Point Cloud Library (PCL) 1.12.0
Loading...
Searching...
No Matches
distances.h
Go to the documentation of this file.
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2010, Willow Garage, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the copyright holder(s) nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $Id$
35 *
36 */
37
38#pragma once
39
40#include <limits>
41
42#include <pcl/types.h>
43#include <pcl/point_types.h> // for PointXY
44#include <Eigen/Core> // for VectorXf
45
46/**
47 * \file pcl/common/distances.h
48 * Define standard C methods to do distance calculations
49 * \ingroup common
50 */
51
52/*@{*/
53namespace pcl
54{
55 template <typename PointT> class PointCloud;
56
57 /** \brief Get the shortest 3D segment between two 3D lines
58 * \param line_a the coefficients of the first line (point, direction)
59 * \param line_b the coefficients of the second line (point, direction)
60 * \param pt1_seg the first point on the line segment
61 * \param pt2_seg the second point on the line segment
62 * \ingroup common
63 */
64 PCL_EXPORTS void
65 lineToLineSegment (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b,
66 Eigen::Vector4f &pt1_seg, Eigen::Vector4f &pt2_seg);
67
68 /** \brief Get the square distance from a point to a line (represented by a point and a direction)
69 * \param pt a point
70 * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
71 * \param line_dir the line direction
72 * \ingroup common
73 */
74 double inline
75 sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
76 {
77 // Calculate the distance from the point to the line
78 // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p1-p0)) / norm(p2-p1)
79 return (line_dir.cross3 (line_pt - pt)).squaredNorm () / line_dir.squaredNorm ();
80 }
81
82 /** \brief Get the square distance from a point to a line (represented by a point and a direction)
83 * \note This one is useful if one has to compute many distances to a fixed line, so the vector length can be pre-computed
84 * \param pt a point
85 * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
86 * \param line_dir the line direction
87 * \param sqr_length the squared norm of the line direction
88 * \ingroup common
89 */
90 double inline
91 sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir, const double sqr_length)
92 {
93 // Calculate the distance from the point to the line
94 // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p1-p0)) / norm(p2-p1)
95 return (line_dir.cross3 (line_pt - pt)).squaredNorm () / sqr_length;
96 }
97
98 /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
99 * \param[in] cloud the point cloud dataset
100 * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment)
101 * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment)
102 * \return the length of segment length
103 * \ingroup common
104 */
105 template <typename PointT> double inline
108 {
109 double max_dist = std::numeric_limits<double>::min ();
110 const auto token = std::numeric_limits<std::size_t>::max();
111 std::size_t i_min = token, i_max = token;
112
113 for (std::size_t i = 0; i < cloud.size (); ++i)
114 {
115 for (std::size_t j = i; j < cloud.size (); ++j)
116 {
117 // Compute the distance
118 double dist = (cloud[i].getVector4fMap () -
119 cloud[j].getVector4fMap ()).squaredNorm ();
120 if (dist <= max_dist)
121 continue;
122
123 max_dist = dist;
124 i_min = i;
125 i_max = j;
126 }
127 }
128
129 if (i_min == token || i_max == token)
130 return (max_dist = std::numeric_limits<double>::min ());
131
132 pmin = cloud[i_min];
133 pmax = cloud[i_max];
134 return (std::sqrt (max_dist));
135 }
136
137 /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
138 * \param[in] cloud the point cloud dataset
139 * \param[in] indices a set of point indices to use from \a cloud
140 * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment)
141 * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment)
142 * \return the length of segment length
143 * \ingroup common
144 */
145 template <typename PointT> double inline
146 getMaxSegment (const pcl::PointCloud<PointT> &cloud, const Indices &indices,
148 {
149 double max_dist = std::numeric_limits<double>::min ();
150 const auto token = std::numeric_limits<std::size_t>::max();
151 std::size_t i_min = token, i_max = token;
152
153 for (std::size_t i = 0; i < indices.size (); ++i)
154 {
155 for (std::size_t j = i; j < indices.size (); ++j)
156 {
157 // Compute the distance
158 double dist = (cloud[indices[i]].getVector4fMap () -
159 cloud[indices[j]].getVector4fMap ()).squaredNorm ();
160 if (dist <= max_dist)
161 continue;
162
163 max_dist = dist;
164 i_min = i;
165 i_max = j;
166 }
167 }
168
169 if (i_min == token || i_max == token)
170 return (max_dist = std::numeric_limits<double>::min ());
171
172 pmin = cloud[indices[i_min]];
173 pmax = cloud[indices[i_max]];
174 return (std::sqrt (max_dist));
175 }
176
177 /** \brief Calculate the squared euclidean distance between the two given points.
178 * \param[in] p1 the first point
179 * \param[in] p2 the second point
180 */
181 template<typename PointType1, typename PointType2> inline float
183 {
184 float diff_x = p2.x - p1.x, diff_y = p2.y - p1.y, diff_z = p2.z - p1.z;
185 return (diff_x*diff_x + diff_y*diff_y + diff_z*diff_z);
186 }
187
188 /** \brief Calculate the squared euclidean distance between the two given points.
189 * \param[in] p1 the first point
190 * \param[in] p2 the second point
191 */
192 template<> inline float
194 {
195 float diff_x = p2.x - p1.x, diff_y = p2.y - p1.y;
196 return (diff_x*diff_x + diff_y*diff_y);
197 }
198
199 /** \brief Calculate the euclidean distance between the two given points.
200 * \param[in] p1 the first point
201 * \param[in] p2 the second point
202 */
203 template<typename PointType1, typename PointType2> inline float
205 {
206 return (std::sqrt (squaredEuclideanDistance (p1, p2)));
207 }
208}
Iterator class for point clouds with or without given indices.
std::size_t size() const
Size of the range the iterator is going through.
PointCloud represents the base class in PCL for storing collections of 3D points.
Defines all the PCL implemented PointT point type structures.
double getMaxSegment(const pcl::PointCloud< PointT > &cloud, PointT &pmin, PointT &pmax)
Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
Definition distances.h:106
PCL_EXPORTS void lineToLineSegment(const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &pt1_seg, Eigen::Vector4f &pt2_seg)
Get the shortest 3D segment between two 3D lines.
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition distances.h:75
float squaredEuclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the squared euclidean distance between the two given points.
Definition distances.h:182
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
float euclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the euclidean distance between the two given points.
Definition distances.h:204
A 2D point structure representing Euclidean xy coordinates.
A point structure representing Euclidean xyz coordinates, and the RGB color.
Defines basic non-point types used by PCL.