Actual source code: da.c
1: #include <petsc/private/dmdaimpl.h>
3: /*@
4: DMDASetSizes - Sets the number of grid points in the three dimensional directions
6: Logically Collective
8: Input Parameters:
9: + da - the `DMDA`
10: . M - the global X size
11: . N - the global Y size
12: - P - the global Z size
14: Level: intermediate
16: Developer Notes:
17: Since the dimension may not yet have been set the code cannot error check for non-positive Y and Z number of grid points
19: .seealso: `DM`, `DMDA`, `PetscSplitOwnership()`
20: @*/
21: PetscErrorCode DMDASetSizes(DM da, PetscInt M, PetscInt N, PetscInt P)
22: {
23: DM_DA *dd = (DM_DA *)da->data;
25: PetscFunctionBegin;
30: PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
31: PetscCheck(M >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Number of grid points in X direction must be positive");
32: PetscCheck(N >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Number of grid points in Y direction must be positive");
33: PetscCheck(P >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Number of grid points in Z direction must be positive");
35: dd->M = M;
36: dd->N = N;
37: dd->P = P;
38: PetscFunctionReturn(PETSC_SUCCESS);
39: }
41: /*@
42: DMDASetNumProcs - Sets the number of processes in each dimension
44: Logically Collective
46: Input Parameters:
47: + da - the `DMDA`
48: . m - the number of X procs (or `PETSC_DECIDE`)
49: . n - the number of Y procs (or `PETSC_DECIDE`)
50: - p - the number of Z procs (or `PETSC_DECIDE`)
52: Level: intermediate
54: .seealso: `DM`, `DMDA`, `DMDASetSizes()`, `PetscSplitOwnership()`
55: @*/
56: PetscErrorCode DMDASetNumProcs(DM da, PetscInt m, PetscInt n, PetscInt p)
57: {
58: DM_DA *dd = (DM_DA *)da->data;
60: PetscFunctionBegin;
65: PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
66: dd->m = m;
67: dd->n = n;
68: dd->p = p;
69: if (da->dim == 2) {
70: PetscMPIInt size;
71: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)da), &size));
72: if ((dd->m > 0) && (dd->n < 0)) {
73: dd->n = size / dd->m;
74: PetscCheck(dd->n * dd->m == size, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "%" PetscInt_FMT " processes in X direction not divisible into comm size %d", m, size);
75: }
76: if ((dd->n > 0) && (dd->m < 0)) {
77: dd->m = size / dd->n;
78: PetscCheck(dd->n * dd->m == size, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "%" PetscInt_FMT " processes in Y direction not divisible into comm size %d", n, size);
79: }
80: }
81: PetscFunctionReturn(PETSC_SUCCESS);
82: }
84: /*@
85: DMDASetBoundaryType - Sets the type of ghost nodes on domain boundaries.
87: Not Collective
89: Input Parameters:
90: + da - The `DMDA`
91: . bx - x boundary type, one of `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, `DM_BOUNDARY_PERIODIC`
92: . by - y boundary type, one of `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, `DM_BOUNDARY_PERIODIC`
93: - bz - z boundary type, one of `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, `DM_BOUNDARY_PERIODIC`
95: Level: intermediate
97: .seealso: `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`, `DMBoundaryType`
98: @*/
99: PetscErrorCode DMDASetBoundaryType(DM da, DMBoundaryType bx, DMBoundaryType by, DMBoundaryType bz)
100: {
101: DM_DA *dd = (DM_DA *)da->data;
103: PetscFunctionBegin;
108: PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
109: dd->bx = bx;
110: dd->by = by;
111: dd->bz = bz;
112: PetscFunctionReturn(PETSC_SUCCESS);
113: }
115: /*@
116: DMDASetDof - Sets the number of degrees of freedom per vertex
118: Not Collective
120: Input Parameters:
121: + da - The `DMDA`
122: - dof - Number of degrees of freedom
124: Level: intermediate
126: .seealso: `DM`, `DMDA`, `DMDAGetDof()`, `DMDACreate()`, `DMDestroy()`
127: @*/
128: PetscErrorCode DMDASetDof(DM da, PetscInt dof)
129: {
130: DM_DA *dd = (DM_DA *)da->data;
132: PetscFunctionBegin;
135: PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
136: dd->w = dof;
137: da->bs = dof;
138: PetscFunctionReturn(PETSC_SUCCESS);
139: }
141: /*@
142: DMDAGetDof - Gets the number of degrees of freedom per vertex
144: Not Collective
146: Input Parameter:
147: . da - The `DMDA`
149: Output Parameter:
150: . dof - Number of degrees of freedom
152: Level: intermediate
154: .seealso: `DM`, `DMDA`, `DMDASetDof()`, `DMDACreate()`, `DMDestroy()`
155: @*/
156: PetscErrorCode DMDAGetDof(DM da, PetscInt *dof)
157: {
158: DM_DA *dd = (DM_DA *)da->data;
160: PetscFunctionBegin;
162: PetscAssertPointer(dof, 2);
163: *dof = dd->w;
164: PetscFunctionReturn(PETSC_SUCCESS);
165: }
167: /*@
168: DMDAGetOverlap - Gets the size of the per-processor overlap.
170: Not Collective
172: Input Parameter:
173: . da - The `DMDA`
175: Output Parameters:
176: + x - Overlap in the x direction
177: . y - Overlap in the y direction
178: - z - Overlap in the z direction
180: Level: intermediate
182: .seealso: `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDASetOverlap()`
183: @*/
184: PetscErrorCode DMDAGetOverlap(DM da, PetscInt *x, PetscInt *y, PetscInt *z)
185: {
186: DM_DA *dd = (DM_DA *)da->data;
188: PetscFunctionBegin;
190: if (x) *x = dd->xol;
191: if (y) *y = dd->yol;
192: if (z) *z = dd->zol;
193: PetscFunctionReturn(PETSC_SUCCESS);
194: }
196: /*@
197: DMDASetOverlap - Sets the size of the per-processor overlap.
199: Not Collective
201: Input Parameters:
202: + da - The `DMDA`
203: . x - Overlap in the x direction
204: . y - Overlap in the y direction
205: - z - Overlap in the z direction
207: Level: intermediate
209: .seealso: `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDAGetOverlap()`
210: @*/
211: PetscErrorCode DMDASetOverlap(DM da, PetscInt x, PetscInt y, PetscInt z)
212: {
213: DM_DA *dd = (DM_DA *)da->data;
215: PetscFunctionBegin;
220: dd->xol = x;
221: dd->yol = y;
222: dd->zol = z;
223: PetscFunctionReturn(PETSC_SUCCESS);
224: }
226: /*@
227: DMDAGetNumLocalSubDomains - Gets the number of local subdomains created upon decomposition.
229: Not Collective
231: Input Parameter:
232: . da - The `DMDA`
234: Output Parameter:
235: . Nsub - Number of local subdomains created upon decomposition
237: Level: intermediate
239: .seealso: `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDASetNumLocalSubDomains()`
240: @*/
241: PetscErrorCode DMDAGetNumLocalSubDomains(DM da, PetscInt *Nsub)
242: {
243: DM_DA *dd = (DM_DA *)da->data;
245: PetscFunctionBegin;
247: if (Nsub) *Nsub = dd->Nsub;
248: PetscFunctionReturn(PETSC_SUCCESS);
249: }
251: /*@
252: DMDASetNumLocalSubDomains - Sets the number of local subdomains created upon decomposition.
