Libsmoldyn User’s Manual

for Smoldyn version 2.56

Steve Andrews

(©September, 2018

Contents

1 About Libsmoldyn 5
2 Compiling and linking 7
2.1 Compiling e 7
2.2 Linking 7
2.3 Using smaller versions of Libsmoldyn 8
3 Error trapping 11
3.1 Error checking system internal to libsmoldyn.c 11
4 Libsmoldyn quick function guide 13
5 Libsmoldyn header file 17
6 Libsmoldyn functions 23
6.1 General comments L e e e 23
6.2 Miscellaneous e e e e 23
6.3 Errorso e 23
6.4 Sim structure L e 24
6.5 Read configuration file Lo 24
6.6 Simulation settings L 25
6.7 GraphiCs e 25
6.8 Runtime commands e e e e 26
6.9 Molecules e e e 27
6.10 Surfaces e 28
6.11 Compartments e e e 31
6.12 Reactions e e e 31
6.13 Ports e 32

CONTENTS

Chapter 1

About Libsmoldyn

Libsmoldyn is a C and C++ interface to the Smoldyn simulator. Libsmoldyn is complementary to the
stand-alone Smoldyn program in that it is a little more difficult to use, but it provides much more flexibility.
In addition, Libsmoldyn provides: (i) an application programming interface that will be relatively stable,
even as Smoldyn is updated and improved, (i) function names that are relatively sensible and that shouldn’t
collide with other function names in other software, and (éii) reasonably thorough error checking in every
function which helps ensure that the user is using the function in a sensible way and in a way that won’t
crash Smoldyn.

I initially planned to use SWIG to provide Libsmoldyn access from several languages but have not
pursued this recently. Carlos Lopez’s group was adding Libsmoldyn to PySB for a while, to give it Python
accessibility, although that project is not ongoing currently.

Libsmoldyn only barely supports graphics at present due to constraints imposed by the glut code library.
This will be improved in a future version (by changing to the freeglut library, which doesn’t insist on
controlling the main event loop, as the glut library does).

CHAPTER 1. ABOUT LIBSMOLDYN

Chapter 2

Compiling and linking

2.1 Compiling

Header files

To enable a C or C++ program to call Libsmoldyn, it has to include the Libsmoldyn header file. Libsmoldyn
comes with one header file, libsmoldyn.h, which has function declarations for all of the Libsmoldyn functions.
For most Libsmoldyn applications, this is the only header file that you will need to include. For Mac and
Linux, it is typically installed to /usr/local/include. This is one of the standard system paths, so include it
with

#include <libsmoldyn.h>

If the libsmoldyn.h header file is in some other directory or if your system isn’t seeing its path as a system
path, then include the file using double quotes rather than angle brackets and/or include more information
about the path. For example, #include "/user/local/include/libsmoldyn.h".

Libsmoldyn.h calls a second header file, smoldyn.h, which is also typically installed to /usr/local/include/.
If you plan to access the Smoldyn data structure directly, then you will also need to include it with #include

<smoldyn.h>. In general, it is safe to read from this data structure but it can be dangerous to write to it
unless you really know what you are doing. Also, working with this data structure directly bypasses one of
the benefits of using Libsmoldyn, which is that the interface should be relatively immune to future Smoldyn
developments, because different aspects of the internal data structure get changed once in a while.

The smoldyn.h header calls yet another header file, smoldynconfigure.h, which is also installed by default
in /usr/local/include/. That file is automatically generated by the build system. It describes what Smoldyn
components are included in the build, what system the build was compiled for, etc. This might be helpful
to include for some applications.

Compiling example

In the examples/S97_libsmoldyn/testcode/ directory, you’ll find the testcode.c program. To compile this
source code to object code, enter:

gcc -Wall -00 -g -c testcode.c

The compile flags -00 -g aren’t necessary but can be useful for debugging purposes. If compiling
doesn’t work at this stage, it’s probably because you're missing the header files. Make sure that you have
libsmoldyn.h, smoldyn.h, and smoldyn_config.h in the /usr/local/include directory.

2.2 Linking

Linking the different object files together to create an executable that actually runs is often one of the
greatest frustrations of using software libraries. It should be easy but usually isn’t.

7

8 CHAPTER 2. COMPILING AND LINKING

The Libsmoldyn library can be linked statically, meaning that the Libsmoldyn code will be copied into the
final result, or it can be linked dynamically, so that the final result will simply reference the Libsmoldyn code
that is stored separately. Dynamic linking is somewhat more elegant in that it doesn’t create unnecessary
copies of the compiled code. It can also be easier. On the other hand, it’s less convenient if you plan to
distribute your software, because then you need to make sure that you distribute the Libsmoldyn header file
and library code along with your own software. Also, I can only get the gdb debugger to help find errors
within Libsmoldyn if the library is statically linked.

The Libsmoldyn static library is called libsmoldyn_static.a and the Libsmoldyn dynamic library is called
libsmoldyn_shared.so (on Linux; the .so suffix is replaced by .dylib on a Mac and by .dll on Windows). By
default, these libraries are installed to /usr/local/lib/.

Linking examples

Following are several example for static and dynamic linking. They are shown for C; if you used C++,
then link with g++ instead of gcc. The linking options for Smoldyn compiled with OpenGL are shown for
Macintosh; these lines are simpler for other systems.

I have had a hard time getting static linking working on a Mac, although apparently it works fine on
Ubuntu. The problem is that it doesn’t find the standard C++ library. The solution is to build the Smoldyn
library without NSV, so that the standard C++ library isn’t needed. I also commented out a few “throw”
statements from smolsim.c and libsmoldyn.c for this purpose.

Static link, no OpenGL:

gcc testcode.o /usr/local/lib/libsmoldyn_static.a -o testcode
Static link, with OpenGL:

gcc testcode.o /usr/local/lib/libsmoldyn_static.a -I/System/Library/Frameworks/OpenGL.
framework/Headers -I/System/Library/Frameworks/GLUT.framework/Headers -framework GLUT -
framework OpenGL -framework Cocoa -L/System/Library/Frameworks/OpenGL.framework/
Libraries -o testcode -1ltiff

Dynamic link, no OpenGL:
gcc testcode.o -o testcode -lsmoldyn_shared
Dynamic link, with OpenGL:

gcc testl.o -L/usr/local/lib -I/System/Library/Frameworks/OpenGL.framework/Headers -I/
System/Library/Frameworks/GLUT.framework/Headers -framework GLUT -framework OpenGL -
framework Cocoa -L/System/Library/Frameworks/OpenGL.framework/Libraries -o testl -
1smoldyn_shared -1ltiff

2.3 Using smaller versions of Libsmoldyn

As a default, Smoldyn and Libsmoldyn are compiled with all of their components. However, they can also
be compiled without OpenGL, without hybrid simulation (NSV) support, without LibTiff support, etc.
Removing these components removes some aspects of the functionality, obviously, but can also simplify
linking.

Following is a simple diagram for Smoldyn’s code dependencies. Each file depends on the files that are
indented below it.

Smoldyn
OpenGL
libTiff
zlib

libiconv

2.3. USING SMALLER VERSIONS OF LIBSMOLDYN 9

NSV
boost
VTK

To build with fewer components, you will need to run CMake to compile Smoldyn. This is described in
more detail in the Smoldyn Code Documentation, but summarized here for convenience.

I prefer to run CMake from a command line interface. At a command line interface, change directories to
cmake. Every time you change CMake settings, you’ll probably want to do a clean build. To do so, enter “rm
-r *” while in the cmake directory (verify that you’re in this directory!), to remove any prior build results.
If you’re asked about whether manifest.txt should be removed, say yes; this file shows the directories where
Smoldyn was installed previously, thus providing information for you to remove it. For a default build, enter
“cmake ..”. A few test results will be printed out, and then configuring will be complete. When CMake is
done, it will have written a lot of stuff to the cmake directory. Important files are “Makefile”, which is the
standard Makefile for the code and also smoldynconfigure.h, which is a C header file that the Smoldyn code
uses for knowing what some important build parameters are.

