
QuaGroup

Computations with quantum groups

Version 1.8.3

10 February 2022

Willem Adriaan de Graaf

Willem Adriaan de Graaf
Email: degraaf@science.unitn.it
Homepage: http://www.science.unitn.it/~degraaf

mailto://degraaf@science.unitn.it
http://www.science.unitn.it/~degraaf

QuaGroup 2

Copyright

© 2002 Willem A. de Graaf

Contents

1 Introduction 4

2 Background 6
2.1 Gaussian Binomials . 6
2.2 Quantized enveloping algebras . 6
2.3 Representations of Uq(g) . 7
2.4 PBW-type bases . 8
2.5 The Z-form of Uq(g) . 9
2.6 The canonical basis . 9
2.7 The path model . 10
2.8 Notes . 11

3 QuaGroup 12
3.1 Global constants . 12
3.2 Gaussian integers . 12
3.3 Roots and root systems . 13
3.4 Weyl groups and their elements . 15
3.5 Quantized enveloping algebras . 18
3.6 Homomorphisms and automorphisms . 22
3.7 Hopf algebra structure . 26
3.8 Modules . 28
3.9 The path model . 35
3.10 Canonical bases . 37
3.11 Universal enveloping algebras . 43

References 46

Index 47

3

Chapter 1

Introduction

This is the manual for the GAP package QuaGroup, for doing computations with quantized envelop-
ing algebras of semisimple Lie algebras.

Apart from the chapter you are currently reading, this document consists of two chapters. In
Chapter 2 we give a short summary of parts of the theory of quantized enveloping algebras. This fixes
the notations and definitions that we use. Then in Chapter 3 we describe the functions that constitute
the package.

The package can be obtained from http://www.math.uu.nl/people/graaf/quagroup.html
The directory quagroup/doc contains the manual of the package in dvi, ps, pdf and html for-
mat. The manual was built with the GAP share package GAPDoc, [LN01]. This means that, in
order to be able to use the on-line help of QuaGroup, you have to install GAPDoc before calling
LoadPackage("quagroup"); .

The main algorithm of the package (on which virtually the whole functionality relies) is a method
for computing with so-called PBW-type bases, analogous to Poincar\’{e}-Birkhoff-Witt bases in uni-
versal enveloping algebras. In both cases commutation relations between the generators are used.
However, in the latter case all commutation relations are of the form yx = xy+ z, where x,y are gen-
erators, and z is a linear combination of generators. In the case of quantized enveloping algebras the
situation is generally much more complicated. For example, in the quantized enveloping algebra of
type E7 we have the following relation:

Example
F62*F26 = (q)*F26*F62+(1-q^2)*F28*F61+(-q+q^3)*F30*F60+(-q^4+q^2)*F31*F59+

(-q^4+q^2)*F33*F58+(-q^3+q^5)*F34*F57+(q^4-q^6)*F35*F56+
(-q+q^-1-q^5+q^7)*F36*F55+(q^6)*F54

Due to the complexity of these commutation relations, some computations (even with rather small
input) may take quite some time.

Remark: The package can deal with quantized enveloping algebras corresponding to root systems
of rank at least up to eight, except E8. In that case the computation of the necessary commutation re-
lations took more than 2 GB. I wish to thank Steve Linton for trying this computation on the machines
in St Andrews.

The following example illustrates some of the features of the package.
Example

gap> # We define a root system by giving its type:
gap> R:= RootSystem("B", 2);
<root system of type B2>

4

http://www.math.uu.nl/people/graaf/quagroup.html

QuaGroup 5

gap> # Corresponding to the root system we define a quantized enveloping algebra:
gap> U:= QuantizedUEA(R);
QuantumUEA(<root system of type B2>, Qpar = q)
gap> # It is generated by the generators of a so-called PBW-type basis:
gap> GeneratorsOfAlgebra(U);
[F1, F2, F3, F4, K1, (-q^2+q^-2)*[K1 ; 1]+K1, K2, (-q+q^-1)*[K2 ; 1]+K2,

E1, E2, E3, E4]
gap> # We can construct highest-weight modules:
gap> V:= HighestWeightModule(U, [1,1]);
<16-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>
gap> # For modules of small dimension we can compute the corresponding
gap> # R-matrix:
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> V:= HighestWeightModule(U, [1,0]);;
gap> RMatrix(V);
[[q^2, 0, 0, 0, 0, 0, 0, 0, 0], [0, q^3, 0, -q^4+q^2, 0, 0, 0, 0, 0],

[0, 0, q^3, 0, 0, 0, -q^4+q^2, 0, 0], [0, 0, 0, q^3, 0, 0, 0, 0, 0],
[0, 0, 0, 0, q^2, 0, 0, 0, 0], [0, 0, 0, 0, 0, q^3, 0, -q^4+q^2, 0],
[0, 0, 0, 0, 0, 0, q^3, 0, 0], [0, 0, 0, 0, 0, 0, 0, q^3, 0],
[0, 0, 0, 0, 0, 0, 0, 0, q^2]]

gap> # We can compute elements of the canonical basis of the "negative" part
gap> # of a quantized enveloping algebra:
gap> U:= QuantizedUEA(RootSystem("F",4));;
gap> B:= CanonicalBasis(U);
<canonical basis of QuantumUEA(<root system of type F4>, Qpar = q) >
gap> p:= PBWElements(B, [0,1,2,1]);
[F3*F9^(2)*F24, F3*F9*F23+(q^2)*F3*F9^(2)*F24,

(q^3+q)*F3*F9^(2)*F24+F7*F9*F24, (q^2)*F3*F9*F23+(q^4+q^2)*F3*F9^(2)*F
24+(q)*F7*F9*F24+F7*F23, (q^4)*F3*F9^(2)*F24+(q)*F7*F9*F24+F8*F24,

(q^4)*F3*F9*F23+(q^6)*F3*F9^(2)*F24+(q^3)*F7*F9*F24+(q^2)*F7*F23+(q^2)*F8*F
24+F9*F21, (q^3+q)*F3*F9*F23+(q^5+q^3)*F3*F9^(2)*F24+(q^2)*F7*F9*F24+(q)*F
7*F23+(q)*F9*F21+F16]

gap> # We can construct (anti-) automorphisms of quantized enveloping
gap> # algebras:
gap> t:= AntiAutomorphismTau(U);
<anti-automorphism of QuantumUEA(<root system of type F4>, Qpar = q)>
gap> Image(t, p[1]);
(q^4)*F3*F9*F23+(q^6)*F3*F9^(2)*F24+(q^3)*F7*F9*F24+(q^2)*F7*F23+(q^2)*F8*F
24+F9*F21
gap> # (This is the sixth element of p.)

Chapter 2

Background

In this chapter we summarize some of the theoretical concepts with which QuaGroup operates.

2.1 Gaussian Binomials

Let v be an indeterminate over Q. For a positive integer n we set

[n] = vn−1 + vn−3 + · · ·+ v−n+3 + v−n+1.

We say that [n] is the Gaussian integer corresponding to n. The Gaussian factorial [n]! is defined
by

[0]! = 1, [n]! = [n][n−1] · · · [1], for n > 0.

Finally, the Gaussian binomial is [
n
k

]
=

[n]!
[k]![n− k]!

.

2.2 Quantized enveloping algebras

Let g be a semisimple Lie algebra with root system Φ. By ∆ = {α1, . . . ,αl} we denote a fixed simple
system of Φ. Let C = (Ci j) be the Cartan matrix of Φ (with respect to ∆, i.e., Ci j = ⟨αi,α

∨
j ⟩). Let

d1, . . . ,dl be the unique sequence of positive integers with greatest common divisor 1, such that diC ji =
d jCi j, and set (αi,α j)= d jCi j. (We note that this implies that (αi,αi) is divisible by 2.) By P we denote
the weight lattice, and we extend the form (,) to P by bilinearity.

By W (Φ) we denote the Weyl group of Φ. It is generated by the simple reflections si = sαi for
1 ≤ i ≤ l (where sα is defined by sα(β) = β −⟨β ,α∨⟩α).

We work over the field Q(q). For α ∈ Φ we set

qα = q
(α,α)

2 ,

and for a non-negative integer n, [n]α = [n]v=qα
; [n]α ! and

[
n
k

]
α

are defined analogously.

6

QuaGroup 7

The quantized enveloping algebra Uq(g) is the associative algebra (with one) over Q(q) generated
by Fα , Kα , K−1

α , Eα for α ∈ ∆, subject to the following relations

KαK−1
α = K−1

α Kα = 1, KαKβ = Kβ Kα

Eβ Kα = q−(α,β)KαEβ

KαFβ = q−(α,β)Fβ Kα

EαFβ = Fβ Eα +δα,β
Kα −K−1

α

qα −q−1
α

together with, for α ̸= β ∈ ∆,

1−⟨β ,α∨⟩

∑
k=0

(−1)k
[

1−⟨β ,α∨⟩
k

]
α

E1−⟨β ,α∨⟩−k
α Eβ Ek

α = 0

1−⟨β ,α∨⟩

∑
k=0

(−1)k
[

1−⟨β ,α∨⟩
k

]
α

F1−⟨β ,α∨⟩−k
α Fβ Fk

α = 0.

The quantized enveloping algebra has an automorphism ω defined by ω(Fα) = Eα , ω(Eα) = Fα

and ω(Kα) = K−1
α . Also there is an anti-automorphism τ defined by τ(Fα) = Fα , τ(Eα) = Eα and

τ(Kα) = K−1
α . We have ω2 = 1 and τ2 = 1.

If the Dynkin diagram of Φ admits a diagram automorphism π , then π induces an automorphism
of Uq(g) in the obvious way (π is a permutation of the simple roots; we permute the Fα , Eα , K±1

α

accordingly).
Now we view Uq(g) as an algebra over Q, and we let : Uq(g) → Uq(g) be the automorphism

defined by Fα = Fα , Kα = K−1
α , Eα = Eα , q = q−1.

2.3 Representations of Uq(g)

Let λ ∈ P be a dominant weight. Then there is a unique irreducible highest-weight module over Uq(g)
with highest weight λ . We denote it by V (λ). It has the same character as the irreducible highest-
weight module over g with highest weight λ . Furthermore, every finite-dimensional Uq(g)-module is
a direct sum of irreducible highest-weight modules.

It is well-known that Uq(g) is a Hopf algebra. The comultiplication ∆ : Uq(g)→Uq(g)⊗Uq(g) is
defined by

∆(Eα) = Eα ⊗1+Kα ⊗Eα

∆(Fα) = Fα ⊗K−1
α +1⊗Fα

∆(Kα) = Kα ⊗Kα .

(Note that we use the same symbol to denote a simple system of Φ; of course this does not cause
confusion.) The counit ε : Uq(g)→Q(q) is a homomorphism defined by ε(Eα) = ε(Fα) = 0, ε(Kα) =
1. Finally, the antipode S : Uq(g) → Uq(g) is an anti-automorphism given by S(Eα) = −K−1

α Eα ,
S(Fα) =−FαKα , S(Kα) = K−1

α .
Using ∆ we can make the tensor product V ⊗W of two Uq(g)-modules V,W into a Uq(g)-module.

The counit ε yields a trivial 1-dimensional Uq(g)-module. And with S we can define a Uq(g)-module
structure on the dual V ∗ of a Uq(g)-module V , by (u · f)(v) = f (S(u) · v).

QuaGroup 8

The Hopf algebra structure given above is not the only one possible. For example, we can twist
∆,ε,S by an automorphism, or an anti-automorphism f . The twisted comultiplication is given by

∆
f = f ⊗ f ◦∆◦ f−1.

The twisted antipode by

S f =

{
f ◦S◦ f−1 if f is an automorphism
f ◦S−1 ◦ f−1 if f is an anti-automorphism.

And the twisted counit by ε f = ε ◦ f−1 (see [Jan96], 3.8).

2.4 PBW-type bases

The first problem one has to deal with when working with Uq(g) is finding a basis of it, along with an
algorithm for expressing the product of two basis elements as a linear combination of basis elements.
First of all we have that Uq(g) ∼= U− ⊗U0 ⊗U+ (as vector spaces), where U− is the subalgebra
generated by the Fα , U0 is the subalgebra generated by the Kα , and U+ is generated by the Eα . So
a basis of Uq(g) is formed by all elements FKE, where F , K, E run through bases of U−, U0, U+

respectively.
Finding a basis of U0 is easy: it is spanned by all Kr1

α1 · · ·K
rl
αl , where ri ∈Z. For U−, U+ we use the

so-called PBW-type bases. They are defined as follows. For α,β ∈ ∆ we set rβ ,α = −⟨β ,α∨⟩. Then
for α ∈ ∆ we have the automorphism Tα : Uq(g)→Uq(g) defined by

Tα(Eα) =−FαKα

Tα(Eβ) =

rβ ,α

∑
i=0

(−1)iq−i
α E

(rβ ,α−i)
α Eβ E(i)

α if α ̸= β

Tα(Kβ) = Kβ K
rβ ,α
α

Tα(Fα) =−K−1
α Eα

Tα(Fβ) =

rβ ,α

∑
i=0

(−1)iqi
αF(i)

α Fβ F
(rβ ,α−i)

α if α ̸= β ,

(where E(k)
α = Ek

α/[k]α !, and likewise for F(k)
α).