254: Not Collective
256: Input Parameters:
257: + da - The `DMDA`
258: - Nsub - The number of local subdomains requested
260: Level: intermediate
262: .seealso: `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDAGetNumLocalSubDomains()`
263: @*/
264: PetscErrorCode DMDASetNumLocalSubDomains(DM da, PetscInt Nsub)
265: {
266: DM_DA *dd = (DM_DA *)da->data;
268: PetscFunctionBegin;
271: dd->Nsub = Nsub;
272: PetscFunctionReturn(PETSC_SUCCESS);
273: }
275: /*@
276: DMDASetOffset - Sets the index offset of the DA.
278: Collective
280: Input Parameters:
281: + da - The `DMDA`
282: . xo - The offset in the x direction
283: . yo - The offset in the y direction
284: . zo - The offset in the z direction
285: . Mo - The problem offset in the x direction
286: . No - The problem offset in the y direction
287: - Po - The problem offset in the z direction
289: Level: intermediate
291: Note:
292: This is used primarily to overlap a computation on a local `DMDA` with that on a global `DMDA` without
293: changing boundary conditions or subdomain features that depend upon the global offsets.
295: .seealso: `DM`, `DMDA`, `DMDAGetOffset()`, `DMDAVecGetArray()`
296: @*/
297: PetscErrorCode DMDASetOffset(DM da, PetscInt xo, PetscInt yo, PetscInt zo, PetscInt Mo, PetscInt No, PetscInt Po)
298: {
299: DM_DA *dd = (DM_DA *)da->data;
301: PetscFunctionBegin;
309: dd->xo = xo;
310: dd->yo = yo;
311: dd->zo = zo;
312: dd->Mo = Mo;
313: dd->No = No;
314: dd->Po = Po;
316: if (da->coordinates[0].dm) PetscCall(DMDASetOffset(da->coordinates[0].dm, xo, yo, zo, Mo, No, Po));
317: PetscFunctionReturn(PETSC_SUCCESS);
318: }
320: /*@
321: DMDAGetOffset - Gets the index offset of the `DMDA`.
323: Not Collective
325: Input Parameter:
326: . da - The `DMDA`
328: Output Parameters:
329: + xo - The offset in the x direction
330: . yo - The offset in the y direction
331: . zo - The offset in the z direction
332: . Mo - The global size in the x direction
333: . No - The global size in the y direction
334: - Po - The global size in the z direction
336: Level: intermediate
338: .seealso: `DM`, `DMDA`, `DMDASetOffset()`, `DMDAVecGetArray()`
339: @*/
340: PetscErrorCode DMDAGetOffset(DM da, PetscInt *xo, PetscInt *yo, PetscInt *zo, PetscInt *Mo, PetscInt *No, PetscInt *Po)
341: {
342: DM_DA *dd = (DM_DA *)da->data;
344: PetscFunctionBegin;
346: if (xo) *xo = dd->xo;
347: if (yo) *yo = dd->yo;
348: if (zo) *zo = dd->zo;
349: if (Mo) *Mo = dd->Mo;
350: if (No) *No = dd->No;
351: if (Po) *Po = dd->Po;
352: PetscFunctionReturn(PETSC_SUCCESS);
353: }
355: /*@
356: DMDAGetNonOverlappingRegion - Gets the indices of the nonoverlapping region of a subdomain `DM`.
358: Not Collective
360: Input Parameter:
361: . da - The `DMDA`
363: Output Parameters:
364: + xs - The start of the region in x
365: . ys - The start of the region in y
366: . zs - The start of the region in z
367: . xm - The size of the region in x
368: . ym - The size of the region in y
369: - zm - The size of the region in z
371: Level: intermediate
373: .seealso: `DM`, `DMDA`, `DMDAGetOffset()`, `DMDAVecGetArray()`
374: @*/
375: PetscErrorCode DMDAGetNonOverlappingRegion(DM da, PetscInt *xs, PetscInt *ys, PetscInt *zs, PetscInt *xm, PetscInt *ym, PetscInt *zm)
376: {
377: DM_DA *dd = (DM_DA *)da->data;
379: PetscFunctionBegin;
381: if (xs) *xs = dd->nonxs;
382: if (ys) *ys = dd->nonys;
383: if (zs) *zs = dd->nonzs;
384: if (xm) *xm = dd->nonxm;
385: if (ym) *ym = dd->nonym;
386: if (zm) *zm = dd->nonzm;
387: PetscFunctionReturn(PETSC_SUCCESS);
388: }
390: /*@
391: DMDASetNonOverlappingRegion - Sets the indices of the nonoverlapping region of a subdomain `DM`.
393: Collective
395: Input Parameters:
396: + da - The `DMDA`
397: . xs - The start of the region in x
398: . ys - The start of the region in y
399: . zs - The start of the region in z
400: . xm - The size of the region in x
401: . ym - The size of the region in y
402: - zm - The size of the region in z
404: Level: intermediate
406: .seealso: `DM`, `DMDA`, `DMDAGetOffset()`, `DMDAVecGetArray()`
407: @*/
408: PetscErrorCode DMDASetNonOverlappingRegion(DM da, PetscInt xs, PetscInt ys, PetscInt zs, PetscInt xm, PetscInt ym, PetscInt zm)
409: {
410: DM_DA *dd = (DM_DA *)da->data;
412: PetscFunctionBegin;
420: dd->nonxs = xs;
421: dd->nonys = ys;
422: dd->nonzs = zs;
423: dd->nonxm = xm;
424: dd->nonym = ym;
425: dd->nonzm = zm;
427: PetscFunctionReturn(PETSC_SUCCESS);
428: }
430: /*@
431: DMDASetStencilType - Sets the type of the communication stencil
433: Logically Collective
435: Input Parameters:
436: + da - The `DMDA`
437: - stype - The stencil type, use either `DMDA_STENCIL_BOX` or `DMDA_STENCIL_STAR`.
439: Level: intermediate
441: .seealso: `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`
442: @*/
443: PetscErrorCode DMDASetStencilType(DM da, DMDAStencilType stype)
444: {
445: DM_DA *dd = (DM_DA *)da->data;
447: PetscFunctionBegin;
450: PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
451: dd->stencil_type = stype;
452: PetscFunctionReturn(PETSC_SUCCESS);
453: }
455: /*@
456: DMDAGetStencilType - Gets the type of the communication stencil
458: Not Collective
460: Input Parameter:
461: . da - The `DMDA`
463: Output Parameter:
464: . stype - The stencil type, use either `DMDA_STENCIL_BOX` or `DMDA_STENCIL_STAR`.
