Actual source code: dtds.c
1: #include <petsc/private/petscdsimpl.h>
3: PetscClassId PETSCDS_CLASSID = 0;
5: PetscFunctionList PetscDSList = NULL;
6: PetscBool PetscDSRegisterAllCalled = PETSC_FALSE;
8: /* A PetscDS (Discrete System) encodes a set of equations posed in a discrete space, which represents a set of
9: nonlinear continuum equations. The equations can have multiple fields, each field having a different
10: discretization. In addition, different pieces of the domain can have different field combinations and equations.
12: The DS provides the user a description of the approximation space on any given cell. It also gives pointwise
13: functions representing the equations.
15: Each field is associated with a label, marking the cells on which it is supported. Note that a field can be
16: supported on the closure of a cell not in the label due to overlap of the boundary of neighboring cells. The DM
17: then creates a DS for each set of cells with identical approximation spaces. When assembling, the user asks for
18: the space associated with a given cell. DMPlex uses the labels associated with each DS in the default integration loop.
19: */
21: /*@C
22: PetscDSRegister - Adds a new `PetscDS` implementation
24: Not Collective; No Fortran Support
26: Input Parameters:
27: + sname - The name of a new user-defined creation routine
28: - function - The creation routine itself
30: Example Usage:
31: .vb
32: PetscDSRegister("my_ds", MyPetscDSCreate);
33: .ve
35: Then, your PetscDS type can be chosen with the procedural interface via
36: .vb
37: PetscDSCreate(MPI_Comm, PetscDS *);
38: PetscDSSetType(PetscDS, "my_ds");
39: .ve
40: or at runtime via the option
41: .vb
42: -petscds_type my_ds
43: .ve
45: Level: advanced
47: Note:
48: `PetscDSRegister()` may be called multiple times to add several user-defined `PetscDSs`
50: .seealso: `PetscDSType`, `PetscDS`, `PetscDSRegisterAll()`, `PetscDSRegisterDestroy()`
51: @*/
52: PetscErrorCode PetscDSRegister(const char sname[], PetscErrorCode (*function)(PetscDS))
53: {
54: PetscFunctionBegin;
55: PetscCall(PetscFunctionListAdd(&PetscDSList, sname, function));
56: PetscFunctionReturn(PETSC_SUCCESS);
57: }
59: /*@C
60: PetscDSSetType - Builds a particular `PetscDS`
62: Collective; No Fortran Support
64: Input Parameters:
65: + prob - The `PetscDS` object
66: - name - The `PetscDSType`
68: Options Database Key:
69: . -petscds_type <type> - Sets the PetscDS type; use -help for a list of available types
71: Level: intermediate
73: .seealso: `PetscDSType`, `PetscDS`, `PetscDSGetType()`, `PetscDSCreate()`
74: @*/
75: PetscErrorCode PetscDSSetType(PetscDS prob, PetscDSType name)
76: {
77: PetscErrorCode (*r)(PetscDS);
78: PetscBool match;
80: PetscFunctionBegin;
82: PetscCall(PetscObjectTypeCompare((PetscObject)prob, name, &match));
83: if (match) PetscFunctionReturn(PETSC_SUCCESS);
85: PetscCall(PetscDSRegisterAll());
86: PetscCall(PetscFunctionListFind(PetscDSList, name, &r));
87: PetscCheck(r, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscDS type: %s", name);
89: PetscTryTypeMethod(prob, destroy);
90: prob->ops->destroy = NULL;
92: PetscCall((*r)(prob));
93: PetscCall(PetscObjectChangeTypeName((PetscObject)prob, name));
94: PetscFunctionReturn(PETSC_SUCCESS);
95: }
97: /*@C
98: PetscDSGetType - Gets the `PetscDSType` name (as a string) from the `PetscDS`
100: Not Collective; No Fortran Support
102: Input Parameter:
103: . prob - The `PetscDS`
105: Output Parameter:
106: . name - The `PetscDSType` name
108: Level: intermediate
110: .seealso: `PetscDSType`, `PetscDS`, `PetscDSSetType()`, `PetscDSCreate()`
111: @*/
112: PetscErrorCode PetscDSGetType(PetscDS prob, PetscDSType *name)
113: {
114: PetscFunctionBegin;
116: PetscAssertPointer(name, 2);
117: PetscCall(PetscDSRegisterAll());
118: *name = ((PetscObject)prob)->type_name;
119: PetscFunctionReturn(PETSC_SUCCESS);
120: }
122: static PetscErrorCode PetscDSView_Ascii(PetscDS ds, PetscViewer viewer)
123: {
124: PetscViewerFormat format;
125: const PetscScalar *constants;
126: PetscInt Nf, numConstants, f;
128: PetscFunctionBegin;
129: PetscCall(PetscDSGetNumFields(ds, &Nf));
130: PetscCall(PetscViewerGetFormat(viewer, &format));
131: PetscCall(PetscViewerASCIIPrintf(viewer, "Discrete System with %" PetscInt_FMT " fields\n", Nf));
132: PetscCall(PetscViewerASCIIPushTab(viewer));
133: PetscCall(PetscViewerASCIIPrintf(viewer, " cell total dim %" PetscInt_FMT " total comp %" PetscInt_FMT "\n", ds->totDim, ds->totComp));
134: if (ds->isCohesive) PetscCall(PetscViewerASCIIPrintf(viewer, " cohesive cell\n"));
135: for (f = 0; f < Nf; ++f) {
136: DSBoundary b;
137: PetscObject obj;
138: PetscClassId id;
139: PetscQuadrature q;
140: const char *name;
141: PetscInt Nc, Nq, Nqc;
143: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
144: PetscCall(PetscObjectGetClassId(obj, &id));
145: PetscCall(PetscObjectGetName(obj, &name));
146: PetscCall(PetscViewerASCIIPrintf(viewer, "Field %s", name ? name : "<unknown>"));
147: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
148: if (id == PETSCFE_CLASSID) {
149: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
150: PetscCall(PetscFEGetQuadrature((PetscFE)obj, &q));
151: PetscCall(PetscViewerASCIIPrintf(viewer, " FEM"));
152: } else if (id == PETSCFV_CLASSID) {
153: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
154: PetscCall(PetscFVGetQuadrature((PetscFV)obj, &q));
155: PetscCall(PetscViewerASCIIPrintf(viewer, " FVM"));
156: } else SETERRQ(PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
157: if (Nc > 1) PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " components", Nc));
158: else PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " component ", Nc));
159: if (ds->implicit[f]) PetscCall(PetscViewerASCIIPrintf(viewer, " (implicit)"));
160: else PetscCall(PetscViewerASCIIPrintf(viewer, " (explicit)"));
161: if (q) {
162: PetscCall(PetscQuadratureGetData(q, NULL, &Nqc, &Nq, NULL, NULL));
163: PetscCall(PetscViewerASCIIPrintf(viewer, " (Nq %" PetscInt_FMT " Nqc %" PetscInt_FMT ")", Nq, Nqc));
164: }
165: PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT "-jet", ds->jetDegree[f]));
166: PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
167: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
168: PetscCall(PetscViewerASCIIPushTab(viewer));
169: if (id == PETSCFE_CLASSID) PetscCall(PetscFEView((PetscFE)obj, viewer));
170: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVView((PetscFV)obj, viewer));
171: PetscCall(PetscViewerASCIIPopTab(viewer));
173: for (b = ds->boundary; b; b = b->next) {
174: char *name;
175: PetscInt c, i;
177: if (b->field != f) continue;
178: PetscCall(PetscViewerASCIIPushTab(viewer));
179: PetscCall(PetscViewerASCIIPrintf(viewer, "Boundary %s (%s) %s\n", b->name, b->lname, DMBoundaryConditionTypes[b->type]));
180: if (!b->Nc) {
181: PetscCall(PetscViewerASCIIPrintf(viewer, " all components\n"));
182: } else {
183: PetscCall(PetscViewerASCIIPrintf(viewer, " components: "));
184: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
185: for (c = 0; c < b->Nc; ++c) {
186: if (c > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ", "));
187: PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT, b->comps[c]));
188: }
189: PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
190: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
191: }
192: PetscCall(PetscViewerASCIIPrintf(viewer, " values: "));
193: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
194: for (i = 0; i < b->Nv; ++i) {
195: if (i > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ", "));
196: PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT, b->values[i]));
197: }
198: PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
199: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
200: #if defined(__clang__)
201: PETSC_PRAGMA_DIAGNOSTIC_IGNORED_BEGIN("-Wformat-pedantic")
202: #elif defined(__GNUC__) || defined(__GNUG__)
203: PETSC_PRAGMA_DIAGNOSTIC_IGNORED_BEGIN("-Wformat")
204: #endif
205: if (b->func) {
206: PetscCall(PetscDLAddr(b->func, &name));
207: if (name) PetscCall(PetscViewerASCIIPrintf(viewer, " func: %s\n", name));
208: else PetscCall(PetscViewerASCIIPrintf(viewer, " func: %p\n", b->func));
209: PetscCall(PetscFree(name));
210: }
211: if (b->func_t) {
212: PetscCall(PetscDLAddr(b->func_t, &name));
213: if (name) PetscCall(PetscViewerASCIIPrintf(viewer, " func_t: %s\n", name));
214: else PetscCall(PetscViewerASCIIPrintf(viewer, " func_t: %p\n", b->func_t));
215: PetscCall(PetscFree(name));
216: }
217: PETSC_PRAGMA_DIAGNOSTIC_IGNORED_END()
218: PetscCall(PetscWeakFormView(b->wf, viewer));
219: PetscCall(PetscViewerASCIIPopTab(viewer));
220: }
221: }
222: PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
223: if (numConstants) {
224: PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " constants\n", numConstants));
225: PetscCall(PetscViewerASCIIPushTab(viewer));
226: for (f = 0; f < numConstants; ++f) PetscCall(PetscViewerASCIIPrintf(viewer, "%g\n", (double)PetscRealPart(constants[f])));
227: PetscCall(PetscViewerASCIIPopTab(viewer));
228: }
229: PetscCall(PetscWeakFormView(ds->wf, viewer));
230: PetscCall(PetscViewerASCIIPopTab(viewer));
231: PetscFunctionReturn(PETSC_SUCCESS);
232: }
234: /*@C
235: PetscDSViewFromOptions - View a `PetscDS` based on values in the options database
237: Collective
239: Input Parameters:
240: + A - the `PetscDS` object
241: . obj - Optional object that provides the options prefix used in the search
242: - name - command line option
244: Level: intermediate
246: .seealso: `PetscDSType`, `PetscDS`, `PetscDSView()`, `PetscObjectViewFromOptions()`, `PetscDSCreate()`
247: @*/
248: PetscErrorCode PetscDSViewFromOptions(PetscDS A, PetscObject obj, const char name[])
249: {
250: PetscFunctionBegin;
252: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
253: PetscFunctionReturn(PETSC_SUCCESS);
254: }
256: /*@C
257: PetscDSView - Views a `PetscDS`
259: Collective
261: Input Parameters:
262: + prob - the `PetscDS` object to view
263: - v - the viewer
265: Level: developer
267: .seealso: `PetscDSType`, `PetscDS`, `PetscViewer`, `PetscDSDestroy()`, `PetscDSViewFromOptions()`
268: @*/
269: PetscErrorCode PetscDSView(PetscDS prob, PetscViewer v)
270: {
271: PetscBool iascii;
273: PetscFunctionBegin;
275: if (!v) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)prob), &v));
277: PetscCall(PetscObjectTypeCompare((PetscObject)v, PETSCVIEWERASCII, &iascii));
278: if (iascii) PetscCall(PetscDSView_Ascii(prob, v));
279: PetscTryTypeMethod(prob, view, v);
280: PetscFunctionReturn(PETSC_SUCCESS);
281: }
283: /*@
284: PetscDSSetFromOptions - sets parameters in a `PetscDS` from the options database
286: Collective
288: Input Parameter:
289: . prob - the `PetscDS` object to set options for
291: Options Database Keys:
292: + -petscds_type <type> - Set the `PetscDS` type
293: . -petscds_view <view opt> - View the `PetscDS`
294: . -petscds_jac_pre - Turn formation of a separate Jacobian preconditioner on or off
295: . -bc_<name> <ids> - Specify a list of label ids for a boundary condition
296: - -bc_<name>_comp <comps> - Specify a list of field components to constrain for a boundary condition
298: Level: intermediate
300: .seealso: `PetscDS`, `PetscDSView()`
301: @*/
302: PetscErrorCode PetscDSSetFromOptions(PetscDS prob)
303: {
304: DSBoundary b;
305: const char *defaultType;
306: char name[256];
307: PetscBool flg;
309: PetscFunctionBegin;
311: if (!((PetscObject)prob)->type_name) {
312: defaultType = PETSCDSBASIC;
313: } else {
314: defaultType = ((PetscObject)prob)->type_name;
315: }
316: PetscCall(PetscDSRegisterAll());
318: PetscObjectOptionsBegin((PetscObject)prob);
319: for (b = prob->boundary; b; b = b->next) {
320: char optname[1024];
321: PetscInt ids[1024], len = 1024;
322: PetscBool flg;
324: PetscCall(PetscSNPrintf(optname, sizeof(optname), "-bc_%s", b->name));
325: PetscCall(PetscMemzero(ids, sizeof(ids)));
326: PetscCall(PetscOptionsIntArray(optname, "List of boundary IDs", "", ids, &len, &flg));
327: if (flg) {
328: b->Nv = len;
329: PetscCall(PetscFree(b->values));
330: PetscCall(PetscMalloc1(len, &b->values));
331: PetscCall(PetscArraycpy(b->values, ids, len));
332: PetscCall(PetscWeakFormRewriteKeys(b->wf, b->label, len, b->values));
333: }
334: len = 1024;
335: PetscCall(PetscSNPrintf(optname, sizeof(optname), "-bc_%s_comp", b->name));
336: PetscCall(PetscMemzero(ids, sizeof(ids)));
337: PetscCall(PetscOptionsIntArray(optname, "List of boundary field components", "", ids, &len, &flg));
338: if (flg) {
339: b->Nc = len;
340: PetscCall(PetscFree(b->comps));
341: PetscCall(PetscMalloc1(len, &b->comps));
342: PetscCall(PetscArraycpy(b->comps, ids, len));
343: }
344: }
345: PetscCall(PetscOptionsFList("-petscds_type", "Discrete System", "PetscDSSetType", PetscDSList, defaultType, name, 256, &flg));
346: if (flg) {
347: PetscCall(PetscDSSetType(prob, name));
348: } else if (!((PetscObject)prob)->type_name) {
349: PetscCall(PetscDSSetType(prob, defaultType));
350: }
351: PetscCall(PetscOptionsBool("-petscds_jac_pre", "Discrete System", "PetscDSUseJacobianPreconditioner", prob->useJacPre, &prob->useJacPre, &flg));
352: PetscCall(PetscOptionsBool("-petscds_force_quad", "Discrete System", "PetscDSSetForceQuad", prob->forceQuad, &prob->forceQuad, &flg));
353: PetscTryTypeMethod(prob, setfromoptions);
354: /* process any options handlers added with PetscObjectAddOptionsHandler() */
355: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)prob, PetscOptionsObject));
356: PetscOptionsEnd();
357: if (prob->Nf) PetscCall(PetscDSViewFromOptions(prob, NULL, "-petscds_view"));
358: PetscFunctionReturn(PETSC_SUCCESS);
359: }
361: /*@C
362: PetscDSSetUp - Construct data structures for the `PetscDS`
364: Collective
366: Input Parameter:
367: . prob - the `PetscDS` object to setup
369: Level: developer
371: .seealso: `PetscDS`, `PetscDSView()`, `PetscDSDestroy()`
372: @*/
373: PetscErrorCode PetscDSSetUp(PetscDS prob)
374: {
375: const PetscInt Nf = prob->Nf;
376: PetscBool hasH = PETSC_FALSE;
377: PetscInt maxOrder[4] = {-1, -1, -1, -1};
378: PetscInt dim, dimEmbed, NbMax = 0, NcMax = 0, NqMax = 0, NsMax = 1, f;
380: PetscFunctionBegin;
382: if (prob->setup) PetscFunctionReturn(PETSC_SUCCESS);
383: /* Calculate sizes */
384: PetscCall(PetscDSGetSpatialDimension(prob, &dim));
385: PetscCall(PetscDSGetCoordinateDimension(prob, &dimEmbed));
386: prob->totDim = prob->totComp = 0;
387: PetscCall(PetscMalloc2(Nf, &prob->Nc, Nf, &prob->Nb));
388: PetscCall(PetscCalloc2(Nf + 1, &prob->off, Nf + 1, &prob->offDer));
389: PetscCall(PetscCalloc6(Nf + 1, &prob->offCohesive[0], Nf + 1, &prob->offCohesive[1], Nf + 1, &prob->offCohesive[2], Nf + 1, &prob->offDerCohesive[0], Nf + 1, &prob->offDerCohesive[1], Nf + 1, &prob->offDerCohesive[2]));
390: PetscCall(PetscMalloc2(Nf, &prob->T, Nf, &prob->Tf));
391: if (prob->forceQuad) {
392: // Note: This assumes we have one kind of cell at each dimension.
