Point Cloud Library (PCL) 1.12.0
Loading...
Searching...
No Matches
vector_math.hpp
1/*
2* Software License Agreement (BSD License)
3*
4* Copyright (c) 2011, Willow Garage, Inc.
5* All rights reserved.
6*
7* Redistribution and use in source and binary forms, with or without
8* modification, are permitted provided that the following conditions
9* are met:
10*
11* * Redistributions of source code must retain the above copyright
12* notice, this list of conditions and the following disclaimer.
13* * Redistributions in binary form must reproduce the above
14* copyright notice, this list of conditions and the following
15* disclaimer in the documentation and/or other materials provided
16* with the distribution.
17* * Neither the name of Willow Garage, Inc. nor the names of its
18* contributors may be used to endorse or promote products derived
19* from this software without specific prior written permission.
20*
21* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32* POSSIBILITY OF SUCH DAMAGE.
33*
34* Author: Anatoly Baskeheev, Itseez Ltd, (myname.mysurname@mycompany.com)
35*/
36
37#ifndef PCL_GPU_UTILS_DEVICE_VECTOR_MATH_HPP_
38#define PCL_GPU_UTILS_DEVICE_VECTOR_MATH_HPP_
39
40namespace pcl
41{
42 namespace device
43 {
44 ////////////////////////////////
45 // one element vectors
46
47
48 ////////////////////////////////
49 // two element vectors
50
51
52 ////////////////////////////////
53 // three element vectors
54
55#define PCL_GPU_IMPLEMENT_COMPOUND_VEC3_OP(type, scalar, op) \
56 __device__ __host__ __forceinline__ type & operator op (type & v1, const type & v2) { v1.x op v2.x; v1.y op v2.y; v1.z op v2.z; return v1; } \
57 __device__ __host__ __forceinline__ type & operator op (type & v, scalar val) { v.x op val; v.y op val; v.z op val; return v; }
58
59 PCL_GPU_IMPLEMENT_COMPOUND_VEC3_OP(float3, float, -=)
60 PCL_GPU_IMPLEMENT_COMPOUND_VEC3_OP(float3, float, +=)
61 PCL_GPU_IMPLEMENT_COMPOUND_VEC3_OP(float3, float, *=)
62
63 PCL_GPU_IMPLEMENT_COMPOUND_VEC3_OP(short3, short, -=)
64
65 PCL_GPU_IMPLEMENT_COMPOUND_VEC3_OP(int3, int, +=)
66
67#undef PCL_GPU_IMPLEMENT_COMPOUND_VEC3_OP
68
69 __device__ __host__ __forceinline__ float dot(const float3& v1, const float3& v2)
70 {
71 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
72 }
73
74 __device__ __host__ __forceinline__ float3 cross(const float3& v1, const float3& v2)
75 {
76 return make_float3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x);
77 }
78
79 ////////////////////////////////
80 // four element vectors
81
83 {
84 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w;
85 }
86
87 ////////////////////////////////
88 // alltype binary operarators
89
90#define PCL_GPU_IMPLEMENT_VEC_BINOP(type, scalar, op, cop) \
91 __device__ __host__ __forceinline__ type operator op (const type & v1, const type & v2) { type r = v1; r cop v2; return r; } \
92 __device__ __host__ __forceinline__ type operator op (const type & v1, scalar c) { type r = v1; r cop c; return r; }
93
94 PCL_GPU_IMPLEMENT_VEC_BINOP(float3, float, -, -=)
95 PCL_GPU_IMPLEMENT_VEC_BINOP(float3, float, +, +=)
96 PCL_GPU_IMPLEMENT_VEC_BINOP(float3, float, *, *=)
97
98 PCL_GPU_IMPLEMENT_VEC_BINOP(short3, short, -, -=)
99
100 PCL_GPU_IMPLEMENT_VEC_BINOP(int3, int, +, +=)
101
102#undef PCL_GPU_IMPLEMENT_VEC_BINOP
103
104
105 ////////////////////////////////
106 // tempalted operations vectors
107
108 template<typename T> __device__ __host__ __forceinline__ float norm(const T& val)
109 {
110 return sqrtf(dot(val, val));
111 }
112
113 template<typename T> __host__ __device__ __forceinline__ float inverse_norm(const T& v)
114 {
115 return rsqrtf(dot(v, v));
116 }
117
118 template<typename T> __host__ __device__ __forceinline__ T normalized(const T& v)
119 {
120 return v * inverse_norm(v);
121 }
122
123 template<typename T> __host__ __device__ __forceinline__ T normalized_safe(const T& v)
124 {
125 return (dot(v, v) > 0) ? (v * rsqrtf(dot(v, v))) : v;
126 }
127 }
128}
129
130#endif /* PCL_GPU_UTILS_DEVICE_VECTOR_MATH_HPP_ */
131
Iterator class for point clouds with or without given indices.
__host__ __device__ __forceinline__ float inverse_norm(const T &v)
__host__ __device__ __forceinline__ T normalized_safe(const T &v)
__device__ __forceinline__ float3 normalized(const float3 &v)
Definition utils.hpp:101
__device__ __forceinline__ float dot(const float3 &v1, const float3 &v2)
Definition utils.hpp:59
__device__ __host__ __forceinline__ float norm(const float3 &v1, const float3 &v2)
__device__ __host__ __forceinline__ float3 cross(const float3 &v1, const float3 &v2)
Definition utils.hpp:107