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1
LIMITED ERROR RASTER COMPRESSION

CROSS-REFERENCES TO RELATED
APPLICATIONS

Not Applicable

BACKGROUND OF THE INVENTION

Conventional topographical surface mapping technologies
that have been used to create elevation rasters, maps, and
images, tend to approximate the surface of the earth relatively
coarsely. For example, DTED-2 (Digital Terrain Elevation
Data) format can use spatial resolutions (i.e., different cell
sizes) of 30x30 meters with a vertical resolution of 1 meter.
The data is typically stored as a 16 bit integer raster (-32
km-+32 km), which provides enough range to represent any
point on earth, but not a high enough resolution to map many
above ground features (i.e., trees, buildings, etc.) due to the
large cell sizes.

Contemporary surface mapping systems can provide
highly detailed images with cell sizes smaller than one square
meter and vertical resolutions below 1 cm. These systems can
create images rich in detail and content including buildings,
cars, brush, trees, or other surface features given the small cell
size and shallow vertical resolution. As a result, these images
can result in very large data files that render conventional
compression technologies (e.g., LZW) ineffective. In many
modern systems, users have the choice between lossless com-
pression (e.g., LZW) on the one hand, which can be ineffec-
tive on high detail, highly noisy data, and lossy compression
methods (e.g., jpg) on the other hand, which can produce
arbitrarily large compression errors for a single pixel. Better
compression methods are needed that can be lossy, and pro-
vide adequate compression ratios for contemporary high
resolution raster files.

SUMMARY OF THE INVENTION

Embodiments of the invention related to a compression
method including receiving pixel data representing a two
dimensional array of pixels, where each pixel is associated
with a data value and receiving a first user defined parameter
defining a maximum error allowable per pixel for a compres-
sion processing routine. The method can further include
executing the compression processing routine, where the data
value for each pixel is compressed using the compression
processing routine, and where an error caused by the com-
pression processing routine is equal to or less than the maxi-
mum error allowable, and encoding the pixel data based on
the compression processing routine. In some cases, the pixel
data can be larger than 8 bit, and can be at least one of
scientific data, elevation data, or satellite imagery, etc.

In some embodiments, the compression processing routine
can be a no transform compression processing routine that
includes quantizing the pixel data into an array of unsigned
integer values, and bit stuffing the array of unsigned integers
into a byte array. The method also includes dividing the 2D
array of pixels into pixel blocks, where encoding the pixel
data further includes encoding each of the pixel blocks.
Dividing the 2D array of pixels into pixel blocks can further
include determining a set of statistics from each block, where
the set of statistics includes a maximum and minimum value
in each block and a number of valid pixels in each block, and
computing the number of bytes required to maximally com-
press each of the blocks based on the set of statistics. In some
cases, the encoding of each of the blocks occurs only once.
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Certain embodiments of the invention are related to a non-
transitory computer-readable storage medium including a
plurality of computer-readable instructions tangibly embod-
ied on the computer-readable storage medium, which, when
executed by a data processor, provides a lossy compression
method, the plurality of instructions including instructions
that cause the data processor to receive pixel data represent-
ing a two dimensional array of pixels, wherein each pixel is
associated with a data value and receive a first user defined
parameter defining a maximum error allowable per pixel fora
compression processing routine. Further embodiments can
include instructions that cause the data processor to execute
the compression processing routine (e.g., an algorithm),
where the data value for each pixel is compressed using the
compression processing routine, and where an error caused
by the compression processing routine is equal to or less than
the maximum error allowable. Yet further embodiments can
include instructions that cause the data processor to encode
the pixel data based on the compression processing routine. In
some cases, the pixel data can be at least 8 bit or larger, and
can be at least one of scientific data, elevation data, or satellite
imagery, etc.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts an aircraft utilizing LiDAR technology to
scan and survey the terrain below.

FIG. 1B depicts an aircraft utilizing LiDAR technology
and receiving multiple reflections from a single set of planar
coordinates.

FIG. 2A illustrates a LiDAR-generated elevation raster
depicting a landscape with a MaxZError threshold of 1 meter.

FIG. 2B illustrates a LiDAR-generated elevation raster
depicting a landscape with a MaxZError threshold of 10
centimeters.

FIG. 3 depicts a simplified flow diagram illustrating
aspects of a method of compression, according to embodi-
ments of the invention.

FIG. 4 depicts a simplified flow diagram illustrating
aspects of a method of compression, according to embodi-
ments of the invention.

FIG. 5 depicts a simplified flow diagram illustrating
aspects of a method of encoding one block in a compression
scheme, according to certain embodiments of the invention.

FIG. 6 depicts a simplified flow diagram illustrating
aspects of a method of determining an optimal block size for
a compression scheme, according to certain embodiments of
the invention.

FIG. 7A depicts a tile including a plurality of uniformly
sized pixel blocks, according to an embodiment of the inven-
tion.

FIG. 7B depicts a raster including a plurality of tiles,
according to an embodiment of the invention.

FIG. 8A depicts a LERC file structure, according to an
embodiment of the invention.

FIG. 8B depicts a LERC file header, according to an
embodiment of the invention.

FIG. 8C depicts a LERC mask or pixel values header,
according to an embodiment of the invention.

FIG. 8D depicts a LERC block header, according to an
embodiment of the invention.