Let w0 = si1 · · ·sit be a reduced expression for the longest element in the Weyl group W (Φ). For
1 ≤ k ≤ t set Fk = Tαi1

· · ·Tαik−1
(Fαik

), and Ek = Tαi1
· · ·Tαik−1

(Eαik
). Then Fk ∈ U−, and Ek ∈ U+.

Furthermore, the elements Fm1
1 · · ·Fmt

t , En1
1 · · ·Ent

t (where the mi, ni are non-negative integers) form
bases of U− and U+ respectively.

The elements Fα and Eα are said to have weight −α and α respectively, where α is a simple
root. Furthermore, the weight of a product ab is the sum of the weights of a and b. Now elements of
U−, U+ that are linear combinations of elements of the same weight are said to be homogeneous. It
can be shown that the elements Fk, and Ek are homogeneous of weight −β and β respectively, where
β = si1 · · ·sik−1(αik).

In the sequel we use the notation F(m)
k = Fm

k /[m]αik
!, and E(n)

k = En
k /[n]αik

!.

QuaGroup 9

2.5 The Z-form of Uq(g)

For α ∈ ∆ set [
Kα

n

]
=

n

∏
i=1

q−i+1
α Kα −qi−1

α K−1
α

qi
α −q−i

α

.

Then according to [Lus90], Theorem 6.7 the elements

F(k1)
1 · · ·F(kt)

t Kδ1
α1

[
Kα1

m1

]
· · ·Kδl

αl

[
Kαl

ml

]
E(n1)

1 · · ·E(nt)
t ,

(where ki,mi,ni ≥ 0, δi = 0,1) form a basis of Uq(g), such that the product of any two basis elements
is a linear combination of basis elements with coefficients in Z[q,q−1]. The quantized enveloping
algebra over Z[q,q−1] with this basis is called the Z-form of Uq(g), and denoted by UZ. Since UZ is
defined over Z[q,q−1] we can specialize q to any nonzero element ε of a field F , and obtain an algebra
Uε over F .

We call q ∈Q(q), and ε ∈ F the quantum parameter of Uq(g) and Uε respectively.
Let λ be a dominant weight, and V (λ) the irreducible highest weight module of highest weight

λ over Uq(g). Let vλ ∈ V (λ) be a fixed highest weight vector. Then UZ · vλ is a UZ-module. So by
specializing q to an element ε of a field F , we get a Uε -module. We call it the Weyl module of highest
weight λ over Uε . We note that it is not necessarily irreducible.

2.6 The canonical basis

As in Section 2.4 we let U− be the subalgebra of Uq(g) generated by the Fα for α ∈ ∆. In [Lus0a]
Lusztig introduced a basis of U− with very nice properties, called the canonical basis. (Later this basis
was also constructed by Kashiwara, using a different method. For a brief overview on the history of
canonical bases we refer to [Com06].)

Let w0 = si1 · · ·sit , and the elements Fk be as in Section 2.4. Then, in order to stress the dependency
of the monomial

F(n1)
1 · · ·F(nt)

t

on the choice of reduced expression for the longest element in W (Φ) we say that it is a w0-monomial.
Now we let be the automorphism of U− defined in Section 2.2. Elements that are invariant under

are said to be bar-invariant.
By results of Lusztig ([Lus93] Theorem 42.1.10, [Lus96], Proposition 8.2), there is a unique basis

B of U− with the following properties. Firstly, all elements of B are bar-invariant. Secondly, for any
choice of reduced expression w0 for the longest element in the Weyl group, and any element X ∈ B
we have that X = x+∑ζixi, where x,xi are w0-monomials, x ̸= xi for all i, and ζi ∈ qZ[q]. The basis
B is called the canonical basis. If we work with a fixed reduced expression for the longest element in
W (Φ), and write X ∈ B as above, then we say that x is the principal monomial of X .

Let L be the Z[q]-lattice in U− spanned by B. Then L is also spanned by all w0-monomials
(where w0 is a fixed reduced expression for the longest element in W (Φ)). Now let w̃0 be a second
reduced expression for the longest element in W (Φ). Let x be a w0-monomial, and let X be the element
of B with principal monomial x. Write X as a linear combination of w̃0-monomials, and let x̃ be the
principal monomial of that expression. Then we write x̃ = Rw̃0

w0
(x). Note that x = x̃ mod qL .

Now let B be the set of all w0-monomials mod qL . Then B is a basis of the Z-module L /qL .
Moreover, B is independent of the choice of w0. Let α ∈ ∆, and let w̃0 be a reduced expression for

QuaGroup 10

the longest element in W (Φ), starting with sα . The Kashiwara operators F̃α : B → B and Ẽα : B →
B∪{0} are defined as follows. Let b ∈ B and let x = be the w0-monomial such that b = x mod qL .
Set x̃ = Rw̃0

w0
(x). Then x̃′ is the w̃0-monomial constructed from x̃ by increasing its first exponent by 1

(the first exponent is n1 if we write x̃ = F(n1)
1 · · ·F(nt)

t). Then F̃α(b) = Rw0
w̃0
(x̃′) mod qL . For Ẽα we

let x̃′ be the w̃0-monomial constructed from x̃ by decreasing its first exponent by 1, if this exponent is
≥ 1. Then Ẽα(b) = Rw0

w̃0
(x̃′) mod qL . Furthermore, Ẽα(b) = 0 if the first exponent of x̃ is 0. It can be

shown that this definition does not depend on the choice of w0, w̃0. Furthermore we have F̃α Ẽα(b) = b,
if Ẽα(b) ̸= 0, and Ẽα F̃α(b) = b for all b ∈ B.

Let w0 = si1 · · ·sit be a fixed reduced expression for the longest element in W (Φ). For b ∈ B we
define a sequence of elements bk ∈ B for 0 ≤ k ≤ t, and a sequence of integers nk for 1 ≤ k ≤ t as
follows. We set b0 = b, and if bk−1 is defined we let nk be maximal such that Ẽnk

αik
(bk−1) ̸= 0. Also we

set bk = Ẽnk
αik

(bk−1). Then the sequence (n1, . . . ,nt) is called the string of b ∈ B (relative to w0). We

note that b = F̃n1
αi1

· · · F̃nt
αit
(1). The set of all strings parametrizes the elements of B, and hence of B.

Now let V (λ) be a highest-weight module over Uq(g), with highest weight λ . Let vλ be a fixed
highest weight vector. Then Bλ = {X · vλ | X ∈ B} \ {0} is a basis of V (λ), called the canonical
basis, or crystal basis of V (λ). Let L (λ) be the Z[q]-lattice in V (λ) spanned by Bλ . We let B(λ)
be the set of all x · vλ mod qL (λ), where x runs through all w0-monomials, such that X · vλ ̸= 0,
where X ∈ B is the element with principal monomial x. Then the Kashiwara operators are also viewed
as maps B(λ) → B(λ)∪{0}, in the following way. Let b = x · vλ mod qL (λ) be an element of
B(λ), and let b′ = x mod qL be the corresponding element of B. Let y be the w0-monomial such
that F̃α(b′) = y mod qL . Then F̃α(b) = y · vλ mod qL (λ). The description of Ẽα is analogous.
(In [Jan96], Chapter 9 a different definition is given; however, by [Jan96], Proposition 10.9, Lemma
10.13, the two definitions agree).

The set B(λ) has dimV (λ) elements. We let Γ be the coloured directed graph defined as follows.
The points of Γ are the elements of B(λ), and there is an arrow with colour α ∈ ∆ connecting b,b′ ∈
B, if F̃α(b) = b′. The graph Γ is called the crystal graph of V (λ).

2.7 The path model

In this section we recall some basic facts on Littelmann’s path model.
From Section 2.2 we recall that P denotes the weight lattice. Let PR be the vector space over R

spanned by P. Let Π be the set of all piecewise linear paths ξ : [0,1]→ PR, such that ξ (0) = 0. For
α ∈ ∆ Littelmann defined operators fα ,eα : Π → Π∪{0}. Let λ be a dominant weight and let ξλ be
the path joining λ and the origin by a straight line. Let Πλ be the set of all nonzero fαi1

· · · fαim
(ξλ)

for m ≥ 0. Then ξ (1) ∈ P for all ξ ∈ Πλ . Let µ ∈ P be a weight, and let V (λ) be the highest-
weight module over Uq(g) of highest weight λ . A theorem of Littelmann states that the number of
paths ξ ∈ Πλ such that ξ (1) = µ is equal to the dimension of the weight space of weight µ in V (λ)
([Lit95], Theorem 9.1).

All paths appearing in Πλ are so-called Lakshmibai-Seshadri paths (LS-paths for short). They are
defined as follows. Let ≤ denote the Bruhat order on W (Φ). For µ,ν ∈W (Φ) ·λ (the orbit of λ under
the action of W (Φ)), write µ ≤ ν if τ ≤ σ , where τ,σ ∈ W (Φ) are the unique elements of minimal
length such that τ(λ) = µ , σ(λ) = ν . Now a rational path of shape λ is a pair π = (ν ,a), where ν =
(ν1, . . . ,νs) is a sequence of elements of W (Φ) ·λ , such that νi > νi+1 and a = (a0 = 0,a1, · · · ,as = 1)
is a sequence of rationals such that ai < ai+1. The path π corresponding to these sequences is given

QuaGroup 11

by

π(t) =
r−1

∑
j=1

(a j −a j−1)ν j +νr(t −ar−1)

for ar−1 ≤ t ≤ ar. Now an LS-path of shape λ is a rational path satisfying a certain integrality condition
(see [Lit94], [Lit95]). We note that the path ξλ = ((λ),(0,1)) joining the origin and λ by a straight
line is an LS-path.

Now from [Lit94], [Lit95] we transcribe the following:

1. Let π be an LS-path. Then fαπ is an LS-path or 0; and the same holds for eαπ .

2. The action of fα ,eα can easily be described combinatorially (see [Lit94]).

3. The endpoint of an LS-path is an integral weight.

4. Let π = (ν ,a) be an LS-path. Then by φ(π) we denote the unique element σ of W (Φ) of
shortest length such that σ(λ) = ν1.

Let λ be a dominant weight. Then we define a labeled directed graph Γ as follows. The points of Γ are
the paths in Πλ . There is an edge with label α ∈ ∆ from π1 to π2 if fαπ1 = π2. Now by [Kas96] this
graph Γ is isomorphic to the crystal graph of the highest-weight module with highest weight λ . So the
path model provides an efficient way of computing the crystal graph of a highest-weight module, with-
out constructing the module first. Also we see that fαi1

· · · fαir
ξλ = 0 is equivalent to F̃αi1

· · · F̃αir
vλ = 0,

where vλ ∈ V (λ) is a highest weight vector (or rather the image of it in L (λ)/qL (λ)), and the F̃αk

are the Kashiwara operators on B(λ) (see Section 2.6).

2.8 Notes

I refer to [Hum90] for more information on Weyl groups, and to [Ste01] for an overview of algorithms
for computing with weights, Weyl groups and their elements.

For general introductions into the theory of quantized enveloping algebras I refer to [Car98],
[Jan96] (from where most of the material of this chapter is taken), [Lus92], [Lus93], [Ros91]. I
refer to the papers by Littelmann ([Lit94], [Lit95], [Lit98]) for more information on the path model.
The paper by Kashiwara ([Kas96]) contains a proof of the connection between path operators and
Kashiwara operators.

Finally, I refer to [Gra01] (on computing with PBW-type bases), [Gra02] (computation of elements
of the canonical basis) for an account of some of the algorithms used in QuaGroup.

Chapter 3

QuaGroup

In this chapter we describe the functionality provided by QuaGroup.

3.1 Global constants

3.1.1 QuantumField

▷ QuantumField (global variable)

This is the field Q(q) of rational functions in q, over Q.
Example

gap> QuantumField;
QuantumField

3.1.2 _q

▷ _q (global variable)

This is an indeterminate; QuantumField is the field of rational functions in this indeterminate.
The identifier _q is fixed once the package QuaGroup is loaded. The symbol _q is chosen (instead
of q) in order to avoid potential name clashes. We note that _q is printed as q .

Example
gap> _q;
q
gap> _q in QuantumField;
true

3.2 Gaussian integers

3.2.1 GaussNumber

▷ GaussNumber(n, par) (operation)

This function computes for the integer n the Gaussian integer [n]v=par (cf. Section 2.1).

12

QuaGroup 13

Example
gap> GaussNumber(4, _q);
q^3+q+q^-1+q^-3

3.2.2 GaussianFactorial

▷ GaussianFactorial(n, par) (operation)

This function computes for the integer n the Gaussian factorial [n]!v=par .
Example

gap> GaussianFactorial(3, _q);
q^3+2*q+2*q^-1+q^-3
gap> GaussianFactorial(3, _q^2);
q^6+2*q^2+2*q^-2+q^-6

3.2.3 GaussianBinomial

▷ GaussianBinomial(n, k, par) (operation)

This function computes for two integers n and k the Gaussian binomial n choose k , where the
parameter v is replaced by par .

