Advanced Gtk+ Sequencer

Developer's Book

Joél Krahemann

Advanced Gtk+ Sequencer: Developer's Book
Joél Kréhemann
Copyright (C) Joél Krghemann.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of thelicenseisincluded in the section entitled "GNU Free Documentation License".

Dedication

This book is dedicated to my friend.

Table of Contents

(0= 1o (o I PP TUPPPT Vi
1. The apPliCAION CONLEXTeevuu ittt ettt ettt e e et e et et e et et e e e e et e e e enaa s 1
Implementations and their INTEITACESiiiiii e 1

The MaIN [O0P PIOPEITY ...veeiiiie ettt ettt e et et e et e ettt e e e e b e e e era s 4

THE CONFIG PIOPEITY . eetti ettt ettt ettt e et e e et et e e et ettt e e e et e e e eebt e e e eenaaeeeee 4

THE TIlE PIrOPEITY . ..en ettt e et e ettt e et et e e e e e e e e e eees 4

The aPPHICALTION MULEX ...ttt et e ettt e ettt e e et et e e et ebtaeeeereaeeeee 5
Program start and terMINGLIONoiieiii e e et e e et e e e e e e e at e e ene e aees 5
ADSIFaCt data CONNECTIONceiiii ettt ettt e et e e e et eeeraa s 5
COMIMON TNEEITACES ...ttt ettt e et e e e et e e e eaa s 5

2. XML INPUI/OULPUL ...ttt ettt ettt et ettt e e et ea e r e et eab e et et r e e e nna e e eenens 6
WIEING XML FIIES oo et e e 6
REBAING XML TS .. ettt e e 6

3. MUIti-/SUPEr-Threaded TrEE ...ttt e e e e 8
The Main [00P INEEITACE ... et 8
THIrEadS iN GENEIAL ... ettt e e et e e 8
Pulling threads of thread POOIooiiiiii e 10
Worker-threads to do tic-1eSS parall&liSmcooeeeiiiii e 12
Asynchronously destroy OBJECEScceuriiiiiii e 12

LAUNCRING TBSKS ...t e e et e e e 12
ASYNC MESSATE TEITVEIY ..ottt e e e et e e e e eenans 13

4. The soundcard and SEQUENCEr INTEITACEcieuei e 14
Gathering PCM information of SOUNACAITiiieiuiiiiiiii e 14
Obtain AU DUFTEE ... e 15

R FromM MIDI EVICE ... et be s 16

5. AgsAudio a container of AGSChanNEliiiiiiiiii e 19
AQGSNOLAiON 8N AGSNOLE ...ttt e et e e et e e et e e e e eaen 20
AQGSAULOMELiON aNd AQGSACCEIEIBIIONeieeii ettt ettt et eeena e e eeens 22
AgsWave and AgSBUITEN ... e 22
AgsRecalllD and AgSRECYCIINGCONEXLcveueieiiii e 25
Dealing With FECEIIS e 26

Get POIT OF TECAIL ..ottt 26

OPEN BUAIO TIlES ...ttt 28
AUIO CONMEBINEY ...ttt et e et e e et e e et et e e e e e e e era s 28

AUIO T e e et et 28

6. Your tree linked With AgSChanNEloiiiiiii e 29
THE PELEEIT .ot ettt ettt 29
LiNKING OVEIVIBW ...ttt ettt ettt e ettt e e et et e e et et e e et et e e e enbanes 30
(1001 (o TSP PRSPPI 32

[P2 00 S @ o [P T TP TRUPPTTR 32

7. TRE TECYCIING TIEE ...ttt e et e e b e et et e e e et e e e eba s 35
Add and remove aUdio SIGNAIcoeeiiiei s 35

8. Your audio data in AGSAUIOSIGNELiiiiiieiiii e 37
LS = PP UPPPTTRUPPPN 38
PLay/TECall COMLEXEue ettt ettt ettt e ettt e e et et e e e e et e e e enta e eeees 38
Hands-On instantiating an effECtiiiiiiii e 38
AGSRECAIICONIBINGYeeeeite ettt ettt et et et e et e et et e e e eana e eenaas 38
AGSRECATAUIO CONLEXLeieeie ettt ettt e e et eeeb s 39
AQGSRECAIChANNEL CONEXTttt ettt e e e e e eees 39
AQGSRECATAUIORUN CONLEXTeevttieeiiii ettt ettt e e e e eeaans 40
AgSRecallChannElRUN CONLEXTuuuiiiiiie e 40

The basic lifecycle of @an effeCt ..o 41

A ClOSEr 100K 8 EFFECES ... eieeet et 43

10. Advanced Gtk+ SequENCEr'S TX ENGINEcoiiie ettt 44
11, Thread-Saf@ @QUIO POITSceeeee ettt et ettt e e et e e et e e et et e e et et e e e enbenaeeenes 47

