
hypre Documentation
Release 2.18.1

Lawrence Livermore National Laboratory

October 15, 2019

CONTENTS

1 Introduction 3
1.1 Overview of Features . 3
1.2 Getting More Information . 4
1.3 How to get started . 4

1.3.1 Installing hypre . 4
1.3.2 Choosing a conceptual interface . 4
1.3.3 Writing your code . 6

2 Structured-Grid System Interface (Struct) 7
2.1 Setting Up the Struct Grid . 8
2.2 Setting Up the Struct Stencil . 9
2.3 Setting Up the Struct Matrix . 11
2.4 Setting Up the Struct Right-Hand-Side Vector . 12
2.5 Symmetric Matrices . 13

3 Semi-Structured-Grid System Interface (SStruct) 15
3.1 Block-Structured Grids with Stencils . 16
3.2 Block-Structured Grids with Finite Elements . 21
3.3 Structured Adaptive Mesh Refinement . 24

4 Finite Element Interface 27
4.1 Introduction . 27
4.2 A Brief Description of the Finite Element Interface . 28

5 Linear-Algebraic System Interface (IJ) 31
5.1 IJ Matrix Interface . 31
5.2 IJ Vector Interface . 32
5.3 A Scalable Interface . 33

6 Solvers and Preconditioners 35
6.1 SMG . 37
6.2 PFMG . 37
6.3 SysPFMG . 37
6.4 SplitSolve . 37
6.5 FAC . 38
6.6 Maxwell . 38
6.7 Hybrid . 39
6.8 BoomerAMG . 40

6.8.1 Parameter Options . 40
6.8.2 Coarsening Options . 40
6.8.3 Interpolation Options . 41

i

6.8.4 Non-Galerkin Options . 41
6.8.5 Smoother Options . 41
6.8.6 AMG for systems of PDEs . 42
6.8.7 Special AMG Cycles . 42
6.8.8 Miscellaneous . 42

6.9 AMS . 42
6.9.1 Overview . 43
6.9.2 Sample Usage . 43
6.9.3 High-order Discretizations . 46
6.9.4 Non-conforming AMR Grids . 47

6.10 ADS . 47
6.10.1 Overview . 48
6.10.2 Sample Usage . 48
6.10.3 High-order Discretizations . 50

6.11 The MLI Package . 51
6.12 Multigrid Reduction (MGR) . 51
6.13 ParaSails . 52

6.13.1 Parameter Settings . 52
6.13.2 Preconditioning Nearly Symmetric Matrices . 53

6.14 Euclid . 54
6.14.1 Overview . 54
6.14.2 Setting Options: Examples . 55
6.14.3 Options Summary . 56

6.15 PILUT: Parallel Incomplete Factorization . 56
6.15.1 Parameters: . 57

6.16 LOBPCG Eigensolver . 57
6.17 FEI Solvers . 57

6.17.1 Solvers Available Only through the FEI . 58

7 General Information 61
7.1 Getting the Source Code . 61
7.2 Building the Library . 61

7.2.1 Configure Options . 62
7.2.2 Make Targets . 62

7.3 Testing the Library . 63
7.4 Linking to the Library . 63
7.5 Error Flags . 63
7.6 Bug Reporting and General Support . 64
7.7 Using HYPRE in External FEI Implementations . 64
7.8 Calling HYPRE from Other Languages . 65

Bibliography 67

ii

hypre Documentation, Release 2.18.1

Copyright 1998-2019 Lawrence Livermore National Security, LLC and other HYPRE Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: (Apache-2.0 OR MIT)

CONTENTS 1

hypre Documentation, Release 2.18.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This manual describes hypre, a software library of high performance preconditioners and solvers for the solution
of large, sparse linear systems of equations on massively parallel computers [FaJY2004]. The hypre library was
created with the primary goal of providing users with advanced parallel preconditioners. The library features parallel
multigrid solvers for both structured and unstructured grid problems. For ease of use, these solvers are accessed from
the application code via hypre’s conceptual linear system interfaces [FaJY2005] (abbreviated to conceptual interfaces
throughout much of this manual), which allow a variety of natural problem descriptions.

This introductory chapter provides an overview of the various features in hypre, discusses further sources of informa-
tion on hypre, and offers suggestions on how to get started.

1.1 Overview of Features

Scalable preconditioners provide efficient solution on today’s and tomorrow’s systems: hypre contains several
families of preconditioner algorithms focused on the scalable solution of very large sparse linear systems. (Note that
small linear systems, systems that are solvable on a sequential computer, and dense systems are all better addressed by
other libraries that are designed specifically for them.) hypre includes “grey box” algorithms that use more than just the
matrix to solve certain classes of problems more efficiently than general-purpose libraries. This includes algorithms
such as structured multigrid.

Suite of common iterative methods provides options for a spectrum of problems: hypre provides several of the
most commonly used Krylov-based iterative methods to be used in conjunction with its scalable preconditioners. This
includes methods for nonsymmetric systems such as GMRES and methods for symmetric matrices such as Conjugate
Gradient.

Intuitive grid-centric interfaces obviate need for complicated data structures and provide access to advanced
solvers: hypre has made a major step forward in usability from earlier generations of sparse linear solver libraries in
that users do not have to learn complicated sparse matrix data structures. Instead, hypre does the work of building these
data structures for the user through a variety of conceptual interfaces, each appropriate to different classes of users.
These include stencil-based structured/semi-structured interfaces most appropriate for finite-difference applications; a
finite-element based unstructured interface; and a linear-algebra based interface. Each conceptual interface provides
access to several solvers without the need to write new interface code.

User options accommodate beginners through experts: hypre allows a spectrum of expertise to be applied by users.
The beginning user can get up and running with a minimal amount of effort. More expert users can take further control
of the solution process through various parameters.

Configuration options to suit your computing system: hypre allows a simple and flexible installation on a wide
variety of computing systems. Users can tailor the installation to match their computing system. Options include
debug and optimized modes, the ability to change required libraries such as MPI and BLAS, a sequential mode,
and modes enabling threads for certain solvers. On most systems, however, hypre can be built by simply typing
configure followed by make, or by using CMake [CMakeWeb].

3

hypre Documentation, Release 2.18.1

Interfaces in multiple languages provide greater flexibility for applications: hypre is written in C (with the excep-
tion of the FEI interface, which is written in C++) and provides an interface for Fortran users.

1.2 Getting More Information

This user’s manual consists of chapters describing each conceptual interface, a chapter detailing the various linear
solver options available, and detailed installation information. In addition to this manual, a number of other informa-
tion sources for hypre are available.

• Reference Manual: The reference manual comprehensively lists all of the interface and solver functions avail-
able in hypre. The reference manual is ideal for determining the various options available for a particular solver
or for viewing the functions provided to describe a problem for a particular interface.

• Example Problems: A suite of example problems is provided with the hypre installation. These examples reside
in the examples subdirectory and demonstrate various features of the hypre library. Associated documentation
may be accessed by viewing the README.html file in that same directory.

• Papers, Presentations, etc.: Articles and presentations related to the hypre software library and the solvers
available in the library are available from the hypre web page at http://www.llnl.gov/CASC/hypre/.

• Mailing List: The mailing list hypre-announce can be subscribed to through the hypre web page at http:
//www.llnl.gov/CASC/hypre/. The development team uses this list to announce new releases of hypre. It cannot
be posted to by users.

1.3 How to get started

1.3.1 Installing hypre

As previously noted, on most systems hypre can be built by simply typing configure followed by make in the
top-level source directory. Alternatively, the CMake system [CMakeWeb] can be used, and is the best approach for
building hypre on Windows systems in particular. For more detailed instructions, read the INSTALL file provided
with the hypre distribution or refer to the last chapter in this manual. Note the following requirements:

• To run in parallel, hypre requires an installation of MPI.

• Configuration of hypre with threads requires an implementation of OpenMP. Currently, only a subset of hypre
is threaded.

• The hypre library currently does not directly support complex-valued systems.

1.3.2 Choosing a conceptual interface

An important decision to make before writing any code is to choose an appropriate conceptual interface. These con-
ceptual interfaces are intended to represent the way that applications developers naturally think of their linear problem
and to provide natural interfaces for them to pass the data that defines their linear system into hypre. Essentially,
these conceptual interfaces can be considered convenient utilities for helping a user build a matrix data structure for
hypre solvers and preconditioners. The top row of Figure 1 illustrates a number of conceptual interfaces. Generally,
the conceptual interfaces are denoted by different types of computational grids, but other application features might
also be used, such as geometrical information. For example, applications that use structured grids (such as in the
left-most interface in Figure 1) typically view their linear problems in terms of stencils and grids. On the other hand,
applications that use unstructured grids and finite elements typically view their linear problems in terms of elements
and element stiffness matrices. Finally, the right-most interface is the standard linear-algebraic (matrix rows/columns)
way of viewing the linear problem.

4 Chapter 1. Introduction

http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/

hypre Documentation, Release 2.18.1

The hypre library currently supports four conceptual interfaces, and typically the appropriate choice for a given prob-
lem is fairly obvious, e.g. a structured-grid interface is clearly inappropriate for an unstructured-grid application.

• Structured-Grid System Interface (Struct): This interface is appropriate for applications whose grids consist
of unions of logically rectangular grids with a fixed stencil pattern of nonzeros at each grid point. This interface
supports only a single unknown per grid point. See Chapter Structured-Grid System Interface (Struct) for details.

• Semi-Structured-Grid System Interface (SStruct): This interface is appropriate for applications whose grids
are mostly structured, but with some unstructured features. Examples include block-structured grids, composite
grids in structured adaptive mesh refinement (AMR) applications, and overset grids. This interface supports
multiple unknowns per cell. See Chapter Semi-Structured-Grid System Interface (SStruct) for details.

• Finite Element Interface (FEI): This is appropriate for users who form their linear systems from a finite
element discretization. The interface mirrors typical finite element data structures, including element stiffness
matrices. Though this interface is provided in hypre, its definition was determined elsewhere (please send email
to Alan Williams william@sandia.gov for more information). See Chapter Finite Element Interface for details.

• Linear-Algebraic System Interface (IJ): This is the traditional linear-algebraic interface. It can be used as a
last resort by users for whom the other grid-based interfaces are not appropriate. It requires more work on the
user’s part, though still less than building parallel sparse data structures. General solvers and preconditioners
are available through this interface, but not specialized solvers which need more information. Our experience is
that users with legacy codes, in which they already have code for building matrices in particular formats, find
the IJ interface relatively easy to use. See Chapter Linear-Algebraic System Interface (IJ) for details.

Data Layout

structured composite block-struc unstruc CSR

Linear Solvers

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Linear System Interfaces

Fig. 1: Figure 1
Graphic illustrating the notion of conceptual linear system interfaces.

Generally, a user should choose the most specific interface that matches their application, because this will allow them
to use specialized and more efficient solvers and preconditioners without losing access to more general solvers. For
example, the second row of Figure Figure 1 is a set of linear solver algorithms. Each linear solver group requires
different information from the user through the conceptual interfaces. So, the geometric multigrid algorithm (GMG)
listed in the left-most box, for example, can only be used with the left-most conceptual interface. On the other hand,
the ILU algorithm in the right-most box may be used with any conceptual interface. Matrix requirements for each
solver and preconditioner are provided in Chapter Solvers and Preconditioners and in the hypre Reference Manual.
Your desired solver strategy may influence your choice of conceptual interface. A typical user will select a single

1.3. How to get started 5

mailto:william@sandia.gov

hypre Documentation, Release 2.18.1

Krylov method and a single preconditioner to solve their system.

The third row of Figure Figure 1 is a list of data layouts or matrix/vector storage schemes. The relationship between
linear solver and storage scheme is similar to that of the conceptual interface and linear solver. Note that some of
the interfaces in hypre currently only support one matrix/vector storage scheme choice. The conceptual interface, the
desired solvers and preconditioners, and the matrix storage class must all be compatible.

1.3.3 Writing your code

As discussed in the previous section, the following decisions should be made before writing any code:

• Choose a conceptual interface.

• Choose your desired solver strategy.

• Look up matrix requirements for each solver and preconditioner.

• Choose a matrix storage class that is compatible with your solvers and preconditioners and your conceptual
interface.

Once the previous decisions have been made, it is time to code your application to call hypre. At this point, reviewing
the previously mentioned example codes provided with the hypre library may prove very helpful. The example codes
demonstrate the following general structure of the application calls to hypre:

• Build any necessary auxiliary structures for your chosen conceptual interface. This includes, e.g., the grid
and stencil structures if you are using the structured-grid interface.

• Build the matrix, solution vector, and right-hand-side vector through your chosen conceptual interface.
Each conceptual interface provides a series of calls for entering information about your problem into hypre.

• Build solvers and preconditioners and set solver parameters (optional). Some parameters like convergence
tolerance are the same across solvers, while others are solver specific.

• Call the solve function for the solver.

• Retrieve desired information from solver. Depending on your application, there may be different things you
may want to do with the solution vector. Also, performance information such as number of iterations is typically
available, though it may differ from solver to solver.

The subsequent chapters of this User’s Manual provide the details needed to more fully understand the function of
each conceptual interface and each solver. Remember that a comprehensive list of all available functions is provided
in the hypre Reference Manual, and the provided example codes may prove helpful as templates for your specific
application.

6 Chapter 1. Introduction

CHAPTER

TWO

STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

In order to get access to the most efficient and scalable solvers for scalar structured-grid applications, users should
use the Struct interface described in this chapter. This interface will also provide access (this is not yet supported)
to solvers in hypre that were designed for unstructured-grid applications and sparse linear systems in general. These
additional solvers are usually provided via the unstructured-grid interface (FEI) or the linear-algebraic interface (IJ)
described in Chapters Finite Element Interface and Linear-Algebraic System Interface (IJ).

Figure Structured Grid Example gives an example of the type of grid currently supported by the Struct interface.
The interface uses a finite-difference or finite-volume style, and currently supports only scalar PDEs (i.e., one unknown
per gridpoint).

(-3,1)

(6,4)

process 0
 process 1

Fig. 1: Structured Grid Example
An example 2D structured grid, distributed accross two processors.

There are four basic steps involved in setting up the linear system to be solved:

1. set up the grid,

2. set up the stencil,

3. set up the matrix,

4. set up the right-hand-side vector.

To describe each of these steps in more detail, consider solving the 2D Laplacian problem{
∇2u = f, in the domain,
u = 0, on the boundary. (2.1)

Assume (2.1) is discretized using standard 5-pt finite-volumes on the uniform grid pictured in Structured Grid Exam-
ple, and assume that the problem data is distributed across two processes as depicted.

7

hypre Documentation, Release 2.18.1

2.1 Setting Up the Struct Grid

The grid is described via a global index space, i.e., via integer singles in 1D, tuples in 2D, or triples in 3D (see Figure
Boxes in Index Space).

(-3,2)

(6,11)

(7,3)
 (15,8)

Index Space

Fig. 2: Boxes in Index Space
A box is a collection of abstract cell-centered indices, described by its minimum and maximum indices. Here, two boxes are

illustrated.

The integers may have any value, negative or positive. The global indexes allow hypre to discern how data is related
spatially, and how it is distributed across the parallel machine. The basic component of the grid is a box: a collection of
abstract cell-centered indices in index space, described by its “lower” and “upper” corner indices. The scalar grid data
is always associated with cell centers, unlike the more general SStruct interface which allows data to be associated
with box indices in several different ways.

Each process describes that portion of the grid that it “owns”, one box at a time. For example, the global grid in Figure
Structured Grid Example can be described in terms of three boxes, two owned by process 0, and one owned by process
1. The following is the code (with visual annotations) for setting up the grid on process 0 (the code for process 1 is
similar).

1:

(-3,1)

(2,4)

2:

(-3,1)

3:

(-3,1)

(2,4)

4:

(-3,1)

(2,4)

HYPRE_StructGrid grid;
int ndim = 2;
int ilower[][2] = {{-3,1}, {0,1}};
int iupper[][2] = {{-1,2}, {2,4}};

/* Create the grid object */
1: HYPRE_StructGridCreate(MPI_COMM_WORLD, ndim, &grid);

(continues on next page)

8 Chapter 2. Structured-Grid System Interface (Struct)

hypre Documentation, Release 2.18.1

(continued from previous page)

/* Set grid extents for the first box */
2: HYPRE_StructGridSetExtents(grid, ilower[0], iupper[0]);

/* Set grid extents for the second box */
3: HYPRE_StructGridSetExtents(grid, ilower[1], iupper[1]);

/* Assemble the grid */
4: HYPRE_StructGridAssemble(grid);

The images along the top illustrate the result of the numbered lines of code. The Create() routine creates an
empty 2D grid object that lives on the MPI_COMM_WORLD communicator. The SetExtents() routine adds a new
box to the grid. The Assemble() routine is a collective call (i.e., must be called on all processes from a common
synchronization point), and finalizes the grid assembly, making the grid “ready to use”.

2.2 Setting Up the Struct Stencil

The geometry of the discretization stencil is described by an array of indexes, each representing a relative offset
from any given gridpoint on the grid. For example, the geometry of the 5-pt stencil for the example problem being
considered can be represented by the list of index offsets shown in Figure Figure 4a.

0

1

2

3

4

(0, 0)

(
-
1, 0)

(1, 0)

(0,
-
1)

(0, 1)
st

en
ci

l e
nt

rie
s

offsets

Fig. 3: Figure 4a
Representation of the 5-point discretization stencil for the example problem.

Here, the (0, 0) entry represents the “center” coefficient, and is the 0th stencil entry. The (0,−1) entry represents the
“south” coefficient, and is the 3rd stencil entry. And so on.

On process 0 or 1, the following code (with visual annotations) will set up the stencil in Figure Figure 4a. The stencil
must be the same on all processes.

2.2. Setting Up the Struct Stencil 9

hypre Documentation, Release 2.18.1

(-1,-1)

(0,0)

0
1

4

2

3

Fig. 4: Figure 4b
Need to combine this with 4a.

1:

(-1,-1)

(0,0)

2:

(-1,-1)

(0,0)

0

3:

(-1,-1)

(0,0)

0
1

4:

(-1,-1)

(0,0)

0
1
 2

5:

(-1,-1)

(0,0)

0
1
 2

3

6:

(-1,-1)

(0,0)

0
1

4

2

3

HYPRE_StructStencil stencil;
int ndim = 2;
int size = 5;
int entry;

(continues on next page)

10 Chapter 2. Structured-Grid System Interface (Struct)

hypre Documentation, Release 2.18.1

(continued from previous page)

int offsets[][2] = {{0,0}, {-1,0}, {1,0}, {0,-1}, {0,1}};

/* Create the stencil object */
1: HYPRE_StructStencilCreate(ndim, size, &stencil);

/* Set stencil entries */
for (entry = 0; entry < size; entry++)
{

2-6: HYPRE_StructStencilSetElement(stencil, entry, offsets[entry]);
}

/* Thats it! There is no assemble routine */

The Create() routine creates an empty 2D, 5-pt stencil object. The SetElement() routine defines the geometry
of the stencil and assigns the stencil numbers for each of the stencil entries. None of the calls are collective calls.