393: // We can fix this by having quadrature hold the celltype
394: PetscQuadrature maxQuad[4] = {NULL, NULL, NULL, NULL};
396: for (f = 0; f < Nf; ++f) {
397: PetscObject obj;
398: PetscClassId id;
399: PetscQuadrature q = NULL, fq = NULL;
400: PetscInt dim = -1, order = -1, forder = -1;
402: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
403: if (!obj) continue;
404: PetscCall(PetscObjectGetClassId(obj, &id));
405: if (id == PETSCFE_CLASSID) {
406: PetscFE fe = (PetscFE)obj;
408: PetscCall(PetscFEGetQuadrature(fe, &q));
409: PetscCall(PetscFEGetFaceQuadrature(fe, &fq));
410: } else if (id == PETSCFV_CLASSID) {
411: PetscFV fv = (PetscFV)obj;
413: PetscCall(PetscFVGetQuadrature(fv, &q));
414: }
415: if (q) {
416: PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
417: PetscCall(PetscQuadratureGetOrder(q, &order));
418: if (order > maxOrder[dim]) {
419: maxOrder[dim] = order;
420: maxQuad[dim] = q;
421: }
422: }
423: if (fq) {
424: PetscCall(PetscQuadratureGetData(fq, &dim, NULL, NULL, NULL, NULL));
425: PetscCall(PetscQuadratureGetOrder(fq, &forder));
426: if (forder > maxOrder[dim]) {
427: maxOrder[dim] = forder;
428: maxQuad[dim] = fq;
429: }
430: }
431: }
432: for (f = 0; f < Nf; ++f) {
433: PetscObject obj;
434: PetscClassId id;
435: PetscQuadrature q;
436: PetscInt dim;
438: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
439: if (!obj) continue;
440: PetscCall(PetscObjectGetClassId(obj, &id));
441: if (id == PETSCFE_CLASSID) {
442: PetscFE fe = (PetscFE)obj;
444: PetscCall(PetscFEGetQuadrature(fe, &q));
445: PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
446: PetscCall(PetscFESetQuadrature(fe, maxQuad[dim]));
447: PetscCall(PetscFESetFaceQuadrature(fe, dim ? maxQuad[dim - 1] : NULL));
448: } else if (id == PETSCFV_CLASSID) {
449: PetscFV fv = (PetscFV)obj;
451: PetscCall(PetscFVGetQuadrature(fv, &q));
452: PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
453: PetscCall(PetscFVSetQuadrature(fv, maxQuad[dim]));
454: }
455: }
456: }
457: for (f = 0; f < Nf; ++f) {
458: PetscObject obj;
459: PetscClassId id;
460: PetscQuadrature q = NULL;
461: PetscInt Nq = 0, Nb, Nc;
463: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
464: if (prob->jetDegree[f] > 1) hasH = PETSC_TRUE;
465: if (!obj) {
466: /* Empty mesh */
467: Nb = Nc = 0;
468: prob->T[f] = prob->Tf[f] = NULL;
469: } else {
470: PetscCall(PetscObjectGetClassId(obj, &id));
471: if (id == PETSCFE_CLASSID) {
472: PetscFE fe = (PetscFE)obj;
474: PetscCall(PetscFEGetQuadrature(fe, &q));
475: {
476: PetscQuadrature fq;
477: PetscInt dim, order;
479: PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
480: PetscCall(PetscQuadratureGetOrder(q, &order));
481: if (maxOrder[dim] < 0) maxOrder[dim] = order;
482: PetscCheck(order == maxOrder[dim], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " cell quadrature order %" PetscInt_FMT " != %" PetscInt_FMT " DS cell quadrature order", f, order, maxOrder[dim]);
483: PetscCall(PetscFEGetFaceQuadrature(fe, &fq));
484: if (fq) {
485: PetscCall(PetscQuadratureGetData(fq, &dim, NULL, NULL, NULL, NULL));
486: PetscCall(PetscQuadratureGetOrder(fq, &order));
487: if (maxOrder[dim] < 0) maxOrder[dim] = order;
488: PetscCheck(order == maxOrder[dim], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " face quadrature order %" PetscInt_FMT " != %" PetscInt_FMT " DS face quadrature order", f, order, maxOrder[dim]);
489: }
490: }
491: PetscCall(PetscFEGetDimension(fe, &Nb));
492: PetscCall(PetscFEGetNumComponents(fe, &Nc));
493: PetscCall(PetscFEGetCellTabulation(fe, prob->jetDegree[f], &prob->T[f]));
494: PetscCall(PetscFEGetFaceTabulation(fe, prob->jetDegree[f], &prob->Tf[f]));
495: } else if (id == PETSCFV_CLASSID) {
496: PetscFV fv = (PetscFV)obj;
498: PetscCall(PetscFVGetQuadrature(fv, &q));
499: PetscCall(PetscFVGetNumComponents(fv, &Nc));
500: Nb = Nc;
501: PetscCall(PetscFVGetCellTabulation(fv, &prob->T[f]));
502: /* TODO: should PetscFV also have face tabulation? Otherwise there will be a null pointer in prob->basisFace */
503: } else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
504: }
505: prob->Nc[f] = Nc;
506: prob->Nb[f] = Nb;
507: prob->off[f + 1] = Nc + prob->off[f];
508: prob->offDer[f + 1] = Nc * dim + prob->offDer[f];
509: prob->offCohesive[0][f + 1] = (prob->cohesive[f] ? Nc : Nc * 2) + prob->offCohesive[0][f];
510: prob->offDerCohesive[0][f + 1] = (prob->cohesive[f] ? Nc : Nc * 2) * dimEmbed + prob->offDerCohesive[0][f];
511: prob->offCohesive[1][f] = (prob->cohesive[f] ? 0 : Nc) + prob->offCohesive[0][f];
512: prob->offDerCohesive[1][f] = (prob->cohesive[f] ? 0 : Nc) * dimEmbed + prob->offDerCohesive[0][f];
513: prob->offCohesive[2][f + 1] = (prob->cohesive[f] ? Nc : Nc * 2) + prob->offCohesive[2][f];
514: prob->offDerCohesive[2][f + 1] = (prob->cohesive[f] ? Nc : Nc * 2) * dimEmbed + prob->offDerCohesive[2][f];
515: if (q) PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
516: NqMax = PetscMax(NqMax, Nq);
517: NbMax = PetscMax(NbMax, Nb);
518: NcMax = PetscMax(NcMax, Nc);
519: prob->totDim += Nb;
520: prob->totComp += Nc;
521: /* There are two faces for all fields on a cohesive cell, except for cohesive fields */
522: if (prob->isCohesive && !prob->cohesive[f]) prob->totDim += Nb;
523: }
524: prob->offCohesive[1][Nf] = prob->offCohesive[0][Nf];
525: prob->offDerCohesive[1][Nf] = prob->offDerCohesive[0][Nf];
526: /* Allocate works space */
527: NsMax = 2; /* A non-cohesive discretizations can be used on a cohesive cell, so we need this extra workspace for all DS */
528: PetscCall(PetscMalloc3(NsMax * prob->totComp, &prob->u, NsMax * prob->totComp, &prob->u_t, NsMax * prob->totComp * dimEmbed + (hasH ? NsMax * prob->totComp * dimEmbed * dimEmbed : 0), &prob->u_x));
529: PetscCall(PetscMalloc5(dimEmbed, &prob->x, NbMax * NcMax, &prob->basisReal, NbMax * NcMax * dimEmbed, &prob->basisDerReal, NbMax * NcMax, &prob->testReal, NbMax * NcMax * dimEmbed, &prob->testDerReal));
530: PetscCall(PetscMalloc6(NsMax * NqMax * NcMax, &prob->f0, NsMax * NqMax * NcMax * dimEmbed, &prob->f1, NsMax * NsMax * NqMax * NcMax * NcMax, &prob->g0, NsMax * NsMax * NqMax * NcMax * NcMax * dimEmbed, &prob->g1, NsMax * NsMax * NqMax * NcMax * NcMax * dimEmbed,
531: &prob->g2, NsMax * NsMax * NqMax * NcMax * NcMax * dimEmbed * dimEmbed, &prob->g3));
532: PetscTryTypeMethod(prob, setup);
533: prob->setup = PETSC_TRUE;
534: PetscFunctionReturn(PETSC_SUCCESS);
535: }
537: static PetscErrorCode PetscDSDestroyStructs_Static(PetscDS prob)
538: {
539: PetscFunctionBegin;
540: PetscCall(PetscFree2(prob->Nc, prob->Nb));
541: PetscCall(PetscFree2(prob->off, prob->offDer));
542: PetscCall(PetscFree6(prob->offCohesive[0], prob->offCohesive[1], prob->offCohesive[2], prob->offDerCohesive[0], prob->offDerCohesive[1], prob->offDerCohesive[2]));
543: PetscCall(PetscFree2(prob->T, prob->Tf));
544: PetscCall(PetscFree3(prob->u, prob->u_t, prob->u_x));
545: PetscCall(PetscFree5(prob->x, prob->basisReal, prob->basisDerReal, prob->testReal, prob->testDerReal));
546: PetscCall(PetscFree6(prob->f0, prob->f1, prob->g0, prob->g1, prob->g2, prob->g3));
547: PetscFunctionReturn(PETSC_SUCCESS);
548: }
550: static PetscErrorCode PetscDSEnlarge_Static(PetscDS prob, PetscInt NfNew)
551: {
552: PetscObject *tmpd;
553: PetscBool *tmpi;
554: PetscInt *tmpk;
555: PetscBool *tmpc;
556: PetscPointFunc *tmpup;
557: PetscSimplePointFunc *tmpexactSol, *tmpexactSol_t;
558: void **tmpexactCtx, **tmpexactCtx_t;
559: void **tmpctx;
560: PetscInt Nf = prob->Nf, f;
562: PetscFunctionBegin;
563: if (Nf >= NfNew) PetscFunctionReturn(PETSC_SUCCESS);
564: prob->setup = PETSC_FALSE;
565: PetscCall(PetscDSDestroyStructs_Static(prob));
566: PetscCall(PetscMalloc4(NfNew, &tmpd, NfNew, &tmpi, NfNew, &tmpc, NfNew, &tmpk));
567: for (f = 0; f < Nf; ++f) {
568: tmpd[f] = prob->disc[f];
569: tmpi[f] = prob->implicit[f];
570: tmpc[f] = prob->cohesive[f];
571: tmpk[f] = prob->jetDegree[f];
572: }
573: for (f = Nf; f < NfNew; ++f) {
574: tmpd[f] = NULL;
575: tmpi[f] = PETSC_TRUE, tmpc[f] = PETSC_FALSE;
576: tmpk[f] = 1;
577: }
578: PetscCall(PetscFree4(prob->disc, prob->implicit, prob->cohesive, prob->jetDegree));
579: PetscCall(PetscWeakFormSetNumFields(prob->wf, NfNew));
580: prob->Nf = NfNew;
581: prob->disc = tmpd;
582: prob->implicit = tmpi;
583: prob->cohesive = tmpc;
584: prob->jetDegree = tmpk;
585: PetscCall(PetscCalloc2(NfNew, &tmpup, NfNew, &tmpctx));
586: for (f = 0; f < Nf; ++f) tmpup[f] = prob->update[f];
587: for (f = 0; f < Nf; ++f) tmpctx[f] = prob->ctx[f];
588: for (f = Nf; f < NfNew; ++f) tmpup[f] = NULL;
589: for (f = Nf; f < NfNew; ++f) tmpctx[f] = NULL;
590: PetscCall(PetscFree2(prob->update, prob->ctx));
591: prob->update = tmpup;
592: prob->ctx = tmpctx;
593: PetscCall(PetscCalloc4(NfNew, &tmpexactSol, NfNew, &tmpexactCtx, NfNew, &tmpexactSol_t, NfNew, &tmpexactCtx_t));
594: for (f = 0; f < Nf; ++f) tmpexactSol[f] = prob->exactSol[f];
595: for (f = 0; f < Nf; ++f) tmpexactCtx[f] = prob->exactCtx[f];
596: for (f = 0; f < Nf; ++f) tmpexactSol_t[f] = prob->exactSol_t[f];
597: for (f = 0; f < Nf; ++f) tmpexactCtx_t[f] = prob->exactCtx_t[f];
598: for (f = Nf; f < NfNew; ++f) tmpexactSol[f] = NULL;
599: for (f = Nf; f < NfNew; ++f) tmpexactCtx[f] = NULL;
600: for (f = Nf; f < NfNew; ++f) tmpexactSol_t[f] = NULL;
601: for (f = Nf; f < NfNew; ++f) tmpexactCtx_t[f] = NULL;
602: PetscCall(PetscFree4(prob->exactSol, prob->exactCtx, prob->exactSol_t, prob->exactCtx_t));
603: prob->exactSol = tmpexactSol;
604: prob->exactCtx = tmpexactCtx;
605: prob->exactSol_t = tmpexactSol_t;
606: prob->exactCtx_t = tmpexactCtx_t;
607: PetscFunctionReturn(PETSC_SUCCESS);
608: }
610: /*@
611: PetscDSDestroy - Destroys a `PetscDS` object
613: Collective
615: Input Parameter:
616: . ds - the `PetscDS` object to destroy
618: Level: developer
620: .seealso: `PetscDSView()`
621: @*/
622: PetscErrorCode PetscDSDestroy(PetscDS *ds)
623: {
624: PetscInt f;
626: PetscFunctionBegin;
627: if (!*ds) PetscFunctionReturn(PETSC_SUCCESS);
630: if (--((PetscObject)(*ds))->refct > 0) {
631: *ds = NULL;
632: PetscFunctionReturn(PETSC_SUCCESS);
633: }
634: ((PetscObject)(*ds))->refct = 0;
635: if ((*ds)->subprobs) {
636: PetscInt dim, d;
638: PetscCall(PetscDSGetSpatialDimension(*ds, &dim));
639: for (d = 0; d < dim; ++d) PetscCall(PetscDSDestroy(&(*ds)->subprobs[d]));
640: }
641: PetscCall(PetscFree((*ds)->subprobs));
642: PetscCall(PetscDSDestroyStructs_Static(*ds));
643: for (f = 0; f < (*ds)->Nf; ++f) PetscCall(PetscObjectDereference((*ds)->disc[f]));
644: PetscCall(PetscFree4((*ds)->disc, (*ds)->implicit, (*ds)->cohesive, (*ds)->jetDegree));
645: PetscCall(PetscWeakFormDestroy(&(*ds)->wf));
646: PetscCall(PetscFree2((*ds)->update, (*ds)->ctx));
647: PetscCall(PetscFree4((*ds)->exactSol, (*ds)->exactCtx, (*ds)->exactSol_t, (*ds)->exactCtx_t));
648: PetscTryTypeMethod((*ds), destroy);
649: PetscCall(PetscDSDestroyBoundary(*ds));
650: PetscCall(PetscFree((*ds)->constants));
651: for (PetscInt c = 0; c < DM_NUM_POLYTOPES; ++c) {
652: const PetscInt Na = DMPolytopeTypeGetNumArrangments((DMPolytopeType)c);
653: if ((*ds)->quadPerm[c])
654: for (PetscInt o = 0; o < Na; ++o) PetscCall(ISDestroy(&(*ds)->quadPerm[c][o]));
655: PetscCall(PetscFree((*ds)->quadPerm[c]));
656: (*ds)->quadPerm[c] = NULL;
657: }
658: PetscCall(PetscHeaderDestroy(ds));
659: PetscFunctionReturn(PETSC_SUCCESS);
660: }
662: /*@
663: PetscDSCreate - Creates an empty `PetscDS` object. The type can then be set with `PetscDSSetType()`.
665: Collective
667: Input Parameter:
668: . comm - The communicator for the `PetscDS` object
670: Output Parameter:
671: . ds - The `PetscDS` object
673: Level: beginner
675: .seealso: `PetscDS`, `PetscDSSetType()`, `PETSCDSBASIC`, `PetscDSType`
676: @*/
677: PetscErrorCode PetscDSCreate(MPI_Comm comm, PetscDS *ds)
678: {
679: PetscDS p;
681: PetscFunctionBegin;
682: PetscAssertPointer(ds, 2);
683: *ds = NULL;
684: PetscCall(PetscDSInitializePackage());
686: PetscCall(PetscHeaderCreate(p, PETSCDS_CLASSID, "PetscDS", "Discrete System", "PetscDS", comm, PetscDSDestroy, PetscDSView));
688: p->Nf = 0;
689: p->setup = PETSC_FALSE;
690: p->numConstants = 0;
691: p->constants = NULL;
692: p->dimEmbed = -1;
693: p->useJacPre = PETSC_TRUE;
694: p->forceQuad = PETSC_TRUE;
695: PetscCall(PetscWeakFormCreate(comm, &p->wf));
696: PetscCall(PetscArrayzero(p->quadPerm, DM_NUM_POLYTOPES));
698: *ds = p;
699: PetscFunctionReturn(PETSC_SUCCESS);
700: }
702: /*@
703: PetscDSGetNumFields - Returns the number of fields in the `PetscDS`
705: Not Collective
707: Input Parameter:
708: . prob - The `PetscDS` object
710: Output Parameter:
711: . Nf - The number of fields
713: Level: beginner
715: .seealso: `PetscDS`, `PetscDSGetSpatialDimension()`, `PetscDSCreate()`
716: @*/
717: PetscErrorCode PetscDSGetNumFields(PetscDS prob, PetscInt *Nf)
718: {
719: PetscFunctionBegin;
721: PetscAssertPointer(Nf, 2);
722: *Nf = prob->Nf;
723: PetscFunctionReturn(PETSC_SUCCESS);
724: }
726: /*@
727: PetscDSGetSpatialDimension - Returns the spatial dimension of the `PetscDS`, meaning the topological dimension of the discretizations
729: Not Collective
731: Input Parameter:
732: . prob - The `PetscDS` object
734: Output Parameter:
735: . dim - The spatial dimension
737: Level: beginner
739: .seealso: `PetscDS`, `PetscDSGetCoordinateDimension()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
740: @*/
741: PetscErrorCode PetscDSGetSpatialDimension(PetscDS prob, PetscInt *dim)
742: {
743: PetscFunctionBegin;
745: PetscAssertPointer(dim, 2);
746: *dim = 0;
747: if (prob->Nf) {
748: PetscObject obj;
749: PetscClassId id;
751: PetscCall(PetscDSGetDiscretization(prob, 0, &obj));
752: if (obj) {
753: PetscCall(PetscObjectGetClassId(obj, &id));
754: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetSpatialDimension((PetscFE)obj, dim));
755: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVGetSpatialDimension((PetscFV)obj, dim));
756: else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", 0);
757: }
758: }
759: PetscFunctionReturn(PETSC_SUCCESS);
760: }
762: /*@
763: PetscDSGetCoordinateDimension - Returns the coordinate dimension of the `PetscDS`, meaning the dimension of the space into which the discretiaztions are embedded
765: Not Collective
767: Input Parameter:
768: . prob - The `PetscDS` object
770: Output Parameter:
771: . dimEmbed - The coordinate dimension
773: Level: beginner
775: .seealso: `PetscDS`, `PetscDSSetCoordinateDimension()`, `PetscDSGetSpatialDimension()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
776: @*/
777: PetscErrorCode PetscDSGetCoordinateDimension(PetscDS prob, PetscInt *dimEmbed)
778: {
779: PetscFunctionBegin;
781: PetscAssertPointer(dimEmbed, 2);
782: PetscCheck(prob->dimEmbed >= 0, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONGSTATE, "No coordinate dimension set for this DS");
783: *dimEmbed = prob->dimEmbed;
784: PetscFunctionReturn(PETSC_SUCCESS);
785: }
787: /*@
788: PetscDSSetCoordinateDimension - Set the coordinate dimension of the `PetscDS`, meaning the dimension of the space into which the discretiaztions are embedded
790: Logically Collective
792: Input Parameters:
793: + prob - The `PetscDS` object
794: - dimEmbed - The coordinate dimension
796: Level: beginner
798: .seealso: `PetscDS`, `PetscDSGetCoordinateDimension()`, `PetscDSGetSpatialDimension()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
799: @*/
800: PetscErrorCode PetscDSSetCoordinateDimension(PetscDS prob, PetscInt dimEmbed)
801: {
802: PetscFunctionBegin;
804: PetscCheck(dimEmbed >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Coordinate dimension must be non-negative, not %" PetscInt_FMT, dimEmbed);
805: prob->dimEmbed = dimEmbed;
806: PetscFunctionReturn(PETSC_SUCCESS);
807: }
809: /*@
810: PetscDSGetForceQuad - Returns the flag to force matching quadratures among the field discretizations
812: Not collective
814: Input Parameter:
815: . ds - The `PetscDS` object
817: Output Parameter:
818: . forceQuad - The flag
820: Level: intermediate
822: .seealso: `PetscDS`, `PetscDSSetForceQuad()`, `PetscDSGetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
823: @*/
824: PetscErrorCode PetscDSGetForceQuad(PetscDS ds, PetscBool *forceQuad)
825: {
826: PetscFunctionBegin;
828: PetscAssertPointer(forceQuad, 2);
829: *forceQuad = ds->forceQuad;
830: PetscFunctionReturn(PETSC_SUCCESS);
831: }
833: /*@
834: PetscDSSetForceQuad - Set the flag to force matching quadratures among the field discretizations
836: Logically collective on ds
838: Input Parameters:
839: + ds - The `PetscDS` object
840: - forceQuad - The flag
842: Level: intermediate
844: .seealso: `PetscDS`, `PetscDSGetForceQuad()`, `PetscDSGetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
845: @*/
846: PetscErrorCode PetscDSSetForceQuad(PetscDS ds, PetscBool forceQuad)
847: {
848: PetscFunctionBegin;
850: ds->forceQuad = forceQuad;
851: PetscFunctionReturn(PETSC_SUCCESS);
852: }
854: /*@
855: PetscDSIsCohesive - Returns the flag indicating that this `PetscDS` is for a cohesive cell
857: Not Collective
859: Input Parameter:
860: . ds - The `PetscDS` object
862: Output Parameter:
863: . isCohesive - The flag
865: Level: developer
867: .seealso: `PetscDS`, `PetscDSGetNumCohesive()`, `PetscDSGetCohesive()`, `PetscDSSetCohesive()`, `PetscDSCreate()`
868: @*/
869: PetscErrorCode PetscDSIsCohesive(PetscDS ds, PetscBool *isCohesive)
870: {
871: PetscFunctionBegin;
873: PetscAssertPointer(isCohesive, 2);
874: *isCohesive = ds->isCohesive;
875: PetscFunctionReturn(PETSC_SUCCESS);
876: }
878: /*@
879: PetscDSGetNumCohesive - Returns the number of cohesive fields, meaning those defined on the interior of a cohesive cell
881: Not Collective
883: Input Parameter:
884: . ds - The `PetscDS` object
886: Output Parameter:
887: . numCohesive - The number of cohesive fields
889: Level: developer
891: .seealso: `PetscDS`, `PetscDSSetCohesive()`, `PetscDSCreate()`
892: @*/
893: PetscErrorCode PetscDSGetNumCohesive(PetscDS ds, PetscInt *numCohesive)
894: {
895: PetscInt f;
897: PetscFunctionBegin;
899: PetscAssertPointer(numCohesive, 2);
900: *numCohesive = 0;
901: for (f = 0; f < ds->Nf; ++f) *numCohesive += ds->cohesive[f] ? 1 : 0;
902: PetscFunctionReturn(PETSC_SUCCESS);
903: }
905: /*@
906: PetscDSGetCohesive - Returns the flag indicating that a field is cohesive, meaning it is defined on the interior of a cohesive cell
908: Not Collective
910: Input Parameters:
911: + ds - The `PetscDS` object
912: - f - The field index
914: Output Parameter:
915: . isCohesive - The flag
917: Level: developer
919: .seealso: `PetscDS`, `PetscDSSetCohesive()`, `PetscDSIsCohesive()`, `PetscDSCreate()`
920: @*/
921: PetscErrorCode PetscDSGetCohesive(PetscDS ds, PetscInt f, PetscBool *isCohesive)
922: {
923: PetscFunctionBegin;
925: PetscAssertPointer(isCohesive, 3);
926: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
927: *isCohesive = ds->cohesive[f];
928: PetscFunctionReturn(PETSC_SUCCESS);
929: }
931: /*@
932: PetscDSSetCohesive - Set the flag indicating that a field is cohesive, meaning it is defined on the interior of a cohesive cell
934: Not Collective
936: Input Parameters:
937: + ds - The `PetscDS` object
938: . f - The field index