Example
gap> GaussianBinomial(5, 2, _q^2);
q^12+q^8+2*q^4+2+2*q^-4+q^-8+q^-12

3.3 Roots and root systems

In this section we describe some functions for dealing with root systems. These functions supplement
the ones already present in the GAP library.

3.3.1 RootSystem

▷ RootSystem(type, rank) (operation)

▷ RootSystem(list) (operation)

Here type is a capital letter between "A" and "G" , and rank is a positive integer (≥ 1 if
type="A" , ≥ 2 if type="B" , "C" , ≥ 4 if type="D" , 6,7,8 if type="E" , 4 if type="F" , and 2
if type="G"). This function returns the root system of type type and rank rank . In the second form
list is a list of types and ranks, e.g., ["B", 2, "F", 4, "D", 7] .

The root system constructed by this function comes with he attributes PositiveRoots ,
NegativeRoots , SimpleSystem , CartanMatrix , BilinearFormMat . Here the attribute
SimpleSystem contains a set of simple roots, written as unit vectors. PositiveRoots is a list of the
positive roots, written as linear combinations of the simple roots, and likewise for NegativeRoots .
CartanMatrix(R) is the Cartan matrix of the root system R , where the entry on position (i, j)
is given by ⟨αi,α

∨
j ⟩ where αi is the i-th simple root. BilinearFormMat(R) is the matrix of the

bilinear form, where the entry on position (i, j) is given by (αi,α j) (see Section 2.2).

QuaGroup 14

WeylGroup(R) returns the Weyl group of the root system R . We refer to the GAP reference
manual for an overview of the functions for Weyl groups in the GAP library. We mention the functions
ConjugateDominantWeight(W, wt) (returns the dominant weight in the W -orbit of the weight
wt), and WeylOrbitIterator(W, wt) (returns an iterator for the W -orbit containing the weight
wt). We write weights as integral linear combinations of fundamental weights, so in GAP weights are
represented by lists of integers (of length equal to the rank of the root system).

Also we mention the function PositiveRootsAsWeights(R) that returns the positive roots of
R written as weights, i.e., as linear combinations of the fundamental weights.

Example
gap> R:=RootSystem(["B", 2, "F", 4, "E", 6]);
<root system of type B2 F4 E6>
gap> R:= RootSystem("A", 2);
<root system of type A2>
gap> PositiveRoots(R);
[[1, 0], [0, 1], [1, 1]]
gap> BilinearFormMat(R);
[[2, -1], [-1, 2]]
gap> W:= WeylGroup(R);
Group([[[-1, 1], [0, 1]], [[1, 0], [1, -1]]])
gap> ConjugateDominantWeight(W, [-3,2]);
[2, 1]
gap> o:= WeylOrbitIterator(W, [-3,2]);
<iterator>
gap> # Using the iterator we can loop over the orbit:
gap> NextIterator(o);
[2, 1]
gap> NextIterator(o);
[-1, -2]
gap> PositiveRootsAsWeights(R);
[[2, -1], [-1, 2], [1, 1]]

3.3.2 BilinearFormMatNF

▷ BilinearFormMatNF(R) (attribute)

This is the matrix of the “normalized” bilinear form. This means that all diagonal entries are
even, and 2 is the minimum value occurring on the diagonal. If R is a root system constructed by
RootSystem (3.3.1), then this is equal to BilinearFormMat(R) .

3.3.3 PositiveRootsNF

▷ PositiveRootsNF(R) (attribute)

This is the list of positive roots of the root system R , written as linear combinations of the sim-
ple roots. This means that the simple roots are unit vectors. If R is a root system constructed by
RootSystem (3.3.1), then this is equal to PositiveRoots(R) .

One of the reasons for writing the positive roots like this is the following. Let a, b be two
elements of PositiveRootsNF(R) , and let B be the matrix of the bilinear form. Then a*(B*b)
is the result of applying the bilinear form to a, b .

QuaGroup 15

Example
gap> R:= RootSystem(SimpleLieAlgebra("B", 2, Rationals));;
gap> PositiveRootsNF(R);
[[1, 0], [0, 1], [1, 1], [1, 2]]
gap> # We note that in this case PositiveRoots(R) will give the
gap> # positive roots in a different format.

3.3.4 SimpleSystemNF

▷ SimpleSystemNF(R) (attribute)

This is the list of simple roots of R , written as unit vectors (this means that they are elements of
PositiveRootsNF(R)). If R is a root system constructed by RootSystem (3.3.1), then this is equal
to SimpleSystem(R) .

3.3.5 PositiveRootsInConvexOrder

▷ PositiveRootsInConvexOrder(R) (attribute)

This function returns the positive roots of the root system R , in the “convex” order. Let w0 =
s1 · · ·st be a reduced expression of the longest element in the Weyl group. Then the k-th element of the
list returned by this function is s1 · · ·sk−1(αk). (Where the reduced expression used is the one returned
by LongestWeylWord(R) .) If α , β and α +β are positive roots, then α +β occurs between α and
β (whence the name convex order).

In the output all roots are written in “normal form”, i.e., as elements of PositiveRootsNF(R) .
Example

gap> R:= RootSystem("G", 2);;
gap> PositiveRootsInConvexOrder(R);
[[1, 0], [3, 1], [2, 1], [3, 2], [1, 1], [0, 1]]

3.3.6 SimpleRootsAsWeights

▷ SimpleRootsAsWeights(R) (attribute)

Returns the simple roots of the root system R , written as linear combinations of the fundamental
weights.

Example
gap> R:= RootSystem("A", 2);;
gap> SimpleRootsAsWeights(R);
[[2, -1], [-1, 2]]

3.4 Weyl groups and their elements

Now we describe a few functions that deal with reduced words in the Weyl group of the root system
R . These words are represented as lists of positive integers i, denoting the i-th simple reflection
(which corresponds to the i-th element of SimpleSystem(R)). For example [3, 2, 1, 3, 1]
represents the expression s3s2s1s3s1.

QuaGroup 16

3.4.1 ApplyWeylElement

▷ ApplyWeylElement(W, wt, wd) (operation)

Here wd is a (not necessarily reduced) word in the Weyl group W , and wt is a weight (written as
integral linear combination of the simple weights). This function returns the result of applying wd to
wt . For example, if wt=µ , and wd = [1, 2] then this function returns s1s2(µ) (where si is the
simple reflection corresponding to the i-th simple root).

Example
gap> W:= WeylGroup(RootSystem("G", 2)) ;;
gap> ApplyWeylElement(W, [-3, 7], [1, 1, 2, 1, 2]);
[15, -11]

3.4.2 LengthOfWeylWord

▷ LengthOfWeylWord(W, wd) (operation)

Here wd is a word in the Weyl group W . This function returns the length of that word.
Example

gap> W:= WeylGroup(RootSystem("F", 4)) ;
<matrix group with 4 generators>
gap> LengthOfWeylWord(W, [1, 3, 2, 4, 2]);
3

3.4.3 LongestWeylWord

▷ LongestWeylWord(R) (attribute)

Here R is a root system. LongestWeylWord(R) returns the longest word in the Weyl group of
R .

If this function is called for a root system R , a reduced expression for the longest element in
the Weyl group is calculated (the one which is the smallest in the lexicographical ordering). How-
ever, if you would like to work with a different reduced expression, then it is possible to set it by
SetLongestWeylWord(R, wd) , where wd is a reduced expression of the longest element in the
Weyl group. Note that you will have to do this before calling LongestWeylWord , or any function that
may call LongestWeylWord (once the attribute is set, it will not be possible to change it). Note also
that you must be sure that the word you give is in fact a reduced expression for the longest element in
the Weyl group, as this is not checked (you can check this with LengthOfWeylWord (3.4.2)).

We note that virtually all algorithms for quantized enveloping algebras depend on the choice of
reduced expression for the longest element in the Weyl group (as the PBW-type basis depends on this).

Example
gap> R:= RootSystem("G", 2);;
gap> LongestWeylWord(R);
[1, 2, 1, 2, 1, 2]

3.4.4 ReducedWordIterator

▷ ReducedWordIterator(W, wd) (operation)

QuaGroup 17

Here W is a Weyl group, and wd a reduced word. This function returns an iterator for the set of
reduced words that represent the same element as wd . The elements are output in ascending lexico-
graphical order.

Example
gap> R:= RootSystem("F", 4);;
gap> it:= ReducedWordIterator(WeylGroup(R), LongestWeylWord(R));
<iterator>
gap> NextIterator(it);
[1, 2, 1, 3, 2, 1, 3, 2, 3, 4, 3, 2, 1, 3, 2, 3, 4, 3, 2, 1, 3, 2, 3, 4]
gap> k:= 1;;
gap> while not IsDoneIterator(it) do
> k:= k+1; w:= NextIterator(it);
> od;
gap> k;
2144892

So there are 2144892 reduced expressions for the longest element in the Weyl group of type F4.

3.4.5 ExchangeElement

▷ ExchangeElement(W, wd, ind) (operation)

Here W is a Weyl group, and wd is a reduced word in W , and ind is an index between 1 and the rank
of the root system. Let v denote the word obtained from wd by adding ind at the end. This function
assumes that the length of v is one less than the length of wd , and returns a reduced expression for v
that is obtained from wd by deleting one entry. Nothing is guaranteed of the output if the length of v
is bigger than the length of wd .

Example
gap> R:= RootSystem("G", 2);;
gap> wd:= LongestWeylWord(R);;
gap> ExchangeElement(WeylGroup(R), wd, 1);
[2, 1, 2, 1, 2]

3.4.6 GetBraidRelations

▷ GetBraidRelations(W, wd1, wd2) (operation)

Here W is a Weyl group, and wd1 , wd2 are two reduced words representing the same element in
W . This function returns a list of braid relations that can be applied to wd1 to obtain wd2 . Here a
braid relation is represented as a list, with at the odd positions integers that represent positions in a
word, and at the even positions the indices that are on those positions after applying the relation. For
example, let wd be the word [1, 2, 1, 3, 2, 1] and let r = [3, 3, 4, 1] be a relation.
Then the result of applying r to wd is [1, 2, 3, 1, 2, 1] (i.e., on the third position we put a 3,
and on the fourth position a 1).

We note that the function does not check first whether wd1 and wd2 represent the same element
in W . If this is not the case, then an error will occur during the execution of the function, or it will
produce wrong output.

QuaGroup 18

Example
gap> R:= RootSystem("A", 3);;
gap> wd1:= LongestWeylWord(R);
[1, 2, 1, 3, 2, 1]
gap> wd2:= [1, 3, 2, 1, 3, 2];;
gap> GetBraidRelations(WeylGroup(R), wd1, wd2);
[[3, 3, 4, 1], [4, 2, 5, 1, 6, 2], [2, 3, 3, 2, 4, 3], [4, 1, 5, 3]]

3.4.7 LongWords

▷ LongWords(R) (attribute)

For a root system R this returns a list of triples (of length equal to the rank of R). Let t be the
k -th triple occurring in this list. The first element of t is an expression for the longest element of the
Weyl group, starting with k . The second element is a list of braid relations, moving this expression
to the value of LongestWeylWord(R) . The third element is a list of braid relations performing the
reverse transformation.

Example
gap> R:= RootSystem("A", 3);;
gap> LongWords(R)[3];
[[3, 1, 2, 1, 3, 2],

[[3, 3, 4, 1], [4, 2, 5, 1, 6, 2], [2, 3, 3, 2, 4, 3],
[4, 1, 5, 3], [1, 3, 2, 1]],

[[4, 3, 5, 1], [1, 1, 2, 3], [2, 2, 3, 3, 4, 2],
[4, 1, 5, 2, 6, 1], [3, 1, 4, 3]]]

3.5 Quantized enveloping algebras

In QuaGroup we deal with two types of quantized enveloping algebra. First there are the quan-
tized enveloping algebras defined over the field QuantumField (3.1.1). We say that these algebras
are “generic” quantized enveloping algebras, in QuaGroup they have the category IsGenericQUEA .
Secondly, we deal with the quantized enveloping algebras that are defined over a different field.

3.5.1 QuantizedUEA

▷ QuantizedUEA(R) (attribute)

▷ QuantizedUEA(R, F, v) (operation)

▷ QuantizedUEA(L) (attribute)

▷ QuantizedUEA(L, F, v) (operation)

In the first two forms R is a root system. With only R as input, the corresponding generic quantized
enveloping algebra is constructed. It is stored as an attribute of R (so that constructing it twice for the
same root system yields the same object). Also the root system is stored in the quantized enveloping
algebra as the attribute RootSystem .

The attribute GeneratorsOfAlgebra contains the generators of a PBW-type basis (see Section
2.4), that are constructed relative to the reduced expression for the longest element in the Weyl group
that is contained in LongestWeylWord(R) . We refer to ObjByExtRep (3.5.2) for a description of
the construction of elements of a quantized enveloping algebra.

