Initialization and Termination for Applications Using
Wild Magic 5

David Eberly

Geometric Tools, LLC
http://www.geometrictools.com/

Copyright (©) 1998-2010. All Rights Reserved.

Created: August 20, 2010

Contents
1 Introduction 2
2 Pre-main Registration 2

3 The Main Function 4
3.1 The Memory::Initialize Function o 5
3.2 The Environment::Initialize Function o 5
3.3 The Application::ThePath Variable 5
3.4 The Command-Line Parser e 6
3.5 The Application::Run Function 6
3.6 The Environment:: Terminate Function 8
3.7 The Memory::Terminate Function 8

4 Post-main Cleanup 8

5 Example: Extension to a WGL Application not using WM5 Application 8

6 Example: Extension to an AGL or GLX Application not using WM5 Application 11

http://www.geometrictools.com/

1 Introduction

Wild Magic 5 (WM5) has various subsystems that need to be created and initialized before dependent
code may be executed. For example, if you have enabled the WM5 memory system by exposing the
WM5_USE_MEMORY conditional define, then this system must be initialized. Any data structures created before
the main entry function must be destroyed after the main function exits.

Some initialization can occur after the main function is entered but before the application actually starts
running. For example, WM5 maintains a directory-path system that allows you to specify directories to
search for data files, much like the DOS PATH environment variable. The directories must be established
before the application attempts to load data files. When the application finishes running, any data structures
created before the run must be destroyed.

This document summarizes the initialization and termination that occurs during a WM5 3D application. If
you choose to include WM5 in your own 3D application layer, the last section of this document summarizes
what you must do minimally to ensure that WMS5 runs properly.

2 Pre-main Registration

The entry point into a WM5 application is the main function that is part of any standard C or C++ run-time
library. This is true even for the 3D applications that use Microsoft’s Win32 API; that is, the entry function
WinMain is never used. The main function is implemented in the source file

GeometricTools/WildMagic5/LibApplications/WmbApplication.cpp

The same main function is called even when the application is a console application.

An application might want certain actions to be taken before main is entered. I call this phase the pre-main
execution. Some actions might also be desired after main is exited. I call this phase the post-main
execution.

Pre-main execution is caused by the side effects of global variables declared at file scope. For example, in a
C++ environment, a global class object has its constructor called pre-main. In the same example, post-main
execution includes a call to that object’s destructor. In a C environment, post-main behavior is obtained by
the atexit function.

It is well known that the order of pre-main/post-main function calls depends on the compiler and linker; the
order in which source files are compiled and linked is not generally predictable. An application layer might
very well contain a subsystem to allow the user to control the order, but such subsystems are tedious to
write and maintain. Rather than fight this battle in WMS5, the only supported pre-main/post-main behavior
is to register functions that are to be called before the application starts running (initialization) and after
the application finishes running (termination). The initialization/termination calls actually occur within the
main entry function.

The order in which functions are registered is not guaranteed due to the same problem mentioned previous
about compiler and linker dependencies. However, the developer may control initialization/termination
dependencies by arranging for one such function to call another that it is dependent on. It is only natural
that the developer be responsible for maintaining the directed acyclic graph of dependencies. If you have

dependencies, the developer is responsible for ensuring that the initialization and termination function for a
class be called at most once.

The pre-main/post-main execution is managed by the class InitTerm in the LibCore project. The file
Wm5InitTerm.h contains the class definition and macros for a class to use when it wants initialization before
the application starts running and/or when it wants termination after the application finishes running. If a
class wants initialization, the macros are used as shown next.

// In MyClass.h file:
class MyClass
{
WM5_DECLARE_INITIALIZE;
<remainder of class body goes here>;
s
WM5_REGISTER_INITIALIZE(MyClass);

// In MyClass.cpp file:
WM5_IMPLEMENT_INITIALIZE(MyClass);

The macros are

=
#define WM5_DECLARE_INITIALIZE \
public: \

static bool RegisterInitialize (); \

static void Imnitialize (); \
private: \

static bool msInitializeRegistered

#define WM5_IMPLEMENT_INITIALIZE(classname) \
bool classname::msInitializeRegistered = false; \
bool classname::RegisterInitialize () \