Advanced Gtk+ Sequencer

Get and set values

12. Putting al together

A. GNU Free Documentation License
B. Related projects.........ccooeevvnnnnnen.

List of Tables

6.1. AGS network layer table

List of Examples

1.1. Thread appliCation CONLEXT ettt e ettt e et e e et e e ettt e e e ee b e e e eete e eeeetnaaaeens 1
1.2. AUiO @PPIICEEITON CONMEEXEeeeeet ettt ettt e et ettt e e et e e et e e e et e e e e eaa s 2
1.3, GEL CONFIG VBIUE ...t ettt e e et e et e e e e b s 4
1.4, The application CONteXt :file PrOPEITYiiiiii e 4
2.1 WIEING XML ettt e e et e et et e ettt e e e et et e n e e eeaans 6
2.2. REAAING XIML .ottt ettt ettt et ettt 7
3.1 CalCUlAtNg tIC AEIAYeeveeeeeeii ettt ettt et e e aee 9
3.2, SHATING tArEAAS ...ttt et et et 10
3.3. Pulling threads of thread-poolcoouuiiiiii e 10
4.1. PCM information from AgSSOUNCCEITuiiieueieiiiii ettt ettt e e e e 14
4.2. Get AgSSOUNTCAId BUFFEN ...t e 15
4.3. Get AQSSEOUENCEr DUITEE ... e 17
5.1 USING AGSAULIO ...ttt ettt ettt 19
5.2. Using AgSNOtation CHPDOAITcccuuiiiiiiiie ettt e e s 21
5.3, CONCEE AGSWEVE ...ttt 23
5.4, MOITY TECAIL POIT ...ttt ettt e et et e e ena e e enanas 26
6.1, AAAING AGSPAITEIN ...ttt ettt ettt ettt e e et et et e e e e e e e e e enb e eee 29
B.2. PrEIEOUISITES ... eeiitt ettt ettt et ettt ettt e e e e e e 32
6.3, THrEad-UNSAIE WEYuuieiiiiiieiiet ettt e e et e et e e eaaa e eeaaas 33
6.4. MUIITNIEAO-SAFE WEYceeeeiieeeii et ettt e et e e et e e e ea s 33
7.1. AgsRecycling and AQSAUIOSIGNELuuiiiiieieiiii et 35
9.1. Creating AGSRECAIICONIAINGYceeettieeiitte ettt ettt e e e et e e e et e e e et e e e era s 38
9.2. Creating AGSEChOAUIO ... e 39
9.3. Creating AGSECNOCRENNELuiiiii e 39
9.4. Creating AGSECNOAUGIORUN ..ottt ettt e e e e e e e e e ate e eenes 40
9.5. Creating AGSECNOCHANNEIRUNiiiii e 40
10.1. Using agS fX_faCtOry CrEaLE() eeeeeeieieiiie ettt ettt e e b s 44
12.1. Simple pattern sequencer with master playbackoooveiiiiiiiiiii e 48

Foreword

| began to code with C in spring 2002 and hadn't much programming skills, yet. You may ask me why the C
programming language? Well, my friend who was already a convient free software user and hacker recomended
meit. Hetold methat C is a standard on Unix like operating systems so it would be a good choice.

After started with language basics and several discussions with my friend about pointers he advised me of Gtk
+. While | was doing my first steps in GUI programming with C, | was sure to extensively use it and became a
persuaded free software user and programmer.

A year later | really understood the object orientated matter of GObject and how to write objects and widgets
myself. C wasn't like Java where you just couldn't implement no classes just everything was a class or at least
amethod.

First output with AGS happend via Open Sound System device drivers but the entire application lacked of athread
safe concept. But for now you may write tasks.

Be part of the fun.

Vi

Chapter 1. The application context

Making Advanced Gtk+ Sequencer objects reachable from different contices was mandatory as introducing
AgsApplicationContext. Imagine you are within a GUI callback and want to lookup a soundcard or sequencer
the application context shall provide this functionality and provide access to its objects through a well defined
interface. As doing it with interfaces you are not limited to one specific implementation rather having the option
to choose the appropriate one implementing the interfaces.

» AgsConcurrencyProvider
» AgsServiceProvider
» AgsSoundProvider

There are different contices available e.g. AgsThreadApplicationContext providing its functionality by
AgsConcurrencyProvider, AgsAudioApplicationContext giving you the wished objects by implementing
AgsConcurrencyProvider and AgsSoundProvider. For example the code below should each giving you the same
meaning object but using different contices.

Since AgsApplicationContext is a singleton you create only 1 instance of your desired
implementation. The application context is usually obtained by calling AgsAppl i cati onCont ext *
ags_application_context_get _instance().Make sureto instantiate an application context before
using this function.

Implementations and their interfaces

The most basic application context implementing AgsConcurrencyProvider is AgsThreadA pplicationContext.
If you wuse your very own applicaion context implementation make sure to set
main loop, because AgsThread makes wuse of the appropriate getter AgsThread*
ags_concurrency_provi der_get _mai n_| oop(AgsConcurrencyProvi der *). Further for your
very own application context you should set the AgsTaskL auncher in order to take advantage of launching AgsTask
implementations. The interface allows you to set athread pool and some worker threads if needed.

This example instantiates AgsThreadApplicationContext. By instantiating the application context the
global variable ags application_context is initialy set. Later you can obtain your application
context by calling AgsAppl i cati onContext* ags_application_context_get_instance().
Later the code connects to the AgsApplicationContext::setup() signal. The wvoid
set up_cal | back(AgsAppl i cati onCont ext *, gpoi nter) function sets the globa
variable doart loader to TRUE. This causes the prior added timeout to do the actua
work with AgsTaskLauncher. The task launcher is obtained by caling AgsThread*
ags_concurrency_provi der_get task_| auncher (AgsConcurrencyProvi der*) .