2.3 Setting Up the Struct Matrix

The matrix is set up in terms of the grid and stencil objects described in Sections Setting Up the Struct Grid and
Setting Up the Struct Stencil. The coefficients associated with each stencil entry will typically vary from gridpoint to
gridpoint, but in the example problem being considered, they are as follows over the entire grid (except at boundaries;
see below):  −1

−1 4 −1
−1

 . (2.2)

On process 0, the following code sets up matrix values associated with the center (entry 0) and south (entry 3) stencil
entries as given by (2.2) and Figure Figure 4a (boundaries are ignored here temporarily).

HYPRE_StructMatrix A;
double values[36];
int stencil_indices[2] = {0,3};
int i;

HYPRE_StructMatrixCreate(MPI_COMM_WORLD, grid, stencil, &A);
HYPRE_StructMatrixInitialize(A);

for (i = 0; i < 36; i += 2)
{

values[i] = 4.0;
values[i+1] = -1.0;

}

HYPRE_StructMatrixSetBoxValues(A, ilower[0], iupper[0], 2,
stencil_indices, values);

HYPRE_StructMatrixSetBoxValues(A, ilower[1], iupper[1], 2,
stencil_indices, values);

/* set boundary conditions */
...

HYPRE_StructMatrixAssemble(A);

2.3. Setting Up the Struct Matrix 11

hypre Documentation, Release 2.18.1

The Create() routine creates an empty matrix object. The Initialize() routine indicates that the matrix
coefficients (or values) are ready to be set. This routine may or may not involve the allocation of memory for the
coefficient data, depending on the implementation. The optional Set routines mentioned later in this chapter and in
the Reference Manual, should be called before this step. The SetBoxValues() routine sets the matrix coefficients
for some set of stencil entries over the gridpoints in some box. Note that the box need not correspond to any of the
boxes used to create the grid, but values should be set for all gridpoints that this process “owns”. The Assemble()
routine is a collective call, and finalizes the matrix assembly, making the matrix “ready to use”.

Matrix coefficients that reach outside of the boundary should be set to zero. For efficiency reasons, hypre does not
do this automatically. The most natural time to insure this is when the boundary conditions are being set, and this is
most naturally done after the coefficients on the grid’s interior have been set. For example, during the implementation
of the Dirichlet boundary condition on the lower boundary of the grid in Figure Structured Grid Example, the south
coefficient must be set to zero. To do this on process 0, the following code could be used:

int ilower[2] = {-3, 1};
int iupper[2] = { 2, 1};

/* create matrix and set interior coefficients */
...

/* implement boundary conditions */
...

for (i = 0; i < 12; i++)
{

values[i] = 0.0;
}

i = 3;
HYPRE_StructMatrixSetBoxValues(A, ilower, iupper, 1, &i, values);

/* complete implementation of boundary conditions */
...

2.4 Setting Up the Struct Right-Hand-Side Vector

The right-hand-side vector is set up similarly to the matrix set up described in Section Setting Up the Struct Matrix
above. The main difference is that there is no stencil (note that a stencil currently does appear in the interface, but this
will eventually be removed).

On process 0, the following code sets up the right-hand-side vector values.

HYPRE_StructVector b;
double values[18];
int i;

HYPRE_StructVectorCreate(MPI_COMM_WORLD, grid, &b);
HYPRE_StructVectorInitialize(b);

for (i = 0; i < 18; i++)
{

values[i] = 0.0;
}

HYPRE_StructVectorSetBoxValues(b, ilower[0], iupper[0], values);

(continues on next page)

12 Chapter 2. Structured-Grid System Interface (Struct)

hypre Documentation, Release 2.18.1

(continued from previous page)

HYPRE_StructVectorSetBoxValues(b, ilower[1], iupper[1], values);

HYPRE_StructVectorAssemble(b);

The Create() routine creates an empty vector object. The Initialize() routine indicates that the vector coef-
ficients (or values) are ready to be set. This routine follows the same rules as its corresponding Matrix routine. The
SetBoxValues() routine sets the vector coefficients over the gridpoints in some box, and again, follows the same
rules as its corresponding Matrix routine. The Assemble() routine is a collective call, and finalizes the vector
assembly, making the vector “ready to use”.

2.5 Symmetric Matrices

Some solvers and matrix storage schemes provide capabilities for significantly reducing memory usage when the
coefficient matrix is symmetric. In this situation, each off-diagonal coefficient appears twice in the matrix, but only
one copy needs to be stored. The Struct interface provides support for matrix and solver implementations that use
symmetric storage via the SetSymmetric() routine.

To describe this in more detail, consider again the 5-pt finite-volume discretization of (2.1) on the grid pictured in
Figure Structured Grid Example. Because the discretization is symmetric, only half of the off-diagonal coefficients
need to be stored. To turn symmetric storage on, the following line of code needs to be inserted somewhere between
the Create() and Initialize() calls.

HYPRE_StructMatrixSetSymmetric(A, 1);

The coefficients for the entire stencil can be passed in as before. Note that symmetric storage may or may not ac-
tually be used, depending on the underlying storage scheme. Currently in hypre, the Struct interface always uses
symmetric storage.

To most efficiently utilize the Struct interface for symmetric matrices, notice that only half of the off-diagonal
coefficients need to be set. To do this for the example being considered, we simply need to redefine the 5-pt stencil of
Section Setting Up the Struct Stencil to an “appropriate” 3-pt stencil, then set matrix coefficients (as in Section Setting
Up the Struct Matrix) for these three stencil elements only. For example, we could use the following stencil (0, 1)

(0, 0) (1, 0)

 . (2.3)

This 3-pt stencil provides enough information to recover the full 5-pt stencil geometry and associated matrix coeffi-
cients.

2.5. Symmetric Matrices 13

hypre Documentation, Release 2.18.1

14 Chapter 2. Structured-Grid System Interface (Struct)

CHAPTER

THREE

SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

The SStruct interface is appropriate for applications with grids that are mostly—but not entirely—structured, e.g.
block-structured grids (see Figure Figure 6a), composite grids in structured adaptive mesh refinement (AMR) applica-
tions (see Figure Figure 9), and overset grids. In addition, it supports more general PDEs than the Struct interface
by allowing multiple variables (system PDEs) and multiple variable types (e.g. cell-centered, face-centered, etc.).
The interface provides access to data structures and linear solvers in hypre that are designed for semi-structured grid
problems, but also to the most general data structures and solvers.

The SStruct grid is composed out of a number of structured grid parts, where the physical inter-relationship between
the parts is arbitrary. Each part is constructed out of two basic components: boxes (see Figure Boxes in Index Space)
and variables. Variables represent the actual unknown quantities in the grid, and are associated with the box indices in
a variety of ways, depending on their types. In hypre, variables may be cell-centered, node-centered, face-centered, or
edge-centered. Face-centered variables are split into x-face, y-face, and z-face, and edge-centered variables are split
into x-edge, y-edge, and z-edge. See Figure Figure 5 for an illustration in 2D.

(i,
j
)

Fig. 1: Figure 5
Grid variables in hypre are referenced by the abstract cell-centered index to the left and down in 2D (analogously in 3D). In the

figure, index (i, j) is used to reference the variables in black. The variables in grey—although contained in the pictured cell—are
not referenced by the (i, j) index.

The SStruct interface uses a graph to allow nearly arbitrary relationships between part data. The graph is con-
structed from stencils or finite element stiffness matrices plus some additional data-coupling information set by the
GraphAddEntries() routine. Two other methods for relating part data are the GridSetNeighborPart()
and GridSetSharedPart() routines, which are particularly well suited for block-structured grid problems. The
latter is useful for finite element codes.

There are five basic steps involved in setting up the linear system to be solved:

1. set up the grid,

15

hypre Documentation, Release 2.18.1

2. set up the stencils (if needed),

3. set up the graph,

4. set up the matrix,

5. set up the right-hand-side vector.

3.1 Block-Structured Grids with Stencils

In this section, we describe how to use the SStruct interface to define block-structured grid problems. We
do this primarily by example, paying particular attention to the construction of stencils and the use of the
GridSetNeighborPart() interface routine.

Consider the solution of the diffusion equation

−∇ · (D∇u) + σu = f (3.1)

on the block-structured grid in Figure Figure 6a, where D is a scalar diffusion coefficient, and σ ≥ 0. The dis-
cretization [MoRS1998] introduces three different types of variables: cell-centered, x-face, and y-face. The three
discretization stencils that couple these variables are also given in the figure. The information in this figure is essen-
tially all that is needed to describe the nonzero structure of the linear system we wish to solve.

Fig. 2: Figure 6a
Example of a block-structured grid with five logically-rectangular blocks and three variables types: cell-centered, x-face, and
y-face. Discretization stencils for the cell-centered (left), x-face (middle), and y-face (right) variables are also pictured.

16 Chapter 3. Semi-Structured-Grid System Interface (SStruct)

hypre Documentation, Release 2.18.1

Fig. 3: Figure 6b
Need to combine this with 6a.

(1,1)
 (1,1)

(1,1)

(1,1)

(1,1)

(4,4)

(4,4)

(4,4)

(4,4)

part 0

part 1

part 2

part 3

part 4

(4,4)

Fig. 4: Figure 7
One possible labeling of the grid in Figure Figure 6a.

3.1. Block-Structured Grids with Stencils 17

hypre Documentation, Release 2.18.1

The grid in Figure Figure 6a is defined in terms of five separate logically-rectangular parts as shown in Figure Figure
7, and each part is given a unique label between 0 and 4. Each part consists of a single box with lower index (1, 1)
and upper index (4, 4) (see Section Setting Up the Struct Grid), and the grid data is distributed on five processes
such that data associated with part p lives on process p. Note that in general, parts may be composed out of arbitrary
unions of boxes, and indices may consist of non-positive integers (see Figure Boxes in Index Space). Also note that
the SStruct interface expects a domain-based data distribution by boxes, but the actual distribution is determined
by the user and simply described (in parallel) through the interface.

1:
(1,1)

(1,4)

(4,1)

(4,4)

(1,1)

(4,4)

part 2

part 3

part 4

2:

(1,1)

(4,4)

part 3

(1,1)

(4,4)

part 3

3:

(1,1)

(4,4)

part 3

(1,1)

(4,4)

part 3

4:
(1,1)

(1,4)

(1,1)

(4,4)

part 2

part 3

(1,1)

(1,4)

(1,1)

(4,4)

part 2

part 3

5:
(1,1)

(1,4)

(4,1)

(4,4)

(1,1)

(4,4)

part 2

part 3

part 4

(1,1)

(1,4)

(4,1)

(4,4)

(1,1)

(4,4)

part 2

part 3

part 4

6:
(1,1)

(1,4)

(4,1)

(4,4)

(1,1)

(4,4)

part 2

part 3

part 4

(1,1)

(1,4)

(4,1)

(4,4)

(1,1)

(4,4)

part 2

part 3

part 4

HYPRE_SStructGrid grid;
int ndim = 2, nparts = 5, nvars = 3, part = 3;
int extents[][2] = {{1,1}, {4,4}};
int vartypes[] = {HYPRE_SSTRUCT_VARIABLE_CELL,

HYPRE_SSTRUCT_VARIABLE_XFACE,
HYPRE_SSTRUCT_VARIABLE_YFACE};

int nb2_n_part = 2, nb4_n_part = 4;
int nb2_exts[][2] = {{1,0}, {4,0}}, nb4_exts[][2] = {{0,1}, {0,4}};
int nb2_n_exts[][2] = {{1,1}, {1,4}}, nb4_n_exts[][2] = {{4,1}, {4,4}};
int nb2_map[2] = {1,0}, nb4_map[2] = {0,1};
int nb2_dir[2] = {1,-1}, nb4_dir[2] = {1,1};

1: HYPRE_SStructGridCreate(MPI_COMM_WORLD, ndim, nparts, &grid);

/* Set grid extents and grid variables for part 3 */
2: HYPRE_SStructGridSetExtents(grid, part, extents[0], extents[1]);
3: HYPRE_SStructGridSetVariables(grid, part, nvars, vartypes);

/* Set spatial relationship between parts 3 and 2, then parts 3 and 4 */
4: HYPRE_SStructGridSetNeighborPart(grid, part, nb2_exts[0], nb2_exts[1],

nb2_n_part, nb2_n_exts[0], nb2_n_exts[1], nb2_map, nb2_dir);
5: HYPRE_SStructGridSetNeighborPart(grid, part, nb4_exts[0], nb4_exts[1],

nb4_n_part, nb4_n_exts[0], nb4_n_exts[1], nb4_map, nb4_dir);

6: HYPRE_SStructGridAssemble(grid);

Code on process 3 for setting up the grid in Figure fig-sstruct-example}.

As with the Struct interface, each process describes that portion of the grid that it “owns”, one box at a time. Figure
fig-sstruct-grid shows the code for setting up the grid on process 3 (the code for the other processes is similar). The

18 Chapter 3. Semi-Structured-Grid System Interface (SStruct)

hypre Documentation, Release 2.18.1

“icons” at the top of the figure illustrate the result of the numbered lines of code. Process 3 needs to describe the data
pictured in the bottom-right of the figure. That is, it needs to describe part 3 plus some additional neighbor information
that ties part 3 together with the rest of the grid. The Create() routine creates an empty 2D grid object with five
parts that lives on the MPI_COMM_WORLD communicator. The SetExtents() routine adds a new box to the grid.
The SetVariables() routine associates three variables of type cell-centered, x-face, and y-face with part 3.

At this stage, the description of the data on part 3 is complete. However, the spatial relationship between this data and
the data on neighboring parts is not yet defined. To do this, we need to relate the index space for part 3 with the index
spaces of parts 2 and 4. More specifically, we need to tell the interface that the two grey boxes neighboring part 3 in
the bottom-right of Figure fig-sstruct-grid also correspond to boxes on parts 2 and 4. This is done through the two calls
to the SetNeighborPart() routine. We discuss only the first call, which describes the grey box on the right of the
figure. Note that this grey box lives outside of the box extents for the grid on part 3, but it can still be described using
the index-space for part 3 (recall Figure Boxes in Index Space). That is, the grey box has extents (1, 0) and (4, 0) on
part 3’s index-space, which is outside of part 3’s grid. The arguments for the SetNeighborPart() call are simply
the lower and upper indices on part 3 and the corresponding indices on part 2. The final two arguments to the routine
indicate that the positive x-direction on part 3 (i.e., the i component of the tuple (i, j)) corresponds to the positive
y-direction on part 2 and that the positive y-direction on part 3 corresponds to the positive x-direction on part 2.

The Assemble() routine is a collective call (i.e., must be called on all processes from a common synchronization
point), and finalizes the grid assembly, making the grid “ready to use”.

With the neighbor information, it is now possible to determine where off-part stencil entries couple. Take, for example,
any shared part boundary such as the boundary between parts 2 and 3. Along these boundaries, some stencil entries
reach outside of the part. If no neighbor information is given, these entries are effectively zeroed out, i.e., they don’t
participate in the discretization. However, with the additional neighbor information, when a stencil entry reaches into
a neighbor box it is then coupled to the part described by that neighbor box information.

Another important consequence of the use of the SetNeighborPart() routine is that it can declare variables on
different parts as being the same. For example, the face variables on the boundary of parts 2 and 3 are recognized as
being shared by both parts (prior to the SetNeighborPart() call, there were two distinct sets of variables). Note
also that these variables are of different types on the two parts; on part 2 they are x-face variables, but on part 3 they
are y-face variables.

For brevity, we consider only the description of the y-face stencil in Figure Figure 6a, i.e. the third stencil in the
figure. To do this, the stencil entries are assigned unique labels between 0 and 8 and their “offsets” are described
relative to the “center” of the stencil. This process is illustrated in Figure Figure 7a. Nine calls are made to the routine
HYPRE_SStructStencilSetEntry(). As an example, the call that describes stencil entry 5 in the figure is
given the entry number 5, the offset (−1, 0), and the identifier for the x-face variable (the variable to which this entry
couples). Recall from Figure Figure 5 the convention used for referencing variables of different types. The geometry
description uses the same convention, but with indices numbered relative to the referencing index (0, 0) for the stencil’s
center. Figure fig-sstruct-graph shows the code for setting up the graph .

1: 2: 3:

HYPRE_SStructGraph graph;
HYPRE_SStructStencil c_stencil, x_stencil, y_stencil;
int c_var = 0, x_var = 1, y_var = 2;
int part;

(continues on next page)

3.1. Block-Structured Grids with Stencils 19

hypre Documentation, Release 2.18.1

0

1

2

3

4

5

6

7

8

(0,0);

(0,
-
1);

(0,1);

(0,0);

(0,1);

(
-
1,0);

(0,0);

(
-
1,1);

(0,1);

st
en

ci
l e

nt
rie

s

offsets

Fig. 5: Figure 7a
Assignment of labels and geometries to the y-face stencil in Figure fig-sstruct-example}.

(-1,1)

(-1,0)

(0,-1)

0

1

2

3

4

5
 6

7
 8

Fig. 6: Figure 7b
Need to combine this with 7a.

20 Chapter 3. Semi-Structured-Grid System Interface (SStruct)

hypre Documentation, Release 2.18.1

(continued from previous page)

1: HYPRE_SStructGraphCreate(MPI_COMM_WORLD, grid, &graph);

/* Set the cell-centered, x-face, and y-face stencils for each part */
for (part = 0; part < 5; part++)
{

2: HYPRE_SStructGraphSetStencil(graph, part, c_var, c_stencil);
HYPRE_SStructGraphSetStencil(graph, part, x_var, x_stencil);
HYPRE_SStructGraphSetStencil(graph, part, y_var, y_stencil);

}

3: HYPRE_SStructGraphAssemble(graph);

Code on process 3 for setting up the graph for Figure fig-sstruct-example}.

With the above, we now have a complete description of the nonzero structure for the matrix. The matrix coefficients
are then easily set in a manner similar to what is described in Section Setting Up the Struct Matrix using routines
MatrixSetValues() and MatrixSetBoxValues() in the SStruct interface. As before, there are also
AddTo variants of these routines. Likewise, setting up the right-hand-side is similar to what is described in Section
Setting Up the Struct Right-Hand-Side Vector. See the hypre reference manual for details.

An alternative approach for describing the above problem through the interface is to use the GraphAddEntries()
routine instead of the GridSetNeighborPart() routine. In this approach, the five parts would be explicitly
“sewn” together by adding non-stencil couplings to the matrix graph. The main downside to this approach for block-
structured grid problems is that variables along block boundaries are no longer considered to be the same variables on
the corresponding parts that share these boundaries. For example, any face variable along the boundary between parts
2 and 3 in Figure Figure 6a would represent two different variables that live on different parts. To “sew” the parts
together correctly, we would need to explicitly select one of these variables as the representative that participates in the
discretization, and make the other variable a dummy variable that is decoupled from the discretization by zeroing out
appropriate entries in the matrix. All of these complications are avoided by using the GridSetNeighborPart()
for this example.

3.2 Block-Structured Grids with Finite Elements

In this section, we describe how to use the SStruct interface to define block-structured grid problems with finite
elements. We again do this by example, paying particular attention to the use of the FEM interface routines and the
GridSetSharedPart() routine. See example code ex14.c for a complete implementation.

Consider a nodal finite element (FEM) discretization of the Laplace equation on the star-shaped grid in Figure Figure
8a. The local FEM stiffness matrix in the figure describes the coupling between the grid variables. Although we could
still describe this problem using stencils as in Section Block-Structured Grids with Stencils, an FEM-based approach
(available in hypre version 2.6.0b and later) is a more natural alternative.