466: Level: intermediate
468: .seealso: `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`
469: @*/
470: PetscErrorCode DMDAGetStencilType(DM da, DMDAStencilType *stype)
471: {
472: DM_DA *dd = (DM_DA *)da->data;
474: PetscFunctionBegin;
476: PetscAssertPointer(stype, 2);
477: *stype = dd->stencil_type;
478: PetscFunctionReturn(PETSC_SUCCESS);
479: }
481: /*@
482: DMDASetStencilWidth - Sets the width of the communication stencil
484: Logically Collective
486: Input Parameters:
487: + da - The `DMDA`
488: - width - The stencil width
490: Level: intermediate
492: .seealso: `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`
493: @*/
494: PetscErrorCode DMDASetStencilWidth(DM da, PetscInt width)
495: {
496: DM_DA *dd = (DM_DA *)da->data;
498: PetscFunctionBegin;
501: PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
502: dd->s = width;
503: PetscFunctionReturn(PETSC_SUCCESS);
504: }
506: /*@
507: DMDAGetStencilWidth - Gets the width of the communication stencil
509: Not Collective
511: Input Parameter:
512: . da - The `DMDA`
514: Output Parameter:
515: . width - The stencil width
517: Level: intermediate
519: .seealso: `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`
520: @*/
521: PetscErrorCode DMDAGetStencilWidth(DM da, PetscInt *width)
522: {
523: DM_DA *dd = (DM_DA *)da->data;
525: PetscFunctionBegin;
527: PetscAssertPointer(width, 2);
528: *width = dd->s;
529: PetscFunctionReturn(PETSC_SUCCESS);
530: }
532: static PetscErrorCode DMDACheckOwnershipRanges_Private(DM da, PetscInt M, PetscInt m, const PetscInt lx[])
533: {
534: PetscInt i, sum;
536: PetscFunctionBegin;
537: PetscCheck(M >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Global dimension not set");
538: for (i = sum = 0; i < m; i++) sum += lx[i];
539: PetscCheck(sum == M, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_INCOMP, "Ownership ranges sum to %" PetscInt_FMT " but global dimension is %" PetscInt_FMT, sum, M);
540: PetscFunctionReturn(PETSC_SUCCESS);
541: }
543: /*@
544: DMDASetOwnershipRanges - Sets the number of nodes in each direction on each process
546: Logically Collective
548: Input Parameters:
549: + da - The `DMDA`
550: . lx - array containing number of nodes in the X direction on each process, or NULL. If non-null, must be of length da->m
551: . ly - array containing number of nodes in the Y direction on each process, or NULL. If non-null, must be of length da->n
552: - lz - array containing number of nodes in the Z direction on each process, or NULL. If non-null, must be of length da->p.
554: Level: intermediate
556: Note:
557: These numbers are NOT multiplied by the number of dof per node.
559: .seealso: `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`
560: @*/
561: PetscErrorCode DMDASetOwnershipRanges(DM da, const PetscInt lx[], const PetscInt ly[], const PetscInt lz[])
562: {
563: DM_DA *dd = (DM_DA *)da->data;
565: PetscFunctionBegin;
567: PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
568: if (lx) {
569: PetscCheck(dd->m >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Cannot set ownership ranges before setting number of procs");
570: PetscCall(DMDACheckOwnershipRanges_Private(da, dd->M, dd->m, lx));
571: if (!dd->lx) PetscCall(PetscMalloc1(dd->m, &dd->lx));
572: PetscCall(PetscArraycpy(dd->lx, lx, dd->m));
573: }
574: if (ly) {
575: PetscCheck(dd->n >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Cannot set ownership ranges before setting number of procs");
576: PetscCall(DMDACheckOwnershipRanges_Private(da, dd->N, dd->n, ly));
577: if (!dd->ly) PetscCall(PetscMalloc1(dd->n, &dd->ly));
578: PetscCall(PetscArraycpy(dd->ly, ly, dd->n));
579: }
580: if (lz) {
581: PetscCheck(dd->p >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Cannot set ownership ranges before setting number of procs");
582: PetscCall(DMDACheckOwnershipRanges_Private(da, dd->P, dd->p, lz));
583: if (!dd->lz) PetscCall(PetscMalloc1(dd->p, &dd->lz));
584: PetscCall(PetscArraycpy(dd->lz, lz, dd->p));
585: }
586: PetscFunctionReturn(PETSC_SUCCESS);
587: }
589: /*@
590: DMDASetInterpolationType - Sets the type of interpolation that will be
591: returned by `DMCreateInterpolation()`
593: Logically Collective
595: Input Parameters:
596: + da - initial distributed array
597: - ctype - `DMDA_Q1` and `DMDA_Q0` are currently the only supported forms
599: Level: intermediate
601: Note:
602: You should call this on the coarser of the two `DMDA` you pass to `DMCreateInterpolation()`
604: .seealso: `DM`, `DMDA`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMDestroy()`, `DMDAInterpolationType`
605: @*/
606: PetscErrorCode DMDASetInterpolationType(DM da, DMDAInterpolationType ctype)
607: {
608: DM_DA *dd = (DM_DA *)da->data;
610: PetscFunctionBegin;
613: dd->interptype = ctype;
614: PetscFunctionReturn(PETSC_SUCCESS);
615: }
617: /*@
618: DMDAGetInterpolationType - Gets the type of interpolation that will be
619: used by `DMCreateInterpolation()`
621: Not Collective
623: Input Parameter:
624: . da - distributed array
626: Output Parameter:
627: . ctype - interpolation type (`DMDA_Q1` and `DMDA_Q0` are currently the only supported forms)
629: Level: intermediate
631: .seealso: `DM`, `DMDA`, `DMDAInterpolationType`, `DMDASetInterpolationType()`, `DMCreateInterpolation()`
632: @*/
633: PetscErrorCode DMDAGetInterpolationType(DM da, DMDAInterpolationType *ctype)
634: {
635: DM_DA *dd = (DM_DA *)da->data;
637: PetscFunctionBegin;
639: PetscAssertPointer(ctype, 2);
640: *ctype = dd->interptype;
641: PetscFunctionReturn(PETSC_SUCCESS);
642: }
644: /*@C
645: DMDAGetNeighbors - Gets an array containing the MPI rank of all the current
646: processes neighbors.
648: Not Collective
650: Input Parameter:
651: . da - the `DMDA` object
653: Output Parameter:
654: . ranks - the neighbors ranks, stored with the x index increasing most rapidly.
655: this process itself is in the list
657: Level: intermediate
659: Notes:
660: In 2d the array is of length 9, in 3d of length 27
662: Not supported in 1d
664: Do not free the array, it is freed when the `DMDA` is destroyed.
666: Fortran Notes:
667: In Fortran you must pass in an array of the appropriate length.
669: .seealso: `DMDA`, `DM`
670: @*/
671: PetscErrorCode DMDAGetNeighbors(DM da, const PetscMPIInt *ranks[])
672: {
673: DM_DA *dd = (DM_DA *)da->data;
675: PetscFunctionBegin;
677: *ranks = dd->neighbors;
678: PetscFunctionReturn(PETSC_SUCCESS);
679: }
681: /*@C
682: DMDAGetOwnershipRanges - Gets the ranges of indices in the x, y and z direction that are owned by each process
684: Not Collective
686: Input Parameter:
687: . da - the `DMDA` object
689: Output Parameters:
690: + lx - ownership along x direction (optional)
691: . ly - ownership along y direction (optional)
692: - lz - ownership along z direction (optional)
694: Level: intermediate
696: Note:
697: These correspond to the optional final arguments passed to `DMDACreate()`, `DMDACreate2d()`, `DMDACreate3d()`
699: In C you should not free these arrays, nor change the values in them. They will only have valid values while the
700: `DMDA` they came from still exists (has not been destroyed).
702: These numbers are NOT multiplied by the number of dof per node.