Example 1.1. Thread application context

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>

voi d setup_cal | back(AgsAppl i cati onContext *application_context, gpointer user_data);
gbool ean | oader _ti nmeout (AgsAppli cati onContext *application_context);

#def i ne DEFAULT_LOADER | NTERVAL (1000 / 25)

AgsAppl i cati onCont ext *application_context;
gbool ean start | oader;

The application context

application_context = (AgsApplicationContext *) ags_thread_application_context_new);
g_obj ect _ref (application_context);

g_signal _connect _after(application_context, "setup",
G CALLBACK(setup_cal I back), NULL);

start | oader = FALSE;
g_ti meout _add(DEFAULT_LOADER | NTERVAL,
| oader _ti neout,

application_context);

ags_appl i cation_cont ext _prepare(application_context);
ags_application_context_setup(application_context);

/* main | oop run */
g_mai n_l oop_run(g_mai n_I oop_new(g_mai n_cont ext _defaul t(),

TRUE)) ;

voi d
setup_cal | back(AgsAppl i cati onCont ext *application_context, gpointer user_data)
{

start | oader = TRUE;
}
gbool ean
| oader _ti meout (AgsAppl i cati onContext *application_context)
{

AgsTaskLauncher *task_| auncher;

if(!start_| oader){
return(TRUE) ;

}

task_| auncher = ags_concurrency_provi der_get task | auncher (AGS_CONCURRENCY_PROVI DER(a
/1 TODO. add some tasks to task_ | auncher

ret ur n(FALSE) ;

The AgsAudioApplicationContext inherites from AgsApplicationContext and implements the
AgsConcurrencyProvider interface, too. So you can retrieve the task launcher the same way. But the context
implements one more, the AgsSoundProvider interface. Giving you objects related to threading and audio
processing.

This example does the same as the prior, but this time instantiates the AgsAudioApplicationContext. The
gbool ean | oader _ti meout (AgsApplicati onContext *application_context). doesthis
time add the AgsStartSoundcard task to the task launcher.

Example 1.2. Audio application context

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>

The application context

#i ncl ude <ags/|i bags-audi o. h>

voi d setup_cal | back(AgsAppl i cati onCont ext *application_context, gpointer user_data);
gbool ean | oader _ti meout (AgsAppl i cati onCont ext *application_context);

#defi ne DEFAULT_LOADER | NTERVAL (1000 / 25)

AgsAppl i cati onCont ext *application_context;
gbool ean start_| oader

application_context = (AgsApplicationContext *) ags_audi o_application_context_new);
g_signal _connect _after(application_context, "setup",
G CALLBACK(setup_cal I back), NULL);

start | oader = FALSE
g_ti meout _add(DEFAULT_LOADER | NTERVAL
| oader _ti neout,

application_context);

ags_appl i cati on_cont ext _prepare(application_context);
ags_application_context_setup(application_context);

/* main | oop run */
g_mai n_l oop_run(g_mai n_I oop_new(g_mai n_cont ext _defaul t(),

TRUE)) ;

voi d
setup_cal | back(AgsAppl i cati onCont ext *application_context, gpointer user_data)
{

start | oader = TRUE
}
gbool ean
| oader _ti meout (AgsAppl i cati onContext *application_context)
{

AgsTaskLauncher *task_| auncher;
AgsSt art Soundcard *start_soundcard;

if(!start_| oader){
r et ur n(TRUE)

}

task_| auncher = ags_concurrency_provi der_get task_| auncher (AGS_CONCURRENCY_PROVI DER(a
start_soundcard = ags_start_soundcard_new();

ags_task_| auncher _add_t ask(task_| auncher,
start_soundcard);

r et ur n(FALSE)

The application context

The main loop property

AgsApplicationContext:main-loop does usually point to an AgsThread implementing AgsMainLoop interface.
libags thread.so provides you the AgsGenericMainLoop object or if you intend to use libags audio.so, this
property shall point to AgsAudiol oop.

However you should rather use AgsThr ead*

ags_concurrency_provi der_get _mai n_| oop(AgsConcurrencyProvi der*) toobtainthemain
loop instead.

The config property

The AgsApplicationContext base class provides you an AgsConfig instance. It might load a default configuration
or from current users home directory.

Since AgsConfig is a singleton you should obtan it by caling AgsConfig*
ags_config _get _instance().

AgsConfig stores its properties as key value pairs within appropriate group. In order to get the config instance,
load default configuration and get the threading model do the following.

Example 1.3. Get config value
#i nclude <glib. h>

#i ncl ude <gli b-object. h>
#i ncl ude <ags/|i bags. h>

AgsConfig *config;
gchar *str;

config = ags_config _get _instance();
ags_config | oad _defaults(config);

str = ags_config _get val ue(config,

"t hread",
"nmodel ") ;

The file property

You might want to set an AgsFile or AgsSimpleFile instance within your application context. Thisin view of
having your application persisted.

Example 1.4. The application context :file property

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>

AgsAppl i cati onContext *application_context;
AgsFile *file;

The application context

application_context = ags_application_context_get_instance();

file = ags_file_new();

g_obj ect _set (applicati on_context,
“file", file,
NULL) ;

The application mutex

Asversion 2.0.x the application mutex was superseeded by the class mutices and acommon field :obj-mutex used
by various types. The AgsMutexManager is still around but with less importance.

Program start and termination

The application context provides signals to make your application ready to run. You basicaly implement
AgsApplicationContext::prepare, AgsApplicationContext::setup and AgsA pplicationContext::register-types. Itis
upto you how the application shall behave.

Note since version 3130 you cal only AgsApplicationContext::prepare, which cals
AgsApplicationContext::setup and then enters GLib's main loop. So the prepare signal won't return unless you
terminate your application.

AgsApplicationContext::quit signal terminates your application. Feel free to provide your own implementation.

Abstract data connection

AgsDataConnectionManager and AgsConnection are removed in 2.0.x. The object was somehow overhelming
because you can have properties.

The AgsConnectable interface provides 2 new functions: voi d
ags_connect abl e_connect connecti on(AgsConnect abl e*, Gbject*) and void
ags_connect abl e_di sconnect _connecti on(AgsConnect abl e*, GObj ect*).

Dependencies not know an instantiation time can be later connected.

Common interfaces

Use AgsConnectable if you intend to listen to a particular event. If you want to connect an event of an object
known during instantiation time use ::connect and ::disconnect. Assumed the object needs to be resolved, you
can ::connect-connection ::disconnect-connection, later.

