ZConfig Documentation
Release 3.6.1.dev0

Zope Foundation

Jan 26, 2024

CONTENTS:

Reading and Writing Configurations 3
1.1 Reading Configurations 3
1.2 Writing Configurations L. e 3
Configuring Logging 7
2.1 Configuration Format e 8
22 LogHandlers e 9
Developing With ZConfig 17
3.1 Writing Configuration Schema e 17
3.2 Standard ZConfig Datatypes oo e e e e e e e 26
3.3 Standard ZConfig Schema Components v v v v v i it et e e 27
34 Logging COMPONENLS . . . v v v v v v e 29
3.5 Using Components to Extend Schema e 31
3.6 Documenting Componentst e e e e e e 33
Python API 35
4.1 ZConfig — Basic configuration supporto e e e e e 35
4.2 ZConfig.datatypes — Default data type registry Lo 38
4.3 ZConfig.loader — Resource loading support 39
4.4 ZConfig.substitution — String substitution oL o 40
4.5 ZConfig.cmdline — Command-line override support oo 42
ZConfig Tooling 43
5.1 Schema and Configuration Validation 43
5.2 Documenting Schemas e e e e e e e e 43
Change History for ZConfig 45
6.1 4.0(2023-05-05) . . . o o e e 45
6.2 3.6.1(2022-12-06) o e e e e 45
6.3 3.6.0(2021-05-19) e e 45
6.4 3.5.0(2019-06-24) e e 45
6.5 3.4.0(2019-01-02) e 45
6.6 3.3.0(2018-10-04) e e 46
6.7 3.2.0(2017-06-22) e e e e 46
6.8 3.1.0(2015-10-17) . . . o o o o e e e 47
6.9 3.0.4(2014-03-20) oo e e 47
6.10 3.0.3(2013-03-02) e e e 47
6.11 3.0.2 (2013-02-14) o e 47
6.12 3.0.1 (2013-02-13) o e e e e 47
6.13 3.0.0 (2013-02-13) e e e 47

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30

293 (2012-06-25) o vt e e
292 (2012-02-11) v o v e e
201 (2012-02-11) o o v e e e e e
2.9.0 (2011-03-22) .+ o v e
2.8.0 (2010-04-13) o o v ot
2701 (2009-06-13) o o v ot
270 (2009-06-11) o o v ot e
2.6.1 (2008-12-05) © « o v e e
2.6.0 (2008-00-03) .« . v e e
250 (2007-1224) o o v o
2.5(2007-08-31) « o v o e e e
2301 (2005-08-21) « o v v e
2.3(2005-05-18) « v o v e
22(2004-0421) © o oot
20 (2004-04-12) © o v ot
2.0(2003-1027) « o v o e
1.0 (2003-03-25) .« o v v v e e e

7 Indices and tables

Python Module Index

Index

ZConfig Documentation, Release 3.6.1.dev0

ZConfig is a Python library for creating extensible configuration documents (files). The configuration documents are
written in a syntax reminiscent of that used by the Apache HTTP Server, while the configuration mechanism is itself
configured using a schema specification written in XML.

ZConlfig is used by projects such as the Zope application server and ZODB, and is easily used by other projects. ZConfig
only relies on the Python standard library.

For information on reading and writing configuration documents, see Reading and Writing Configurations. For the
extremely common usage of configuring the Python 1logging framework, see Configuring Logging.

For information on using ZConfig to create custom configurations for you projects, see Developing With ZConfig.

Development of ZConfig is hosted on GitHub.

CONTENTS: 1

https://github.com/zopefoundation/ZConfig

ZConfig Documentation, Release 3.6.1.dev0

2 CONTENTS:

CHAPTER
ONE

READING AND WRITING CONFIGURATIONS

This document describes how to read and write configurations in the ZConfig format.

1.1 Reading Configurations

For information on using ZConfig configuration documents in Python, see ZConfig and especially the example at
Basic Usage.

For information about configuring the logging framework, see Configuring Logging.

1.2 Writing Configurations

Like the ConfigParser format, this format supports key-value pairs arranged in sections. Unlike the ConfigParser
format, sections are typed and can be organized hierarchically. Additional files may be included if needed. Schema
components not specified in the application schema can be imported from the configuration file. Though both formats
are substantially line-oriented, this format is more flexible.

The intent of supporting nested section is to allow setting up the configurations for loosely-associated components in a
container. For example, each process running on a host might get its configuration section from that host’s section of
a shared configuration file.

The top level of a configuration file consists of a series of inclusions, key-value pairs, and sections.

Comments can be added on lines by themselves. A comment has a # as the first non-space character and extends to the
end of the line:

This is a comment

An inclusion is expressed like this:

%include defaults.conf

The resource to be included can be specified by a relative or absolute URL, resolved relative to the URL of the resource
the %include directive is located in.

A key-value pair is expressed like this:

key value

The key may include any non-white characters except for parentheses. The value contains all the characters between
the key and the end of the line, with surrounding whitespace removed.

ZConfig Documentation, Release 3.6.1.dev0

Since comments must be on lines by themselves, the # character can be part of a value:

key value # still part of the value

Sections may be either empty or non-empty. An empty section may be used to provide an alias for another section.

A non-empty section starts with a header, contains configuration data on subsequent lines, and ends with a terminator.
The header for a non-empty section has this form (square brackets denote optional parts):

<section-type [name]>

section-type and name all have the same syntactic constraints as key names.

The terminator looks like this:

</section-type>

The configuration data in a non-empty section consists of a sequence of one or more key-value pairs and sections. For
example:

<my-section>
key-1 value-1
key-2 value-2

<another-section>
key-3 value-3
</another-section>
</my-section>

(The indentation is used here for clarity, but is not required for syntactic correctness.)
The header for empty sections is similar to that of non-empty sections, but there is no terminator:

<section-type [name] />

1.2.1 Extending the Configuration Schema

As we’ll see in Writing Configuration Schema what can be written in a configuration is controlled by schemas which
can be built from components. These components can also be used to extend the set of implementations of objects the
application can handle. What this means when writing a configuration is that third-party implementations of application
object types can be used wherever those application types are used in the configuration, if there’s a ZConfig component
available for that implementation.

The configuration file can use an %import directive to load a named component:

%import Products.Ape

The text to the right of the %import keyword must be the name of a Python package; the ZConfig component provided
by that package will be loaded and incorporated into the schema being used to load the configuration file. After the
import, section types defined in the component may be used in the configuration.

More detail is needed for this to really make sense.

A schema may define section types which are abstract; these cannot be used directly in a configuration, but multiple
concrete section types can be defined which implement the abstract types. Wherever the application allows an abstract
type to be used, any concrete type which implements that abstract type can be used in an actual configuration.

4 Chapter 1. Reading and Writing Configurations

ZConfig Documentation, Release 3.6.1.dev0

The %import directive allows loading schema components which provide alternate concrete section types which im-
plement the abstract types defined by the application. This allows third-party implementations of abstract types to be
used in place of or in addition to implementations provided with the application.

Consider an example application which supports logging in the same way Zope 2 does. There are some parameters
which configure the general behavior of the logging mechanism, and an arbitrary number of log handlers may be
specified to control how the log messages are handled. Several log handlers are provided by the application. Here is
an example logging configuration:

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log
</logfile>
</eventlog>

A third-party component may provide a log handler to send high-priority alerts the system administrator’s text pager
or SMS-capable phone. All that’s needed is to install the implementation so it can be imported by Python, and modify
the configuration:

%import my.pager.loghandler

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log
</logfile>

<pager>
number 1-800-555-1234
message Something broke!
</pager>
</eventlog>

1.2.2 Other Examples

Other examples of configuration files can be found at Using The Logging Components.

1.2.3 Textual Substitution in Values

ZConfig provides a limited way to re-use portions of a value using simple string substitution. To use this facility,
define named bits of replacement text using the %define directive, and reference these texts from values.

The syntax for %define is:
%define name [value]

The value of name must be a sequence of letters, digits, and underscores, and may not start with a digit; the namespace
for these names is separate from the other namespaces used with ZConfig, and is case-insensitive. If value is omitted,
it will be the empty string. If given, there must be whitespace between name and value; value will not include any
whitespace on either side, just like values from key-value pairs.

1.2. Writing Configurations 5

ZConfig Documentation, Release 3.6.1.dev0

Names must be defined before they are used, and may not be re-defined with a different value. All resources being
parsed as part of a configuration share a single namespace for defined names.

References to defined names from configuration values use the syntax described for the ZConfig.substitution
module. Configuration values which include a $ as part of the actual value will need to use $$ to get a single § in the
result.

The values of defined names are processed in the same way as configuration values, and may contain references to
named definitions.

For example, the value for key will evaluate to value:

%define name value
key $name

1.2.4 Substitution in Values from Environment Variables

Values in ZConfig can be substituted from environment variables. It utilizes Pythons os.getenv to fetch the values.
Syntax is a $ followed by round brackets (parentheses). In this example the variable key gets a value assigned from the
enviroment named ENVKEY:

key $(ENVKEY)

Further details and examples are described in the ZConfig. substitution module.

6 Chapter 1. Reading and Writing Configurations

CHAPTER
TWO

CONFIGURING LOGGING

One common use of ZConfig is to configure the Python 1ogging framework. ZConfig provides one simple convenience
function to do this:

ZConfig.configurelLoggers (text)

Configure one or more loggers from configuration text.

Suppose we have the following logging configuration in a file called simple-root-config.conf:

<logger>
level INFO
<logfile>
path STDOUT
format %(levelname)s %(name)s %(message)s
</logfile>
</logger>

We can load this file and pass its contents to configureLoggers:

from ZConfig import configureloggers
with open('simple-root-config.conf') as f£:
configurelLoggers(f.read())

When this returns, the root logger is configured to output messages logged at INFO or above to the console, as we can
see in the following example:

>>> from logging import getLogger

>>> getLogger().info('lWle see an info message')

INFO root We see an info message

>>> getLogger() .debug('WWe do not see a debug message')

A more common configuration would see STDOUT replaced with a path to the file into which log entries would be
written.

Although loading configuration from a file is common, we could of course also pass a string literal to
configureLoggers (). Any type of Python string (bytes or unicode) is acceptable.

ZConfig Documentation, Release 3.6.1.dev0

2.1 Configuration Format

The configuration text is in the ZConfig format and supports comments and substitutions.
It can contain multiple <logger> elements, each of which can have any number of handler elements.
<logger> (ZConfig.components.logger.logger.LoggerFactory)

level (ZConfig.components.logger.datatypes.logging_level) (default: info)

Verbosity setting for the logger. Values must be a name of a level, or an integer in the range [0..50]. The
names of the levels, in order of increasing verbosity (names on the same line are equivalent):

critical, fatal
error

warn, warning
info

blather

debug

trace

all

The special name “notset”, or the numeric value 0, indicates that the setting for the parent logger should be
used.