704: Fortran Notes:
705: In Fortran one must pass in arrays `lx`, `ly`, and `lz` that are long enough to hold the values; the sixth, seventh and
706: eighth arguments from `DMDAGetInfo()`
708: .seealso: `DM`, `DMDA`, `DMDAGetCorners()`, `DMDAGetGhostCorners()`, `DMDACreate()`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `VecGetOwnershipRanges()`
709: @*/
710: PetscErrorCode DMDAGetOwnershipRanges(DM da, const PetscInt *lx[], const PetscInt *ly[], const PetscInt *lz[])
711: {
712: DM_DA *dd = (DM_DA *)da->data;
714: PetscFunctionBegin;
716: if (lx) *lx = dd->lx;
717: if (ly) *ly = dd->ly;
718: if (lz) *lz = dd->lz;
719: PetscFunctionReturn(PETSC_SUCCESS);
720: }
722: /*@
723: DMDASetRefinementFactor - Set the ratios that the `DMDA` grid is refined
725: Logically Collective
727: Input Parameters:
728: + da - the `DMDA` object
729: . refine_x - ratio of fine grid to coarse in x direction (2 by default)
730: . refine_y - ratio of fine grid to coarse in y direction (2 by default)
731: - refine_z - ratio of fine grid to coarse in z direction (2 by default)
733: Options Database Keys:
734: + -da_refine_x refine_x - refinement ratio in x direction
735: . -da_refine_y rafine_y - refinement ratio in y direction
736: . -da_refine_z refine_z - refinement ratio in z direction
737: - -da_refine <n> - refine the DMDA object n times when it is created.
739: Level: intermediate
741: Note:
742: Pass `PETSC_IGNORE` to leave a value unchanged
744: .seealso: `DM`, `DMDA`, `DMRefine()`, `DMDAGetRefinementFactor()`
745: @*/
746: PetscErrorCode DMDASetRefinementFactor(DM da, PetscInt refine_x, PetscInt refine_y, PetscInt refine_z)
747: {
748: DM_DA *dd = (DM_DA *)da->data;
750: PetscFunctionBegin;
756: if (refine_x > 0) dd->refine_x = refine_x;
757: if (refine_y > 0) dd->refine_y = refine_y;
758: if (refine_z > 0) dd->refine_z = refine_z;
759: PetscFunctionReturn(PETSC_SUCCESS);
760: }
762: /*@C
763: DMDAGetRefinementFactor - Gets the ratios that the `DMDA` grid is refined
765: Not Collective
767: Input Parameter:
768: . da - the `DMDA` object
770: Output Parameters:
771: + refine_x - ratio of fine grid to coarse in x direction (2 by default)
772: . refine_y - ratio of fine grid to coarse in y direction (2 by default)
773: - refine_z - ratio of fine grid to coarse in z direction (2 by default)
775: Level: intermediate
777: Note:
778: Pass `NULL` for values you do not need
780: .seealso: `DM`, `DMDA`, `DMRefine()`, `DMDASetRefinementFactor()`
781: @*/
782: PetscErrorCode DMDAGetRefinementFactor(DM da, PetscInt *refine_x, PetscInt *refine_y, PetscInt *refine_z)
783: {
784: DM_DA *dd = (DM_DA *)da->data;
786: PetscFunctionBegin;
788: if (refine_x) *refine_x = dd->refine_x;
789: if (refine_y) *refine_y = dd->refine_y;
790: if (refine_z) *refine_z = dd->refine_z;
791: PetscFunctionReturn(PETSC_SUCCESS);
792: }
794: /*@C
795: DMDASetGetMatrix - Sets the routine used by the `DMDA` to allocate a matrix.
797: Logically Collective; No Fortran Support
799: Input Parameters:
800: + da - the `DMDA` object
801: - f - the function that allocates the matrix for that specific DMDA
803: Level: developer
805: Note:
806: See `DMDASetBlockFills()` that provides a simple way to provide the nonzero structure for
807: the diagonal and off-diagonal blocks of the matrix
809: .seealso: `DM`, `DMDA`, `DMCreateMatrix()`, `DMDASetBlockFills()`
810: @*/
811: PetscErrorCode DMDASetGetMatrix(DM da, PetscErrorCode (*f)(DM, Mat *))
812: {
813: PetscFunctionBegin;
815: da->ops->creatematrix = f;
816: PetscFunctionReturn(PETSC_SUCCESS);
817: }
819: /*@
820: DMDAMapMatStencilToGlobal - Map a list of `MatStencil` on a grid to global indices.
822: Not Collective
824: Input Parameters:
825: + da - the `DMDA` object
826: . m - number of MatStencils
827: - idxm - grid points (and component number when dof > 1)
829: Output Parameter:
830: . gidxm - global row indices
832: Level: intermediate
834: .seealso: `DM`, `DMDA`, `MatStencil`
835: @*/
836: PetscErrorCode DMDAMapMatStencilToGlobal(DM da, PetscInt m, const MatStencil idxm[], PetscInt gidxm[])
837: {
838: const DM_DA *dd = (const DM_DA *)da->data;
839: const PetscInt *dxm = (const PetscInt *)idxm;
840: PetscInt i, j, sdim, tmp, dim;
841: PetscInt dims[4], starts[4], dims2[3], starts2[3], dof = dd->w;
842: ISLocalToGlobalMapping ltog;
844: PetscFunctionBegin;
845: if (m <= 0) PetscFunctionReturn(PETSC_SUCCESS);
847: /* Code adapted from DMDAGetGhostCorners() */
848: starts2[0] = dd->Xs / dof + dd->xo;
849: starts2[1] = dd->Ys + dd->yo;
850: starts2[2] = dd->Zs + dd->zo;
851: dims2[0] = (dd->Xe - dd->Xs) / dof;
852: dims2[1] = (dd->Ye - dd->Ys);
853: dims2[2] = (dd->Ze - dd->Zs);
855: /* As if we do MatSetStencil() to get dims[]/starts[] of mat->stencil */
856: dim = da->dim; /* DA dim: 1 to 3 */
857: sdim = dim + (dof > 1 ? 1 : 0); /* Dimensions in MatStencil's (k,j,i,c) view */
858: for (i = 0; i < dim; i++) { /* Reverse the order and also skip the unused dimensions */
859: dims[i] = dims2[dim - i - 1]; /* ex. dims/starts[] are in order of {i} for 1D, {j,i} for 2D and {k,j,i} for 3D */
860: starts[i] = starts2[dim - i - 1];
861: }
862: starts[dim] = 0; /* Append the extra dim for dof (won't be used below if dof=1) */
863: dims[dim] = dof;
865: /* Map stencils to local indices (code adapted from MatSetValuesStencil()) */
866: for (i = 0; i < m; i++) {
867: dxm += 3 - dim; /* Input is {k,j,i,c}; move the pointer to the first used index, e.g., j in 2D */
868: tmp = 0;
869: for (j = 0; j < sdim; j++) { /* Iter over, ex. j,i or j,i,c in 2D */
870: if (tmp < 0 || dxm[j] < starts[j] || dxm[j] >= (starts[j] + dims[j])) tmp = -1; /* Beyond the ghost region, therefore ignored with negative indices */
871: else tmp = tmp * dims[j] + (dxm[j] - starts[j]);
872: }
873: gidxm[i] = tmp;
874: /* Move to the next MatStencil point */
875: if (dof > 1) dxm += sdim; /* c is already counted in sdim */
876: else dxm += sdim + 1; /* skip the unused c */
877: }
879: /* Map local indices to global indices */
880: PetscCall(DMGetLocalToGlobalMapping(da, <og));
881: PetscCall(ISLocalToGlobalMappingApply(ltog, m, gidxm, gidxm));
882: PetscFunctionReturn(PETSC_SUCCESS);
883: }
885: /*
886: Creates "balanced" ownership ranges after refinement, constrained by the need for the
887: fine grid boundaries to fall within one stencil width of the coarse partition.
889: Uses a greedy algorithm to handle non-ideal layouts, could probably do something better.