AgsPlugin interface provides persistence to awell known abstract base type. Sinceit has variousimplementations,
this interface provides voi d ags_pl ugi n_read(AgsFil e*, xnm Node*, AgsPl ugin*) and
xm Node* ags_plugin_wite(AgsFile*, xm Node*, AgsPl ugin*)

Likewise there are the interfaces intended to use with sound related objects AgsSoundcard, AgsSequencer,
AgsMutable and AgsSeekable.

Chapter 2. XML Input/Output

Saving and restoring your files is done by using XML supporting XPath. The complete persistence layer is
described by ags file.dtd installed on your system. There various classes involved by doing XML 10. It does it
in stages as following for reading:

i. Parsingthe XML tree and map nodes and objects.
ii. Resolving XPath expressions retrieve objects by their nodes.
iii. Do as needed callbacks of AgsFileLaunch to setup up the application.

Writing files does ommit the last step. The current AgsConfig is going to be embedded in your file. So you can
have per project configuration. Certain objectsimplement AgsPlugin interface to do an abstraction of reading and
writing xmlNode.

Writing XML files

Writing filesis pretty easy. You just have to instantiate AgsFile, set the application context, open it in read-write
mode, call ags file write() and finally ags file_clos().

Example 2.1. Writing XML

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>

AgsAppl i cati onContext *application_context;
AgsFile *file;

CError *error;
static const gchar *filename = "ny_file.xm";
application_context = ags_application_context get instance();

file = (AgsFile *) g _object_new AGS TYPE FILE,
"application-context", application_context,
“filename", filenane,
NULL) ;

error = NULL;

ags file_ rw open(file,
TRUE,
&error);

ags file wite(file);

ags file close(file);

Reading XML files

Normally you instantiate a new application context to be used to load objects into. Create afile object by passing
the application context and filename. Then open it and read the content. At the end you close the file descriptor.
To use your application start the main loop.

XML Input/Output

Example 2.2. Reading XML
#i ncl ude <glib. h>

#i ncl ude <gli b-object. h>
#i ncl ude <ags/|i bags. h>

AgsAppl i cati onCont ext *application_context;
AgsFile *file;

GError *error;
static const gchar *filename = "ny _file.xm";
application_context = ags_audi o_application_context_new();

file = g_object _newm(AGS TYPE FILE
"application-context", application_context,
“filename", filenane,
NULL) ;
error = NULL;
ags_file_ open(file,
&error);

ags file_ read(file);
ags file close(file);

ags_thread_start (application_context->nain_|oop);

Chapter 3. Multi-/Super-threaded tree

Advanced Gtk+ Sequencer comes with an AgsThread object. It is organized as a tree structure. The API provides
many functions to work with it. These threads do the ::clock event where all threads synchronize.

The AgsTaskLauncher runs synchronized as well but is going to be waited after syncing to run all tasks.
The AgsTask signal ::launch runs asynchronous exclusively. Every thread tree shall have at toplevel a thread
implementing AgsMainL oop interface.

There is an object call AgsThreadPool serving prelaunched threads. It returns on pull AgsReturnableThread
instances. They can be used with a callback ::safe-run.

Thereisainterfaceto implement by your application context. Thusthe AgsConcurrencyProvider interfaceis used.
It has some common get/set functions to do basic multi-threaded work by well defined objects.

The main loop interface

AgsMainL oop should be implemented by toplevel threads. Within athread tree thisis the topmost element. It has
various get and set methods you would expect.

To control the AgsThread::clock signal AgsMainLoop's methods are going to be invoked. The involved functions
are:

Asit shal be implemented by AGS_TYPE_THREAD subtypes, this parent object provides a mutex to properly
lock the object. Y ou should obtain the GRecMutex pointer by accessing its field:

#i nclude <glib. h>

#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>

AgsThread *t hread;

CRecMut ex *t hread_nut ex;

thread = ags_t hread_new(NULL) ;

/* get object mutex */
t hread_mutex = AGS THREAD GET_OBJ_MJTEX(t hr ead) ;

Threads in general

Libags provides a thread wrapper built on top of GLib's threading API. The AgsThread object synchronizes the
thread tree by AgsThread::clock() event. It is somekind of parallelism trap.

Multi-/Super-threaded tree

ticO tic 1 tic 2 tic 3 tic 4
thread #0 - thread #0 - thread #0 - thread #
thread #0 -
no run run invoked no run no run No rur
invoked invoked invoked invoke
thread #1 - thread #1 - thread #1 - thread #
thread #1 -
no run no run run invoked no run No rur
invoked invoked invoked invoke
thread #2 - thread #2 - thread #2 - thread #
thread #2 -
run invoked no run no run no run No rur
invoked invoked invoked invoke:
-«

These tics are repeated until thread is stopped.

All threads within tree synchronize to AgsThread:max-precision per second, because al threads shall have the
very same time running in parallel. | talk of tic-based parallelism, with a max-precision of 1000 Hz, each thread
synchronizes 1000 times within tree. Giving you strong semantics to compute a deterministic result in a multi-
threaded fashion.

Since we want to run tasks exclusively without any interference from competing threads. There is a mutex lock
involved just after synchronization and theninvokesags task launcher_sync _run(). Be awarethe conditional lock
can be evaluate to true for many threads.

After how many tics the flow is repeated depends on samplerate and buffer size. If you have an AgsThread with
max-precision 1000, samplerate of 44100 common for audio CDs and a buffer size of 512 frames, then the delay
until its repeated calculates as following:

Example 3.1. Calculating tic delay
tic_delay = 1000.0 / 44100.0 * 512.0; // 11.609977324263039

As you might have pre-/post-synchronization needing 3 tics to do its work you get 8 unused tics.