939: - isCohesive - The flag for a cohesive field
941: Level: developer
943: .seealso: `PetscDS`, `PetscDSGetCohesive()`, `PetscDSIsCohesive()`, `PetscDSCreate()`
944: @*/
945: PetscErrorCode PetscDSSetCohesive(PetscDS ds, PetscInt f, PetscBool isCohesive)
946: {
947: PetscInt i;
949: PetscFunctionBegin;
951: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
952: ds->cohesive[f] = isCohesive;
953: ds->isCohesive = PETSC_FALSE;
954: for (i = 0; i < ds->Nf; ++i) ds->isCohesive = ds->isCohesive || ds->cohesive[f] ? PETSC_TRUE : PETSC_FALSE;
955: PetscFunctionReturn(PETSC_SUCCESS);
956: }
958: /*@
959: PetscDSGetTotalDimension - Returns the total size of the approximation space for this system
961: Not Collective
963: Input Parameter:
964: . prob - The `PetscDS` object
966: Output Parameter:
967: . dim - The total problem dimension
969: Level: beginner
971: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
972: @*/
973: PetscErrorCode PetscDSGetTotalDimension(PetscDS prob, PetscInt *dim)
974: {
975: PetscFunctionBegin;
977: PetscCall(PetscDSSetUp(prob));
978: PetscAssertPointer(dim, 2);
979: *dim = prob->totDim;
980: PetscFunctionReturn(PETSC_SUCCESS);
981: }
983: /*@
984: PetscDSGetTotalComponents - Returns the total number of components in this system
986: Not Collective
988: Input Parameter:
989: . prob - The `PetscDS` object
991: Output Parameter:
992: . Nc - The total number of components
994: Level: beginner
996: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
997: @*/
998: PetscErrorCode PetscDSGetTotalComponents(PetscDS prob, PetscInt *Nc)
999: {
1000: PetscFunctionBegin;
1002: PetscCall(PetscDSSetUp(prob));
1003: PetscAssertPointer(Nc, 2);
1004: *Nc = prob->totComp;
1005: PetscFunctionReturn(PETSC_SUCCESS);
1006: }
1008: /*@
1009: PetscDSGetDiscretization - Returns the discretization object for the given field
1011: Not Collective
1013: Input Parameters:
1014: + prob - The `PetscDS` object
1015: - f - The field number
1017: Output Parameter:
1018: . disc - The discretization object
1020: Level: beginner
1022: .seealso: `PetscDS`, `PetscFE`, `PetscFV`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1023: @*/
1024: PetscErrorCode PetscDSGetDiscretization(PetscDS prob, PetscInt f, PetscObject *disc)
1025: {
1026: PetscFunctionBeginHot;
1028: PetscAssertPointer(disc, 3);
1029: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
1030: *disc = prob->disc[f];
1031: PetscFunctionReturn(PETSC_SUCCESS);
1032: }
1034: /*@
1035: PetscDSSetDiscretization - Sets the discretization object for the given field
1037: Not Collective
1039: Input Parameters:
1040: + prob - The `PetscDS` object
1041: . f - The field number
1042: - disc - The discretization object
1044: Level: beginner
1046: .seealso: `PetscDS`, `PetscFE`, `PetscFV`, `PetscDSGetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1047: @*/
1048: PetscErrorCode PetscDSSetDiscretization(PetscDS prob, PetscInt f, PetscObject disc)
1049: {
1050: PetscFunctionBegin;
1052: if (disc) PetscAssertPointer(disc, 3);
1053: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1054: PetscCall(PetscDSEnlarge_Static(prob, f + 1));
1055: PetscCall(PetscObjectDereference(prob->disc[f]));
1056: prob->disc[f] = disc;
1057: PetscCall(PetscObjectReference(disc));
1058: if (disc) {
1059: PetscClassId id;
1061: PetscCall(PetscObjectGetClassId(disc, &id));
1062: if (id == PETSCFE_CLASSID) {
1063: PetscCall(PetscDSSetImplicit(prob, f, PETSC_TRUE));
1064: } else if (id == PETSCFV_CLASSID) {
1065: PetscCall(PetscDSSetImplicit(prob, f, PETSC_FALSE));
1066: }
1067: PetscCall(PetscDSSetJetDegree(prob, f, 1));
1068: }
1069: PetscFunctionReturn(PETSC_SUCCESS);
1070: }
1072: /*@
1073: PetscDSGetWeakForm - Returns the weak form object
1075: Not Collective
1077: Input Parameter:
1078: . ds - The `PetscDS` object
1080: Output Parameter:
1081: . wf - The weak form object
1083: Level: beginner
1085: .seealso: `PetscWeakForm`, `PetscDSSetWeakForm()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1086: @*/
1087: PetscErrorCode PetscDSGetWeakForm(PetscDS ds, PetscWeakForm *wf)
1088: {
1089: PetscFunctionBegin;
1091: PetscAssertPointer(wf, 2);
1092: *wf = ds->wf;
1093: PetscFunctionReturn(PETSC_SUCCESS);
1094: }
1096: /*@
1097: PetscDSSetWeakForm - Sets the weak form object
1099: Not Collective
1101: Input Parameters:
1102: + ds - The `PetscDS` object
1103: - wf - The weak form object
1105: Level: beginner
1107: .seealso: `PetscWeakForm`, `PetscDSGetWeakForm()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1108: @*/
1109: PetscErrorCode PetscDSSetWeakForm(PetscDS ds, PetscWeakForm wf)
1110: {
1111: PetscFunctionBegin;
1114: PetscCall(PetscObjectDereference((PetscObject)ds->wf));
1115: ds->wf = wf;
1116: PetscCall(PetscObjectReference((PetscObject)wf));
1117: PetscCall(PetscWeakFormSetNumFields(wf, ds->Nf));
1118: PetscFunctionReturn(PETSC_SUCCESS);
1119: }
1121: /*@
1122: PetscDSAddDiscretization - Adds a discretization object
1124: Not Collective
1126: Input Parameters:
1127: + prob - The `PetscDS` object
1128: - disc - The boundary discretization object
1130: Level: beginner
1132: .seealso: `PetscWeakForm`, `PetscDSGetDiscretization()`, `PetscDSSetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1133: @*/
1134: PetscErrorCode PetscDSAddDiscretization(PetscDS prob, PetscObject disc)
1135: {
1136: PetscFunctionBegin;
1137: PetscCall(PetscDSSetDiscretization(prob, prob->Nf, disc));
1138: PetscFunctionReturn(PETSC_SUCCESS);
1139: }
1141: /*@
1142: PetscDSGetQuadrature - Returns the quadrature, which must agree for all fields in the `PetscDS`
1144: Not Collective
1146: Input Parameter:
1147: . prob - The `PetscDS` object
1149: Output Parameter:
1150: . q - The quadrature object
1152: Level: intermediate
1154: .seealso: `PetscDS`, `PetscQuadrature`, `PetscDSSetImplicit()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1155: @*/
1156: PetscErrorCode PetscDSGetQuadrature(PetscDS prob, PetscQuadrature *q)
1157: {
1158: PetscObject obj;
1159: PetscClassId id;
1161: PetscFunctionBegin;
1162: *q = NULL;
1163: if (!prob->Nf) PetscFunctionReturn(PETSC_SUCCESS);
1164: PetscCall(PetscDSGetDiscretization(prob, 0, &obj));
1165: PetscCall(PetscObjectGetClassId(obj, &id));
1166: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetQuadrature((PetscFE)obj, q));
1167: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVGetQuadrature((PetscFV)obj, q));
1168: else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", 0);
1169: PetscFunctionReturn(PETSC_SUCCESS);
1170: }
1172: /*@
1173: PetscDSGetImplicit - Returns the flag for implicit solve for this field. This is just a guide for `TSIMEX`
1175: Not Collective
1177: Input Parameters:
1178: + prob - The `PetscDS` object
1179: - f - The field number
1181: Output Parameter:
1182: . implicit - The flag indicating what kind of solve to use for this field
1184: Level: developer
1186: .seealso: `TSIMEX`, `PetscDS`, `PetscDSSetImplicit()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1187: @*/
1188: PetscErrorCode PetscDSGetImplicit(PetscDS prob, PetscInt f, PetscBool *implicit)
1189: {
1190: PetscFunctionBegin;
1192: PetscAssertPointer(implicit, 3);
1193: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
1194: *implicit = prob->implicit[f];
1195: PetscFunctionReturn(PETSC_SUCCESS);
1196: }
1198: /*@
1199: PetscDSSetImplicit - Set the flag for implicit solve for this field. This is just a guide for `TSIMEX`
1201: Not Collective
1203: Input Parameters:
1204: + prob - The `PetscDS` object
1205: . f - The field number
1206: - implicit - The flag indicating what kind of solve to use for this field
1208: Level: developer
1210: .seealso: `TSIMEX`, `PetscDSGetImplicit()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1211: @*/
1212: PetscErrorCode PetscDSSetImplicit(PetscDS prob, PetscInt f, PetscBool implicit)
1213: {
1214: PetscFunctionBegin;
1216: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
1217: prob->implicit[f] = implicit;
1218: PetscFunctionReturn(PETSC_SUCCESS);
1219: }
1221: /*@
1222: PetscDSGetJetDegree - Returns the highest derivative for this field equation, or the k-jet that the discretization needs to tabulate.
1224: Not Collective
1226: Input Parameters:
1227: + ds - The `PetscDS` object
1228: - f - The field number
1230: Output Parameter:
1231: . k - The highest derivative we need to tabulate
1233: Level: developer
1235: .seealso: `PetscDS`, `PetscDSSetJetDegree()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1236: @*/
1237: PetscErrorCode PetscDSGetJetDegree(PetscDS ds, PetscInt f, PetscInt *k)
1238: {
1239: PetscFunctionBegin;
1241: PetscAssertPointer(k, 3);
1242: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1243: *k = ds->jetDegree[f];
1244: PetscFunctionReturn(PETSC_SUCCESS);
1245: }
1247: /*@
1248: PetscDSSetJetDegree - Set the highest derivative for this field equation, or the k-jet that the discretization needs to tabulate.
1250: Not Collective
1252: Input Parameters:
1253: + ds - The `PetscDS` object
1254: . f - The field number
1255: - k - The highest derivative we need to tabulate
1257: Level: developer
1259: .seealso: ``PetscDS`, `PetscDSGetJetDegree()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1260: @*/
1261: PetscErrorCode PetscDSSetJetDegree(PetscDS ds, PetscInt f, PetscInt k)
1262: {
1263: PetscFunctionBegin;
1265: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1266: ds->jetDegree[f] = k;
1267: PetscFunctionReturn(PETSC_SUCCESS);
1268: }
1270: /*@C
1271: PetscDSGetObjective - Get the pointwise objective function for a given test field
1273: Not Collective
1275: Input Parameters:
1276: + ds - The `PetscDS`
1277: - f - The test field number
1279: Output Parameter:
1280: . obj - integrand for the test function term
1282: Calling sequence of `obj`:
1283: + dim - the spatial dimension
1284: . Nf - the number of fields
1285: . NfAux - the number of auxiliary fields
1286: . uOff - the offset into u[] and u_t[] for each field
1287: . uOff_x - the offset into u_x[] for each field
1288: . u - each field evaluated at the current point
1289: . u_t - the time derivative of each field evaluated at the current point
1290: . u_x - the gradient of each field evaluated at the current point
1291: . aOff - the offset into a[] and a_t[] for each auxiliary field
1292: . aOff_x - the offset into a_x[] for each auxiliary field
1293: . a - each auxiliary field evaluated at the current point
1294: . a_t - the time derivative of each auxiliary field evaluated at the current point
1295: . a_x - the gradient of auxiliary each field evaluated at the current point
1296: . t - current time
1297: . x - coordinates of the current point
1298: . numConstants - number of constant parameters
1299: . constants - constant parameters
1300: - obj - output values at the current point
1302: Level: intermediate
1304: Note:
1305: We are using a first order FEM model for the weak form: \int_\Omega \phi obj(u, u_t, \nabla u, x, t)
1307: .seealso: `PetscDS`, `PetscDSSetObjective()`, `PetscDSGetResidual()`
1308: @*/
1309: PetscErrorCode PetscDSGetObjective(PetscDS ds, PetscInt f, void (**obj)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar obj[]))
1310: {
1311: PetscPointFunc *tmp;
1312: PetscInt n;
1314: PetscFunctionBegin;
1316: PetscAssertPointer(obj, 3);
1317: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1318: PetscCall(PetscWeakFormGetObjective(ds->wf, NULL, 0, f, 0, &n, &tmp));
1319: *obj = tmp ? tmp[0] : NULL;
1320: PetscFunctionReturn(PETSC_SUCCESS);
1321: }
1323: /*@C
1324: PetscDSSetObjective - Set the pointwise objective function for a given test field
1326: Not Collective
1328: Input Parameters:
1329: + ds - The `PetscDS`
1330: . f - The test field number
1331: - obj - integrand for the test function term
1333: Calling sequence of `obj`:
1334: + dim - the spatial dimension
1335: . Nf - the number of fields
1336: . NfAux - the number of auxiliary fields
1337: . uOff - the offset into u[] and u_t[] for each field
1338: . uOff_x - the offset into u_x[] for each field
1339: . u - each field evaluated at the current point
1340: . u_t - the time derivative of each field evaluated at the current point
1341: . u_x - the gradient of each field evaluated at the current point
1342: . aOff - the offset into a[] and a_t[] for each auxiliary field
1343: . aOff_x - the offset into a_x[] for each auxiliary field
1344: . a - each auxiliary field evaluated at the current point
1345: . a_t - the time derivative of each auxiliary field evaluated at the current point
1346: . a_x - the gradient of auxiliary each field evaluated at the current point
1347: . t - current time
1348: . x - coordinates of the current point
1349: . numConstants - number of constant parameters
1350: . constants - constant parameters
1351: - obj - output values at the current point
1353: Level: intermediate
1355: Note:
1356: We are using a first order FEM model for the weak form: \int_\Omega \phi obj(u, u_t, \nabla u, x, t)
1358: .seealso: `PetscDS`, `PetscDSGetObjective()`, `PetscDSSetResidual()`
1359: @*/
1360: PetscErrorCode PetscDSSetObjective(PetscDS ds, PetscInt f, void (*obj)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar obj[]))
1361: {
1362: PetscFunctionBegin;
1365: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1366: PetscCall(PetscWeakFormSetIndexObjective(ds->wf, NULL, 0, f, 0, 0, obj));
1367: PetscFunctionReturn(PETSC_SUCCESS);
1368: }
1370: /*@C
1371: PetscDSGetResidual - Get the pointwise residual function for a given test field
1373: Not Collective
1375: Input Parameters:
1376: + ds - The `PetscDS`
1377: - f - The test field number
1379: Output Parameters:
1380: + f0 - integrand for the test function term
1381: - f1 - integrand for the test function gradient term
1383: Calling sequence of `f0`:
1384: + dim - the spatial dimension
1385: . Nf - the number of fields
1386: . NfAux - the number of auxiliary fields
1387: . uOff - the offset into u[] and u_t[] for each field
1388: . uOff_x - the offset into u_x[] for each field
1389: . u - each field evaluated at the current point
1390: . u_t - the time derivative of each field evaluated at the current point
1391: . u_x - the gradient of each field evaluated at the current point
1392: . aOff - the offset into a[] and a_t[] for each auxiliary field
1393: . aOff_x - the offset into a_x[] for each auxiliary field
1394: . a - each auxiliary field evaluated at the current point
1395: . a_t - the time derivative of each auxiliary field evaluated at the current point
1396: . a_x - the gradient of auxiliary each field evaluated at the current point
1397: . t - current time
1398: . x - coordinates of the current point
1399: . numConstants - number of constant parameters
1400: . constants - constant parameters
1401: - f0 - output values at the current point
1403: Level: intermediate
1405: Note:
1406: `f1` has an identical form and is omitted for brevity.
1408: We are using a first order FEM model for the weak form: \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)
1410: .seealso: `PetscDS`, `PetscDSSetResidual()`
1411: @*/
1412: PetscErrorCode PetscDSGetResidual(PetscDS ds, PetscInt f, void (**f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (**f1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1413: {
1414: PetscPointFunc *tmp0, *tmp1;
1415: PetscInt n0, n1;
1417: PetscFunctionBegin;
1419: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1420: PetscCall(PetscWeakFormGetResidual(ds->wf, NULL, 0, f, 0, &n0, &tmp0, &n1, &tmp1));
1421: *f0 = tmp0 ? tmp0[0] : NULL;
1422: *f1 = tmp1 ? tmp1[0] : NULL;
1423: PetscFunctionReturn(PETSC_SUCCESS);
1424: }
1426: /*@C
1427: PetscDSSetResidual - Set the pointwise residual function for a given test field
1429: Not Collective
1431: Input Parameters:
1432: + ds - The `PetscDS`
1433: . f - The test field number
1434: . f0 - integrand for the test function term
1435: - f1 - integrand for the test function gradient term
1437: Calling sequence of `f0`:
1438: + dim - the spatial dimension
1439: . Nf - the number of fields
1440: . NfAux - the number of auxiliary fields
1441: . uOff - the offset into u[] and u_t[] for each field
1442: . uOff_x - the offset into u_x[] for each field
1443: . u - each field evaluated at the current point
1444: . u_t - the time derivative of each field evaluated at the current point
1445: . u_x - the gradient of each field evaluated at the current point
1446: . aOff - the offset into a[] and a_t[] for each auxiliary field
1447: . aOff_x - the offset into a_x[] for each auxiliary field
1448: . a - each auxiliary field evaluated at the current point
1449: . a_t - the time derivative of each auxiliary field evaluated at the current point
1450: . a_x - the gradient of auxiliary each field evaluated at the current point
1451: . t - current time
1452: . x - coordinates of the current point
1453: . numConstants - number of constant parameters
1454: . constants - constant parameters
1455: - f0 - output values at the current point
1457: Level: intermediate
1459: Note:
1460: `f1` has an identical form and is omitted for brevity.
1462: We are using a first order FEM model for the weak form: \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)
1464: .seealso: `PetscDS`, `PetscDSGetResidual()`
1465: @*/
1466: PetscErrorCode PetscDSSetResidual(PetscDS ds, PetscInt f, void (*f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (*f1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1467: {
1468: PetscFunctionBegin;
1472: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1473: PetscCall(PetscWeakFormSetIndexResidual(ds->wf, NULL, 0, f, 0, 0, f0, 0, f1));
1474: PetscFunctionReturn(PETSC_SUCCESS);
1475: }
1477: /*@C
1478: PetscDSGetRHSResidual - Get the pointwise RHS residual function for explicit timestepping for a given test field
1480: Not Collective
1482: Input Parameters:
1483: + ds - The `PetscDS`
1484: - f - The test field number
1486: Output Parameters:
1487: + f0 - integrand for the test function term
1488: - f1 - integrand for the test function gradient term
1490: Calling sequence of `f0`:
1491: + dim - the spatial dimension
1492: . Nf - the number of fields
1493: . NfAux - the number of auxiliary fields
1494: . uOff - the offset into u[] and u_t[] for each field
1495: . uOff_x - the offset into u_x[] for each field
1496: . u - each field evaluated at the current point
1497: . u_t - the time derivative of each field evaluated at the current point
1498: . u_x - the gradient of each field evaluated at the current point
1499: . aOff - the offset into a[] and a_t[] for each auxiliary field
1500: . aOff_x - the offset into a_x[] for each auxiliary field
1501: . a - each auxiliary field evaluated at the current point
1502: . a_t - the time derivative of each auxiliary field evaluated at the current point
1503: . a_x - the gradient of auxiliary each field evaluated at the current point
1504: . t - current time
1505: . x - coordinates of the current point
1506: . numConstants - number of constant parameters
1507: . constants - constant parameters
1508: - f0 - output values at the current point
1510: Level: intermediate
1512: Note:
1513: `f1` has an identical form and is omitted for brevity.