It is strongly recommended that names be used rather than numeric values to ensure that configuration files
can be deciphered more easily.

zconfig.logger.handler*
Handlers to install on this logger. Each handler describes how logging events should be presented.
propagate (boolean) (default: true)

Indicates whether events that reach this logger should be propogated toward the root of the logger hierarchy.
If true (the default), events will be passed to the logger’s parent after being handled. If false, events will be
handled and the parent will not be informed. There is not a way to control propogation by the severity of
the event.

name (dotted-name)

The dotted name of the logger. This give it a location in the logging hierarchy. Most applications provide
a specific set of subsystem names for which logging is meaningful; consult the application documentation
for the set of names that are actually interesting for the application.

2.1.1 Examples

Here’s the configuration we looked at above. It configures the root (unnamed) logger with one handler (<logfile>),
operating at the INFO level:

<logger>
level INFO
<logfile>
path STDOUT
format %(levelname)s %(name)s %(message)s
</logfile>
</logger>

8 Chapter 2. Configuring Logging

ZConfig Documentation, Release 3.6.1.dev0

We can configure a different logger in the hierarchy to use the DEBUG level at the same time as we configure the root
logger. We’re not specifying a handler for it, but the default propagate value will let the lower level logger use the
root logger’s handler:

<logger>
level INFO
<logfile>
path STDOUT
format %(levelname)s %(name)s %(message)s
</logfile>
</logger>
<logger>
name my.package
level DEBUG
</logger>

If we load that configuration from root-and-child-config.conf, we can expect this behaviour:

>>> with open('root-and-child-config.conf') as f:
configureLoggers(f.read())

>>> getLogger() .info('Here is another info message')

INFO root Here is another info message

>>> getLogger() .debug('This debug message is hidden')

>>> getLogger('my.package').debug('The debug message for my.package shows')

DEBUG my.package The debug message for my.package shows

2.2 Log Handlers

Many of Python’s built-in log handlers can be configured with ZConfig.

2.2.1 Files

The <logfile> handler writes to files or standard output or standard error (when the path is STDOUT or STDERR
respectively). It configures a logging.FileHandler or logging.StreamHandler. When the when or max-size
attributes are set, the files on disk will be rotated either at set intervals or when files reach the set size,
respectively.

<logfile> (ZConfig.components.logger.handlers.FileHandlerFactory)

Example:

<logfile>

path STDOUT

format %(name)s %(message)s
</logfile>

formatter (dotted-name)
Logging formatter class.
The default is logging.Formatter.

One alternative is ‘zope.exceptions.log.Formatter’, which enhances exception tracebacks with information
from __traceback_info__ and __traceback_supplement__ variables from each stack frame.

2.2. Log Handlers 9

ZConfig Documentation, Release 3.6.1.dev0

dateformat (string) (default: %oY-%m-%dT % H:%M:%S)
Timestamp format used for the ‘asctime’ field.

This is used with Python’s time.strftime() function, so must be compatible with that function on the
host platform.

level (ZConfig.components.logger.datatypes.logging_level) (default: notset)
Output level for the log handler.

Python standard logging levels are supported by name (case-insensitive), as are the following additional
names:

e all (level 1)
e trace (level 5)
¢ blather (level 15)

These additional level names are not defined using logging.addLevelName(), though an application
may do so.

Numeric values 0 through 50 (inclusive) are permitted.
style (ZConfig.components.logger.formatter.log_format_style) (default: classic)

Replacement mechanism to use with the format string.

The value must be one of classic (the default), format, template, or safe-template.
arbitrary-fields (boolean) (default: false)

If true, allow arbitrary fields in the log record object to be referenced from the format value.

This does not cause references to fields not present in the log record to be accepted; it only means unknown
fields will not cause configuration of the formatter to be denied.

To get both effects, set this to true and use a style of safe-template.
path (string)
Path of the log file to write.

Specifying STDOUT or STDERR will cause the appropriate standard stream to be used instead of a file. In
these cases, rotation, encoding, and delayed opening are not available, and will be considered configuration
errors.

old-files (integer) (default: 0)
Number of old log files which will be retained when rotation is configured.

This must be set to a positive integer if rotation is configured. An error is generated if rotation is requested
without setting old-files.

max-size (byte-size) (default: 0)

Target maximum size for a logfile; once a logfile reaches the maximum size, it will be rotated.
when (string)

Specification for specific time at which rotation should occur.

Allowed values are described for logging.handlers.TimedRotatingFileHandler; this value is
passed through to the underlying handler.

10 Chapter 2. Configuring Logging

ZConfig Documentation, Release 3.6.1.dev0

interval (integer) (default: 0)
Frequency of rotation at the time specified by when.
If not specified, but when is specified, this will default to 1.
If when is not specified, it is an error to specify interval.

format (ZConfig.components.logger.formatter.escaped_string) (default: ——\n%(asctime)s
%o(levelname)s %o(name)s %o(message)s)

Format string for log entries. This value is used to create an instance of the class identified by formatter.

The following escape characters are supported with the same replacements as in Python string literals:

\b \f \n \r \t

Field placeholders are checked to refer to the fields available in the logging.LogRecord instances created
without extra fields. Referring to other fields will generate an error in loading the configuration, unless
arbitrary-fields is true.

encoding (string)

Encoding for the underlying file.

If not specified, Python’s default encoding handling is used.

This cannot be specified for STDOUT or STDERR destinations, and must be omitted in such cases.
delay (boolean) (default: false)

If true, opening of the log file will be delayed until a message is emitted. This avoids creating logfiles that
may only be written to rarely or under special conditions.

This cannot be specified for STDOUT or STDERR destinations, and must be omitted in such cases.

2.2.2 The System Log

The <syslog> handler configures the logging.handlers.SysLogHandler.
<syslog> (ZConfig.components.logger.handlers.SyslogHandlerFactory)
formatter (dotted-name)
Logging formatter class.
The default is logging.Formatter.

One alternative is ‘zope.exceptions.log.Formatter’, which enhances exception tracebacks with information
from __traceback_info__ and __traceback_supplement__ variables from each stack frame.

dateformat (string) (default: %oY-%m-%dT%H:%M:%S)
Timestamp format used for the ‘asctime’ field.

This is used with Python’s time.strftime() function, so must be compatible with that function on the
host platform.

level (ZConfig.components.logger.datatypes.logging_level) (default: notset)
Output level for the log handler.

Python standard logging levels are supported by name (case-insensitive), as are the following additional
names:

e all (level 1)

2.2. Log Handlers 11

ZConfig Documentation, Release 3.6.1.dev0

e trace (level 5)
¢ blather (level 15)

These additional level names are not defined using logging.addLevelName (), though an application
may do so.

Numeric values 0 through 50 (inclusive) are permitted.
style (ZConfig.components.logger.formatter.log_format_style) (default: classic)

Replacement mechanism to use with the format string.

The value must be one of classic (the default), format, template, or safe-template.
arbitrary-fields (boolean) (default: false)

If true, allow arbitrary fields in the log record object to be referenced from the format value.

This does not cause references to fields not present in the log record to be accepted; it only means unknown
fields will not cause configuration of the formatter to be denied.

To get both effects, set this to true and use a style of safe-template.
facility (ZConfig.components.logger.handlers.syslog_facility) (default: user)
address (socket-address) (default: localhost:514)

format (ZConfig.components.logger.formatter.escaped_string) (default: “o(name)s %o(message)s)

2.2.3 Windows Event Log

On Windows, the <win32-eventlog> configures the logging.handlers.NTEventLogHandler.
<win32-eventlog> (ZConfig.components.logger.handlers. Win32EventLogFactory)
formatter (dotted-name)
Logging formatter class.
The default is logging.Formatter.

One alternative is ‘zope.exceptions.log.Formatter’, which enhances exception tracebacks with information
from __traceback_info__ and __traceback_supplement__ variables from each stack frame.

dateformat (string) (default: %oY-%m-%dT % H:%M:%S)
Timestamp format used for the ‘asctime’ field.

This is used with Python’s time.strftime() function, so must be compatible with that function on the
host platform.

level (ZConfig.components.logger.datatypes.logging_level) (default: notset)
Output level for the log handler.

Python standard logging levels are supported by name (case-insensitive), as are the following additional
names:

e all (level 1)
e trace (level 5)

¢ blather (level 15)

12 Chapter 2. Configuring Logging

ZConfig Documentation, Release 3.6.1.dev0

These additional level names are not defined using logging.addLevelName (), though an application
may do so.

Numeric values 0 through 50 (inclusive) are permitted.
style (ZConfig.components.logger.formatter.log_format_style) (default: classic)

Replacement mechanism to use with the format string.

The value must be one of classic (the default), format, template, or safe-template.
arbitrary-fields (boolean) (default: false)

If true, allow arbitrary fields in the log record object to be referenced from the format value.

This does not cause references to fields not present in the log record to be accepted; it only means unknown
fields will not cause configuration of the formatter to be denied.

To get both effects, set this to true and use a style of safe-template.
appname (string) (default: Zope)

format (ZConfig.components.logger.formatter.escaped_string) (default: %o(levelname)s %c(name)s
%o(message)s)

2.2.4 HTTP

The <<http-logger> element configures logging.handlers.HTTPHandler.
<http-logger> (ZConfig.components.logger.handlers. HTTPHandlerFactory)
formatter (dotted-name)
Logging formatter class.
The default is logging.Formatter.

One alternative is ‘zope.exceptions.log.Formatter’, which enhances exception tracebacks with information
from __traceback_info__ and __traceback_supplement__ variables from each stack frame.

dateformat (string) (default: %oY-%m-%dT%H:%M:%S)
Timestamp format used for the ‘asctime’ field.

This is used with Python’s time.strftime() function, so must be compatible with that function on the
host platform.

level (ZConfig.components.logger.datatypes.logging_level) (default: notset)
Output level for the log handler.

Python standard logging levels are supported by name (case-insensitive), as are the following additional
names:

e all (level 1)
e trace (level 5)
¢ blather (level 15)

These additional level names are not defined using logging.addLevelName (), though an application
may do so.

Numeric values 0 through 50 (inclusive) are permitted.

2.2. Log Handlers 13

ZConfig Documentation, Release 3.6.1.dev0

style (ZConfig.components.logger.formatter.log_format_style) (default: classic)

Replacement mechanism to use with the format string.

The value must be one of classic (the default), format, template, or safe-template.
arbitrary-fields (boolean) (default: false)

If true, allow arbitrary fields in the log record object to be referenced from the format value.

This does not cause references to fields not present in the log record to be accepted; it only means unknown
fields will not cause configuration of the formatter to be denied.

To get both effects, set this to true and use a style of safe-template.
url (ZConfig.components.logger.handlers.http_handler_url) (default: http://localhost/)
method (ZConfig.components.logger.handlers.get_or_post) (default: GET)

format (ZConfig.components.logger.formatter.escaped_string) (default: %(asctime)s %o(levelname)s
%o(name)s %Yo(message)s)

2.2.5 Email

ZConfig has support for Python’s 1ogging.handlers.SMTPHandler via the <email-notifier> handler.
<email-notifier> (ZConfig.components.logger.handlers.SMTPHandlerFactory)

Example:

<email-notifier>
to sysadmin@example.com
to john@example.com
from zlog-user@example.com
level fatal
smtp-username john
smtp-password johnpw
</email-notifier>

formatter (dotted-name)
Logging formatter class.
The default is 1ogging.Formatter.