Multi-/Super-threaded tree

Pre-synchronization is used for reading from soundcard or MIDI device. Theintermediatetic doesthe actual audio
processing. Post-synchronization is used by outputing to soundcard or exporting to audio file.

Within thread tree context you have to take care not to hang it up with a dead-lock. Usualy
you have to use the :start queue to start threads. Alternatively you may want to use void
ags_thread_start (AgsThread*) . Use:start_cond, which is protect it with :start_mutex, to notify about
running thread.

The following example creates a thread and does add an other thread to :start_queue. This causesit to be started
as well. Note you want to access :start_queue using :start_mutex to avoid data races. But there is a convience
function which does it for you.

Example 3.2. Starting threads

#i ncl ude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|ibags. h>

AgsThread *mai n_| oop;
AgsThread *t hread;

AgsAppl i cati onCont ext *application_context;
application_context = ags_application_context_get _instance();

mai n_| oop = ags_generi c_mai n_| oop_new() ;
ags_concurrency_provi der_set _mai n_| oop(AGS_CONCURRENCY_PROVI DER(appl i cati on_cont ext),
mai n_| oop) ;

ags_thread_start (mai n_| oop);

thread = ags_t hread_new();
ags_t hread_add_chi |l d_ext ended(mai n_| oop,
t hr ead,
TRUE, TRUE);
ags_thread_add_start_queue(mai n_| oop,
t hread) ;

There many other functions not covered like mutex wrappers ags thread_lock() and ags thread_unlock(). As
doing a closer look to the API there are functions to lock different parts of the tree. But all these functions should
be carefully used, since you might run into a dead-lock.

To find a specific thread type use ags thread find(). You can use ags_thread self() to retrieve your own running
thread in case your using Advanced Gtk+ Sequencer thread wrapper.

Pulling threads of thread pool

AgsThreadPool serves you instantiated and running threads. To pull an AgsReturnableThread issue
ags thread pool_pull(). The following example does instantiate a thread pool and starts it. After, it pulls two
threads and the callbacks are invoked.

Example 3.3. Pulling threads of thread-pool

#i nclude <glib. h>

10

Multi-/Super-threaded tree

#i ncl ude <gli b-object. h>
#i ncl ude <ags/|ibags. h>

voi d setup_cal | back(AgsAppl i cati onCont ext *application_context, gpointer data);
void thread_run_cal | back(AgsThread *thread, gpointer data);

gchar *thread_O_str
gchar *thread_1_str

"thread 0";
"thread 1";

voi d
setup_cal | back(AgsAppl i cati onCont ext *applicati on_context, gpointer data)

{
AgsThread *mai n_| oop;
AgsThread *thread_0, *thread_1;
AgsThr eadPool *t hread_pool
mai n_| oop = ags_concurrency_provi der_get _mai n_| oop(AGS_CONCURRENCY_PROVI DER(appl i cat i
t hread_pool = ags_t hread_pool _new(mai n_| oop);
ags_concurrency_provi der_set _t hread_pool (AGS_CONCURRENCY_PROVI DER(appl i cati on_cont ext
t hr ead_pool) ;
ags_thread_pool _start(thread_pool);

/* pull thread 0 */
thread_0 = ags_thread_pool pul |l (thread_pool);

g_rec_mutex_| ock(AGS_RETURNABLE THREAD GET_RESET_MJTEX(t hread_0));

g_atom c_poi nter_set (& AGS_RETURNABLE THREAD(t hread_0) - >saf e_dat a) ,
thread_0_str);

ags_returnabl e_t hread_connect _safe_run(AGS_RETURNABLE THREAD(t hread_0),
t hread_run_cal | back) ;

ags_returnable_thread_set _fl ags(thread_O,
AGS_RETURNABLE_THREAD | N_USE) ;

g_rec_mut ex_unl ock(AGS_RETURNABLE _THREAD GET_RESET MJUTEX(t hread_0));

/[* pull thread 1 */
thread_1 = ags_t hread_pool pull (thread_pool);

g_rec_mutex_| ock(AGS_RETURNABLE THREAD GET_RESET _MJTEX(thread_1));

g_atom c_poi nter_set (& AGS_RETURNABLE THREAD(t hread_1) - >saf e_dat a),
thread_1_str);

ags_returnabl e_t hread_connect _safe_run(AGS_RETURNABLE THREAD(t hread_1),
t hread_run_cal | back) ;

ags_returnable_thread_set _flags(thread_1,
AGS_RETURNABLE_THREAD | N_USE) ;

g_rec_mut ex_unl ock(AGS_RETURNABLE _THREAD GET_RESET MJTEX(thread_1));

11

Multi-/Super-threaded tree

voi d
t hread_run_cal | back(AgsThread *thread, gpointer data)
{
g_nessage(" %", (gchar *) data);
}
i nt
mai n(int argc, char **argv)
{

AgsAppl i cati onCont ext *application_context;

application_context = ags_thread_application_context_new);
g_obj ect _ref(application_context);

g_signal _connect _after(application_context, "setup"”,
G CALLBACK(setup_cal I back), NULL);

ags_appl i cati on_cont ext _prepare(application_context);
ags_application_context_setup(application_context);

/* main | oop run */
g_mai n_l oop_run(g_mai n_I oop_new(g_mai n_cont ext _defaul t(),
TRUE)) ;

return(0);

Worker-threads to do tic-less parallelism

Worker threads are used to perform heavy load tasks that run completely asynchronous. This means
they don't do any sync with the tree. You start worker threads like any other thread by calling voi d
ags_thread _start (AgsThread*) orvoid ags_t hread_stop(AgsThread*) tostopit.