The grid in Figure Figure 8a is defined in terms of six separate logically-rectangular parts, and each part is given a
unique label between 0 and 5. Each part consists of a single box with lower index (1, 1) and upper index (9, 9), and
the grid data is distributed on six processes such that data associated with part p lives on process p.

3.2. Block-Structured Grids with Finite Elements 21

hypre Documentation, Release 2.18.1

part 0

part 1

part 2

part 3

part 4

part 5

(9,9)

(1,1)

0 1

23

Fig. 7: Figure 8a
Example of a star-shaped grid with six logically-rectangular blocks and one nodal variable. Each block has an angle at the origin

given by γ = π/3. The finite element stiffness matrix (right) is given in terms of the pictured variable ordering (left).

0 1 2 3
0
1
2
3

Fig. 8: Figure 8b
Need to combine this with 8a.

22 Chapter 3. Semi-Structured-Grid System Interface (SStruct)

hypre Documentation, Release 2.18.1

1:

part 1

part 2
part 3

part 4
part 5

part 0

(9,9)

(1,1)

0 1

23

2:

part 0

(9,9)

(1,1)

3:

part 0

(9,9)

(1,1)

4:

part 0

(9,9)

(1,1)

0 1

23

5:

part 1 part 0

(9,9)

(1,1)

0 1

23

6:

part 1

part 2
part 3

part 4
part 5

part 0

(9,9)

(1,1)

0 1

23

HYPRE_SStructGrid grid;
int ndim = 2, nparts = 6, nvars = 1, part = 0;
int ilower[2] = {1,1}, iupper[2] = {9,9};
int vartypes[] = {HYPRE_SSTRUCT_VARIABLE_NODE};
int ordering[12] = {0,-1,-1, 0,+1,-1, 0,+1,+1, 0,-1,+1};

int s_part = 2;
int ilo[2] = {1,1}, iup[2] = {1,9}, offset[2] = {-1,0};
int s_ilo[2] = {1,1}, s_iup[2] = {9,1}, s_offset[2] = {0,-1};
int map[2] = {1,0};
int dir[2] = {-1,1};

1: HYPRE_SStructGridCreate(MPI_COMM_WORLD, ndim, nparts, &grid);

/* Set grid extents, grid variables, and FEM ordering for part 0 */
2: HYPRE_SStructGridSetExtents(grid, part, ilower, iupper);
3: HYPRE_SStructGridSetVariables(grid, part, nvars, vartypes);
4: HYPRE_SStructGridSetFEMOrdering(grid, part, ordering);

/* Set shared variables for parts 0 and 1 (0 and 2/3/4/5 not shown) */
5: HYPRE_SStructGridSetSharedPart(grid, part, ilo, iup, offset,

s_part, s_ilo, s_iup, s_offset, map, dir);

6: HYPRE_SStructGridAssemble(grid);

Code on process 0 for setting up the grid in Figure Figure 8a.

As in Section Block-Structured Grids with Stencils, each process describes that portion of the grid that it “owns”, one
box at a time. Figure fig-sstruct-fem-grid shows the code for setting up the grid on process 0 (the code for the other
processes is similar). The “icons” at the top of the figure illustrate the result of the numbered lines of code. Process
0 needs to describe the data pictured in the bottom-right of the figure. That is, it needs to describe part 0 plus some
additional information about shared data with other parts on the grid. The SetFEMOrdering() routine sets the
ordering of the unknowns in an element (an element is always a grid cell in hypre). This determines the ordering of
the data passed into the routines MatrixAddFEMValues() and VectorAddFEMValues() discussed later.

At this point, the layout of the data on part 0 is complete, but there is no relationship to the rest of the grid. To couple
the parts, we need to tell hypre that some of the boundary variables on part 0 are shared with other parts, i.e., they
are the same as some of the variables on other parts. This is done through five calls to the SetSharedPart()
routine. Only the first call is shown in the figure; the other four calls are similar. The arguments to this routine are the
same as SetNeighborPart() with the addition of two new offset arguments, named offset and s_offset in
the figure. Each offset represents a pointer from the cell center to one of the following: all variables in the cell (no
nonzeros in offset); all variables on a face (only 1 nonzero); all variables on an edge (2 nonzeros); all variables at a

3.2. Block-Structured Grids with Finite Elements 23

hypre Documentation, Release 2.18.1

point (3 nonzeros). The two offsets must be consistent with each other.

The graph is set up similarly to Figure fig-sstruct-graph, except that the stencil calls are replaced by calls to
GraphSetFEM(). The nonzero pattern of the stiffness matrix can also be set by calling the optional routine
GraphSetFEMSparsity().

Matrix and vector values are set one element at a time. For the example in this section, calls on part 0 would have the
following form:

int part = 0;
int index[2] = {i,j};
double m_values[16] = {...};
double v_values[4] = {...};

HYPRE_SStructMatrixAddFEMValues(A, part, index, m_values);
HYPRE_SStructVectorAddFEMValues(v, part, index, v_values);

Here, m_values contains local stiffness matrix values and v_values contains local variable values. The global
matrix and vector are assembled internally by hypre, using the shared variables to couple the parts.

3.3 Structured Adaptive Mesh Refinement

We now briefly discuss how to use the SStruct interface in a structured AMR application. Consider Poisson’s
equation on the simple cell-centered example grid illustrated in Figure Figure 9. For structured AMR applications,
each refinement level should be defined as a unique part. There are two parts in this example: part 0 is the global
coarse grid and part 1 is the single refinement patch. Note that the coarse unknowns underneath the refinement patch
(gray dots in Figure Figure 9) are not real physical unknowns; the solution in this region is given by the values on the
refinement patch. In setting up the composite grid matrix [McCo1989] for hypre the equations for these “dummy”
unknowns should be uncoupled from the other unknowns (this can easily be done by setting all off-diagonal couplings
to zero in this region).

In the example, parts are distributed across the same two processes with process 0 having the “left” half of both
parts. The composite grid is then set up part-by-part by making calls to GridSetExtents() just as was done in
Section Block-Structured Grids with Stencils and Figure fig-sstruct-grid (no SetNeighborPart calls are made in
this example). Note that in the interface there is no required rule relating the indexing on the refinement patch to that
on the global coarse grid; they are separate parts and thus each has its own index space. In this example, we have
chosen the indexing such that refinement cell (2i, 2j) lies in the lower left quadrant of coarse cell (i, j). Then the
stencil is set up. In this example we are using a finite volume approach resulting in the standard 5-point stencil in
Section Setting Up the Struct Grid in both parts.

The grid and stencil are used to define all intra-part coupling in the graph, the non-zero pattern of the composite
grid matrix. The inter-part coupling at the coarse-fine interface is described by GraphAddEntries() calls. This
coupling in the composite grid matrix is typically the composition of an interpolation rule and a discretization formula.
In this example, we use a simple piecewise constant interpolation, i.e. the solution value in a coarse cell is equal to
the solution value at the cell center. Then the flux across a portion of the coarse-fine interface is approximated by a
difference of the solution values on each side. As an example, consider approximating the flux across the left interface
of cell (6, 6) in Figure Figure 2. Let h be the coarse grid mesh size, and consider a local coordinate system with the
origin at the center of cell (6, 6). We approximate the flux as follows∫ h/4

−h/4
ux(−h/4, s)ds ≈

h

2
ux(−h/4, 0) ≈

h

2

u(0, 0)− u(−3h/4, 0)
3h/4

≈ 2

3
(u6,6 − u2,3).

The first approximation uses the midpoint rule for the edge integral, the second uses a finite difference formula for
the derivative, and the third the piecewise constant interpolation to the solution in the coarse cell. This means that the

24 Chapter 3. Semi-Structured-Grid System Interface (SStruct)

hypre Documentation, Release 2.18.1

(4,4)

(1,1)

(2,4)

(3,1)

(9,9)

(6,6)

(7,9)

(8,6)

part 0

part 1

Fig. 9: Figure 9
Structured AMR grid example. Shaded regions correspond to process 0, unshaded to process 1. The grey dots are dummy

variables.

equation for the variable at cell (6, 6) involves not only the stencil couplings to (6, 7) and (7, 6) on part 1 but also non-
stencil couplings to (2, 3) and (3, 2) on part 0. These non-stencil couplings are described by GraphAddEntries()
calls. The syntax for this call is simply the part and index for both the variable whose equation is being defined and
the variable to which it couples. After these calls, the non-zero pattern of the matrix (and the graph) is complete. Note
that the “west” and “south” stencil couplings simply “drop off” the part, and are effectively zeroed out (currently, this
is only supported for the HYPRE_PARCSR object type, and these values must be manually zeroed out for other object
types; see MatrixSetObjectType() in the reference manual).

The remaining step is to define the actual numerical values for the composite grid matrix. This can be done by
either MatrixSetValues() calls to set entries in a single equation, or by MatrixSetBoxValues() calls to
set entries for a box of equations in a single call. The syntax for the MatrixSetValues() call is a part and index
for the variable whose equation is being set and an array of entry numbers identifying which entries in that equation
are being set. The entry numbers may correspond to stencil entries or non-stencil entries.

3.3. Structured Adaptive Mesh Refinement 25

hypre Documentation, Release 2.18.1

(3,2)

(2,3)
 (6,6)

Fig. 10: Figure 2
Coupling for equation at corner of refinement patch. Black lines (solid and broken) are stencil couplings. Gray line are non-stencil

couplings.

26 Chapter 3. Semi-Structured-Grid System Interface (SStruct)

CHAPTER

FOUR

FINITE ELEMENT INTERFACE

4.1 Introduction

Many application codes use unstructured finite element meshes. This section describes an interface for finite element
problems, called the FEI, which is supported in hypre.

Fig. 1: Example of an unstructured mesh.

FEI refers to a specific interface for black-box finite element solvers, originally developed in Sandia National Lab, see
[ClEA1999]. It differs from the rest of the conceptual interfaces in hypre in two important aspects: it is written in C++,
and it does not separate the construction of the linear system matrix from the solution process. A complete description
of Sandia’s FEI implementation can be obtained by contacting Alan Williams at Sandia (william@sandia.gov). A

27

mailto:william@sandia.gov

hypre Documentation, Release 2.18.1

simplified version of the FEI has been implemented at LLNL and is included in hypre. More details about this
implementation can be found in the header files of the FEI_mv/fei-base and FEI_mv/fei-hypre directories.

4.2 A Brief Description of the Finite Element Interface

Typically, finite element codes contain data structures storing element connectivities, element stiffness matrices, el-
ement loads, boundary conditions, nodal coordinates, etc. One of the purposes of the FEI is to assemble the global
linear system in parallel based on such local element data. We illustrate this in the rest of the section and refer to
example 10 (in the examples directory) for more implementation details.

In hypre, one creates an instance of the FEI as follows:

LLNL_FEI_Impl *feiPtr = new LLNL_FEI_Impl(mpiComm);

Here mpiComm is an MPI communicator (e.g. MPI_COMM_WORLD). If Sandia’s FEI package is to be used, one
needs to define a hypre solver object first:

LinearSystemCore *solver = HYPRE_base_create(mpiComm);
FEI_Implementation *feiPtr = FEI_Implementation(solver,mpiComm,rank);

where rank is the number of the master processor (used only to identify which processor will produce the screen
outputs). The LinearSystemCore class is the part of the FEI that interfaces with the linear solver library. It will
be discussed later in Sections FEI Solvers and Using HYPRE in External FEI Implementations.

Local finite element information is passed to the FEI using several methods of the feiPtr object. The first entity to
be submitted is the field information. A field has an identifier called fieldID and a rank or fieldSize (number of
degree of freedom). For example, a discretization of the Navier Stokes equations in 3D can consist of velocity vector
having 3 degrees of freedom in every node (vertex) of the mesh and a scalar pressure variable, which is constant over
each element. If these are the only variables, and if we assign fieldID 7 and 8 to them, respectively, then the finite
element field information can be set up by

nFields = 2; /* number of unknown fields */
fieldID = new int[nFields]; /* field identifiers */
fieldSize = new int[nFields]; /* vector dimension of each field */

/* velocity (a 3D vector) */
fieldID[0] = 7;
fieldSize[0] = 3;

/* pressure (a scalar function) */
fieldID[1] = 8;
fieldSize[1] = 1;

feiPtr -> initFields(nFields, fieldSize, fieldID);

Once the field information has been established, we are ready to initialize an element block. An element block is
characterized by the block identifier, the number of elements, the number of nodes per element, the nodal fields and
the element fields (fields that have been defined previously). Suppose we use 1000 hexahedral elements in the element
block 0, the setup consists of

elemBlkID = 0; /* identifier for a block of elements */
nElems = 1000; /* number of elements in the block */
elemNNodes = 8; /* number of nodes per element */

/* nodal-based field for the velocity */

(continues on next page)

28 Chapter 4. Finite Element Interface

hypre Documentation, Release 2.18.1

(continued from previous page)

nodeNFields = 1;
nodeFieldIDs = new[nodeNFields];
nodeFieldIDs[0] = fieldID[0];

/* element-based field for the pressure */
elemNFields = 1;
elemFieldIDs = new[elemNFields];
elemFieldIDs[0] = fieldID[1];

feiPtr -> initElemBlock(elemBlkID, nElems, elemNNodes, nodeNFields,
nodeFieldIDs, elemNFields, elemFieldIDs, 0);

The last argument above specifies how the dependent variables are arranged in the element matrices. A value of 0
indicates that each variable is to be arranged in a separate block (as opposed to interleaving).

In a parallel environment, each processor has one or more element blocks. Unless the element blocks are all disjoint,
some of them share a common set of nodes on the subdomain boundaries. To facilitate setting up interprocessor
communications, shared nodes between subdomains on different processors are to be identified and sent to the FEI.
Hence, each node in the whole domain is assigned a unique global identifier. The shared node list on each processor
contains a subset of the global node list corresponding to the local nodes that are shared with the other processors. The
syntax for setting up the shared nodes is

feiPtr -> initSharedNodes(nShared, sharedIDs, sharedLengs, sharedProcs);

This completes the initialization phase, and a completion signal is sent to the FEI via

feiPtr -> initComplete();

Next, we begin the load phase. The first entity for loading is the nodal boundary conditions. Here we need to specify
the number of boundary equations and the boundary values given by alpha, beta, and gamma. Depending on
whether the boundary conditions are Dirichlet, Neumann, or mixed, the three values should be passed into the FEI
accordingly.

feiPtr -> loadNodeBCs(nBCs, BCEqn, fieldID, alpha, beta, gamma);

The element stiffness matrices are to be loaded in the next step. We need to specify the element number i, the element
block to which element i belongs, the element connectivity information, the element load, and the element matrix
format. The element connectivity specifies a set of 8 node global IDs (for hexahedral elements), and the element load
is the load or force for each degree of freedom. The element format specifies how the equations are arranged (similar
to the interleaving scheme mentioned above). The calling sequence for loading element stiffness matrices is

for (i = 0; i < nElems; i++)
feiPtr -> sumInElem(elemBlkID, elemID, elemConn[i], elemStiff[i],

elemLoads[i], elemFormat);

To complete the assembling of the global stiffness matrix and the corresponding right hand side, a signal is sent to the
FEI via

feiPtr -> loadComplete();

4.2. A Brief Description of the Finite Element Interface 29

hypre Documentation, Release 2.18.1

30 Chapter 4. Finite Element Interface

CHAPTER

FIVE

LINEAR-ALGEBRAIC SYSTEM INTERFACE (IJ)

The IJ interface described in this chapter is the lowest common denominator for specifying linear systems in hypre.
This interface provides access to general sparse-matrix solvers in hypre, not to the specialized solvers that require
more problem information.

5.1 IJ Matrix Interface

As with the other interfaces in hypre, the IJ interface expects to get data in distributed form because this is the only
scalable approach for assembling matrices on thousands of processes. Matrices are assumed to be distributed by blocks
of rows as follows: 

A0

A1

...
AP−1


In the above example, the matrix is distributed accross the P processes, 0, 1, ..., P − 1 by blocks of rows. Each
submatrixAp is “owned” by a single process and its first and last row numbers are given by the global indices ilower
and iupper in the Create() call below.

The following example code illustrates the basic usage of the IJ interface for building matrices:

MPI_Comm comm;
HYPRE_IJMatrix ij_matrix;
HYPRE_ParCSRMatrix parcsr_matrix;
int ilower, iupper;
int jlower, jupper;
int nrows;
int *ncols;
int *rows;
int *cols;
double *values;

HYPRE_IJMatrixCreate(comm, ilower, iupper, jlower, jupper, &ij_matrix);
HYPRE_IJMatrixSetObjectType(ij_matrix, HYPRE_PARCSR);
HYPRE_IJMatrixInitialize(ij_matrix);

/* set matrix coefficients */
HYPRE_IJMatrixSetValues(ij_matrix, nrows, ncols, rows, cols, values);
...
/* add-to matrix cofficients, if desired */
HYPRE_IJMatrixAddToValues(ij_matrix, nrows, ncols, rows, cols, values);

(continues on next page)

31

hypre Documentation, Release 2.18.1

(continued from previous page)

...

HYPRE_IJMatrixAssemble(ij_matrix);
HYPRE_IJMatrixGetObject(ij_matrix, (void **) &parcsr_matrix);

The Create() routine creates an empty matrix object that lives on the comm communicator. This is a collective
call (i.e., must be called on all processes from a common synchronization point), with each process passing its own
row extents, ilower and iupper. The row partitioning must be contiguous, i.e., iupper for process i must
equal ilower−1 for process i+1. Note that this allows matrices to have 0- or 1-based indexing. The parameters
jlower and jupper define a column partitioning, and should match ilower and iupper when solving square
linear systems. See the Reference Manual for more information.

The SetObjectType() routine sets the underlying matrix object type to HYPRE_PARCSR (this is the only object
type currently supported). The Initialize() routine indicates that the matrix coefficients (or values) are ready
to be set. This routine may or may not involve the allocation of memory for the coefficient data, depending on the
implementation. The optional SetRowSizes() and SetDiagOffdSizes() routines mentioned later in this
chapter and in the Reference Manual, should be called before this step.

The SetValues() routine sets matrix values for some number of rows (nrows) and some number of columns in
each row (ncols). The actual row and column numbers of the matrix values to be set are given by rows and
cols. The coefficients can be modified with the AddToValues() routine. If AddToValues() is used to add to
a value that previously didn’t exist, it will set this value. Note that while AddToValues() will add to values on
other processors, SetValues() does not set values on other processors. Instead if a user calls SetValues() on
processor i to set a matrix coefficient belonging to processor j, processor i will erase all previous occurrences of this
matrix coefficient, so they will not contribute to this coefficient on processor j. The actual coefficient has to be set on
processor j.

The Assemble() routine is a collective call, and finalizes the matrix assembly, making the matrix “ready to use”.
The GetObject() routine retrieves the built matrix object so that it can be passed on to hypre solvers that use the
ParCSR internal storage format. Note that this is not an expensive routine; the matrix already exists in ParCSR
storage format, and the routine simply returns a “handle” or pointer to it. Although we currently only support one
underlying data storage format, in the future several different formats may be supported.

