Example 9

This code solves a system corresponding to a discretization of the biharmonic problem treated as a system of equations on the unit square. Specifically, instead of solving Delta^2(u) = f with zero boundary conditions for u and Delta(u), we solve the system A x = b, where

A = [ Delta -I ; 0 Delta], x = [ u ; v] and b = [ 0 ; f]

The corresponding boundary conditions are u = 0 and v = 0.

The domain is split into an N x N processor grid. Thus, the given number of processors should be a perfect square. Each processor's piece of the grid has n x n cells with n x n nodes. We use cell-centered variables, and, therefore, the nodes are not shared. Note that we have two variables, u and v, and need only one part to describe the domain. We use the standard 5-point stencil to discretize the Laplace operators. The boundary conditions are incorporated as in Example 3.

We recommend viewing Examples 3, 6 and 7 before this example.