
Documentation for SmolCrowd

Steve Andrews, May 2007
updated March, 2011

updated again November, 2014

Introduction

This is a simple program that creates Smoldyn-readable files that describe crowding
objects. These files are not complete Smoldyn configuration files, but only list the
crowding objects. All information about the objects to be created is gotten from the user
through a series of questions.

Running SmolCrowd

Upon running, the program asks the user for a few things. First it asks for the

system dimensionality. Enter a number between 1 and 3. Then, it asks for the low and
high coordinates on each dimension, successively. These values define the boundaries of
the system, all of which are always periodic. Typically, I use 0 for the low coordinate
and 100 for the high coordinate. Next, it asks for phi, rmin, and gamma. Phi is the
occupied volume fraction (for 3-D, it’s the occupied area fraction for 2-D); it can be as
low as 0 and, conceptually, as high as 1. Realistically, phi can’t exceed about 0.6 for 2-
D. To get all spheres of the same size, enter that radius for rmin and 0 for gamma. To
get a power-law distribution of sphere radii, enter the minimum radius for rmin and the
power-law slope for gamma. This slope should be negative; typically betwen -2 and -4
work well. Finally, it asks for the extra radius, which can overlap and is not part of phi.
This is simply added to the sphere radius at the end. The idea is that if a tracer molecule
has radius rt and a crowder has radius rc, then it’s equivalent to say that the tracer has
radius 0 and the crowder has radius rc+rt. In this case, rt can be entered as the extra
radius.

Once the list of spheres is calculated, the program asks for a file name to which the
data will be saved. Once the list is saved, the program is done.

For 2-D, coordinates extending from 0 to 100 on each axis, phi less than 0.5, rmin
equal to 1, and gamma entered as 0, runtime is typically a few seconds. For phi of 0.6,
runtime may be a half hour. I haven’t tried even larger phi values.

Discussion

This program seems to run well. I haven’t yet observed double or triple wrapped
spheres, although I don’t see why they shouldn’t work. Also, be forwarned that the
power-law slope of the power-law distributed spheres likely won’t be what is asked for
due to the way the packing algorithms work. What is needed is either a new function
within this program to measure the actual power-law slope, or a tool in Excel or
something else that can measure it.

Data structures

No data structures are declared here. However, a data structure convention is
assumed by several functions.

double *spheres
 This is a list of spheres (or circles or line segments, all of which are considered to

be spheres here) with 4 elements of the array for each sphere. The first elements
give the center location and the next one is the radius:

 spheres[4*j+d] center location of sphere j on dimension d
 spheres[4*j+dim] radius of sphere j

 If a radius is listed as negative, it means that that sphere has been killed. Only 1, 2,

and 3-dimensional spheres are considered in this program.

Functions

int Sphereintsct(int i,int j,double *spheres,int dim);
 Returns 1 if spheres i and j intersect and 0 if not. spheres is the list of spheres and

dim is the system dimensionality. 0 is returned if i equals j (i.e. a sphere cannot
intersect itself) or if either radius is negative (i.e. killed spheres aren’t considered).

double measurephi(double *low,double *high,double *spheres,int n,int dim,int

itmax);
 Measures actual sphere volume density in the system with a random sampling

approach. As usual, low and high are the boundaries of the system, spheres is the
list of spheres, n is the number of spheres in the list, and dim is the dimensionality of
the system. itmax is the numer of random points that are sampled; a value of 10000
is often good. For efficiency reasons, this does not treat killed spheres properly, so
make sure that the spheres list is compacted first and that all n spheres are good.
This returns the volume coverage, which is between 0 and 1, inclusive. The method
used here is that points are sampled randomly; all points that are in any sphere are
counted, and the ratio of counts to total samples (itmax) is returned. If this function
is run many times, the average of the returned values will equal the actual phi and
the standard deviation of the returned values will equal [itmax*φ*(1-φ)]1/2, which is
roughly equal to the error returned from one run.

double calcphi(double *low,double *high,double *spheres,int n,int dim);
 Calculates sphere volume density in the system, assuming that no spheres overlap

each other. Negative radius spheres are excluded from the calculation. Also, any
spheres that overlap a high side of the system volume are excluded so as to not
overcount spheres that are wrapped with periodic boundaries.

int makeradhist(double *spheres,int n,int dim,double factor,double
**histptr,double **scaleptr)

 Allocates and sets up memory for a histogram of sphere radii, used to analyze the
radius distribution. spheres is a list of spheres, which must be previously
compacted, n is the number of spheres, and dim is the dimensionality. The
histogram is made to have log spacing, spaced so that the smallest spheres is in bin
number 1 and the largest is in the next to last bin. For each bin, the minimum
radius is factor (which needs to be >1) times the minimum radius of the prior bin;
also, bin boundaries are made to be at integer multiples of factor. Send in histptr
and scaleptr as pointers to the hist and scale variables. The function returns 0 for
failure and otherwise it returns the total number of histogram bins. See the
histogram functions in RnSort.c.