One can preset the row sizes of the matrix in order to reduce the execution time for the matrix specification. One can
specify the total number of coefficients for each row, the number of coefficients in the row that couple the diagonal
unknown to (Diag) unknowns in the same processor domain, and the number of coefficients in the row that couple
the diagonal unknown to (Offd) unknowns in other processor domains:

HYPRE_IJMatrixSetRowSizes(ij_matrix, sizes);
HYPRE_IJMatrixSetDiagOffdSizes(matrix, diag_sizes, offdiag_sizes);

Once the matrix has been assembled, the sparsity pattern cannot be altered without completely destroying the matrix
object and starting from scratch. However, one can modify the matrix values of an already assembled matrix. To
do this, first call the Initialize() routine to re-initialize the matrix, then set or add-to values as before, and call
the Assemble() routine to re-assemble before using the matrix. Re-initialization and re-assembly are very cheap,
essentially a no-op in the current implementation of the code.

5.2 IJ Vector Interface

The following example code illustrates the basic usage of the IJ interface for building vectors:

MPI_Comm comm;
HYPRE_IJVector ij_vector;

(continues on next page)

32 Chapter 5. Linear-Algebraic System Interface (IJ)

hypre Documentation, Release 2.18.1

(continued from previous page)

HYPRE_ParVector par_vector;
int jlower, jupper;
int nvalues;
int *indices;
double *values;

HYPRE_IJVectorCreate(comm, jlower, jupper, &ij_vector);
HYPRE_IJVectorSetObjectType(ij_vector, HYPRE_PARCSR);
HYPRE_IJVectorInitialize(ij_vector);

/* set vector values */
HYPRE_IJVectorSetValues(ij_vector, nvalues, indices, values);
...

HYPRE_IJVectorAssemble(ij_vector);
HYPRE_IJVectorGetObject(ij_vector, (void **) &par_vector);

The Create() routine creates an empty vector object that lives on the comm communicator. This is a collective call,
with each process passing its own index extents, jlower and jupper. The names of these extent parameters begin
with a j because we typically think of matrix-vector multiplies as the fundamental operation involving both matrices
and vectors. For matrix-vector multiplies, the vector partitioning should match the column partitioning of the matrix
(which also uses the j notation). For linear system solves, these extents will typically match the row partitioning of
the matrix as well.

The SetObjectType() routine sets the underlying vector storage type to HYPRE_PARCSR (this is the only storage
type currently supported). The Initialize() routine indicates that the vector coefficients (or values) are ready
to be set. This routine may or may not involve the allocation of memory for the coefficient data, depending on the
implementation.

The SetValues() routine sets the vector values for some number (nvalues) of indices. The values can be
modified with the AddToValues() routine. Note that while AddToValues() will add to values on other proces-
sors, SetValues() does not set values on other processors. Instead if a user calls SetValues() on processor i to
set a value belonging to processor j, processor i will erase all previous occurrences of this matrix coefficient, so they
will not contribute to this value on processor j. The actual value has to be set on processor j.

The Assemble() routine is a trivial collective call, and finalizes the vector assembly, making the vector “ready to
use”. The GetObject() routine retrieves the built vector object so that it can be passed on to hypre solvers that use
the ParVector internal storage format.

Vector values can be modified in much the same way as with matrices by first re-initializing the vector with the
Initialize() routine.

5.3 A Scalable Interface

As explained in the previous sections, problem data is passed to the hypre library in its distributed form. However, as
is typically the case for a parallel software library, some information regarding the global distribution of the data will
be needed for hypre to perform its function. In particular, a solver algorithm requires that a processor obtain “nearby”
data from other processors in order to complete the solve. While a processor may easily determine what data it needs
from other processors, it may not know which processor owns the data it needs. Therefore, processors must determine
their communication partners, or neighbors.

The straightforward approach to determining neighbors involves constructing a global partition of the data. This
approach, however, requires O(P) storage and computations and is not scalable for machines with tens of thousands
of processors. The assumed partition algorithm was developed to address this problem [BaFY2006]. It is used by
default in hypre and is recommended in general. For modest numbers of processors (less than a hundred or so), a

5.3. A Scalable Interface 33

hypre Documentation, Release 2.18.1

global partition may produce slightly faster results and can be turned on by compiling the library as detailed in Section
Configure Options.

34 Chapter 5. Linear-Algebraic System Interface (IJ)

CHAPTER

SIX

SOLVERS AND PRECONDITIONERS

There are several solvers available in hypre via different conceptual interfaces:

System Interfaces
Solvers Struct SStruct FEI IJ
Jacobi X X
SMG X X
PFMG X X
Split X
SysPFMG X
FAC X
Maxwell X
BoomerAMG X X X
AMS X X X
ADS X X X
MLI X X X
MGR X
ParaSails X X X
Euclid X X X
PILUT X X X
PCG X X X X
GMRES X X X X
FlexGMRES X X X X
LGMRES X X X
BiCGSTAB X X X X
Hybrid X X X X
LOBPCG X X X

Note that there are a few additional solvers and preconditioners not mentioned in the table that can be used only through
the FEI interface and are described in Paragraph 6.14. The procedure for setup and use of solvers and preconditioners
is largely the same. We will refer to them both as solvers in the sequel except when noted. In normal usage, the
preconditioner is chosen and constructed before the solver, and then handed to the solver as part of the solver’s setup.
In the following, we assume the most common usage pattern in which a single linear system is set up and then solved
with a single righthand side. We comment later on considerations for other usage patterns.

Setup:

1. Pass to the solver the information defining the problem. In the typical user cycle, the user has passed
this information into a matrix through one of the conceptual interfaces prior to setting up the solver. In this
situation, the problem definition information is then passed to the solver by passing the constructed matrix into
the solver. As described before, the matrix and solver must be compatible, in that the matrix must provide the

35

hypre Documentation, Release 2.18.1

services needed by the solver. Krylov solvers, for example, need only a matrix-vector multiplication. Most
preconditioners, on the other hand, have additional requirements such as access to the matrix coefficients.

2. Create the solver/preconditioner via the Create() routine.

3. Choose parameters for the preconditioner and/or solver. Parameters are chosen through the Set() calls
provided by the solver. Throughout hypre, we have made our best effort to give all parameters reasonable
defaults if not chosen. However, for some preconditioners/solvers the best choices for parameters depend on the
problem to be solved. We give recommendations in the individual sections on how to choose these parameters.
Note that in hypre, convergence criteria can be chosen after the preconditioner/solver has been setup. For a
complete set of all available parameters see the Reference Manual.

4. Pass the preconditioner to the solver. For solvers that are not preconditioned, this step is omitted. The
preconditioner is passed through the SetPrecond() call.

5. Set up the solver. This is just the Setup() routine. At this point the matrix and right hand side is passed into
the solver or preconditioner. Note that the actual right hand side is not used until the actual solve is performed.

At this point, the solver/preconditioner is fully constructed and ready for use.

Use:

1. Set convergence criteria. Convergence can be controlled by the number of iterations, as well as various toler-
ances such as relative residual, preconditioned residual, etc. Like all parameters, reasonable defaults are used.
Users are free to change these, though care must be taken. For example, if an iterative method is used as a
preconditioner for a Krylov method, a constant number of iterations is usually required.

2. Solve the system. This is just the Solve() routine.

Finalize:

1. Free the solver or preconditioner. This is done using the Destroy() routine.

Synopsis

In general, a solver (let’s call it SOLVER) is set up and run using the following routines, where A is the matrix, b the
right hand side and x the solution vector of the linear system to be solved:

/* Create Solver */
int HYPRE_SOLVERCreate(MPI_COMM_WORLD, &solver);

/* Set certain parameters if desired */
HYPRE_SOLVERSetTol(solver, 1.e-8);
...

/* Set up Solver */
HYPRE_SOLVERSetup(solver, A, b, x);

/* Solve the system */
HYPRE_SOLVERSolve(solver, A, b, x);

/* Destroy the solver */
HYPRE_SOLVERDestroy(solver);

In the following sections, we will give brief descriptions of the available hypre solvers with some suggestions on how
to choose the parameters as well as references for users who are interested in a more detailed description and analysis
of the solvers. A complete list of all routines that are available can be found in the reference manual.

36 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

6.1 SMG

SMG is a parallel semicoarsening multigrid solver for the linear systems arising from finite difference, finite volume,
or finite element discretizations of the diffusion equation,

∇ · (D∇u) + σu = f

on logically rectangular grids. The code solves both 2D and 3D problems with discretization stencils of up to 9-point
in 2D and up to 27-point in 3D. See [Scha1998], [BrFJ2000], [FaJo2000] for details on the algorithm and its parallel
implementation/performance.

SMG is a particularly robust method. The algorithm semicoarsens in the z-direction and uses plane smoothing. The
xy plane-solves are effected by one V-cycle of the 2D SMG algorithm, which semicoarsens in the y-direction and uses
line smoothing.

6.2 PFMG

PFMG is a parallel semicoarsening multigrid solver similar to SMG. See [AsFa1996], [FaJo2000] for details on the
algorithm and its parallel implementation/performance.

The main difference between the two methods is in the smoother: PFMG uses simple pointwise smoothing. As a
result, PFMG is not as robust as SMG, but is much more efficient per V-cycle.

6.3 SysPFMG

SysPFMG is a parallel semicoarsening multigrid solver for systems of elliptic PDEs. It is a generalization of PFMG,
with the interpolation defined only within the same variable. The relaxation is of nodal type- all variables at a given
point location are simultaneously solved for in the relaxation.

Although SysPFMG is implemented through the SStruct interface, it can be used only for problems with one grid part.
Ideally, the solver should handle any of the seven variable types (cell-, node-, xface-, yface-, zface-, xedge-, yedge-,
and zedge-based). However, it has been completed only for cell-based variables.

6.4 SplitSolve

SplitSolve is a parallel block Gauss-Seidel solver for semi-structured problems with multiple parts. For problems with
only one variable, it can be viewed as a domain-decomposition solver with no grid overlapping.

Consider a multiple part problem given by the linear system Ax = b. Matrix A can be decomposed into a struc-
tured intra-variable block diagonal component M and a component N consisting of the inter-variable blocks and any
unstructured connections between the parts. SplitSolve performs the iteration

xk+1 = M̃−1(b+Nxk),

where M̃−1 is a decoupled block-diagonal V(1,1) cycle, a separate cycle for each part and variable type. There are
two V-cycle options, SMG and PFMG.

6.1. SMG 37

hypre Documentation, Release 2.18.1

6.5 FAC

FAC is a parallel fast adaptive composite grid solver for finite volume, cell-centred discretizations of smooth diffusion
coefficient problems. To be precise, it is a FACx algorithm since the patch solves consist of only relaxation sweeps.
For details of the basic overall algorithms, see [McCo1989]. Algorithmic particularities include formation of non-
Galerkin coarse-grid operators (i.e., coarse-grid operators underlying refinement patches are automatically generated)
and non-stored linear/constant interpolation/restriction operators. Implementation particularities include a processor
redistribution of the generated coarse-grid operators so that intra-level communication between adaptive mesh refine-
ment (AMR) levels during the solve phase is kept to a minimum. This redistribution is hidden from the user.

The user input is essentially a linear system describing the composite operator, and the refinement factors between
the AMR levels. To form this composite linear system, the AMR grid is described using semi-structured grid parts.
Each AMR level grid corresponds to a separate part so that this level grid is simply a collection of boxes, all with
the same refinement factor, i.e., it is a struct grid. However, several restrictions are imposed on the patch (box)
refinements. First, a refinement box must cover all underlying coarse cells- i.e., refinement of a partial coarse cell is
not permitted. Also, the refined/coarse indices must follow a mapping: with [r1, r2, r3] denoting the refinement factor
and [a1, a2, a3]× [b1, b2, b3] denoting the coarse subbox to be refined, the mapping to the refined patch is

[r1 ∗ a1, r2 ∗ a2, r3 ∗ a3]× [r1 ∗ b1 + r1 − 1, r2 ∗ b2 + r2 − 1, r3 ∗ b3 + r3 − 1].

With the AMR grid constructed under these restrictions, the composite matrix can be formed. Since the
AMR levels correspond to semi-structured grid parts, the composite matrix is a semi-structured matrix con-
sisting of structured components within each part, and unstructured components describing the coarse-to-
fine/fine-to-coarse connections. The structured and unstructured components can be set using stencils and the
HYPRE_SStructGraphAddEntries routine, respectively. The matrix coefficients can be filled after setting
these non-zero patterns. Between each pair of successive AMR levels, the coarse matrix underlying the refinement
patch must be the identity and the corresponding rows of the rhs must be zero. These can performed using rou-
tines HYPRE_SStructFACZeroCFSten (to zero off the stencil values reaching from coarse boxes into refinement
boxes), HYPRE_SStructFACZeroFCSten (to zero off the stencil values reaching from refinement boxes into
coarse boxes), HYPRE_SStructFACZeroAMRMatrixData (to set the identity at coarse grid points underlying
a refinement patch), and HYPRE_SStructFACZeroAMRVectorData (to zero off a vector at coarse grid points
underlying a refinement patch). These routines can simplify the user’s matrix setup. For example, consider two suc-
cessive AMR levels with the coarser level consisting of one box and the finer level consisting of a collection of boxes.
Rather than distinguishly setting the stencil values and the identity in the appropriate locations, the user can set the
stencil values on the whole coarse grid using the HYPRE_SStructMatrixSetBoxValues routine and then zero
off the appropriate values using the above zeroing routines.

The coarse matrix underlying these patches are algebraically generated by operator-collapsing the refinement patch
operator and the fine-to-coarse coefficients (this is why stencil values reaching out of a part must be zeroed). This
matrix is re-distributed so that each processor has all of its coarse-grid operator.

To solve the coarsest AMR level, a PFMG V cycle is used. Note that a minimum of two AMR levels are needed for
this solver.

6.6 Maxwell

Maxwell is a parallel solver for edge finite element discretization of the curl-curl formulation of the Maxwell equation

∇× α∇× E + βE = f, β > 0

on semi-structured grids. Details of the algorithm can be found in [JoLe2006]. The solver can be viewed as an
operator-dependent multiple-coarsening algorithm for the Helmholtz decomposition of the error correction. Input to
this solver consist of only the linear system and a gradient operator. In fact, if the orientation of the edge elements
conforms to a lexicographical ordering of the nodes of the grid, then the gradient operator can be generated with the

38 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

routine HYPRE_MaxwellGrad: at grid points (i, j, k) and (i− 1, j, k), the produced gradient operator takes values
1 and −1 respectively, which is the correct gradient operator for the appropriate edge orientation. Since the gradient
operator is normalized (i.e., h independent) the edge finite element must also be normalized in the discretization.

This solver is currently developed for perfectly conducting boundary condition (Dirichlet). Hence, the
rows and columns of the matrix that corresponding to the grid boundary must be set to the iden-
tity or zeroed off. This can be achieved with the routines HYPRE_SStructMaxwellPhysBdy and
HYPRE_SStructMaxwellEliminateRowsCols. The former identifies the ranks of the rows that are located
on the grid boundary, and the latter adjusts the boundary rows and cols. As usual, the rhs of the linear system must
also be zeroed off at the boundary rows. This can be done using HYPRE_SStructMaxwellZeroVector.

With the adjusted linear system and a gradient operator, the user can form the Maxwell multigrid solver using sev-
eral different edge interpolation schemes. For problems with smooth coefficients, the natural Nedelec interpolation
operator can be used. This is formed by calling HYPRE_SStructMaxwellSetConstantCoef with the flag > 0
before setting up the solver, otherwise the default edge interpolation is an operator-collapsing/element-agglomeration
scheme. This is suitable for variable coefficients. Also, before setting up the solver, the user must pass the gradient
operator, whether user or HYPRE_MaxwellGrad generated, with HYPRE_SStructMaxwellSetGrad. After
these preliminary calls, the Maxwell solver can be setup by calling HYPRE_SStructMaxwellSetup.

There are two solver cycling schemes that can be used to solve the linear system. To describe these, one needs to
consider the augmented system operator

A =

[
Aee Aen
Ane Ann

]
,

where Aee is the stiffness matrix corresponding to the above curl-curl formulation, Ann is the nodal Poisson operator
created by taking the Galerkin product of Aee and the gradient operator, and Ane and Aen are the nodal-edge coupling
operators (see [JoLe2006]). The algorithm for this Maxwell solver is based on forming a multigrid hierarchy to this
augmented system using the block-diagonal interpolation operator

P =

[
Pe 0
0 Pn

]
,

where Pe and Pn are respectively the edge and nodal interpolation operators determined individually from Aee and
Ann. Taking a Galerkin product between A and P produces the next coarse augmented operator, which also has the
nodal-edge coupling operators. Applying this procedure recursively produces nodal-edge coupling operators at all
levels. Now, the first solver cycling scheme, HYPRE_SStructMaxwellSolve, keeps these coupling operators
on all levels of the V-cycle. The second, cheaper scheme, HYPRE_SStructMaxwellSolve2, keeps the coupling
operators only on the finest level, i.e., separate edge and nodal V-cycles that couple only on the finest level.

6.7 Hybrid

The hybrid solver is designed to detect whether a multigrid preconditioner is needed when solving a linear system and
possibly avoid the expensive setup of a preconditioner if a system can be solved efficiently with a diagonally scaled
Krylov solver, e.g. a strongly diagonally dominant system. It first uses a diagonally scaled Krylov solver, which can
be chosen by the user (the default is conjugate gradient, but one should use GMRES if the matrix of the linear system
to be solved is nonsymmetric). It monitors how fast the Krylov solver converges. If there is not sufficient progress, the
algorithm switches to a preconditioned Krylov solver.

If used through the Struct interface, the solver is called StructHybrid and can be used with the pre-
conditioners SMG and PFMG (default). It is called ParCSRHybrid, if used through the IJ interface
and is used here with BoomerAMG. The user can determine the average convergence speed by setting a
convergence tolerance 0 ≤ θ < 1 via the routine HYPRE_StructHybridSetConvergenceTol or
HYPRE_StructParCSRHybridSetConvergenceTol. The default setting is 0.9.

6.7. Hybrid 39

hypre Documentation, Release 2.18.1

The average convergence factor ρi =
(
‖ri‖
‖r0‖

)1/i
is monitored within the chosen Krylov solver, where ri = b−Axi is

the i-th residual. Convergence is considered too slow when(
1− |ρi − ρi−1|

max(ρi, ρi−1)

)
ρi > θ.

When this condition is fulfilled the hybrid solver switches from a diagonally scaled Krylov solver to a preconditioned
solver.

6.8 BoomerAMG

BoomerAMG is a parallel implementation of the algebraic multigrid method [RuSt1987]. It can be used both as a
solver or as a preconditioner. The user can choose between various different parallel coarsening techniques, interpo-
lation and relaxation schemes. While the default settings work fairly well for two-dimensional diffusion problems,
for three-dimensional diffusion problems, it is recommended to choose a lower complexity coarsening like HMIS or
PMIS (coarsening 10 or 8) and combine it with a distance-two interpolation (interpolation 6 or 7), that is also truncated
to 4 or 5 elements per row. Additional reduction in complexity and increased scalability can often be achieved using
one or two levels of aggressive coarsening.

6.8.1 Parameter Options

Various BoomerAMG functions and options are mentioned below. However, for a complete listing and description of
all available functions, see the reference manual.

BoomerAMG’s Create function differs from the synopsis in that it has only one parameter
HYPRE_BoomerAMGCreate(HYPRE_Solver *solver). It uses the communicator of the matrix A.