Once configuring is complete, enter “make”. Hopefully, Smoldyn will build, again with build files being
put into the cmake directory. Finally, enter “sudo make install” and enter your password, to install Smoldyn
to the usual place (/usr/local/bin on Linux and Mac systems).

For custom builds, you need to set various options to non-default settings. With a command line interface,
list each non-default option on the command line after the “cmake ..” start. Following are some helpful
build options:

Smoldyn option default effect when ON
-DOPTION_VCELL OFF Build for inclusion within VCell
-DOPTION_NSV ON Build with Next Subvolume support
-DOPTION_PDE OFF Build with support for PDE simulation
-DOPTION_VTK OFF Build sith support for VITK visualization
-DOPTION_STATIC OFF Build using static libraries
-DOPTION_USE_OPENGL oN Build with graphics support
-DOPTION_USE_LIBTIFF ON Build with LibTiff support
-DOPTION_TARGET_SMOLDYN ON Build stand-alone Smoldyn program
-DOPTION_TARGET_LIBSMOLDYN OFF Build LibSmoldyn library
CMake option default function
-DCMAKE_BUILD_TYPE Release Choose CMake build type

options are: None, Debug, Release, RelWithDebInfo, and MinSizeRel
-DCMAKE_CXX_COMPILER:FILEPATH clang Compile with specific compiler

for example: /usr/bin/g++

For example, the following line builds Smoldyn and Libsmoldyn for debugging and without the hybrid
simulation support:

cmake .. -DCMAKE_BUILD_TYPE=Debug -DOPTION_TARGET_LIBSMOLDYN=0ON -DOPTION_NSV=0FF

10

CHAPTER 2. COMPILING AND LINKING

Chapter 3

Error trapping

Every function in Libsmoldyn checks that its input values are acceptable and also that no errors arise in the
function execution. These errors are returned to the host library in a number of ways. Most Libsmoldyn
functions (e.g. smolRunSim) return any error codes directly, which makes it easy to see if an error arose.
However, a few functions (e.g. smolNewSim) return other types of values and so return some other indication
of success or failure (e.g. NULL). In addition, some functions can raise warnings, which indicate that behavior
is unusual but not incorrect.

For all of these errors and warnings, get the details of the problem using the function smolGetError,
which will return the error code, the name of the function where the error arose, and a descriptive error string.
This will also clear the error, if desired. If errors are not cleared, they are left until they are overwritten by
subsequent errors. Warnings are also left until they are cleared or overwritten.

When writing code, it can be helpful to put Libsmoldyn into its debugging mode using the
smolSetDebugMode function. Doing this causes any errors that arise to be displayed to stderr.

The possible error codes are declared in libsmoldyn.h with:

enum ErrorCode {ECok=0,ECnotify=-1,ECwarning=-2,ECnonexist=-3,ECall=-4,ECmissing
=-5,ECbounds=-6,ECsyntax=-7,ECerror=-8, ECmemory=-9, ECbug=-10,ECsame=-11};

Their interpretations are:

value code interpretation
0 ECok no error
-1 ECnotify message about correct behavior
-2 ECwarning unusual but not incorrect behavior
-3 ECnonexist a function input specifies an item that doesn’t exist
-4 ECsame error code should be unchanged from a prior code
-5 ECall an argument of “all” was found and may not be permitted
-6 ECmissing a necessary function input parameter is missing
-7 ECbounds a function input parameter is out of bounds
-8 ECsyntax function inputs don’t make syntactical sense
-9 ECerror unspecified error condition
-10 ECmemory Smoldyn was unable to allocate the necessary memory
-11 ECbug error arose which should not have been possible

3.1 Error checking system internal to libsmoldyn.c

This section describes how to write Libsmoldyn functions using error checking. While it is an essential part
of all Libsmoldyn functions, these details are not important for most Libsmoldyn users.

1. The first line of every Libsmoldyn function should be const char *funcname="function_-name" ;. This
name will be returned with any error message to tell the user where the error arose.

11

12 CHAPTER 3. ERROR TRAPPING

2. Within the function, check for warnings or errors with the LCHECK macro. The macro format is
LCHECK (condition ,funcname, error_code , "message") ;. This checks that the test condition is true, and
issues a notification, warning, or error when this is not the case. The message should be a descriptive
message that is under 256 characters in length.

3. Most functions return an “enum ErrorCode”. If this is the case for your function, and your function
might return a notification and/or a warning, then end the main body of the function with return
libwarncode;. If it cannot return a notification or a warning, then end it with return ECok;. Finally,
if it does not return an “enum ErrorCode”, then it needs to return some other error condition that
will tell the user to check for errors using smolGetError.

4. After the main body of the function, add a goto target called failure:.

5. Assuming the function returns an “enum ErrorCode”, end the function with return liberrorcode;.

The smolSetTimeStep function provides an excellent and simple example of how Libsmoldyn functions
typically address errors. It is:

enum ErrorCode smolSetTimeStep(simptr sim,double timestep) {
const char *funcname="smolSetTimeStep";

LCHECK (sim, funcname ,ECmissing,"missing,sim") ;

LCHECK (timestep >0, funcname ,ECbounds ,"timestep,isynot>,0");
simsettime (sim,timestep,3);

return ECok;
failure:

return liberrorcode; }

The smolGet. . .Index functions are worth a comment. Each of these functions returns the index of an
item, such as a species or a surface, based on the name of the item. If the name is not found or other errors
arise, then these functions return the error code, cast as an integer. Also, if the name is “all”, then these
functions return the error code ECall and set the error string “species cannot be ‘all’’, or equivalent. A
typical use of these functions is seen in smolSetSpeciesMobility, which includes the following code:

i=smolGetSpeciesIndex (sim, species);
if (i==(int)ECall) smolClearError ();
else LCHECK(i>0,funcname ,ECsame ,NULL);

In this particular case, this function permits an input of “all”, so it clears errors that arise from this
return value, and leaves i as a negative value for later use.

Chapter 4

Libsmoldyn quick function guide

The Libsmoldyn functions correspond relatively closely to the Smoldyn language statements, although not
perfectly. However, all functionality should be available using either method. The following table lists the
correspondences. Statements preceded by asterisks need to be either entered in statement blocks or preceded

by the statement’s context (e.g. with surface name). Where correspondence does not apply, the table lists
LCN/A” .