The AgsWorkerThread overrides ::start of AgsThread class and won't do any synchronization. The worker
implementation is responsible to delay computation by calling usleep() or nanosleep().

You can either connect to the ::do-poll signal or inherit of the AgsWorkerThread object. This requires to
override ::do-poll.

Asynchronously destroy objects

AgsDestroyWorker is intended to unref or free objects asynchrously. Note the use of this worker for one certain
instance, requiresit to do it throughout with the worker for all unref calls. Else you would probably end in a data-
race ending in accessing afreed instance. This can especially happen as using g_object_run_dispose().

The destroy function takes exactly one parameter like g free() or g object unref(). To add an entry call
ags destroy_worker_add(). Thefirst parameter isthe worker, second the pointer to free/unref and third the destroy
function.

Launching tasks

It's for thread-safety for sure to run tasks asynchronously exclusive. This means what ever you do it's safe
exceptional in view of third-party libraries that might have their own threads. To do your own task you should
inherit AgsTask base object and implement ::launch. This signal isinvoked after syncing the thread tree.

12

Multi-/Super-threaded tree

You can use either ags task_launcher_add task() or ags task launcher_add_task all() to add one respectively a
GList of tasks. The task shall report failures by calling ::failure signal.

Async message delivery

AgsMessageDelivery is a singleton. In order to get the instance of it cal AgsMessageDel i very*
ags_nessage_del i very_get i nstance() . Thelibrary routines only provide messages until you have
added an AgsM essageQueue with the appropriate namespace.

* libags - namespace used by libags.so0.3, libags thread.s0.3 and libags server.so0.3
* libags-audio - namespace used by libags_audio.s0.3

As you usually have one object or widget mapped to a specific object, you can poll the queue
by guint g_tineout_add(guint, GSour ceFunc, gpoi nter). Then forward the event
as you like. GSequencer does look for matching messages by sender using following GLi st *
ags_nessage_queue_find_sender (AgsMessageQueue*, GOhject*). Thisnot at least because
the recipient is most of the time not defined.

13

Chapter 4. The soundcard and
sequencer interface

With AgsSoundcard and AgsSequencer interface you can obtain information about output or input devices. Getting
the next buffer for playback something can be achieved, too. As well reading MIDI data from current buffer is
supported. Note these operations are performed all delayed in order to avoid concurrent memory access.

Latency is at most one buffer time. Operations on buffers might be performed non-blocking so the thread returns
earlier than expected. This has the advantage of controlling timings and let the thread continue to do more
synchronization runs. Real-time behaviour is indicated as all pending sync operations were fulfilled as the next
buffer is needed.

The Advanced Gtk+ Sequencer framework implements following soundcard objects. Note to register soundcards
by a sound server make use of AgsSoundServer interface. This applies to JACK, Pulseaudio and CoreAudio
backend.

» AgsDevout ALSA and OSSv4 soundcard output.

e AgsDevin ALSA and OSSv4 soundcard input.

* AgsPulseDevout Pulseaudio outpult.

» AgslackDevout JACK Audio Connection Kit output.

» AgslackDevin JACK Audio Connection Kit input.

» AgsWasapiDevout Windows soundcard output.

» AgsWasapiDevin Windows soundcard input.

* AgsCoreAudioDevout macos soundcard output.

» AgsCoreAudioDevin macos soundcard input.

The Advanced Gtk+ Sequencer framework implements following sequencer objects.
» AgsMidiin ALSA and OSSv4 MIDI input.

» AgslackMidiin JACK Audio Connection Kit MIDI input.
» AgsCoreAudioMidiin macos MIDI inpuit.

Gathering PCM information of soundcard

In this short example we just get some information out of AgsSoundcard by using void
ags_soundcard_pcm i nf o(AgsSoundcar d*, gchar*, gui nt *, gui nt *, gui nt *,
guint*, guint*, guint*, GError*).Ittellsusthecardidentifier, minimum and maximum supported
audio channels, samplerate and buffer size.

Example 4.1. PCM information from AgsSoundcard

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAppl i cati onContext *application_context;

14

The soundcard and
sequencer interface

Gbj ect *soundcard;

CGList *start _|ist;

gui nt channel s_m n, channel s_max;

guint rate_mn, rate_max;

gui nt buffer_size _mn, buffer_size_max;

CError *error;

application_context = ags_application_context_get_instance();

start_list = ags_sound_provider_get_soundcar d(AGS_SOUND PROVI DER(appl i cati on_context));

if(start_list !'= NULL){

soundcard = G OBJECT(start _|ist->data);

error = NULL;

ags_soundcard_pcm i nf o(AGS_SOUNDCARD(soundcar d),
&channel s_ni n, &channel s_nax,
& ate_mn, &rate_max,
&uffer_size mn, &uffer_size nax,
&error);

if(error !'= NULL){
g_warni ng(" %", error->nsQ);

g_error_free(error);

}
}

g list free full(start_list,
(CDestroyNotify) g_object_unref);

Obtain audio buffer

Here we get audio buffer from AgsSoundcard and write some sine synth tone at 440 Hz. First we get presets from
soundcard, then we fill the AgsSynthUtil struct and finally compute the sine sound using utility function.