6.8.2 Coarsening Options

Coarsening can be set by the user using the function HYPRE_BoomerAMGSetCoarsenType. A detailed descrip-
tion of various coarsening techniques can be found in [HeYa2002], [Yang2005].

Various coarsening techniques are available:

• the Cleary-Luby-Jones-Plassman (CLJP) coarsening,

• the Falgout coarsening which is a combination of CLJP and the classical RS coarsening algorithm,

• CGC and CGC-E coarsenings [GrMS2006a], [GrMS2006b],

• PMIS and HMIS coarsening algorithms which lead to coarsenings with lower complexities [DeYH2004] as well
as

• aggressive coarsening, which can be applied to any of the coarsening techniques mentioned above a nd thus
achieving much lower complexities and lower memory use [Stue1999].

To use aggressive coarsening the user has to set the number of levels to which he wants to apply aggressive coarsening
(starting with the finest level) via HYPRE_BoomerAMGSetAggNumLevels. Since aggressive coarsening requires
long range interpolation, multipass interpolation is always used on levels with aggressive coarsening, unless the user
specifies another long-range interpolation suitable for aggressive coarsening.

Note that the default coarsening is HMIS [DeYH2004].

40 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

6.8.3 Interpolation Options

Various interpolation techniques can be set using HYPRE_BoomerAMGSetInterpType:

• the “classical” interpolation as defined in [RuSt1987],

• direct interpolation [Stue1999],

• standard interpolation [Stue1999],

• an extended “classical” interpolation, which is a long range interpolation and is recommended to be used with
PMIS and HMIS coarsening for harder problems [DFNY2008],

• multipass interpolation [Stue1999],

• two-stage interpolation [Yang2010],

• Jacobi interpolation [Stue1999],

• the “classical” interpolation modified for hyperbolic PDEs.

Jacobi interpolation is only use to improve certain interpolation operators and can be used with
HYPRE_BoomerAMGSetPostInterpType. Since some of the interpolation operators might generate
large stencils, it is often possible and recommended to control complexity and truncate the interpola-
tion operators using HYPRE_BoomerAMGSetTruncFactor and/or HYPRE_BoomerAMGSetPMaxElmts, or
HYPRE_BoomerAMGSetJacobiTruncTheshold (for Jacobi interpolation only).

Note that the default interpolation is extended+i interpolation [DFNY2008] truncated to 4 elements per row.

6.8.4 Non-Galerkin Options

In order to reduce communication, there is a non-Galerkin coarse grid sparsification option available [FaSc2014]. This
option can be used by itself or with existing strategies to reduce communication such as aggressive coarsening and
HMIS coarsening. To use, call HYPRE_BoomerAMGSetNonGalerkTol, which gives BoomerAMG a list of level
specific non-Galerkin drop tolerances. It is common to drop more aggressively on coarser levels. A common choice
of drop-tolerances is [0.0, 0.01, 0.05] where the value of 0.0 will skip the non-Galerkin process on the first coarse level
(level 1), use a drop-tolerance of 0.01 on the second coarse level (level 2) and then use 0.05 on all subsequent coarse
levels. While still experimental, this capability has significantly improved performance on a variety of problems. See
the ij driver for an example usage and the reference manual for more details.

6.8.5 Smoother Options

A good overview of parallel smoothers and their properties can be found in [BFKY2011]. Various of the described
relaxation techniques are available:

• weighted Jacobi relaxation,

• a hybrid Gauss-Seidel / Jacobi relaxation scheme,

• a symmetric hybrid Gauss-Seidel / Jacobi relaxation scheme,

• l1-Gauss-Seidel or Jacobi,

• Chebyshev smoothers,

• hybrid block and Schwarz smoothers [Yang2004],

• ILU and approximate inverse smoothers.

6.8. BoomerAMG 41

hypre Documentation, Release 2.18.1

Point relaxation schemes can be set using HYPRE_BoomerAMGSetRelaxType or, if one wants to specif-
ically set the up cycle, down cycle or the coarsest grid, with HYPRE_BoomerAMGSetCycleRelaxType.
To use the more complicated smoothers, e.g. block, Schwarz, ILU smoothers, it is necessary to use
HYPRE_BoomerAMGSetSmoothType and HYPRE_BoomerAMGSetSmoothNumLevels. There are further
parameter choices for the individual smoothers, which are described in the reference manual. The default relax-
ation type is l1-Gauss-Seidel, using a forward solve on the down cycle and a backward solve on the up-cycle, to
keep symmetry. Note that if BoomerAMG is used as a preconditioner for conjugate gradient, it is necessary to use a
symmetric smoother. Other symmetric options are weighted Jacobi or hybrid symmetric Gauss-Seidel.

6.8.6 AMG for systems of PDEs

If the users wants to solve systems of PDEs and can provide information on which variables belong to which
function, BoomerAMG’s systems AMG version can also be used. Functions that enable the user to access the
systems AMG version are HYPRE_BoomerAMGSetNumFunctions, HYPRE_BoomerAMGSetDofFunc and
HYPRE_BoomerAMGSetNodal.

If the user can provide the near null-space vectors, such as the rigid body modes for linear elasticity problems,
an interpolation is available that will incorporate these vectors with HYPRE_BoomerAMGSetInterpVectors
and HYPRE_BoomerAMGSetInterpVecVariant. This can lead to improved convergence and scalability
[BaKY2010].

6.8.7 Special AMG Cycles

The default cycle is a V(1,1)-cycle, however it is possible to change the number of sweeps of the up- and down-cycle
as well as the coare grid. One can also choose a W-cycle, however for parallel processing this is not recommended,
since it is not scalable.

BoomerAMG also provides an additive V(1,1)-cycle as well as a mult-additive V(1,1)-cycle and a simplified versioni
[VaYa2014]. The additive variants can only be used with weighted Jacobi or l1-Jacobi smoothing.

6.8.8 Miscellaneous

For best performance, it might be necessary to set certain parameters, which will affect both coarsening
and interpolation. One important parameter is the strong threshold, which can be set using the function
HYPRE_BoomerAMGSetStrongThreshold. The default value is 0.25, which appears to be a good choice for
2-dimensional problems and the low complexity coarsening algorithms. For 3-dimensional problems a better choice
appears to be 0.5, when using the default coarsening algorithm. However, the choice of the strength threshold is
problem dependent and therefore there could be better choices than the two suggested ones.

6.9 AMS

AMS (the Auxiliary-space Maxwell Solver) is a parallel unstructured Maxwell solver for edge finite element dis-
cretizations of the variational problem

Find u ∈ Vh : (α∇× u,∇× v) + (β u,v) = (f ,v) , for all v ∈ Vh . (6.1)

Here Vh is the lowest order Nedelec (edge) finite element space, and α > 0 and β ≥ 0 are scalar, or SPD matrix
coefficients. AMS was designed to be scalable on problems with variable coefficients, and allows for β to be zero in
part or the whole domain. In either case the resulting problem is only semidefinite, and for solvability the right-hand
side should be chosen to satisfy compatibility conditions.

42 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

AMS is based on the auxiliary space methods for definite Maxwell problems proposed in [HiXu2006]. For more
details, see [KoVa2009].

6.9.1 Overview

Let A and b be the stiffness matrix and the load vector corresponding to (6.1). Then the resulting linear system of
interest reads,

Ax = b . (6.2)

The coefficients α and β are naturally associated with the “stiffness” and “mass” terms of A. Besides A and b, AMS
requires the following additional user input:

1. The discrete gradient matrix G representing the edges of the mesh in terms of its vertices. G has as many rows
as the number of edges in the mesh, with each row having two nonzero entries: +1 and −1 in the columns
corresponding to the vertices composing the edge. The sign is determined based on the orientation of the edge.
We require that G includes all (interior and boundary) edges and vertices.

2. The representations of the constant vector fields (1, 0, 0), (0, 1, 0), and (0, 0, 1) in the Vh basis, given as three
vectors: Gx, Gy , and Gz . Note that since no boundary conditions are imposed on G, the above vectors can be
computed as Gx = Gx, Gy = Gy and Gz = Gz, where x, y, and z are vectors representing the coordinates of
the vertices of the mesh.

In addition to the above quantities, AMS can utilize the following (optional) information:

• The Poisson matrices Aα and Aβ , corresponding to assembling of the forms (α∇u,∇v) + (β∇u,∇v) and
(β∇u,∇v) using standard linear finite elements on the same mesh.

Internally, AMS proceeds with the construction of the following additional objects:

• AG – a matrix associated with the mass term which is either GTAG or the Poisson matrix Aβ (if given).

• Π – the matrix representation of the interpolation operator from vector linear to edge finite elements.

• AΠ – a matrix associated with the stiffness term which is either ΠTAΠ or a block-diagonal matrix with
diagonal blocks Aα (if given).

• BG and BΠ – efficient (AMG) solvers for AG and AΠ.

The solution procedure then is a three-level method using smoothing in the original edge space and subspace correc-
tions based on BG and BΠ. We can employ a number of options here utilizing various combinations of the smoother
and solvers in additive or multiplicative fashion. If β is identically zero one can skip the subspace correction associated
with G, in which case the solver is a two-level method.

6.9.2 Sample Usage

AMS can be used either as a solver or as a preconditioner. Below we list the sequence of hypre calls needed to create
and use it as a solver. See example code ex15.c for a complete implementation. We start with the allocation of the
HYPRE_Solver object:

HYPRE_Solver solver;
HYPRE_AMSCreate(&solver);

Next, we set a number of solver parameters. Some of them are optional, while others are necessary in order to perform
the solver setup.

AMS offers the option to set the space dimension. By default we consider the dimension to be 3. The only other option
is 2, and it can be set with the function given below. We note that a 3D solver will still work for a 2D problem, but it
will be slower and will require more memory than necessary.

6.9. AMS 43

hypre Documentation, Release 2.18.1

HYPRE_AMSSetDimension(solver, dim);

The user is required to provide the discrete gradient matrix G. AMS expects a matrix defined on the whole mesh with
no boundary edges/nodes excluded. It is essential to not impose any boundary conditions on G. Regardless of which
hypre conceptual interface was used to construct G, one can obtain a ParCSR version of it. This is the expected format
in the following function.

HYPRE_AMSSetDiscreteGradient(solver, G);

In addition to G, we need one additional piece of information in order to construct the solver. The user has the option
to choose either the coordinates of the vertices in the mesh or the representations of the constant vector fields in the
edge element basis. In both cases three hypre parallel vectors should be provided. For 2D problems, the user can set
the third vector to NULL. The corresponding function calls read:

HYPRE_AMSSetCoordinateVectors(solver,x,y,z);

or

HYPRE_AMSSetEdgeConstantVectors(solver, one_zero_zero, zero_one_zero, zero_zero_one);

The vectors one_zero_zero, zero_one_zero and zero_zero_one above correspond to the constant vector
fields (1, 0, 0), (0, 1, 0) and (0, 0, 1).

The remaining solver parameters are optional. For example, the user can choose a different cycle type by calling

HYPRE_AMSSetCycleType(solver, cycle_type); /* default value: 1 */

The available cycle types in AMS are:

• cycle_type=1: multiplicative solver (01210)

• cycle_type=2: additive solver (0 + 1 + 2)

• cycle_type=3: multiplicative solver (02120)

• cycle_type=4: additive solver (010 + 2)

• cycle_type=5: multiplicative solver (0102010)

• cycle_type=6: additive solver (1 + 020)

• cycle_type=7: multiplicative solver (0201020)

• cycle_type=8: additive solver (0(1 + 2)0)

• cycle_type=11: multiplicative solver (013454310)

• cycle_type=12: additive solver (0 + 1 + 3 + 4 + 5)

• cycle_type=13: multiplicative solver (034515430)

• cycle_type=14: additive solver (01(3 + 4 + 5)10)

Here we use the following convention for the three subspace correction methods: 0 refers to smoothing, 1 stands for
BoomerAMG based on BG, and 2 refers to a call to BoomerAMG for BΠ. The values 3, 4 and 5 refer to the scalar
subspaces corresponding to the x, y and z components of Π.

The abbreviation xyyz for x, y, z ∈ {0, 1, 2, 3, 4, 5} refers to a multiplicative subspace correction based on solvers x,
y, y, and z (in that order). The abbreviation x+ y+ z stands for an additive subspace correction method based on x, y
and z solvers. The additive cycles are meant to be used only when AMS is called as a preconditioner. In our experience
the choices cycle_type=1,5,8,11,13 often produced fastest solution times, while cycle_type=7 resulted
in smallest number of iterations.

44 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

Additional solver parameters, such as the maximum number of iterations, the convergence tolerance and the output
level, can be set with

HYPRE_AMSSetMaxIter(solver, maxit); /* default value: 20 */
HYPRE_AMSSetTol(solver, tol); /* default value: 1e-6 */
HYPRE_AMSSetPrintLevel(solver, print); /* default value: 1 */

More advanced parameters, affecting the smoothing and the internal AMG solvers, can be set with the following three
functions:

HYPRE_AMSSetSmoothingOptions(solver, 2, 1, 1.0, 1.0);
HYPRE_AMSSetAlphaAMGOptions(solver, 10, 1, 3, 0.25, 0, 0);
HYPRE_AMSSetBetaAMGOptions(solver, 10, 1, 3, 0.25, 0, 0);

For (singular) problems where β = 0 in the whole domain, different (in fact simpler) version of the AMS solver is
offered. To allow for this simplification, use the following hypre call

HYPRE_AMSSetBetaPoissonMatrix(solver, NULL);

If β is zero only in parts of the domain, the problem is still singular, but the AMS solver will try to detect this
and construct a non-singular preconditioner. Though this often works well in practice, AMS also provides a more
robust version for solving such singular problems to very low convergence tolerances. This version takes advantage of
additional information: the list of nodes which are interior to a zero-conductivity region provided by the function

HYPRE_AMSSetInteriorNodes(solver, HYPRE_ParVector interior_nodes);

A node is interior, if its entry in the interior_nodes array is 1.0. Based on this array, a restricted discrete gradient
operator G0 is constructed, and AMS is then defined based on the matrix A + δGT0G0 which is non-singular, and a
small δ > 0 perturbation of A. When iterating with this preconditioner, it is advantageous to project on the compatible
subspace Ker(GT0). This can be done periodically, or manually through the functions

HYPRE_AMSSetProjectionFrequency(solver, int projection_frequency);
HYPRE_AMSProjectOutGradients(solver, HYPRE_ParVector x);

Two additional matrices are constructed in the setup of the AMS method—one corresponding to the coefficient α and
another corresponding to β. This may lead to prohibitively high memory requirements, and the next two function calls
may help to save some memory. For example, if the Poisson matrix with coefficient β (denoted by Abeta) is available
then one can avoid one matrix construction by calling

HYPRE_AMSSetBetaPoissonMatrix(solver, Abeta);

Similarly, if the Poisson matrix with coefficient α is available (denoted by Aalpha) the second matrix construction
can also be avoided by calling

HYPRE_AMSSetAlphaPoissonMatrix(solver, Aalpha);

Note the following regarding these functions:

• Both of them change their input. More specifically, the diagonal entries of the input matrix corresponding to
eliminated degrees of freedom (due to essential boundary conditions) are penalized.

• It is assumed that their essential boundary conditions of A, Abeta and Aalpha are on the same part of the
boundary.

• HYPRE_AMSSetAlphaPoissonMatrix forces the AMS method to use a simpler, but weaker (in terms of
convergence) method. With this option, the multiplicative AMS cycle is not guaranteed to converge with the
default parameters. The reason for this is the fact the solver is not variationally obtained from the original matrix

6.9. AMS 45

hypre Documentation, Release 2.18.1

(it utilizes the auxiliary Poisson–like matrices Abeta and Aalpha). Therefore, it is recommended in this case
to use AMS as preconditioner only.

After the above calls, the solver is ready to be constructed. The user has to provide the stiffness matrix A (in ParCSR
format) and the hypre parallel vectors b and x. (The vectors are actually not used in the current AMS setup.) The
setup call reads,

HYPRE_AMSSetup(solver, A, b, x);

It is important to note the order of the calling sequence. For example, do not call HYPRE_AMSSetup before call-
ing HYPRE_AMSSetDiscreteGradient and one of the functions HYPRE_AMSSetCoordinateVectors or
HYPRE_AMSSetEdgeConstantVectors.

Once the setup has completed, we can solve the linear system by calling

HYPRE_AMSSolve(solver, A, b, x);

Finally, the solver can be destroyed with

HYPRE_AMSDestroy(&solver);

More details can be found in the files ams.h and ams.c located in the parcsr_ls directory.

6.9.3 High-order Discretizations

In addition to the interface for the lowest-order Nedelec elements described in the previous subsections, AMS also
provides support for (arbitrary) high-order Nedelec element discretizations. Since the robustness of AMS depends
on the performance of BoomerAMG on the associated (high-order) auxiliary subspace problems, we note that the
convergence may not be optimal for large polynomial degrees k ≥ 1.

In the high-order AMS interface, the user does not need to provide the coordinates of the vertices (or the representations
of the constant vector fields in the edge basis), but instead should construct and pass the Nedelec interpolation matrix
Π which maps (high-order) vector nodal finite elements into the (high-order) Nedelec space. In other words, Π is the
(parallel) matrix representation of the interpolation mapping from P3

k/Q3
k into NDk, see [HiXu2006], [KoVa2009].

We require this matrix as an input, since in the high-order case its entries very much depend on the particular choice
of the basis functions in the edge and nodal spaces, as well as on the geometry of the mesh elements. The columns of
Π should use a node-based numbering, where the x/y/z components of the first node (vertex or high-order degree of
freedom) should be listed first, followed by the x/y/z components of the second node and so on (see the documentation
of HYPRE_BoomerAMGSetDofFunc).

Similarly to the Nedelec interpolation, the discrete gradient matrixG should correspond to the mappingϕ ∈ P3
k/Q

3
k 7→

∇ϕ ∈ NDk, so even though its values are still independent of the mesh coordinates, they will not be ±1, but will be
determined by the particular form of the high-order basis functions and degrees of freedom.

With these matrices, the high-order setup procedure is simply

HYPRE_AMSSetDimension(solver, dim);
HYPRE_AMSSetDiscreteGradient(solver, G);
HYPRE_AMSSetInterpolations(solver, Pi, NULL, NULL, NULL);

We remark that the above interface calls can also be used in the lowest-order case (or even other types of discretizations
such as those based on the second family of Nedelec elements), but we recommend calling the previously described
HYPRE_AMSSetCoordinateVectors instead, since this allows AMS to handle the construction and use of Π
internally.

Specifying the monolithic Π limits the AMS cycle type options to those less than 10. Alternatively one can separately
specify the x, y and z components of Π:

46 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

HYPRE_AMSSetInterpolations(solver, NULL, Pix, Piy, Piz);

which enables the use of AMS cycle types with index greater than 10. By definition, Πxϕ = Π(ϕ, 0, 0), and similarly
for Πy and Πz . Each of these matrices has the same sparsity pattern as G, but their entries depend on the coordinates
of the mesh vertices.

Finally, both Π and its components can be passed to the solver:

HYPRE_AMSSetInterpolations(solver, Pi, Pix, Piy, Piz);

which will duplicate some memory, but allows for experimentation with all available AMS cycle types.