890: */
891: static PetscErrorCode DMDARefineOwnershipRanges(DM da, PetscBool periodic, PetscInt stencil_width, PetscInt ratio, PetscInt m, const PetscInt lc[], PetscInt lf[])
892: {
893: PetscInt i, totalc = 0, remaining, startc = 0, startf = 0;
895: PetscFunctionBegin;
896: PetscCheck(ratio >= 1, PetscObjectComm((PetscObject)da), PETSC_ERR_USER, "Requested refinement ratio %" PetscInt_FMT " must be at least 1", ratio);
897: if (ratio == 1) {
898: PetscCall(PetscArraycpy(lf, lc, m));
899: PetscFunctionReturn(PETSC_SUCCESS);
900: }
901: for (i = 0; i < m; i++) totalc += lc[i];
902: remaining = (!periodic) + ratio * (totalc - (!periodic));
903: for (i = 0; i < m; i++) {
904: PetscInt want = remaining / (m - i) + !!(remaining % (m - i));
905: if (i == m - 1) lf[i] = want;
906: else {
907: const PetscInt nextc = startc + lc[i];
908: /* Move the first fine node of the next subdomain to the right until the coarse node on its left is within one
909: * coarse stencil width of the first coarse node in the next subdomain. */
910: while ((startf + want) / ratio < nextc - stencil_width) want++;
911: /* Move the last fine node in the current subdomain to the left until the coarse node on its right is within one
912: * coarse stencil width of the last coarse node in the current subdomain. */
913: while ((startf + want - 1 + ratio - 1) / ratio > nextc - 1 + stencil_width) want--;
914: /* Make sure all constraints are satisfied */
915: if (want < 0 || want > remaining || ((startf + want) / ratio < nextc - stencil_width) || ((startf + want - 1 + ratio - 1) / ratio > nextc - 1 + stencil_width))
916: SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Could not find a compatible refined ownership range");
917: }
918: lf[i] = want;
919: startc += lc[i];
920: startf += lf[i];
921: remaining -= lf[i];
922: }
923: PetscFunctionReturn(PETSC_SUCCESS);
924: }
926: /*
927: Creates "balanced" ownership ranges after coarsening, constrained by the need for the
928: fine grid boundaries to fall within one stencil width of the coarse partition.
930: Uses a greedy algorithm to handle non-ideal layouts, could probably do something better.
931: */
932: static PetscErrorCode DMDACoarsenOwnershipRanges(DM da, PetscBool periodic, PetscInt stencil_width, PetscInt ratio, PetscInt m, const PetscInt lf[], PetscInt lc[])
933: {
934: PetscInt i, totalf, remaining, startc, startf;
936: PetscFunctionBegin;
937: PetscCheck(ratio >= 1, PetscObjectComm((PetscObject)da), PETSC_ERR_USER, "Requested refinement ratio %" PetscInt_FMT " must be at least 1", ratio);
938: if (ratio == 1) {
939: PetscCall(PetscArraycpy(lc, lf, m));
940: PetscFunctionReturn(PETSC_SUCCESS);
941: }
942: for (i = 0, totalf = 0; i < m; i++) totalf += lf[i];
943: remaining = (!periodic) + (totalf - (!periodic)) / ratio;
944: for (i = 0, startc = 0, startf = 0; i < m; i++) {
945: PetscInt want = remaining / (m - i) + !!(remaining % (m - i));
946: if (i == m - 1) lc[i] = want;
947: else {
948: const PetscInt nextf = startf + lf[i];
949: /* Slide first coarse node of next subdomain to the left until the coarse node to the left of the first fine
950: * node is within one stencil width. */
951: while (nextf / ratio < startc + want - stencil_width) want--;
952: /* Slide the last coarse node of the current subdomain to the right until the coarse node to the right of the last
953: * fine node is within one stencil width. */
954: while ((nextf - 1 + ratio - 1) / ratio > startc + want - 1 + stencil_width) want++;
955: if (want < 0 || want > remaining || (nextf / ratio < startc + want - stencil_width) || ((nextf - 1 + ratio - 1) / ratio > startc + want - 1 + stencil_width))
956: SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Could not find a compatible coarsened ownership range");
957: }
958: lc[i] = want;
959: startc += lc[i];
960: startf += lf[i];
961: remaining -= lc[i];
962: }
963: PetscFunctionReturn(PETSC_SUCCESS);
964: }
966: PetscErrorCode DMRefine_DA(DM da, MPI_Comm comm, DM *daref)
967: {
968: PetscInt M, N, P, i, dim;
969: Vec coordsc, coordsf;
970: DM da2;
971: DM_DA *dd = (DM_DA *)da->data, *dd2;
973: PetscFunctionBegin;
975: PetscAssertPointer(daref, 3);
977: PetscCall(DMGetDimension(da, &dim));
978: if (dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
979: M = dd->refine_x * dd->M;
980: } else {
981: M = 1 + dd->refine_x * (dd->M - 1);
982: }
983: if (dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
984: if (dim > 1) {
985: N = dd->refine_y * dd->N;
986: } else {
987: N = 1;
988: }
989: } else {
990: N = 1 + dd->refine_y * (dd->N - 1);
991: }
992: if (dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
993: if (dim > 2) {
994: P = dd->refine_z * dd->P;
995: } else {
996: P = 1;
997: }
998: } else {
999: P = 1 + dd->refine_z * (dd->P - 1);
1000: }
1001: PetscCall(DMDACreate(PetscObjectComm((PetscObject)da), &da2));
1002: PetscCall(DMSetOptionsPrefix(da2, ((PetscObject)da)->prefix));
1003: PetscCall(DMSetDimension(da2, dim));
1004: PetscCall(DMDASetSizes(da2, M, N, P));
1005: PetscCall(DMDASetNumProcs(da2, dd->m, dd->n, dd->p));
1006: PetscCall(DMDASetBoundaryType(da2, dd->bx, dd->by, dd->bz));
1007: PetscCall(DMDASetDof(da2, dd->w));
1008: PetscCall(DMDASetStencilType(da2, dd->stencil_type));
1009: PetscCall(DMDASetStencilWidth(da2, dd->s));
1010: if (dim == 3) {
1011: PetscInt *lx, *ly, *lz;
1012: PetscCall(PetscMalloc3(dd->m, &lx, dd->n, &ly, dd->p, &lz));
1013: PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_x, dd->m, dd->lx, lx));
1014: PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_y, dd->n, dd->ly, ly));
1015: PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_z, dd->p, dd->lz, lz));
1016: PetscCall(DMDASetOwnershipRanges(da2, lx, ly, lz));
1017: PetscCall(PetscFree3(lx, ly, lz));
1018: } else if (dim == 2) {
1019: PetscInt *lx, *ly;
1020: PetscCall(PetscMalloc2(dd->m, &lx, dd->n, &ly));
1021: PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_x, dd->m, dd->lx, lx));