QuaGroup 19

The call QuantizedUEA(R, F, v) returns the quantized universal enveloping algebra
with quantum parameter v , which must lie in the field F . In this case the elements of
GeneratorsOfAlgebra are the images of the generators of the corresponding generic quantized en-
veloping algebra. This means that if v is a root of unity, then the generators will not generate the whole
algebra, but rather a finite dimensional subalgebra (as for instance Ek

i = 0 for k large enough). It is
possible to construct elements that do not lie in this finite dimensional subalgebra using ObjByExtRep
(3.5.2).

In the last two cases L must be a semisimple Lie algebra. The two calls are short for
QuantizedUEA(RootSystem(L)) and QuantizedUEA(RootSystem(L), F, v) respec-
tively.

Example
gap> # We construct the generic quantized enveloping algebra corresponding
gap> # to the root system of type A2+G2:
gap> R:= RootSystem(["A", 2, "G", 2]);;
gap> U:= QuantizedUEA(R);
QuantumUEA(<root system of type A2 G2>, Qpar = q)
gap> RootSystem(U);
<root system of type A2 G2>
gap> g:= GeneratorsOfAlgebra(U);
[F1, F2, F3, F4, F5, F6, F7, F8, F9, K1, (-q+q^-1)*[K1 ; 1]+K1, K2,

(-q+q^-1)*[K2 ; 1]+K2, K3, (-q+q^-1)*[K3 ; 1]+K3, K4,
(-q^3+q^-3)*[K4 ; 1]+K4, E1, E2, E3, E4, E5, E6, E7, E8, E9]

gap> # These elements generate a PBW-type basis of U; the nine elements Fi,
gap> # and the nine elements Ei correspond to the roots listed in convex order:
gap> PositiveRootsInConvexOrder(R);
[[1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],

[0, 0, 3, 1], [0, 0, 2, 1], [0, 0, 3, 2], [0, 0, 1, 1],
[0, 0, 0, 1]]

gap> # So, for example, F5 is an element of weight -[0, 0, 3, 1].
gap> # We can also multiply elements; the result is written on the PBW-basis:
gap> g[17]*g[4];
(-1+q^-6)*F4*[K4 ; 1]+(q^-3)*F4*K4
gap> # Now we construct a non-generic quantized enveloping algebra:
gap> R:= RootSystem("A", 2);;
gap> U:= QuantizedUEA(R, CF(3), E(3));;
gap> g:= GeneratorsOfAlgebra(U);
[F1, F2, F3, K1, (-E(3)+E(3)^2)*[K1 ; 1]+K1, K2,

(-E(3)+E(3)^2)*[K2 ; 1]+K2, E1, E2, E3]

As can be seen in the example, every element of U is written as a linear combination of monomials
in the PBW-generators; the generators of U− come first, then the generators of U0, and finally the
generators of U+.

3.5.2 ObjByExtRep

▷ ObjByExtRep(fam, list) (operation)

Here fam is the elements family of a quantized enveloping algebra U . Secondly, list is a list
describing an element of U . We explain how this description works. First we describe an indexing
system for the generators of U . Let R be the root system of U . Let t be the number of positive

QuaGroup 20

roots, and rank the rank of the root system. Then the generators of U are Fk , Ki (and its inverse),
Ek , for k=1...t , i=1..rank . (See Section 2.4; for the construction of the Fk , Ek , the value of
LongestWeylWord(R) is used.) Now the index of Fk is k , and the index of Ek is t+rank+k .
Furthermore, elements of the algebra generated by the Ki , and its inverse, are written as linear com-
binations of products of “binomials”, as in Section 2.5. The element

Kd
i

[
Ki

s

]
(where d = 0,1), is indexed as [t+i, d] (what happens to the s is described later). So an index is
either an integer, or a list of two integers.

A monomial is a list of indices, each followed by an exponent. First come the indices of the Fk ,
(1..t), then come the lists of the form [t+i, d] , and finally the indices of the Ek . Each index
is followed by an exponent. An index of the form [t+i, d] is followed by the s in the above
formula.

The second argument of ObjByExtRep is a list of monomials followed by coefficients. This
function returns the element of U described by this list.

Finally we remark that the element

Kd
i

[
Ki

s

]
is printed as Ki[Ki ; s] if d=1 , and as [Ki ; s] if d=0 .

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> fam:= ElementsFamily(FamilyObj(U));;
gap> list:= [[2, 3, [4, 0], 8, 6, 11], _q^2, # monomial and coefficient
> [1, 7, 3, 5, [5, 1], 3, 8, 9], _q^-1 + _q^2]; # monomial and coefficient
[[2, 3, [4, 0], 8, 6, 11], q^2, [1, 7, 3, 5, [5, 1], 3, 8, 9],

q^2+q^-1]
gap> ObjByExtRep(fam, list);
(q^2)*F2^(3)*[K1 ; 8]*E1^(11)+(q^2+q^-1)*F1^(7)*F3^(5)*K2[K2 ; 3]*E3^(9)

3.5.3 ExtRepOfObj

▷ ExtRepOfObj(elm) (operation)

For the element elm of a quantized enveloping algebra, this function returns the list that defines
elm (see ObjByExtRep (3.5.2)).

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> g:= GeneratorsOfAlgebra(U);
[F1, F2, F3, K1, (-q+q^-1)*[K1 ; 1]+K1, K2, (-q+q^-1)*[K2 ; 1]+K2, E1,

E2, E3]
gap> ExtRepOfObj(g[5]);
[[[4, 0], 1], -q+q^-1, [[4, 1], 0], 1]

3.5.4 QuantumParameter

▷ QuantumParameter(U) (attribute)

Returns the quantum parameter used in the definition of U .

QuaGroup 21

Example
gap> R:= RootSystem("A",2);;
gap> U0:= QuantizedUEA(R, CF(3), E(3));;
gap> QuantumParameter(U0);
E(3)

3.5.5 CanonicalMapping

▷ CanonicalMapping(U) (attribute)

Here U is a quantized enveloping algebra. Let U0 denote the corresponding “generic” quantized
enveloping algebra. This function returns the mapping U0 –> U obtained by mapping q (which is the
quantum parameter of U0) to the quantum parameter of U .

Example
gap> R:= RootSystem("A", 3);;
gap> U:= QuantizedUEA(R, CF(5), E(5));;
gap> f:= CanonicalMapping(U);
MappingByFunction(QuantumUEA(<root system of type A
3>, Qpar = q), QuantumUEA(<root system of type A3>, Qpar =
E(5)), function(u) ... end)
gap> U0:= Source(f);
QuantumUEA(<root system of type A3>, Qpar = q)
gap> g:= GeneratorsOfAlgebra(U0);;
gap> u:= g[18]*g[9]*g[6];
(q^2)*F6*K2*E6+(q)*K2*[K3 ; 1]
gap> Image(f, u);
(E(5)^2)*F6*K2*E6+(E(5))*K2*[K3 ; 1]

3.5.6 WriteQEAToFile

▷ WriteQEAToFile(U, file) (operation)

Here U is a quantized enveloping algebra, and file is a string containing the name of a file. This
function writes some data to file , that allows ReadQEAFromFile (3.5.7) to recover it.

Example
gap> U:= QuantizedUEA(RootSystem("A",3));;
gap> WriteQEAToFile(U, "A3");

3.5.7 ReadQEAFromFile

▷ ReadQEAFromFile(file) (operation)

Here file is a string containing the name of a file, to which a quantized enveloping algebra has
been written by WriteQEAToFile (3.5.6). This function recovers the quantized enveloping algebra.

Example
gap> U:= QuantizedUEA(RootSystem("A",3));;
gap> WriteQEAToFile(U, "A3");
gap> U0:= ReadQEAFromFile("A3");
QuantumUEA(<root system of type A3>, Qpar = q)

QuaGroup 22

3.6 Homomorphisms and automorphisms

Here we describe functions for creating homomorphisms and (anti)-automorphisms of a quantized
enveloping algebra.

3.6.1 QEAHomomorphism

▷ QEAHomomorphism(U, A, list) (operation)

Here U is a generic quantized enveloping algebra (i.e., with quantum parameter _q), A is an algebra
with one over QuantumField , and list is a list of 4*rank elements of A (where rank is the rank
of the root system of U). On the first rank positions there are the images of the Fα (where the α

are simple roots, listed in the order in which they occur in SimpleSystem(R)). On the positions
rank+1...2*rank are the images of the Kα . On the positions 2*rank+1...3*rank are the images
of the K−1

α , and finally on the positions 3*rank+1...4*rank occur the images of the Eα .
This function returns the homomorphism U -> A , defined by this data. In the example below we

construct a homomorphism from one quantized enveloping algebra into another. Both are constructed
relative to the same root system, but with different reduced expressions for the longest element of the
Weyl group.

Example
gap> R:= RootSystem("G", 2);;
gap> SetLongestWeylWord(R, [1,2,1,2,1,2]);
gap> UR:= QuantizedUEA(R);;
gap> S:= RootSystem("G", 2);;
gap> SetLongestWeylWord(S, [2,1,2,1,2,1]);
gap> US:= QuantizedUEA(S);;
gap> gS:= GeneratorsOfAlgebra(US);
[F1, F2, F3, F4, F5, F6, K1, (-q+q^-1)*[K1 ; 1]+K1, K2,

(-q^3+q^-3)*[K2 ; 1]+K2, E1, E2, E3, E4, E5, E6]
gap> SimpleSystem(R);
[[1, 0], [0, 1]]
gap> PositiveRootsInConvexOrder(S);
[[0, 1], [1, 1], [3, 2], [2, 1], [3, 1], [1, 0]]
gap> # We see that the simple roots of R occur on positions 6 and 1
gap> # in the list PositiveRootsInConvexOrder(S); This means that we
gap> # get the following list of images of the homomorphism:
gap> imgs:= [gS[6], gS[1], # the images of the F_{\alpha}
> gS[7], gS[9], # the images of the K_{\alpha}
> gS[8], gS[10], # the images of the K_{\alpha}^{-1}
> gS[16], gS[11]]; # the images of the E_{\alpha}
[F6, F1, K1, K2, (-q+q^-1)*[K1 ; 1]+K1, (-q^3+q^-3)*[K2 ; 1]+K2, E6, E1]
gap> h:= QEAHomomorphism(UR, US, imgs);
<homomorphism: QuantumUEA(<root system of type G
2>, Qpar = q) -> QuantumUEA(<root system of type G2>, Qpar = q)>
gap> Image(h, GeneratorsOfAlgebra(UR)[3]);
(q^10-q^6-q^4+1)*F1*F6^(2)+(q^6-q^2)*F2*F6+(q^4)*F4

QuaGroup 23

3.6.2 QEAAutomorphism

▷ QEAAutomorphism(U, list) (operation)

▷ QEAAutomorphism(U, f) (operation)

In the first form U is a generic quantized enveloping algebra (i.e., with quantum parameter _q),
and list is a list of 4*rank elements of U (where rank is the rank of the corresponding root system).
On the first rank positions there are the images of the Fα (where the α are simple roots, listed in the
order in which they occur in SimpleSystem(R)). On the positions rank+1...2*rank are the
images of the Kα . On the positions 2*rank+1...3*rank are the images of the K−1

α , and finally on
the positions 3*rank+1...4*rank occur the images of the Eα .

In the second form U is a non-generic quantized enveloping algebra, and f is an automorphism
of the corresponding generic quantized enveloping algebra. The corresponding automorphism of U is
constructed. In this case f must not be the bar-automorphism of the corresponding generic quantized
enveloping algebra (cf. BarAutomorphism (3.6.6)), as this automorphism doesn’t work in the non-
generic case.

The image of an element x under an automorphism f is computed by Image(f, x) . Note
that there is no function for calculating pre-images (in general this seems to be a very hard
task). If you want the inverse of an automorphism, you have to construct it explicitly (e.g., by
QEAAutomorphism(U, list) , where list is a list of pre-images).

Below we construct the automorphism ω (cf. Section 2.2) of the quantized enveloping of type A3,
when the quantum parameter is _q , and when the quantum parameter is a fifth root of unity.