Example 4.2. Get AgsSoundcard buffer
#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAppl i cati onContext *application_context;
Gbj ect *soundcard;
AgsSynthUtil synth_util;

Glist *start_|ist;

15

The soundcard and
sequencer interface

voi d *buffer;

gui nt audi o_channel s;
gui nt sanpl erat e;
gui nt buffer_|ength;
gui nt format;

application_context = ags_application_context_get_instance();
start_list = ags_sound_provi der_get_soundcar d(AGS_SOUND PROVI DER(appl i cati on_context));

if(start_list !'= NULL){
soundcard = G OBJECT(start _|ist->data);

i f(ags_soundcard_i s_pl ayi ng(AGS_SOUNDCARD(soundcard))) {
buf fer = ags_soundcard_get buffer (AGS_SOUNDCARD(soundcard)) ;

ags_soundcard_get _preset s(AGS_SOUNDCARD(soundcar d),
&audi o_channel s,
&sanpl er at e,
&buf fer | engt h,
& ormat) ;

synth_util.source = buffer;
synth_util.source_stride = audi o_channels;

synth_util.buffer_length = buffer_|ength;
synth_util.audio_buffer_util_format = ags_audi o _buffer_util _format_from soundcard(f
synth_util.sanplerate = sanplerate;

synth_util.synth_oscillator_nobde = AGS_SYNTH OSCI LLATOR _SIN,;

synth_util.frequency = 440.0;
synth_util.phase = 0.0;
synth_util.volume = 1.0;

synth_util.franme_count = buffer_|ength;
synth_util.offset = 0;

ags_soundcard_| ock_buf f er (AGS_SOUNDCARD(soundcar d),
buffer);

ags_synth_util _conpute_sin(&ynth_util);

ags_soundcar d_unl ock_buf f er (AGS_SOUNDCARD(soundcar d) ,
buffer);
}
}

g list free full(start_list,
(CDestroyNotify) g_object_unref);

Read from MIDI device

16

The soundcard and
sequencer interface

Example 4.3. Get AgsSequencer buffer
#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAppl i cati onCont ext *application_context;

Ghbj ect *sequencer;

Glist *start_|ist;

void *mdi _buffer;

gui nt buffer_Iength;

application_context = ags_application_context _get instance();

start _|ist = ags_sound_provi der _get sequencer (AGS_SOUND PROVI DER(appl i cation_context));

if(start _list !'= NULL){
sequencer = G OBJECT(start _|ist->data);

i f(ags_sequencer _is_recordi ng(AGS_SEQUENCER(sequencer))){
buffer |l ength = 0;
m di _buffer = ags_sequencer get buffer (AGS_SEQUENCER(sequencer),
&buf fer | ength);

if(mdi_buffer I'= NULL &&
buffer length > 0){
guchar *mdi __iter

/* parse bytes */
mdi _iter = mdi_buffer;

while(mdi iter < mdi_buffer + buffer_|ength){
ags_sequencer | ock_buf fer (AGS_SEQUENCER(sequencer),
m di _buffer);

if(ags_mdi _util _is key on(mdi _iter)){
g_nessage("key % on with velocity %", (O0x7f & (mdi_buffer[1])), (O0x7f & (mdi _buf1

mdi _iter += 3;

}else if(ags_ mdi _util _is key off(mdi _iter)){
mdi _iter += 3;

}else if(ags mdi _util _is key pressure(mdi _iter)){
mdi _iter += 3;

}else if(ags_mdi _util_is change paraneter(mdi _iter)){
mdi _iter += 3;

}else if(ags_mdi _util _is pitch bend(mdi _iter)){
mdi _iter += 3;

}else if(ags_mdi _util _is change program(mdi iter)){
mdi _iter += 2;

}else if(ags_mdi _util _is change pressure(mdi iter)){

mdi _iter += 2;

17

The soundcard and
sequencer interface

}else if(ags_mdi _util _is_sysex(mdi_iter)){
gui nt n;

/* sysex */
n = 0;

while(midi iter[n] != 0xf7){

n++;
}
mdi_iter += (n + 1);

}else if(ags_mdi _util _is_song_position(mdi_iter)){
mdi _iter += 3;

}else if(ags_mdi _util _is_song_select(mdi_iter)){
mdi _iter += 2;

}else if(ags_mdi _util _is tune_request(mdi _iter)){
mdi _iter += 1;

}else if(ags_mdi _util _is_nmeta_event(mdi _iter)){
mdi_iter += (3 + midi_iter[2]);

}el se{

g_war ni ng("unexpected byte %", mdi_iter[0]);

mdi _iter++;

}

ags_sequencer _unl ock_buf f er (AGS_SEQUENCER(sequencer),
m di _buffer);
}
}
}
}

g list free full(start_list,
(CDestroyNotify) g_object_unref);

18

Chapter 5. AgsAudio a container of
AgsChannel

AgsAudio contains a pointer to your notation and automation data. It hasits own recall context, AgsRecallAudio.
It organizes your recycling contices and thus having an associated AgsRecalllD for running contices. Further
AgsAudio is your topmost nesting level of AgsAudioSignal. You might traverse the layersin following order:

i. AgsAudio

ii. AgsChannel

iii. AgsRecycling
iv. AgsAudioSignal

In order the audio processing threads are capable to iterate the audio tree, you need to set either
(AGS_AUDIO_SYNC) or (AGS_AUDIO_SYNC | AGS_AUDIO_ASYNC) flags. Further if your AgsAudio
is a source of AgsAudioSignal you need to set both flags (AGS AUDIO_OUTPUT_HAS RECYCLING |
AGS _AUDIO_INPUT_HAS RECYCLING).

If you set AGS AUDIO_SYNC flag, this causes the output and input channels to be aligned straight. Eg. input
line O goes to output line 0, input line 1 goesto output line 1 ...

If you set both flags AGS_AUDIO_SYNC and AGS AUDIO_ASYNC, output and input is not aligned straight.
Eg. you have 2 audio channels, 1 output pad and 8 input pads, then input line 0 goes to output line 0, input line
1 goesto output line 1, input line 3 goes to output line 0 ...

It is only possible to have mulitple output pads if you have AgsRecycling assigned to AgsOutput of AgsAudio.
Thisis usually done by sources like instruments.