One alternative is ‘zope.exceptions.log.Formatter’, which enhances exception tracebacks with information
from __traceback_info__ and __traceback_supplement__ variables from each stack frame.

dateformat (string) (default: %oY-%m-%dT % H:%M:%S)
Timestamp format used for the ‘asctime’ field.

This is used with Python’s time.strftime() function, so must be compatible with that function on the
host platform.

level (ZConfig.components.logger.datatypes.logging_level) (default: notset)
Output level for the log handler.

Python standard logging levels are supported by name (case-insensitive), as are the following additional
names:

e all (level 1)

14 Chapter 2. Configuring Logging

ZConfig Documentation, Release 3.6.1.dev0

e trace (level 5)
¢ blather (level 15)

These additional level names are not defined using logging.addLevelName (), though an application
may do so.

Numeric values 0 through 50 (inclusive) are permitted.
style (ZConfig.components.logger.formatter.log_format_style) (default: classic)

Replacement mechanism to use with the format string.

The value must be one of classic (the default), format, template, or safe-template.
arbitrary-fields (boolean) (default: false)

If true, allow arbitrary fields in the log record object to be referenced from the format value.

This does not cause references to fields not present in the log record to be accepted; it only means unknown
fields will not cause configuration of the formatter to be denied.

To get both effects, set this to true and use a style of safe-template.
from (string)
to (*) (string)
subject (string) (default: Message from Zope)
smtp-server (inet-address) (default: localhost)
smtp-username (string)
User name to use for SMTP authentication. This can only be specified if smtp-password is also specified.
smtp-password (string)
Password to use for SMTP authentication. This can only be specified if smtp-username is also specified.

format (ZConfig.components.logger.formatter.escaped_string) (default: %(asctime)s %o(levelname)s
%o(name)s %Yo(message)s)

Format string for the email content.

The following escape characters are supported with the same replacements as in Python string literals:

\b \f \n \r \t

%-replacements are checked to refer to the fields available in the logging.LogRecord instances created
without extra fields. Referring to other fields will generate an error in loading the configuration.

Emails will be sent without a Content-Type header, so the content will be interpreted as text/plain.

2.2. Log Handlers 15

ZConfig Documentation, Release 3.6.1.dev0

16 Chapter 2. Configuring Logging

CHAPTER
THREE

DEVELOPING WITH ZCONFIG

3.1 Writing Configuration Schema

Configurations which use ZConfig are described using “schema”. A schema is a specification for the allowed structure
and content of the configuration. ZConfig schema are written using a small XML-based language. The schema
language allows the schema author to specify the names of the keys allowed at the top level and within sections, to
define the types of sections which may be used (and where), the types of each values, whether a key or section must be
specified or is optional, default values for keys, and whether a value can be given only once or repeatedly.

3.1.1 Writing Configuration Schema

Data types are searched in a special namespace defined by the data type registry. The default registry has slightly
magical semantics: If the value can be matched to a standard data type when interpreted as a basic-key, the standard
data type will be used. If that fails, the value must be a dotted-name containing at least one dot, and a conversion
function will be sought using the search () method of the data type registry used to load the schema.

Schema Elements

For each element, the content model is shown, followed by a description of how the element is used, and then a list of
the available attributes. For each attribute, the type of the value is given as either the name of a ZConfig datatype or
an XML attribute value type. Familiarity with XML’s Document Type Definition language is helpful.

The following elements are used to describe a schema:

<schema>
description?, metadefault?, example?, import*, (sectiontype |
abstracttype)*, (section | key | multisection | multikey)*
</schema>

Document element for a ZConfig schema.

extends (space-separated-url-references)
A list of URLs of base schemas from which this section type will inherit key, section, and section type decla-
rations. If omitted, this schema is defined using only the keys, sections, and section types contained within the
schema element.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this section. If the value is a dotted-name that
begins with a period, the value of prefix will be pre-pended, if set. If any base schemas are listed in the extends
attribute, the default value for this attribute comes from the base schemas. If the base schemas all use the same
datatype, then that data type will be the default value for the extending schema. If there are no base schemas,

17

ZConfig Documentation, Release 3.6.1.dev0

the default value is null , which means that the ZConfig section object will be used unconverted. If the base
schemas have different datatype definitions, you must explicitly define the datatype in the extending schema.

handler (basic-key)

keytype (basic-key or dotted-name)

The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful are the identifier and ipaddr-or-
hostname types. If the value is a dotted-name that begins with a period, the value of prefix will be pre-pended,
if set. If any base schemas are listed in the extends attribute, the default value for this attribute comes from the
base schemas. If the base schemas all use the same keytype , then that key type will be the default value for
the extending schema. If there are no base schemas, the default value is basic-key . If the base schemas have
different keytype definitions, you must explicitly define the keytype in the extending schema.

prefix (dotted-name)
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute is used
in all contexts with the schema element if it hasn’t been overridden by an inner element with a prefix attribute.

<description>
PCDATA
</description>

Descriptive text explaining the purpose the container of the description element. Most other elements can contain
a description element as their first child. At most one description element may appear in a given context.

format (NMTOKEN)

Optional attribute that can be added to indicate what conventions
are used to mark up the contained text. This is intended to serve as a hint for documentation extraction
tools. Suggested values are:

Value Content Format

plain text/plain; blank lines separate paragraphs
rest reStructuredText
stx Classic Structured Text

<example>
PCDATA
</example>

An example value. This serves only as documentation.

<metadefaul t>
PCDATA
</metadefault>

A description of the default value, for human readers. This may include information about how a computed value is
determined when the schema does not specify a default value.

<abstracttype>
description?
</abstracttype>

Define an abstract section type.

18 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

name (basic-key)
The name of the abstract section type; required.

<sectiontype>
description?, example?, (section | key | multisection | multikey)*
</sectiontype>

Define a concrete section type.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this section. If the value is a dotted-name that
begins with a period, the value of prefix will be pre-pended, if set. If datatype is omitted and extends is
used, the datatype from the section type identified by the extends attribute is used.

extends (basic-key)
The name of a concrete section type from which this section type acquires all key and section declarations. This
type does not automatically implement any abstract section type implemented by the named section type. If
omitted, this section is defined with only the keys and sections contained within the sectiontype element. The
new section type is called a derived section type, and the type named by this attribute is called the base type.
Values for the datatype and keytype attributes are acquired from the base type if not specified.

implements (basic-key)
The name of an abstract section type which this concrete section type implements. If omitted, this section type
does not implement any abstract type, and can only be used if it is specified directly in a schema or other section

type.

keytype (basic-key)
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful are the identifier and ipaddr-or-
hostname types. If the value is a dotted-name that begins with a period, the value of prefix will be pre-pended,
if set. The default value is basic-key . If keytype is omitted and extends is used, the keytype from the section
type identified by the extends attribute is used.

name (basic-key)
The name of the section type; required.

prefix (dotted-name)
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute is
used in all contexts in the sectiontype element. If omitted, the prefix specified by a containing context is used
if specified.

<import>
EMPTY
</import>

Import a schema component. Exactly one of the attributes package and src must be specified.

file (file name without directory information}
Name of the component file within a package; if not specified, ‘component.xml’ is used. This may only be
given when package is used. (The ‘component.xml’ file is always used when importing via %import from a
configuration file.)

package (dotted-suffix)
Name of a Python package that contains the schema component being imported. The component will be loaded
from the file identified by the file attribute, or ‘component.xml’ if file is not specified. If the package name
given starts with a dot (.), the name used will be the current prefix and the value of this attribute concatenated.

src (url-reference)
URL to a separate schema which can provide useful types. The referenced resource must contain a schema,

3.1. Writing Configuration Schema 19

ZConfig Documentation, Release 3.6.1.dev0

not a schema component. Section types defined or imported by the referenced schema are added to the schema
containing the import ; top-level keys and sections are ignored.

<key>
description?, example?, metadefault?, default®
</key>

A key element is used to describe a key-value pair which may occur at most once in the section type or top-level schema
in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value of on a SectionValue instance. This must
be unique within the immediate contents of a section type or schema. If this attribute is not specified, an attribute
name will be computed by converting hyphens in the key name to underscores.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this key. If the value is a dotted-name that begins
with a period, the value of prefix will be pre-pended, if set.

default (string)
If the key-value pair is optional and this attribute is specified, the value of this attribute will be converted using
the appropriate data type converter and returned to the application as the configured value. This attribute may
not be specified if the required attribute is yes.

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instance, or *. If the value is *, any name not already
specified as a key may be used, and the configuration value for the key will be a dictionary mapping from the key
name to the value. In this case, the attribute attribute must be specified, and the data type for the key will be
applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the value is yes, the default
attribute may not be specified and an error will be reported if the configuration instance does not specify a value
for the key. If the value is no (the default) and the configuration instance does not specify a value, the value
reported to the application will be that specified by the default attribute, if given, or None.

<multikey>
description?, example?, metadefault?, default®
</multikey>

A multikey element is used to describe a key-value pair which may occur any number of times in the section type or
top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value of on a :class’SectionValue™ instance. This
must be unique within the immediate contents of a section type or schema. If this attribute is not specified, an
attribute name will be computed by converting hyphens in the key name to underscores.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this key. If the value is a dotted-name that begins
with a period, the value of prefix will be pre-pended, if set.

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instance, or +. If the value is +, any name not already
specified as a key may be used, and the configuration value for the key will be a dictionary mapping from the key

20 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

name to the value. In this case, the attribute attribute must be specified, and the data type for the key will be
applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the value is yes, no default
elements may be specified and an error will be reported if the configuration instance does not specify at least
one value for the key. If the value is no (the default) and the configuration instance does not specify a value, the
value reported to the application will be a list containing one element for each default element specified as a
child of the multikey . Each value will be individually converted according to the datatype attribute.

<default>
PCDATA
</default>

Each default element specifies a single default value for a multikey . This element can be repeated to produce a
list of individual default values. The text contained in the element will be passed to the datatype conversion for the
multikey .

key (key type of the containing sectiontype}
Key to associate with the default value. This is only used for defaults of a key or multikey with a name of +; in
that case this attribute is required. It is an error to use the key attribute with a default element for amultikey
with a name other than +.

Warning: The datatype of this attribute is that of the section type containing the actual keys, not necessarily that
of the section type which defines the key. If a derived section overrides the key type of the base section type, the
actual key type used is that of the derived section.

This can lead to confusing errors in schemas, though the ZConfig package checks for this when the schema is
loaded. This situation is particularly likely when a derived section type uses a key type which collapses multiple
default keys which were not collapsed by the base section type.