FIG. 9A depicts sample block data for a 4x4 block of
pixels, according to an embodiment of the invention.

FIG. 9B depicts quantized sample block data for a 4x4
block of pixels, according to an embodiment of the invention.

FIG. 9C depicts a sample block header, according to an
embodiment of the invention.
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FIG. 9D depicts quantized sample block data for a 4x4
block of pixels, according to an embodiment of the invention.

FIG. 9E depicts a sample block header, according to an
embodiment of the invention.

FIG. 10 illustrates a computer system, according to an
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the invention can include a Limited Error
Raster Compression (LERC) method that includes receiving
pixel data for a raster comprising an array of three-dimen-
sional point data where each pixel is associated with a data
value. The method further includes receiving a user defined
parameter defining a maximum error allowable for a com-
pression algorithm. The raster can be divided into a number of
pixel blocks where each pixel can be quantized and bit stuffed
based on a number of block statistics including the maximum
error allowable. The method further includes executing the
compression algorithm wherein for each pixel, where an error
caused by the compression algorithm is equal to or less than
the maximum error allowable, and encoding the pixel data
based on the compression algorithm.

In some instances, raster data with very large pixel depth
(e.g., more than 8 bit per pixel) can comprise very large data
files, which can be difficult to transfer or process in real-time.
For example, 8-bit data can include numbers ranging from
0-255, 16-bit data can include numbers ranging from
0-65535, and so on, for each individual pixel of a given raster.
Typically, lossless compression methods try to assign smaller
codes to symbols with higher occurrences, and larger codes to
symbols with fewer occurrences. This can be problematic
when there are large numbers of different data values which
may result in overall lossless compression factors at 2x or
less.

Raster data can include scientific raster data (e.g., tempera-
ture, biomass production, evaporation, transpiration, air pres-
sure, etc.), multi-spectral imagery, or elevation raster data
(e.g., 2D raster with elevation data in each cell), or the like,
which can be derived from 3D point cloud data. One example
of three-dimensional point cloud data includes Light Detec-
tion and Ranging (LiDAR) data. LiDAR is an optical remote
sensing technology that can measure the distance to a target
by illuminating the target with light (e.g., pulses from a laser),
which can be used to map physical features (e.g., geographic,
microscopic, etc.) with very high resolution. LiDAR technol-
ogy can be fitted to aircraft or satellites for surveying and
mapping geographic areas. FIG. 1A depicts an aircraft 100
utilizing LiDAR technology to scan and survey the terrain
below. The data is collected by a laser unit 110 attached to the
aircraft that emits pulses toward the ground in a sweeping
pattern 120. The laser unit 110 receives the reflections and
generates a very highly detailed 3D point cloud raster (i.e.,
map) of the terrain below, with image resolutions that can far
surpass the capabilities of earlier technologies. The LiDAR
data files are typically very large, making real-time streaming
high resolution data problematic over bandwidth limited
mediums.

The raw output from a LiDAR system can be a 3D point
cloud, which can be a cluster of points in 3D space with
coordinates [x, y, z]. Those points can be stored in LAS files,
which are a public format allowing the exchange of LiDAR
data between the organizations and companies who produce
this data and those who consume it. Note that for a point
cloud, there can be multiple points on top of each other,
having the same [X, y] coordinates but different [z] coordi-
nates. To illustrate, FIG. 1B depicts an aircraft 100 utilizing
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LiDAR technology 110 and receiving multiple reflections
(122,124,126, 128) from a single set of planar coordinates. A
single laser pulse can result in multiple returns, which may
return at different intervals. For example, the first return 122
can be from a leaf at the top of a tree, while the last return 126
can be from the reflection of the laser pulse off of the ground.
From the travel time of the pulse and the 3D position of the
LiDAR unit on the plane (GPS), the laser pulse reflection
points can be measured with an accuracy on the order of
centimeters, depending on multiple factors such as the height
of the plane and the accuracy of the LiDAR measurements.
Additionally, each point (i.e., coordinate) can have a flag
attached (e.g., 1st, 2nd, . . ., last return, with classification
flags (as computed by classification algorithms) such as
ground, water, building, etc.). From the flagged data points,
different elevation surfaces can be individually reconstructed.
Forinstance, bare earth or ground surface (buildings and trees
are removed) can be reconstructed by using 3D points that
have the “ground” flag set. In some cases, this surface will
initially have holes or void areas where other features (e.g.,
trees, buildings, etc.) were. Similarly, a tree canopy surface
can be reconstructed by using 3D points that have a “first
return” flag set. In some embodiments, these surface rasters
can be computed using either binning (e.g., aggregation of all
points in each raster cell based on their average or maximum
value per cell), triangulation (i.e., interpolation between mea-
sured points), or other method known by those skilled in the
art.

There are a variety of ways to derive a 3D map or elevation
raster from a 3D point cloud. In one non-limiting example, the
3D point cloud is overlaid with a regular [xy] grid and all of
the points in each grid cell are combined into one value, as
described above. This can be done by computing the average
[z] or height of all points in each cell. Alternatively, the
minimum or maximum [z]| can be used. Furthermore, all
points can be connected to create a mesh using triangulation,
where an intersection is made at the cell centers resulting is
one [z] value per grid cell. Further still, one can define which
points of the entire 3D point cloud should be included in this
process. For example, this might be limited to points labeled
as “ground,” “vegetation,” “buildings,” etc., as described
above. It should be noted that in certain embodiments of the
compression method described herein, it is assumed that the
3D LiDAR point cloud has already been converted into one
elevation raster using any of the previously mentioned meth-
ods or other methods known by those of ordinary skill in the
art. In short, the compression method described herein starts
with a raster or an image with N rows, M columns, and one z
or elevation value for each grid cell.