Example
gap> # First we construct the quantized enveloping algebra:
gap> R:= RootSystem("A", 3);;
gap> U0:= QuantizedUEA(R);
QuantumUEA(<root system of type A3>, Qpar = q)
gap> g:= GeneratorsOfAlgebra(U0);
[F1, F2, F3, F4, F5, F6, K1, (-q+q^-1)*[K1 ; 1]+K1, K2,

(-q+q^-1)*[K2 ; 1]+K2, K3, (-q+q^-1)*[K3 ; 1]+K3, E1, E2, E3, E4, E5,
E6]

gap> # Now, for instance, we map F_{\alpha} to E_{\alpha}, where \alpha
gap> # is a simple root. In order to find where those F_{\alpha}, E_{\alpha}
gap> # are in the list of generators, we look at the list of positive roots
gap> # in convex order:
gap> PositiveRootsInConvexOrder(R);
[[1, 0, 0], [1, 1, 0], [0, 1, 0], [1, 1, 1], [0, 1, 1],

[0, 0, 1]]
gap> # So the simple roots occur on positions 1, 3, 6. This means that we
gap> # have the following list of images:
gap> imgs:= [g[13], g[15], g[18], g[8], g[10], g[12], g[7], g[9], g[11],
> g[1], g[3], g[6]];
[E1, E3, E6, (-q+q^-1)*[K1 ; 1]+K1, (-q+q^-1)*[K2 ; 1]+K2,

(-q+q^-1)*[K3 ; 1]+K3, K1, K2, K3, F1, F3, F6]
gap> f:= QEAAutomorphism(U0, imgs);
<automorphism of QuantumUEA(<root system of type A3>, Qpar = q)>
gap> Image(f, g[2]);
(-q)*E2
gap> # f induces an automorphism of any non-generic quantized enveloping
gap> # algebra with the same root system R:
gap> U1:= QuantizedUEA(R, CF(5), E(5));

QuaGroup 24

QuantumUEA(<root system of type A3>, Qpar = E(5))
gap> h:= QEAAutomorphism(U1, f);
<automorphism of QuantumUEA(<root system of type A3>, Qpar = E(5))>
gap> Image(h, GeneratorsOfAlgebra(U1)[7]);
(-E(5)+E(5)^4)*[K1 ; 1]+K1

3.6.3 QEAAntiAutomorphism

▷ QEAAntiAutomorphism(U, list) (operation)

▷ QEAAntiAutomorphism(U, f) (operation)

These are functions for constructing anti-automorphisms of quantized enveloping algebras. The
same comments apply as for QEAAutomorphism (3.6.2).

3.6.4 AutomorphismOmega

▷ AutomorphismOmega(U) (attribute)

This is the automorphism ω (cf. Section 2.2).
Example

gap> R:= RootSystem("A", 3);;
gap> U:= QuantizedUEA(R, CF(5), E(5));
QuantumUEA(<root system of type A3>, Qpar = E(5))
gap> f:= AutomorphismOmega(U);
<automorphism of QuantumUEA(<root system of type A3>, Qpar = E(5))>

3.6.5 AntiAutomorphismTau

▷ AntiAutomorphismTau() (attribute)

This is the anti-automorphism τ (cf. Section 2.2).
Example

gap> R:= RootSystem("A", 3);;
gap> U:= QuantizedUEA(R, CF(5), E(5));
QuantumUEA(<root system of type A3>, Qpar = E(5))
gap> t:= AntiAutomorphismTau(U);
<anti-automorphism of QuantumUEA(<root system of type A3>, Qpar = E(5))>

3.6.6 BarAutomorphism

▷ BarAutomorphism(U) (attribute)

This is the automorphism ¯ defined in Section 2.2 Here U must be a generic quantized enveloping
algebra.

Example
gap> U:= QuantizedUEA(RootSystem(["A",2,"B",2]));;
gap> bar:= BarAutomorphism(U);
<automorphism of QuantumUEA(<root system of type A2 B2>, Qpar = q)>

QuaGroup 25

gap> Image(bar, GeneratorsOfAlgebra(U)[5]);
(q^2-q^-2)*F4*F7+F5

3.6.7 AutomorphismTalpha

▷ AutomorphismTalpha(U, ind) (operation)

This is the automorphism Tα (cf. Section 2.4), where α is the ind -th simple root.
Example

gap> U:= QuantizedUEA(RootSystem("B", 3));;
gap> f:=AutomorphismTalpha(U, 1);
<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>
gap> a:= GeneratorsOfAlgebra(U)[3];
F3
gap> Image(f, a);
F2

3.6.8 DiagramAutomorphism

▷ DiagramAutomorphism(U, perm) (operation)

This is the automorphism of U induced by a diagram automorphism of the underlying root system.
The diagram automorphism is represented by the permutation perm , which is the permutation of the
simple roots performed by the diagram automorphism.

In the example below we construct the diagram automorphism of the root system of type A3, which
is represented by the permutation (1,3) .

Example
gap> R:= RootSystem("A", 3);;
gap> U:= QuantizedUEA(R);;
gap> f:= DiagramAutomorphism(U, (1,3));
<automorphism of QuantumUEA(<root system of type A3>, Qpar = q)>
gap> g:= GeneratorsOfAlgebra(U);
[F1, F2, F3, F4, F5, F6, K1, (-q+q^-1)*[K1 ; 1]+K1, K2,

(-q+q^-1)*[K2 ; 1]+K2, K3, (-q+q^-1)*[K3 ; 1]+K3, E1, E2, E3, E4, E5,
E6]

gap> Image(f, g[1]);
F6

3.6.9 *

▷ *(f, h) (operation)

We can compose automorphisms and anti-automorphisms using the infix * operator. The result of
composing two automorphisms is an automorphism. The result of composing an automorphism and
an anti-automorphism is an anti-automorphism. The result of composing two anti-automorphisms is
an automorphism.

Example
gap> U:= QuantizedUEA(RootSystem("B", 3));;
gap> f:=AutomorphismTalpha(U, 1);

QuaGroup 26

<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>
gap> h:= AutomorphismOmega(U);
<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>
gap> f*h;
<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>
gap> t:= AntiAutomorphismTau(U);;
gap> T:= AutomorphismTalpha(U, 2);;
gap> Tinv:= t*T*t;
<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>
gap> # (The last call may take a little while.)
gap> x:= Image(T, GeneratorsOfAlgebra(U)[1]);
(-q^4+1)*F1*F3+(-q^2)*F2
gap> Image(Tinv, x);
F1

According to [Jan96], 8.14(10), τ ◦Tα ◦ τ is the inverse of Tα .

3.7 Hopf algebra structure

Here we describe functions for dealing with the Hopf algebra structure of a quantized enveloping
algebra. This structure enables us to construct tensor products, and dual modules of modules over
a quantized enveloping algebra. We refer to the next section (Section 3.8) for some functions for
creating modules.

3.7.1 TensorPower

▷ TensorPower(U, d) (operation)

Here U is a quantized universal enveloping algebra, and d a non-negative integer. This function
returns the associative algebra with underlying vector space the d -fold tensor product of U with itself.
The product is defined component wise.

Example
gap> U:= QuantizedUEA(RootSystem(["B", 2]));;
gap> T:= TensorPower(U, 3);
<algebra over QuantumField, with 36 generators>
gap> g:= GeneratorsOfAlgebra(T);;
gap> x:= g[1];
1*(1<x>1<x>F1)
gap> y:= g[30];
1*(E2<x>1<x>1)
gap> x*y;
1*(E2<x>1<x>F1)

3.7.2 UseTwistedHopfStructure

▷ UseTwistedHopfStructure(U, f, finv) (operation)

QuaGroup 27

Here U is a quantized enveloping algebra, and f , finv two (anti-) automorphisms of U , where
finv is the inverse of f . After calling this function the Hopf structure on U is used that is obtained
from the “normal” Hopf structure (see Section 2.3) by twisting it with f .

A call to this function sets the attribute HopfStructureTwist , which is the list [f, finv] .
Example

gap> U:= QuantizedUEA(RootSystem("A",2), CF(5), E(5));;
gap> t:= AntiAutomorphismTau(U);;
gap> UseTwistedHopfStructure(U, t, t);

3.7.3 ComultiplicationMap

▷ ComultiplicationMap(U, d) (operation)

This is a homomorphism from the quantized enveloping algebra U to the d -fold tensor power of U
with itself. It is obtained by a repeated application of the comultiplication of U . So for d=2 we get the
comultiplication of U .

Example
gap> U:= QuantizedUEA(RootSystem("A",2), CF(5), E(5));;
gap> D:= ComultiplicationMap(U, 3);
<Comultiplication of QuantumUEA(<root system of type A2>, Qpar =
E(5)), degree 3>
gap> Image(D, GeneratorsOfAlgebra(U)[4]);
1*(K1<x>K1<x>K1)

3.7.4 AntipodeMap

▷ AntipodeMap(U) (attribute)

This is the antipode map of the quantized enveloping algebra U , which is constructed as an anti-
automorphism of U .

Example
gap> U:= QuantizedUEA(RootSystem("A",2), CF(5), E(5));;
gap> a:= AntipodeMap(U);
<anti-automorphism of QuantumUEA(<root system of type A2>, Qpar = E(5))>

3.7.5 CounitMap

▷ CounitMap(U) (attribute)

This is the counit map of the quantized enveloping algebra U , which is constructed as a function
from U to the ground field.

Example
gap> U:= QuantizedUEA(RootSystem("A",2), CF(5), E(5));;
gap> co:= CounitMap(U);
function(u) ... end
gap> x:= GeneratorsOfAlgebra(U)[4];
K1
gap> co(x);
1

QuaGroup 28

3.8 Modules

Here we describe some functions for constructing left modules over quantized enveloping algebras.
We refer to the GAP reference manual for an overview of basic functions for algebra modules, which
are also applicable to the modules constructed by the functions described in this section. We mention
MatrixOfAction , DirectSumOfAlgebraModules . The action of an element of the algebra on an
element of the module is calculated by the infix operator ^ .

3.8.1 HighestWeightModule (for a quantized env. alg.)

▷ HighestWeightModule(U, wt) (operation)

Here U is a quantized universal enveloping algebra, and wt a dominant weight (i.e., a list of length
equal to the rank of the root system, consisting of non-negative integers). This function returns a
finite-dimensional highest-weight module of highest weight wt over U . If U is generic then this is the
unique irreducible highest-weight module over U . Otherwise it is the Weyl module, cf. Section 2.5.
In this last case the module is not necessarily irreducible.

Let V denote the module returned by this function. The first basis element of the attribute
Basis(V) is a highest-weight vector; it is written as 1*v0 . Other basis elements are written as, for
example, F2*F9*v0 , which means that this vector is the result of letting the PBW-monomial F2*F9
act on the highest-weight vector.

Example
gap> U:= QuantizedUEA(RootSystem(["A", 2, "G", 2]));;
gap> V:= HighestWeightModule(U, [0, 1, 0, 2]);
<231-dimensional left-module over QuantumUEA(<root system of type A2 G
2>, Qpar = q)>
gap> Basis(V)[1];
1*v0
gap> Basis(V)[23]+(_q^2+_q^-2)*Basis(V)[137];
F3*F5*v0+(q^2+q^-2)*F8^(6)*v0
gap> # We compute the action of an element on a vector:
gap> gg:= GeneratorsOfAlgebra(U);;
gap> x:= gg[21]*gg[5];
F5*E4+(-q^-1)*F6*K3
gap> x^Basis(V)[1];
(-q^-1)*F6*v0

3.8.2 IrreducibleQuotient

▷ IrreducibleQuotient(V) (attribute)

Here V is a highest-weight module over a non-generic quantized enveloping algebra. This function
returns the quotient of V by the maximal submodule not containing the highest weight vector. This is
not necessarily equal to V if the quantum parameter is a root of 1.

Example
gap> R:= RootSystem("A", 2);;
gap> U:= QuantizedUEA(R, CF(3), E(3));;
gap> V:= HighestWeightModule(U, [1,1]);
<8-dimensional left-module over QuantumUEA(<root system of type A2>, Qpar =

QuaGroup 29

E(3))>
gap> IrreducibleQuotient(V);
<7-dimensional left-module over QuantumUEA(<root system of type A2>, Qpar =
E(3))>

3.8.3 HWModuleByTensorProduct

▷ HWModuleByTensorProduct(U, wt) (operation)

Here U must be a generic quantized enveloping algebra, and wt a dominant weight. This func-
tion returns the irreducible highest-weight module with highest weight wt . The algorithm uses
tensor products (whence the name). On some inputs this algorithm is faster than the one use for
HighestWeightModule (3.8.1), on some inputs it is slower. I do not know any good heuristics.

The basis supplied with the module returned is the canonical basis.
Example

gap> U:= QuantizedUEA(RootSystem("G",2));;
gap> V:= HWModuleByTensorProduct(U, [2,1]);
<189-dimensional left-module over QuantumUEA(<root system of type G
2>, Qpar = q)>
gap> # (This is a case where this algorithm is a lot faster.)

3.8.4 DIYModule

▷ DIYModule(U, V, acts) (operation)

Here U is a generic quantized enveloping algebra, and V is a vector space over the field
QuantumField . U acts on V and the action is described by the data in the list acts . acts is a
list of lists, of length 4*l , where l is the rank of the root system. acts describes the actions of the
generators [F1, ...,Fl,K1, ...,Kl,K−

1 1, ...,K−
l 1,E1, ...,El]. (Here Fk is the generator Fαk , where αk is the

k-th simple root, and likewise for Ek.) The action of each generator is described by a list of length
dim V , giving the images of the basis elements of V . If an image is zero then it may be omitted: in
that case there is a “hole” in the list. This function returns the U -module defined by the input.

Let R be a root system of type A1, and U the corresponding quantized enveloping algebra (gen-
erated by F,K,K−1,E). In the example below we construct the 2-dimensional U-module with basis
vectors v1,v2, and U -action given by Fv1 = v2, Fv2 = 0, Kv1 = qv1, Kv2 = q−1v2, Ev1 = 0, Ev2 = v1.