6.9.4 Non-conforming AMR Grids

AMS could also be applied to problems with adaptive mesh refinement (AMR) posed on non-conforming quadrilat-
eral/hexahedral meshes, see [GrKo2015] for more details.

On non-conforming grids (assuming also arbitrarily high-order elements), each finite element space has two versions:
a conforming one, e.g. Qck/NDck, where the hanging degrees of freedom are constrained by the conforming (real)
degrees of freedom, and a non-conforming one, e.g. Qnck /NDnck where the non-conforming degrees of freedom (hang-
ing and real) are unconstrained. These spaces are related with the conforming prolongation and the pure restriction
operators P andR, as well as the conforming and non-conforming version of the discrete gradient operator as follows:

Qck
Gc−−→ NDck

PQ

y
xRQ PND

y
xRND

Qnck
Gnc−−→ NDnck

Since the linear system is posed on NDck, the user needs to provide the conforming discrete gradient matrix Gc
to AMS, using HYPRE_AMSSetDiscreteGradient. This matrix is defined by the requirement that the above
diagram commutes from Qck to NDnck , corresponding to the definition

Gc = RNDGnc PQ ,

i.e. the conforming gradient is computed by starting with a conforming nodal Qk function, interpolating it in the
hanging nodes, computing the gradient locally and representing it in the Nedelec space on each element (the non-
conforming discrete gradient Gnc in the above formula), and disregarding the values in the hanging NDk degrees of
freedom.

Similar considerations imply that the conforming Nedelec interpolation matrix Πc should be defined as

Πc = RND Πnc PQ3 ,

with Πnc computed element-wise as in the previous subsection. Note that in the low-order case, Πc can be computed
internally in AMS based only Gc and the conforming coordinates of the vertices xc/yc/zc, see [GrKo2015].

6.10 ADS

The Auxiliary-space Divergence Solver (ADS) is a parallel unstructured solver similar to AMS, but targeting H(div)
instead of H(curl) problems. Its usage and options are very similar to those of AMS, and in general the relationship
between ADS and AMS is analogous to that between AMS and AMG.

6.10. ADS 47

hypre Documentation, Release 2.18.1

Specifically ADS was designed for the scalable solution of linear systems arising in the finite element discretization
of the variational problem

Find u ∈Wh : (α∇ · u,∇ · v) + (β u,v) = (f ,v) , for all v ∈Wh , (6.3)

where Wh is the lowest order Raviart-Thomas (face) finite element space, and α > 0 and β > 0 are scalar, or SPD
matrix variable coefficients. It is based on the auxiliary space methods for H(div) problems proposed in [HiXu2006].

6.10.1 Overview

Let A and b be the stiffness matrix and the load vector corresponding to (6.3). Then the resulting linear system of
interest reads,

Ax = b . (6.4)

The coefficients α and β are naturally associated with the “stiffness” and “mass” terms of A. Besides A and b, ADS
requires the following additional user input:

1. The discrete curl matrix C representing the faces of the mesh in terms of its edges. C has as many rows as the
number of faces in the mesh, with each row having nonzero entries +1 and −1 in the columns corresponding to
the edges composing the face. The sign is determined based on the orientation of the edges relative to the face.
We require that C includes all (interior and boundary) faces and edges.

2. The discrete gradient matrix G representing the edges of the mesh in terms of its vertices. G has as many rows
as the number of edges in the mesh, with each row having two nonzero entries: +1 and −1 in the columns
corresponding to the vertices composing the edge. The sign is determined based on the orientation of the edge.
We require that G includes all (interior and boundary) edges and vertices.

3. Vectors x, y, and z representing the coordinates of the vertices of the mesh.

Internally, ADS proceeds with the construction of the following additional objects:

• AC – the curl-curl matrix C TAC.

• Π – the matrix representation of the interpolation operator from vector linear to face finite elements.

• AΠ – the vector nodal matrix ΠTAΠ.

• BC and BΠ – efficient (AMS/AMG) solvers for AC and AΠ.

The solution procedure then is a three-level method using smoothing in the original face space and subspace corrections
based on BC and BΠ. We can employ a number of options here utilizing various combinations of the smoother and
solvers in additive or multiplicative fashion.

6.10.2 Sample Usage

ADS can be used either as a solver or as a preconditioner. Below we list the sequence of hypre calls needed to create
and use it as a solver. We start with the allocation of the HYPRE_Solver object:

HYPRE_Solver solver;
HYPRE_ADSCreate(&solver);

Next, we set a number of solver parameters. Some of them are optional, while others are necessary in order to perform
the solver setup.

The user is required to provide the discrete curl and gradient matrices C and G. ADS expects a matrix defined on the
whole mesh with no boundary faces, edges or nodes excluded. It is essential to not impose any boundary conditions
on C or G. Regardless of which hypre conceptual interface was used to construct the matrices, one can always obtain
a ParCSR version of them. This is the expected format in the following functions.

48 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

HYPRE_ADSSetDiscreteCurl(solver, C);
HYPRE_ADSSetDiscreteGradient(solver, G);

Next, ADS requires the coordinates of the vertices in the mesh as three hypre parallel vectors. The corresponding
function call reads:

HYPRE_ADSSetCoordinateVectors(solver, x, y, z);

The remaining solver parameters are optional. For example, the user can choose a different cycle type by calling

HYPRE_ADSSetCycleType(solver, cycle_type); /* default value: 1 */

The available cycle types in ADS are:

• cycle_type=1: multiplicative solver (01210)

• cycle_type=2: additive solver (0 + 1 + 2)

• cycle_type=3: multiplicative solver (02120)

• cycle_type=4: additive solver (010 + 2)

• cycle_type=5: multiplicative solver (0102010)

• cycle_type=6: additive solver (1 + 020)

• cycle_type=7: multiplicative solver (0201020)

• cycle_type=8: additive solver (0(1 + 2)0)

• cycle_type=11: multiplicative solver (013454310)

• cycle_type=12: additive solver (0 + 1 + 3 + 4 + 5)

• cycle_type=13: multiplicative solver (034515430)

• cycle_type=14: additive solver (01(3 + 4 + 5)10)

Here we use the following convention for the three subspace correction methods: 0 refers to smoothing, 1 stands for
AMS based on BC , and 2 refers to a call to BoomerAMG for BΠ. The values 3, 4 and 5 refer to the scalar subspaces
corresponding to the x, y and z components of Π.

The abbreviation xyyz for x, y, z ∈ {0, 1, 2, 3, 4, 5} refers to a multiplicative subspace correction based on solvers x,
y, y, and z (in that order). The abbreviation x+ y+ z stands for an additive subspace correction method based on x, y
and z solvers. The additive cycles are meant to be used only when ADS is called as a preconditioner. In our experience
the choices cycle_type=1,5,8,11,13 often produced fastest solution times, while cycle_type=7 resulted
in smallest number of iterations.

Additional solver parameters, such as the maximum number of iterations, the convergence tolerance and the output
level, can be set with

HYPRE_ADSSetMaxIter(solver, maxit); /* default value: 20 */
HYPRE_ADSSetTol(solver, tol); /* default value: 1e-6 */
HYPRE_ADSSetPrintLevel(solver, print); /* default value: 1 */

More advanced parameters, affecting the smoothing and the internal AMS and AMG solvers, can be set with the
following three functions:

HYPRE_ADSSetSmoothingOptions(solver, 2, 1, 1.0, 1.0);
HYPRE_ADSSetAMSOptions(solver, 11, 10, 1, 3, 0.25, 0, 0);
HYPRE_ADSSetAMGOptions(solver, 10, 1, 3, 0.25, 0, 0);

6.10. ADS 49

hypre Documentation, Release 2.18.1

We note that the AMS cycle type, which is the second parameter of HYPRE_ADSSetAMSOptions should be greater
than 10, unless the high-order interface of HYPRE_ADSSetInterpolations described in the next subsection is
being used.

After the above calls, the solver is ready to be constructed. The user has to provide the stiffness matrix A (in ParCSR
format) and the hypre parallel vectors b and x. (The vectors are actually not used in the current ADS setup.) The
setup call reads,

HYPRE_ADSSetup(solver, A, b, x);

It is important to note the order of the calling sequence. For example, do not call HYPRE_ADSSetup be-
fore calling each of the functions HYPRE_ADSSetDiscreteCurl, HYPRE_ADSSetDiscreteGradient and
HYPRE_ADSSetCoordinateVectors.

Once the setup has completed, we can solve the linear system by calling

HYPRE_ADSSolve(solver, A, b, x);

Finally, the solver can be destroyed with

HYPRE_ADSDestroy(&solver);

More details can be found in the files ads.h and ads.c located in the parcsr_ls directory.

6.10.3 High-order Discretizations

Similarly to AMS, ADS also provides support for (arbitrary) high-order H(div) discretizations. Since the robustness
of ADS depends on the performance of AMS and BoomerAMG on the associated (high-order) auxiliary subspace
problems, we note that the convergence may not be optimal for large polynomial degrees k ≥ 1.

In the high-order ADS interface, the user does not need to provide the coordinates of the vertices, but instead should
construct and pass the Raviart-Thomas and Nedelec interpolation matrices ΠRT and ΠND which map (high-order)
vector nodal finite elements into the (high-order) Raviart-Thomas and Nedelec space. In other words, these are the
(parallel) matrix representation of the interpolation mappings from P3

k/Q
3
k into RTk−1 and NDk, see [HiXu2006],

[KoVa2009]. We require these matrices as inputs, since in the high-order case their entries very much depend on the
particular choice of the basis functions in the finite element spaces, as well as on the geometry of the mesh elements.
The columns of the Π matrices should use a node-based numbering, where the x/y/z components of the first node
(vertex or high-order degree of freedom) should be listed first, followed by the x/y/z components of the second node
and so on (see the documentation of HYPRE_BoomerAMGSetDofFunc). Furthermore, each interpolation matrix
can be split into x, y and z components by defining Πxϕ = Π(ϕ, 0, 0), and similarly for Πy and Πz .

The discrete gradient and curl matrices G and C should correspond to the mappings ϕ ∈ P3
k/Q

3
k 7→ ∇ϕ ∈ NDk and

u ∈ NDk 7→ ∇×u ∈ RTk−1, so even though their values are still independent of the mesh coordinates, they will not
be ±1, but will be determined by the particular form of the high-order basis functions and degrees of freedom.

With these matrices, the high-order setup procedure is simply

HYPRE_ADSSetDiscreteCurl(solver, C);
HYPRE_ADSSetDiscreteGradient(solver, G);
HYPRE_ADSSetInterpolations(solver, RT_Pi, NULL, NULL, NULL,

ND_Pi, NULL, NULL, NULL);

We remark that the above interface calls can also be used in the lowest-order case (or even other types of discretiza-
tions), but we recommend calling the previously described HYPRE_ADSSetCoordinateVectors instead, since
this allows ADS to handle the construction and use of the interpolations internally.

Specifying the monolithic ΠRT limits the ADS cycle type options to those less than 10. Alternatively one can sepa-
rately specify the x, y and z components of ΠRT .

50 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

HYPRE_ADSSetInterpolations(solver, NULL, RT_Pix, RT_Piy, RT_Piz,
ND_Pi, NULL, NULL, NULL);

which enables the use of ADS cycle types with index greater than 10. The same holds for ΠND and its components,
e.g. to enable the subspace AMS cycle type greater then 10 we need to call

HYPRE_ADSSetInterpolations(solver, NULL, RT_Pix, RT_Piy, RT_Piz,
NULL, ND_Pix, ND_Piy, ND_Piz);

Finally, both Π and their components can be passed to the solver:

HYPRE_ADSSetInterpolations(solver, RT_Pi, RT_Pix, RT_Piy, RT_Piz
ND_Pi, ND_Pix, ND_Piy, ND_Piz);

which will duplicate some memory, but allows for experimentation with all available ADS and AMS cycle types.

6.11 The MLI Package

MLI is an object-oriented module that implements the class of algebraic multigrid algorithms based on Vanek and
Brezina’s smoothed aggregation method [VaMB1996], [VaBM2001]. There are two main algorithms in this module -
the original smoothed aggregation algorithm and the modified version that uses the finite element substructure matrices
to construct the prolongation operators. As such, the later algorithm can only be used in the finite element context via
the finite element interface. In addition, the nodal coordinates obtained via the finite element interface can be used to
construct a better prolongation operator than the pure translation modes.

Below is an example on how to set up MLI as a preconditioner for conjugate gradient.

HYPRE_LSI_MLICreate(MPI_COMM_WORLD, &pcg_precond);

HYPRE_LSI_MLISetParams(pcg_precond, "MLI strengthThreshold 0.08");
...

HYPRE_PCGSetPrecond(pcg_solver,
(HYPRE_PtrToSolverFcn) HYPRE_LSI_MLISolve,
(HYPRE_PtrToSolverFcn) HYPRE_LSI_MLISetup,
pcg_precond);

Note that parameters are set via HYPRE_LSI_MLISetParams. A list of valid parameters that can be set using this
routine can be found in the FEI section of the reference manual.

6.12 Multigrid Reduction (MGR)

MGR is a parallel multigrid reduction solver and preconditioner designed to take advantage of use-provided informa-
tion to solve systems of equations with multiple vatiable types. The algorithm is similar to two-stage preconditioner
strategies and other reduction techniques like ARMS, but in a standard multigrid framework.

The MGR algorithm accepts information about the variables in block form from the user and uses it to define the
appropriate C/F splitting for the multigrid scheme. The linear system solve proceeds with an F-relaxation solve on the
F points, folowed by a coarse grid correction. The coarse grid solve is handled by scalar AMG (BoomerAMG). MGR
provides users with more control over the coarsening process, and can potentially be a starting point for designing
multigrid-based physics-based preconditioners.

6.11. The MLI Package 51

hypre Documentation, Release 2.18.1

The following represents a minimal set of functions, and some optional functions, to call to use the MGR solver. For
simplicity, we ignore the function parameters here, and refer the reader to the reference manual for more details on the
parameters and their defaults.

• HYPRE_MGRCreate: Create the MGR solver object.

• HYPRE_MGRSetCpointsByBlock: Set up block data with information about coarse indexes for reduction.
Here, the user specifies the number of reduction levels, as well as the the coarse nodes for each level of the
reduction. These coarse nodes are indexed by their index in the block of unknowns. This is used internally to
tag the appropriate indexes of the linear system matrix as coarse nodes.

• (Optional) HYPRE_MGRSetReservedCoarseNodes: Prescribe a subset of nodes to be kept as coarse
nodes until the coarsest level. These nodes are transferred onto the coarsest grid of the BoomerAMG coarse grid
solver.

• (Optional) HYPRE_MGRSetNonCpointsToFpoints: Set points not prescribed as C points to be fixed as
F points for intermediate levels. Setting this to 1 uses the user input to define the C/F splitting. Otherwise, a
BoomerAMG coarsening routine is used to determine the C/F splitting for intermediate levels.

• (Optional) HYPRE_MGRSetCoarseSolver: This function sets the BoomerAMG solver to be used for the
solve on the coarse grid. The user can define their own BoomerAMG solver with their preferred options and
pass this to the MGR solver. Otherwise, an internal BoomerAMG solver is used as the coarse grid solver instead.

• HYPRE_MGRSetup: Setup and MGR solver object.

• HYPRE_MGRSolve: Solve the linear system.

• HYPRE_MGRDestroy: Destroy the MGR solver object

For more details about additional solver options and parameters, please refer to the reference manual. NOTE: The
MGR solver is currently only supported by the IJ interface.

6.13 ParaSails

ParaSails is a parallel implementation of a sparse approximate inverse preconditioner, using a priori sparsity patterns
and least-squares (Frobenius norm) minimization. Symmetric positive definite (SPD) problems are handled using a
factored SPD sparse approximate inverse. General (nonsymmetric and/or indefinite) problems are handled with an
unfactored sparse approximate inverse. It is also possible to precondition nonsymmetric but definite matrices with a
factored, SPD preconditioner.

ParaSails uses a priori sparsity patterns that are patterns of powers of sparsified matrices. ParaSails also uses a post-
filtering technique to reduce the cost of applying the preconditioner. In advanced usage not described here, the pattern
of the preconditioner can also be reused to generate preconditioners for different matrices in a sequence of linear
solves.

For more details about the ParaSails algorithm, see [Chow2000].

6.13.1 Parameter Settings

The accuracy and cost of ParaSails are parametrized by the real thresh and integer nlevels parameters, 0 ≤
thresh ≤ 1, 0 ≤ nlevels. Lower values of thresh and higher values of nlevels lead to more accurate, but
more expensive preconditioners. More accurate preconditioners are also more expensive per iteration. The default
values are thresh = 0.1 and nlevels = 1. The parameters are set using HYPRE_ParaSailsSetParams.

Mathematically, given a symmetric matrix A, the pattern of the approximate inverse is the pattern of Ãm where Ã is
a matrix that has been sparsified from A. The sparsification is performed by dropping all entries in a symmetrically

52 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

diagonally scaledA whose values are less than thresh in magnitude. The parameter nlevel is equivalent tom−1.
Filtering is a post-thresholding procedure. For more details about the algorithm, see [Chow2000].

The storage required for the ParaSails preconditioner depends on the parameters thresh and nlevels. The default
parameters often produce a preconditioner that can be stored in less than the space required to store the original matrix.
ParaSails does not need a large amount of intermediate storage in order to construct the preconditioner.

ParaSail’s Create function differs from the synopsis in the following way:

int HYPRE_ParaSailsCreate(MPI_Comm comm, HYPRE_Solver *solver, int symmetry);

where comm is the MPI communicator.

The value of symmetry has the following meanings, to indicate the symmetry and definiteness of the problem, and
to specify the type of preconditioner to construct:

value meaning
0 nonsymmetric and/or indefinite problem, and nonsymmetric preconditioner
1 SPD problem, and SPD (factored) preconditioner
2 nonsymmetric, definite problem, and SPD (factored) preconditioner

For more information about the final case, see section Preconditioning Nearly Symmetric Matrices.

Parameters for setting up the preconditioner are specified using

int HYPRE_ParaSailsSetParams(HYPRE_Solver solver, double thresh,
int nlevel, double filter);

The parameters are used to specify the sparsity pattern and filtering value (see above), and are described with suggested
values as follows:

param type range sug. values default meaning
nlevel integer ≥ 0 0, 1, 2 1 m = 1+ nlevel
thresh real ≥ 0 0, 0.1, 0.01 0.1 thresh = thresh

< 0 -0.75, -0.90 thresh auto-selected
filter real ≥ 0 0, 0.05, 0.001 0.05 filter = filter

< 0 -0.90 filter auto-selected

When thresh < 0, then a threshold is selected such that thresh represents the negative of the fraction of nonzero
elements that are dropped. For example, if thresh = −0.9 then Ã will contain approximately ten percent of the
nonzeros in A.

When filter< 0, then a filter value is selected such that filter represents the negative of the fraction of nonzero
elements that are dropped. For example, if filter = −0.9 then approximately 90 percent of the entries in the
computed approximate inverse are dropped.

6.13.2 Preconditioning Nearly Symmetric Matrices

A nonsymmetric, but definite and nearly symmetric matrix A may be preconditioned with a symmetric precondi-
tioner M . Using a symmetric preconditioner has a few advantages, such as guaranteeing positive definiteness of the
preconditioner, as well as being less expensive to construct.

