API Reference

argon2-cffi comes with an high-level API and hopefully reasonable defaults for Argon2 parameters that result in a verification time of 40–50ms on recent-ish hardware.

Warning

The current memory requirement is set to rather conservative 100 MB. However, in memory constrained environments like Docker containers that can lead to problems. One possible non-obvious symptom are apparent freezes that are caused by swapping.

Please check Choosing Parameters for more details.

Unless you have any special needs, all you need to know is:

>>> from argon2 import PasswordHasher
>>> ph = PasswordHasher()
>>> hash = ph.hash("s3kr3tp4ssw0rd")
>>> hash  
'$argon2id$v=19$m=102400,t=2,p=8$tSm+JOWigOgPZx/g44K5fQ$WDyus6py50bVFIPkjA28lQ'
>>> ph.verify(hash, "s3kr3tp4ssw0rd")
True
>>> ph.check_needs_rehash(hash)
False
>>> ph.verify(hash, "t0t411ywr0ng")
Traceback (most recent call last):
  ...
argon2.exceptions.VerifyMismatchError: The password does not match the supplied hash

A login function could thus look like this:

import argon2


ph = argon2.PasswordHasher()


def login(db, user, password):
    hash = db.get_password_hash_for_user(user)

    # Verify password, raises exception if wrong.
    ph.verify(hash, password)

    # Now that we have the cleartext password,
    # check the hash's parameters and if outdated,
    # rehash the user's password in the database.
    if ph.check_needs_rehash(hash):
        db.set_password_hash_for_user(user, ph.hash(password))

While the PasswordHasher class has the aspiration to be good to use out of the box, it has all the parametrization you’ll need:

If you don’t specify any parameters, the following constants are used:

argon2.DEFAULT_RANDOM_SALT_LENGTH
argon2.DEFAULT_HASH_LENGTH
argon2.DEFAULT_TIME_COST
argon2.DEFAULT_MEMORY_COST
argon2.DEFAULT_PARALLELISM

You can see their values in PasswordHasher.

Exceptions

Utilities

Low Level

>>> import argon2
>>> argon2.low_level.hash_secret(
...     b"secret", b"somesalt",
...     time_cost=1, memory_cost=8, parallelism=1, hash_len=64, type=argon2.low_level.Type.D
... )
b'$argon2d$v=19$m=8,t=1,p=1$c29tZXNhbHQ$ba2qC75j0+JAunZZ/L0hZdQgCv+tOieBuKKXSrQiWm7nlkRcK+YqWr0i0m0WABJKelU8qHJp0SZzH0b1Z+ITvQ'

The raw hash can also be computed:

>>> argon2.low_level.hash_secret_raw(
...     b"secret", b"somesalt",
...     time_cost=1, memory_cost=8, parallelism=1, hash_len=8, type=argon2.low_level.Type.D
... )
b'\xe4n\xf5\xc8|\xa3>\x1d'

The super low-level argon2_core() function is exposed too if you need access to very specific options:

In order to use core(), you need access to argon2-cffi’s FFI objects. Therefore it is OK to use argon2.low_level.ffi and argon2.low_level.lib when working with it:

>>> from argon2.low_level import ARGON2_VERSION, Type, core, ffi, lib
>>> pwd = b"secret"
>>> salt = b"12345678"
>>> hash_len = 8
>>> # Make sure you keep FFI objects alive until *after* the core call!
>>> cout = ffi.new("uint8_t[]", hash_len)
>>> cpwd = ffi.new("uint8_t[]", pwd)
>>> csalt = ffi.new("uint8_t[]", salt)
>>> ctx = ffi.new(
...     "argon2_context *", dict(
...         version=ARGON2_VERSION,
...         out=cout, outlen=hash_len,
...         pwd=cpwd, pwdlen=len(pwd),
...         salt=csalt, saltlen=len(salt),
...         secret=ffi.NULL, secretlen=0,
...         ad=ffi.NULL, adlen=0,
...         t_cost=1,
...         m_cost=8,
...         lanes=1, threads=1,
...         allocate_cbk=ffi.NULL, free_cbk=ffi.NULL,
...         flags=lib.ARGON2_DEFAULT_FLAGS,
...     )
... )
>>> ctx
<cdata 'struct Argon2_Context *' owning 120 bytes>
>>> core(ctx, Type.D.value)
0
>>> out = bytes(ffi.buffer(ctx.out, ctx.outlen))
>>> out
b'\xb4\xe2HjO\x14d\x9b'
>>> out == argon2.low_level.hash_secret_raw(pwd, salt, 1, 8, 1, 8, Type.D)
True

All constants and types on argon2.low_level.lib are guaranteed to stay as long they are not altered by Argon2 itself.

Deprecated APIs

These APIs are from the first release of argon2-cffi and proved to live in an unfortunate mid-level. On one hand they have defaults and check parameters but on the other hand they only consume byte strings.

Therefore the decision has been made to replace them by a high-level (argon2.PasswordHasher) and a low-level (argon2.low_level) solution. There are no immediate plans to remove them though.