Example
gap> U:= QuantizedUEA(RootSystem("A",1));
QuantumUEA(<root system of type A1>, Qpar = q)
gap> V:= QuantumField^2;
(QuantumField^2)
gap> v:= BasisVectors(Basis(V));
[[1, 0], [0, 1]]
gap> acts:= [[v[2], 0*v[1]], [_q*v[1], _q^-1*v[2]],
> [_q^-1*v[1], _q*v[2]], [0*v[1], v[1]]];;
gap> M:= DIYModule(U, V, acts);
<2-dimensional left-module over QuantumUEA(<root system of type A
1>, Qpar = q)>

QuaGroup 30

3.8.5 TensorProductOfAlgebraModules

▷ TensorProductOfAlgebraModules(V, W) (operation)

▷ TensorProductOfAlgebraModules(V, W) (operation)

Here V and W are two modules over the same quantized enveloping algebra U . This function
constructs the tensor product of V and W (as a U -module). For this the comultiplication map of U is
used (see ComultiplicationMap (3.7.3)).

In the second form list is a list of U -modules. In that case the iterated tensor product is constructed.
Example

gap> U:= QuantizedUEA(RootSystem(["A", 2]));;
gap> V1:= HighestWeightModule(U, [1, 0]);;
gap> V2:= HighestWeightModule(U, [0, 1]);;
gap> TensorProductOfAlgebraModules(V1, V2);
<9-dimensional left-module over QuantumUEA(<root system of type A
2>, Qpar = q)>

3.8.6 HWModuleByGenerator

▷ HWModuleByGenerator(V, v, hw) (operation)

Here V is a module over a generic quantized enveloping algebra U , v is a highest-weight vector
(i.e., all Eαv=0), of weight hw , which must be dominant. This function returns a highest-weight
module over U isomorphic to the submodule of V generated by v .

Example
gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> W1:= HighestWeightModule(U, [1,0]);;
gap> W2:= HighestWeightModule(U, [0,1]);;
gap> T:= TensorProductOfAlgebraModules(W1, W2);
<20-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>
gap> HWModuleByGenerator(T, Basis(T)[1], [1,1]);
<16-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>

3.8.7 InducedQEAModule

▷ InducedQEAModule(U, V) (operation)

Here U is a non-generic quantized enveloping algebra, and V a module over the corresponding
generic quantized enveloping algebra. This function returns the U -module obtained from V by setting
_q equal to the quantum parameter of U .

Example
gap> R:= RootSystem("B",2);;
gap> U:= QuantizedUEA(R);;
gap> U0:= QuantizedUEA(R, CF(3), E(3));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> W:= InducedQEAModule(U0, V);
<16-dimensional left-module over QuantumUEA(<root system of type B2>, Qpar =
E(3))>

QuaGroup 31

gap> # This module is isomorphic to the one obtained by
gap> # HighestWeightModule(U0, [1,1]);

3.8.8 GenericModule

▷ GenericModule(W) (attribute)

For an induced module (see InducedQEAModule (3.8.7)) this function returns the corresponding
module over the generic quantized enveloping algebra.

3.8.9 CanonicalMapping

▷ CanonicalMapping(W) (attribute)

Here W is an induced module. Let V be the corresponding generic module (GenericModule
(3.8.8)). This function returns the map V –> W , that sets _q equal to the quantum parameter of the
acting algebra of W .

Example
gap> R:= RootSystem("B",2);;
gap> U:= QuantizedUEA(R);;
gap> U0:= QuantizedUEA(R, CF(3), E(3));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> W:= InducedQEAModule(U0, V);;
gap> f:= CanonicalMapping(W);
MappingByFunction(<
16-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>, <
16-dimensional left-module over QuantumUEA(<root system of type B2>, Qpar =
E(3))>, function(v) ... end)
gap> Image(f, _q^2*Basis(V)[3]);
(E(3)^2)*e.3

3.8.10 U2Module

▷ U2Module(U, hw) (operation)

Here U must be a quantized enveloping algebra of type A2. This function returns the highest-
weight module over U of highest-weight hw (which must be dominant). This function is generally a
lot faster than HighestWeightModule (3.8.1).

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> A2Module(U, [4,7]);
<260-dimensional left-module over QuantumUEA(<root system of type A
2>, Qpar = q)>

3.8.11 MinusculeModule

▷ MinusculeModule(U, hw) (operation)

QuaGroup 32

Here U must be a generic quantized enveloping algebra, and hw a minuscule dominant weight. This
function returns the highest-weight module over U of highest-weight hw . This function is generally
somewhat faster than HighestWeightModule (3.8.1).

Example
gap> U:= QuantizedUEA(RootSystem("A",5));;
gap> MinusculeModule(U, [0,0,1,0,0]);
<20-dimensional left-module over QuantumUEA(<root system of type A
5>, Qpar = q)>

3.8.12 DualAlgebraModule

▷ DualAlgebraModule(V) (attribute)

Here V is a finite-dimensional left module over a quantized enveloping algebra U . This func-
tion returns the dual space of V as an algebra module. For this the antipode map of U is used (see
AntipodeMap (3.7.4)).

Let M denote the module returned by this function. Then M has as basis the dual basis with respect
to Basis(V) . An element of this basis is printed as F@v , where v is an element of Basis(V) .
This is the function which takes the value 1 on v and 0 on all other basis elements. A general element
of M is a linear combination of these basis elements.

The elements of M can be viewed as functions which take arguments. However, internally the
elements of M are represented as wrapped up functions. The function corresponding to an element m
of M is obtained by ExtRepOfObj(m) (the result of which is printed in the same way as m , but is
not equal to it).

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> M:= DualAlgebraModule(V);
<8-dimensional left-module over QuantumUEA(<root system of type A
2>, Qpar = q)>
gap> u:= GeneratorsOfAlgebra(U)[2];
F2
gap> vv:= BasisVectors(Basis(M));
[(1)*F@1*v0, (1)*F@F1*v0, (1)*F@F3*v0, (1)*F@F1*F3*v0, (1)*F@F2*v0,

(1)*F@F1*F2*v0, (1)*F@F2*F3*v0, (1)*F@F2^(2)*v0]
gap> u^vv[3];
<zero function>
gap> # (The zero of the dual space is printed as <zero function>).
gap> u^vv[4];
(-q^5+q^3)*F@1*v0
gap> # We get the function corresponding to a vector in M by using ExtRepOfObj:
gap> f:= ExtRepOfObj(vv[1]);
(1)*F@1*v0
gap> # We can calculate images of this function:
gap> List(Basis(V), v -> Image(f, v));
[1, 0, 0, 0, 0, 0, 0, 0]

QuaGroup 33

3.8.13 TrivialAlgebraModule

▷ TrivialAlgebraModule(U) (attribute)

Returns the trivial module over the quantized enveloping algebra U . For this the counit map of U
is used.

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> V:= TrivialAlgebraModule(U);
<left-module over QuantumUEA(<root system of type A2>, Qpar = q)>

3.8.14 WeightsAndVectors

▷ WeightsAndVectors(V) (operation)

Here V is a left module over a quantized enveloping algebra. WeightsAndVectors(V) is a list
of two lists; the first of these is a list of the weights of V , the second a list of corresponding weight
vectors. These are again grouped in lists: if the multiplicity of a weight is m , then there are m weight
vectors, forming a basis of the corresponding weight space.

Modules constructed by HighestWeightModule (3.8.1) come with this attribute set. There is a
method installed for computing WeightsAndVectors(V) , for modules V over a generic quantized
enveloping algebra, such that all basis vectors (i.e., all elements of Basis(V)) are weight vectors.

Example
gap> U:= QuantizedUEA(RootSystem("A", 2));;
gap> V:= HighestWeightModule(U, [1, 1]);;
gap> WeightsAndVectors(V);
[[[1, 1], [-1, 2], [2, -1], [0, 0], [-2, 1], [1, -2],

[-1, -1]],
[[1*v0], [F1*v0], [F3*v0], [F1*F3*v0, F2*v0], [F1*F2*v0],

[F2*F3*v0], [F2^(2)*v0]]]

3.8.15 HighestWeightsAndVectors

▷ HighestWeightsAndVectors(V) (attribute)

Is analogous to WeightsAndVectors (3.8.14); now only the highest weights are listed along with
the corresponding highest-weight vectors.

There is a method installed for this using WeightsAndVectors (3.8.14); which means that it
works if and only if WeightsAndVectors(V) works.

Example
gap> U:= QuantizedUEA(RootSystem(["A", 2]));;
gap> V:= HighestWeightModule(U, [1, 1]);;
gap> HighestWeightsAndVectors(V);
[[[1, 1]], [[1*v0]]]

3.8.16 RMatrix

▷ RMatrix(V) (attribute)

QuaGroup 34

Here V is a module over the a quantized enveloping algebra U . This function returns the matrix
of a linear map θ : V ⊗V → V ⊗V that is a solution to the quantum Yang-Baxter equation. We have
that θ ◦P is an isomorphism of U -modules, where P : V ⊗V → V ⊗V is the linear map such that
P(v⊗w) = w⊗ v. For more details we refer to [Jan96], Chapter 7.

This function works for modules for which WeightsAndVectors (3.8.14) works.
Example

gap> U:= QuantizedUEA(RootSystem("A",1));;
gap> V:= HighestWeightModule(U, [1]);;
gap> RMatrix(V);
[[1, 0, 0, 0], [0, q, -q^2+1, 0], [0, 0, q, 0], [0, 0, 0, 1]]

3.8.17 IsomorphismOfTensorModules

▷ IsomorphismOfTensorModules(V, W) (operation)

Here V , W are two modules over the same quantized enveloping algebra U . This function returns a
linear map θ : V ⊗W →W ⊗V that is an isomorphism of U-modules.

This function is only guaranteed to work correctly if the Hopf algebra structure is non-twisted (see
UseTwistedHopfStructure (3.7.2)).

This function works for modules for which WeightsAndVectors (3.8.14) works.
Example

gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> V:= HighestWeightModule(U, [1,0]);;
gap> W:= HighestWeightModule(U, [0,1]);;
gap> h:= IsomorphismOfTensorModules(V, W);;
gap> VW:= Source(h);
<20-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>
gap> Image(h, Basis(VW)[13]);
q*(1*v0<x>F3*v0)+-q^2+1*(F4*v0<x>F2*v0)+-q^3+q^-1*(F3*v0<x>1*v0)

3.8.18 WriteModuleToFile

▷ WriteModuleToFile(V, file) (operation)

Here V is a module over a quantized enveloping algebra, and file is a string containing the
name of a file. This function writes some data to file , that allows ReadModuleFromFile (3.8.19) to
recover it.

We remark that this function currently is only implemented for generic quantized enveloping al-
gebras.

3.8.19 ReadModuleFromFile

▷ ReadModuleFromFile(file) (operation)

Here file is a string containing the name of a file, to which a module over a quantized enveloping
algebra has been written by WriteModuleToFile (3.8.18). This function recovers the module. More
precisely: a new module is constructed that is isomorphic to the old one. In the process the algebra

QuaGroup 35

acting on the module is constructed anew (from data written to the file). This algebra can be accessed
by LeftActingAlgebra(V) .

We remark that this function currently is only implemented for generic quantized enveloping al-
gebras.

Example
gap> U:= QuantizedUEA(RootSystem("A",3));;
gap> V:= HighestWeightModule(U, [1,1,1]);;
gap> WriteModuleToFile(V, "A3mod");
gap> W:= ReadModuleFromFile("A3mod");
<64-dimensional left-module over QuantumUEA(<root system of type A
3>, Qpar = q)>

3.9 The path model

In this section we describe functions for dealing with the path model. We work only with LS-paths,
which are represented by two lists, one of weights, and one of rationals (see Section 2.7).

3.9.1 DominantLSPath

▷ DominantLSPath(R, wt) (operation)

Here R is a root system, and wt a dominant weight in the weight lattice of R . This function returns
the LS-path that is the line from the origin to wt .

Example
gap> R:= RootSystem("G", 2);;
gap> DominantLSPath(R, [1,3]);
<LS path of shape [1, 3] ending in [1, 3] >

3.9.2 Falpha (for an LS-path)

▷ Falpha(path, ind) (operation)

Is the result of applying the path operator fαind to the LS-path path (where αind is the ind -th
simple root).

The result is fail if fαind (path)=0 .
Example

gap> R:= RootSystem("G", 2);;
gap> p:=DominantLSPath(R, [1,3]);;
gap> p1:=Falpha(p, 1);
<LS path of shape [1, 3] ending in [-1, 4] >
gap> Falpha(p1, 1);
fail

3.9.3 Ealpha (for an LS-path)

▷ Ealpha(path, ind) (operation)

QuaGroup 36

Is the result of applying the path operator eαind to the LS-path path (where αind is the ind -th
simple root).