1515: We are using a first order FEM model for the weak form: \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)
1517: .seealso: `PetscDS`, `PetscDSSetRHSResidual()`
1518: @*/
1519: PetscErrorCode PetscDSGetRHSResidual(PetscDS ds, PetscInt f, void (**f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (**f1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1520: {
1521: PetscPointFunc *tmp0, *tmp1;
1522: PetscInt n0, n1;
1524: PetscFunctionBegin;
1526: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1527: PetscCall(PetscWeakFormGetResidual(ds->wf, NULL, 0, f, 100, &n0, &tmp0, &n1, &tmp1));
1528: *f0 = tmp0 ? tmp0[0] : NULL;
1529: *f1 = tmp1 ? tmp1[0] : NULL;
1530: PetscFunctionReturn(PETSC_SUCCESS);
1531: }
1533: /*@C
1534: PetscDSSetRHSResidual - Set the pointwise residual function for explicit timestepping for a given test field
1536: Not Collective
1538: Input Parameters:
1539: + ds - The `PetscDS`
1540: . f - The test field number
1541: . f0 - integrand for the test function term
1542: - f1 - integrand for the test function gradient term
1544: Calling sequence for the callbacks `f0`:
1545: + dim - the spatial dimension
1546: . Nf - the number of fields
1547: . NfAux - the number of auxiliary fields
1548: . uOff - the offset into u[] and u_t[] for each field
1549: . uOff_x - the offset into u_x[] for each field
1550: . u - each field evaluated at the current point
1551: . u_t - the time derivative of each field evaluated at the current point
1552: . u_x - the gradient of each field evaluated at the current point
1553: . aOff - the offset into a[] and a_t[] for each auxiliary field
1554: . aOff_x - the offset into a_x[] for each auxiliary field
1555: . a - each auxiliary field evaluated at the current point
1556: . a_t - the time derivative of each auxiliary field evaluated at the current point
1557: . a_x - the gradient of auxiliary each field evaluated at the current point
1558: . t - current time
1559: . x - coordinates of the current point
1560: . numConstants - number of constant parameters
1561: . constants - constant parameters
1562: - f0 - output values at the current point
1564: Level: intermediate
1566: Note:
1567: `f1` has an identical form and is omitted for brevity.
1569: We are using a first order FEM model for the weak form: \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)
1571: .seealso: `PetscDS`, `PetscDSGetResidual()`
1572: @*/
1573: PetscErrorCode PetscDSSetRHSResidual(PetscDS ds, PetscInt f, void (*f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (*f1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1574: {
1575: PetscFunctionBegin;
1579: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1580: PetscCall(PetscWeakFormSetIndexResidual(ds->wf, NULL, 0, f, 100, 0, f0, 0, f1));
1581: PetscFunctionReturn(PETSC_SUCCESS);
1582: }
1584: /*@C
1585: PetscDSHasJacobian - Checks that the Jacobian functions have been set
1587: Not Collective
1589: Input Parameter:
1590: . ds - The `PetscDS`
1592: Output Parameter:
1593: . hasJac - flag that pointwise function for the Jacobian has been set
1595: Level: intermediate
1597: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1598: @*/
1599: PetscErrorCode PetscDSHasJacobian(PetscDS ds, PetscBool *hasJac)
1600: {
1601: PetscFunctionBegin;
1603: PetscCall(PetscWeakFormHasJacobian(ds->wf, hasJac));
1604: PetscFunctionReturn(PETSC_SUCCESS);
1605: }
1607: /*@C
1608: PetscDSGetJacobian - Get the pointwise Jacobian function for given test and basis field
1610: Not Collective
1612: Input Parameters:
1613: + ds - The `PetscDS`
1614: . f - The test field number
1615: - g - The field number
1617: Output Parameters:
1618: + g0 - integrand for the test and basis function term
1619: . g1 - integrand for the test function and basis function gradient term
1620: . g2 - integrand for the test function gradient and basis function term
1621: - g3 - integrand for the test function gradient and basis function gradient term
1623: Calling sequence of `g0`:
1624: + dim - the spatial dimension
1625: . Nf - the number of fields
1626: . NfAux - the number of auxiliary fields
1627: . uOff - the offset into u[] and u_t[] for each field
1628: . uOff_x - the offset into u_x[] for each field
1629: . u - each field evaluated at the current point
1630: . u_t - the time derivative of each field evaluated at the current point
1631: . u_x - the gradient of each field evaluated at the current point
1632: . aOff - the offset into a[] and a_t[] for each auxiliary field
1633: . aOff_x - the offset into a_x[] for each auxiliary field
1634: . a - each auxiliary field evaluated at the current point
1635: . a_t - the time derivative of each auxiliary field evaluated at the current point
1636: . a_x - the gradient of auxiliary each field evaluated at the current point
1637: . t - current time
1638: . u_tShift - the multiplier a for dF/dU_t
1639: . x - coordinates of the current point
1640: . numConstants - number of constant parameters
1641: . constants - constant parameters
1642: - g0 - output values at the current point
1644: Level: intermediate
1646: Note:
1647: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
1649: We are using a first order FEM model for the weak form\:
1650: \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi
1652: .seealso: `PetscDS`, `PetscDSSetJacobian()`
1653: @*/
1654: PetscErrorCode PetscDSGetJacobian(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1655: {
1656: PetscPointJac *tmp0, *tmp1, *tmp2, *tmp3;
1657: PetscInt n0, n1, n2, n3;
1659: PetscFunctionBegin;
1661: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1662: PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
1663: PetscCall(PetscWeakFormGetJacobian(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
1664: *g0 = tmp0 ? tmp0[0] : NULL;
1665: *g1 = tmp1 ? tmp1[0] : NULL;
1666: *g2 = tmp2 ? tmp2[0] : NULL;
1667: *g3 = tmp3 ? tmp3[0] : NULL;
1668: PetscFunctionReturn(PETSC_SUCCESS);
1669: }
1671: /*@C
1672: PetscDSSetJacobian - Set the pointwise Jacobian function for given test and basis fields
1674: Not Collective
1676: Input Parameters:
1677: + ds - The `PetscDS`
1678: . f - The test field number
1679: . g - The field number
1680: . g0 - integrand for the test and basis function term
1681: . g1 - integrand for the test function and basis function gradient term
1682: . g2 - integrand for the test function gradient and basis function term
1683: - g3 - integrand for the test function gradient and basis function gradient term
1685: Calling sequence of `g0`:
1686: + dim - the spatial dimension
1687: . Nf - the number of fields
1688: . NfAux - the number of auxiliary fields
1689: . uOff - the offset into u[] and u_t[] for each field
1690: . uOff_x - the offset into u_x[] for each field
1691: . u - each field evaluated at the current point
1692: . u_t - the time derivative of each field evaluated at the current point
1693: . u_x - the gradient of each field evaluated at the current point
1694: . aOff - the offset into a[] and a_t[] for each auxiliary field
1695: . aOff_x - the offset into a_x[] for each auxiliary field
1696: . a - each auxiliary field evaluated at the current point
1697: . a_t - the time derivative of each auxiliary field evaluated at the current point
1698: . a_x - the gradient of auxiliary each field evaluated at the current point
1699: . t - current time
1700: . u_tShift - the multiplier a for dF/dU_t
1701: . x - coordinates of the current point
1702: . numConstants - number of constant parameters
1703: . constants - constant parameters
1704: - g0 - output values at the current point
1706: Level: intermediate
1708: Note:
1709: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
1711: We are using a first order FEM model for the weak form\:
1712: \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi
1714: .seealso: `PetscDS`, `PetscDSGetJacobian()`
1715: @*/
1716: PetscErrorCode PetscDSSetJacobian(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1717: {
1718: PetscFunctionBegin;
1724: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1725: PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
1726: PetscCall(PetscWeakFormSetIndexJacobian(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
1727: PetscFunctionReturn(PETSC_SUCCESS);
1728: }
1730: /*@C
1731: PetscDSUseJacobianPreconditioner - Set whether to construct a Jacobian preconditioner
1733: Not Collective
1735: Input Parameters:
1736: + prob - The `PetscDS`
1737: - useJacPre - flag that enables construction of a Jacobian preconditioner
1739: Level: intermediate
1741: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1742: @*/
1743: PetscErrorCode PetscDSUseJacobianPreconditioner(PetscDS prob, PetscBool useJacPre)
1744: {
1745: PetscFunctionBegin;
1747: prob->useJacPre = useJacPre;
1748: PetscFunctionReturn(PETSC_SUCCESS);
1749: }
1751: /*@C
1752: PetscDSHasJacobianPreconditioner - Checks if a Jacobian preconditioner matrix has been set
1754: Not Collective
1756: Input Parameter:
1757: . ds - The `PetscDS`
1759: Output Parameter:
1760: . hasJacPre - flag that pointwise function for Jacobian preconditioner matrix has been set
1762: Level: intermediate
1764: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1765: @*/
1766: PetscErrorCode PetscDSHasJacobianPreconditioner(PetscDS ds, PetscBool *hasJacPre)
1767: {
1768: PetscFunctionBegin;
1770: *hasJacPre = PETSC_FALSE;
1771: if (!ds->useJacPre) PetscFunctionReturn(PETSC_SUCCESS);
1772: PetscCall(PetscWeakFormHasJacobianPreconditioner(ds->wf, hasJacPre));
1773: PetscFunctionReturn(PETSC_SUCCESS);
1774: }
1776: /*@C
1777: PetscDSGetJacobianPreconditioner - Get the pointwise Jacobian preconditioner function for given test and basis field. If this is missing,
1778: the system matrix is used to build the preconditioner.
1780: Not Collective
1782: Input Parameters:
1783: + ds - The `PetscDS`
1784: . f - The test field number
1785: - g - The field number
1787: Output Parameters:
1788: + g0 - integrand for the test and basis function term
1789: . g1 - integrand for the test function and basis function gradient term
1790: . g2 - integrand for the test function gradient and basis function term
1791: - g3 - integrand for the test function gradient and basis function gradient term
1793: Calling sequence of `g0`:
1794: + dim - the spatial dimension
1795: . Nf - the number of fields
1796: . NfAux - the number of auxiliary fields
1797: . uOff - the offset into u[] and u_t[] for each field
1798: . uOff_x - the offset into u_x[] for each field
1799: . u - each field evaluated at the current point
1800: . u_t - the time derivative of each field evaluated at the current point
1801: . u_x - the gradient of each field evaluated at the current point
1802: . aOff - the offset into a[] and a_t[] for each auxiliary field
1803: . aOff_x - the offset into a_x[] for each auxiliary field
1804: . a - each auxiliary field evaluated at the current point
1805: . a_t - the time derivative of each auxiliary field evaluated at the current point
1806: . a_x - the gradient of auxiliary each field evaluated at the current point
1807: . t - current time
1808: . u_tShift - the multiplier a for dF/dU_t
1809: . x - coordinates of the current point
1810: . numConstants - number of constant parameters
1811: . constants - constant parameters
1812: - g0 - output values at the current point
1814: Level: intermediate
1816: Note:
1817: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
1818: We are using a first order FEM model for the weak form\:
1819: \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi
1821: .seealso: `PetscDS`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1822: @*/
1823: PetscErrorCode PetscDSGetJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1824: {
1825: PetscPointJac *tmp0, *tmp1, *tmp2, *tmp3;
1826: PetscInt n0, n1, n2, n3;
1828: PetscFunctionBegin;
1830: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1831: PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
1832: PetscCall(PetscWeakFormGetJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
1833: *g0 = tmp0 ? tmp0[0] : NULL;
1834: *g1 = tmp1 ? tmp1[0] : NULL;
1835: *g2 = tmp2 ? tmp2[0] : NULL;
1836: *g3 = tmp3 ? tmp3[0] : NULL;
1837: PetscFunctionReturn(PETSC_SUCCESS);
1838: }
1840: /*@C
1841: PetscDSSetJacobianPreconditioner - Set the pointwise Jacobian preconditioner function for given test and basis fields.
1842: If this is missing, the system matrix is used to build the preconditioner.
1844: Not Collective
1846: Input Parameters:
1847: + ds - The `PetscDS`
1848: . f - The test field number
1849: . g - The field number
1850: . g0 - integrand for the test and basis function term
1851: . g1 - integrand for the test function and basis function gradient term
1852: . g2 - integrand for the test function gradient and basis function term
1853: - g3 - integrand for the test function gradient and basis function gradient term
1855: Calling sequence of `g0`:
1856: + dim - the spatial dimension
1857: . Nf - the number of fields
1858: . NfAux - the number of auxiliary fields
1859: . uOff - the offset into u[] and u_t[] for each field
1860: . uOff_x - the offset into u_x[] for each field
1861: . u - each field evaluated at the current point
1862: . u_t - the time derivative of each field evaluated at the current point
1863: . u_x - the gradient of each field evaluated at the current point
1864: . aOff - the offset into a[] and a_t[] for each auxiliary field
1865: . aOff_x - the offset into a_x[] for each auxiliary field
1866: . a - each auxiliary field evaluated at the current point
1867: . a_t - the time derivative of each auxiliary field evaluated at the current point
1868: . a_x - the gradient of auxiliary each field evaluated at the current point
1869: . t - current time
1870: . u_tShift - the multiplier a for dF/dU_t
1871: . x - coordinates of the current point
1872: . numConstants - number of constant parameters
1873: . constants - constant parameters
1874: - g0 - output values at the current point
1876: Level: intermediate
1878: Note:
1879: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
1881: We are using a first order FEM model for the weak form\:
1882: \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi
1884: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobian()`
1885: @*/
1886: PetscErrorCode PetscDSSetJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1887: {
1888: PetscFunctionBegin;
1894: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1895: PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
1896: PetscCall(PetscWeakFormSetIndexJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
1897: PetscFunctionReturn(PETSC_SUCCESS);
1898: }
1900: /*@C
1901: PetscDSHasDynamicJacobian - Signals that a dynamic Jacobian, dF/du_t, has been set
1903: Not Collective
1905: Input Parameter:
1906: . ds - The `PetscDS`
1908: Output Parameter:
1909: . hasDynJac - flag that pointwise function for dynamic Jacobian has been set
1911: Level: intermediate
1913: .seealso: `PetscDS`, `PetscDSGetDynamicJacobian()`, `PetscDSSetDynamicJacobian()`, `PetscDSGetJacobian()`
1914: @*/
1915: PetscErrorCode PetscDSHasDynamicJacobian(PetscDS ds, PetscBool *hasDynJac)
1916: {
1917: PetscFunctionBegin;
1919: PetscCall(PetscWeakFormHasDynamicJacobian(ds->wf, hasDynJac));
1920: PetscFunctionReturn(PETSC_SUCCESS);
1921: }
1923: /*@C
1924: PetscDSGetDynamicJacobian - Get the pointwise dynamic Jacobian, dF/du_t, function for given test and basis field
1926: Not Collective
1928: Input Parameters:
1929: + ds - The `PetscDS`
1930: . f - The test field number
1931: - g - The field number
1933: Output Parameters:
1934: + g0 - integrand for the test and basis function term
1935: . g1 - integrand for the test function and basis function gradient term
1936: . g2 - integrand for the test function gradient and basis function term
1937: - g3 - integrand for the test function gradient and basis function gradient term
1939: Calling sequence of `g0`:
1940: + dim - the spatial dimension
1941: . Nf - the number of fields
1942: . NfAux - the number of auxiliary fields
1943: . uOff - the offset into u[] and u_t[] for each field
1944: . uOff_x - the offset into u_x[] for each field
1945: . u - each field evaluated at the current point
1946: . u_t - the time derivative of each field evaluated at the current point
1947: . u_x - the gradient of each field evaluated at the current point
1948: . aOff - the offset into a[] and a_t[] for each auxiliary field
1949: . aOff_x - the offset into a_x[] for each auxiliary field
1950: . a - each auxiliary field evaluated at the current point
1951: . a_t - the time derivative of each auxiliary field evaluated at the current point
1952: . a_x - the gradient of auxiliary each field evaluated at the current point
1953: . t - current time
1954: . u_tShift - the multiplier a for dF/dU_t
1955: . x - coordinates of the current point
1956: . numConstants - number of constant parameters
1957: . constants - constant parameters
1958: - g0 - output values at the current point
1960: Level: intermediate
1962: Note:
1963: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
1965: We are using a first order FEM model for the weak form\:
1966: \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi
1968: .seealso: `PetscDS`, `PetscDSSetJacobian()`
1969: @*/
1970: PetscErrorCode PetscDSGetDynamicJacobian(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
1971: {
1972: PetscPointJac *tmp0, *tmp1, *tmp2, *tmp3;
1973: PetscInt n0, n1, n2, n3;
1975: PetscFunctionBegin;
1977: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1978: PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
1979: PetscCall(PetscWeakFormGetDynamicJacobian(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
1980: *g0 = tmp0 ? tmp0[0] : NULL;
1981: *g1 = tmp1 ? tmp1[0] : NULL;
1982: *g2 = tmp2 ? tmp2[0] : NULL;
1983: *g3 = tmp3 ? tmp3[0] : NULL;
1984: PetscFunctionReturn(PETSC_SUCCESS);
1985: }
1987: /*@C
1988: PetscDSSetDynamicJacobian - Set the pointwise dynamic Jacobian, dF/du_t, function for given test and basis fields
1990: Not Collective
1992: Input Parameters:
1993: + ds - The `PetscDS`
1994: . f - The test field number
1995: . g - The field number
1996: . g0 - integrand for the test and basis function term
1997: . g1 - integrand for the test function and basis function gradient term
1998: . g2 - integrand for the test function gradient and basis function term
1999: - g3 - integrand for the test function gradient and basis function gradient term
2001: Calling sequence of `g0`:
2002: + dim - the spatial dimension
2003: . Nf - the number of fields
2004: . NfAux - the number of auxiliary fields
2005: . uOff - the offset into u[] and u_t[] for each field
2006: . uOff_x - the offset into u_x[] for each field
2007: . u - each field evaluated at the current point
2008: . u_t - the time derivative of each field evaluated at the current point
2009: . u_x - the gradient of each field evaluated at the current point
2010: . aOff - the offset into a[] and a_t[] for each auxiliary field
2011: . aOff_x - the offset into a_x[] for each auxiliary field
2012: . a - each auxiliary field evaluated at the current point
2013: . a_t - the time derivative of each auxiliary field evaluated at the current point
2014: . a_x - the gradient of auxiliary each field evaluated at the current point
2015: . t - current time
2016: . u_tShift - the multiplier a for dF/dU_t
2017: . x - coordinates of the current point
2018: . numConstants - number of constant parameters
2019: . constants - constant parameters
2020: - g0 - output values at the current point
2022: Level: intermediate
2024: Note:
2025: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
2027: We are using a first order FEM model for the weak form\:
2028: \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi
2030: .seealso: `PetscDS`, `PetscDSGetJacobian()`
2031: @*/
2032: PetscErrorCode PetscDSSetDynamicJacobian(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
2033: {
2034: PetscFunctionBegin;
2040: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2041: PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
2042: PetscCall(PetscWeakFormSetIndexDynamicJacobian(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
2043: PetscFunctionReturn(PETSC_SUCCESS);
2044: }
2046: /*@C
2047: PetscDSGetRiemannSolver - Returns the Riemann solver for the given field
2049: Not Collective
2051: Input Parameters:
2052: + ds - The `PetscDS` object
2053: - f - The field number
2055: Output Parameter:
2056: . r - Riemann solver
2058: Calling sequence of `r`:
2059: + dim - The spatial dimension
2060: . Nf - The number of fields
2061: . x - The coordinates at a point on the interface
2062: . n - The normal vector to the interface
2063: . uL - The state vector to the left of the interface
2064: . uR - The state vector to the right of the interface
2065: . flux - output array of flux through the interface
2066: . numConstants - number of constant parameters
2067: . constants - constant parameters
2068: - ctx - optional user context
2070: Level: intermediate
2072: .seealso: `PetscDS`, `PetscDSSetRiemannSolver()`
2073: @*/
2074: PetscErrorCode PetscDSGetRiemannSolver(PetscDS ds, PetscInt f, void (**r)(PetscInt dim, PetscInt Nf, const PetscReal x[], const PetscReal n[], const PetscScalar uL[], const PetscScalar uR[], PetscInt numConstants, const PetscScalar constants[], PetscScalar flux[], void *ctx))
2075: {