Consider this example schema:

<schema>
<sectiontype name="base" keytype="identifier">
<key name="+" attribute="mapping">
<default key="foo">some value</default>
<default key="F00">some value</default>
</key>
</sectiontype>

<sectiontype name="derived" keytype="basic-key"
extends="base"/>

<section type="derived" name= attribute="section"/>

</schema>

When this schema is loaded, a set of defaults for the derived section type is computed. Since basic-key is case-
insensitive (everything is converted to lower case), foo and Foo are both converted to foo, which clashes since key
only allows one value for each key.

<section>
description?, example?
</section>

3.1. Writing Configuration Schema 21

ZConfig Documentation, Release 3.6.1.dev0

A section element is used to describe a section which may occur at most once in the section type or top-level schema
in which it is listed.

attribute (identifier)
The name of the Python attribute which this section should be the value of on a SectionValue instance. This
must be unique within the immediate contents of a section type or schema. If this attribute is not specified, an
attribute name will be computed by converting hyphens in the section name to underscores, in which case the
name attribute may not be * or +.

handler (basic-key)

name (basic-key)
The name of the section, as it must be given in a configuration instance, *, or +. If the value is * or this attribute
is omitted, any name not already specified as a key may be used. If the value is * or +, the attribute attribute
must be specified. If the value is *, any name is allowed, or the name may be omitted. If the value is +, any name
is allowed, but some name must be provided.

required (yes|no)
Specifies whether the configuration instance is required to provide the section. If the value is yes, an error will
be reported if the configuration instance does not include the section. If the value is no (the default) and the
configuration instance does not include the section, the value reported to the application will be None.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type, matching
sections in the configuration file must be of a type which specifies that it implements the named abstract type. If
the name identifies a concrete type, the section type must match exactly.

<multisection>
description?, example?
</multisection>

A multisection element is used to describe a section which may occur any number of times in the section type or
top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which matching sections should be the value of on a SectionValue in-
stance. This is required and must be unique within the immediate contents of a section type or schema. The
SectionValue instance will contain a list of matching sections.

handler (basic-key)

name (basic-key)
Foramultisection, any name not already specified as a key may be used. If the value is * or +, the attribute
attribute must be specified. If the value is * or this attribute is omitted, any name is allowed, or the name may be
omitted. If the value is +, any name is allowed, but some name must be provided. No other value for the name
attribute is allowed for amultisection.

required (yes|no)
Specifies whether the configuration instance is required to provide at least one matching section. If the value is
yes, an error will be reported if the configuration instance does not include the section. If the value is no (the
default) and the configuration instance does not include the section, the value reported to the application will be
None.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type, matching
sections in the configuration file must be of types which specify that they implement the named abstract type. If
the name identifies a concrete type, the section type must match exactly.

22 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

Schema Components

ZConfig supports schema components that can be provided by disparate components, and allows them to be knit
together into concrete schema for applications. Components cannot add additional keys or sections in the application
schema.

A schema component is allowed to define new abstract and section types. Components are identified using a dotted-
name, similar to a Python module name. For example, one component may be zodb . storage.

Schema components are stored alongside application code since they directly reference datatype code. Schema com-
ponents are provided by Python packages. The component definition is normally stored in the file ‘component.xml’;
an alternate filename may be specified using the file attribute of the import element. Components imported using
the %import keyword from a configuration file must be named ‘component.xml’. The component defines the types
provided by that component; it must have a component element as the document element.

The following element is used as the document element for schema components. Note that schema components do not
allow keys and sections to be added to the top-level of a schema; they serve only to provide type definitions.

<component>
description?, (abstracttype | sectiontype)*
</component>

The top-level element for schema components.

prefix (dotted-name)
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute is used
in all contexts within the component element if it hasn’t been overridden by an inner element with a prefix
attribute.

Referring to Files in Packages

The extends attribute of the schema element is used to refer to files containing base schema; sometimes it makes
sense to refer to a base schema relative to the Python package that provides it. For this purpose, ZConfig supports the
special package: URL scheme.

The package: URL scheme is straightforward, and contains three parts: the scheme name, the package name, and a
relative path. The relative path is searched for using the named package’s __path__ if it’s a conventional filesystem
package, or using the package’s loader if that supports resource access (such as the loader for eggs and other ZIP-file
based packages).

The basic form of the package: URL is:
package:package.name:relative-path

The package name must be fully specified; the current prefix, if any, is not used. If the named package is contained in
an egg or ZIP file, the resource identified by the relative path must reside in the same egg or ZIP file.

The package: URL scheme is generally available everywhere ZConfig supports loading text from URLs directly, but
applications using ZConfig do not automatically acquire general support for this.

3.1. Writing Configuration Schema 23

ZConfig Documentation, Release 3.6.1.dev0

3.1.2 Schema Document Type Definition

The following is the XML Document Type Definition for ZConfig schema:

<l--
Copyright (c) 2002, 2003 Zope Foundation and Contributors.
All Rights Reserved.
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE

Please note that not all documents that conform to this DTD are
legal ZConfig schema. The ZConfig reference manual describes many
constraints that are important to understanding ZConfig schema.
-->

<!-- DTID for ZConfig schema documents. -->

<IELEMENT schema (description?, metadefault?, example?,
import*,
(sectiontype | abstracttype)*,
(section | key | multisection | multikey)*)>
<IATTLIST schema
extends NMTOKEN #IMPLIED
prefix NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
keytype NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED>

<IELEMENT component (description?, (sectiontype | abstracttype)*)>
<IATTLIST component
prefix NMTOKEN #IMPLIED>

<!ELEMENT import EMPTY>
<IATTLIST import

file CDATA #IMPLIED
package NMTOKEN #IMPLIED
src CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)*>
<IATTLIST description
format NMTOKEN #IMPLIED>

<!ELEMENT metadefault (#PCDATA)*>
<!ELEMENT example (#PCDATA) *>

<!ELEMENT sectiontype (description?, example?

(continues on next page)

24 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

(continued from previous page)

(section | key | multisection | multikey)*)>

sectiontype

name NMTOKEN #REQUIRED
prefix NMTOKEN #IMPLIED
keytype NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED
implements NMTOKEN #IMPLIED
extends NMTOKEN #IMPLIED>
abstracttype (description?)>

abstracttype
name NMTOKEN #REQUIRED

prefix NMTOKEN #IMPLIED>
default (#PCDATA) *>

default

key CDATA #IMPLIED>
key (description?, metadefault?, example?, default*)>
key

name CDATA #REQUIRED
attribute NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
required (yes|no) "no"

default CDATA #IMPLIED>
multikey (description?, metadefault?, example?, default*)>
multikey

name CDATA #REQUIRED
attribute NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
required (yes|no) "no">

section (description?, example?)>
section

name CDATA et

attribute NMTOKEN #IMPLIED

type NMTOKEN #REQUIRED
handler NMTOKEN #IMPLIED
required (yes|no) "no">
multisection (description?, example?)>
multisection

name CDATA ke

attribute NMTOKEN #IMPLIED

type NMTOKEN #REQUIRED
handler NMTOKEN #IMPLIED
required (yes|no) "no">

3.1. Writing Configuration Schema

25

ZConfig Documentation, Release 3.6.1.dev0

3.2 Standard ZConfig Datatypes

There are a number of data types which can be identified using the datatype attribute on key , sectiontype, and
schema elements. Applications may extend the set of datatypes by calling the register () method of the data type
registry being used or by using Python dotted-names to refer to conversion routines defined in code.

The following data types are provided by the default type registry.

basic-key
The default data type for a key in a ZConfig configuration file. The result of conversion is always lower-case,
and matches the regular expression [a-z] [-._a-z0-9]*.

boolean
Convert a human-friendly string to a boolean value. The names yes, on, and true convert to True, while no,
off, and false convert to False. Comparisons are case-insensitive. All other input strings are disallowed.

byte-size
A specification of a size, with byte multiplier suffixes (for example, 128MB). Suffixes are case insensitive and
may be KB, MB, or GB

dotted-name
A string consisting of one or more identifier values separated by periods (.).

dotted-suffix
A string consisting of one or more identifier values separated by periods (.), possibly prefixed by a period. This
can be used to indicate a dotted name that may be specified relative to some base dotted name.

existing-dirpath
Validates that the directory portion of a pathname exists. For example, if the value provided is ‘/foo/bar’, ‘/foo’
must be an existing directory. No conversion is performed.

existing-directory
Validates that a directory by the given name exists on the local filesystem. No conversion is performed.

existing-file
Validates that a file by the given name exists. No conversion is performed.

existing-path
Validates that a path (file, directory, or symlink) by the given name exists on the local filesystem. No conversion
is performed.

float
A Python float. Inf, -Inf, and NaN are not allowed.

identifier
Any valid Python identifier.

inet-address
An Internet address expressed as a (hostname, port) pair. If only the port is specified, the default host will be
returned for hostname. The default host is localhost on Windows and the empty string on all other platforms.
If the port is omitted, None will be returned for port. IPv6 addresses can be specified in colon-separated notation;
if both host and port need to be specified, the bracketed form ([addr] : port) must be used.

inet-binding-address
An Internet address expressed as a (hostname, port) pair. The address is suitable for binding a socket. If
only the port is specified, the default host will be returned for hostname. The default host is the empty string on
all platforms. If the port is omitted, None will be returned for port.

inet-connection-address
An Internet address expressed as a (hostname, port) pair. The address is suitable for connecting a socket to

26 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

a server. If only the port is specified, '127.0.0.1" will be returned for hostname. If the port is omitted, None
will be returned for port.

integer
Convert a value to an integer. This will be a Python int if the value is in the range allowed by :class’int’,
otherwise a Python long is returned.

ipaddr-or-hostname
Validates a valid IP address or hostname. If the first character is a digit, the value is assumed to be an IP address.
If the first character is not a digit, the value is assumed to be a hostname. Strings containing colons are considered
IPv6 address. Hostnames are converted to lower case.

locale
Any valid locale specifier accepted by the available 1ocale.setlocale() function. Be aware that only the 'C'
locale is supported on some platforms.

null
No conversion is performed; the value passed in is the value returned. This is the default data type for section
values.

port-number
Returns a valid port number as an integer. Validity does not imply that any particular use may be made of the
port, however. For example, port number lower than 1024 generally cannot be bound by non-root users.

socket-address
An address for a socket. The converted value is an object providing two attributes. family specifies the address
family (socket .AF_INET or socket.AF_UNIX), with None instead of AF_UNIX on platforms that don’t support
it. The address attribute will be the address that should be passed to the socket’s bind () method. If the family
is AF_UNIX, the specific address will be a pathname; if the family is AF_INET, the second part will be the result
of the inet-address conversion.

string
Returns the input value as a string. If the source is a Unicode string, this implies that it will be checked to be
simple 7-bit ASCII. This is the default data type for values in configuration files.

time-interval
A specification of a time interval in seconds, with multiplier suffixes (for example, 12h). Suffixes are case
insensitive and may be s (seconds), m (minutes), h (hours), or d (days).

timedelta
Similar to the time-interval, this data type returns a Python datetime.timedelta object instead of a float.
The set of suffixes recognized by timedelta are: w (weeks), d (days), h (hours), m (minutes), s (seconds). Values
may be floats, for example: 4w 2.5d 7h 12m 0.001s.