{\
if (!msInitializeRegistered) \
{\
InitTerm: :AddInitializer(classname: :Initialize); \
msInitializeRegistered = true; \
A\
return msInitializeRegistered; \
}
=

#define WM5_REGISTER_INITIALIZE(classname) \
static bool gsInitializeRegistered_##classname = \
classname: :RegisterInitialize ()

The WM5_DECLARE_INITIALIZE macro declares two static functions and a static data member. The function
RegisterInitialize is part of the pre-main registration and has a body that is defined by the imple-
ment macro used in the cpp file. The actual call to RegisterInitialize occurs at least once because the

WM5_REGISTER_INITIALIZE is used in the h file that is included in at least one source file. Generally, the h
file is included (directly or indirectly) in multiple source files, so RegisterInitialize has the potential to
be called multiple times. The static data member is used to ensure that the registration function is called
at most once. Similar macros exist for termination.

At first glance, this appears to be an inefficient way of registering the function; after all, we know that we
include MyClass.h in MyClass. cpp, which should force the registration to occur. For the initialization and
termination systems, we could do use the more efficient method. However, the streaming system uses the
same mechanism to register the class factory functions. If a developer creates new streamable classes, places
these in a library, and the application source files do not include all the h files from that library, the non-
included h files will cause some class factories functions not to be registered. In fact, this problem showed up
in NetImmerse/Gamebryo with streaming because we had developed the game engine to consist of multiple
libraries. As it turns out, the inefficiency of the registration system is not a bottleneck in application run
time.

Notice that the only responsibility of RegisterInitialize is to add the MyClass::Initialize function
to a static array of initialization functions in InitTerm. These functions are called just before the ap-
plication is told to start running. Similarly, the only responsibility of RegisterTerminate is to add the
MyClass::Terminate function to a static array of termination functions in InitTerm. These functions are
called just after the application finishes running.

The author of MyClass is responsible for implementing the MyClass: : Initialize and MyClass: : Terminate
functions.

The InitTerm::AddInitializer and InitTerm::AddTerminator functions insert function pointers into
arrays of a fixed size (currently 512 elements per array). If your application requires larger arrays, you must
increase the value of InitTerm: :MAX_ELEMENTS accordingly. In the Debug configuration, if an attempt is
made to insert too many items, an assertion is triggered with a diagnostic message indicating you must
increase the enumerate value and recompile the libraries. This approach ensures that no dynamic allocation
occurs pre-main because of the needs of InitTerm.

3 The Main Function

The main entry function is implemented in WmbApplication.cpp. This is a platform-independent function
common to all WM5 applications regardless of operating system and windowing system. The responsibility
of main is the following:

1. Initialize the Memory system, if it is enabled.

2. Read the value of the environment variable WM5_PATH. This is the path to where WMS5 is installed,
generally the path leading to the GeometricTools/WildMagich subdirectory.

3. Call the initialization functions that were registered pre-main.

4. Insert relevant directories into the path system for use by WM5 applications. Directories include those
to compiled shaders (*.wmfx), scene object files (*.wmof), texture images (*.wmtf), vertex and index
buffers (*.wmvf), and image files (*.im). An automatically maintained path that was not part of
Wild Magic 4 is the application path, stored in the class-static variable Application: :ThePath. This
subdirectory contains the project file and source code for the project.

5. Create a command parser that stores and processes the command-line parameters (if any) passed to
the application.

6. Call the Application::Run function. At this time all data and initialization that the application
requires is in place. The remaining steps listed next occur after Application::Run returns from
execution.

7. Destroy the command parser.
8. Remove the various data directories from the system path.
9. Call the termination functions that were registered pre-main.

10. Terminate the Memory system, if it is enabled.

3.1 The Memory::Initialize Function

The WM5 memory system keeps track of allocations, deallocations, and the file/line on which each such
operation occurs. WMSJ5 has smart pointers, as did WM4, but WM4 smart pointers were designed so that
each Object maintained its own reference counter. The reference counters to WMbH Objects are instead
stored externally, in a class-static map that is managed by class Memory. The function Memory: : Initialize
includes the creation of this map.

The memory system also allows you to hook in your own memory allocation and deallocation. Another
variation of the Memory: :Initialize function allows you to specify an alternate allocator and deallocator.