2076: PetscRiemannFunc *tmp;
2077: PetscInt n;
2079: PetscFunctionBegin;
2081: PetscAssertPointer(r, 3);
2082: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2083: PetscCall(PetscWeakFormGetRiemannSolver(ds->wf, NULL, 0, f, 0, &n, &tmp));
2084: *r = tmp ? tmp[0] : NULL;
2085: PetscFunctionReturn(PETSC_SUCCESS);
2086: }
2088: /*@C
2089: PetscDSSetRiemannSolver - Sets the Riemann solver for the given field
2091: Not Collective
2093: Input Parameters:
2094: + ds - The `PetscDS` object
2095: . f - The field number
2096: - r - Riemann solver
2098: Calling sequence of `r`:
2099: + dim - The spatial dimension
2100: . Nf - The number of fields
2101: . x - The coordinates at a point on the interface
2102: . n - The normal vector to the interface
2103: . uL - The state vector to the left of the interface
2104: . uR - The state vector to the right of the interface
2105: . flux - output array of flux through the interface
2106: . numConstants - number of constant parameters
2107: . constants - constant parameters
2108: - ctx - optional user context
2110: Level: intermediate
2112: .seealso: `PetscDS`, `PetscDSGetRiemannSolver()`
2113: @*/
2114: PetscErrorCode PetscDSSetRiemannSolver(PetscDS ds, PetscInt f, void (*r)(PetscInt dim, PetscInt Nf, const PetscReal x[], const PetscReal n[], const PetscScalar uL[], const PetscScalar uR[], PetscInt numConstants, const PetscScalar constants[], PetscScalar flux[], void *ctx))
2115: {
2116: PetscFunctionBegin;
2119: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2120: PetscCall(PetscWeakFormSetIndexRiemannSolver(ds->wf, NULL, 0, f, 0, 0, r));
2121: PetscFunctionReturn(PETSC_SUCCESS);
2122: }
2124: /*@C
2125: PetscDSGetUpdate - Get the pointwise update function for a given field
2127: Not Collective
2129: Input Parameters:
2130: + ds - The `PetscDS`
2131: - f - The field number
2133: Output Parameter:
2134: . update - update function
2136: Calling sequence of `update`:
2137: + dim - the spatial dimension
2138: . Nf - the number of fields
2139: . NfAux - the number of auxiliary fields
2140: . uOff - the offset into u[] and u_t[] for each field
2141: . uOff_x - the offset into u_x[] for each field
2142: . u - each field evaluated at the current point
2143: . u_t - the time derivative of each field evaluated at the current point
2144: . u_x - the gradient of each field evaluated at the current point
2145: . aOff - the offset into a[] and a_t[] for each auxiliary field
2146: . aOff_x - the offset into a_x[] for each auxiliary field
2147: . a - each auxiliary field evaluated at the current point
2148: . a_t - the time derivative of each auxiliary field evaluated at the current point
2149: . a_x - the gradient of auxiliary each field evaluated at the current point
2150: . t - current time
2151: . x - coordinates of the current point
2152: . numConstants - number of constant parameters
2153: . constants - constant parameters
2154: - uNew - new value for field at the current point
2156: Level: intermediate
2158: .seealso: `PetscDS`, `PetscDSSetUpdate()`, `PetscDSSetResidual()`
2159: @*/
2160: PetscErrorCode PetscDSGetUpdate(PetscDS ds, PetscInt f, void (**update)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uNew[]))
2161: {
2162: PetscFunctionBegin;
2164: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2165: if (update) {
2166: PetscAssertPointer(update, 3);
2167: *update = ds->update[f];
2168: }
2169: PetscFunctionReturn(PETSC_SUCCESS);
2170: }
2172: /*@C
2173: PetscDSSetUpdate - Set the pointwise update function for a given field
2175: Not Collective
2177: Input Parameters:
2178: + ds - The `PetscDS`
2179: . f - The field number
2180: - update - update function
2182: Calling sequence of `update`:
2183: + dim - the spatial dimension
2184: . Nf - the number of fields
2185: . NfAux - the number of auxiliary fields
2186: . uOff - the offset into u[] and u_t[] for each field
2187: . uOff_x - the offset into u_x[] for each field
2188: . u - each field evaluated at the current point
2189: . u_t - the time derivative of each field evaluated at the current point
2190: . u_x - the gradient of each field evaluated at the current point
2191: . aOff - the offset into a[] and a_t[] for each auxiliary field
2192: . aOff_x - the offset into a_x[] for each auxiliary field
2193: . a - each auxiliary field evaluated at the current point
2194: . a_t - the time derivative of each auxiliary field evaluated at the current point
2195: . a_x - the gradient of auxiliary each field evaluated at the current point
2196: . t - current time
2197: . x - coordinates of the current point
2198: . numConstants - number of constant parameters
2199: . constants - constant parameters
2200: - uNew - new field values at the current point
2202: Level: intermediate
2204: .seealso: `PetscDS`, `PetscDSGetResidual()`
2205: @*/
2206: PetscErrorCode PetscDSSetUpdate(PetscDS ds, PetscInt f, void (*update)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uNew[]))
2207: {
2208: PetscFunctionBegin;
2211: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2212: PetscCall(PetscDSEnlarge_Static(ds, f + 1));
2213: ds->update[f] = update;
2214: PetscFunctionReturn(PETSC_SUCCESS);
2215: }
2217: PetscErrorCode PetscDSGetContext(PetscDS ds, PetscInt f, void *ctx)
2218: {
2219: PetscFunctionBegin;
2221: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2222: PetscAssertPointer(ctx, 3);
2223: *(void **)ctx = ds->ctx[f];
2224: PetscFunctionReturn(PETSC_SUCCESS);
2225: }
2227: PetscErrorCode PetscDSSetContext(PetscDS ds, PetscInt f, void *ctx)
2228: {
2229: PetscFunctionBegin;
2231: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2232: PetscCall(PetscDSEnlarge_Static(ds, f + 1));
2233: ds->ctx[f] = ctx;
2234: PetscFunctionReturn(PETSC_SUCCESS);
2235: }
2237: /*@C
2238: PetscDSGetBdResidual - Get the pointwise boundary residual function for a given test field
2240: Not Collective
2242: Input Parameters:
2243: + ds - The PetscDS
2244: - f - The test field number
2246: Output Parameters:
2247: + f0 - boundary integrand for the test function term
2248: - f1 - boundary integrand for the test function gradient term
2250: Calling sequence of `f0`:
2251: + dim - the spatial dimension
2252: . Nf - the number of fields
2253: . NfAux - the number of auxiliary fields
2254: . uOff - the offset into u[] and u_t[] for each field
2255: . uOff_x - the offset into u_x[] for each field
2256: . u - each field evaluated at the current point
2257: . u_t - the time derivative of each field evaluated at the current point
2258: . u_x - the gradient of each field evaluated at the current point
2259: . aOff - the offset into a[] and a_t[] for each auxiliary field
2260: . aOff_x - the offset into a_x[] for each auxiliary field
2261: . a - each auxiliary field evaluated at the current point
2262: . a_t - the time derivative of each auxiliary field evaluated at the current point
2263: . a_x - the gradient of auxiliary each field evaluated at the current point
2264: . t - current time
2265: . x - coordinates of the current point
2266: . n - unit normal at the current point
2267: . numConstants - number of constant parameters
2268: . constants - constant parameters
2269: - f0 - output values at the current point
2271: Level: intermediate
2273: Note:
2274: The calling sequence of `f1` is identical, and therefore omitted for brevity.
2276: We are using a first order FEM model for the weak form\:
2277: \int_\Gamma \phi {\vec f}_0(u, u_t, \nabla u, x, t) \cdot \hat n + \nabla\phi \cdot {\overleftrightarrow f}_1(u, u_t, \nabla u, x, t) \cdot \hat n
2279: .seealso: `PetscDS`, `PetscDSSetBdResidual()`
2280: @*/
2281: PetscErrorCode PetscDSGetBdResidual(PetscDS ds, PetscInt f, void (**f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (**f1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
2282: {
2283: PetscBdPointFunc *tmp0, *tmp1;
2284: PetscInt n0, n1;
2286: PetscFunctionBegin;
2288: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2289: PetscCall(PetscWeakFormGetBdResidual(ds->wf, NULL, 0, f, 0, &n0, &tmp0, &n1, &tmp1));
2290: *f0 = tmp0 ? tmp0[0] : NULL;
2291: *f1 = tmp1 ? tmp1[0] : NULL;
2292: PetscFunctionReturn(PETSC_SUCCESS);
2293: }
2295: /*@C
2296: PetscDSSetBdResidual - Get the pointwise boundary residual function for a given test field
2298: Not Collective
2300: Input Parameters:
2301: + ds - The `PetscDS`
2302: . f - The test field number
2303: . f0 - boundary integrand for the test function term
2304: - f1 - boundary integrand for the test function gradient term
2306: Calling sequence of `f0`:
2307: + dim - the spatial dimension
2308: . Nf - the number of fields
2309: . NfAux - the number of auxiliary fields
2310: . uOff - the offset into u[] and u_t[] for each field
2311: . uOff_x - the offset into u_x[] for each field
2312: . u - each field evaluated at the current point
2313: . u_t - the time derivative of each field evaluated at the current point
2314: . u_x - the gradient of each field evaluated at the current point
2315: . aOff - the offset into a[] and a_t[] for each auxiliary field
2316: . aOff_x - the offset into a_x[] for each auxiliary field
2317: . a - each auxiliary field evaluated at the current point
2318: . a_t - the time derivative of each auxiliary field evaluated at the current point
2319: . a_x - the gradient of auxiliary each field evaluated at the current point
2320: . t - current time
2321: . x - coordinates of the current point
2322: . n - unit normal at the current point
2323: . numConstants - number of constant parameters
2324: . constants - constant parameters
2325: - f0 - output values at the current point
2327: Level: intermediate
2329: Note:
2330: The calling sequence of `f1` is identical, and therefore omitted for brevity.
2332: We are using a first order FEM model for the weak form\:
2333: \int_\Gamma \phi {\vec f}_0(u, u_t, \nabla u, x, t) \cdot \hat n + \nabla\phi \cdot {\overleftrightarrow f}_1(u, u_t, \nabla u, x, t) \cdot \hat n
2335: .seealso: `PetscDS`, `PetscDSGetBdResidual()`
2336: @*/
2337: PetscErrorCode PetscDSSetBdResidual(PetscDS ds, PetscInt f, void (*f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (*f1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
2338: {
2339: PetscFunctionBegin;
2341: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2342: PetscCall(PetscWeakFormSetIndexBdResidual(ds->wf, NULL, 0, f, 0, 0, f0, 0, f1));
2343: PetscFunctionReturn(PETSC_SUCCESS);
2344: }
2346: /*@
2347: PetscDSHasBdJacobian - Indicates that boundary Jacobian functions have been set
2349: Not Collective
2351: Input Parameter:
2352: . ds - The `PetscDS`
2354: Output Parameter:
2355: . hasBdJac - flag that pointwise function for the boundary Jacobian has been set
2357: Level: intermediate
2359: .seealso: `PetscDS`, `PetscDSHasJacobian()`, `PetscDSSetBdJacobian()`, `PetscDSGetBdJacobian()`
2360: @*/
2361: PetscErrorCode PetscDSHasBdJacobian(PetscDS ds, PetscBool *hasBdJac)
2362: {
2363: PetscFunctionBegin;
2365: PetscAssertPointer(hasBdJac, 2);
2366: PetscCall(PetscWeakFormHasBdJacobian(ds->wf, hasBdJac));
2367: PetscFunctionReturn(PETSC_SUCCESS);
2368: }
2370: /*@C
2371: PetscDSGetBdJacobian - Get the pointwise boundary Jacobian function for given test and basis field
2373: Not Collective
2375: Input Parameters:
2376: + ds - The `PetscDS`
2377: . f - The test field number
2378: - g - The field number
2380: Output Parameters:
2381: + g0 - integrand for the test and basis function term
2382: . g1 - integrand for the test function and basis function gradient term
2383: . g2 - integrand for the test function gradient and basis function term
2384: - g3 - integrand for the test function gradient and basis function gradient term
2386: Calling sequence of `g0`:
2387: + dim - the spatial dimension
2388: . Nf - the number of fields
2389: . NfAux - the number of auxiliary fields
2390: . uOff - the offset into u[] and u_t[] for each field
2391: . uOff_x - the offset into u_x[] for each field
2392: . u - each field evaluated at the current point
2393: . u_t - the time derivative of each field evaluated at the current point
2394: . u_x - the gradient of each field evaluated at the current point
2395: . aOff - the offset into a[] and a_t[] for each auxiliary field
2396: . aOff_x - the offset into a_x[] for each auxiliary field
2397: . a - each auxiliary field evaluated at the current point
2398: . a_t - the time derivative of each auxiliary field evaluated at the current point
2399: . a_x - the gradient of auxiliary each field evaluated at the current point
2400: . t - current time
2401: . u_tShift - the multiplier a for dF/dU_t
2402: . x - coordinates of the current point
2403: . n - normal at the current point
2404: . numConstants - number of constant parameters
2405: . constants - constant parameters
2406: - g0 - output values at the current point
2408: Level: intermediate
2410: Note:
2411: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
2413: We are using a first order FEM model for the weak form\:
2414: \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi
2416: .seealso: `PetscDS`, `PetscDSSetBdJacobian()`
2417: @*/
2418: PetscErrorCode PetscDSGetBdJacobian(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
2419: {
2420: PetscBdPointJac *tmp0, *tmp1, *tmp2, *tmp3;
2421: PetscInt n0, n1, n2, n3;
2423: PetscFunctionBegin;
2425: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2426: PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
2427: PetscCall(PetscWeakFormGetBdJacobian(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
2428: *g0 = tmp0 ? tmp0[0] : NULL;
2429: *g1 = tmp1 ? tmp1[0] : NULL;
2430: *g2 = tmp2 ? tmp2[0] : NULL;
2431: *g3 = tmp3 ? tmp3[0] : NULL;
2432: PetscFunctionReturn(PETSC_SUCCESS);
2433: }
2435: /*@C
2436: PetscDSSetBdJacobian - Set the pointwise boundary Jacobian function for given test and basis field
2438: Not Collective
2440: Input Parameters:
2441: + ds - The PetscDS
2442: . f - The test field number
2443: . g - The field number
2444: . g0 - integrand for the test and basis function term
2445: . g1 - integrand for the test function and basis function gradient term
2446: . g2 - integrand for the test function gradient and basis function term
2447: - g3 - integrand for the test function gradient and basis function gradient term
2449: Calling sequence of `g0`:
2450: + dim - the spatial dimension
2451: . Nf - the number of fields
2452: . NfAux - the number of auxiliary fields
2453: . uOff - the offset into u[] and u_t[] for each field
2454: . uOff_x - the offset into u_x[] for each field
2455: . u - each field evaluated at the current point
2456: . u_t - the time derivative of each field evaluated at the current point
2457: . u_x - the gradient of each field evaluated at the current point
2458: . aOff - the offset into a[] and a_t[] for each auxiliary field
2459: . aOff_x - the offset into a_x[] for each auxiliary field
2460: . a - each auxiliary field evaluated at the current point
2461: . a_t - the time derivative of each auxiliary field evaluated at the current point
2462: . a_x - the gradient of auxiliary each field evaluated at the current point
2463: . t - current time
2464: . u_tShift - the multiplier a for dF/dU_t
2465: . x - coordinates of the current point
2466: . n - normal at the current point
2467: . numConstants - number of constant parameters
2468: . constants - constant parameters
2469: - g0 - output values at the current point
2471: Level: intermediate
2473: Note:
2474: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
2476: We are using a first order FEM model for the weak form\:
2477: \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi
2479: .seealso: `PetscDS`, `PetscDSGetBdJacobian()`
2480: @*/
2481: PetscErrorCode PetscDSSetBdJacobian(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
2482: {
2483: PetscFunctionBegin;
2489: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2490: PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
2491: PetscCall(PetscWeakFormSetIndexBdJacobian(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
2492: PetscFunctionReturn(PETSC_SUCCESS);
2493: }
2495: /*@
2496: PetscDSHasBdJacobianPreconditioner - Signals that boundary Jacobian preconditioner functions have been set
2498: Not Collective
2500: Input Parameter:
2501: . ds - The `PetscDS`
2503: Output Parameter:
2504: . hasBdJacPre - flag that pointwise function for the boundary Jacobian preconditioner has been set
2506: Level: intermediate
2508: .seealso: `PetscDS`, `PetscDSHasJacobian()`, `PetscDSSetBdJacobian()`, `PetscDSGetBdJacobian()`
2509: @*/
2510: PetscErrorCode PetscDSHasBdJacobianPreconditioner(PetscDS ds, PetscBool *hasBdJacPre)
2511: {
2512: PetscFunctionBegin;
2514: PetscAssertPointer(hasBdJacPre, 2);
2515: PetscCall(PetscWeakFormHasBdJacobianPreconditioner(ds->wf, hasBdJacPre));
2516: PetscFunctionReturn(PETSC_SUCCESS);
2517: }
2519: /*@C
2520: PetscDSGetBdJacobianPreconditioner - Get the pointwise boundary Jacobian preconditioner function for given test and basis field
2522: Not Collective; No Fortran Support
2524: Input Parameters:
2525: + ds - The `PetscDS`
2526: . f - The test field number
2527: - g - The field number
2529: Output Parameters:
2530: + g0 - integrand for the test and basis function term
2531: . g1 - integrand for the test function and basis function gradient term
2532: . g2 - integrand for the test function gradient and basis function term
2533: - g3 - integrand for the test function gradient and basis function gradient term
2535: Calling sequence of `g0`:
2536: + dim - the spatial dimension
2537: . Nf - the number of fields
2538: . NfAux - the number of auxiliary fields
2539: . uOff - the offset into u[] and u_t[] for each field
2540: . uOff_x - the offset into u_x[] for each field
2541: . u - each field evaluated at the current point
2542: . u_t - the time derivative of each field evaluated at the current point
2543: . u_x - the gradient of each field evaluated at the current point
2544: . aOff - the offset into a[] and a_t[] for each auxiliary field
2545: . aOff_x - the offset into a_x[] for each auxiliary field
2546: . a - each auxiliary field evaluated at the current point
2547: . a_t - the time derivative of each auxiliary field evaluated at the current point
2548: . a_x - the gradient of auxiliary each field evaluated at the current point
2549: . t - current time
2550: . u_tShift - the multiplier a for dF/dU_t
2551: . x - coordinates of the current point
2552: . n - normal at the current point
2553: . numConstants - number of constant parameters
2554: . constants - constant parameters
2555: - g0 - output values at the current point
2557: Level: intermediate
2559: Note:
2560: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
2562: We are using a first order FEM model for the weak form\:
2563: \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi
2565: .seealso: `PetscDS`, `PetscDSSetBdJacobianPreconditioner()`
2566: @*/
2567: PetscErrorCode PetscDSGetBdJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (**g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
2568: {
2569: PetscBdPointJac *tmp0, *tmp1, *tmp2, *tmp3;
2570: PetscInt n0, n1, n2, n3;
2572: PetscFunctionBegin;
2574: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2575: PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
2576: PetscCall(PetscWeakFormGetBdJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
2577: *g0 = tmp0 ? tmp0[0] : NULL;
2578: *g1 = tmp1 ? tmp1[0] : NULL;
2579: *g2 = tmp2 ? tmp2[0] : NULL;
2580: *g3 = tmp3 ? tmp3[0] : NULL;
2581: PetscFunctionReturn(PETSC_SUCCESS);
2582: }
2584: /*@C
2585: PetscDSSetBdJacobianPreconditioner - Set the pointwise boundary Jacobian preconditioner function for given test and basis field
2587: Not Collective; No Fortran Support
2589: Input Parameters:
2590: + ds - The `PetscDS`
2591: . f - The test field number
2592: . g - The field number
2593: . g0 - integrand for the test and basis function term
2594: . g1 - integrand for the test function and basis function gradient term
2595: . g2 - integrand for the test function gradient and basis function term
2596: - g3 - integrand for the test function gradient and basis function gradient term
2598: Calling sequence of `g0':
2599: + dim - the spatial dimension
2600: . Nf - the number of fields
2601: . NfAux - the number of auxiliary fields
2602: . uOff - the offset into u[] and u_t[] for each field
2603: . uOff_x - the offset into u_x[] for each field
2604: . u - each field evaluated at the current point
2605: . u_t - the time derivative of each field evaluated at the current point
2606: . u_x - the gradient of each field evaluated at the current point
2607: . aOff - the offset into a[] and a_t[] for each auxiliary field
2608: . aOff_x - the offset into a_x[] for each auxiliary field
2609: . a - each auxiliary field evaluated at the current point
2610: . a_t - the time derivative of each auxiliary field evaluated at the current point
2611: . a_x - the gradient of auxiliary each field evaluated at the current point
2612: . t - current time
2613: . u_tShift - the multiplier a for dF/dU_t
2614: . x - coordinates of the current point
2615: . n - normal at the current point
2616: . numConstants - number of constant parameters
2617: . constants - constant parameters
2618: - g0 - output values at the current point
2620: Level: intermediate
2622: Note:
2623: `g1`, `g2`, and `g3` have identical calling sequences to `g0` and are omitted for brevity.