3.3 Standard ZConfig Schema Components

ZConfig provides a few convenient schema components as part of the package. These may be used directly or can
serve as examples for creating new components.

3.3. Standard ZConfig Schema Components 27

ZConfig Documentation, Release 3.6.1.dev0

3.3.1 ZConfig.components.basic

The ZConfig. components.basic package provides small components that can be helpful in composing application-
specific components and schema. There is no large functionality represented by this package. The default component
provided by this package simply imports all of the smaller components. This can be imported using:

<import package="ZConfig.components.basic"/>

Each of the smaller components is documented directly; importing these selectively can reduce the time it takes to
load a schema slightly, and allows replacing the other basic components with alternate components (by using different
imports that define the same type names) if desired.

The Mapping Section Type

There is a basic section type that behaves like a simple Python mapping; this can be imported directly using:

<import package="ZConfig.components.basic" file="mapping.xml"/>

This defines a single section type, ZConfig.basic.mapping. When this is used, the section value is a Python dictionary
mapping keys to string values.

This type is intended to be used by extending it in simple ways. The simplest is to create a new section type name that
makes more sense for the application:

<import package="ZConfig.components.basic" file="mapping.xml"/>

<sectiontype name="my-mapping"
extends="ZConfig.basic.mapping"
/>

<section name="*"

type="my-mapping"

attribute="map"

/>

This allows a configuration to contain a mapping from basic-key names to string values like this:

<my-mapping>
This that
and the other
</my-mapping>

The value of the configuration object’s map attribute would then be the dictionary:

{'this': 'that',
'and': 'the other',

}

(Recall that the basic-key data type converts everything to lower case.)

Perhaps a more interesting application of ZConfig.basic.mapping is using the derived type to override the keytype .
If we have the conversion function:

28 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

def email_address(value):
userid, hostname = value.split("@", 1)
hostname = hostname.lower() # normalize what we know we can
return "%s@%s" % (userid, hostname)

then we can use this as the key type for a derived mapping type:

<import package="ZConfig.components.basic" file="mapping.xml"/>

<sectiontype name="email-users"
extends="ZConfig.basic.mapping"
keytype="mypkg.datatypes.email_address"
/>

<section name="*"

type="email-users"

attribute="email_users"

/>

3.4 Logging Components

The ZConfig.components.logger package provides configuration support for the logging package in Python’s
standard library. This component can be imported using:

<import package="ZConfig.components.logger"/>

This component defines two abstract types and several concrete section types. These can be imported as a unit, as
above, or as four smaller components usable in creating alternate logging packages.

The first of the four smaller components contains the abstract types, and can be imported using:

<import package="ZConfig.components.logger" file="abstract.xml"/>

The two abstract types imported by this are:

ZConfig.logger.log
Logger objects are represented by this abstract type.

ZConfig.logger.handler
Each logger object can have one or more “handlers” associated with them. These handlers are responsible for
writing logging events to some form of output stream using appropriate formatting. The output stream may be a
file on a disk, a socket communicating with a server on another system, or a series of syslog messages. Section
types which implement this type represent these handlers.

The second and third of the smaller components provides section types that act as factories for logging.Logger
objects. These can be imported using:

<import package="ZConfig.components.logger" file="eventlog.xml"/>
<import package="ZConfig.components.logger" file="logger.xml"/>

The types defined in these components implement the ZConfig.logger.log abstract type. The ‘eventlog.xml’ component
defines an eventlog type which represents the root logger from the the 1ogging package (the return value of 1logging.
getLogger()), while the ‘logger.xml’ component defines a logger section type which represents a named logger.

3.4. Logging Components 29

ZConfig Documentation, Release 3.6.1.dev0

The third of the smaller components provides section types that are factories for logging.Handler objects. This can
be imported using:

<import package="ZConfig.components.logger" file="handlers.xml"/>

The types defined in this component implement the ZConfig.logger.handler abstract type.

The configuration objects provided by both the logger and handler types are factories for the finished loggers and
handlers. These factories should be called with no arguments to retrieve the logger or log handler objects. Calling the
factories repeatedly will cause the same objects to be returned each time, so it’s safe to simply call them to retrieve the
objects.

The factories for the logger objects, whether the eventlog or logger section type is used, provide a reopen() method
which may be called to close any log files and re-open them. This is useful when using a UNIX signal to effect log
file rotation: the signal handler can call this method, and not have to worry about what handlers have been registered
for the logger. There is also a function in the ZConfig.components.logger.loghandler module that re-opens all
open log files created using ZConfig configuration:

ZConfig.components.logger.loghandler.reopenFiles()

Closes and re-opens all the log files held open by handlers created by the factories for 1ogfile sections. This is
intended to help support log rotation for applications.

3.4.1 Using The Logging Components

Building an application that uses the logging components is fairly straightforward. The schema needs to import the
relevant components and declare their use:

<schema>
<import package="ZConfig.components.logger" file="eventlog.xml"/>
<import package="ZConfig.components.logger" file="handlers.xml"/>
<section type="eventlog" name="*"
required="yes"/>

attribute="eventlog"

</schema>

In the application, the schema and configuration file should be loaded normally. Once the configuration object is
available, the logger factory should be called to configure Python’s 1ogging package:

import os
import ZConfig

def run(configfile):
schemafile = os.path.join(os.path.dirname(__file__), "schema.xml")
schema = ZConfig.loadSchema(schemafile)
config, handlers = ZConfig.loadConfig(schema, configfile)

configure the logging package:
config.eventlog()

now do interesting things

An example configuration file for this application may look like this:

30 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

<eventlog>
level info

<logfile>
path /var/log/myapp
format %(asctime)s %(levelname)s %(name)s %(message)s

locale-specific date/time representation
dateformat %c
</logfile>

<syslog>
level error
address syslog.example.net:514
format %(levelname)s %(name)s %(message)s
</syslog>
</eventlog>

Refer to the 1logging.LogRecord documentation for the names available in the message format strings (the format
key in the log handlers). The date format strings (the dateformat key in the log handlers) are the same as those
accepted by the time.strftime() function.

3.4.2 Configuring The Logging Components

For reference documentation on the available handlers, see Log Handlers.

3.5 Using Components to Extend Schema

It is possible to use schema components and the %import construct to extend the set of section types available for a
specific configuration file, and allow the new components to be used in place of standard components.

The key to making this work is the use of abstract section types. Wherever the original schema accepts an abstract
type, it is possible to load new implementations of the abstract type and use those instead of, or in addition to, the
implementations loaded by the original schema.

Abstract types are generally used to represent interfaces. Sometimes these are interfaces for factory objects, and some-
times not, but there’s an interface that the new component needs to implement. What interface is required should be
documented in the description element in the abstracttype element; this may be by reference to an interface
specified in a Python module or described in some other bit of documentation.

The following things need to be created to make the new component usable from the configuration file:
1. An implementation of the required interface.
2. A schema component that defines a section type that contains the information needed to construct the component.
3. A datatype function that converts configuration data to an instance of the component.

For simplicity, let’s assume that the implementation is defined by a Python class.

The example component we build here will be in the noise package, but any package will do. Components loadable
using %import must be contained in the component . xml file; alternate filenames may not be selected by the %import
construct.

Create a ZConfig component that provides a section type to support your component. The new section type must
declare that it implements the appropriate abstract type; it should probably look something like this:

3.5. Using Components to Extend Schema 31

ZConfig Documentation, Release 3.6.1.dev0

<component prefix="noise.server'">
<import package="ZServer"/>

<sectiontype name="noise-generator"
implements="ZServer.server"
datatype=".NoiseServerFactory">

<!-- specific configuration data should be described here -->

<key name="port"
datatype="port-number"
required="yes">
<description>
Port number to listen on.
</description>
</key>

<key name="color"
datatype=".noise_color"
default="white">
<description>
Silly way to specify a noise generation algorithm.
</description>
</key>

</sectiontype>
</component>

This example uses one of the standard ZConfig datatypes, port-number, and requires two additional types to be pro-
vided by the noise.server module: NoiseServerFactory and noise_color().

The noise_color () function is a datatype conversion for a key, so it accepts a string and returns the value that should
be used:

_noise_colors = {
color -> r,g,b
'white': (255, 255, 255),
'pink': (255, 182, 193),
}

def noise_color(string):
if string in _noise_colors:
return _noise_colors[string]
else:
raise ValueError('unknown noise color: ' % string)

NoiseServerFactory is a little different, as it’s the datatype function for a section rather than a key. The parameter
isn’t a string, but a section value object with two attributes, port and color.

Since the ZServer.server abstract type requires that the component returned is a factory object, the datatype function
can be implemented at the constructor for the class of the factory object. (If the datatype function could select different
implementation classes based on the configuration values, it makes more sense to use a simple function that returns the
appropriate implementation.)

A class that implements this datatype might look like this:

32 Chapter 3. Developing With ZConfig

ZConfig Documentation, Release 3.6.1.dev0

from ZServer.datatypes import ServerFactory
from noise.generator import WhiteNoiseGenerator, PinkNoiseGenerator

class NoiseServerFactory(ServerFactory):

def __init__(self, section):
host and ip will be initialized by ServerFactory.prepare()
self.host = None
self.ip = None
self.port = section.port
self.color = section.color

def create(self):
if self.color == 'white':
generator = WhiteNoiseGenerator()
else:
generator = PinkNoiseGenerator()
return NoiseServer(self.ip, self.port, generator)

You’ll need to arrange for the package containing this component to be available on Python’s sys.path before the
configuration file is loaded; this is mostly easily done by manipulating the PYTHONPATH environment variable.

Your configuration file can now include the following to load and use your new component:

%import noise

<noise-generator>
port 1234
color white
</noise-generator>

3.6 Documenting Components

ZConfig includes a docutils directive for documenting components and schemas that you create. This directive can
function as a Sphinx extension if you include ZConfig. sphinx in the extensions value of your Sphinx configuration:

extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.interpsphinx’,
'ZConfig.sphinx',

1

There is one directive:

. zconfig:: <package-name>

New in version 3.2.0.
Document the components or schema found in the Python package package-name.

By default, the contents of component .xml will be documented. You can specify the : file: option to choose
a different file from that package. This file can refer to a schema or component definition.

Each component will have its name, type, and default value documented. The description of the component will
be rendered as reStructuredText (and so can use directives like py:class: and py:meth: to perform cross

3.6. Documenting Components 33

ZConfig Documentation, Release 3.6.1.dev0

references). Any example for the component will be rendered as a pre-formatted block.

All ZConfig components reachable will be documented, in the order in which they are found. Often times,
if your component extends other components, this will produce too much documentation (it will document the
components you are extending in addition to the unique aspects of your component). You can use the :members:
and :excluded-members: options to limit this.

Both of these options take a space-separated list of component names. These options can be used together. When
:members: is given, only items that are explicitly named, or that are reachable from such items, are documented.
The :excluded-members: option overrides this, causing any such members to be explicitly excluded.