The result is fail if eαind (path)=0 .
Example

gap> R:= RootSystem("G", 2);;
gap> p:=DominantLSPath(R, [1,3]);;
gap> Ealpha(p, 2);
fail
gap> p1:=Falpha(p, 1);;
gap> Ealpha(p1, 1);
<LS path of shape [1, 3] ending in [1, 3] >

3.9.4 LSSequence

▷ LSSequence(path) (attribute)

returns the two sequences (of weights and rational numbers) that define the LS-path path.
Example

gap> R:= RootSystem("G", 2);;
gap> p:=DominantLSPath(R, [1,3]);;
gap> p1:= Falpha(Falpha(p, 1), 2);;
gap> LSSequence(p1);
[[[11, -4], [-1, 4]], [0, 1/4, 1]]

3.9.5 WeylWord

▷ WeylWord(path) (attribute)

Here path is an LS-path in the orbit (under the root operators) of a dominant LS-path ending in
the dominant weight λ . This means that the first direction of path is of the form w(λ) for some w in
the Weyl group. This function returns a list [i1, . . . , im] such that w = si1 · · ·sim .

Example
gap> R:= RootSystem("G", 2);;
gap> p:=DominantLSPath(R, [1,3]);;
gap> p1:= Falpha(Falpha(Falpha(p, 1), 2), 1);;
gap> WeylWord(p1);
[1, 2, 1]

3.9.6 EndWeight

▷ EndWeight(path) (attribute)

Here path is an LS-path; this function returns the weight that is the endpoint of path
Example

gap> R:= RootSystem("G", 2);;
gap> p:=DominantLSPath(R, [1,3]);;
gap> p1:= Falpha(Falpha(Falpha(p, 1), 2), 1);;
gap> EndWeight(p1);
[0, 3]

QuaGroup 37

3.9.7 CrystalGraph (for root system and weight)

▷ CrystalGraph(R, wt) (function)

This function returns a record describing the crystal graph of the highest-weight module with
highest weight wt , over the quantized enveloping algebra corresponding to R . It is computed using
the path model. Therefore the points in the graph are LS-paths.

Denote the output by r ; then r.points is the list of points of the graph. Furthermore, r.edges
is a list of edges of the graph; this is a list of elements of the form [[i, j], u] . This means
that there is an arrow from point i (i.e., the point on position i in r.points) to point j , with label u .

Example
gap> R:= RootSystem("A", 2);;
gap> CrystalGraph(R, [1,1]);
rec(

edges := [[[1, 2], 1], [[1, 3], 2], [[2, 4], 2],
[[3, 5], 1], [[4, 6], 2], [[5, 7], 1], [[6, 8], 1],
[[7, 8], 2]],

points := [<LS path of shape [1, 1] ending in [1, 1] >,
<LS path of shape [1, 1] ending in [-1, 2] >,
<LS path of shape [1, 1] ending in [2, -1] >,
<LS path of shape [1, 1] ending in [0, 0] >,
<LS path of shape [1, 1] ending in [0, 0] >,
<LS path of shape [1, 1] ending in [1, -2] >,
<LS path of shape [1, 1] ending in [-2, 1] >,
<LS path of shape [1, 1] ending in [-1, -1] >])

3.10 Canonical bases

Here we describe functions for computing the canonical basis of the negative part of a quantized
enveloping algebra, and of a module.

3.10.1 Falpha (for a PBW-monomial)

▷ Falpha(x, ind) (operation)

Here x is a PBW-monomial in U− (i.e., a monomial in the Fα , where α runs over the positive
roots). This function returns the result of applying the ind -th Kashiwara operator F̃αind to x (cf.
Section 2.6).

Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> x:= One(U);
1
gap> Falpha(Falpha(x, 3), 2);
F3*F9

3.10.2 Ealpha (for a PBW-monomial)

▷ Ealpha(x, ind) (operation)

QuaGroup 38

Here x is a PBW-monomial in U− (i.e., a monomial in the Fα , where α runs over the positive
roots). This function returns the result of applying the ind -th Kashiwara operator Ẽαind to x (cf.

Section 2.6). The result is fail if Ẽαind (x)=0 .
Example

gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> Ealpha(One(U), 2);
fail
gap> g:= GeneratorsOfAlgebra(U);;
gap> x:= g[1]*g[4]*g[7]*g[17];
F1*F4*F7*F17
gap> Ealpha(x, 3);
F1*F2*F7*F17

3.10.3 CanonicalBasis

▷ CanonicalBasis(U) (attribute)

Is the canonical basis of the quantized universal enveloping algebra U . When this is constructed
nothing is computed. By using PBWElements (3.10.4), MonomialElements (3.10.5), Strings
(3.10.6) information about elements of the canonical basis can be obtained.

Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> B:= CanonicalBasis(U);
<canonical basis of QuantumUEA(<root system of type F4>, Qpar = q) >

3.10.4 PBWElements

▷ PBWElements(B, rt) (operation)

Here B is the canonical basis of a quantized uea, and rt a list of non-negative integers representing
an element of the root lattice (e.g., if the simple roots are α , β and rt = [3, 2] , then rt represents
3α +2β).

It is possible to add the option lowrank , as follows PBWElements(B, rt :lowrank) . In that
case a somewhat different method will be used, that is significantly faster if the underlying root system
has rank 2,3. It is about equally fast for ranks 4,5; and slower for ranks greater than 5.

Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> B:= CanonicalBasis(U);;
gap> PBWElements(B, [1,2,1,0]);
[F1*F3^(2)*F9, F1*F3*F7+(q^4)*F1*F3^(2)*F9, (q^4)*F1*F3^(2)*F9+F2*F3*F9,

(q^2)*F1*F3*F7+(q^6+q^2)*F1*F3^(2)*F9+(q^2)*F2*F3*F9+F2*F7,
(q^4)*F1*F3*F7+(q^8)*F1*F3^(2)*F9+(q^4)*F2*F3*F9+(q^2)*F2*F7+F3*F4]

gap> U:= QuantizedUEA(RootSystem("G",2));;
gap> B:= CanonicalBasis(U);;
gap> PBWElements(B, [2,3] : lowrank);
[F1^(2)*F6^(3), F1*F5*F6^(2)+(q^10+q^8)*F1^(2)*F6^(3),

(q^2)*F1*F5*F6^(2)+(q^12+q^6)*F1^(2)*F6^(3)+F3*F6^(2),
(q^8)*F1*F5*F6^(2)+(q^18)*F1^(2)*F6^(3)+(q^6)*F3*F6^(2)+F5^(2)*F6]

QuaGroup 39

3.10.5 MonomialElements

▷ MonomialElements(B, rt) (operation)

This does the same as PBWElements (3.10.4), except that the elements are written as linear com-
binations of monomials in the generators Fα , where α runs through the simple roots.

We remark that this information is also computed “behind the scenes” when calling
PBWElements(B, rt) . However, it is not computed if the option lowrank is present in the call to
PBWElements .

Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> B:= CanonicalBasis(U);;
gap> MonomialElements(B, [1,2,1,0]);
[F1*F3^(2)*F9, F1*F3*F9*F3+(-1)*F1*F3^(2)*F9, F3^(2)*F1*F9, F3*F1*F9*F3,

F3*F9*F3*F1+(-1)*F3^(2)*F1*F9]

3.10.6 Strings

▷ Strings(B, rt) (operation)

Here B , rt are the same as in PBWElements (3.10.4). This returns the list of strings corresponding
to the elements of B of weight rt (cf. Section 2.6). For example, if on the k-th position of the list
returned by this function we have [1, 2, 2, 3] , then the principal monomial of the k-th element
of PBWElements(B, rt) is F̃2

1 F̃3
2 (1) (where F̃i is the i-th Kashiwara operator).

We remark that this information is also computed “behind the scenes” when calling
PBWElements(B, rt) . However, it is not computed if the option lowrank is present in the call to
PBWElements .

Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> B:= CanonicalBasis(U);;
gap> Strings(B, [1,2,1,0]);
[[1, 1, 2, 2, 3, 1], [1, 1, 2, 1, 3, 1, 2, 1], [2, 2, 1, 1, 3, 1],

[2, 1, 1, 1, 3, 1, 2, 1], [2, 1, 3, 1, 2, 1, 1, 1]]
gap> Falpha(Falpha(Falpha(Falpha(One(U), 3), 1), 2), 2);
F2*F3*F9
gap> PBWElements(B, [1,2,1,0])[3];
(q^4)*F1*F3^(2)*F9+F2*F3*F9

3.10.7 PrincipalMonomial

▷ PrincipalMonomial(u) (operation)

Here u is an element of the output of PBWElements (3.10.4). This function returns the unique
monomial of u that has coefficient 1.

Example
gap> U:= QuantizedUEA(RootSystem("G",2));;
gap> B:= CanonicalBasis(U);;
gap> p:= PBWElements(B, [4,4] : lowrank)[4];
(q^9)*F1^(2)*F3*F6^(3)+F1^(2)*F5^(2)*F6^(2)+(q^13+q^11+q^9)*F1^(3)*F5*F6^(
3)+(q^28+q^26+2*q^24+q^22+q^20)*F1^(4)*F6^(4)

QuaGroup 40

gap> PrincipalMonomial(p);
F1^(2)*F5^(2)*F6^(2)

3.10.8 StringMonomial

▷ StringMonomial(u) (operation)

Here u is a monomial in the negative part of a quantized enveloping algebra, e.g., as output by
PrincipalMonomial (3.10.7). This function computes the corresponding “string” (see Section 2.6).
The strings are output in the same way as in 3.10.6.

Example
gap> U:= QuantizedUEA(RootSystem("G",2));;
gap> B:= CanonicalBasis(U);;
gap> p:= PBWElements(B, [1,2] : lowrank)[2];;
gap> m:=PrincipalMonomial(p);
F5*F6
gap> StringMonomial(m);
[2, 2, 1, 1]
gap> Falpha(Falpha(Falpha(One(U), 1), 2), 2);
F5*F6

3.10.9 Falpha (for a module element)

▷ Falpha(V, v, ind) (operation)

Here V is a module over a quantized enveloping algebra, v an element of it, and ind an index
between 1 and the rank of the root system. The function returns the result of applying the ind -th
Kashiwara operator F̃ind to v . Here the Kashiwara operators are different from the ones described in
Section 2.6. We refer to [Jan96], 9.2 for the definition of the operators used here.

Example
gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> Falpha(V, Basis(V)[1], 1);
F1*v0

3.10.10 Ealpha (for a module element)

▷ Ealpha(V, v, ind) (operation)

Here V is a module over a quantized enveloping algebra, v an element of it, and ind an index
between 1 and the rank of the root system. The function returns the result of applying the ind -th
Kashiwara operator Ẽind to v . Here the Kashiwara operators are different from the ones described in
Section 2.6. We refer to [Jan96], 9.2 for the definition of the operators used here.

Example
gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> v:= Falpha(V, Basis(V)[2], 2);
(q^2)*F1*F4*v0+F2*v0

QuaGroup 41

gap> Ealpha(V, v, 2);
F1*v0

3.10.11 CrystalBasis

▷ CrystalBasis(V) (attribute)

Here V is a finite-dimensional left module over a quantized enveloping algebra. This function
returns the canonical, or crystal basis of V (see Section 2.6).

This function only works for modules for which WeightsAndVectors (3.8.14) works.
Example

gap> U:= QuantizedUEA(RootSystem("B", 2));;
gap> V:= HighestWeightModule(U, [1,1]);
<16-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>
gap> CrystalBasis(V);
Basis(<16-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>, [1*v0, F1*v0, F4*v0, F1*F4*v0, (q^2)*F1*F4*v0+F2*v0,

F2*F4*v0, (q)*F2*F4*v0+F3*v0, (-q^-4)*F1*F2*v0,
(-q^-1)*F1*F3*v0+(-q^-3)*F2^(2)*v0, (-q^-2)*F2^(2)*v0, F3*F4*v0,
(-q^-4)*F2*F3*v0+(-q^-2)*F2^(2)*F4*v0, (-q^-2)*F2*F3*v0, (q^-4)*F2^(3)*v0,
(-q^-1)*F3^(2)*v0, (q^-5)*F2^(2)*F3*v0])

3.10.12 CrystalVectors

▷ CrystalVectors(V) (attribute)

Here V is a finite-dimensional left module over a quantized enveloping algebra. Let C be the
crystal basis of V (i.e., output by CrystalBasis (3.10.11)). This function returns a list of cosets of
the basis elements of C modulo qL, where L is the Z[q]-lattice spanned by C .

The coset of a vector v is printed as <v> .
The crystal vectors are used to construct the point set of the crystal graph of V (CrystalGraph

(3.10.15)).
This function only works for modules for which WeightsAndVectors (3.8.14) works.

Example
gap> U:= QuantizedUEA(RootSystem("B", 2));;
gap> V:= HighestWeightModule(U, [1,1]);
<16-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>
gap> CrystalVectors(V);
[<1*v0>, <F1*v0>, <F4*v0>, <F2*v0>, <F1*F4*v0>, <F3*v0>, <(-q^-4)*F1*F2*v0>,

<F2*F4*v0>, <F1*F3*v0>, <F3*F4*v0>, <(-q^-1)*F1*F3*v0+(-q^-3)*F2^(2)*v0>,
<(-q^-4)*F2*F3*v0+(-q^-2)*F2^(2)*F4*v0>, <F2^(2)*F4*v0>, <(q^-4)*F2^(3)*v0>,
<(-q^-1)*F3^(2)*v0>, <(q^-5)*F2^(2)*F3*v0>]

3.10.13 Falpha (for a crystal vector)

▷ Falpha(v, ind) (operation)

QuaGroup 42

Here v is a crystal vector, i.e., an element of CrystalVectors(V) , where V is a left module
over a quantized enveloping algebra. This function returns the result of applying the ind -th Kashiwara
operator F̃αind to v. The result is fail if F̃αind (v)=0 .