3.2 The Environment::Initialize Function

A new class has been added to Wild Magic, namely, Environment. This replaces a portion of the WM4
System class (this class is obsolete). Environment supports reading environment variables, one of those
being WM5_PATH. The class also allows you to insert and remove directories from a list of directories that is
used for searching for files to open during application run time.

The function Environment: : Initialize function simply creates the class-static list of directories, although
insertion and removal functions will create the list in a lazy manner if necessary during program execution.
In fact, this initializer is called by the InitTerm: :ExecuteInitializers function, so there is not an explicit
call to it in main.

After initialization, the main program inserts directories specific to the WM5 sample applications. If you do
not use the WM5 application layer, you can omit these directories if your application does not need them.

3.3 The Application::ThePath Variable

This is a class-static variable that is new to Wild Magic. Its value is intended to be the path to the subdi-
rectory that contains your application project file and source code. To ensure that this variable is correctly
set, the derived-class application constructor must specify the subdirectory that contains the project. For
example, in SampleGraphics/BillboardNodes, the constructor is

BillboardNodes: :BillboardNodes ()

WindowApplication3("SampleGraphics/BillboardNodes",0, 0, 640, 480,
Float4(0.9f, 0.9f, 0.9f, 1.0f)),
mTextColor(1.0f, 1.0f, 1.0f, 1.0f)

)

The subdirectory is specified in the first argument of the base-class constructor and the path is relative to
the path stored by the environment variable WM5_PATH.

3.4 The Command-Line Parser

Class Application defined in WmbApplication.h contains a static data member, TheCommand, which is a
pointer to an object of type Command. This class is implemented in Wm5Command.h and Wm5Command. cpp in
the LibApplications project. It is a simple class that stores the command-line parameters as an array of
strings and parses them according to the rules in Command Line Parsing.

3.5 The Application::Run Function

Class Application is implemented in WmSApplication.h and Wm5Application.cpp. It declares a static
function pointer called Run. Application-derived classes implement a function to which this pointer is
directed. An application is either a console application having no need for a window with drawing surface
(it can use a text-only console window), a 2D window application for 2D graphics-based applications, or a
3D window application for 3D graphics-based applications. The class ConsoleApplication encapsulates the
console application. Both 2D and 3D window applications have some common behavior, which is encapsu-
lated in WindowApplication. The 2D window applications are encapsulated by WindowApplication2 and
the 3D window applications are encapsulated by WindowApplication3.

Class Application also has a static pointer member, called TheApplication, that points to the unique in-
stance of the application. Although WMS5 sample applications use one window per application, the restriction
to a unique instance does not prevent you from having multiple windows in an application.

The file WmbConsoleApplication.h contains macros that are used in pre-main initialization and post-main
termination. These must be declared in the final application source code. The macros are

#define WM5_CONSOLE_APPLICATION(classname) \
WM5_IMPLEMENT_INITIALIZE(classname); \
WM5_IMPLEMENT_TERMINATE(classname); \

\

void classname::Initialize () \

{\
Application::Run = &ConsoleApplication::Run; \
TheApplication = newO classname(); \

A

http://www.geometrictools.com/Documentation/CommandLineParsing.pdf

\

void classname::Terminate () \

{\
deleteO(TheApplication); \

These are initializer and terminator functions that are registered pre-main as discussed previously. The
initializion hooks up the Run pointer to the correct application type and creates an instance of the application.
Similar macros for initialization and termination in windowed-applications are in WmbWindowApplication.h.

For example, in the SampleGraphics/BillboardNodes application, you will see in the file BillboardNodes.h
effectively

class BillboardNodes : public WindowApplication3

{
WM5_DECLARE_INITIALIZE;
WM5_DECLARE_TERMINATE;
<other stuff>;

};

WM5_REGISTER_INITIALIZE(BillboardNodes) ;
WM5_REGISTER_TERMINATE(BillboardNodes) ;

In Billboards.cpp you will see
WM5_WINDOW_APPLICATION(BillboardNodes) ;

The call to Application: :Run in the main entry function occurs after all initializers are called, so in fact
Application: :Run is a nonnull function pointer and may be dereferenced.