Statement Libsmoldyn function
About the input
N/A
X x/ N/A
read_file smolLoadSimFromFile, smolReadConfigString
end_file N/A
define N/A
define_global N/A
undefine N/A
ifdefine N/A
ifundefine N/A
else N/A
endif N/A
display_define N/A
N/A smolSetError
N/A smolGetError
N/A smolClearError
N/A smolSetDebugMode
N/A smolErrorCodeToString
Space and time
dim smolNewSim
boundaries smolNewSim, smolSetBoundaryType
low_wall smolNewSim, smolSetBoundaryType
high_wall smolNewSim, smolSetBoundaryType
time_start smolSetSimTimes, smolSetTimeStart
time_stop smolSetSimTimes, smolSetTimeStop
time_step smolSetSimTimes, smolSetTimeStep
time_now smolSetTimeNow
Molecules
species smolAddSpecies
N/A smolGetSpeciesIndex
N/A smolGetSpeciesName
difc smolSetSpeciesMobility

13

14

difm

drift

mol

surface_mol
compartment_mol

CHAPTER 4. LIBSMOLDYN QUICK FUNCTION GUIDE

smolSetSpeciesMobility
smolSetSpeciesMobility
smolAddSolutionMolecules
smolAddSurfaceMolecules
smolAddCompartmentMolecules

molecule_lists smolAddMolList
mol_list smolAddSpecies, smolSetMolList
N/A smolGetMolListIndex
N/A smolGetMolListName
max_mol smolSetMaxMolecules
N/A smolGetMoleculeCount
Graphics
graphics smolSetGraphicsParams
graphic_iter smolSetGraphicsParams

graphic_delay
frame_thickness
frame_color
grid_thickness
grid_color
background _color
display _size
color

tiff iter

tiff name
tiff_min
tiff_max

light

text_color
text_display

smolSetGraphicsParams
smolSetFrameStyle
smolSetFrameStyle
smolSetGridStyle
smolSetGridStyle
smolSetBackgroundStyle
smolSetMoleculeStyle
smolSetMoleculeStyle
smolSetTiffParams
smolSetTiffParams
smolSetTiffParams
smolSetTiffParams
smolSetLightParams
smolSetTextStyle
smolAddTextDisplay

Run-time commands

output_root
output_files
append_files

output_file_number

cmd

smolSetOutputPath
smolAddOutputFile
smolAddOutputFile
smolAddOutputFile
smolAddCommand, smolAddCommandFromString

Surfaces

start_surface
new _surface
* name
N/A

N/A

* action

* rate

* rate_internal
* color

* thickness
* stipple

* polygon

* shininess
* panel
N/A

N/A

* jump

* neighbors

smolAddSurface
smolAddSurface
smolAddSurface
smolGetSurfaceIndex
smolGetSurfaceName
smolSetSurfaceAction
smolSetSurfaceRate
smolSetSurfaceRate

smolSetSurfaceFaceStyle, smolSetSurfaceEdgeStyle

smolSetSurfaceEdgeStyle
smolSetSurfaceEdgeStyle
smolSetSurfaceFaceStyle
smolSetSurfaceFaceStyle
smolAddPanel
smolGetPanelIndex
smolGetPanelName
smolSetPanelJump
smolAddPanelNeighbor

* unbounded_emitter

* end_surface
epsilon
margin
neighbor_dist

smolAddSurfaceUnboundedEmitter
N/A

smolSetSurfaceSimParams
smolSetSurfaceSimParams
smolSetSurfaceSimParams

Compartments

start_compartment
new_compartment
* name

N/A

N/A

* surface

* point

* compartment

smolAddCompartment
smolAddCompartment
smolAddCompartment
smolGetCompartmentIndex
smolGetCompartmentName
smolAddCompartmentSurface
smolAddCompartmentPoint
smolAddCompartmentLogic

* end_compartment ~ N/A
Reactions
reaction smolAddReaction
N/A smolGetReactionIndex
N/A smolGetReactionName

reaction_cmpt
reaction_surface
reaction_rate
confspread_radius
binding_radius
reaction_probability
reaction_production
reaction_permit
reaction_forbid
product_placement

smolSetReactionRegion
smolSetReactionRegion
smolAddReaction, smolSetReactionRate
smolSetReactionRate
smolSetReactionRate
smolSetReactionRate
smolSetReactionRate

not supported

not supported

smolSetReactionProducts

Ports
start_port smolAddPort
new_port smolAddPort
* name smolAddPort
N/A smolGetPortIndex
N/A smolGetPortName
* surface smolAddPort
* face smolAddPort
* end_port N/A
N/A smolAddPortMolecules
N/A smolGetPortMolecules
Simulation settings
rand_seed smolSetRandomSeed
accuracy not supported
molperbox smolSetPartitions
boxsize smolSetPartitions

gauss_table_size
epsilon

margin
neighbor_dist
pthreads

not supported
smolSetSurfaceSimParams
smolSetSurfaceSimParams
smolSetSurfaceSimParams
not supported

Libsmoldyn actions

N/A
N/A
N/A

smolUpdateSim
smolRunTimeStep
smolRunSim

15

16

N/A
N/A
N/A
N/A

CHAPTER 4. LIBSMOLDYN QUICK FUNCTION GUIDE

smolRunSimUntil
smolFreeSim
smolDisplaySim
smolPrepareSimFromFile

Chapter 5

Libsmoldyn header file

Following is the entire Libsmoldyn header file, libsmoldyn.h. This lists all of the function declarations. If
there is a discrepancy between declarations listed here and those listed in following sections, the ones shown
here are almost certainly the correct ones. This file references smoldyn.h, which lists all of the data structure
declarations and enumerated type definitions.

If you compiled and installed Smoldyn using the default configuration, both files should be in your
Jusr/local/include/smoldyn directory. Also in this directory is the smoldyn_config.h file. This file was
used for compiling Smoldyn and Libsmoldyn but is not needed afterwards. Nevertheless, it’s copied to
the /usr/local/include/smoldyn directory so that programs that call Libsmoldyn can know what options
Libsmoldyn was built with.

/* Steven Andrews, started 10/22/2001.
This ©s an application programming interface for the Smoldyn program.
See documentation called SmoldynUsersManual.pdf and SmoldynCodeDoc.pdf, and the
Smoldyn
website, which is at www.smoldyn.org.
Copyright 2003-2016 by Steven Andrews. Thts work is distributed under the terms
of the Gnu Lesser General Public License (LGPL). */

#ifndef __libsmoldyn_h__

#define __libsmoldyn_h__

/% The following Swig directives are only read by the swig program */
#ifdef SWIG

%module libsmoldyn

i

#define SWIG_FILE_WITH_INIT

#include "libsmoldyn.h"

hY

#endif

#include "smoldyn.h"

enum ErrorCode {ECok=0,ECnotify=-1,ECwarning=-2,ECnonexist=-3,ECall=-4,ECmissing
=-5,ECbounds=-6,ECsyntax=-7,ECerror=-8, ECmemory=-9, ECbug=-10, ECsame=-11,
ECwildcard=-12};

#ifdef __cplusplus

extern "C" {

#endif

SR KK KKK KKK KKK KKK KKKKKKKKKKKKKKK MISCOLLAMECOUS KKK KKK KKK K KKK KKK KKK KKK KKK KKKKK K]

17

18 CHAPTER 5. LIBSMOLDYN HEADER FILE
double smolGetVersion(void) ;

/*********************************** Errors ***********************************/

void smolSetLogging (FILE *logfile,void (*logFunction) (simptr,int,const
char*,...));

void smolSetThrowing (int corethreshold,int libthreshold);

void smolSetError (const char *errorfunction,enum ErrorCode errorcode,
const char *errorstring);

void smolSetErrorNT (const char *errorfunction,enum ErrorCode errorcode,

const char *errorstring);
enum ErrorCode smolGetError (char *errorfunction,char *errorstring,int clearerror);
void smolClearError (void) ;
void smolSetDebugMode (int debugmode) ;
charx* smolErrorCodeToString (enum ErrorCode erc,char *string);

JHRKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KK SUM SETTUCLUTE FKKKKKKKKKKKKKKKKKKKKKKKKKKKK KK)

simptr smolNewSim(int dim,double *lowbounds,double *highbounds);
enum ErrorCode smolUpdateSim(simptr sim);

enum ErrorCode smolRunTimeStep(simptr sim);

enum ErrorCode smolRunSim(simptr sim);

enum ErrorCode smolRunSimUntil (simptr sim,double breaktime);

enum ErrorCode smolFreeSim(simptr sim);

enum ErrorCode smolDisplaySim(simptr sim);

JAKKAKKA KR KA KA KK KA XK’ XK% Read CONFiguration file kxkkkkkkkkkkkkkkkkkkkkkkkx %/

simptr smolPrepareSimFromFile (const char *filepath,const char *filename,
const char *flags);

enum ErrorCode smollLoadSimFromFile(const char *filepath,const char xfilename,
simptr *simpointer ,const char *flags);

enum ErrorCode smolReadConfigString(simptr sim,const char *statement,char *
parameters) ;

