Point Cloud Library (PCL) 1.12.0
Loading...
Searching...
No Matches
normal_3d_omp.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2010-2011, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 *
39 */
40
41#ifndef PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
42#define PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
43
44#include <pcl/features/normal_3d_omp.h>
45
46///////////////////////////////////////////////////////////////////////////////////////////
47template <typename PointInT, typename PointOutT> void
49{
50 if (nr_threads == 0)
51#ifdef _OPENMP
52 threads_ = omp_get_num_procs();
53#else
54 threads_ = 1;
55#endif
56 else
57 threads_ = nr_threads;
58}
59
60///////////////////////////////////////////////////////////////////////////////////////////
61template <typename PointInT, typename PointOutT> void
63{
64 // Allocate enough space to hold the results
65 // \note This resize is irrelevant for a radiusSearch ().
67 std::vector<float> nn_dists (k_);
68
69 output.is_dense = true;
70 // Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
71 if (input_->is_dense)
72 {
73#pragma omp parallel for \
74 default(none) \
75 shared(output) \
76 firstprivate(nn_indices, nn_dists) \
77 num_threads(threads_)
78 // Iterating over the entire index vector
79 for (std::ptrdiff_t idx = 0; idx < static_cast<std::ptrdiff_t> (indices_->size ()); ++idx)
80 {
81 Eigen::Vector4f n;
82 if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0 ||
83 !pcl::computePointNormal (*surface_, nn_indices, n, output[idx].curvature))
84 {
85 output[idx].normal[0] = output[idx].normal[1] = output[idx].normal[2] = output[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
86
87 output.is_dense = false;
88 continue;
89 }
90
91 output[idx].normal_x = n[0];
92 output[idx].normal_y = n[1];
93 output[idx].normal_z = n[2];
94
95 flipNormalTowardsViewpoint ((*input_)[(*indices_)[idx]], vpx_, vpy_, vpz_,
96 output[idx].normal[0], output[idx].normal[1], output[idx].normal[2]);
97
98 }
99 }
100 else
101 {
102#pragma omp parallel for \
103 default(none) \
104 shared(output) \
105 firstprivate(nn_indices, nn_dists) \
106 num_threads(threads_)
107 // Iterating over the entire index vector
108 for (std::ptrdiff_t idx = 0; idx < static_cast<std::ptrdiff_t> (indices_->size ()); ++idx)
109 {
110 Eigen::Vector4f n;
111 if (!isFinite ((*input_)[(*indices_)[idx]]) ||
112 this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0 ||
113 !pcl::computePointNormal (*surface_, nn_indices, n, output[idx].curvature))
114 {
115 output[idx].normal[0] = output[idx].normal[1] = output[idx].normal[2] = output[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
116
117 output.is_dense = false;
118 continue;
119 }
120
121 output[idx].normal_x = n[0];
122 output[idx].normal_y = n[1];
123 output[idx].normal_z = n[2];
124
125 flipNormalTowardsViewpoint ((*input_)[(*indices_)[idx]], vpx_, vpy_, vpz_,
126 output[idx].normal[0], output[idx].normal[1], output[idx].normal[2]);
127
128 }
129 }
130}
131
132#define PCL_INSTANTIATE_NormalEstimationOMP(T,NT) template class PCL_EXPORTS pcl::NormalEstimationOMP<T,NT>;
133
134#endif // PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
135
Iterator class for point clouds with or without given indices.
ConstCloudIterator(const PointCloud< PointT > &cloud)
NormalEstimationOMP estimates local surface properties at each 3D point, such as surface normals and ...
void setNumberOfThreads(unsigned int nr_threads=0)
Initialize the scheduler and set the number of threads to use.
void flipNormalTowardsViewpoint(const PointT &point, float vp_x, float vp_y, float vp_z, Eigen::Matrix< Scalar, 4, 1 > &normal)
Flip (in place) the estimated normal of a point towards a given viewpoint.
Definition normal_3d.h:122
bool computePointNormal(const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &plane_parameters, float &curvature)
Compute the Least-Squares plane fit for a given set of points, and return the estimated plane paramet...
Definition normal_3d.h:61
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition point_tests.h:55
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133