The nonsymmetric matrix A must be definite, i.e., (A + AT)/2 is SPD, and the a priori sparsity pattern to be used
must be symmetric. The latter may be guaranteed by 1) constructing the sparsity pattern with a symmetric matrix, or
2) if the matrix is structurally symmetric (has symmetric pattern), then thresholding to construct the pattern is not used
(i.e., zero value of the thresh parameter is used).

6.13. ParaSails 53

hypre Documentation, Release 2.18.1

6.14 Euclid

The Euclid library is a scalable implementation of the Parallel ILU algorithm that was presented at SC99 [HyPo1999],
and published in expanded form in the SIAM Journal on Scientific Computing [HyPo2001]. By scalable we mean that
the factorization (setup) and application (triangular solve) timings remain nearly constant when the global problem
size is scaled in proportion to the number of processors. As with all ILU preconditioning methods, the number of
iterations is expected to increase with global problem size.

Experimental results have shown that PILU preconditioning is in general more effective than Block Jacobi precon-
ditioning for minimizing total solution time. For scaled problems, the relative advantage appears to increase as the
number of processors is scaled upwards. Euclid may also be used to good advantage as a smoother within multigrid
methods.

6.14.1 Overview

Euclid is best thought of as an “extensible ILU preconditioning framework.” Extensible means that Euclid can (and
eventually will, time and contributing agencies permitting) support many variants of ILU(k) and ILUT precondition-
ing. (The current release includes Block Jacobi ILU(k) and Parallel ILU(k) methods.) Due to this extensibility, and
also because Euclid was developed independently of the hypre project, the methods by which one passes runtime
parameters to Euclid preconditioners differ in some respects from the hypre norm. While users can directly set op-
tions within their code, options can also be passed to Euclid preconditioners via command line switches and/or small
text-based configuration files. The latter strategies have the advantage that users will not need to alter their codes as
Euclid’s capabilities are extended.

The following fragment illustrates the minimum coding required to invoke Euclid preconditioning within hypre ap-
plication contexts. The next subsection provides examples of the various ways in which Euclid’s options can be set.
The final subsection lists the options, and provides guidance as to the settings that (in our experience) will likely prove
effective for minimizing execution time.

#include "HYPRE_parcsr_ls.h"

HYPRE_Solver eu;
HYPRE_Solver pcg_solver;
HYPRE_ParVector b, x;
HYPRE_ParCSRMatrix A;

//Instantiate the preconditioner.
HYPRE_EuclidCreate(comm, &eu);

//Optionally use the following three methods to set runtime options.
// 1. pass options from command line or string array.
HYPRE_EuclidSetParams(eu, argc, argv);

// 2. pass options from a configuration file.
HYPRE_EuclidSetParamsFromFile(eu, "filename");

// 3. pass options using interface functions.
HYPRE_EuclidSetLevel(eu, 3);
...

//Set Euclid as the preconditioning method for some
//other solver, using the function calls HYPRE_EuclidSetup
//and HYPRE_EuclidSolve. We assume that the pcg_solver
//has been properly initialized.
HYPRE_PCGSetPrecond(pcg_solver,

(continues on next page)

54 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

(continued from previous page)

(HYPRE_PtrToSolverFcn) HYPRE_EuclidSolve,
(HYPRE_PtrToSolverFcn) HYPRE_EuclidSetup,
eu);

//Solve the system by calling the Setup and Solve methods for,
//in this case, the HYPRE_PCG solver. We assume that A, b, and x
//have been properly initialized.
HYPRE_PCGSetup(pcg_solver, (HYPRE_Matrix)A, (HYPRE_Vector)b, (HYPRE_Vector)x);
HYPRE_PCGSolve(pcg_solver, (HYPRE_Matrix)parcsr_A, (HYPRE_Vector)b, (HYPRE_Vector)x);

//Destroy the Euclid preconditioning object.
HYPRE_EuclidDestroy(eu);

6.14.2 Setting Options: Examples

For expositional purposes, assume you wish to set the ILU(k) factorization level to the value k = 3. There are several
methods of accomplishing this. Internal to Euclid, options are stored in a simple database that contains (name, value)
pairs. Various of Euclid’s internal (private) functions query this database to determine, at runtime, what action the user
has requested. If you enter the option -eu_stats 1, a report will be printed when Euclid’s destructor is called; this
report lists (among other statistics) the options that were in effect during the factorization phase.

Method 1. By default, Euclid always looks for a file titled database in the working directory. If it finds such a file,
it opens it and attempts to parse it as a configuration file. Configuration files should be formatted as follows.

>cat database
#this is an optional comment
-level 3

Any line in a configuration file that contains a “#” character in the first column is ignored. All other lines should begin
with an option name, followed by one or more blanks, followed by the option value. Note that option names always
begin with a - character. If you include an option name that is not recognized by Euclid, no harm should ensue.

Method 2. To pass options on the command line, call

HYPRE_EuclidSetParams(HYPRE_Solver solver, int argc, char *argv[]);

where argc and argv carry the usual connotation: main(int argc, char *argv[]). If your hypre appli-
cation is called phoo, you can then pass options on the command line per the following example.

mpirun -np 2 phoo -level 3

Since Euclid looks for the database file when HYPRE_EuclidCreate is called, and parses the command line
when HYPRE_EuclidSetParams is called, option values passed on the command line will override any similar
settings that may be contained in the database file. Also, if same option name appears more than once on the
command line, the final appearance determines the setting.

Some options, such as -bj (see next subsection) are boolean. Euclid always treats these options as the value 1 (true)
or 0 (false). When passing boolean options from the command line the value may be committed, in which case it
assumed to be 1. Note, however, that when boolean options are contained in a configuration file, either the 1 or 0
must stated explicitly.

Method 3. There are two ways in which you can read in options from a file whose name is other than database.
First, you can call HYPRE_EuclidSetParamsFromFile to specify a configuration filename. Second, if you have
passed the command line arguments as described above in Method 2, you can then specify the configuration filename
on the command line using the -db_filename filename option, e.g.,

6.14. Euclid 55

hypre Documentation, Release 2.18.1

mpirun -np 2 phoo -db_filename ../myConfigFile

Method 4. One can also set parameters via interface functions, e.g

int HYPRE_EuclidSetLevel(HYPRE_Solver solver, int level);

For a full set of functions, see the reference manual.

6.14.3 Options Summary

• -level 〈int〉 Factorization level for ILU(k). Default: 1. Guidance: for 2D convection-diffusion and similar
problems, fastest solution time is typically obtained with levels 4 through 8. For 3D problems fastest solution
time is typically obtained with level 1.

• -bj Use Block Jacobi ILU preconditioning instead of PILU. Default: 0 (false). Guidance: if subdomains contain
relatively few nodes (less than 1,000), or the problem is not well partitioned, Block Jacobi ILU may give faster
solution time than PILU.

• -eu_stats When Euclid’s destructor is called a summary of runtime settings and timing information is printed
to stdout. Default: 0 (false). The timing marks in the report are the maximum over all processors in the MPI
communicator.

• -eu_mem When Euclid’s destructor is called a summary of Euclid’s memory usage is printed to stdout. Default:
0 (false). The statistics are for the processor whose rank in MPI_COMM_WORLD is 0.

• -printTestData This option is used in our autotest procedures, and should not normally be invoked by users.

• -sparseA 〈float〉 Drop-tolerance for ILU(k) factorization. Default: 0 (no dropping). Entries are treated as zero
if their absolute value is less than sparseA * max, where max is the largest absolute value of any entry in
the row. Guidance: try this in conjunction with -rowScale. CAUTION: If the coefficient matrix A is symmetric,
this setting is likely to cause the filled matrix, F = L + U − I , to be unsymmetric. This setting has no effect
when ILUT factorization is selected.

• -rowScale Scale values prior to factorization such that the largest value in any row is +1 or -1. Default: 0
(false). CAUTION: If the coefficient matrix A is symmetric, this setting is likely to cause the filled matrix,
F = L+ U − I , to be unsymmetric. Guidance: if the matrix is poorly scaled, turning on row scaling may help
convergence.

• -ilut 〈float〉Use ILUT factorization instead of the default, ILU(k). Here, 〈float〉 is the drop tolerance, which is
relative to the largest absolute value of any entry in the row being factored. CAUTION: If the coefficient matrix
A is symmetric, this setting is likely to cause the filled matrix, F = L+U − I , to be unsymmetric. NOTE: this
option can only be used sequentially!

6.15 PILUT: Parallel Incomplete Factorization

Note: this code is no longer supported by the hypre team. We recommend to use Euclid instead, which is more
versatile and in general more efficient, especially when used with many processors.

PILUT is a parallel preconditioner based on Saad’s dual-threshold incomplete factorization algorithm. The original
version of PILUT was done by Karypis and Kumar [KaKu1998] in terms of the Cray SHMEM library. The code
was subsequently modified by the hypre team: SHMEM was replaced by MPI; some algorithmic changes were made;
and it was software engineered to be interoperable with several matrix implementations, including hypre’s ParCSR
format, PETSc’s matrices, and ISIS++ RowMatrix. The algorithm produces an approximate factorization LU , with
the preconditioner M defined by M = LU .

56 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

Note: PILUT produces a nonsymmetric preconditioner even when the original matrix is symmetric. Thus, it is gener-
ally inappropriate for preconditioning symmetric methods such as Conjugate Gradient.

6.15.1 Parameters:

• SetMaxNonzerosPerRow(int LFIL); (Default: 20) Set the maximum number of nonzeros
to be retained in each row of L and U . This parameter can be used to control the amount of memory that L
and U occupy. Generally, the larger the value of LFIL, the longer it takes to calculate the preconditioner and
to apply the preconditioner and the larger the storage requirements, but this trades off versus a higher quality
preconditioner that reduces the number of iterations.

• SetDropTolerance(double tol); (Default: 0.0001) Set the tolerance (relative to the 2-
norm of the row) below which entries in L and U are automatically dropped. PILUT first drops entries based on
the drop tolerance, and then retains the largest LFIL elements in each row that remain. Smaller values of tol
lead to more accurate preconditioners, but can also lead to increases in the time to calculate the preconditioner.

6.16 LOBPCG Eigensolver

LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient) is a simple, yet very efficient, algorithm sug-
gested in [Knya2001], [KLAO2007], [BLOPEWeb] for computing several smallest eigenpairs of the symmetric gen-
eralized eigenvalue problem Ax = λBx with large, possibly sparse, symmetric matrix A and symmetric positive
definite matrix B. The matrix A is not assumed to be positive, which also allows one to use LOBPCG to compute the
largest eigenpairs of Ax = λBx simply by solving −Ax = µBx for the smallest eigenvalues µ = −λ.

LOBPCG simultaneously computes several eigenpairs together, which is controlled by the blockSize parameter,
see example ex11.c. The LOBCPG also allows one to impose constraints on the eigenvectors of the form xTByi = 0
for a set of vectors yi given to LOBPCG as input parameters. This makes it possible to compute, e.g., 50 eigenpairs
by 5 subsequent calls to LOBPCG with the blockSize=10, using deflation. LOBPCG can use preconditioning in
two different ways: by running an inner preconditioned PCG linear solver, or by applying the preconditioner directly
to the eigenvector residual (option -pcgitr 0). In all other respects, LOBPCG is similar to the PCG linear solver.

The LOBPCG code is available for system interfaces: Struct, SStruct, and IJ. It is also used in the Auxiliary-space
Maxwell Eigensolver (AME). The LOBPCG setup is similar to the setup for PCG.

6.17 FEI Solvers

After the FEI has been used to assemble the global linear system (as described in Chapter Finite Element Interface), a
number of hypre solvers can be called to perform the solution. This is straightforward, if hypre’s FEI has been used. If
an external FEI is employed, the user needs to link with hypre’s implementation of the LinearSystemCore class,
as described in Section Using HYPRE in External FEI Implementations.

Solver parameters are specified as an array of strings, and a complete list of the available options can be found in the
FEI section of the reference manual. They are passed to the FEI as in the following example:

nParams = 5;
paramStrings = new char*[nParams];
for (i = 0; i < nParams; i++) }

paramStrings[i] = new char[100];

strcpy(paramStrings[0], "solver cg");
strcpy(paramStrings[1], "preconditioner diag");
strcpy(paramStrings[2], "maxiterations 100");

(continues on next page)

6.16. LOBPCG Eigensolver 57

hypre Documentation, Release 2.18.1

(continued from previous page)

strcpy(paramStrings[3], "tolerance 1.0e-6");
strcpy(paramStrings[4], "outputLevel 1");

feiPtr -> parameters(nParams, paramStrings);

To solve the linear system of equations, we call

feiPtr -> solve(&status);

where the returned value status indicates whether the solve was successful.

Finally, the solution can be retrieved by the following function call:

feiPtr -> getBlockNodeSolution(elemBlkID, nNodes, nodeIDList,
solnOffsets, solnValues);

where nodeIDList is a list of nodes in element block elemBlkID, and solnOffsets[i] is the index pointing
to the first location where the variables at node i is returned in solnValues.

6.17.1 Solvers Available Only through the FEI

While most of the solvers from the previous sections are available through the FEI interface, there are number of
additional solvers and preconditioners that are accessible only through the FEI. These solvers are briefly described in
this section (see also the reference manual).

Sequential and Parallel Solvers

hypre currently has many iterative solvers. There is also internally a version of the sequential SuperLU direct solver
(developed at U.C. Berkeley) suitable to small problems (may be up to the size of 10000). In the following we list
some of these internal solvers.

1. Additional Krylov solvers (FGMRES, TFQMR, symmetric QMR),

2. SuperLU direct solver (sequential),

3. SuperLU direct solver with iterative refinement (sequential),

Parallel Preconditioners

The performance of the Krylov solvers can be improved by clever selection of preconditioners. Besides those men-
tioned previously in this chapter, the following preconditioners are available via the LinearSystemCore interface:

1. the modified version of MLI, which requires the finite element substructure matrices to construct the prolonga-
tion operators,

2. parallel domain decomposition with inexact local solves (DDIlut),

3. least-squares polynomial preconditioner,

4. 2× 2 block preconditioner, and

5. 2× 2 Uzawa preconditioner.

Some of these preconditioners can be tuned by a number of internal parameters modifiable by users. A description of
these parameters is given in the reference manual.

58 Chapter 6. Solvers and Preconditioners

hypre Documentation, Release 2.18.1

Matrix Reduction

For some structural mechanics problems with multi-point constraints the discretization matrix is indefinite (eigenvalues
lie in both sides of the imaginary axis). Indefinite matrices are much more difficult to solve than definite matrices.
Methods have been developed to reduce these indefinite matrices to definite matrices. Two matrix reduction algorithms
have been implemented in hypre, as presented in the following subsections.

Schur Complement Reduction

The incoming linear system of equations is assumed to be in the form:[
D B
BT 0

] [
x1
x2

]
=

[
b1
b2

]
where D is a diagonal matrix. After Schur complement reduction is applied, the resulting linear system becomes

−BTD−1Bx2 = b2 −BTD−1b1.

Slide Surface Reduction

With the presence of slide surfaces, the matrix is in the same form as in the case of Schur complement reduction. Here
A represents the relationship between the master, slave, and other degrees of freedom. The matrix block [BT 0] corre-
sponds to the constraint equations. The goal of reduction is to eliminate the constraints. As proposed by Manteuffel,
the trick is to re-order the system into a 3× 3 block matrix. A11 A12 N

A21 A22 D
NT D 0

 =

[
A11 Â12

Â21 Â22.

]
The reduced system has the form :

(A11 − Â21Â
−1
22 Â12)x1 = b1 − Â21Â

−1
22 b2,

which is symmetric positive definite (SPD) if the original matrix is PD. In addition, Â−122 is easy to compute.

There are three slide surface reduction algorithms in hypre. The first follows the matrix formulation in this section.
The second is similar except that it replaces the eliminated slave equations with identity rows so that the degree of
freedom at each node is preserved. This is essential for certain block algorithms such as the smoothed aggregation
multilevel preconditioners. The third is similar to the second except that it is more general and can be applied to
problems with intersecting slide surfaces (sequential only for intersecting slide surfaces).

Other Features

To improve the efficiency of the hypre solvers, a few other features have been incorporated. We list a few of these
features below :

1. Preconditioner reuse - For multiple linear solves with matrices that are slightly perturbed from each other,
oftentimes the use of the same preconditioners can save preconditioner setup times but suffer little convergence
rate degradation.

2. Projection methods - For multiple solves that use the same matrix, previous solution vectors can sometimes be
used to give a better initial guess for subsequent solves. Two projection schemes have been implemented in
hypre - A-conjugate projection (for SPD matrices) and minimal residual projection (for both SPD and non-SPD
matrices).

3. The sparsity pattern of the matrix is in general not destroyed after it has been loaded to an hypre matrix. But if
the matrix is not to be reused, an option is provided to clean up this pattern matrix to conserve memory usage.

6.17. FEI Solvers 59

hypre Documentation, Release 2.18.1

60 Chapter 6. Solvers and Preconditioners

CHAPTER

SEVEN

GENERAL INFORMATION

7.1 Getting the Source Code

The hypre distribution tar file is available from the Software link of the hypre web page, http://www.llnl.gov/CASC/
hypre/. The hypre Software distribution page allows access to the tar files of the latest and previous general and beta
distributions as well as documentation.

7.2 Building the Library

In this and the following several sections, we discuss the steps to install and use hypre on a Unix-like operating system,
such as Linux, AIX, and Mac OS X. Alternatively, the CMake build system [CMakeWeb] can be used, and is the best
approach for building hypre on Windows systems in particular (see the INSTALL file for details).

After unpacking the hypre tar file, the source code will be in the src sub-directory of a directory named hypre-
VERSION, where VERSION is the current version number (e.g., hypre-1.8.4, with a “b” appended for a beta release).

Move to the src sub-directory to build hypre for the host platform. The simplest method is to configure, compile and
install the libraries in ./hypre/lib and ./hypre/include directories, which is accomplished by:

./configure
make

NOTE: when executing on an IBM platform configure must be executed under the nopoe script (./nopoe ./
configure <option> ...<option>) to force a single task to be run on the log-in node.

There are many options to configure and make to customize such things as installation directories, compilers used,
compile and load flags, etc.

Executing configure results in the creation of platform specific files that are used when building the library. The
information may include such things as the system type being used for building and executing, compilers being used,
libraries being searched, option flags being set, etc. When all of the searching is done two files are left in the src
directory; config.status contains information to recreate the current configuration and config.log contains
compiler messages which may help in debugging configure errors.

Upon successful completion of configure the file config/Makefile.config is created from its template
config/Makefile.config.in and hypre is ready to be built.

Executing make, with or without targets being specified, in the src directory initiates compiling of all of the source
code and building of the hypre library. If any errors occur while compiling, the user can edit the file config/
Makefile.config directly then run make again; without having to re-run configure.

When building hypre without the install target, the libraries and include files will be copied into the default directories,
src/hypre/lib and src/hypre/include, respectively.

61

http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/

hypre Documentation, Release 2.18.1

When building hypre using the install target, the libraries and include files will be copied into the directories that
the user specified in the options to configure, e.g. --prefix=/usr/apps. If none were specified the default
directories, src/hypre/lib and src/hypre/include, are used.

7.2.1 Configure Options

There are many options to configure to allow the user to override and refine the defaults for any system. The best
way to find out what options are available is to display the help package, by executing ./configure --help,
which also includes the usage information. The user can mix and match the configure options and variable settings to
meet their needs.