The Run function for a console application is

int ConsoleApplication::Run (int numArguments, char** arguments)

{
ConsoleApplication* theApp = (ConsoleApplication*)TheApplication;
return theApp->Main(numArguments, arguments);

It executes the application Main entry function in a way similar to what you have seen for the main entry
function. However, ConsoleApplication: :Main is a pure virtual function, so any application derived from
ConsoleApplication must declare and implement Main. For example, see SamplePhysics/SimplePendulum.
The application may choose to use Application: :TheCommand for parsing command-line parameters or it
may process directly the inputs to Main.

The Run function for a window application is

int WindowApplication::Run (int numArguments, char** arguments)

{

WindowApplication* theApp = (WindowApplication*)TheApplication;
return theApp->Main(numArguments, arguments);

so it has exactly the same structure as that of ConsoleApplication. However, WindowApplication: :Main
is not a pure virtual function. The primary window of the application must be created, but this process
is specific to the operating system (MS Windows, Mac OS X) and/or windowing system (X-Windows on
Linux). Thus, each platform must specifically implement WindowApplication: :Main according to its needs.
For example, if you look at the WmbWinApplication. cpp file for a Microsoft Win32 application (DirectX 9 or
OpenGL), there is an implementation of WindowApplication: :Main as well as other functions that support
the window (event handling, keyboard, mouse, and so on). You will notice that WindowApplication: :Main
function creates a window using the Win32 API, creates a renderer, and interfaces to the unique application
instance CodeApplication::TheApplication for initialization, message handling, idle loop, and termination.

When Main terminates, control is returned to the main entry function, followed by clean-up code to free up
resources and memory.

3.6 The Environment::Terminate Function

After Application: :Run terminates, all directories are removed from the path system. The array of directory
strings itself is deleted by the call to Environment: :Terminate. In fact, this terminator is called by the
InitTerm: :ExecuteTerminators function, so there is not an explicit call to it in main.

3.7 The Memory:: Terminate Function

If the WM5 memory system is enabled, you must terminate it. The Memory: : Terminate function writes to
a text file any memory that was allocated by the system and has not yet been deallocated. The generated
report has information about the address, the number of bytes, the dimension (singleton, 1D-array, 2D-array,
and so on), and the name of the source file and line number where the allocation occurred.

After the report is generated, the class-static map is destroyed.

4 Post-main Cleanup

As designed, no freeing of resources or deallocations of memory should occur during post-main execution. If
you are lucky, a third-party library will also attempt to free its resources and memory before the post-main
execution.

5 Example: Extension to a WGL Application not using WM5
Application

The outline shown next illustrates what you must do in your own WGL application layer that uses 3D
graphics.

// Pre-main execution occurs first as always. Then ’main’ is called...

int main (int numArguments, char** arguments)

{

#ifdef WM5_USE_MEMORY
// To specify your own allocator and deallocator, change this function
// call to Memory::Initialize(yourAllocator, yourDeallocator). See the
// Memory class in LibCore/Memory/WmSMemory.h for the signatures of these
// functioms.
Memory: :Initialize();

#endif

// The Wild Magic 5 application layer depends on the directory structure
// structure that ships with the libraries. You need to create the
// WM5_PATH environment variable in order for the applications to find
// various data files.
Application::WMSPath = Environment::GetVariable ("WM5_PATH") ;
if (Application::WM5Path != "")
{
Application: :WM5Path += "/";
b
// else: If your application needs WM5_PATH to be set, you need to
// take any necessary action to let the user know the environment
// variable does not exist.

// Execute any registered pre-main initializers.
InitTerm: :ExecuteIlnitializers();

// You can add any paths you like. Syntax is
// Environment::InsertDirectory("MyDirectory") ;

// *** BEGIN PLATFORM-SPECIFIC WINDOW/RENDERER CREATION ***

//

// OpenGL uses a projection matrix for depth in [-1,1]. For a DirectX 9
// application, change the input to Camera::PM_DEPTH_ZERO_TO_ONE.
Camera: :SetDefaultDepthType (Camera: : PM_DEPTH_MINUS_ONE_TO_ONE) ;

// Setup for creating a Win32 window goes here.
int windowWidth = x*;

int windowHeight = *;

// ... other setup goes here

HWND handle = CreateWindow(...);

// Create a Windows OpenGL (WGL) renderer. Change parameters as needed.
// If you want multisampling, see WmbWinApplication.cpp for details.