1022: PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_y, dd->n, dd->ly, ly));
1023: PetscCall(DMDASetOwnershipRanges(da2, lx, ly, NULL));
1024: PetscCall(PetscFree2(lx, ly));
1025: } else if (dim == 1) {
1026: PetscInt *lx;
1027: PetscCall(PetscMalloc1(dd->m, &lx));
1028: PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_x, dd->m, dd->lx, lx));
1029: PetscCall(DMDASetOwnershipRanges(da2, lx, NULL, NULL));
1030: PetscCall(PetscFree(lx));
1031: }
1032: dd2 = (DM_DA *)da2->data;
1034: /* allow overloaded (user replaced) operations to be inherited by refinement clones */
1035: da2->ops->creatematrix = da->ops->creatematrix;
1036: /* da2->ops->createinterpolation = da->ops->createinterpolation; this causes problem with SNESVI */
1037: da2->ops->getcoloring = da->ops->getcoloring;
1038: dd2->interptype = dd->interptype;
1040: /* copy fill information if given */
1041: if (dd->dfill) {
1042: PetscCall(PetscMalloc1(dd->dfill[dd->w] + dd->w + 1, &dd2->dfill));
1043: PetscCall(PetscArraycpy(dd2->dfill, dd->dfill, dd->dfill[dd->w] + dd->w + 1));
1044: }
1045: if (dd->ofill) {
1046: PetscCall(PetscMalloc1(dd->ofill[dd->w] + dd->w + 1, &dd2->ofill));
1047: PetscCall(PetscArraycpy(dd2->ofill, dd->ofill, dd->ofill[dd->w] + dd->w + 1));
1048: }
1049: /* copy the refine information */
1050: dd2->coarsen_x = dd2->refine_x = dd->refine_x;
1051: dd2->coarsen_y = dd2->refine_y = dd->refine_y;
1052: dd2->coarsen_z = dd2->refine_z = dd->refine_z;
1054: if (dd->refine_z_hier) {
1055: if (da->levelup - da->leveldown + 1 > -1 && da->levelup - da->leveldown + 1 < dd->refine_z_hier_n) dd2->refine_z = dd->refine_z_hier[da->levelup - da->leveldown + 1];
1056: if (da->levelup - da->leveldown > -1 && da->levelup - da->leveldown < dd->refine_z_hier_n) dd2->coarsen_z = dd->refine_z_hier[da->levelup - da->leveldown];
1057: dd2->refine_z_hier_n = dd->refine_z_hier_n;
1058: PetscCall(PetscMalloc1(dd2->refine_z_hier_n, &dd2->refine_z_hier));
1059: PetscCall(PetscArraycpy(dd2->refine_z_hier, dd->refine_z_hier, dd2->refine_z_hier_n));
1060: }
1061: if (dd->refine_y_hier) {
1062: if (da->levelup - da->leveldown + 1 > -1 && da->levelup - da->leveldown + 1 < dd->refine_y_hier_n) dd2->refine_y = dd->refine_y_hier[da->levelup - da->leveldown + 1];
1063: if (da->levelup - da->leveldown > -1 && da->levelup - da->leveldown < dd->refine_y_hier_n) dd2->coarsen_y = dd->refine_y_hier[da->levelup - da->leveldown];
1064: dd2->refine_y_hier_n = dd->refine_y_hier_n;
1065: PetscCall(PetscMalloc1(dd2->refine_y_hier_n, &dd2->refine_y_hier));
1066: PetscCall(PetscArraycpy(dd2->refine_y_hier, dd->refine_y_hier, dd2->refine_y_hier_n));
1067: }
1068: if (dd->refine_x_hier) {
1069: if (da->levelup - da->leveldown + 1 > -1 && da->levelup - da->leveldown + 1 < dd->refine_x_hier_n) dd2->refine_x = dd->refine_x_hier[da->levelup - da->leveldown + 1];
1070: if (da->levelup - da->leveldown > -1 && da->levelup - da->leveldown < dd->refine_x_hier_n) dd2->coarsen_x = dd->refine_x_hier[da->levelup - da->leveldown];
1071: dd2->refine_x_hier_n = dd->refine_x_hier_n;
1072: PetscCall(PetscMalloc1(dd2->refine_x_hier_n, &dd2->refine_x_hier));
1073: PetscCall(PetscArraycpy(dd2->refine_x_hier, dd->refine_x_hier, dd2->refine_x_hier_n));
1074: }
1076: /* copy vector type information */
1077: PetscCall(DMSetVecType(da2, da->vectype));
1079: dd2->lf = dd->lf;
1080: dd2->lj = dd->lj;
1082: da2->leveldown = da->leveldown;
1083: da2->levelup = da->levelup + 1;
1085: PetscCall(DMSetUp(da2));
1087: /* interpolate coordinates if they are set on the coarse grid */
1088: PetscCall(DMGetCoordinates(da, &coordsc));
1089: if (coordsc) {
1090: DM cdaf, cdac;
1091: Mat II;
1093: PetscCall(DMGetCoordinateDM(da, &cdac));
1094: PetscCall(DMGetCoordinateDM(da2, &cdaf));
1095: /* force creation of the coordinate vector */
1096: PetscCall(DMDASetUniformCoordinates(da2, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0));
1097: PetscCall(DMGetCoordinates(da2, &coordsf));
1098: PetscCall(DMCreateInterpolation(cdac, cdaf, &II, NULL));
1099: PetscCall(MatInterpolate(II, coordsc, coordsf));
1100: PetscCall(MatDestroy(&II));
1101: }
1103: for (i = 0; i < da->bs; i++) {
1104: const char *fieldname;
1105: PetscCall(DMDAGetFieldName(da, i, &fieldname));
1106: PetscCall(DMDASetFieldName(da2, i, fieldname));
1107: }
1109: *daref = da2;
1110: PetscFunctionReturn(PETSC_SUCCESS);
1111: }
1113: PetscErrorCode DMCoarsen_DA(DM dmf, MPI_Comm comm, DM *dmc)
1114: {
1115: PetscInt M, N, P, i, dim;
1116: Vec coordsc, coordsf;
1117: DM dmc2;
1118: DM_DA *dd = (DM_DA *)dmf->data, *dd2;
1120: PetscFunctionBegin;
1122: PetscAssertPointer(dmc, 3);
1124: PetscCall(DMGetDimension(dmf, &dim));
1125: if (dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
1126: M = dd->M / dd->coarsen_x;
1127: } else {
1128: M = 1 + (dd->M - 1) / dd->coarsen_x;
1129: }
1130: if (dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
1131: if (dim > 1) {
1132: N = dd->N / dd->coarsen_y;
1133: } else {
1134: N = 1;
1135: }
1136: } else {
1137: N = 1 + (dd->N - 1) / dd->coarsen_y;
1138: }
1139: if (dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
1140: if (dim > 2) {
1141: P = dd->P / dd->coarsen_z;
1142: } else {
1143: P = 1;
1144: }
1145: } else {
1146: P = 1 + (dd->P - 1) / dd->coarsen_z;
1147: }
1148: PetscCall(DMDACreate(PetscObjectComm((PetscObject)dmf), &dmc2));
1149: PetscCall(DMSetOptionsPrefix(dmc2, ((PetscObject)dmf)->prefix));
1150: PetscCall(DMSetDimension(dmc2, dim));
1151: PetscCall(DMDASetSizes(dmc2, M, N, P));
1152: PetscCall(DMDASetNumProcs(dmc2, dd->m, dd->n, dd->p));
1153: PetscCall(DMDASetBoundaryType(dmc2, dd->bx, dd->by, dd->bz));
1154: PetscCall(DMDASetDof(dmc2, dd->w));
1155: PetscCall(DMDASetStencilType(dmc2, dd->stencil_type));
1156: PetscCall(DMDASetStencilWidth(dmc2, dd->s));
1157: if (dim == 3) {
1158: PetscInt *lx, *ly, *lz;
1159: PetscCall(PetscMalloc3(dd->m, &lx, dd->n, &ly, dd->p, &lz));