FIG. 3 depicts a simplified flow diagram illustrating
aspects of a method 300 of compression, according to
embodiments of the invention. The LERC method 300
includes receiving pixel data representing a two-dimensional
array of pixels, where each pixel is associated with a data
value (310). In some embodiments, the raster data can include
scientific raster data (e.g., temperature), multi-spectral imag-
ery, elevation raster data (i.e., 2D raster with elevation data in
each pixel/cell), and the like. As described above, raster data
can have a large pixel depth (e.g., more than 8 bit per pixel),
which can be difficult to compress using conventional lossless
methods.

At 320, the method includes receiving a user defined maxi-
mum error (i.e., “MaxZError”) allowable per pixel. The
MaxZError value determines the amount of error introduced
when quantizing pixel data values during compression, as
further discussed below with respect to FIG. 4. The user can
select a maximum allowable error based on a desired data
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precision. Allowing greater error will typically yield greater
compression ratios and reduced file sizes. For example, a
maximum error of 0.1 cm in the z-direction can have signifi-
cantly less error (and a greater file size) than a maximum
allowable error of 1 meter. Lower MaxZError values also
produces, for example, elevation rasters with higher precision
than higher MaxZError values. For example, FIG. 2A illus-
trates a LiDAR-generated elevation raster depicting a land-
scape with a MaxZError value (i.e., threshold) of 1 meter.
FIG. 2B illustrates the same landscape with a MaxZError of
10 cm. Where FIG. 2A shows “blocky” or step-like gradients
in mountainous regions, FIG. 2B shows those same features
with a much smoother gradient because of the smaller error
introduced during compression. In these examples, the com-
pression ratios achieved are 24.2 for FIG. 2a and 8.5 for FIG.
25, in contrast to compression ratios as low as 1.7 when using
standard lossless LZW compression. In addition, LERC
encoding speed can be approximately 10x faster than LZW or
more. It should be noted that although many examples herein
refer to the pixel data value as a vertical displacement
(z-axis), the pixel data value can be any type of data including
temperature, force, mass, luminescence, or any other desired
parameter that would apply to any raster, data, and the like.

At 330, the method includes executing the compression
algorithm to compress the data value for each pixel within the
user defined maximum error. In other words, the data value
for each pixel can be maximally compressed while maintain-
ing a quantization error below the user defined maximum
(i.e., MaxZError). The method further includes encoding the
pixel data based on the output of the compression algorithm
(340). The compression algorithm (i.e., processing routine)
can be a no-transform compression processing algorithm. It
should be noted that the compression algorithms described
herein do not include discrete cosine transforms (DCT) or
wavelet transforms. The individual steps that comprise the
compression algorithm are further described below with
respect to FIG. 4.

FIG. 4 depicts a simplified flow diagram illustrating
aspects of a method 400 of compression, according to
embodiments of the invention. The LERC method 400
includes receiving pixel data representing a two-dimensional
array of pixels, where each pixel is associated with a data
value (410). In some embodiments, the raster data can include
scientific raster data (e.g., temperature), multi-spectral imag-
ery, elevation data, etc. It should further be noted that LERC
can be extended to three-dimensional voxel grids (e.g., MRI,
CT, etc.).

At 420, the LERC method 400 includes receiving a user
defined maximum error (i.e., “MaxZFError”) allowable per
pixel. The MaxZError value determines the amount of error
introduced when quantizing pixel data values during com-
pression. The user can select a maximum allowable error
based on a desired data precision. Allowing greater error will
typically yield greater compression ratios and reduced file
sizes, and vice versa.

At 430, the method 400 continues with searching for and
determining the optimal block size for subdividing the image
into pixel blocks, as further described below with respect to
FIG. 6. At 440, for the optimal block size, dividing the image
into pixel blocks and encoding each pixel block, as further
described below with respect to FIG. 5.

To further illustrate the LERC compression method by
example, the compression algorithm includes dividing the
raster into pixel blocks (e.g., 8x8, 11x11, or larger blocks).
The smaller the block, the smaller the value range of the pixel
values, resulting in less bits needed per pixel. Each block
stores its own data (e.g., min value for that block, the number
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of'bits needed per pixel, etc.). The optimal block size depends
on that data and is determined by the compression algorithm.
The quantization component of the compression algorithm
takes a block of pixels (e.g., 8x8 pixels=64 pixels) and deter-
mines the minimum and maximum pixel value in that par-
ticular block. Keeping the minimum value as an offset for this
block, the 64 pixel values can be quantized based on the
specified maximum error allowed (MaxZError) per pixel. As
a result, each value can be represented needing only, for
instance, 10 bits instead of 32 bits (e.g., as required for float-
ing point numbers). These 64 by 10 bits can be “bit stuffed”
into an array of the size needed (e.g., 640 bits or 80 bytes).
Some non-limiting, exemplary embodiments of the LERC
method are presented below in FIGS. 9A-9E. In certain
embodiments, the compression algorithm (i.e., compression
processing routine) is not a discrete cosine transform (DCT)
or wavelet transform.