These options are also useful for breaking the description of a component up into multiple distinct sections,
with narrative documentation between them. For example, to document the main logger component provided by
ZConfig separately from each type of handler ZConfig provides, the document might look like this:

You can configure a logger and logging level with ZConfig:

. zconfig:: ZConfig.components.logger

:members: ZConfig.logger.base-logger
:excluded-members: zconfig.logger.handler

ZConfig supports multiple different types of handlers for a given logger:

. zconfig:: ZConfig.components.logger

:members: zconfig.logger.handler

34

Chapter 3. Developing With ZConfig

CHAPTER
FOUR

PYTHON API

4.1 ZConfig — Basic configuration support

4.1.1 Functions

The main ZConfig package exports these convenience functions:
ZConfig.loadConfig(schema, url, overrides=())

Load and return a configuration from a URL or pathname given by url.

url may be a URL, absolute pathname, or relative pathname. Fragment identifiers are not supported. schema is
a reference to a schema loaded by IoadSchema () or loadSchemaFile().

The return value is a tuple containing the configuration object and a composite handler that, when called with a
name-to-handler mapping, calls all the handlers for the configuration.

The optional overrides argument represents information derived from command-line arguments. If given, it must
be either a sequence of value specifiers, or None. A “value specifier” is a string of the form optionpath=value,
for example, some/path/to/key=value.

See also:
ExtendedConfigLoader.addOption()
For information on the format of value specifiers.

ConfiglLoader
For information about loading configs.

BaseLoader.loadURL ()
For information about the format of url

ZConfig.loadConfigFile (schema, file, url=None, overrides=())

Load and return a configuration from an opened file object.

If url is omitted, one will be computed based on the name attribute of file, if it exists. If no URL can be determined,
all %include statements in the configuration must use absolute URLSs. schema is a reference to a schema loaded
by loadSchema () or loadSchemaFile().

The return value is a tuple containing the configuration object and a composite handler that, when called with a
name-to-handler mapping, calls all the handlers for the configuration. The overrides argument is the same as for
the JoadConfig() function.

See also:

ConfiglLoader, BaseLoader.loadFile(), ExtendedConfigLoader.addOption()

35

ZConfig Documentation, Release 3.6.1.dev0

ZConfig.loadSchema (url)
Load a schema definition from the URL url.

url may be a URL, absolute pathname, or relative pathname. Fragment identifiers are not supported.

The resulting schema object can be passed to IoadConfig() or loadConfigFile (). The schema object may
be used as many times as needed.

See also:

Schemaloader, BaseLoader.loadURL ()
ZConfig.loadSchemaFile (file, url=None)

Load a schema definition from the open file object file.

If url is given and not None, it should be the URL of resource represented by file. If url is omitted or None, a
URL may be computed from the name attribute of file, if present. The resulting schema object can be passed to
loadConfig() or loadConfigFile (). The schema object may be used as many times as needed.

See also:

Schemaloader, BaseLoader.loadFile()

4.1.2 Exceptions

The following exceptions are defined by this package:

exception ZConfig.ConfigurationError
Bases: Exception

Base class for exceptions specific to the ZConfig package.

All instances provide a message attribute that describes the specific error, and a url attribute that gives the URL
of the resource the error was located in, or None.

exception ZConfig.ConfigurationSyntaxError

Exception raised when a configuration source does not conform to the allowed syntax.

In addition to the message and url attributes, exceptions of this type offer the 1ineno attribute, which provides
the line number at which the error was detected.

exception ZConfig.DataConversionError

Bases: ConfigurationError, ValueError
Raised when a data type conversion fails with ValueError.

This exception is a subclass of both ConfigurationError and ValueError. The str() of the exception pro-
vides the explanation from the original ValueError, and the line number and URL of the value which provoked
the error. The following additional attributes are provided:

colno
column number at which the value starts, or None

exception
the original ValueError instance

lineno
line number on which the value starts

message
str() returned by the original ValueError

36 Chapter 4. Python API

ZConfig Documentation, Release 3.6.1.dev0

value
original value passed to the conversion function

url
URL of the resource providing the value text

exception ZConfig.SchemaError

Raised when a schema contains an error.

This exception type provides the attributes url, 1ineno, and colno, which provide the source URL, the line
number, and the column number at which the error was detected. These attributes may be None in some cases.

exception ZConfig.SchemaResourceError
Bases: SchemaError

Raised when there’s an error locating a resource required by the schema.

Instances of this exception class add the attributes filename, package, and path, which hold the filename
searched for within the package being loaded, the name of the package, and the __path__ attribute of the package
itself (or None if it isn’t a package or could not be imported).

exception ZConfig.SubstitutionReplacementError
Bases: ConfigurationSyntaxError, LookupError

Raised when the source text contains references to names which are not defined in mapping.

The attributes source and name provide the complete source text and the name (converted to lower case) for
which no replacement is defined.

exception ZConfig.SubstitutionSyntaxError

Raised when interpolation source text contains syntactical errors.

4.1.3 Basic Usage

The simplest use of ZConfig is to load a configuration based on a schema stored in a file. This example loads a
configuration file specified on the command line using a schema in the same directory as the script:

import os
import sys
import ZConfig

try:
myfile = __file _
except NameError:
myfile = os.path.realpath(sys.argv[0])

mydir = os.path.dirname(myfile)

schema = ZConfig.loadSchema(os.path.join(mydir, 'schema.xml'))
conf, handler = ZConfig.loadConfig(schema, sys.argv[1])

If the schema file contained this schema:

<schema>

<key name='server' required='yes'/>

<key name='attempts' datatype='integer' default='5'/>
</schema>

4.1. ZConfig — Basic configuration support 37

ZConfig Documentation, Release 3.6.1.dev0

and the file specified on the command line contained this text:

sample configuration

server www.example.com

then the configuration object conf loaded above would have two attributes, server with the value 'www.example.com'
and attempts with the value 5.

4.2 ZConfig.datatypes — Default data type registry

Default implementation of a data type registry

This module provides the implementation of the default data type registry and all the standard data types supported by
ZConfig. A number of convenience classes are also provided to assist in the creation of additional data types.

A “data type registry” is an object that provides conversion functions for data types. The interface for a registry is
fairly simple.

A “conversion function” is any callable object that accepts a single argument and returns a suitable value, or raises an
exception if the input value is not acceptable. ValueError is the preferred exception for disallowed inputs, but any
other exception will be properly propagated.

class ZConfig.datatypes.Registry(stock=None)

Implementation of a simple type registry.

If given, stock should be a mapping which defines the “built-in” data types for the registry; if omitted or None,
the standard set of data types is used (see Standard ZConfig Datatypes).
get (name)
Return the type conversion routine for name.
If the conversion function cannot be found, an (unspecified) exception is raised. If the name is not provided
in the stock set of data types by this registry and has not otherwise been registered, this method uses the
search() method to load the conversion function. This is the only method the rest of ZConfig requires.
register (name, conversion)
Register the data type name name to use the conversion function conversion.
If name is already registered or provided as a stock data type, ValueError is raised (this includes the case
when name was found using the search () method).
search (name)
This is a helper method for the default implementation of the get () method.
If name is a Python dotted-name, this method loads the value for the name by dynamically importing the

containing module and extracting the value of the name. The name must refer to a usable conversion
function.

The following classes are provided to define conversion functions:

class ZConfig.datatypes.MemoizedConversion(conversion)

Simple memoization for potentially expensive conversions.

This conversion helper caches each successful conversion for re-use at a later time; failed conversions are not
cached in any way, since it is difficult to raise a meaningful exception providing information about the specific
failure.

38

Chapter 4. Python API

ZConfig Documentation, Release 3.6.1.dev0

class ZConfig.datatypes.RangeCheckedConversion(conversion, min=None, max=None)

Conversion helper that performs range checks on the result of another conversion.

Values passed to instances of this conversion are converted using conversion and then range checked. min and
max, if given and not None, are the inclusive endpoints of the allowed range. Values returned by conversion
which lay outside the range described by min and max cause ValueError to be raised.

class ZConfig.datatypes.RegularExpressionConversion(regex)
Conversion that checks that the input matches the regular expression regex.

If it matches, returns the input, otherwise raises ValueError.

4.3 ZConfig.loader — Resource loading support

This module provides some helper classes used by the primary APIs exported by the ZConfig package. These classes
may be useful for some applications, especially applications that want to use a non-default data type registry.

class ZConfig.loader.Resource (file, url)
Object that allows an open file object and a URL to be bound together to ease handling.

Instances have the attributes file and url, which store the constructor arguments. These objects also have a
close () method which will call close() on file, then set the £ile attribute to None and the closed attribute
to True. Using this object as a context manager also closes the file.

All other attributes are delegated to file.

class ZConfig.loader.ConfigLoader (schema)
Bases: BaselLoader

Loader for configuration files.

Each configuration file must conform to the schema schema. The 1oad* () methods return a tuple consisting of
the configuration object and a composite handler.

class ZConfig.loader.Schemaloader (registry=None)
Bases: BaseLoader

Loader that loads schema instances.

All schema loaded by a SchemaLoader will use the same data type registry. If registry is provided and not None,
it will be used, otherwise an instance of ZConfig.datatypes.Registry will be used.

4.3.1 Loader Objects

Loader objects provide a general public interface, an interface which subclasses must implement, and some utility
methods.

class ZConfig.loader.BaseLoader
Base class for loader objects.

This should not be instantiated directly, as the IoadResource () method must be overridden for the instance to
be used via the public APIL.

The following methods provide the public interface:

4.3. ZConfig.loader — Resource loading support 39

ZConfig Documentation, Release 3.6.1.dev0

BaseLoader.loadURL (url)
Open and load a resource specified by the URL url.

This method uses the IoadResource () method to perform the actual load, and returns whatever that method
returns.

BaseLoader.loadFile(file, url=None)
Load from an open file object, file.

If given and not None, url should be the URL of the resource represented by file. If omitted or None, the name
attribute of file is used to compute a file: URL, if present.

This method uses the IoadResource () method to perform the actual load, and returns whatever that method
returns.

The following method must be overridden by subclasses:

abstract Baseloader.loadResource (resource)
Abstract method.

Subclasses of BaseLoader must implement this method to actually load the resource and return the appropriate
application-level object.

The following methods can be used as utilities:

BaselLoader.isPath(s)
Return true if s should be considered a filesystem path rather than a URL.

BaseLoader.normalizeURL (url)
Return a URL for url

If url refers to an existing file, the corresponding file: URL isreturned. Otherwise url is checked for sanity: if it
does not have a schema, ValueError is raised, and if it does have a fragment identifier, ConfigurationError
is raised.

This uses isPath() to determine whether url is a URL of a filesystem path.

BaseLoader.openResource (url)
Returns a resource object that represents the URL url.

The URL is opened using theurllib.request.urlopen() function, and the returned resource object is created
using createResource (). If the URL cannot be opened, ConfigurationError is raised.

BaseLoader.createResource(file, url)

Returns a resource object for an open file and URL, given as file and url, respectively.