1160: PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_x, dd->m, dd->lx, lx));
1161: PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_y, dd->n, dd->ly, ly));
1162: PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_z, dd->p, dd->lz, lz));
1163: PetscCall(DMDASetOwnershipRanges(dmc2, lx, ly, lz));
1164: PetscCall(PetscFree3(lx, ly, lz));
1165: } else if (dim == 2) {
1166: PetscInt *lx, *ly;
1167: PetscCall(PetscMalloc2(dd->m, &lx, dd->n, &ly));
1168: PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_x, dd->m, dd->lx, lx));
1169: PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_y, dd->n, dd->ly, ly));
1170: PetscCall(DMDASetOwnershipRanges(dmc2, lx, ly, NULL));
1171: PetscCall(PetscFree2(lx, ly));
1172: } else if (dim == 1) {
1173: PetscInt *lx;
1174: PetscCall(PetscMalloc1(dd->m, &lx));
1175: PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_x, dd->m, dd->lx, lx));
1176: PetscCall(DMDASetOwnershipRanges(dmc2, lx, NULL, NULL));
1177: PetscCall(PetscFree(lx));
1178: }
1179: dd2 = (DM_DA *)dmc2->data;
1181: /* allow overloaded (user replaced) operations to be inherited by refinement clones; why are only some inherited and not all? */
1182: /* dmc2->ops->createinterpolation = dmf->ops->createinterpolation; copying this one causes trouble for DMSetVI */
1183: dmc2->ops->creatematrix = dmf->ops->creatematrix;
1184: dmc2->ops->getcoloring = dmf->ops->getcoloring;
1185: dd2->interptype = dd->interptype;
1187: /* copy fill information if given */
1188: if (dd->dfill) {
1189: PetscCall(PetscMalloc1(dd->dfill[dd->w] + dd->w + 1, &dd2->dfill));
1190: PetscCall(PetscArraycpy(dd2->dfill, dd->dfill, dd->dfill[dd->w] + dd->w + 1));
1191: }
1192: if (dd->ofill) {
1193: PetscCall(PetscMalloc1(dd->ofill[dd->w] + dd->w + 1, &dd2->ofill));
1194: PetscCall(PetscArraycpy(dd2->ofill, dd->ofill, dd->ofill[dd->w] + dd->w + 1));
1195: }
1196: /* copy the refine information */
1197: dd2->coarsen_x = dd2->refine_x = dd->coarsen_x;
1198: dd2->coarsen_y = dd2->refine_y = dd->coarsen_y;
1199: dd2->coarsen_z = dd2->refine_z = dd->coarsen_z;
1201: if (dd->refine_z_hier) {
1202: if (dmf->levelup - dmf->leveldown - 1 > -1 && dmf->levelup - dmf->leveldown - 1 < dd->refine_z_hier_n) dd2->refine_z = dd->refine_z_hier[dmf->levelup - dmf->leveldown - 1];
1203: if (dmf->levelup - dmf->leveldown - 2 > -1 && dmf->levelup - dmf->leveldown - 2 < dd->refine_z_hier_n) dd2->coarsen_z = dd->refine_z_hier[dmf->levelup - dmf->leveldown - 2];
1204: dd2->refine_z_hier_n = dd->refine_z_hier_n;
1205: PetscCall(PetscMalloc1(dd2->refine_z_hier_n, &dd2->refine_z_hier));
1206: PetscCall(PetscArraycpy(dd2->refine_z_hier, dd->refine_z_hier, dd2->refine_z_hier_n));
1207: }
1208: if (dd->refine_y_hier) {
1209: if (dmf->levelup - dmf->leveldown - 1 > -1 && dmf->levelup - dmf->leveldown - 1 < dd->refine_y_hier_n) dd2->refine_y = dd->refine_y_hier[dmf->levelup - dmf->leveldown - 1];
1210: if (dmf->levelup - dmf->leveldown - 2 > -1 && dmf->levelup - dmf->leveldown - 2 < dd->refine_y_hier_n) dd2->coarsen_y = dd->refine_y_hier[dmf->levelup - dmf->leveldown - 2];
1211: dd2->refine_y_hier_n = dd->refine_y_hier_n;
1212: PetscCall(PetscMalloc1(dd2->refine_y_hier_n, &dd2->refine_y_hier));
1213: PetscCall(PetscArraycpy(dd2->refine_y_hier, dd->refine_y_hier, dd2->refine_y_hier_n));
1214: }
1215: if (dd->refine_x_hier) {
1216: if (dmf->levelup - dmf->leveldown - 1 > -1 && dmf->levelup - dmf->leveldown - 1 < dd->refine_x_hier_n) dd2->refine_x = dd->refine_x_hier[dmf->levelup - dmf->leveldown - 1];
1217: if (dmf->levelup - dmf->leveldown - 2 > -1 && dmf->levelup - dmf->leveldown - 2 < dd->refine_x_hier_n) dd2->coarsen_x = dd->refine_x_hier[dmf->levelup - dmf->leveldown - 2];
1218: dd2->refine_x_hier_n = dd->refine_x_hier_n;
1219: PetscCall(PetscMalloc1(dd2->refine_x_hier_n, &dd2->refine_x_hier));
1220: PetscCall(PetscArraycpy(dd2->refine_x_hier, dd->refine_x_hier, dd2->refine_x_hier_n));
1221: }
1223: /* copy vector type information */
1224: PetscCall(DMSetVecType(dmc2, dmf->vectype));
1226: dd2->lf = dd->lf;
1227: dd2->lj = dd->lj;
1229: dmc2->leveldown = dmf->leveldown + 1;
1230: dmc2->levelup = dmf->levelup;
1232: PetscCall(DMSetUp(dmc2));
1234: /* inject coordinates if they are set on the fine grid */
1235: PetscCall(DMGetCoordinates(dmf, &coordsf));
1236: if (coordsf) {
1237: DM cdaf, cdac;
1238: Mat inject;
1239: VecScatter vscat;
1241: PetscCall(DMGetCoordinateDM(dmf, &cdaf));
1242: PetscCall(DMGetCoordinateDM(dmc2, &cdac));
1243: /* force creation of the coordinate vector */
1244: PetscCall(DMDASetUniformCoordinates(dmc2, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0));
1245: PetscCall(DMGetCoordinates(dmc2, &coordsc));
1247: PetscCall(DMCreateInjection(cdac, cdaf, &inject));
1248: PetscCall(MatScatterGetVecScatter(inject, &vscat));
1249: PetscCall(VecScatterBegin(vscat, coordsf, coordsc, INSERT_VALUES, SCATTER_FORWARD));
1250: PetscCall(VecScatterEnd(vscat, coordsf, coordsc, INSERT_VALUES, SCATTER_FORWARD));
1251: PetscCall(MatDestroy(&inject));
1252: }
1254: for (i = 0; i < dmf->bs; i++) {
1255: const char *fieldname;
1256: PetscCall(DMDAGetFieldName(dmf, i, &fieldname));
1257: PetscCall(DMDASetFieldName(dmc2, i, fieldname));
1258: }
1260: *dmc = dmc2;
1261: PetscFunctionReturn(PETSC_SUCCESS);
1262: }
1264: PetscErrorCode DMRefineHierarchy_DA(DM da, PetscInt nlevels, DM daf[])
1265: {
1266: PetscInt i, n, *refx, *refy, *refz;
1268: PetscFunctionBegin;
1270: PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
1271: if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
1272: PetscAssertPointer(daf, 3);
1274: /* Get refinement factors, defaults taken from the coarse DMDA */
1275: PetscCall(PetscMalloc3(nlevels, &refx, nlevels, &refy, nlevels, &refz));
1276: for (i = 0; i < nlevels; i++) PetscCall(DMDAGetRefinementFactor(da, &refx[i], &refy[i], &refz[i]));
1277: n = nlevels;