Example
gap> U:= QuantizedUEA(RootSystem("B", 2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> c:=CrystalVectors(V);;
gap> Falpha(c[2], 2);
<F2*v0>
gap> Falpha(c[3], 2);
fail
gap> Falpha(Falpha(Falpha(c[1], 1), 2), 1);
fail
gap> p:= DominantLSPath(RootSystem("B", 2), [1,1]);
<LS path of shape [1, 1] ending in [1, 1] >
gap> Falpha(Falpha(Falpha(p, 1), 2), 1);
fail

The last part of this example is an illustration of the fact that the crystal graph of a highest-weight
module can be obtained by the path method (see Section 2.7).

3.10.14 Ealpha (for a crystal vector)

▷ Ealpha(v, ind) (operation)

Here v is a crystal vector, i.e., an element of CrystalVectors(V) , where V is a left module
over a quantized enveloping algebra. This function returns the result of applying the ind -th Kashiwara
operator Ẽαind to v. The result is fail if Ẽαind (v)=0 .

Example
gap> U:= QuantizedUEA(RootSystem("B", 2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> c:=CrystalVectors(V);;
gap> Ealpha(c[3], 1);
fail
gap> Ealpha(c[3], 2);
<1*v0>

3.10.15 CrystalGraph (for a module)

▷ CrystalGraph(V) (function)

Returns the crystal graph of the module V . The points of this graph are the cosets output by
CrystalVectors (3.10.12). The edges work in the same way as in CrystalGraph (3.9.7).

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> V1:= HighestWeightModule(U, [1,0]);;
gap> V2:= HighestWeightModule(U, [0,1]);;
gap> W:= TensorProductOfAlgebraModules(V1, V2);;
gap> CrystalGraph(W);
rec(

QuaGroup 43

edges := [[[1, 2], 1], [[1, 3], 2], [[2, 4], 2],
[[3, 5], 1], [[4, 6], 2], [[5, 7], 1], [[6, 8], 1],
[[7, 8], 2]],

points := [<1*(1*v0<x>1*v0)>, <1*(F1*v0<x>1*v0)>, <1*(1*v0<x>F3*v0)>,
<1*(1*v0<x>F2*v0)+q^-1*(F2*v0<x>1*v0)>,
<-q^-1*(1*v0<x>F2*v0)+q^-1*(F1*v0<x>F3*v0)>, <1*(F2*v0<x>F3*v0)>,
<-q^-1*(F1*v0<x>F2*v0)>, <-q^-1*(F2*v0<x>F2*v0)>,
<-q^-3*(1*v0<x>F2*v0)+-q^-1*(F1*v0<x>F3*v0)+1*(F2*v0<x>1*v0)>])

3.11 Universal enveloping algebras

Here we describe functions for connecting a quantized enveloping algebra to the corresponding uni-
versal enveloping algebra.

3.11.1 UEA

▷ UEA(L) (attribute)

This function returns the universal enveloping algebra u of the semisimple Lie algebra L . The gen-
erators of u are the generators of a Kostant lattice in the universal enveloping algebra (these generators
are obtained from L by LatticeGeneratorsInUEA(L) , see the GAP reference manual).

Example
gap> L:= SimpleLieAlgebra("B", 2, Rationals);
<Lie algebra of dimension 10 over Rationals>
gap> u:= UEA(L);
<algebra over Rationals, with 10 generators>
gap> g:= GeneratorsOfAlgebra(u);
[y1, y2, y3, y4, x1, x2, x3, x4, (h9/1), (h10/1)]

3.11.2 UnderlyingLieAlgebra

▷ UnderlyingLieAlgebra(u) (attribute)

For a universal enveloping algebra u constructed by UEA (3.11.1), this returns the corresponding
semisimple Lie algebra

Example
gap> L:= SimpleLieAlgebra("B", 2, Rationals);;
gap> u:= UEA(L);;
gap> UnderlyingLieAlgebra(u);
<Lie algebra of dimension 10 over Rationals>

3.11.3 HighestWeightModule (for a universal env. alg)

▷ HighestWeightModule(u, hw) (operation)

For a universal enveloping algebra u constructed by UEA (3.11.1), this returns the irreducible
highest weight module over u with highest weight hw , which must be dominant. This module is the

QuaGroup 44

same as the corresponding highest weight module over the semisimple Lie algebra, but in this case the
enveloping algebra u acts.

Example
gap> L:= SimpleLieAlgebra("B", 2, Rationals);;
gap> u:= UEA(L);;
gap> HighestWeightModule(u, [2,3]);
<140-dimensional left-module over <algebra over Rationals, with
10 generators>>

3.11.4 QUEAToUEAMap

▷ QUEAToUEAMap(L) (attribute)

Here L is a semisimple Lie algebra. Set u := UEA(L) , and U := QuantizedUEA(L) (so
u, U are the universal enveloping algebra, and “generic” quantized enveloping algebra of L respec-
tively). Then QUEAToUEAMap(L) returns the algebra homomorphism from U to u obtained by
mapping q to 1 , a generator Fi , corresponding to a simple root to the generator yi (corresponding
to the same simple root), and likewise for Ei and xi . This means that Ki is mapped to one, and
[Ki : s] to hi choose s .

The canonical basis of U is mapped to the canonical basis of u .
Example

gap> L:= SimpleLieAlgebra("B", 2, Rationals);;
gap> f:= QUEAToUEAMap(L);
<mapping: QuantumUEA(<root system of rank
2>, Qpar = q) -> Algebra(Rationals, [y1, y2, y3, y4, x1, x2, x3, x4,

(h9/1), (h10/1)]) >
gap> U:= Source(f);
QuantumUEA(<root system of rank 2>, Qpar = q)
gap> u:= Range(f);
<algebra over Rationals, with 10 generators>
gap> B:= CanonicalBasis(U);;
gap> p:= PBWElements(B, [1,2]);
[F1*F4^(2), (q^3+q)*F1*F4^(2)+F2*F4, (q^4)*F1*F4^(2)+(q)*F2*F4+F3]
gap> pu:= List(p, x -> Image(f, x));
[y1*y2^(2), 2*y1*y2^(2)+y2*y3-2*y4, y1*y2^(2)+y2*y3-1*y4]
gap> V:= HighestWeightModule(u, [2,1]);
<40-dimensional left-module over <algebra over Rationals, with 10 generators>>
gap> List(pu, x -> x^Basis(V)[1]);
[0*v0, y2*y3*v0-2*y4*v0, y2*y3*v0-1*y4*v0]
gap> # Which gives us a piece of the canonical basis of V.

References

[Car98] R. W. Carter. Representations of simple Lie algebras: modern variations on a classical
theme. In Algebraic groups and their representations (Cambridge, 1997), pages 151–173.
Kluwer Acad. Publ., Dordrecht, 1998. 11

[Com06] Editorial Committee. A note on the paper: “A survey of the work of George Lusztig” by R.
W. Carter [Nagoya Math. J. 182 (2006), 1–45]. Nagoya Math. J., 183:i–ii, 2006. 9

[Gra01] W. A. de Graaf. Computing with quantized enveloping algebras: PBW-type bases, highest-
weight modules, R-matrices. J. Symbolic Comput., 32(5):475–490, 2001. 11

[Gra02] W. A. de Graaf. Constructing canonical bases of quantized enveloping algebras. Experi-
mental Mathematics, 11(2):161–170, 2002. 11

[Hum90] J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge University Press,
Cambridge, 1990. 11

[Jan96] J. C. Jantzen. Lectures on Quantum Groups, volume 6 of Graduate Studies in Mathematics.
American Mathematical Society, 1996. 8, 10, 11, 26, 34, 40

[Kas96] M. Kashiwara. Similarity of crystal bases. In Lie algebras and their representations (Seoul,
1995), pages 177–186. Amer. Math. Soc., Providence, RI, 1996. 11

[Lit94] P. Littelmann. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. In-
vent. Math., 116(1-3):329–346, 1994. 11

[Lit95] P. Littelmann. Paths and root operators in representation theory. Ann. of Math. (2),
142(3):499–525, 1995. 10, 11

[Lit98] P. Littelmann. Cones, crystals, and patterns. Transform. Groups, 3(2):145–179, 1998. 11

[LN01] F. Lübeck and M. Neunhöffer. GAPDoc, a GAP documentation meta-package, 2001. 4

[Lus90] G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata, 35(1-3):89–113, 1990. 9

[Lus92] G. Lusztig. Introduction to quantized enveloping algebras. In New developments in Lie
theory and their applications (Córdoba, 1989), pages 49–65. Birkhäuser Boston, Boston,
MA, 1992. 11

[Lus93] G. Lusztig. Introduction to quantum groups. Birkhäuser Boston Inc., Boston, MA, 1993.
9, 11

[Lus96] G. Lusztig. Braid group action and canonical bases. Adv. Math., 122(2):237–261, 1996. 9

45

QuaGroup 46

[Lus0a] G. Lusztig. Canonical bases arising from quantized enveloping algebras. J. Amer. Math.
Soc., 3(2):447–498, 1990a. 9

[Ros91] M. Rosso. Représentations des groupes quantiques. Astérisque, (201-203):Exp. No. 744,
443–483 (1992), 1991. Séminaire Bourbaki, Vol. 1990/91. 11

[Ste01] J. R. Stembridge. Computational aspects of root systems, Coxeter groups, and Weyl char-
acters. In Interaction of combinatorics and representation theory, volume 11 of MSJ Mem.,
pages 1–38. Math. Soc. Japan, Tokyo, 2001. 11

Index

*, 25
_q, 12

AntiAutomorphismTau, 24
AntipodeMap, 27
ApplyWeylElement, 16
AutomorphismOmega, 24
AutomorphismTalpha, 25

BarAutomorphism, 24
BilinearFormMatNF, 14

CanonicalBasis, 38
CanonicalMapping, 21, 31
ComultiplicationMap, 27
CounitMap, 27
CrystalBasis, 41
CrystalGraph

for a module, 42
for root system and weight, 37

CrystalVectors, 41

DiagramAutomorphism, 25
DIYModule, 29
DominantLSPath, 35
DualAlgebraModule, 32

Ealpha
for a crystal vector, 42
for a module element, 40
for a PBW-monomial, 37
for an LS-path, 35

EndWeight, 36
ExchangeElement, 17
ExtRepOfObj, 20

Falpha
for a crystal vector, 41
for a module element, 40
for a PBW-monomial, 37

for an LS-path, 35

GaussianBinomial, 13
GaussianFactorial, 13
GaussNumber, 12
GenericModule, 31
GetBraidRelations, 17

HighestWeightModule
for a quantized env. alg., 28
for a universal env. alg, 43

HighestWeightsAndVectors, 33
HWModuleByGenerator, 30
HWModuleByTensorProduct, 29

InducedQEAModule, 30
IrreducibleQuotient, 28
IsomorphismOfTensorModules, 34

LengthOfWeylWord, 16
LongestWeylWord, 16
LongWords, 18
LSSequence, 36

MinusculeModule, 31
MonomialElements, 39

ObjByExtRep, 19

PBWElements, 38
PositiveRootsInConvexOrder, 15
PositiveRootsNF, 14
PrincipalMonomial, 39

QEAAntiAutomorphism, 24
QEAAutomorphism, 23
QEAHomomorphism, 22
QuantizedUEA, 18
QuantumField, 12
QuantumParameter, 20
QUEAToUEAMap, 44

47

QuaGroup 48

ReadModuleFromFile, 34
ReadQEAFromFile, 21
ReducedWordIterator, 16
RMatrix, 33
RootSystem, 13

SimpleRootsAsWeights, 15
SimpleSystemNF, 15
StringMonomial, 40
Strings, 39

TensorPower, 26
TensorProductOfAlgebraModules, 30
TrivialAlgebraModule, 33

U2Module, 31
UEA, 43
UnderlyingLieAlgebra, 43
UseTwistedHopfStructure, 26

WeightsAndVectors, 33
WeylWord, 36
WriteModuleToFile, 34
WriteQEAToFile, 21

	Introduction
	Background
	Gaussian Binomials
	Quantized enveloping algebras
	Representations of Uq(g)
	PBW-type bases
	The Z-form of Uq(g)
	The canonical basis
	 The path model
	 Notes

	QuaGroup
	Global constants
	Gaussian integers
	Roots and root systems
	Weyl groups and their elements
	Quantized enveloping algebras
	 Homomorphisms and automorphisms
	Hopf algebra structure
	Modules
	The path model
	 Canonical bases
	 Universal enveloping algebras

	References
	Index