SR KA KA KA KA KRN KA KA KRN KA KA K STMULAGTTON SELLINGS KAk KA kKA KKK KA KKK KKK KA KKK KKK KK/

enum ErrorCode smolSetSimTimes(simptr sim,double timestart,double timestop,double
timestep);

enum ErrorCode smolSetTimeStart(simptr sim,double timestart);

enum ErrorCode smolSetTimeStop(simptr sim,double timestop);

enum ErrorCode smolSetTimeNow (simptr sim,double timenow);

enum ErrorCode smolSetTimeStep (simptr sim,double timestep);

enum ErrorCode smolSetRandomSeed (simptr sim,long int seed);

enum ErrorCode smolSetPartitions(simptr sim,const char *method,double value);

JH KKK KKK KA KA KKK KKK KA KKK KN K GrADRTCS FHKA KKK FK KKK KA KA KK KKK KA KN KA KA KN K)

enum ErrorCode smolSetGraphicsParams(simptr sim,const char *method,int timesteps,
int delay);

enum ErrorCode smolSetTiffParams (simptr sim,int timesteps,const char *tiffname,int
lowcount ,int highcount) ;

enum ErrorCode smolSetLightParams(simptr sim,int lightindex ,double *ambient,bdouble
*diffuse ,double *specular ,double *position);

enum ErrorCode smolSetBackgroundStyle(simptr sim,double *color);

enum ErrorCode smolSetFrameStyle(simptr sim,double thickness,double *color);

enum ErrorCode smolSetGridStyle(simptr sim,double thickness,double *color);

enum ErrorCode smolSetTextStyle(simptr sim,double *color) ;

enum ErrorCode smolAddTextDisplay(simptr sim,char *item);

19

JHRKKKKKKKKKKKKKKKKKKKKKKKKKKK K RUNTIME COMMANAS *KKKKKKKKKKKKKKKKKKKKKKK KKK KKK)

enum ErrorCode smolSetOutputPath(simptr sim,const char *path);

enum ErrorCode smolAddOutputFile(simptr sim,char *filename,int suffix,int append);

//?? needs function for setting output precision

enum ErrorCode smolAddCommand (simptr sim,char type,double on,double off,double
step ,double multiplier,const char *commandstring);

enum ErrorCode smolAddCommandFromString(simptr sim,char *string);

JRKKKKKKKKKKKKKKKKKKKKKKKKKK KKK KK, MOLECULES HFHAKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK K]

enum ErrorCode smolAddSpecies(simptr sim,const char *species,const char *mollist);

int smolGetSpeciesIndex (simptr sim,const char *species);
int smolGetSpeciesIndexNT (simptr sim,const char *species);
charx* smolGetSpeciesName (simptr sim,int speciesindex,char *species);

enum ErrorCode smolSetSpeciesMobility(simptr sim,const char *species,enum
MolecState state,double difc,double *drift,double *difmatrix);

//?? needs function smolSetSpeciesSurfaceDrift

enum ErrorCode smolAddMollList (simptr sim,const char *mollist);

int smolGetMolListIndex (simptr sim,const char *mollist);
int smolGetMolListIndexNT(simptr sim,const char *mollist);
char * smolGetMolListName (simptr sim,int mollistindex,char *mollist);

enum ErrorCode smolSetMolList (simptr sim,const char *species,enum MolecState state
,const char *mollist);
enum ErrorCode smolSetMaxMolecules(simptr sim,int maxmolecules);
enum ErrorCode smolAddSolutionMolecules (simptr sim,const char *species,int number,
double *lowposition,double *highposition);
enum ErrorCode smolAddCompartmentMolecules(simptr sim,const char *species,int
number ,const char *compartment) ;
enum ErrorCode smolAddSurfaceMolecules(simptr sim,const char *species,enum
MolecState state,int number,const char *surface,enum PanelShape panelshape,
const char *panel,double *position);
int smolGetMoleculeCount (simptr sim,const char *species,enum MolecState
state) ;
enum ErrorCode smolSetMoleculeStyle(simptr sim,const char *species,enum MolecState
state ,double size,double *color);

/********************************** S’u,'[‘fa,ces **********************************/

enum ErrorCode smolSetBoundaryType (simptr sim,int dimension,int highside,char type
)

enum ErrorCode smolAddSurface(simptr sim,const char #*surface);

int smolGetSurfaceIndex (simptr sim,const char *surface);
int smolGetSurfaceIndexNT (simptr sim,const char *surface);
char* smolGetSurfaceName (simptr sim,int surfaceindex,char #*surface);

enum ErrorCode smolSetSurfaceAction(simptr sim,const char *surface,enum PanelFace
face,const char *species,enum MolecState state,enum SrfAction action);

enum ErrorCode smolSetSurfaceRate(simptr sim,const char *surface,const char x*
species ,enum MolecState state,enum MolecState statel,enum MolecState state2,
double rate,const char *newspecies,int isinternal);

enum ErrorCode smolAddPanel(simptr sim,const char *surface,enum PanelShape
panelshape,const char *panel,const char *axisstring,double *params);

int smolGetPanelIndex (simptr sim,const char *surface,enum PanelShape *
panelshapeptr ,const char #*panel);

int smolGetPanelIndexNT (simptr sim,const char #*surface,enum PanelShape
xpanelshapeptr ,const char *panel);

char* smolGetPanelName (simptr sim,const char *surface,enum PanelShape
panelshape ,int panelindex,char *panel);

20 CHAPTER 5. LIBSMOLDYN HEADER FILE

enum ErrorCode smolSetPanelJump(simptr sim,const char *surface,const char *panell,
enum PanelFace facel,const char *panel2,enum PanelFace face2,int
isbidirectional);

enum ErrorCode smolAddSurfaceUnboundedEmitter (simptr sim,const char #*surface,enum
PanelFace face,const char *species,double emitamount ,double *emitposition);

enum ErrorCode smolSetSurfaceSimParams (simptr sim,const char *parameter ,double
value) ;

enum ErrorCode smolAddPanelNeighbor (simptr sim,const char *surfacel,const char x*
panell ,const char *surface2,const char *panel2,int reciprocal);

enum ErrorCode smolSetSurfaceStyle(simptr sim,const char *surface,enum PanelFace
face,enum DrawMode mode,double thickness,double *color,int stipplefactor,int
stipplepattern ,double shininess);

SR KKK KKK KKK KA KA KK KKK KKAK KN KA K, COMPATEMENTS Kk KKK KA KA KA KA KKK KKK KA KKK KN KN K]

enum ErrorCode smolAddCompartment (simptr sim,const char *compartment);

int smolGetCompartmentIndex (simptr sim,const char *compartment) ;
int smolGetCompartmentIndexNT (simptr sim,const char *compartment) ;
char* smolGetCompartmentName (simptr sim,int compartmentindex,char x*

compartment) ;

enum ErrorCode smolAddCompartmentSurface (simptr sim,const char *compartment,const
char *surface) ;

enum ErrorCode smolAddCompartmentPoint (simptr sim,const char *compartment ,double x*
point);

enum ErrorCode smolAddCompartmentLogic(simptr sim,const char *compartment ,enum
CmptLogic logic,const char *compartment2);