void freeradhist(double *hist,double *scale);
 Frees a histogram that was set up by makeradhist.

void fillradhist(double *spheres,int n,int dim,double *hist,double *scale,int

hn);
 Using a histogram already set up with makeradhist, this goes down the list of

spheres and fills in the histogram. spheres must be already compacted, n is the
number of spheres, dim is the dimensionality, hist and scale are the vectors that
were set up with makeradhist, and hn is the number of histogram bins which was
returned from makeradhist.

int showradhist(double *spheres,int n,int dim);
 Creates, fills in, displays, and frees a histogram for the sphere radius distribution.

This asks the user for the bin size factor to use. Returns 1 for done, 0 for continue.

void writespheres(double*spheres,int n,int dim,char *comment);
 Writes all spheres with non-negative radius, in spheres and of length n, to a

Smoldyn-readable file. The file name is gotten from the user. An optional
comment line is added to the file, near the top. The surface name is always
“spheres.”

int makespheres(int nnew,double rmin,double gamma,double *low,double

*high,double *spheres,int n,int dim);
 Adds nnew dim dimensional random spheres to a list of n existing spheres. Their

centers are uniformly randomly distributed between low and high, which are dim
dimensional vectors. Set gamma to zero for all spheres to have radius rmin;
otherwise set gamma to a value less than -1 for a power law distribution of radii with
power gamma and minimum radius rmin. The function returns the total number of
spheres in the list, which is n+nnew. Any overlaps between spheres are ignored. It
is assumed that the array has been allocated large enough.

int compactspheres(double *spheres,int n,int dim);
 Compacts a list of spheres, pushing all negative radius ones to the high index end of

the list. The center positions of the negative radius ones are not preserved. The

order of positive radius spheres within the list is preserved. Returns the number of
remaining spheres.

int wraplastsphere(double *low,double *high,double *spheres,int n,int nmax,int

dim);
 Wraps just the last sphere, which is sphere number n-1, on all dimensions. As

usual, low and high define the edges of space, spheres is the list of spheres, n is the
number of spheres that are defined, nmax is the allocated size of spheres, and dim is
the system dimensionality. This returns the new total number of spheres. No
intersections are checked. Spheres should wrap properly on as many dimensions as
needed, and wrap (up to once each) in both directions if they overlap both sides of
space in any dimension.

int wrapspheres(int d,double *low,double *high,double *spheres,int n,int

nmax,int dim);
 Adds additional spheres to the list to account for spheres that overlap the edges of

periodic boundaries, only on dimension d. n is the number of spheres in the list,
nmax is the total allocated space, and d is the dimension to be wrapped. low and
high are dim dimensionsional vectors for the low and high corners of space.
Returns the new total list length. Killed spheres, which have a negative radius, are
ignored by this function. To wrap the system on multiple axes, just call this
function for each axis sequentially; multiple wraps for a single sphere will be
accounted for automatically.

int unwrapsphere(int i,double *low,double *high,double *spheres,int n,int dim);
 For this situation in which sphere i is to be killed, this is used to kill off all wrapped

images of sphere i and returns the number of spheres that were killed. This needs
the radius of sphere i, so make sure that this function is called before sphere i is
killed; this does not kill sphere i. As usual, low and high are the boundaries of
space on each dimension, spheres is the list of spheres, n is the number of spheres
in the list, and dim is the system dimensionality. This properly accounts for singly,
doubly, and triply wrapped image spheres.

int MakeSph2Phi(double phi,double rmin,double gamma,double *low,double

*high,double *spheres,int n,int nmax,int dim);
 Adds new spheres to spheres, which already had n spheres in it, until the volume

density equals phi, if possible. If gamma is 0, the spheres that are added all have
radius rmin; otherwise a power-law distribution with slope gamma and minimum
radius rmin is used, in which case gamma should be significantly less than –1. phi is
the desired volume density, which is a number between 0 and 1. The system
dimensions on each coordinate are defined by low and high. nmax is the allocated
size of spheres and dim is the dimensionality of space. This adds spheres randomly
one at a time; after each is added, it is wrapped as appropriate and then checked for
intersections with existing spheres. If there is an intersection, the new sphere and
any images are removed and another try is made. After many failures, a random
sphere (biased for small spheres) is removed, and the cycle repeats. The function

returns to the user either once the desired density is first exceeded or when the
density cannot be achieved even after many removals. There is no certainty that the
final power law slope will be anywhere close to the requested value.