FIG. 5 depicts a simplified flow diagram illustrating
aspects of a method 500 of encoding one block in a compres-
sion scheme, according to certain embodiments of the inven-
tion. The compression method 500 includes computing a
minimum and maximum data value in a pixel block and the
number of valid pixels (510). At 520, if all of the pixel block
data is either invalid, or all 0’s, 1’s, or —1’s, the block is
encoded as a single byte (525) and the method ends. At 530,
if the pixel block includes a constant block (i.e., all uniform
pixel values) that are not all invalid or all 0’s, 1°s, or —1’s, the
pixel block is encoded with a header with no data (535) and
the method ends. File structures, file headers, block headers,
and pixel value headers can be arranged and configured in any
suitable format as would be known and appreciated by one of
ordinary skill in the art. Some exemplary embodiments of file
structures are shown in FIGS. 8A-D.

At 540, the method includes determining whether the pixel
block should be encoded uncompressed. This may occur if
the MaxZError=0 or very small, as can be determined by
equation (1).

((Max-Min)/(2*MaxZError)>22%) (€8]

According to equation (1), if more than 28 bits per pixel are
required to encode the quantized integers, then the block is
not compressed and remains as is in float. It should be noted
that equation (1) is but one exemplary embodiment and other
formulas may be used to determine when LERC compression
provides an inadequate compression ratio for a particular
application. In such cases, the method further includes encod-
ing the block lossless (545) and ending. Typically, most pixel
blocks are suitable for compression. In these cases, the
method further includes determining the minimum pixel data
value in the pixel block and storing it as an offset in the block
header (550). One example of a block header is shown in FI1G.
8D, although other header formats may be used. The method
further includes quantizing pixel values according to the
quantization algorithm (560) shown in equation (2). It should
be noted that the quantization process is the only lossy step in
the compression algorithm described herein.

#(i)=(unsigned int)((x(f)-min)/(2*maxZError)+0.5) 2)

In this case, n(i) is a new integer value after quantization and
x(1) is the value before quantization. The x(i) value can be
float or integer at pixel (i) and n(i) can be unsigned long (e.g.,
non-negative 32-bit integer). At 570, the LERC method fur-
ther includes computing the number of bits needed to encode
the full range of non-negative integers lossless and bit stuffing
the integers into a byte array. In some embodiments, the block
header is updated with the number of bits per pixel used and
the number of valid pixels (580), as shown in FIG. 8D.
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FIG. 6 depicts a simplified flow diagram illustrating
aspects of amethod 600 of determining an optimal block size
for a compression scheme, according to certain embodiments
of'the invention. The LERC method 600 includes beginning a
search loop over successive prospective pixel block sizes
(610). For example, the method 600 may begin with succes-
sively looping over the entire raster image and subsets
thereof. In one non-limiting example, the method 600 may
start with the entire raster image and then continuing from the
smallest pixel block (e.g., 8x8) and increasing therefrom with
each iteration (e.g., pixel block sizes 0f 8, 11, 15, 20, 32, etc.).
In another embodiment, the method may begin by iteratively
looping through increasing pixel block sizes starting with a
small pixel block and progressively increasing. For each pro-
spective block size, the method further includes computing
the minimum (Min) and maximum (Max) pixel data values
and the number of valid pixels for that block size (620) for
each block in the raster. As described above, the pixel data can
include elevation data, temperature data, or any other data
associated with one or more coordinates in a raster image.

At 630, the method includes computing the number of
bytes needed to encode the current pixel block using each of
the Min, Max, the number of valid pixels, and the user defined
MaxZError parameters. As shown in FIG. 6, process steps
620 and 630 are performed for each block of the raster for the
current block size. At 640, the method continues with com-
puting the number of bytes needed to encode the entire raster
image (i.e., all blocks) for the computed block size. For
example, a raster image may be large enough to accommodate
36 pixel blocks, each with an 8x8 pixel array. Other cases may
accommodate fewer or larger numbers of pixel blocks
depending on the size of the raster and/or pixel blocks. At 650,
if the block size is one of a number of valid block sizes (e.g.,
11, 15, 20, 32, 64) and the number of bytes for that particular
block size has increased compared to the previous computed
block size, the search loop ends early (655), the block size
with the smallest number of bytes is selected (660), and the
method ends. At 650, if the block size is one of the number of
valid block sizes and the number of bytes for that particular
block size has not increased compared to the previous com-
puted block size, the method continues by determining
whether the current block size is less than 64x64 pixels (660).
If the block size is less than 64, the next higher block size is
selected at the method returns to 620. If the current block size
is not less than 64 (e.g., is equal to 64x64 pixels), the method
continues with selecting the block size utilizing the smallest
number of bytes (660).

In summary, the method 600 provides an efficient and
systematic approach for determining the optimal block size
for a particular raster. In some embodiments, as long as the
calculated byte size continues to improve with each succes-
sive block size (i.e., require less bytes), the method will con-
tinue until the smallest number of bytes is determined. If the
byte size for a particular block increases as compared to the
previous block, then it may be assumed that the minimum
byte size has been crossed and the method can stop. This
method may allow the minimum byte size to be determined
before actually cycling through every available block size,
which may improve the overall efficiency of a system (e.g.,
processor 1030 of FIG. 10) executing the method 600.