SR KKK KKK KKK KK KKK KKKKKKKKKKKKKKKKK REACTTONS KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK K]

enum ErrorCode smolAddReaction(simptr sim,const char #*reaction,const char *
reactantl ,enum MolecState rstatel,const char *reactant2,enum MolecState rstate2
,int nproduct,const char **xproductspecies ,enum MolecState *productstates ,hdouble

rate) ;

int smolGetReactionIndex (simptr sim,int *orderptr,const char *reaction)

int smolGetReactionIndexNT (simptr sim,int #*orderptr,const char *
reaction) ;

char * smolGetReactionName (simptr sim,int order,int reactionindex ,char *
reaction);

enum ErrorCode smolSetReactionRate(simptr sim,const char *reaction,double rate,int
type);

enum ErrorCode smolSetReactionRegion(simptr sim,const char *reaction,const char x*
compartment ,const char *surface);

enum ErrorCode smolSetReactionProducts(simptr sim,const char *reaction,enum
RevParam method,double parameter ,const char *product,double *position);

JRKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKRK POTLES HKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKRK K]

enum ErrorCode smolAddPort(simptr sim,const char *port,const char *surface,enum
PanelFace face);

int smolGetPortIndex (simptr sim,const char *port);
int smolGetPortIndexNT (simptr sim,const char *port);
charx* smolGetPortName (simptr sim,int portindex,char *port);

enum ErrorCode smolAddPortMolecules (simptr sim,const char *port,int nmolec,const
char #*species,double **positions);

int smolGetPortMolecules (simptr sim,const char *port,const char x*
species ,enum MolecState state,int remove);

R KKK KKK KKK KK KKK KKKKKKKKKKKAK L QL ETCRS KKKKKKKKK KKK KKK KKK KKK KKK KKK

*/

enum ErrorCode smolAddLattice(simptr sim,const char *lattice,const double *min,
const double *max,const double *dx,const char *btype);
enum ErrorCode smolAddLatticePort(simptr sim,const char *lattice,const char *port)

)

enum ErrorCode smolAddLatticeSpecies(simptr sim,const char *lattice,const char x*
species);

int
int
char*

smolGetLatticeIndex (simptr sim,const char *lattice);
smolGetLatticeIndexNT (simptr sim,const char *lattice);
smolGetLatticeName (simptr sim,int latticeindex,char *lattice);

enum ErrorCode smolAddLatticeMolecules(simptr sim,const char *lattice, const char
xspecies ,int number ,double *lowposition,double *highposition);

enum ErrorCode smolAddLatticeReaction(simptr sim,const char *lattice,const char x*
reaction, const int move);

#ifdef

}
#endif

#endif

__cplusplus

21

22

CHAPTER 5. LIBSMOLDYN HEADER FILE

Chapter 6

Libsmoldyn functions

6.1

General comments

None of the functions allocate memory, except within the simulation data structure. This means, for example,
that all functions that return strings do not allocate these strings themselves, but instead write the string
text to memory that the library user allocated and gave to the function. All strings are fixed at STRCHAR
characters, where this constant is defined in string2.h to 256 characters.

6.2

Miscellaneous

double smolGetVersion(void);

6.3

void

enum

void

void

Returns the Smoldyn version number.

Errors

smolSetError (const char *errorfunction,enum ErrorCode errorcode,const char
*xerrorstring) ;

This function is probably not useful for most users. Sets the Libsmoldyn error code to errorcode,
error function to errorfunction, and error string to errorstring. The sole exception is if errorcode
is ECsame then this does nothing and simply returns. Back to it’s normal operation, this also either
sets or clears the Libsmoldyn warning code, as appropriate. If errorstring is entered as NULL, this
clears the current error string, and similarly for errorfunction.

ErrorCode smolGetError(char *errorfunction,char *errorstring,int clearerror);

Returns the current LibSmoldyn error code directly, returns the function where the error occurred in
errorfunction if it is not NULL, and returns the error string in errorstring if it is not NULL. Set
clearerror to 1 to clear the error and 0 to leave any error condition unchanged.

smolClearError(void) ;
Clears any error condition.

smolSetDebugMode (int debugmode) ;

Enter debugmode as 1 to enable debugging and 0 to disable debugging. When debug mode is turned
on, all errors are displayed to stderr, as are all cleared errors. By turning on debug mode, you can often
avoid checking for errors with additional code and you also typically don’t need to call smolGetError.

char* smolErrorCodeTostring(enum ErrorCode erc,char *string);

Returns a string both directly and in string that corresponds to the error code in erc. For example,
if erc is ECmemory, this returns the string “memory”.

23

24 CHAPTER 6. LIBSMOLDYN FUNCTIONS

6.4 Sim structure

simptr smolNewSim(int dim,double *lowbounds,double *highbounds);
Creates and returns a new sim structure. The structure is initialized for a dim dimensional system
that has boundaries defined by the points lowbounds and highbounds. Boundaries are transmitting
(modify them with smolSetBoundaryType). Returns NULL upon failure.

enum ErrorCode smolUpdateSim(simptr sim);
Updates the simulation structure. This calculates all simulation parameters from physical parameters,
sorts lists, and generally does everything required to make a simulation ready to run. It may be called
multiple times.

enum ErrorCode smolRunTimeStep(simptr sim);
Runs one time step of the simulation. Returns an error if the simulation terminates unexpectedly
during this time step or a warning if it terminates normally.

enum ErrorCode smolRunSim(simptr sim);
Runs the simulation until it terminates. Returns an error if the simulation terminates unexpectedly
during this time step or a warning if it terminates normally.

enum ErrorCode smolRunSimUntil (simptr sim,double breaktime);
Runs the simulation either until it terminates or until the simulation time equals or exceeds breaktime.

enum ErrorCode smolFreeSim(simptr sim);
Frees the simulation data structure.

enum ErrorCode smolDisplaySim(simptr sim);
Displays all relevant information about the simulation system to stdout.

6.5 Read configuration file

simptr smolPrepareSimFromFile(char *filepath,char *filename,char *flags);
Reads the Smoldyn configuration file that is at filepath and has file name filename, sets it up,
and outputs simulation diagnostics to stdout. Returns the sim structure, or NULL if an error occurred.
flags are the command line flags that are entered for normal Smoldyn use. Either or both of filepath
and flags can be sent in as NULL if there is nothing to report. After this function runs successfully, it
should be possible to call smolRunSim or smolRunTimeStep.

enum ErrorCode smolLoadSimFromFile(char *filepath,char *filename,simptr *simpointer,char

xflags) ;

Loads part or all of a sim structure from the file that is at filepath and has file name filename.
Send in simpointer as a pointer to sim, where sim may be an existing simulation structure that this
function will append or NULL if it is to be created by this function. flags are the command line flags
that are entered for normal Smoldyn use. Either or both of filepath and flags can be sent in as
NULL if there is nothing to report. After this function runs successfully, call smolUpdateSim to calculate
simulation parameters.

enum ErrorCode smolReadConfigString(simptr sim,char *statement,char *parameters);

Reads and processes what would normally be a single line of a configuration file. The first word
of the line is the statement name, entered here as statement, while the rest of the line is entered
as parameters. Separate different parameters with spaces. The same parser is used as for normal
Smoldyn configuration files. This function does not make use of block style input formatting, such as
for surface definitions. This means that a new surface needs to declared with “new_surface name”
and all subsequent surface definitions need to start with “surface name”. Analogous rules apply to
compartments and port.

6.6. SIMULATION SETTINGS 25

6.6

enum

enum

enum

enum

enum

enum

enum

6.7

enum

enum

enum

Simulation settings

ErrorCode smolSetSimTimes(simptr sim,double timestart,double timestop,double
timestep);

Sets all of the simulation time parameters to the values entered here. In addition the simulation “time
now” is set to timestart.

ErrorCode smolSetTimeStart(simptr sim,double timestart);
Sets the simulation starting time.

ErrorCode smolSetTimeStop(simptr sim,double timestop);
Sets the simulation stopping time.

ErrorCode smolSetTimeNow(simptr sim,double timenow);
Sets the simulation current time.

