfold_tree()
,
which_multiple()
,
which_mutual()
g <- make_ring(10)
ego_size(g, order = 0, 1:3)
ego_size(g, order = 1, 1:3)
ego_size(g, order = 2, 1:3)
ego(g, order = 0, 1:3)
ego(g, order = 1, 1:3)
ego(g, order = 2, 1:3)
# attributes are preserved
V(g)$name <- c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")
make_ego_graph(g, order = 2, 1:3)
# connecting to the neighborhood
g <- make_ring(10)
g <- connect(g, 2)