Some of the commonly used options include:

--enable-debug Sets compiler flags to generate information
needed for debugging.

--enable-shared Build shared libraries.
NOTE: in order to use the resulting shared

libraries the user MUST have the path to
the libraries defined in the environment
variable LD_LIBRARY_PATH.

--with-print-errors Print HYPRE errors
--with-openmp Use OpenMP. This may affect which compiler is

chosen.
--enable-bigint Use long long int for HYPRE_Int (default is NO).
--enable-mixedint Use long long int for HYPRE_BigInt and int for

HYPRE_Int.
NOTE: This option disables Euclid, ParaSails,

pilut and CGC coarsening.

The user can mix and match the configure options and variable settings to meet their needs. It should be noted that
hypre can be configured with external BLAS and LAPACK libraries, which can be combined with any other option.
This is done as follows (currently, both libraries must be configured as external together):

./configure --with-blas-lib="blas-lib-name" \
--with-blas-lib-dirs="path-to-blas-lib" \
--with-lapack-lib="lapack-lib-name" \
--with-lapack-lib-dirs="path-to-lapack-lib"

The output from configure is several pages long. It reports the system type being used for building and executing,
compilers being used, libraries being searched, option flags being set, etc.

7.2.2 Make Targets

The make step in building hypre is where the compiling, loading and creation of libraries occurs. Make has several
options that are called targets. These include:

help prints the details of each target

all default target in all directories
compile the entire library
does NOT rebuild documentation

clean deletes all files from the current directory that are
created by building the library

(continues on next page)

62 Chapter 7. General Information

hypre Documentation, Release 2.18.1

(continued from previous page)

distclean deletes all files from the current directory that are created
by configuring or building the library

install compile the source code, build the library and copy executables,
libraries, etc to the appropriate directories for user access

uninstall deletes all files that the install target created

tags runs etags to create a tags table
file is named TAGS and is saved in the top-level directory

test depends on the all target to be completed
removes existing temporary installation directories
creates temporary installation directories
copies all libHYPRE* and *.h files to the temporary locations
builds the test drivers; linking to the temporary locations to

simulate how application codes will link to HYPRE

7.3 Testing the Library

The examples subdirectory contains several codes that can be used to test the newly created hypre library. To create
the executable versions, move into the examples subdirectory, enter make then execute the codes as described in
the initial comments section of each source code.

7.4 Linking to the Library

An application code linking with hypre must be compiled with -I$PREFIX/include and linked with
-L$PREFIX/lib -lHYPRE, where $PREFIX is the directory where hypre is installed, default is hypre, or as
defined by the configure option --prefix=PREFIX. As noted above, if hypre was built as a shared library the user
MUST have its location defined in the environment variable LD_LIBRARY_PATH.

As an example of linking with hypre, a user may refer to the Makefile in the examples sub-directory. It is
designed to build codes similar to user applications that link with and call hypre. All include and linking flags are
defined in the Makefile.config file by configure.

7.5 Error Flags

Every hypre function returns an integer, which is used to indicate errors during execution. Note that the error flag
returned by a given function reflects the errors from {em all} previous calls to hypre functions. In particular, a value
of zero means that all hypre functions up to (and including) the current one have completed successfully. This new
error flag system is being implemented throughout the library, but currently there are still functions that do not support
it. The error flag value is a combination of one or a few of the following error codes:

1. HYPRE_ERROR_GENERIC – describes a generic error

2. HYPRE_ERROR_MEMORY – hypre was unable to allocate memory

3. HYPRE_ERROR_ARG – error in one of the arguments of a hypre function

4. HYPRE_ERROR_CONV – a hypre solver did not converge as expected

One can use the HYPRE_CheckError function to determine exactly which errors have occurred:

7.3. Testing the Library 63

hypre Documentation, Release 2.18.1

/* call some HYPRE functions */
int hypre_ierr;
hypre_ierr = HYPRE_Function();

/* check if the previously called hypre functions returned error(s) */
if (hypre_ierr)

/* check if the error with code HYPRE_ERROR_CODE has occurred */
if (HYPRE_CheckError(hypre_ierr,HYPRE_ERROR_CODE))

The corresponding FORTRAN code is

! header file with hypre error codes
include 'HYPRE_error_f.h'

! call some HYPRE functions
integer hypre_ierr
call HYPRE_Function(hypre_ierr)

! check if the previously called hypre functions returned error(s)
if (hypre_ierr .ne. 0) then

! check if the error with code HYPRE_ERROR_CODE has occurred
call HYPRE_CheckError(hypre_ierr, HYPRE_ERROR_CODE, check)
if (check .ne. 0) then

The global error flag can also be obtained directly, between calls to other hypre functions, by calling
HYPRE_GetError(). If an argument error (HYPRE_ERROR_ARG) has occurred, the argument index (counting
from 1) can be obtained from HYPRE_GetErrorArg(). To get a character string with a description of all errors in
a given error flag, use

HYPRE_DescribeError(int hypre_ierr, char *descr);

The global error flag can be cleared manually by calling HYPRE_ClearAllErrors(), which
will essentially ignore all previous hypre errors. To only clear a specific error code, the user
can call HYPRE_ClearError(HYPRE_ERROR_CODE). Finally, if hypre was configured with
--with-print-errors, additional error information will be printed to the standard error during execution.

7.6 Bug Reporting and General Support

Simply send and email to hypre-support@llnl.gov to report bugs, request features, or ask general usage
questions. An issue number will be assigned to your email so that we can track progress (we are using an issue
tracking tool called Roundup to do this).

Users should include as much relevant information as possible in their issue emails, including at a minimum, the
hypre version number being used. For compile and runtime problems, please also include the machine type, operating
system, MPI implementation, compiler, and any error messages produced.

7.7 Using HYPRE in External FEI Implementations

To set up hypre for use in external, e.g. Sandia’s, FEI implementations one needs to follow the following steps:

1. obtain the hypre and Sandia’s FEI source codes,

2. compile Sandia’s FEI (fei-2.5.0) to create the fei_base library.

64 Chapter 7. General Information

hypre Documentation, Release 2.18.1

3. compile hypre

• unpack the archive and go into the src directory

• do a configure with the --with-fei-inc-dir option set to the FEI include directory plus other
compile options

• compile with make install to create the HYPRE_LSI library in hypre/lib.

4. call the FEI functions in your application code (as shown in Chapters Finite Element Interface and Solvers and
Preconditioners)

• include cfei-hypre.h in your file

• include FEI_Implementation.h in your file

5. Modify your Makefile

• include hypre’s include and lib directories in the search paths.

• Link with -lfei_base -lHYPRE_LSI. Note that the order in which the libraries are listed may be
important.

Building an application executable often requires linking with many different software packages, and many software
packages use some LAPACK and/or BLAS functions. In order to alleviate the problem of multiply defined functions
at link time, it is recommended that all software libraries are stripped of all LAPACK and BLAS function definitions.
These LAPACK and BLAS functions should then be resolved at link time by linking with the system LAPACK and
BLAS libraries (e.g. dxml on DEC cluster). Both hypre and SuperLU were built with this in mind. However, some
other software library files needed may have the BLAS functions defined in them. To avoid the problem of multiply
defined functions, it is recommended that the offending library files be stripped of the BLAS functions.

7.8 Calling HYPRE from Other Languages

The hypre library currently supports two languages: C (native) and Fortran (in version 2.10.1 and earlier, additional
language interfaces were also provided through a tool called Babel). The Fortran interface is manually supported to
mirror the “native” C interface used throughout most of this manual. We describe this interface next.

Typically, the Fortran subroutine name is the same as the C name, unless it is longer than 31 characters. In these
situations, the name is condensed to 31 characters, usually by simple truncation. For now, users should look at the
Fortran test drivers (*.f codes) in the test directory for the correct condensed names. In the future, this aspect of
the interface conversion will be made consistent and straightforward.

The Fortran subroutine argument list is always the same as the corresponding C routine, except that the error return
code ierr is always last. Conversion from C parameter types to Fortran argument type is summarized in following
table:

C parameter Fortran argument
int i integer i
double d double precision d
int *array integer array(*)
double *array double precision array(*)
char *string character string(*)
HYPRE_Type object integer*8 object
HYPRE_Type *object integer*8 object

Array arguments in hypre are always of type (int *) or (double *), and the corresponding Fortran types are
simply integer or double precision arrays. Note that the Fortran arrays may be indexed in any manner. For
example, an integer array of length N may be declared in fortran as either of the following:

7.8. Calling HYPRE from Other Languages 65

hypre Documentation, Release 2.18.1

integer array(N)
integer array(0:N-1)

hypre objects can usually be declared as in the table because integer*8 usually corresponds to the length of a
pointer. However, there may be some machines where this is not the case. On such machines, the Fortran type for a
hypre object should be an integer of the appropriate length.

This simple example illustrates the above information:

C prototype:

int HYPRE_IJMatrixSetValues(HYPRE_IJMatrix matrix,
int nrows, int *ncols,
const int *rows, const int *cols,
const double *values);

The corresponding Fortran code for calling this routine is as follows:

integer*8 matrix
integer nrows, ncols(MAX_NCOLS)
integer rows(MAX_ROWS), cols(MAX_COLS)
double precision values(MAX_COLS)
integer ierr

call HYPRE_IJMatrixSetValues(matrix, nrows, ncols, rows, cols, values, ierr)

66 Chapter 7. General Information

BIBLIOGRAPHY

[AsFa1996] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algorithm for
groundwater flow simulations. Nuclear Science and Engineering, 124(1):145–159, September 1996.
Also available as LLNL Technical Report UCRL-JC-122359.

[BFKY2011] A. Baker, R. Falgout, T. Kolev, and U. M. Yang. Multigrid smoothers for ultra-parallel computing. SIAM
J. on Sci. Comp., 33:2864–2887, 2011. Also available as LLNL technical report LLLNL-JRNL-473191.

[BaFY2006] A.H. Baker, R.D. Falgout, and U.M. Yang. An assumed partition algorithm for determining processor
inter-communication. Parallel Computing, 32:394–414, 2006.

[BaKY2010] A. Baker, T. Kolev, and U. M. Yang. Improving algebraic multigrid interpolation operators for linear
elasticity problems. Numer. Linear Algebra Appl., 17:495–517, 2010. Also available as LLNL technical
report LLLNL-JRNL-412928.

[BLOPEWeb] BLOPEX, parallel preconditioned eigenvalue solvers. http://code.google.com/p/blopex/.

[BrFJ2000] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on distributed memory machines.
SIAM J. Sci. Comput., 21(5):1823–1834, 2000. Special issue on the Fifth Copper Mountain Conference
on Iterative Methods. Also available as LLNL technical report UCRL-JC-130720.

[Chow2000] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci.
Comput., 21:1804–1822, 2000.

[ClEA1999] R. L. Clay et al. An annotated reference guide to the Finite Element Interface (FEI) specification, Version
1.0. Technical Report SAND99-8229, Sandia National Laboratories, Livermore, CA, 1999.

[CMakeWeb] CMake, a cross-platform open-source build system. http://www.cmake.org/.

[DFNY2008] H. De Sterck, R. Falgout, J. Nolting, and U. M. Yang. Distance-two interpolation for parallel algebraic
multigrid. Numer. Linear Algebra Appl., 15:115–139, 2008. Also available as LLNL technical report
UCRL-JRNL-230844.

[DeYH2004] H. De Sterck, U. M. Yang, and J. Heys. Reducing complexity in parallel algebraic multigrid precon-
ditioners. SIAM Journal on Matrix Analysis and Applications, 27:1019–1039, 2006. Also available as
LLNL technical report UCRL-JRNL-206780.

[FaJo2000] R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In E. Dick, K. Riemslagh,
and J. Vierendeels, editors, Multigrid Methods VI, volume 14 of Lecture Notes in Computational Sci-
ence and Engineering, pages 101–107, Berlin, 2000. Springer. Proc. of the Sixth European Multigrid
Conference held in Gent, Belgium, September 27-30, 1999. Also available as LLNL technical report
UCRL-JC-133948.

[FaJY2004] R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implementation of hypre, a library of
parallel high performance preconditioners. In A. M. Bruaset and A. Tveito, editors, Numerical Solution
of Partial Differential Equations on Parallel Computers, pages 267–294. Springer–Verlag, 2006. Also
available as LLNL technical report UCRL-JRNL-205459.

67

http://code.google.com/p/blopex/
http://www.cmake.org/

hypre Documentation, Release 2.18.1

[FaJY2005] R. D. Falgout, J. E. Jones, and U. M. Yang. Conceptual interfaces in hypre. Future Generation Computer
Systems, 22:239–251, 2006. Special issue on PDE software. Also available as LLNL technical report
UCRL-JC-148957.

[FaSc2014] Robert D. Falgout and Jacob B. Schroder. Non-galerkin coarse grids for algebraic multigrid. SIAM J.
Sci. Comput., 36(3):309–334, 2014.

[GrKo2015] A. Grayver and Tz. Kolev. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-
order finite element method. Geophysics, 80(6):E277–E291, 2015. Also available as LLNL technical
report LLNL-JRNL-665742.

[GrMS2006a] M. Griebel, B. Metsch, and M. A. Schweitzer. Coarse grid classification: A parallel coarsening scheme
for algebraic multigrid methods. Numerical Linear Algebra with Applications, 13(2–3):193–214, 2006.
Also available as SFB 611 preprint No. 225, Universität Bonn, 2005.

[GrMS2006b] M. Griebel, B. Metsch, and M. A. Schweitzer. Coarse grid classification - Part II: Automatic coarse grid
agglomeration for parallel AMG. Preprint No. 271, Sonderforschungsbereich 611, Universität Bonn,
2006.

[HeYa2002] V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver and preconditioner.
Applied Numerical Mathematics, 41(5):155–177, 2002. Also available as LLNL technical report UCRL-
JC-141495.

[HiXu2006] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. Numer.
Math., 2006.

[HyPo1999] D. Hysom and A. Pothen. Efficient parallel computation of ILU(k) preconditioners. In Proceedings
of Supercomputing ‘99. ACM, November 1999. Published on CDROM, ISBN #1-58113-091-0, ACM
Order #415990, IEEE Computer Society Press Order # RS00197.

[HyPo2001] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor preconditioning. SIAM J.
Sci. Comput., 22(6):2194–2215, 2001.

[KaKu1998] G. Karypis and V. Kumar. Parallel threshold-based ILU factorization. Technical Report 061, University
of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN 5455,
1998.

[Knya2001] A. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned
conjugate gradient method. SIAM J. Sci. Comput., 23(2):517–541, 2001.

[KLAO2007] A. Knyazev, I. Lashuk, M. Argentati, and E. Ovchinnikov. Block locally optimal preconditioned eigen-
value xolvers (blopex) in hypre and petsc. SIAM J. Sci. Comput., 25(5):2224–2239, 2007.

[KoVa2009] Tz. Kolev and P. Vassilevski. Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math.,
27:604–623, 2009. Special issue on Adaptive and Multilevel Methods in Electromagnetics. UCRL-
JRNL-237306.

[JoLe2006] J. Jones and B. Lee. A multigrid method for variable coefficient maxwell’s equations. SIAM J. Sci.
Comput., 27:1689–1708, 2006.

[McCo1989] S. F. McCormick. Multilevel Adaptive Methods for Partial Differential Equations, volume 6 of Frontiers
in Applied Mathematics. SIAM Books, Philadelphia, 1989.

[MoRS1998] J.E. Morel, Randy M. Roberts, and Mikhail J. Shashkov. A local support-operators diffusion discretiza-
tion scheme for quadrilateral r-z meshes. J. Comp. Physics, 144:17–51, 1998.

[RuSt1987] J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid Methods,
volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, Philadelphia, PA, 1987.

[Scha1998] S. Schaffer. A semi-coarsening multigrid method for elliptic partial differential equations with highly
discontinuous and anisotropic coefficients. SIAM J. Sci. Comput., 20(1):228–242, 1998.

68 Bibliography

hypre Documentation, Release 2.18.1

[Stue1999] K. Stüben. Algebraic multigrid (AMG): an introduction with applications. In U. Trottenberg, C. Ooster-
lee, and A. Schüller, editors, Multigrid. Academic Press, 2001.

[VaMB1996] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation for second
and fourth order problems. Computing, 56:179–196, 1996.

[VaBM2001] P. Vaněk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed aggrega-
tion. Numerische Mathematik, 88:559–579, 2001.

[VaYa2014] P. Vassilevski and U. M. Yang. Reducing communication in algebraic multigrid using additive variants.
Numer. Linear Algebra Appl., 21:275–296, 2014. Also available as LLNL technical report LLLNL-
JRNL-637872.

[Yang2004] U. M. Yang. On the use of relaxation parameters in hybrid smoothers. Numerical Linear Algebra with
Applications, 11:155–172, 2004.

[Yang2005] U. M. Yang. Parallel algebraic multigrid methods - high performance preconditioners. In A. M. Bruaset
and A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel Computers,
pages 209–236. Springer-Verlag, 2006. Also available as LLNL technical report UCRL-BOOK-208032.

[Yang2010] U. M. Yang. On long range interpolation operators for aggressive coarsening. Numer. Linear Algebra
Appl., 17:453–472, 2010. Also available as LLNL technical report LLLNL-JRNL-417371.

Bibliography 69

	Introduction
	Overview of Features
	Getting More Information
	How to get started
	Installing hypre
	Choosing a conceptual interface
	Writing your code

	Structured-Grid System Interface (Struct)
	Setting Up the Struct Grid
	Setting Up the Struct Stencil
	Setting Up the Struct Matrix
	Setting Up the Struct Right-Hand-Side Vector
	Symmetric Matrices

	Semi-Structured-Grid System Interface (SStruct)
	Block-Structured Grids with Stencils
	Block-Structured Grids with Finite Elements
	Structured Adaptive Mesh Refinement

	Finite Element Interface
	Introduction
	A Brief Description of the Finite Element Interface

	Linear-Algebraic System Interface (IJ)
	IJ Matrix Interface
	IJ Vector Interface
	A Scalable Interface

	Solvers and Preconditioners
	SMG
	PFMG
	SysPFMG
	SplitSolve
	FAC
	Maxwell
	Hybrid
	BoomerAMG
	Parameter Options
	Coarsening Options
	Interpolation Options
	Non-Galerkin Options
	Smoother Options
	AMG for systems of PDEs
	Special AMG Cycles
	Miscellaneous

	AMS
	Overview
	Sample Usage
	High-order Discretizations
	Non-conforming AMR Grids

	ADS
	Overview
	Sample Usage
	High-order Discretizations

	The MLI Package
	Multigrid Reduction (MGR)
	ParaSails
	Parameter Settings
	Preconditioning Nearly Symmetric Matrices

	Euclid
	Overview
	Setting Options: Examples
	Options Summary

	PILUT: Parallel Incomplete Factorization
	Parameters:

	LOBPCG Eigensolver
	FEI Solvers
	Solvers Available Only through the FEI

	General Information
	Getting the Source Code
	Building the Library
	Configure Options
	Make Targets

	Testing the Library
	Linking to the Library
	Error Flags
	Bug Reporting and General Support
	Using HYPRE in External FEI Implementations
	Calling HYPRE from Other Languages

	Bibliography