This may be overridden by a subclass if an alternate resource implementation is desired.

4.4 ZConfig.substitution — String substitution

Shell-style string substitution helper.
This module provides a basic substitution facility similar to that found in the Bourne shell (sh on most UNIX platforms).

The replacements supported by this module include:

40 Chapter 4. Python API

ZConfig Documentation, Release 3.6.1.dev0

Source Replacement Notes
$$ $
ey

$name The result of looking up name @)
${name} The result of looking up name
$ (name) The result of looking up name in the 3

environment @)

Notes:

1. This is different from the Bourne shell, which uses \$ to generate a $ in the result text. This difference avoids
having as many special characters in the syntax.

2. Any character which immediately follows name may not be a valid character in a name.
3. This is not Bourne shell style.

In each case, name is a non-empty sequence of alphanumeric and underscore characters not starting with a digit. If
there is not a replacement for name, the exception SubstitutionReplacementError is raised. Note that the lookup
is expected to be case-insensitive; this module will always use a lower-case version of the name to perform the query.

This module provides these functions:

ZConfig.substitution.substitute(s, mapping)
Substitute values from mapping into s.

mapping can be a dict or any type that supports the get () method of the mapping protocol. Replacement
values are copied into the result without further interpretation. Raises SubstitutionSyntaxError if there are
malformed constructs in s.

ZConfig.substitution.isname(s)

Returns True if s is a valid name for a substitution text, otherwise returns False.

4.4.1 Examples

>>> from ZConfig.substitution import substitute

>>d = {'name': 'value',
"top': '$middle',
.. 'middle' : 'bottom'}
>>>
>>> substitute('$name', d)
'value'
>>> substitute('$top', d)
'$middle’
>>> import os
>>> os.environ['from_environment'] = 'From environment.'

>>> substitute('$(from_einvironment)', d)
'From environment.'

4.4. ZConfig.substitution — String substitution 41

ZConfig Documentation, Release 3.6.1.dev0

4.5 ZConfig.cmdline — Command-line override support

Support for command-line overrides for configuration settings.

This module exports an extended version of the ConfigLoader class from the ZConfig. loader module. This pro-
vides support for overriding specific settings from the configuration file from the command line, without requiring the
application to provide specific options for everything the configuration file can include.

Each setting is given by a value specifier string, as described by ExtendedConfigLoader.addOption().

class ZConfig.cmdline.ExtendedConfigLoader (schema)

Bases: ConfigLoader
A ConfigLoader subclass that adds support for command-line overrides.

The following additional method is provided, and is the only way to provide position information to associate with
command-line parameters:

ExtendedConfiglLoader.addOption(spec, pos=None)
Add a single value to the list of overridden values.

The spec argument is a value specifier string of the form optionpath=value. For example:

some/path/to/key=value

The optionpath specifies the “full path” to the configuration setting: it can contain a sequence of names, sepa-
rated by / characters. Each name before the last names a section from the configuration file, and the last name
corresponds to a key within the section identified by the leading section names. If optionpath contains only one
name, it identifies a key in the top-level schema. value is a string that will be treated just like a value in the
configuration file.

A source position for the specifier may be given as pos. If pos is specified and not None, it must be a se-
quence of three values. The first is the URL of the source (or some other identifying string). The second and
third are the line number and column of the setting. These position information is only used to construct a
DataConversionError when data conversion fails.

42 Chapter 4. Python API

CHAPTER

FIVE

ZCONFIG TOOLING

ZConfig ships with some tools that can be helpful to anyone either writing configurations or writing programs that read

configurations.

5.1 Schema and Configuration Validation

When ZConfig is installed, it installs a program called zconfig that can validate both schemas and configurations

written against those schemas:

usage: zconfig [-h] -s FILE [file ...]
Script to check validity of a configuration file

positional arguments:

file Optional configuration file to check
options:
-h, --help show this help message and exit

-s FILE, --schema FILE
use the schema in FILE (can be a URL)

Each file named on the command line is checked for syntactical errors and
schema conformance. The schema must be specified. If no files are specified
and standard input is not a TTY, standard in is treated as a configuration
file. Specifying a schema and no configuration files causes the schema to be
checked.

5.2 Documenting Schemas

ZConfig also installs a tool called zconfig_schema2html that can print schemas in a simple HTML format.

Hint: To document components in reStructuredText, e.g., with Sphinx, see Documenting Components.

usage: zconfig_schema2html [-h] [--out OUT] [--package]
[--package-file PACKAGE_FILE]
[--members [MEMBERS ...]] [--format {html,xml}]

(continues on next page)

43

ZConfig Documentation, Release 3.6.1.dev0

(continued from previous page)

[SCHEMA-OR-PACKAGE]

Print an HTML version of a schema

positional arguments:
[SCHEMA-OR-PACKAGE]

options:
-h, --help
--out OUT, -o OUT

--package

The schema to print. By default, a file. Optionally, a
Python package. If not given, defaults to reading a
schema file from stdin

show this help message and exit

Write the schema to this file; if not given, write to
stdout

The SCHEMA-OR-PACKAGE argument indicates a Python
package instead of a file. The component.xml (by
default) from the package will be read.

--package-file PACKAGE_FILE

--members [MEMBERS ..

--format {html,xml}

When PACKAGE is given, this can specify the file
inside it to load.

-]

Only output sections and types in this list (and
reachable from it).
The output format to produce.

44

Chapter 5. ZConfig Tooling

CHAPTER
SIX

CHANGE HISTORY FOR ZCONFIG

6.1 4.0 (2023-05-05)

* Drop support for Python 2.7, 3.5, 3.6.

6.2 3.6.1 (2022-12-06)

* Add support for Python 3.11.
* Drop support for Python 3.4.

6.3 3.6.0 (2021-05-19)

* Added support for Python 3.8, 3.9 and 3.10. This primarily involves avoiding the new-in-3.8 validation of the
format string when using the ‘safe-template’ format style, since that’s not supported in the Python standard library.

e Added ZConfig.pygments module containing a lexer compatible with the pygments library. Made discover-
able via an entry point; use zconfig as the highlight language for code-block directives in Sphinx documents.

6.4 3.5.0 (2019-06-24)

* Add support for documenting schema files contained in packages to the Sphinx extension. See issue 59.

6.5 3.4.0 (2019-01-02)

Many changes have been made in the support for logging configurations:

* The log handler section types defined by the ZConfig.components.logger package support additional, op-
tional parameters:

style
Used to configure alternate format styles as found in the Python 3 standard library. Four style values are
supported: classic (the default), format (equivalent to style="{" in Python 3), template (equivalent
to style='$"), and safe-template (similar to template, but using the string.Template method
safe_substitute method). A best-effort implementation is provided for Python 2.

45

https://github.com/zopefoundation/ZConfig/issues/59

ZConfig Documentation, Release 3.6.1.dev0

6.6

arbitrary-fields
A Boolean defauting to False for backward compatibility, allows arbitrary replacement field names to
be accepted in the format string (regardless of the style setting). This supports applications where log
records are known to be generated with additional string or numeric fields, at least for some loggers. (An
exception is still raised at format time if the additional fields are not provided, unless the style value
safe-template is used.)

The 1ogfile section type defined by the ZConfig.components.logger package supports the optional delay
and encoding parameters. These can only be used for regular files, not the special STDOUT and STDERR streams.

More validation on the parameters to the logfile and email-notifier sections is performed early (at the
construction of the factory, rather than at creation of the logging handler). This allows more checking of
parameter combinations before any log files are opened.

The ZConfig.components.logger.handlers.log_format data type function now supports formats that
include numeric formatting for levelno, and accept funcName as a valid log record field (added in Python 2.6
and 3.1).

3.3.0 (2018-10-04)

Drop support for Python 3.3.
Add support for Python 3.7.
Drop support for ‘python setup.py test’. See issue 38.

Add support for example in section and multisection, and include those examples in generated documen-
tation. See https://github.com/zopefoundation/ZConfig/pull/5.

Fix configuration loaders to decode byte data using UTF-8 instead of the default encoding (usually ASCII). See
issue 37.

3.2.0 (2017-06-22)

Drop support for Python 2.6 and 3.2 and add support for Python 3.6.
Run tests with pypy and pypy3 as well.

Host docs at https://zconfig.readthedocs.io

BaseLoader is now an abstract class that cannot be instantiated.

Allow nan, inf and -inf values for floats in configurations. See https://github.com/zopefoundation/ZConfig/
issues/16.

Scripts zconfig (for schema validation) and zconfig_schema2html are ported to Python 3.

A new ZConfig.sphinx Sphinx extension facilitates automatically documenting ZConfig components using

their description and examples in Sphinx documentation. See https://github.com/zopefoundation/ZConfig/pull/
25.

Simplify internal schema processing of max and min occurrence values. See https://github.com/zopefoundation/
ZConfig/issues/15.

Almost all uses of type as a parameter name have been replaced with type_ to avoid shadowing a builtin. These
were typically not public APIs and weren’t expected to be called with keyword arguments so there should not be
any user-visible changes. See https://github.com/zopefoundation/ZConfig/issues/17

46

Chapter 6. Change History for ZConfig

https://github.com/zopefoundation/ZConfig/issues/38
https://github.com/zopefoundation/ZConfig/pull/5
https://github.com/zopefoundation/ZConfig/issues/37
https://zconfig.readthedocs.io
https://github.com/zopefoundation/ZConfig/issues/16
https://github.com/zopefoundation/ZConfig/issues/16
https://zconfig.readthedocs.io/en/latest/documenting-components.html#documenting-components
https://github.com/zopefoundation/ZConfig/pull/25
https://github.com/zopefoundation/ZConfig/pull/25
https://github.com/zopefoundation/ZConfig/issues/15
https://github.com/zopefoundation/ZConfig/issues/15
https://github.com/zopefoundation/ZConfig/issues/17

ZConfig Documentation, Release 3.6.1.dev0

6.8 3.1.0 (2015-10-17)

* Add ability to do variable substitution from environment variables using $() syntax.

6.9 3.0.4 (2014-03-20)

* Added Python 3.4 support.

6.10 3.0.3 (2013-03-02)

* Added Python 3.2 support.

6.11 3.0.2 (2013-02-14)

* Fixed ResourceWarning in BaseLoader.openResource().

6.12 3.0.1 (2013-02-13)

* Removed an accidentally left pdb statement from the code.

* Fix a bug in Python 3 with the custom string repr() function.

6.13 3.0.0 (2013-02-13)

* Added Python 3.3 support.
* Dropped Python 2.4 and 2.5 support.

6.14 2.9.3 (2012-06-25)

* Fixed: port values of 0 weren’t allowed. Port O is used to request an ephemeral port.

6.15 2.9.2 (2012-02-11)

* Adjust test classes to avoid base classes being considered separate test cases by (at least) the “nose” test runner.

6.8. 3.1.0 (2015-10-17)

47

ZConfig Documentation, Release 3.6.1.dev0

6.16 2.9.1 (2012-02-11)

* Make FileHandler.reopen thread safe.