It should be appreciated that the specific steps illustrated in
FIG. 6 provides a particular method 600 of compression,
according to an embodiment of the present invention. Other
sequences of steps may also be performed according to alter-
native embodiments. In certain embodiments, the method
600 may perform the individual steps in a different order, at
the same time, or any other sequence for a particular applica-
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tion. Moreover, the individual steps illustrated in FIG. 6 may
include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would
recognize and appreciate many variation, modification, and
alternatives of the method.

FIG. 7A depicts a tile 700 including a plurality of uni-
formly sized pixel blocks 710, according to an embodiment of
the invention. Each block 710 is uniform and compressed to
produce the smallest number of bytes per block, as described
above with respect to FIG. 6. FIG. 7B depicts a raster 750
including a plurality of tiles, according to an embodiment of
the invention. Some raster images may be very large (e.g.,
30K pixels or more) and can be stored as a sequence of tiles
(e.g, tif file), where each tile is encoded separately using
different block sizes. Raster 750 includes tile 770, 775, 780,
and 785. Each tile can have a different uniform block size
generated from a different compression scheme. For
example, tile 770 has larger blocks 772 than the blocks 777 of
tile 775. In some cases, dividing raster images into multiple
tiles can yield smaller overall raster data files. For example, if
tile 775 was a LiDAR scan of mountainous terrain, each pixel
block would be relatively small to accommodate a large varia-
tion in elevation (i.e., min and max pixel data values). Con-
versely, if tile 785 was a LiDAR scan of a lake, each pixel
block would be larger given the little to no variation in eleva-
tion, resulting in a small number of pixel blocks. Typically,
tiles with large numbers of blocks tend to yield relatively
larger data files than tiles with a smaller number of pixel
blocks.

File Structures

FIG. 8A depicts a LERC file structure, according to an
embodiment of the invention. The LERC file structure can
include a file header field, a mask header field, mask data
field, a pixel values header field, and pixel values data field as
well as their associated formats and sizes. Other data fields
can be included in the file structure that may differ in data type
or size as required. FIG. 8B depicts a LERC file header,
according to an embodiment of the invention. The LERC file
header can include a file identifier string, a file version, an
image type, an image height in pixels, an image width in
pixels, and the user selected MaxZFError, including their asso-
ciated formats and sizes. FIG. 8C depicts a LERC mask or
pixel values header, according to an embodiment of the inven-
tion. The LERC mask or pixel values header includes the
number of blocks in the vertical direction, the number of
blocks in the horizontal direction, the number of bytes, and a
maximum value in the image (e.g., the or raster), as well as
their associated formats and sizes. FIG. 8D depicts a LERC
block header, according to an embodiment of the invention.
The LERC block header includes the encoding type, the
offset, the number of bits per pixel, and the number of valid
pixels, including their associated formats and sizes.

Utilizing the File Structures in LERC

In certain embodiments of the invention, the LERC method
includes quantizing an array of floating numbers (e.g., eleva-
tion data, temperature data, etc.) into an array of unsigned or
positive integers using a user-specified maximal quantization
error (i.e., MaxZError) and determining the minimum and
maximum data value of the float array. The method includes
storing the minimum data value as an offset value. In some
cases, the offset value is stored as a float number in a block
header (FIG. 8D). In some embodiments, the conversion
equation is n(i)=(x(i)-min)/(2*MaxZError)+0.5. In cases
where the MaxZError is too small such that the maximum
float array element cannot be represented as a 32 bit unsigned
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integer (e.g., MaxError=0), the float array is not converted to
integer and is stored as a float array uncompressed. It should
be noted that the quantization step is the only lossy compo-
nent in the compression algorithm.

According to some embodiments, the method continues
with bit stuffing the array of unsigned integer numbers into an
array of unsigned char or bytes. In some aspects, if the maxi-
mum array element needs m bits, then the entire array of N
elements can be compressed lossless into a byte array of
length (N*m+7)/8 using low level bit shifting operations. The
method further includes dividing the elevation raster into
blocks and encoding each block.

The compression algorithm can automatically determine
the optimal block size. Encoding the input raster multiple
times using a series of different block sizes and choosing the
block size resulting in the smallest file size can require addi-
tional file resources and be very time consuming. The LERC
method can determine the optimal block size prior to encod-
ing the data by first computing the number of bytes needed to
encode each block using various block statistics (e.g., max
and min value, number of valid pixels) prior to encoding the
block. As such, the method includes computing a resulting
file size for a number of different block sizes and selecting the
optimal block size to encode the raster a single time.