1278: PetscCall(PetscOptionsGetIntArray(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_refine_hierarchy_x", refx, &n, NULL));
1279: n = nlevels;
1280: PetscCall(PetscOptionsGetIntArray(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_refine_hierarchy_y", refy, &n, NULL));
1281: n = nlevels;
1282: PetscCall(PetscOptionsGetIntArray(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_refine_hierarchy_z", refz, &n, NULL));
1284: PetscCall(DMDASetRefinementFactor(da, refx[0], refy[0], refz[0]));
1285: PetscCall(DMRefine(da, PetscObjectComm((PetscObject)da), &daf[0]));
1286: for (i = 1; i < nlevels; i++) {
1287: PetscCall(DMDASetRefinementFactor(daf[i - 1], refx[i], refy[i], refz[i]));
1288: PetscCall(DMRefine(daf[i - 1], PetscObjectComm((PetscObject)da), &daf[i]));
1289: }
1290: PetscCall(PetscFree3(refx, refy, refz));
1291: PetscFunctionReturn(PETSC_SUCCESS);
1292: }
1294: PetscErrorCode DMCoarsenHierarchy_DA(DM da, PetscInt nlevels, DM dac[])
1295: {
1296: PetscInt i;
1298: PetscFunctionBegin;
1300: PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
1301: if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
1302: PetscAssertPointer(dac, 3);
1303: PetscCall(DMCoarsen(da, PetscObjectComm((PetscObject)da), &dac[0]));
1304: for (i = 1; i < nlevels; i++) PetscCall(DMCoarsen(dac[i - 1], PetscObjectComm((PetscObject)da), &dac[i]));
1305: PetscFunctionReturn(PETSC_SUCCESS);
1306: }
1308: static PetscErrorCode DMDASetGLLCoordinates_1d(DM dm, PetscInt n, PetscReal *nodes)
1309: {
1310: PetscInt i, j, xs, xn, q;
1311: PetscScalar *xx;
1312: PetscReal h;
1313: Vec x;
1314: DM_DA *da = (DM_DA *)dm->data;
1316: PetscFunctionBegin;
1317: if (da->bx != DM_BOUNDARY_PERIODIC) {
1318: PetscCall(DMDAGetInfo(dm, NULL, &q, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL));
1319: q = (q - 1) / (n - 1); /* number of spectral elements */
1320: h = 2.0 / q;
1321: PetscCall(DMDAGetCorners(dm, &xs, NULL, NULL, &xn, NULL, NULL));
1322: xs = xs / (n - 1);
1323: xn = xn / (n - 1);
1324: PetscCall(DMDASetUniformCoordinates(dm, -1., 1., 0., 0., 0., 0.));
1325: PetscCall(DMGetCoordinates(dm, &x));
1326: PetscCall(DMDAVecGetArray(dm, x, &xx));
1328: /* loop over local spectral elements */
1329: for (j = xs; j < xs + xn; j++) {
1330: /*
1331: Except for the first process, each process starts on the second GLL point of the first element on that process
1332: */
1333: for (i = (j == xs && xs > 0) ? 1 : 0; i < n; i++) xx[j * (n - 1) + i] = -1.0 + h * j + h * (nodes[i] + 1.0) / 2.;
1334: }
1335: PetscCall(DMDAVecRestoreArray(dm, x, &xx));
1336: } else SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_SUP, "Not yet implemented for periodic");
1337: PetscFunctionReturn(PETSC_SUCCESS);
1338: }
1340: /*@
1342: DMDASetGLLCoordinates - Sets the global coordinates from -1 to 1 to the GLL points of as many GLL elements that fit the number of grid points
1344: Collective
1346: Input Parameters:
1347: + da - the `DMDA` object
1348: . n - the number of GLL nodes
1349: - nodes - the GLL nodes
1351: Level: advanced
1353: Note:
1354: The parallel decomposition of grid points must correspond to the degree of the GLL. That is, the number of grid points
1355: on each process much be divisible by the number of GLL elements needed per process. This depends on whether the `DM` is
1356: periodic or not.
1358: .seealso: `DM`, `DMDA`, `DMDACreate()`, `PetscDTGaussLobattoLegendreQuadrature()`, `DMGetCoordinates()`
1359: @*/
1360: PetscErrorCode DMDASetGLLCoordinates(DM da, PetscInt n, PetscReal *nodes)
1361: {
1362: PetscFunctionBegin;
1363: if (da->dim == 1) {
1364: PetscCall(DMDASetGLLCoordinates_1d(da, n, nodes));
1365: } else SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_SUP, "Not yet implemented for 2 or 3d");
1366: PetscFunctionReturn(PETSC_SUCCESS);
1367: }
1369: PetscErrorCode DMGetCompatibility_DA(DM da1, DM dm2, PetscBool *compatible, PetscBool *set)
1370: {
1371: DM_DA *dd1 = (DM_DA *)da1->data, *dd2;
1372: DM da2;
1373: DMType dmtype2;
1374: PetscBool isda, compatibleLocal;
1375: PetscInt i;
1377: PetscFunctionBegin;
1378: PetscCheck(da1->setupcalled, PetscObjectComm((PetscObject)da1), PETSC_ERR_ARG_WRONGSTATE, "DMSetUp() must be called on first DM before DMGetCompatibility()");
1379: PetscCall(DMGetType(dm2, &dmtype2));
1380: PetscCall(PetscStrcmp(dmtype2, DMDA, &isda));
1381: if (isda) {
1382: da2 = dm2;
1383: dd2 = (DM_DA *)da2->data;
1384: PetscCheck(da2->setupcalled, PetscObjectComm((PetscObject)da2), PETSC_ERR_ARG_WRONGSTATE, "DMSetUp() must be called on second DM before DMGetCompatibility()");
1385: compatibleLocal = (PetscBool)(da1->dim == da2->dim);
1386: if (compatibleLocal) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->s == dd2->s)); /* Stencil width */
1387: /* Global size ranks Boundary type */
1388: if (compatibleLocal) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->M == dd2->M) && (dd1->m == dd2->m) && (dd1->bx == dd2->bx));
1389: if (compatibleLocal && da1->dim > 1) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->N == dd2->N) && (dd1->n == dd2->n) && (dd1->by == dd2->by));
1390: if (compatibleLocal && da1->dim > 2) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->P == dd2->P) && (dd1->p == dd2->p) && (dd1->bz == dd2->bz));
1391: if (compatibleLocal) {
1392: for (i = 0; i < dd1->m; ++i) { compatibleLocal = (PetscBool)(compatibleLocal && (dd1->lx[i] == dd2->lx[i])); /* Local size */ }
1393: }
1394: if (compatibleLocal && da1->dim > 1) {
1395: for (i = 0; i < dd1->n; ++i) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->ly[i] == dd2->ly[i]));
1396: }
1397: if (compatibleLocal && da1->dim > 2) {
1398: for (i = 0; i < dd1->p; ++i) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->lz[i] == dd2->lz[i]));
1399: }
1400: *compatible = compatibleLocal;
1401: *set = PETSC_TRUE;
1402: } else {
1403: /* Decline to determine compatibility with other DM types */
1404: *set = PETSC_FALSE;
1405: }
1406: PetscFunctionReturn(PETSC_SUCCESS);
1407: }