2625: We are using a first order FEM model for the weak form\:
2626: \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi
2628: .seealso: `PetscDS`, `PetscDSGetBdJacobianPreconditioner()`
2629: @*/
2630: PetscErrorCode PetscDSSetBdJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g2)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void (*g3)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
2631: {
2632: PetscFunctionBegin;
2638: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2639: PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
2640: PetscCall(PetscWeakFormSetIndexBdJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
2641: PetscFunctionReturn(PETSC_SUCCESS);
2642: }
2644: /*@C
2645: PetscDSGetExactSolution - Get the pointwise exact solution function for a given test field
2647: Not Collective
2649: Input Parameters:
2650: + prob - The PetscDS
2651: - f - The test field number
2653: Output Parameters:
2654: + sol - exact solution for the test field
2655: - ctx - exact solution context
2657: Calling sequence of `exactSol`:
2658: + dim - the spatial dimension
2659: . t - current time
2660: . x - coordinates of the current point
2661: . Nc - the number of field components
2662: . u - the solution field evaluated at the current point
2663: - ctx - a user context
2665: Level: intermediate
2667: .seealso: `PetscDS`, `PetscDSSetExactSolution()`, `PetscDSGetExactSolutionTimeDerivative()`
2668: @*/
2669: PetscErrorCode PetscDSGetExactSolution(PetscDS prob, PetscInt f, PetscErrorCode (**sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void **ctx)
2670: {
2671: PetscFunctionBegin;
2673: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
2674: if (sol) {
2675: PetscAssertPointer(sol, 3);
2676: *sol = prob->exactSol[f];
2677: }
2678: if (ctx) {
2679: PetscAssertPointer(ctx, 4);
2680: *ctx = prob->exactCtx[f];
2681: }
2682: PetscFunctionReturn(PETSC_SUCCESS);
2683: }
2685: /*@C
2686: PetscDSSetExactSolution - Set the pointwise exact solution function for a given test field
2688: Not Collective
2690: Input Parameters:
2691: + prob - The `PetscDS`
2692: . f - The test field number
2693: . sol - solution function for the test fields
2694: - ctx - solution context or `NULL`
2696: Calling sequence of `sol`:
2697: + dim - the spatial dimension
2698: . t - current time
2699: . x - coordinates of the current point
2700: . Nc - the number of field components
2701: . u - the solution field evaluated at the current point
2702: - ctx - a user context
2704: Level: intermediate
2706: .seealso: `PetscDS`, `PetscDSGetExactSolution()`
2707: @*/
2708: PetscErrorCode PetscDSSetExactSolution(PetscDS prob, PetscInt f, PetscErrorCode (*sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void *ctx)
2709: {
2710: PetscFunctionBegin;
2712: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2713: PetscCall(PetscDSEnlarge_Static(prob, f + 1));
2714: if (sol) {
2716: prob->exactSol[f] = sol;
2717: }
2718: if (ctx) {
2720: prob->exactCtx[f] = ctx;
2721: }
2722: PetscFunctionReturn(PETSC_SUCCESS);
2723: }
2725: /*@C
2726: PetscDSGetExactSolutionTimeDerivative - Get the pointwise time derivative of the exact solution function for a given test field
2728: Not Collective
2730: Input Parameters:
2731: + prob - The `PetscDS`
2732: - f - The test field number
2734: Output Parameters:
2735: + sol - time derivative of the exact solution for the test field
2736: - ctx - time derivative of the exact solution context
2738: Calling sequence of `exactSol`:
2739: + dim - the spatial dimension
2740: . t - current time
2741: . x - coordinates of the current point
2742: . Nc - the number of field components
2743: . u - the solution field evaluated at the current point
2744: - ctx - a user context
2746: Level: intermediate
2748: .seealso: `PetscDS`, `PetscDSSetExactSolutionTimeDerivative()`, `PetscDSGetExactSolution()`
2749: @*/
2750: PetscErrorCode PetscDSGetExactSolutionTimeDerivative(PetscDS prob, PetscInt f, PetscErrorCode (**sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void **ctx)
2751: {
2752: PetscFunctionBegin;
2754: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
2755: if (sol) {
2756: PetscAssertPointer(sol, 3);
2757: *sol = prob->exactSol_t[f];
2758: }
2759: if (ctx) {
2760: PetscAssertPointer(ctx, 4);
2761: *ctx = prob->exactCtx_t[f];
2762: }
2763: PetscFunctionReturn(PETSC_SUCCESS);
2764: }
2766: /*@C
2767: PetscDSSetExactSolutionTimeDerivative - Set the pointwise time derivative of the exact solution function for a given test field
2769: Not Collective
2771: Input Parameters:
2772: + prob - The `PetscDS`
2773: . f - The test field number
2774: . sol - time derivative of the solution function for the test fields
2775: - ctx - time derivative of the solution context or `NULL`
2777: Calling sequence of `sol`:
2778: + dim - the spatial dimension
2779: . t - current time
2780: . x - coordinates of the current point
2781: . Nc - the number of field components
2782: . u - the solution field evaluated at the current point
2783: - ctx - a user context
2785: Level: intermediate
2787: .seealso: `PetscDS`, `PetscDSGetExactSolutionTimeDerivative()`, `PetscDSSetExactSolution()`
2788: @*/
2789: PetscErrorCode PetscDSSetExactSolutionTimeDerivative(PetscDS prob, PetscInt f, PetscErrorCode (*sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void *ctx)
2790: {
2791: PetscFunctionBegin;
2793: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2794: PetscCall(PetscDSEnlarge_Static(prob, f + 1));
2795: if (sol) {
2797: prob->exactSol_t[f] = sol;
2798: }
2799: if (ctx) {
2801: prob->exactCtx_t[f] = ctx;
2802: }
2803: PetscFunctionReturn(PETSC_SUCCESS);
2804: }
2806: /*@C
2807: PetscDSGetConstants - Returns the array of constants passed to point functions
2809: Not Collective
2811: Input Parameter:
2812: . prob - The `PetscDS` object
2814: Output Parameters:
2815: + numConstants - The number of constants
2816: - constants - The array of constants, NULL if there are none
2818: Level: intermediate
2820: .seealso: `PetscDS`, `PetscDSSetConstants()`, `PetscDSCreate()`
2821: @*/
2822: PetscErrorCode PetscDSGetConstants(PetscDS prob, PetscInt *numConstants, const PetscScalar *constants[])
2823: {
2824: PetscFunctionBegin;
2826: if (numConstants) {
2827: PetscAssertPointer(numConstants, 2);
2828: *numConstants = prob->numConstants;
2829: }
2830: if (constants) {
2831: PetscAssertPointer(constants, 3);
2832: *constants = prob->constants;
2833: }
2834: PetscFunctionReturn(PETSC_SUCCESS);
2835: }
2837: /*@C
2838: PetscDSSetConstants - Set the array of constants passed to point functions
2840: Not Collective
2842: Input Parameters:
2843: + prob - The `PetscDS` object
2844: . numConstants - The number of constants
2845: - constants - The array of constants, NULL if there are none
2847: Level: intermediate
2849: .seealso: `PetscDS`, `PetscDSGetConstants()`, `PetscDSCreate()`
2850: @*/
2851: PetscErrorCode PetscDSSetConstants(PetscDS prob, PetscInt numConstants, PetscScalar constants[])
2852: {
2853: PetscFunctionBegin;
2855: if (numConstants != prob->numConstants) {
2856: PetscCall(PetscFree(prob->constants));
2857: prob->numConstants = numConstants;
2858: if (prob->numConstants) {
2859: PetscCall(PetscMalloc1(prob->numConstants, &prob->constants));
2860: } else {
2861: prob->constants = NULL;
2862: }
2863: }
2864: if (prob->numConstants) {
2865: PetscAssertPointer(constants, 3);
2866: PetscCall(PetscArraycpy(prob->constants, constants, prob->numConstants));
2867: }
2868: PetscFunctionReturn(PETSC_SUCCESS);
2869: }
2871: /*@
2872: PetscDSGetFieldIndex - Returns the index of the given field
2874: Not Collective
2876: Input Parameters:
2877: + prob - The `PetscDS` object
2878: - disc - The discretization object
2880: Output Parameter:
2881: . f - The field number
2883: Level: beginner
2885: .seealso: `PetscDS`, `PetscGetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
2886: @*/
2887: PetscErrorCode PetscDSGetFieldIndex(PetscDS prob, PetscObject disc, PetscInt *f)
2888: {
2889: PetscInt g;
2891: PetscFunctionBegin;
2893: PetscAssertPointer(f, 3);
2894: *f = -1;
2895: for (g = 0; g < prob->Nf; ++g) {
2896: if (disc == prob->disc[g]) break;
2897: }
2898: PetscCheck(g != prob->Nf, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Field not found in PetscDS.");
2899: *f = g;
2900: PetscFunctionReturn(PETSC_SUCCESS);
2901: }
2903: /*@
2904: PetscDSGetFieldSize - Returns the size of the given field in the full space basis
2906: Not Collective
2908: Input Parameters:
2909: + prob - The `PetscDS` object
2910: - f - The field number
2912: Output Parameter:
2913: . size - The size
2915: Level: beginner
2917: .seealso: `PetscDS`, `PetscDSGetFieldOffset()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
2918: @*/
2919: PetscErrorCode PetscDSGetFieldSize(PetscDS prob, PetscInt f, PetscInt *size)
2920: {
2921: PetscFunctionBegin;
2923: PetscAssertPointer(size, 3);
2924: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
2925: PetscCall(PetscDSSetUp(prob));
2926: *size = prob->Nb[f];
2927: PetscFunctionReturn(PETSC_SUCCESS);
2928: }
2930: /*@
2931: PetscDSGetFieldOffset - Returns the offset of the given field in the full space basis
2933: Not Collective
2935: Input Parameters:
2936: + prob - The `PetscDS` object
2937: - f - The field number
2939: Output Parameter:
2940: . off - The offset
2942: Level: beginner
2944: .seealso: `PetscDS`, `PetscDSGetFieldSize()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
2945: @*/
2946: PetscErrorCode PetscDSGetFieldOffset(PetscDS prob, PetscInt f, PetscInt *off)
2947: {
2948: PetscInt size, g;
2950: PetscFunctionBegin;
2952: PetscAssertPointer(off, 3);
2953: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
2954: *off = 0;
2955: for (g = 0; g < f; ++g) {
2956: PetscCall(PetscDSGetFieldSize(prob, g, &size));
2957: *off += size;
2958: }
2959: PetscFunctionReturn(PETSC_SUCCESS);
2960: }
2962: /*@
2963: PetscDSGetFieldOffsetCohesive - Returns the offset of the given field in the full space basis on a cohesive cell
2965: Not Collective
2967: Input Parameters:
2968: + ds - The `PetscDS` object
2969: - f - The field number
2971: Output Parameter:
2972: . off - The offset
2974: Level: beginner
2976: .seealso: `PetscDS`, `PetscDSGetFieldSize()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
2977: @*/
2978: PetscErrorCode PetscDSGetFieldOffsetCohesive(PetscDS ds, PetscInt f, PetscInt *off)
2979: {
2980: PetscInt size, g;
2982: PetscFunctionBegin;
2984: PetscAssertPointer(off, 3);
2985: PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2986: *off = 0;
2987: for (g = 0; g < f; ++g) {
2988: PetscBool cohesive;
2990: PetscCall(PetscDSGetCohesive(ds, g, &cohesive));
2991: PetscCall(PetscDSGetFieldSize(ds, g, &size));
2992: *off += cohesive ? size : size * 2;
2993: }
2994: PetscFunctionReturn(PETSC_SUCCESS);
2995: }
2997: /*@
2998: PetscDSGetDimensions - Returns the size of the approximation space for each field on an evaluation point
3000: Not Collective
3002: Input Parameter:
3003: . prob - The `PetscDS` object
3005: Output Parameter:
3006: . dimensions - The number of dimensions
3008: Level: beginner
3010: .seealso: `PetscDS`, `PetscDSGetComponentOffsets()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3011: @*/
3012: PetscErrorCode PetscDSGetDimensions(PetscDS prob, PetscInt *dimensions[])
3013: {
3014: PetscFunctionBegin;
3016: PetscCall(PetscDSSetUp(prob));
3017: PetscAssertPointer(dimensions, 2);
3018: *dimensions = prob->Nb;
3019: PetscFunctionReturn(PETSC_SUCCESS);
3020: }
3022: /*@
3023: PetscDSGetComponents - Returns the number of components for each field on an evaluation point
3025: Not Collective
3027: Input Parameter:
3028: . prob - The `PetscDS` object
3030: Output Parameter:
3031: . components - The number of components
3033: Level: beginner
3035: .seealso: `PetscDS`, `PetscDSGetComponentOffsets()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3036: @*/
3037: PetscErrorCode PetscDSGetComponents(PetscDS prob, PetscInt *components[])
3038: {
3039: PetscFunctionBegin;
3041: PetscCall(PetscDSSetUp(prob));
3042: PetscAssertPointer(components, 2);
3043: *components = prob->Nc;
3044: PetscFunctionReturn(PETSC_SUCCESS);
3045: }
3047: /*@
3048: PetscDSGetComponentOffset - Returns the offset of the given field on an evaluation point
3050: Not Collective
3052: Input Parameters:
3053: + prob - The `PetscDS` object
3054: - f - The field number
3056: Output Parameter:
3057: . off - The offset
3059: Level: beginner
3061: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3062: @*/
3063: PetscErrorCode PetscDSGetComponentOffset(PetscDS prob, PetscInt f, PetscInt *off)
3064: {
3065: PetscFunctionBegin;
3067: PetscAssertPointer(off, 3);
3068: PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
3069: PetscCall(PetscDSSetUp(prob));
3070: *off = prob->off[f];
3071: PetscFunctionReturn(PETSC_SUCCESS);
3072: }
3074: /*@
3075: PetscDSGetComponentOffsets - Returns the offset of each field on an evaluation point
3077: Not Collective
3079: Input Parameter:
3080: . prob - The `PetscDS` object
3082: Output Parameter:
3083: . offsets - The offsets
3085: Level: beginner
3087: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3088: @*/
3089: PetscErrorCode PetscDSGetComponentOffsets(PetscDS prob, PetscInt *offsets[])
3090: {
3091: PetscFunctionBegin;
3093: PetscAssertPointer(offsets, 2);
3094: PetscCall(PetscDSSetUp(prob));
3095: *offsets = prob->off;
3096: PetscFunctionReturn(PETSC_SUCCESS);
3097: }
3099: /*@
3100: PetscDSGetComponentDerivativeOffsets - Returns the offset of each field derivative on an evaluation point
3102: Not Collective
3104: Input Parameter:
3105: . prob - The `PetscDS` object
3107: Output Parameter:
3108: . offsets - The offsets
3110: Level: beginner
3112: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3113: @*/
3114: PetscErrorCode PetscDSGetComponentDerivativeOffsets(PetscDS prob, PetscInt *offsets[])
3115: {
3116: PetscFunctionBegin;
3118: PetscAssertPointer(offsets, 2);
3119: PetscCall(PetscDSSetUp(prob));
3120: *offsets = prob->offDer;
3121: PetscFunctionReturn(PETSC_SUCCESS);
3122: }
3124: /*@
3125: PetscDSGetComponentOffsetsCohesive - Returns the offset of each field on an evaluation point
3127: Not Collective
3129: Input Parameters:
3130: + ds - The `PetscDS` object
3131: - s - The cohesive side, 0 for negative, 1 for positive, 2 for cohesive
3133: Output Parameter:
3134: . offsets - The offsets
3136: Level: beginner
3138: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3139: @*/
3140: PetscErrorCode PetscDSGetComponentOffsetsCohesive(PetscDS ds, PetscInt s, PetscInt *offsets[])
3141: {
3142: PetscFunctionBegin;
3144: PetscAssertPointer(offsets, 3);
3145: PetscCheck(ds->isCohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cohesive offsets are only valid for a cohesive DS");
3146: PetscCheck(!(s < 0) && !(s > 2), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cohesive side %" PetscInt_FMT " is not in [0, 2]", s);
3147: PetscCall(PetscDSSetUp(ds));
3148: *offsets = ds->offCohesive[s];
3149: PetscFunctionReturn(PETSC_SUCCESS);
3150: }
3152: /*@
3153: PetscDSGetComponentDerivativeOffsetsCohesive - Returns the offset of each field derivative on an evaluation point
3155: Not Collective
3157: Input Parameters:
3158: + ds - The `PetscDS` object
3159: - s - The cohesive side, 0 for negative, 1 for positive, 2 for cohesive
3161: Output Parameter:
3162: . offsets - The offsets
3164: Level: beginner
3166: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3167: @*/
3168: PetscErrorCode PetscDSGetComponentDerivativeOffsetsCohesive(PetscDS ds, PetscInt s, PetscInt *offsets[])
3169: {
3170: PetscFunctionBegin;
3172: PetscAssertPointer(offsets, 3);
3173: PetscCheck(ds->isCohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cohesive offsets are only valid for a cohesive DS");
3174: PetscCheck(!(s < 0) && !(s > 2), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cohesive side %" PetscInt_FMT " is not in [0, 2]", s);
3175: PetscCall(PetscDSSetUp(ds));
3176: *offsets = ds->offDerCohesive[s];
3177: PetscFunctionReturn(PETSC_SUCCESS);
3178: }
3180: /*@C
3181: PetscDSGetTabulation - Return the basis tabulation at quadrature points for the volume discretization
3183: Not Collective
3185: Input Parameter:
3186: . prob - The `PetscDS` object
3188: Output Parameter:
3189: . T - The basis function and derivatives tabulation at quadrature points for each field
3191: Level: intermediate
3193: .seealso: `PetscDS`, `PetscTabulation`, `PetscDSCreate()`
3194: @*/
3195: PetscErrorCode PetscDSGetTabulation(PetscDS prob, PetscTabulation *T[])
3196: {
3197: PetscFunctionBegin;
3199: PetscAssertPointer(T, 2);
3200: PetscCall(PetscDSSetUp(prob));
3201: *T = prob->T;
3202: PetscFunctionReturn(PETSC_SUCCESS);
3203: }
3205: /*@C
3206: PetscDSGetFaceTabulation - Return the basis tabulation at quadrature points on the faces
3208: Not Collective
3210: Input Parameter:
3211: . prob - The `PetscDS` object
3213: Output Parameter:
3214: . Tf - The basis function and derivative tabulation on each local face at quadrature points for each and field
3216: Level: intermediate
3218: .seealso: `PetscTabulation`, `PetscDS`, `PetscDSGetTabulation()`, `PetscDSCreate()`
3219: @*/
3220: PetscErrorCode PetscDSGetFaceTabulation(PetscDS prob, PetscTabulation *Tf[])
3221: {
3222: PetscFunctionBegin;
3224: PetscAssertPointer(Tf, 2);
3225: PetscCall(PetscDSSetUp(prob));
3226: *Tf = prob->Tf;
3227: PetscFunctionReturn(PETSC_SUCCESS);
3228: }
3230: PetscErrorCode PetscDSGetEvaluationArrays(PetscDS prob, PetscScalar **u, PetscScalar **u_t, PetscScalar **u_x)
3231: {
3232: PetscFunctionBegin;
3234: PetscCall(PetscDSSetUp(prob));
3235: if (u) {
3236: PetscAssertPointer(u, 2);
3237: *u = prob->u;
3238: }
3239: if (u_t) {
3240: PetscAssertPointer(u_t, 3);
3241: *u_t = prob->u_t;
3242: }
3243: if (u_x) {
3244: PetscAssertPointer(u_x, 4);
3245: *u_x = prob->u_x;
3246: }
3247: PetscFunctionReturn(PETSC_SUCCESS);
3248: }
3250: PetscErrorCode PetscDSGetWeakFormArrays(PetscDS prob, PetscScalar **f0, PetscScalar **f1, PetscScalar **g0, PetscScalar **g1, PetscScalar **g2, PetscScalar **g3)
3251: {
3252: PetscFunctionBegin;
3254: PetscCall(PetscDSSetUp(prob));
3255: if (f0) {
3256: PetscAssertPointer(f0, 2);
3257: *f0 = prob->f0;
3258: }
3259: if (f1) {
3260: PetscAssertPointer(f1, 3);
3261: *f1 = prob->f1;
3262: }
3263: if (g0) {
3264: PetscAssertPointer(g0, 4);
3265: *g0 = prob->g0;
3266: }
3267: if (g1) {
3268: PetscAssertPointer(g1, 5);
3269: *g1 = prob->g1;
3270: }
3271: if (g2) {
3272: PetscAssertPointer(g2, 6);
3273: *g2 = prob->g2;
3274: }
3275: if (g3) {
3276: PetscAssertPointer(g3, 7);
3277: *g3 = prob->g3;
3278: }
3279: PetscFunctionReturn(PETSC_SUCCESS);
3280: }
3282: PetscErrorCode PetscDSGetWorkspace(PetscDS prob, PetscReal **x, PetscScalar **basisReal, PetscScalar **basisDerReal, PetscScalar **testReal, PetscScalar **testDerReal)
3283: {
3284: PetscFunctionBegin;
3286: PetscCall(PetscDSSetUp(prob));
3287: if (x) {
3288: PetscAssertPointer(x, 2);
3289: *x = prob->x;
3290: }
3291: if (basisReal) {
3292: PetscAssertPointer(basisReal, 3);
3293: *basisReal = prob->basisReal;
3294: }
3295: if (basisDerReal) {
3296: PetscAssertPointer(basisDerReal, 4);
3297: *basisDerReal = prob->basisDerReal;
3298: }
3299: if (testReal) {
3300: PetscAssertPointer(testReal, 5);
3301: *testReal = prob->testReal;
3302: }
3303: if (testDerReal) {
3304: PetscAssertPointer(testDerReal, 6);
3305: *testDerReal = prob->testDerReal;
3306: }
3307: PetscFunctionReturn(PETSC_SUCCESS);
3308: }
3310: /*@C
3311: PetscDSAddBoundary - Add a boundary condition to the model.