Typically, the smaller the block size (e.g., 8x8), the more
important it becomes to minimize the overhead needed to
encode each block. In some embodiments, the block header
(FIG. 8D) is defined as {encoding type (byte), offset (variable
type), number of bits per element (byte), number of valid
pixel (variable type)}. With the variable type, the method
dynamically switches to the smallest type that allows repre-
senting the information without loss. For example, for the last
field of the header, “number of valid pixels,” only one byte is
needed for block sizes up to 15x15 pixels (15x15=225 pixels
and fits into one byte). Larger blocks may require unsigned
short (2 bytes). In cases where the entire image can be
encoded as one block, an unsigned integer may be utilized. As
block sizes increase, the block overhead becomes less signifi-
cant in the overall compression scheme. The variable type
used can be encoded in the highest 2 bits of the byte just
before that variable. Similarly, if the offset value is a real float
value, it can be encoded as a float (4 bytes). If the offset value
is a 16-bit integer (e.g., Digital Terrain Elevation Data
(DTED)), it can be encoded as a short (2 bytes). Alternatively,
the offset value can be written and encoded as a char (1 byte).
Using the two bytes located before the offset and the number
of valid pixels, the highest 2 bits can be used to encode the
variable type of the following variable, and the lower 6 bits
can be used by these two bytes themselves. The number of
bits per element can be used to encode the bit depth used for
bit stuffing the array of unsigned integers, which is typically
32 bits or less. The first byte of the header (i.e., the encoding
type) is encoded to identify whether the block is stored as
lossless float, or bit stuffed, and in addition encodes common
situations as just one byte. For example, a block of'a void (no
data) mask being constant (i.e., all valid or all invalid), or an
elevation block constant at 0, can be represented by the one
byte, allowing frequently occurring blocks to be encoded as a
single byte.

In some embodiments, a void or no data mask is encoded
first and the elevation values thereafter. The void mask can be
represented as binary (e.g., for valid, invalid data), integer
(e.g., encode like pixel values with MaxZFError=0.5 for loss-
less encoding), a float raster (e.g., with mask used as a weight
kernel), or any desired data structure. In some cases, the void
pixel can be set to avoid interpolations at -1 or may be
interpolated at O with valid pixels set to 1. Alternatively, the
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data mask can be used as a count (e.g., the number of LIDAR
pulses hitting a particular cell), a weight (e.g., float number
between 0 and 1), or any other desired data representation. To
maintain flexibility, the void mask and elevation raster can be
stored as a float raster and can both be compressed using the
methods described herein. In each case, the mask is typically
encoded lossless. In certain embodiments, if the mask is
binary (valid/invalid), which can be the most common case, it
can be encoded as follows: Put all bits into a byte array of
length ((number of pixels+7)/8) bytes, and run-length encode
this array. The array will typically become very small, par-
ticularly with large areas of all valid or all invalid pixels. Even
without run-length encoding, the mask takes only 1 bit per
pixel. In such cases, the binary mask contributes little to the
overall data volume and does not typically justify using more
expensive or time consuming compression methods.

Before encoding a float raster, the method includes running
through different block size configurations and computing
both statistics and the number of bytes needed to encode the
raster using that particular block size. Some typical block
sizes may include {entire raster, 8, 11, 15, 20, 32, 64}. In
some embodiments, block sizes greater than 64x64 are not
used because at this block size the block overhead becomes
negligible and larger blocks typically do not yield better
compression output. In some cases it may be advantageous to
start with the entire raster to allow for early stopping in
special cases (e.g., entire raster is constant, all valid, or all
invalid).

As described above, once the optimal block size has been
determined, the raster is encoded. In certain embodiments,
the method includes encoding single blocks containing out-
liers as float numbers uncompressed and bit stuffing regular
blocks. The variable types can allow for automatic switching
from float to integer wherever possible. Typically, the mask
containing information identifying valid and invalid pixels is
encoded first and only elevation values (or other ‘z’ data) for
valid pixels are encoded. During the decoding process, the
mask is typically decoded first in order to determine which
pixels have to be filled with the elevation values being
decoded.

In certain embodiments, alternatives to bit stuffing may be
used to compress the pixel raster. For example, instead of bit
stuffing the non-negative integers after quantization, all ofthe
non-negative integers can be collected unchanged in one large
array of non-negative integers for all blocks. This will provide
the LERC header structure with all block headers for all
blocks, but no data therein, as well as one large array with all
the non-negative integers from the different quantizations of
the entire image. Conventional lossless encoding can be
applied to the array of integers (e.g., symbol based encoding
schemes (LZW), etc.). It should be noted that this scheme
may produce some float number from blocks that were not
quantized but passed along uncompressed. While this method
can produce significant compression gain, it can involve
increased complexity and computation time for both encod-
ing and decoding processes.

Example of LERC Encoding for One Block Using MaxZ-
Error=0.01 m

In some embodiments, LERC encoding can be performed
using four simplified basic steps including, but not limited to,
(1) calculating the basic statistics for a data block; (2) deter-
mining how to encode the block using a user defined MaxZ-
Error value, (3) determining the number of bits needed and bit
stuffing the non-negative integers; and (4) writing the block
header. FIG. 9A depicts sample block data 910 for a 4x4
block of pixels, according to an embodiment of the invention.
It should be noted that blocks are typically larger than 8x8
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pixels, but are shown here as 4x4 pixels for simplicity of
description. At step 1, the LERC method includes determin-
ing the basic statistics for the data block of FIG. 9A. The
minimum value is 1222.2943 and the maximum value is
1280.8725. The number of valid pixels (i.e., non-void pixels)
is 12 of 16. The number of invalid pixels (i.e., void pixels) is
4 of 16.