// For creation of a DirectX 9 renderer, see WmbWinApplication.cpp.
Texture: :Format colorFormat = Texture::TF_A8R8G38BS;

Texture::Format depthStencilFormat = Texture::TF_D24S8;

int numMultisamples = O;

RendererInput input;

input.mWindowHandle = handle;

input.mPixelFormat = O;

input.mRendererDC = O;

input.mDisableVerticalSync = true; // set to false if you want sync to retrace

Renderer* renderer = new0 Renderer(input, windowWidth, windowHeight,
colorFormat, depthStencilFormat, numMultisamples);

//

// *xx END PLATFORM-SPECIFIC WINDOW/RENDERER CREATION ***

// **x BEGIN APPLICATION-SPECIFIC LOGIC **x*

//

// This work occurs in WindowApplication::OnInitialize. YOU

// DO NOT HAVE TO CREATE A CAMERA AT THIS TIME. However, you must
// have some camera attached to the renderer for any drawing.
Camera* camera = new(O Camera();

renderer->SetCamera(camera) ;

Float4 clearColor = <your choice>;
renderer->SetClearColor(clearColor);

// This work occurs in the DerivedApplication::OnInitialize.

float fieldOfView = <your choice>; // degrees

float aspectRatio = ((float)windowWidth)/((float)windowHeight);
float near = <your choice>;

float far = <your choice>;

camera->SetFrustum(field0fView, aspectRatio, near, far);

APoint camPosition(...); // eye point

AVector camDVector(...); // direction of view

AVector camUVector(...); // up vector

AVector camRVector = camDVector.Cross(camUVector); // right vector
camera->SetFrame (camPosition, camDVector, camUVector, camRVector);

<create scene graphs and anything else you need>;
<call someScene->Update() as needed>;

// There can be multiple scene graphs. The code below is for a

// single scene. It is possible to compute visible sets for multiple
// scenes and combine them. ALL THIS IS REALLY APPLICATION-SPECIFIC
// LOGIC.

Culler culler;

culler.SetCamera(camera) ;

culler.ComputeVisibleSet (scene);

do
{

<Run your application code>; // uses message pump, idle loop

}

until_finished;

10

// This work occurs in DerivedApplication::0OnTerminate.
<destroy all resources and memory you used>;

// This work occurs in WindowApplication3::OnTerminate.
renderer—->SetCamera(0) ;

deleteO(camera);

//

// *xx END APPLICATION-SPECIFIC LOGIC *xx

// **x BEGIN PLATFORM-SPECIFIC WINDOW/RENDERER DESTRUCTION *x**

//

// For destruction of a DirectX 9 renderer, see WmbWinApplication.cpp.
deleteO(renderer);

// This is actually handled in the message pump, but I place it here for
// completeness.

DestroyWindow(handle) ;

//

// **x END PLATFORM-SPECIFIC WINDOW/RENDERER DESTRUCTION *x**

// Remove all directories from the path system.
Environment: :RemoveAllDirectories();

// Execute any registered post-main terminators.
InitTerm: :ExecuteTerminators();

#ifdef WM5_USE_MEMORY

// Report memory leaks.

Memory: :Terminate ("MemoryReport.txt") ;
#endif

return O;

6 Example: Extension to an AGL or GLX Application not using
WM5 Application

The platform-specific code of the previous section must be replaced for each of these platforms (Macintosh
or Linux). Specifically, the window creation and destruction, the renderer creation and destruction, and
the message pump (events, input-device handling, idle loop, and so on) must be modified. See the files
WmbAglApplication.cpp and WmbGlxApplication.cpp for examples of how I do this.

11

	1 Introduction
	2 Pre-main Registration
	3 The Main Function
	3.1 The Memory::Initialize Function
	3.2 The Environment::Initialize Function
	3.3 The Application::ThePath Variable
	3.4 The Command-Line Parser
	3.5 The Application::Run Function
	3.6 The Environment::Terminate Function
	3.7 The Memory::Terminate Function

	4 Post-main Cleanup
	5 Example: Extension to a WGL Application not using WM5 Application
	6 Example: Extension to an AGL or GLX Application not using WM5 Application