3313: Collective
3315: Input Parameters:
3316: + ds - The PetscDS object
3317: . type - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3318: . name - The BC name
3319: . label - The label defining constrained points
3320: . Nv - The number of `DMLabel` values for constrained points
3321: . values - An array of label values for constrained points
3322: . field - The field to constrain
3323: . Nc - The number of constrained field components (0 will constrain all fields)
3324: . comps - An array of constrained component numbers
3325: . bcFunc - A pointwise function giving boundary values
3326: . bcFunc_t - A pointwise function giving the time derivative of the boundary values, or NULL
3327: - ctx - An optional user context for bcFunc
3329: Output Parameter:
3330: . bd - The boundary number
3332: Options Database Keys:
3333: + -bc_<boundary name> <num> - Overrides the boundary ids
3334: - -bc_<boundary name>_comp <num> - Overrides the boundary components
3336: Level: developer
3338: Note:
3339: Both `bcFunc` and `bcFunc_t` will depend on the boundary condition type. If the type if `DM_BC_ESSENTIAL`, then the calling sequence is\:
3341: $ void bcFunc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar bcval[])
3343: If the type is `DM_BC_ESSENTIAL_FIELD` or other _FIELD value, then the calling sequence is\:
3344: .vb
3345: void bcFunc(PetscInt dim, PetscInt Nf, PetscInt NfAux,
3346: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
3347: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
3348: PetscReal time, const PetscReal x[], PetscScalar bcval[])
3349: .ve
3350: + dim - the spatial dimension
3351: . Nf - the number of fields
3352: . uOff - the offset into u[] and u_t[] for each field
3353: . uOff_x - the offset into u_x[] for each field
3354: . u - each field evaluated at the current point
3355: . u_t - the time derivative of each field evaluated at the current point
3356: . u_x - the gradient of each field evaluated at the current point
3357: . aOff - the offset into a[] and a_t[] for each auxiliary field
3358: . aOff_x - the offset into a_x[] for each auxiliary field
3359: . a - each auxiliary field evaluated at the current point
3360: . a_t - the time derivative of each auxiliary field evaluated at the current point
3361: . a_x - the gradient of auxiliary each field evaluated at the current point
3362: . t - current time
3363: . x - coordinates of the current point
3364: . numConstants - number of constant parameters
3365: . constants - constant parameters
3366: - bcval - output values at the current point
3368: Notes:
3369: The pointwise functions are used to provide boundary values for essential boundary
3370: conditions. In FEM, they are acting upon by dual basis functionals to generate FEM
3371: coefficients which are fixed. Natural boundary conditions signal to PETSc that boundary
3372: integrals should be performed, using the kernels from `PetscDSSetBdResidual()`.
3374: .seealso: `PetscDS`, `PetscWeakForm`, `DMLabel`, `DMBoundaryConditionType`, `PetscDSAddBoundaryByName()`, `PetscDSGetBoundary()`, `PetscDSSetResidual()`, `PetscDSSetBdResidual()`
3375: @*/
3376: PetscErrorCode PetscDSAddBoundary(PetscDS ds, DMBoundaryConditionType type, const char name[], DMLabel label, PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx, PetscInt *bd)
3377: {
3378: DSBoundary head = ds->boundary, b;
3379: PetscInt n = 0;
3380: const char *lname;
3382: PetscFunctionBegin;
3385: PetscAssertPointer(name, 3);
3390: PetscCheck(field >= 0 && field < ds->Nf, PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", field, ds->Nf);
3391: if (Nc > 0) {
3392: PetscInt *fcomps;
3393: PetscInt c;
3395: PetscCall(PetscDSGetComponents(ds, &fcomps));
3396: PetscCheck(Nc <= fcomps[field], PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_OUTOFRANGE, "Number of constrained components %" PetscInt_FMT " > %" PetscInt_FMT " components for field %" PetscInt_FMT, Nc, fcomps[field], field);
3397: for (c = 0; c < Nc; ++c) {
3398: PetscCheck(comps[c] >= 0 && comps[c] < fcomps[field], PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_OUTOFRANGE, "Constrained component[%" PetscInt_FMT "] %" PetscInt_FMT " not in [0, %" PetscInt_FMT ") components for field %" PetscInt_FMT, c, comps[c], fcomps[field], field);
3399: }
3400: }
3401: PetscCall(PetscNew(&b));
3402: PetscCall(PetscStrallocpy(name, (char **)&b->name));
3403: PetscCall(PetscWeakFormCreate(PETSC_COMM_SELF, &b->wf));
3404: PetscCall(PetscWeakFormSetNumFields(b->wf, ds->Nf));
3405: PetscCall(PetscMalloc1(Nv, &b->values));
3406: if (Nv) PetscCall(PetscArraycpy(b->values, values, Nv));
3407: PetscCall(PetscMalloc1(Nc, &b->comps));
3408: if (Nc) PetscCall(PetscArraycpy(b->comps, comps, Nc));
3409: PetscCall(PetscObjectGetName((PetscObject)label, &lname));
3410: PetscCall(PetscStrallocpy(lname, (char **)&b->lname));
3411: b->type = type;
3412: b->label = label;
3413: b->Nv = Nv;
3414: b->field = field;
3415: b->Nc = Nc;
3416: b->func = bcFunc;
3417: b->func_t = bcFunc_t;
3418: b->ctx = ctx;
3419: b->next = NULL;
3420: /* Append to linked list so that we can preserve the order */
3421: if (!head) ds->boundary = b;
3422: while (head) {
3423: if (!head->next) {
3424: head->next = b;
3425: head = b;
3426: }
3427: head = head->next;
3428: ++n;
3429: }
3430: if (bd) {
3431: PetscAssertPointer(bd, 13);
3432: *bd = n;
3433: }
3434: PetscFunctionReturn(PETSC_SUCCESS);
3435: }
3437: // PetscClangLinter pragma ignore: -fdoc-section-header-unknown
3438: /*@C
3439: PetscDSAddBoundaryByName - Add a boundary condition to the model.
3441: Collective
3443: Input Parameters:
3444: + ds - The `PetscDS` object
3445: . type - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3446: . name - The BC name
3447: . lname - The naem of the label defining constrained points
3448: . Nv - The number of `DMLabel` values for constrained points
3449: . values - An array of label values for constrained points
3450: . field - The field to constrain
3451: . Nc - The number of constrained field components (0 will constrain all fields)
3452: . comps - An array of constrained component numbers
3453: . bcFunc - A pointwise function giving boundary values
3454: . bcFunc_t - A pointwise function giving the time derivative of the boundary values, or NULL
3455: - ctx - An optional user context for bcFunc
3457: Output Parameter:
3458: . bd - The boundary number
3460: Options Database Keys:
3461: + -bc_<boundary name> <num> - Overrides the boundary ids
3462: - -bc_<boundary name>_comp <num> - Overrides the boundary components
3464: Calling Sequence of `bcFunc` and `bcFunc_t`:
3465: If the type is `DM_BC_ESSENTIAL`
3466: .vb
3467: void bcFunc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar bcval[])
3468: .ve
3469: If the type is `DM_BC_ESSENTIAL_FIELD` or other _FIELD value,
3470: .vb
3471: void bcFunc(PetscInt dim, PetscInt Nf, PetscInt NfAux,
3472: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
3473: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
3474: PetscReal time, const PetscReal x[], PetscScalar bcval[])
3475: .ve
3476: + dim - the spatial dimension
3477: . Nf - the number of fields
3478: . uOff - the offset into u[] and u_t[] for each field
3479: . uOff_x - the offset into u_x[] for each field
3480: . u - each field evaluated at the current point
3481: . u_t - the time derivative of each field evaluated at the current point
3482: . u_x - the gradient of each field evaluated at the current point
3483: . aOff - the offset into a[] and a_t[] for each auxiliary field
3484: . aOff_x - the offset into a_x[] for each auxiliary field
3485: . a - each auxiliary field evaluated at the current point
3486: . a_t - the time derivative of each auxiliary field evaluated at the current point
3487: . a_x - the gradient of auxiliary each field evaluated at the current point
3488: . t - current time
3489: . x - coordinates of the current point
3490: . numConstants - number of constant parameters
3491: . constants - constant parameters
3492: - bcval - output values at the current point
3494: Level: developer
3496: Notes:
3497: The pointwise functions are used to provide boundary values for essential boundary
3498: conditions. In FEM, they are acting upon by dual basis functionals to generate FEM
3499: coefficients which are fixed. Natural boundary conditions signal to PETSc that boundary
3500: integrals should be performed, using the kernels from `PetscDSSetBdResidual()`.
3502: This function should only be used with `DMFOREST` currently, since labels cannot be defined before the underlying `DMPLEX` is built.
3504: .seealso: `PetscDS`, `PetscWeakForm`, `DMLabel`, `DMBoundaryConditionType`, `PetscDSAddBoundary()`, `PetscDSGetBoundary()`, `PetscDSSetResidual()`, `PetscDSSetBdResidual()`
3505: @*/
3506: PetscErrorCode PetscDSAddBoundaryByName(PetscDS ds, DMBoundaryConditionType type, const char name[], const char lname[], PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx, PetscInt *bd)
3507: {
3508: DSBoundary head = ds->boundary, b;
3509: PetscInt n = 0;
3511: PetscFunctionBegin;
3514: PetscAssertPointer(name, 3);
3515: PetscAssertPointer(lname, 4);
3519: PetscCall(PetscNew(&b));
3520: PetscCall(PetscStrallocpy(name, (char **)&b->name));
3521: PetscCall(PetscWeakFormCreate(PETSC_COMM_SELF, &b->wf));
3522: PetscCall(PetscWeakFormSetNumFields(b->wf, ds->Nf));
3523: PetscCall(PetscMalloc1(Nv, &b->values));
3524: if (Nv) PetscCall(PetscArraycpy(b->values, values, Nv));
3525: PetscCall(PetscMalloc1(Nc, &b->comps));
3526: if (Nc) PetscCall(PetscArraycpy(b->comps, comps, Nc));
3527: PetscCall(PetscStrallocpy(lname, (char **)&b->lname));
3528: b->type = type;
3529: b->label = NULL;
3530: b->Nv = Nv;
3531: b->field = field;
3532: b->Nc = Nc;
3533: b->func = bcFunc;
3534: b->func_t = bcFunc_t;
3535: b->ctx = ctx;
3536: b->next = NULL;
3537: /* Append to linked list so that we can preserve the order */
3538: if (!head) ds->boundary = b;
3539: while (head) {
3540: if (!head->next) {
3541: head->next = b;
3542: head = b;
3543: }
3544: head = head->next;
3545: ++n;
3546: }
3547: if (bd) {
3548: PetscAssertPointer(bd, 13);
3549: *bd = n;
3550: }
3551: PetscFunctionReturn(PETSC_SUCCESS);
3552: }
3554: /*@C
3555: PetscDSUpdateBoundary - Change a boundary condition for the model.
3557: Input Parameters:
3558: + ds - The `PetscDS` object
3559: . bd - The boundary condition number
3560: . type - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3561: . name - The BC name
3562: . label - The label defining constrained points
3563: . Nv - The number of `DMLabel` ids for constrained points
3564: . values - An array of ids for constrained points
3565: . field - The field to constrain
3566: . Nc - The number of constrained field components
3567: . comps - An array of constrained component numbers
3568: . bcFunc - A pointwise function giving boundary values
3569: . bcFunc_t - A pointwise function giving the time derivative of the boundary values, or NULL
3570: - ctx - An optional user context for bcFunc
3572: Level: developer
3574: Notes:
3575: The pointwise functions are used to provide boundary values for essential boundary
3576: conditions. In FEM, they are acting upon by dual basis functionals to generate FEM
3577: coefficients which are fixed. Natural boundary conditions signal to PETSc that boundary
3578: integrals should be performed, using the kernels from `PetscDSSetBdResidual()`.
3580: The boundary condition number is the order in which it was registered. The user can get the number of boundary conditions from `PetscDSGetNumBoundary()`.
3581: See `PetscDSAddBoundary()` for a description of the calling sequences for the callbacks.