Atstep 2, the LERC method includes determining whether
the pixel block should be encoded uncompressed with a user-
input MaxZError of 0.01 m. By using equation (1) above:
(Max-Min)/(2*MaxZError)=>(1280.8725-1222.2943)/
(2*0.01)=2,928.91. Since this value is less than 2°%, we can
quantize the pixel values in data block 910 and expect an
acceptable compression ratio. The block is quantized using
equation (2) above, where each new pixel value is calculated
by: n(i)=(unsigned int)((x(1)-Min)/(2*MaxZError)+0.5),
resulting in the new pixel block 920 shown in FIG. 9B. At step
(3), the method further includes determining the number of
bits needed and bit stuffing these non-negative integers. The
number of bits needed can be determine by equation (3):

NumBits=ceil(log,(2929))=12 3)

To represent the number of bits needed another way,
2M<2929<2'2, In this case, 12 bits per number are need to
encode all numbers of block 910 lossless. There are 12 valid
numbers, resulting in 12x12=144 bits total. As 144/8=18, 18
bytes are needed to encode the entire data block. At step (4),
the method includes writing the block header as shown in
FIG. 9C. It follows that 7 bytes are needed for the block
header. The total number of bytes needed for block 920 can be
calculated as 18+7=25 bytes. In this particular case, the
header takes too much space with respect to the raw pixel
data, which exemplifies the need to work with block sizes of
8x8 pixels or larger.

Example of LERC Encoding for One Block Using MaxZ.-
Error=1.0 m

Using the same 4x4 pixel block shown in FIG. 9A, the
LERC method is performed again using a larger MaxZError
(i.e., error threshold) of 1.0 m. Beginning with step (1), the
minimum value is 1222.2943 and the maximum value is
1280.8725. The number of valid pixels (i.e., non-void pixels)
is 12 of 16. The number of invalid pixels (i.e., void pixels) is
4 of 16. In step (2), the LERC method proceeds with deter-
mining whether the pixel block should be encoded uncom-
pressed with a user-input MaxZError of 1.0 m. As By using
equation (1) above: (Max-Min)/(2*MaxZFError)=>
(1280.8725-1222.2943)/(2*1.0)=29.2891. Since this value
is less than 2°®, we can quantize the pixel values in data block
910 and expect an acceptable compression ratio. The block is
quantized using equation (2) above, where each new pixel
value is calculated by: n(i)=(unsigned int)((x(i)-Min)/
(2*¥*MaxZError)+0.5), resulting in the new pixel block 940
shown in FIG. 9D. At step (3), the method further includes
determining the number of bits needed and bit stuffing these
non-negative integers. The number of bits needed can be
determine by equation (4):

NumBits=ceil(log,(29))=5 4

To represent the number of bits needed another way,
2*<29<2°, In this case, 5 bits per number are need to encode
all numbers of block 940 lossless. There are 12 valid num-
bers, resulting in 5x12=60 bits total. As 60/8=7.5, 8 bytes are
needed to encode the entire data block. At step (4), the method
includes writing the block header as shown in FIG. 9E. It
follows that 7 bytes are needed for the block header. The total
number of bytes needed for block 920 can be calculated as
8+7=15 bytes.
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FIG. 10 illustrates a computer system 1000 according to an
embodiment of the present invention. The compression meth-
ods described herein (e.g., FIGS. 3-6) can be implemented
within a computer system such as computer system 1000
shown here. Computer system 1000 can be implemented as
any of various computing devices, including, e.g., a desktop
or laptop computer, tablet computer, smart phone, personal
data assistant (PDA), or any other type of computing device,
not limited to any particular form factor. Computer system
1000 can include processing unit(s) 1030, storage subsystem
1010, input devices 1050 (e.g., keyboards, mice, touch-
screens, etc.), output devices 1060 (e.g., displays, speakers,
tactile output devices, etc.), network interface 1070 (e.g., RF,
4G, EDGE, WiFi, GPS, Ethernet, etc.), and bus 1005 to com-
municatively couple the various elements of system 1000 to
one another.

Processing unit(s) 1030 can include a single processor,
multi-core processor, or multiple processors and may execute
instructions in hardware, firmware, or software, such as
instructions stored in storage subsystem 1010. The storage
subsystem 1010 can include various memory units such as a
system memory, a read-only memory (ROM), and permanent
storage device(s) (e.g., magnetic, solid state, or optical media,
flash memory, etc.). The ROM can store static data and
instructions required by processing unit(s) 1030 and other
modules of the system 1000. The system memory can store
some or all of the instructions and data that the processor
needs at runtime.

In some embodiments, storage subsystem 1010 can store
one or more software programs to be executed by processing
unit(s) 1030, such as the compression algorithm 1012, the
quantization algorithm 1014, or the block optimization algo-
rithm 1016, as further described above with respect to FIGS.
3-6 and 9A-9E. As mentioned, “software” can refer to
sequences of instructions that, when executed by processing
unit(s) 1030, cause computer system 1000 to perform certain
operations of the software programs. The instructions can be
stored as firmware residing in read-only memory and/or
applications stored in media storage that can be read into
memory for processing by processing unit(s) 1030. Software
can be implemented as a single program or a collection of
separate programs and can be stored in non-volatile storage
and copied in whole or in part to volatile working memory
during program execution. From storage subsystem 1010,
processing unit(s) 1030 can retrieve program instructions to
execute in order to execute various operations (e.g., compres-
sion algorithms) described herein.