6.17 2.9.0 (2011-03-22)

¢ Allow identical redefinition of %define names.

* Added support for IPv6 addresses.

6.18 2.8.0 (2010-04-13)

* Fix relative path recognition. https://bugs.launchpad.net/zconfig/+bug/405687

* Added SMTP authentication support for email logger on Python 2.6.

6.19 2.7.1 (2009-06-13)

* Improved documentation

¢ Fixed tests failures on windows.

6.20 2.7.0 (2009-06-11)

* Added a convenience function, ZConfig.configureLoggers (text) for configuring loggers.

» Relaxed the requirement for a logger name in logger sections, allowing the logger section to be used for both root
and non-root loggers.

6.21 2.6.1 (2008-12-05)

* Fixed support for schema descriptions that override descriptions from a base schema. If multiple base schema
provide descriptions but the derived schema does not, the first base mentioned that provides a description wins.
https://bugs.launchpad.net/zconfig/+bug/259475

* Fixed compatibility bug with Python 2.5.0.

* No longer trigger deprecation warnings under Python 2.6.

48 Chapter 6. Change History for ZConfig

https://bugs.launchpad.net/zconfig/+bug/405687
https://bugs.launchpad.net/zconfig/+bug/259475

ZConfig Documentation, Release 3.6.1.dev0

6.22 2.6.0 (2008-09-03)

» Added support for file rotation by time by specifying when and interval, rather than max-size, for log files.

* Removed dependency on setuptools from the setup.py.

6.23 2.5.1 (2007-12-24)

* Made it possible to run unit tests via ‘python setup.py test’ (requires setuptools on sys.path).

» Added better error messages to test failure assertions.

6.24 2.5 (2007-08-31)

A note on the version number:

Information discovered in the revision control system suggests that some past revision has been called “2.4”, though
it is not clear that any actual release was made with that version number. We’re going to skip revision 2.4 entirely to
avoid potential issues with anyone using something claiming to be ZConfig 2.4, and go straight to version 2.5.

* Add support for importing schema components from ZIP archives (including eggs).

* Added a ‘formatter’ configuration option in the logging handler sections to allow specifying a constructor for the
formatter.

* Documented the package: URL scheme that can be used in extending schema.

* Added support for reopening all log files opened via configurations using the ZConfig.components.logger pack-
age. For Zope, this is usable via the zc.signalhandler package. zc.signalhandler is not required for
ZConfig.

* Added support for rotating log files internally by size.

¢ Added a minimal implementation of schema-less parsing; this is mostly intended for applications that want to
read several fragments of ZConfig configuration files and assemble a combined configuration. Used in some
zc.buildout recipes.

* Converted to using zc.buildout and the standard test runner from zope. testing.

¢ Added more tests.

6.25 2.3.1 (2005-08-21)

¢ Isolated some of the case-normalization code so it will at least be easier to override. This remains non-trivial.

6.22. 2.6.0 (2008-09-03) 49

ZConfig Documentation, Release 3.6.1.dev0

6.26 2.3 (2005-05-18)

* Added “inet-binding-address” and “inet-connection-address” to the set of standard datatypes. These are similar

to the “inet-address” type, but the default hostname is more sensible. The datatype used should reflect how the
value will be used.

* Alternate rotating logfile handler for Windows, to avoid platform limitations on renaming open files. Contributed

by Sidnei da Silva.

¢ For <section> and <multisection>, if the name attribute is omitted, assume name="*", since this is what is used

most often.

6.27 2.2 (2004-04-21)

More documentation has been written.

Added a timedelta datatype function; the input is the same as for the time-interval datatype, but the resulting
value is a datetime.timedelta object.

Make sure keys specified as attributes of the <default> element are converted by the appropriate key type, and
are re-checked for derived sections.

Refactored the ZConfig.components.logger schema components so that a schema can import just one of the
“eventlog” or “logger” sections if desired. This can be helpful to avoid naming conflicts.

Added a reopen() method to the logger factories.
Always use an absolute pathname when opening a FileHandler.
A fix to the logger ‘format’ key to allow the %(process)d expansion variable that the logging package supports.

A new timedelta built-in datatype was added. Similar to time-interval except that it returns a datetime.timedelta
object instead.

6.28 2.1 (2004-04-12)

Removed compatibility with Python 2.1 and 2.2.

Schema components must really be in Python packages; the directory search has been modified to perform an
import to locate the package rather than incorrectly implementing the search algorithm.

The default objects use for section values now provide a method getSectionAttributes(); this returns a list of all
the attributes of the section object which store configuration-defined data (including information derived from
the schema).

93, 99

Default information can now be included in a schema for <key name="+"> and <multikey name="+"> by using
<default key="...”>.

More documentation has been added to discuss schema extension.

Support for a Unicode-free Python has been fixed.

Derived section types now inherit the datatype of the base type if no datatype is identified explicitly.
Derived section types can now override the keytype instead of always inheriting from their base type.
<import package="... /> makes use of the current prefix if the package name begins witha dot.

Added two standard datatypes: dotted-name and dotted-suffix.

50

Chapter 6. Change History for ZConfig

ZConfig Documentation, Release 3.6.1.dev0

* Added two standard schema components: ZConfig.components.basic and ZConfig.components.logger.

6.29 2.0 (2003-10-27)

» Configurations can import additional schema components using a new “%import” directive; this can be used to
integrate 3rd-party components into an application.

* Schemas may be extended using a new “extends” attribute on the <schema> element.
* Better error messages when elements in a schema definition are improperly nested.

* The “zconfig” script can now simply verify that a schema definition is valid, if that’s all that’s needed.

6.30 1.0 (2003-03-25)

¢ Initial release.

6.29. 2.0 (2003-10-27) 51

ZConfig Documentation, Release 3.6.1.dev0

52 Chapter 6. Change History for ZConfig

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
* modindex

¢ search

53

ZConfig Documentation, Release 3.6.1.dev0

54 Chapter 7. Indices and tables

PYTHON MODULE INDEX

Z

ZConfig, 35
ZConfig.cmdline, 42
ZConfig.datatypes, 38
ZConfig.loader, 39
ZConfig.substitution, 40

55

ZConfig Documentation, Release 3.6.1.dev0

56 Python Module Index

A

addOption() (ZConfig.cmdline.ExtendedConfigLoader
method), 42

B

BaseLoader (class in ZConfig.loader), 39
built-in function

INDEX

M

MemoizedConversion (class in ZConfig.datatypes), 38
module

ZConfig, 35

ZConfig.cmdline, 42

ZConfig.datatypes, 38

ZConfig.loader, 39

ZConfig.components.logger.loghandler.reopenFil&sqnfig. substitution, 40

30

C

ConfigLoader (class in ZConfig.loader), 39

ConfigurationError, 36

ConfigurationSyntaxError, 36

configureloggers() (in module ZConfig), 7

createResource() (ZConfig.loader.BaseLoader
method), 40

D

DataConversionError, 36

E

ExtendedConfigLoader (class in ZConfig.cmdline), 42

G

get) (ZConfig.datatypes.Registry method), 38

isname () (in module ZConfig.substitution), 41
isPath(Q) (ZConfig.loader.BaseLoader method), 40

L

loadConfig () (in module ZConfig), 35

loadConfigFile () (in module ZConfig), 35

loadFile () (ZConfig.loader.BaseLoader method), 40

loadResource() (ZConfig.loader.BaseLoader method),
40

loadSchema () (in module ZConfig), 35

loadSchemaFile () (in module ZConfig), 36

loadURL () (ZConfig.loader.BaseLoader method), 39

N

normalizeURL() (ZConfig.loader.BaseLoader method),
40

O

openResource() (ZConfig.loader.BaseLoader method),
40

R

RangeCheckedConversion
fig.datatypes), 38
register () (ZConfig.datatypes.Registry method), 38
Registry (class in ZConfig.datatypes), 38
RegularExpressionConversion (class

fig.datatypes), 39
Resource (class in ZConfig.loader), 39

S

SchemaError, 37

SchemaLoader (class in ZConfig.loader), 39
SchemaResourceError, 37

search() (ZConfig.datatypes.Registry method), 38
substitute() (in module ZConfig.substitution), 41
SubstitutionReplacementError, 37
SubstitutionSyntaxError, 37

Z

ZConfig
module, 35
zconfig (directive), 33
ZConfig.cmdline
module, 42

(class in ZCon-

in ZCon-

57

ZConfig Documentation, Release 3.6.1.dev0

ZConfig.components.logger.loghandler.reopenFiles()
built-in function, 30
ZConfig.datatypes
module, 38
ZConfig.loader
module, 39
ZConfig.substitution
module, 40

58

Index

	Reading and Writing Configurations
	Reading Configurations
	Writing Configurations
	Extending the Configuration Schema
	Other Examples
	Textual Substitution in Values
	Substitution in Values from Environment Variables

	Configuring Logging
	Configuration Format
	Examples

	Log Handlers
	Files
	The System Log
	Windows Event Log
	HTTP
	Email

	Developing With ZConfig
	Writing Configuration Schema
	Writing Configuration Schema
	Schema Elements
	Schema Components
	Referring to Files in Packages

	Schema Document Type Definition

	Standard ZConfig Datatypes
	Standard ZConfig Schema Components
	ZConfig.components.basic
	The Mapping Section Type

	Logging Components
	Using The Logging Components
	Configuring The Logging Components

	Using Components to Extend Schema
	Documenting Components

	Python API
	ZConfig — Basic configuration support
	Functions
	Exceptions
	Basic Usage

	ZConfig.datatypes — Default data type registry
	ZConfig.loader — Resource loading support
	Loader Objects

	ZConfig.substitution — String substitution
	Examples

	ZConfig.cmdline — Command-line override support

	ZConfig Tooling
	Schema and Configuration Validation
	Documenting Schemas

	Change History for ZConfig
	4.0 (2023-05-05)
	3.6.1 (2022-12-06)
	3.6.0 (2021-05-19)
	3.5.0 (2019-06-24)
	3.4.0 (2019-01-02)
	3.3.0 (2018-10-04)
	3.2.0 (2017-06-22)
	3.1.0 (2015-10-17)
	3.0.4 (2014-03-20)
	3.0.3 (2013-03-02)
	3.0.2 (2013-02-14)
	3.0.1 (2013-02-13)
	3.0.0 (2013-02-13)
	2.9.3 (2012-06-25)
	2.9.2 (2012-02-11)
	2.9.1 (2012-02-11)
	2.9.0 (2011-03-22)
	2.8.0 (2010-04-13)
	2.7.1 (2009-06-13)
	2.7.0 (2009-06-11)
	2.6.1 (2008-12-05)
	2.6.0 (2008-09-03)
	2.5.1 (2007-12-24)
	2.5 (2007-08-31)
	2.3.1 (2005-08-21)
	2.3 (2005-05-18)
	2.2 (2004-04-21)
	2.1 (2004-04-12)
	2.0 (2003-10-27)
	1.0 (2003-03-25)

	Indices and tables
	Python Module Index
	Index