3583: .seealso: `PetscDS`, `PetscWeakForm`, `DMBoundaryConditionType`, `PetscDSAddBoundary()`, `PetscDSGetBoundary()`, `PetscDSGetNumBoundary()`, `DMLabel`
3584: @*/
3585: PetscErrorCode PetscDSUpdateBoundary(PetscDS ds, PetscInt bd, DMBoundaryConditionType type, const char name[], DMLabel label, PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx)
3586: {
3587: DSBoundary b = ds->boundary;
3588: PetscInt n = 0;
3590: PetscFunctionBegin;
3592: while (b) {
3593: if (n == bd) break;
3594: b = b->next;
3595: ++n;
3596: }
3597: PetscCheck(b, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Boundary %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", bd, n);
3598: if (name) {
3599: PetscCall(PetscFree(b->name));
3600: PetscCall(PetscStrallocpy(name, (char **)&b->name));
3601: }
3602: b->type = type;
3603: if (label) {
3604: const char *name;
3606: b->label = label;
3607: PetscCall(PetscFree(b->lname));
3608: PetscCall(PetscObjectGetName((PetscObject)label, &name));
3609: PetscCall(PetscStrallocpy(name, (char **)&b->lname));
3610: }
3611: if (Nv >= 0) {
3612: b->Nv = Nv;
3613: PetscCall(PetscFree(b->values));
3614: PetscCall(PetscMalloc1(Nv, &b->values));
3615: if (Nv) PetscCall(PetscArraycpy(b->values, values, Nv));
3616: }
3617: if (field >= 0) b->field = field;
3618: if (Nc >= 0) {
3619: b->Nc = Nc;
3620: PetscCall(PetscFree(b->comps));
3621: PetscCall(PetscMalloc1(Nc, &b->comps));
3622: if (Nc) PetscCall(PetscArraycpy(b->comps, comps, Nc));
3623: }
3624: if (bcFunc) b->func = bcFunc;
3625: if (bcFunc_t) b->func_t = bcFunc_t;
3626: if (ctx) b->ctx = ctx;
3627: PetscFunctionReturn(PETSC_SUCCESS);
3628: }
3630: /*@
3631: PetscDSGetNumBoundary - Get the number of registered BC
3633: Input Parameter:
3634: . ds - The `PetscDS` object
3636: Output Parameter:
3637: . numBd - The number of BC
3639: Level: intermediate
3641: .seealso: `PetscDS`, `PetscDSAddBoundary()`, `PetscDSGetBoundary()`
3642: @*/
3643: PetscErrorCode PetscDSGetNumBoundary(PetscDS ds, PetscInt *numBd)
3644: {
3645: DSBoundary b = ds->boundary;
3647: PetscFunctionBegin;
3649: PetscAssertPointer(numBd, 2);
3650: *numBd = 0;
3651: while (b) {
3652: ++(*numBd);
3653: b = b->next;
3654: }
3655: PetscFunctionReturn(PETSC_SUCCESS);
3656: }
3658: /*@C
3659: PetscDSGetBoundary - Gets a boundary condition to the model
3661: Input Parameters:
3662: + ds - The `PetscDS` object
3663: - bd - The BC number
3665: Output Parameters:
3666: + wf - The `PetscWeakForm` holding the pointwise functions
3667: . type - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3668: . name - The BC name
3669: . label - The label defining constrained points
3670: . Nv - The number of `DMLabel` ids for constrained points
3671: . values - An array of ids for constrained points
3672: . field - The field to constrain
3673: . Nc - The number of constrained field components
3674: . comps - An array of constrained component numbers
3675: . func - A pointwise function giving boundary values
3676: . func_t - A pointwise function giving the time derivative of the boundary values
3677: - ctx - An optional user context for bcFunc
3679: Options Database Keys:
3680: + -bc_<boundary name> <num> - Overrides the boundary ids
3681: - -bc_<boundary name>_comp <num> - Overrides the boundary components
3683: Level: developer
3685: .seealso: `PetscDS`, `PetscWeakForm`, `DMBoundaryConditionType`, `PetscDSAddBoundary()`, `DMLabel`
3686: @*/
3687: PetscErrorCode PetscDSGetBoundary(PetscDS ds, PetscInt bd, PetscWeakForm *wf, DMBoundaryConditionType *type, const char *name[], DMLabel *label, PetscInt *Nv, const PetscInt *values[], PetscInt *field, PetscInt *Nc, const PetscInt *comps[], void (**func)(void), void (**func_t)(void), void **ctx)
3688: {
3689: DSBoundary b = ds->boundary;
3690: PetscInt n = 0;
3692: PetscFunctionBegin;
3694: while (b) {
3695: if (n == bd) break;
3696: b = b->next;
3697: ++n;
3698: }
3699: PetscCheck(b, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Boundary %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", bd, n);
3700: if (wf) {
3701: PetscAssertPointer(wf, 3);
3702: *wf = b->wf;
3703: }
3704: if (type) {
3705: PetscAssertPointer(type, 4);
3706: *type = b->type;
3707: }
3708: if (name) {
3709: PetscAssertPointer(name, 5);
3710: *name = b->name;
3711: }
3712: if (label) {
3713: PetscAssertPointer(label, 6);
3714: *label = b->label;
3715: }
3716: if (Nv) {
3717: PetscAssertPointer(Nv, 7);
3718: *Nv = b->Nv;
3719: }
3720: if (values) {
3721: PetscAssertPointer(values, 8);
3722: *values = b->values;
3723: }
3724: if (field) {
3725: PetscAssertPointer(field, 9);
3726: *field = b->field;
3727: }
3728: if (Nc) {
3729: PetscAssertPointer(Nc, 10);
3730: *Nc = b->Nc;
3731: }
3732: if (comps) {
3733: PetscAssertPointer(comps, 11);
3734: *comps = b->comps;
3735: }
3736: if (func) {
3737: PetscAssertPointer(func, 12);
3738: *func = b->func;
3739: }
3740: if (func_t) {
3741: PetscAssertPointer(func_t, 13);
3742: *func_t = b->func_t;
3743: }
3744: if (ctx) {
3745: PetscAssertPointer(ctx, 14);
3746: *ctx = b->ctx;
3747: }
3748: PetscFunctionReturn(PETSC_SUCCESS);
3749: }
3751: static PetscErrorCode DSBoundaryDuplicate_Internal(DSBoundary b, DSBoundary *bNew)
3752: {
3753: PetscFunctionBegin;
3754: PetscCall(PetscNew(bNew));
3755: PetscCall(PetscWeakFormCreate(PETSC_COMM_SELF, &(*bNew)->wf));
3756: PetscCall(PetscWeakFormCopy(b->wf, (*bNew)->wf));
3757: PetscCall(PetscStrallocpy(b->name, (char **)&((*bNew)->name)));
3758: PetscCall(PetscStrallocpy(b->lname, (char **)&((*bNew)->lname)));
3759: (*bNew)->type = b->type;
3760: (*bNew)->label = b->label;
3761: (*bNew)->Nv = b->Nv;
3762: PetscCall(PetscMalloc1(b->Nv, &(*bNew)->values));
3763: PetscCall(PetscArraycpy((*bNew)->values, b->values, b->Nv));
3764: (*bNew)->field = b->field;
3765: (*bNew)->Nc = b->Nc;
3766: PetscCall(PetscMalloc1(b->Nc, &(*bNew)->comps));
3767: PetscCall(PetscArraycpy((*bNew)->comps, b->comps, b->Nc));
3768: (*bNew)->func = b->func;
3769: (*bNew)->func_t = b->func_t;
3770: (*bNew)->ctx = b->ctx;
3771: PetscFunctionReturn(PETSC_SUCCESS);
3772: }
3774: /*@
3775: PetscDSCopyBoundary - Copy all boundary condition objects to the new problem
3777: Not Collective
3779: Input Parameters:
3780: + ds - The source `PetscDS` object
3781: . numFields - The number of selected fields, or `PETSC_DEFAULT` for all fields
3782: - fields - The selected fields, or NULL for all fields
3784: Output Parameter:
3785: . newds - The target `PetscDS`, now with a copy of the boundary conditions
3787: Level: intermediate
3789: .seealso: `PetscDS`, `DMBoundary`, `PetscDSCopyEquations()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3790: @*/
3791: PetscErrorCode PetscDSCopyBoundary(PetscDS ds, PetscInt numFields, const PetscInt fields[], PetscDS newds)
3792: {
3793: DSBoundary b, *lastnext;
3795: PetscFunctionBegin;
3798: if (ds == newds) PetscFunctionReturn(PETSC_SUCCESS);
3799: PetscCall(PetscDSDestroyBoundary(newds));
3800: lastnext = &(newds->boundary);
3801: for (b = ds->boundary; b; b = b->next) {
3802: DSBoundary bNew;
3803: PetscInt fieldNew = -1;
3805: if (numFields > 0 && fields) {
3806: PetscInt f;
3808: for (f = 0; f < numFields; ++f)
3809: if (b->field == fields[f]) break;
3810: if (f == numFields) continue;
3811: fieldNew = f;
3812: }
3813: PetscCall(DSBoundaryDuplicate_Internal(b, &bNew));
3814: bNew->field = fieldNew < 0 ? b->field : fieldNew;
3815: *lastnext = bNew;
3816: lastnext = &(bNew->next);
3817: }
3818: PetscFunctionReturn(PETSC_SUCCESS);
3819: }
3821: /*@
3822: PetscDSDestroyBoundary - Remove all `DMBoundary` objects from the `PetscDS`
3824: Not Collective
3826: Input Parameter:
3827: . ds - The `PetscDS` object
3829: Level: intermediate
3831: .seealso: `PetscDS`, `DMBoundary`, `PetscDSCopyBoundary()`, `PetscDSCopyEquations()`
3832: @*/
3833: PetscErrorCode PetscDSDestroyBoundary(PetscDS ds)
3834: {
3835: DSBoundary next = ds->boundary;
3837: PetscFunctionBegin;
3838: while (next) {
3839: DSBoundary b = next;
3841: next = b->next;
3842: PetscCall(PetscWeakFormDestroy(&b->wf));
3843: PetscCall(PetscFree(b->name));
3844: PetscCall(PetscFree(b->lname));
3845: PetscCall(PetscFree(b->values));
3846: PetscCall(PetscFree(b->comps));
3847: PetscCall(PetscFree(b));
3848: }
3849: PetscFunctionReturn(PETSC_SUCCESS);
3850: }
3852: /*@
3853: PetscDSSelectDiscretizations - Copy discretizations to the new problem with different field layout
3855: Not Collective
3857: Input Parameters:
3858: + prob - The `PetscDS` object
3859: . numFields - Number of new fields
3860: - fields - Old field number for each new field
3862: Output Parameter:
3863: . newprob - The `PetscDS` copy
3865: Level: intermediate
3867: .seealso: `PetscDS`, `PetscDSSelectEquations()`, `PetscDSCopyBoundary()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3868: @*/
3869: PetscErrorCode PetscDSSelectDiscretizations(PetscDS prob, PetscInt numFields, const PetscInt fields[], PetscDS newprob)
3870: {
3871: PetscInt Nf, Nfn, fn;
3873: PetscFunctionBegin;
3875: if (fields) PetscAssertPointer(fields, 3);
3877: PetscCall(PetscDSGetNumFields(prob, &Nf));
3878: PetscCall(PetscDSGetNumFields(newprob, &Nfn));
3879: numFields = numFields < 0 ? Nf : numFields;
3880: for (fn = 0; fn < numFields; ++fn) {
3881: const PetscInt f = fields ? fields[fn] : fn;
3882: PetscObject disc;
3884: if (f >= Nf) continue;
3885: PetscCall(PetscDSGetDiscretization(prob, f, &disc));
3886: PetscCall(PetscDSSetDiscretization(newprob, fn, disc));
3887: }
3888: PetscFunctionReturn(PETSC_SUCCESS);
3889: }
3891: /*@
3892: PetscDSSelectEquations - Copy pointwise function pointers to the new problem with different field layout
3894: Not Collective
3896: Input Parameters:
3897: + prob - The `PetscDS` object
3898: . numFields - Number of new fields
3899: - fields - Old field number for each new field
3901: Output Parameter:
3902: . newprob - The `PetscDS` copy
3904: Level: intermediate
3906: .seealso: `PetscDS`, `PetscDSSelectDiscretizations()`, `PetscDSCopyBoundary()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3907: @*/
3908: PetscErrorCode PetscDSSelectEquations(PetscDS prob, PetscInt numFields, const PetscInt fields[], PetscDS newprob)
3909: {
3910: PetscInt Nf, Nfn, fn, gn;
3912: PetscFunctionBegin;
3914: if (fields) PetscAssertPointer(fields, 3);
3916: PetscCall(PetscDSGetNumFields(prob, &Nf));
3917: PetscCall(PetscDSGetNumFields(newprob, &Nfn));
3918: PetscCheck(numFields <= Nfn, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_SIZ, "Number of fields %" PetscInt_FMT " to transfer must not be greater then the total number of fields %" PetscInt_FMT, numFields, Nfn);
3919: for (fn = 0; fn < numFields; ++fn) {
3920: const PetscInt f = fields ? fields[fn] : fn;
3921: PetscPointFunc obj;
3922: PetscPointFunc f0, f1;
3923: PetscBdPointFunc f0Bd, f1Bd;
3924: PetscRiemannFunc r;
3926: if (f >= Nf) continue;
3927: PetscCall(PetscDSGetObjective(prob, f, &obj));
3928: PetscCall(PetscDSGetResidual(prob, f, &f0, &f1));
3929: PetscCall(PetscDSGetBdResidual(prob, f, &f0Bd, &f1Bd));
3930: PetscCall(PetscDSGetRiemannSolver(prob, f, &r));
3931: PetscCall(PetscDSSetObjective(newprob, fn, obj));
3932: PetscCall(PetscDSSetResidual(newprob, fn, f0, f1));
3933: PetscCall(PetscDSSetBdResidual(newprob, fn, f0Bd, f1Bd));
3934: PetscCall(PetscDSSetRiemannSolver(newprob, fn, r));
3935: for (gn = 0; gn < numFields; ++gn) {
3936: const PetscInt g = fields ? fields[gn] : gn;
3937: PetscPointJac g0, g1, g2, g3;
3938: PetscPointJac g0p, g1p, g2p, g3p;
3939: PetscBdPointJac g0Bd, g1Bd, g2Bd, g3Bd;
3941: if (g >= Nf) continue;
3942: PetscCall(PetscDSGetJacobian(prob, f, g, &g0, &g1, &g2, &g3));
3943: PetscCall(PetscDSGetJacobianPreconditioner(prob, f, g, &g0p, &g1p, &g2p, &g3p));
3944: PetscCall(PetscDSGetBdJacobian(prob, f, g, &g0Bd, &g1Bd, &g2Bd, &g3Bd));
3945: PetscCall(PetscDSSetJacobian(newprob, fn, gn, g0, g1, g2, g3));
3946: PetscCall(PetscDSSetJacobianPreconditioner(newprob, fn, gn, g0p, g1p, g2p, g3p));
3947: PetscCall(PetscDSSetBdJacobian(newprob, fn, gn, g0Bd, g1Bd, g2Bd, g3Bd));
3948: }
3949: }
3950: PetscFunctionReturn(PETSC_SUCCESS);
3951: }
3953: /*@
3954: PetscDSCopyEquations - Copy all pointwise function pointers to another `PetscDS`
3956: Not Collective
3958: Input Parameter:
3959: . prob - The `PetscDS` object
3961: Output Parameter:
3962: . newprob - The `PetscDS` copy
3964: Level: intermediate
3966: .seealso: `PetscDS`, `PetscDSCopyBoundary()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3967: @*/
3968: PetscErrorCode PetscDSCopyEquations(PetscDS prob, PetscDS newprob)
3969: {
3970: PetscWeakForm wf, newwf;
3971: PetscInt Nf, Ng;
3973: PetscFunctionBegin;
3976: PetscCall(PetscDSGetNumFields(prob, &Nf));
3977: PetscCall(PetscDSGetNumFields(newprob, &Ng));
3978: PetscCheck(Nf == Ng, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_SIZ, "Number of fields must match %" PetscInt_FMT " != %" PetscInt_FMT, Nf, Ng);
3979: PetscCall(PetscDSGetWeakForm(prob, &wf));
3980: PetscCall(PetscDSGetWeakForm(newprob, &newwf));
3981: PetscCall(PetscWeakFormCopy(wf, newwf));
3982: PetscFunctionReturn(PETSC_SUCCESS);
3983: }
3985: /*@
3986: PetscDSCopyConstants - Copy all constants to another `PetscDS`
3988: Not Collective
3990: Input Parameter:
3991: . prob - The `PetscDS` object
3993: Output Parameter:
3994: . newprob - The `PetscDS` copy
3996: Level: intermediate
3998: .seealso: `PetscDS`, `PetscDSCopyBoundary()`, `PetscDSCopyEquations()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3999: @*/
4000: PetscErrorCode PetscDSCopyConstants(PetscDS prob, PetscDS newprob)
4001: {
4002: PetscInt Nc;
4003: const PetscScalar *constants;
4005: PetscFunctionBegin;
4008: PetscCall(PetscDSGetConstants(prob, &Nc, &constants));
4009: PetscCall(PetscDSSetConstants(newprob, Nc, (PetscScalar *)constants));
4010: PetscFunctionReturn(PETSC_SUCCESS);
4011: }
4013: /*@
4014: PetscDSCopyExactSolutions - Copy all exact solutions to another `PetscDS`
4016: Not Collective
4018: Input Parameter:
4019: . ds - The `PetscDS` object
4021: Output Parameter:
4022: . newds - The `PetscDS` copy
4024: Level: intermediate
4026: .seealso: `PetscDS`, `PetscDSCopyBoundary()`, `PetscDSCopyEquations()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
4027: @*/
4028: PetscErrorCode PetscDSCopyExactSolutions(PetscDS ds, PetscDS newds)
4029: {
4030: PetscSimplePointFunc sol;
4031: void *ctx;
4032: PetscInt Nf, f;
4034: PetscFunctionBegin;
4037: PetscCall(PetscDSGetNumFields(ds, &Nf));
4038: for (f = 0; f < Nf; ++f) {
4039: PetscCall(PetscDSGetExactSolution(ds, f, &sol, &ctx));
4040: PetscCall(PetscDSSetExactSolution(newds, f, sol, ctx));
4041: PetscCall(PetscDSGetExactSolutionTimeDerivative(ds, f, &sol, &ctx));
4042: PetscCall(PetscDSSetExactSolutionTimeDerivative(newds, f, sol, ctx));
4043: }
4044: PetscFunctionReturn(PETSC_SUCCESS);
4045: }
4047: PetscErrorCode PetscDSCopy(PetscDS ds, DM dmNew, PetscDS dsNew)
4048: {
4049: DSBoundary b;
4050: PetscInt cdim, Nf, f, d;
4051: PetscBool isCohesive;
4052: void *ctx;
4054: PetscFunctionBegin;
4055: PetscCall(PetscDSCopyConstants(ds, dsNew));
4056: PetscCall(PetscDSCopyExactSolutions(ds, dsNew));
4057: PetscCall(PetscDSSelectDiscretizations(ds, PETSC_DETERMINE, NULL, dsNew));
4058: PetscCall(PetscDSCopyEquations(ds, dsNew));
4059: PetscCall(PetscDSGetNumFields(ds, &Nf));
4060: for (f = 0; f < Nf; ++f) {
4061: PetscCall(PetscDSGetContext(ds, f, &ctx));
4062: PetscCall(PetscDSSetContext(dsNew, f, ctx));
4063: PetscCall(PetscDSGetCohesive(ds, f, &isCohesive));
4064: PetscCall(PetscDSSetCohesive(dsNew, f, isCohesive));
4065: PetscCall(PetscDSGetJetDegree(ds, f, &d));
4066: PetscCall(PetscDSSetJetDegree(dsNew, f, d));
4067: }
4068: if (Nf) {
4069: PetscCall(PetscDSGetCoordinateDimension(ds, &cdim));
4070: PetscCall(PetscDSSetCoordinateDimension(dsNew, cdim));
4071: }
4072: PetscCall(PetscDSCopyBoundary(ds, PETSC_DETERMINE, NULL, dsNew));
4073: for (b = dsNew->boundary; b; b = b->next) {
4074: PetscCall(DMGetLabel(dmNew, b->lname, &b->label));
4075: /* Do not check if label exists here, since p4est calls this for the reference tree which does not have the labels */
4076: //PetscCheck(b->label,PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Label %s missing in new DM", name);
4077: }
4078: PetscFunctionReturn(PETSC_SUCCESS);
4079: }
4081: PetscErrorCode PetscDSGetHeightSubspace(PetscDS prob, PetscInt height, PetscDS *subprob)
4082: {
4083: PetscInt dim, Nf, f;
4085: PetscFunctionBegin;
4087: PetscAssertPointer(subprob, 3);
4088: if (height == 0) {
4089: *subprob = prob;
4090: PetscFunctionReturn(PETSC_SUCCESS);
4091: }
4092: PetscCall(PetscDSGetNumFields(prob, &Nf));
4093: PetscCall(PetscDSGetSpatialDimension(prob, &dim));
4094: PetscCheck(height <= dim, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_OUTOFRANGE, "DS can only handle height in [0, %" PetscInt_FMT "], not %" PetscInt_FMT, dim, height);
4095: if (!prob->subprobs) PetscCall(PetscCalloc1(dim, &prob->subprobs));
4096: if (!prob->subprobs[height - 1]) {
4097: PetscInt cdim;
4099: PetscCall(PetscDSCreate(PetscObjectComm((PetscObject)prob), &prob->subprobs[height - 1]));
4100: PetscCall(PetscDSGetCoordinateDimension(prob, &cdim));
4101: PetscCall(PetscDSSetCoordinateDimension(prob->subprobs[height - 1], cdim));
4102: for (f = 0; f < Nf; ++f) {
4103: PetscFE subfe;
4104: PetscObject obj;
4105: PetscClassId id;
4107: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4108: PetscCall(PetscObjectGetClassId(obj, &id));
4109: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetHeightSubspace((PetscFE)obj, height, &subfe));
4110: else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unsupported discretization type for field %" PetscInt_FMT, f);
4111: PetscCall(PetscDSSetDiscretization(prob->subprobs[height - 1], f, (PetscObject)subfe));
4112: }
4113: }
4114: *subprob = prob->subprobs[height - 1];
4115: PetscFunctionReturn(PETSC_SUCCESS);
4116: }
4118: PetscErrorCode PetscDSPermuteQuadPoint(PetscDS ds, PetscInt ornt, PetscInt field, PetscInt q, PetscInt *qperm)
4119: {
4120: IS permIS;
4121: PetscQuadrature quad;
4122: DMPolytopeType ct;
4123: const PetscInt *perm;
4124: PetscInt Na, Nq;
4126: PetscFunctionBeginHot;
4127: PetscCall(PetscFEGetQuadrature((PetscFE)ds->disc[field], &quad));
4128: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
4129: PetscCall(PetscQuadratureGetCellType(quad, &ct));
4130: PetscCheck(q >= 0 && q < Nq, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Quadrature point %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", q, Nq);
4131: Na = DMPolytopeTypeGetNumArrangments(ct) / 2;
4132: PetscCheck(ornt >= -Na && ornt < Na, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Orientation %" PetscInt_FMT " of %s is not in [%" PetscInt_FMT ", %" PetscInt_FMT ")", ornt, DMPolytopeTypes[ct], -Na, Na);
4133: if (!ds->quadPerm[(PetscInt)ct]) PetscCall(PetscQuadratureComputePermutations(quad, NULL, &ds->quadPerm[(PetscInt)ct]));
4134: permIS = ds->quadPerm[(PetscInt)ct][ornt + Na];
4135: PetscCall(ISGetIndices(permIS, &perm));
4136: *qperm = perm[q];
4137: PetscCall(ISRestoreIndices(permIS, &perm));
4138: PetscFunctionReturn(PETSC_SUCCESS);
4139: }
4141: PetscErrorCode PetscDSGetDiscType_Internal(PetscDS ds, PetscInt f, PetscDiscType *disctype)
4142: {
4143: PetscObject obj;
4144: PetscClassId id;
4145: PetscInt Nf;
4147: PetscFunctionBegin;
4149: PetscAssertPointer(disctype, 3);
4150: *disctype = PETSC_DISC_NONE;
4151: PetscCall(PetscDSGetNumFields(ds, &Nf));
4152: PetscCheck(f < Nf, PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_SIZ, "Field %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, Nf);
4153: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
4154: if (obj) {
4155: PetscCall(PetscObjectGetClassId(obj, &id));
4156: if (id == PETSCFE_CLASSID) *disctype = PETSC_DISC_FE;
4157: else *disctype = PETSC_DISC_FV;
4158: }
4159: PetscFunctionReturn(PETSC_SUCCESS);
4160: }
4162: static PetscErrorCode PetscDSDestroy_Basic(PetscDS ds)
4163: {
4164: PetscFunctionBegin;
4165: PetscCall(PetscFree(ds->data));
4166: PetscFunctionReturn(PETSC_SUCCESS);
4167: }
4169: static PetscErrorCode PetscDSInitialize_Basic(PetscDS ds)
4170: {
4171: PetscFunctionBegin;
4172: ds->ops->setfromoptions = NULL;
4173: ds->ops->setup = NULL;
4174: ds->ops->view = NULL;
4175: ds->ops->destroy = PetscDSDestroy_Basic;
4176: PetscFunctionReturn(PETSC_SUCCESS);
4177: }
4179: /*MC
4180: PETSCDSBASIC = "basic" - A discrete system with pointwise residual and boundary residual functions
4182: Level: intermediate
4184: .seealso: `PetscDSType`, `PetscDSCreate()`, `PetscDSSetType()`
4185: M*/
4187: PETSC_EXTERN PetscErrorCode PetscDSCreate_Basic(PetscDS ds)
4188: {
4189: PetscDS_Basic *b;
4191: PetscFunctionBegin;
4193: PetscCall(PetscNew(&b));
4194: ds->data = b;
4196: PetscCall(PetscDSInitialize_Basic(ds));
4197: PetscFunctionReturn(PETSC_SUCCESS);
4198: }