ErrorCode smolSetTimeStep(simptr sim,double timestep);
Sets the simulation time step, which must be greater than 0.

ErrorCode smolSetRandomSeed(simptr sim,double seed);
Sets the random number generator seed to seed if seed is at least 0, and sets it to the current time
value if seed is less than 0.

ErrorCode smolSetPartitions(simptr sim,char *method,double value);

Sets the virtual partitions in the simulation volume. Enter method as “molperbox” and then enter
value with the requested number of molecules per partition volume; the default, which is used if this
function is not called at all, is a target of 4 molecules per box. Or, enter method as “boxsize” and
enter value with the requested partition spacing. In this latter case, the actual partition spacing may
be larger or smaller than the requested value in order to fit an integer number of partitions into each
coordinate of the simulation volume.

)

Graphics

ErrorCode smolSetGraphicsParams(simptr sim,char *method,int timesteps,double delay);
Sets basic simulation graphics parameters. Enter method as “none” for no graphics (the default),
“opengl” for fast but minimal OpenGL graphics, “opengl_good” for improved OpenGL graphics,
“opengl_better” for fairly good OpenGL graphics, or as NULL to not set this parameter currently.
Enter timesteps with a positive integer to set the number of simulation time steps between graphics
renderings (1 is the default) or with a negative number to not set this parameter currently. Enter
delay as a non-negative number to set the minimum number of milliseconds that must elapse between
subsequent graphics renderings in order to improve visualization (0 is the default) or as a negative
number to not set this parameter currently.

ErrorCode smolSetTiffParams(simptr sim,int timesteps,char *tiffname,int lowcount,int
highcount);

Sets parameters for the automatic collection of TIFF format snapshots of the graphics window.
timesteps is the number of simulation timesteps that should elapse between subsequent snapshots,
tiffname is the root filename of the output TIFF files, lowcount is a number that is appended to the
filename of the first snapshot and which is then incremented for subsequent snapshots, and highcount
is the last numbered file that will be collected. Enter negative numbers for timesteps, lowcount,
and/or highcount to not set these parameters, and enter NULL for tiffname to not set the file name.

ErrorCode smolSetLightParams(simptr sim,int lightindex,double *ambient,double
xdiffuse,double *specular,double *position);

Sets the lighting parameters that are used for the rendering method “opengl_better”. Enter 1ightindex
as -1 for the global ambient light (in which case diffuse, specular, and position should all be NULL)

26

enum

enum

enum

enum

enum

6.8

enum

enum

enum

CHAPTER 6. LIBSMOLDYN FUNCTIONS

or as 0 to 8 for one of the 8 light sources. For each light source, you can specify the 4-value color
vector for the light’s ambient, diffuse, and specular properties (all values should be between 0 and 1).
You can also specify the 3-dimensional position for the light. To not set a property, just enter the
respective vector as NULL.

ErrorCode smolSetBackgroundStyle(simptr sim,double *color);
Sets the color of the graphics display background. color is a 4-value vector with red, green, blue, and
alpha values.

ErrorCode smolSetFrameStyle(simptr sim,double thickness,double *color);

Sets the thickness and the color of the wire frame that outlines the simulation system in the graphics
window. Enter thickness as 0 for no frame, as a positive number for the number of points in thickness,
or as a negative number to not set this parameter. Enter color as a 4-value vector with the frame
color, or as NULL to not set it.

ErrorCode smolSetGridStyle(simptr sim,double thickness,double *color);

Sets the thickness and the color of a grid that shows where the partitions are that separate Smoldyn’s
virtual boxes. Enter thickness as 0 for no grid, as a positive number for the number of points in
thickness, or as a negative number to not set this parameter. Enter color as a 4-value vector with the
grid color, or as NULL to not set it.

ErrorCode smolSetTextStyle(simptr sim,double *color);
Sets the color of any text that is displayed to the graphics window. color is a 4-value vector with red,
green, blue, and alpha values.

ErrorCode smolAddTextDisplay(simptr sim,char *item);

Adds item to the list of things that Smoldyn should display as text to the graphics window. Currently
supported options are “time” and the names of species and, optionally, their states. For species and
states, the graphics window shows the number of molecules.

Runtime commands

ErrorCode smolSetOutputPath(simptr sim,char #*path);
Sets the file path for text output files to path.

ErrorCode smolAddOutputFile(simptr sim,char *filename,int suffix,int append);

Declares the file called filename as a file for output by one or more runtime commands. Note that
spaces are not permitted in the file name. If suffix is non-negative, then the file name is suffixed by
this integer, which can be helpful for creating output file stacks. Enter append as 1 if any current file
should simply be appended, or to 0 if any current file should be overwritten.

ErrorCode smolAddCommand(simptr sim,char type,double on,double off,double

step,double multiplier,char *commandstring);

Adds a run-time command to the simulation, including its timing instructions. This function should
generally be called after smolSetSimTimes to make sure that command times get set correctly. The
following table lists the command type options along with the other parameters that are used for each
type. Parameters that are not required are simply ignored. The commandstring is the command name
followed by any command parameters.

type meaning ‘ on off step multiplier
Continuous time queue

b before simulation - - - _
a after simulation - - - _
@ at fixed time time - - -
i fixed intervals time on time off time step -
X

exponential intervals time on time off min. time step multiplier

6.9. MOLECULES 27

Integer time queue
before simulation - - - -
after simulation - - - -
at fixed iteration iteration - - -
fixed iteration intervals | iter. on iter. off iter. step -
every time step - - - -
every n’th time step - - iter. step -

Z2mH& =W

enum ErrorCode smolAddCommandFromString(simptr sim,char *string);
Defines a runtime command, including its execution timing parameters, from the string string. This
string should be identical to ones used in configuration files, except that they do not include the “cmd”
statement.

6.9 Molecules

enum ErrorCode smolAddSpecies(simptr sim,char *species,char *mollist);
Adds a molecular species named species to the system. If you have already created species lists and
want all states of this species to live in a specific list, then enter it in mollist; otherwise, enter mollist
as NULL or an empty string to request default behavior.

int smolGetSpeciesIndex(simptr sim,char *species);
Returns the species index that corresponds to the species named species. Upon failure, this function
returns an error code cast as an integer.

char* smolGetSpeciesName (simptr sim,int speciesindex,char *species);
Returns the species name that corresponds to the species index in speciesindex. The name is returned
both in species and directly, where the latter simplifies function use. Upon failure, this function
returns NULL.

enum ErrorCode smolSetSpeciesMobility(simptr sim,char *species,enum MolecState
state,double difc,double *drift,double *difmatrix);
Sets any or all of the mobility coefficients for species species (which may be “all”) and state
state (which may be MSall). difc is the isotropic diffusion coefficient, drift is the drift vector,
and difmatrix is the square of the anisotropic diffusion matrix (see the User’s manual). To not
set coefficients, enter a negative number in difc and/or enter a NULL pointer in the other inputs,
respectively.

int smolAddMolList(simptr sim,char *mollist);
Adds a new molecule list, named mollist, to the system.

int smolGetMolListIndex(simptr sim,char *mollist);
Returns the list index that corresponds to the list named mollist.

char* smolGetMolListName (simptr sim,int mollistindex,char *mollist);
Returns the molecule list name that corresponds to the molecule list with index mollistindex. The
name is returned both in mollist and directly. On error, this function NULL.

enum ErrorCode smolSetMolList(simptr sim,char *species,enum MolecState state,char
*mollist);
Sets the molecule list for species species (which may be “all”) and state state (which may be MSall)
to molecule list mollist.

enum ErrorCode smolSetMaxMolecules(simptr sim,int maxmolecules) ;
Sets the maximum number of molecules that can simultaneously exist in a system to maxmolecules.
At present, this function needs to be called for a simulation to run, although it will become optional
once dynamic molecule memory allocation has been written.