It will be appreciated that computer system 1000 is illus-
trative and that variations and modifications are possible.
Computer system 1000 can have other capabilities not spe-
cifically described here (e.g., mobile phone, global position-
ing system (GPS), power management, one or more cameras,
various connection ports for connecting external devices or
accessories, etc.). Further, while computer system 1000 is
described with reference to particular blocks, it is to be under-
stood that these blocks are defined for convenience of
description and are not intended to imply a particular physical
arrangement of component parts. Further, the blocks need not
correspond to physically distinct components. Blocks can be
configured to perform various operations, e.g., by program-
ming a processor or providing appropriate control circuitry,
and various blocks might or might not be reconfigurable
depending on how the initial configuration is obtained.
Embodiments of the present invention can be realized in a
variety of apparatus including electronic devices imple-
mented using any combination of circuitry and software.
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It should be noted that the LERC methods described herein
(e.g., methods 300, 400, 500, 600, and LERC encoding pro-
cedures of FIG. 9A-9E, etc.) can be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicate
logic, etc.), software (which as is run on a general purpose
computing system or a dedicated machine), firmware (em-
bedded software, or any combination thercof. In some
embodiments, the various methods described herein can be
performed by the processor 1030 of FIG. 10. It should also be
appreciated that the specific steps illustrated in FIGS. 3-6
provide aspects of a particular method of compression,
according to certain embodiment of the present invention.
Other sequences of steps may also be performed according to
alternative embodiments. In certain embodiments, the meth-
ods may perform their individual steps in a different order, at
the same time, or any other sequence for a particular applica-
tion. Moreover, the individual steps of each method may
include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would
recognize and appreciate many variation, modification, and
alternatives of the method.

The above disclosure provides examples and aspects relat-
ing to various embodiments within the scope of claims,
appended hereto or later added in accordance with applicable
law. However, these examples are not limiting as to how any
disclosed aspect may be implemented,

All the features disclosed in this specification (including
any accompanying claims, abstract, and drawings) can be
replaced by alternative features serving the same, equivalent
or similar purpose, unless expressly stated otherwise. Thus,
unless expressly stated otherwise, each feature disclosed is
one example only of a generic series of equivalent or similar
features.

Any element in a claim that does not explicitly state
“means for” performing a specified function, or “step for”
performing a specific function, is not to be interpreted as a
“means” or “step” clause as specified in 35 U.S.C. §112, sixth
paragraph. In particular, the use of “step of” in the claims
herein is not intended to invoke the provisions of 35 U.S.C.
§112, sixth paragraph.

What is claimed is:

1. A compression method comprising:

receiving raster data including a two dimensional (2D)

array of pixels, wherein each pixel is associated with a
data value;

receiving a first user defined parameter defining a maxi-

mum error allowable per pixel;

subdividing the 2D array of pixels into a plurality of blocks,

wherein each block includes a plurality of pixels;
determining minimum and maximum data values of the
plurality of pixels within each block;

determining a number of bytes needed to encode each

block based on the maximum error allowable per pixel
and the minimum and maximum data values for the
particular block; and

encoding each block within the determined number of

bytes such that, when decoded, the 2D array of pixels
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will not deviate from its pre-encoded data values by
more than the maximum allowable error per pixel.

2. The method of claim 1 further comprising:

determining a number of valid pixels in each block,

wherein determining the number of bytes needed to
encode each block is further based on the number of
valid pixels in the particular block.
3. The method of claim 1 wherein the encoding is a no
transform compression processing routine.
4. The method of claim 2 wherein the no transform com-
pression processing routine includes quantizing the raster
data into an array of unsigned integer values.
5. The method of claim 4 wherein the compression pro-
cessing routine further comprises bit stuffing the array of
unsigned integers into a byte array for each block.
6. A non-transitory computer-readable storage medium
comprising a plurality of computer-readable instructions tan-
gibly embodied on the computer-readable storage medium,
which, when executed by a data processor, provides a com-
pression method, the plurality of instructions comprising:
instructions that cause the data processor to receive raster
data including a two dimensional (2D) array of pixels,
wherein each pixel is associated with a data value;

instructions that cause the data processor to receive a first
user defined parameter defining a maximum error allow-
able per pixel;

instructions that cause the data processor to subdivide the

2D array of pixels into a plurality of blocks, wherein
each block includes a plurality of pixels;

instructions that cause the data processor to determine

minimum and maximum data values of the plurality of
pixels within each block;

instructions that cause the data processor to determine a

number of bytes needed to encode each block based on
the maximum error allowable per pixel and the mini-
mum and maximum data values for the particular block;
and

instructions that cause the data processor to encode each

block based on the determined number of bytes such
that, when decoded, the 2D array of pixels will not
deviate from its pre-encoded data values by more than
the maximum allowable error per pixel.

7. The method of claim 6 further comprising:

instructions that cause the data processor to determine a

number of valid pixels in each block, wherein determin-
ing the number of bytes needed to encode each block is
further based on the number of valid pixels in the par-
ticular block.

8. The method of claim 6 wherein the encoding is a no
transform compression processing routine.

9. The method of claim 8 further comprising instructions
that cause the data processor to quantize the raster data into an
array of unsigned integer values.

10. The method of claim 9 wherein the compression pro-
cessing routine further comprises bit stuffing the array of
unsigned integers into a byte array for each block.
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