28 CHAPTER 6. LIBSMOLDYN FUNCTIONS

enum ErrorCode smolAddSolutionMolecules(simptr sim,char *species,int number,double
xlowposition,double *highposition);
Adds number solution state molecules of species species to the system. They are randomly distributed
within the box that has its opposite corners defined by lowposition and highposition. Any or all
of these coordinates can equal each other to place the molecules along a plane or at a point. Enter
lowposition and/or highposition as NULL to indicate that the respective corner is equal to that
corner of the entire system volume.

enum ErrorCode smolAddCompartmentMolecules(simptr sim,char *species,int number,char
*xcompartment) ;
Adds number solution state molecules of species species to the compartment compartment. Molecules
are randomly distributed within the compartment.

enum ErrorCode smolAddSurfaceMolecules(simptr sim,int speciesindex,enum MolecState
state,int number,int surface,enum PanelShape panelshape,int panel,double *position);
Adds number molecules of species species and state state to surface(s) in the system. It is permissible
for surface to be “all”, panelshape to be PSall, and/or panel to be “all”. If you want molecules at
a specific position, then you need to enter a specific surface, panel shape, and panel, and then enter
the position in position.

int smolGetMoleculeCount (simptr sim,char *species,enum MolecState state);
Returns the total number of molecules in the system that have species species (“all” is permitted)
and state state (MSall is permitted). Any error is returned as the error code cast as an integer.

enum ErrorCode smolSetMoleculeStyle(simptr sim,const char *species,enum MolecState
state,double size,double *color);
Sets the graphical display parameters for molecules of species species (“all” is permitted) and state
state (MSall is permitted). Enter size with the drawing size (in pixels if graphics method is “opengl”
and in simulation system length units for better drawing methods) or with a negative number to not
set the size. Enter color with the 3-value color vector or with NULL to not set the color.

6.10 Surfaces

enum ErrorCode smolSetBoundaryType (simptr sim,int dimension,int highside,char type);
Sets the molecule interaction properties for a system boundary that bounds the dimension axis. Enter
dimension as -1 to indicate all dimensions. Set highside to 0 for the lower boundary, to 1 for the upper
boundary, and to -1 for both boundaries. The boundary type is entered in type as ‘r’ for reflecting, ‘p’
for periodic, ‘a’ for absorbing, or ‘t’ for transmitting. Note that Smoldyn only observes these properties
if no surfaces are declared; otherwise all boundaries are transmitting regardless of what’s entered here.

int smolAddSurface(simptr sim,char *surface);
Adds a surface called surface to the system.

int smolGetSurfacelIndex(simptr sim,char *surface);
Returns the surface index that corresponds to the surface named surface. The index is non-negative.
On failure, this returns an error code cast as an integer.

char* smolGetSurfaceName (simptr sim,int surfaceindex,char *surface);
Returns the surface name for surface number surfaceindex both directly and in the surface string.
On failure, this returns NULL.

enum ErrorCode smolSetSurfaceAction(simptr sim,char *surface,enum PanelFace face,char
xspecies,enum MolecState state,enum SrfAction action);
Sets the action that should happen when a molecule of species species (may be “all”) and state
state (may be MSall) diffuses into face face (may be PFboth) of surface surface. The action is set
to action.

6.10. SURFACES

enum ErrorCode smolSetSurfaceRate(simptr sim,char *surface,char *species,enum MolecState
state,enum MolecState statel,enum MolecState state2,double rate,char *newspecies,int

isinternal);

Sets the surface interaction rate(s) for surface surface (may be “all”) and species species (may
be “all”) and state state. The transition being considered is from statel to state2 (this function
uses the tri-state format for describing surface interactions, shown below). The interaction rate is
set to rate, which is interpreted as a probability value for internal use if isinternal is 1 and as
a physical interaction coefficient if isinternal is 0. If the molecule ends up interacting with the
surface, it changes to new species newspecies. Enter newspecies as either NULL or an empty string
to indicate that molecules should not change species upon interactions. The molecule states are most
easily understood with the following table. If the action listed in the table is in italics, then the

corresponding combination of states is not a permitted input.

interaction class tristate format action
state statel state2
soln soln soln reflect
7 7 bsoln transmit
collision from 7 ” bound adsorb
solution state 7 bsoln soln transmit
" ” bsoln reflect
” ? bound adsorb
” bound soln desorb
action from 7 ? bsoln desorb
bound state ” ? bound | no change
7 7 bound’ flip
bound soln soln reflect
7 ? bsoln transmit
? ” bound hop
collision from ? ? bound’ hop
bound state 7 bsoln soln transmit
7 7 bsoln reflect
? ? bound hop
” ” bound’ hop
7 bound soln desorb
action from 7 ” bsoln desorb
bound state ” ? bound | no change
7 7 bound’ flip
impossible 7 bound’ any nonsense

int smolAddPanel(simptr sim,char *surface,enum PanelShape panelshape,char *panel,char
*axisstring,double *params);

Adds or modifies a panel of shape panelshape of surface surface. axisstring lists any text
parameters for the panel, which in practice is only a single word that gives the orientation of a
rectangle panel (e.g. “+0” or “-y”). params lists the numerical parameters for the panel location, size,
and drawing characteristics. These are exactly the same parameters that are listed for the “panel”
statement in Smoldyn configuration files, with the sole exception that the first rectangle “parameter”
is actually a string that is entered in axisstring. panelname is an optional parameter for naming the
panel; if it is included and is not an empty string, the panel is named panelname. If this panel name
was already used by a panel of the same shape, then this function overwrites that panel’s data with the
new data. If the name was already used by a panel with a different shape, then this creates an error,
and if the name was not used before, then a new panel is created. To use default panel naming, send
in panelname as either NULL or as an empty string. In the latter case, panelname is returned with the

newly assigned default name.

30

CHAPTER 6. LIBSMOLDYN FUNCTIONS

int smolGetPanelIndex(simptr sim,char *surface,enum PanelShape *panelshapeptr,char

*xpanel) ;

Returns the panel index for the panel called panel on surface surface. If panelshapeptr is not NULL,
this also returns the panel shape in panelshapeptr. On failure, this returns the error code cast as an
integer.

char* smolGetPanelName(simptr sim,char *surface,enum PanelShape panelshape,int

enum

enum

enum

enum

enum

panelindex,char *panel);
Returns the name of the panel that is in surface surface, has shape panelshape, and has index
panelindex, both directly and in the string panel. On failure, this returns NULL.

ErrorCode smolSetPanelJump(simptr sim,const char *surface,const char *panell,enum
PanelFace facel,const char *panel2,enum PanelFace face2,int isbidirectional);

Sets a jumping link between face facel of panel panell and face face2 of panel panel2 of surface
surface. The link goes from panell to panel2 if bidirectional is entered as 0 and goes in both
directions if bidirectional is entered as 1. None of the surface, panel, or face entries is allowed to
be “all”. This does not set the actions of any species to “jump”, which has to be done using the
smolSetSurfaceAction function.

ErrorCode smolAddSurfaceUnboundedEmitter(simptr sim,const char *surface,enum
PanelFace face,const char *species,double emitamount,double *emitposition);

Adds information about a point molecular source so that face face of surface surface can have its
absorption properties calculated so that the molecular concentrations will become the same as they
would be if the surface weren’t there at all. The point molecular source emits molecules of species
species, with a rate of emitamount and is at location emitposition. The emission rate does not
need to be in absolute units, but only has to be correct relative to other unbounded emitters. None of
the inputs to this function are allowed to be “all”.

ErrorCode smolSetSurfaceSimParams(simptr sim,const char *parameter,double value);
Sets the surface simulation parameter named with parameter to value value. The possible parameters
are “epsilon”, “margin”, and “neighbordist”. In all cases, the defaults are nearly always good, although
this function allows them to be modified if desired. Epsilon is the maximum distance away from a
surface that Smoldyn is allowed to place a surface-bound molecule. Margin is the distance inside from
the edge of a surface panel that Smoldyn will place surface-bound molecules that hop onto this panel.
Neighbor distance is the maximum distance over which surface-bound molecules are allowed to hop to
transition from one panel to a neighboring panel.

ErrorCode smolAddPanelNeighbor(simptr sim,const char *surfacel,const char
xpanell,const char *surface2,const char *panel2,int reciprocal);

Adds panel panel?2 of surface surface2 as a neighbor of panel panell or surface surfacel, meaning
that surface-bound molecules will be allowed to diffuse from panell to panel2. These are not allowed
to be the same panel. Also, “all” values are not permitted. Otherwise, essentially any possible entries
are legitimate. If surface-bound molecules should also be allowed to diffuse from panel2 to panell,
enter reciprocal as 1; if not, enter reciprocal as 0.

ErrorCode smolSetSurfaceStyle(simptr sim,const char *surface,enum PanelFace
face,enum DrawMode mode,double thickness,double *color,int stipplefactor,int
stipplepattern,double shininess);

Sets the graphics output style for face face of surface surface. mode is the drawing mode; enter it
as DMnone to not set this parameter and otherwise enter it as DMno to not draw the surface, DMvert
for vertices, DMedge for edges, or DMface for faces. The thickness parameter gives the point size
or line width for drawing vertices or edges, or can be entered as a negative number to not set this
parameter. color is the 4-value color vector for the surface, or can be entered as NULL to not set
this parameter. stipplefactor is the repeat distance for the entire edge stippling pattern, or can be
entered as a negative number to not set it. stipplepattern is the edge stippling pattern, which needs
to be between 0 and OxFFFF, or can be entered as -1 to not set this parameter. And shininess is the

6.11. COMPARTMENTS 31

surface shininess, for use with lighting in the “opengl_better” graphics display option, or can be entered
as -1 to not set this parameter. The parameters thickness, stipplefactor, and stipplepattern
only apply to edge style drawing modes and ignore any input in the face entry. The shininess
parameter only applies to the face style drawing modes.

6.11 Compartments

int smolAddCompartment (simptr sim,char *compartment);
Adds a compartment called compartment to the system.

int smolGetCompartmentIndex(simptr sim,char *compartment)
Returns the index of the compartment named compartment. On failure, this returns an error code
cast as an integer.

char* smolGetCompartmentName (simptr sim,int compartmentindex,char *compartment)
Returns the name of the compartment that has index compartmentindex both directly and in the
string compartment. Returns NULL if an error arises.

enum ErrorCode smolAddCompartmentSurface(simptr sim,char *compartment,char *surface);
Adds surface surface as one of the bounding surfaces of compartment compartment.

enum ErrorCode smolAddCompartmentPoint(simptr sim,char *compartment,double *point);
Adds point as one of the interior-defining points of compartment compartment.

enum ErrorCode smolAddCompartmentLogic(simptr sim,char *compartment,enum CmptLogic
logic,char *compartment2);
Modifies the current definition of compartment compartment using a logical rule specified in logic
and the definition of compartment?2.

6.12 Reactions

enum ErrorCode smolAddReaction(simptr sim,const char *reaction,const char *reactantl,enum
MolecState rstatel,const char *reactant2,enum MolecState rstate2,int nproduct,const
char **productspecies,enum MolecState *productstates,double rate);
Adds reaction named reaction to the system. This reaction can have up to two reactants, whose
species are listed in reactantl and reactant2 and whose states are listed in rstatel and rstate?2.
If the reaction has fewer than two reactants, set either or both of reactant1 and reactant2 to either
NULL or an empty string. State the number of reaction products in nproduct, list their species in
productspecies, and list their states in productstates. To set the reaction rate, enter it in rate;
otherwise, enter rate as a negative number.

int smolGetReactionIndex(simptr sim,int *orderptr,char *reaction);
Returns the index and order for the reaction that is named reaction. If the order is known, send in
orderptr pointing to this value. If it is not known, send in orderptr equal to either NULL or pointing
to a negative number; in this case, it will be returned pointing to the reaction order, if the reaction
was found. On failure, this returns the error code, cast as an integer.

char* smolGetReactionName(simptr sim,int order,int reactionindex,char *reaction);
Returns the name of the reaction that has reaction order order and index reactionindex in the string
reaction. Also returns the result directly. Returns NULL if an error arises.

enum ErrorCode smolSetReactionRate(simptr sim,int order,char *reaction,double rate,int
isinternal);
Set the reaction rate to rate. If this value is to be interpreted as an internal reaction rate parameter,
meaning the production rate for zeroth order reactions, the reaction probability for first order reactions,
or the binding radius for second order reactions, then set isinternal to 1. Rather than calling this

32 CHAPTER 6. LIBSMOLDYN FUNCTIONS

function at all, it’s usually easier to use the rate parameter of the smolAddReaction function, although
that doesn’t cope with internal rate values.

enum ErrorCode smolSetReactionRegion(simptr sim,const char *reaction,const char
*compartment,const char xsurface) ;
Limits the spatial region where a reaction can take place to the compartment compartment and/or
the surface surface. To not set one of these limits, enter compartment and/or surface as NULL. To
remove a previously set limit, enter compartment and/or surface as the empty string, .

enum ErrorCode smolSetReactionProducts(simptr sim,const char *reaction,enum RevParam
method,double parameter,const char *product,double *position);
Sets the reaction product parameters for reaction reaction. At a minimum, the method reversible
parameter is required. Most of these methods require a single parameter, entered in parameter. A
few methods also require a product, in product and the relative position of this product in position.

method parameter product position
RPnone - - -
RPirrev - - -
RPconfspread - - -
RPbounce Ou - -
RPpgem 0] - -
RPpgemmax bmaz - -
RPpgemmaxw Omaz - -
RPratio ou/on - -
RPunbindrad Ou - -
RPpgem?2 10) - -
RPpgemmax2 Omaz - -
RPratio?2 0u/0b - -
RPoffset - product number relative position
RPfixed - product number relative position

If method is RPbounce, then a negative number for the parameter indicates default bounce behavior,
which is that molecules are separated by an amount that is equal to their previous overlap.

6.13 Ports

enum ErrorCode smolAddPort(simptr sim,const char *port,const char *surface,enum PanelFace
face);
Adds a port to the simulation. The port will be named port and will port at the face face of surface
surface.

int smolGetPortIndex(simptr sim,const char *port) ;
Returns the index of the port named port.

char* smolGetPortName (simptr sim,int portindex,char #*port);
Returns the name of the port with index portindex, both directly and in port.

enum ErrorCode smolAddPortMolecules(simptr sim,const char *port,int nmolec,const char
xspecies,double **positions);
Adds nmolec molecules to Smoldyn’s import buffer of port port. These molecules will all have species
species and state MSsoln. Enter positions as NULL to have the molecules positioned randomly over
the porting surface and as an nmolec length list of position vectors to have them located at those
specific initial positions. These initial positions should be close to the porting surface, and on the
Smoldyn system side of it.

6.13. PORTS 33

int smolGetPortMolecules(simptr sim,const char *port,const char *species,enum MolecState
state,int remove);
Returns the number of molecules that are in Smoldyn’s export buffer of port port. Enter species
with the species of the molecules that should be retrieved, or “all” for all species. Enter state with
the states of the molecules that should be retrieved, or MSall for all states. Enter remove with 1 to
remove molecules from the export buffer after they are retrieved or with 0 to leave them in the buffer.
If an error arises, this returns the error code cast as an integer.