AgsAudioSignal keeps your audio data as a GList of buffers. AgsRecycling is your nested tree to AgsChannel,
giving you the opportunity to emit :;:add audio_signal or ::remove audio_signal by producer and to have many
consumers. AgsChannel is your opposite to an audio channel representing asingle line. AgsAudio keeps track of
all of them. Y ou might want to add your audio object to an AgsSoundcard.

You may resize the count of pads or audio channels with voi d ags_audi o_set _pads(AgsAudi o*,
Glype, guint, guint) andvoid ags_audi o_set audi o_channel s(AgsAudi o*, gui nt,
gui nt) . Like in the following example the channels are adjusted and notation is added.

Example5.1. Using AgsAudio

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAudi o *audi o;
AgsNot ati on *notation;

AgsAppl i cati onContext *application_context;
Gbj ect *current _soundcar d;
GLi st *start_soundcard;

gui nt audi o_channel s;
gui nt out put _pads, input_pads;

19

AgsAudio a container
of AgsChannel

guint i;

/* get application context and soundcard */
application_context = ags_application_context_get_instance();

start_soundcard = ags_sound_provi der _get _soundcar d(AGS_SOUND_PROVI DER(appl i cati on_cont e:
current _soundcard = start_soundcard->dat a;

/* creat audio and resize channels */
audi o_channel s = 2;

out put _pads = 1;
i nput _pads = 88;

audi o = ags_audi o_new(current _soundcard);
ags_audi o_set _fl ags(audi o,
(AGS_AUDI O_SYNC |
AGS_AUDI O_ASYNC |
AGS_AUDI O QUTPUT_HAS_RECYCLI NG |
AGS_AUDI O_| NPUT_HAS_RECYCLI NG)) ;

ags_audi o_set _audi o_channel s(audi o,
audi o_channel s) ;

ags_audi o_set _pads(audi o,
AGS_TYPE_QUTPUT,
out put _pads) ;

ags_audi o_set _pads(audi o,
AGS_TYPE_I NPUT,

i nput _pads);

/* add notation */
for(i = 0; i < audio_channels; i++){
notati on = ags_not ati on_new audi o,
i)
ags_audi o_add_not ati on(audi o,
not ati on);

}

g list free full(start_soundcard,
(CDestroyNotify) g_object_unref);

AgsNotation and AgsNote

AgsAudio provides many AgsNotation objects for one single audio channel. They all have a different :timestamp
property. Usually a new AgsNotation object is introduced as AGS NOTATION_DEFAULT_OFFSET is
exceeded. So AgsNotation can hold at most 1024 x-positions of AgsNote.

You might want to query a GList of AgsNotation by the matching AgsTimestamp using
AGS TIMESTAMP_OFFSET.

e void ags_notation_find near tinestanp(CGList*, guint, AgsTi mestanp*)
The notation object stores your notes as a GList. You can add or remove a note by calling appropriate function:

e void ags_notation_add_not e(AgsNot ati on*, AgsNote*, gbool ean)

20

AgsAudio a container
of AgsChannel

e ghool ean ags_notation_renpbve note at_position(AgsNotation, guint, guint)

The notation object supports selection of notes. There are functions available to select a single point or aregion
of the notation. Y ou may find specific notes by calling:

e AgsNot e* ags_notation_find_point(AgsNotation*, guint, guint, gbool ean)

e GQist* ags_notation_find region(AgsNotation*, guint, guint, guint, guint,
gbool ean)

To copy & paste notes you might want to select aregion first. Then copy the selection and insert it using new
x_offset |ater.

Example 5.2. Using AgsNotation Clipboard
#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAudi o *audi o;

AgsNot ati on *notation;

AgsNot e *note;

AgsAppl i cati onCont ext *application_context;
Gbj ect *current _soundcar d;

xm Node *cli pboard;

GLi st *start_soundcard;

gui nt audi o_channel s;

gui nt out put _pads, input_pads;

guint i;

/* get application context and soundcard */
application_context = ags_application_context _get instance();

start_soundcard = ags_sound_provi der _get soundcar d(AGS_SOUND PROVI DER(appl i cati on_cont e
current _soundcard = start_soundcar d- >dat a;
audi o_channel s = 1;

out put _pads = 2;
i nput _pads = 88;
audi o = ags_audi o_new(current _soundcard);
ags_audi o_set fl ags(audio,
(AGS_AUDI O_SYNC |
AGS_AUDI O_ASYNC |
AGS_AUDI O_OUTPUT_HAS RECYCLI NG |
AGS_AUDI O_| NPUT_HAS RECYCLI NG)) ;

ags_audi o_set audi o_channel s(audi o,
audi o_channel s) ;

21

AgsAudio a container
of AgsChannel

ags_audi o_set _pads(audi o,
AGS_TYPE_QUTPUT,
out put _pads) ;

ags_audi o_set _pads(audi o,
AGS_TYPE_I NPUT,

i nput _pads);
notati on = ags_not ati on_new audi o,
0);
ags_audi o_add_not ati on(audi o,

not ati on);

for(i = 0; i < 16; i++){
note = ags_note new with offset(i * 4, (i * 4) + 1,
0);
ags_not ati on_add_not e(not ati on,
not e,
FALSE) ;

}

/* select, copy & paste */
ags_notation_add_region_to_sel ection(notation,
0, O,
64, 1,
TRUE) ;

cli pboard = ags_notati on_copy_sel ecti on(notation);
ags_notation_insert_fromclipboard(notation,

cli pboard,

TRUE, 64,

FALSE, 0);

AgsAutomation and AgsAcceleration

The automation objects stores your accelerations as a GList. There are analogous to notation functions to add or
remove accelerations.

e void ags_autommtion_add_accel erati on(AgsAut onati on*, AgsAccel erati on*,
gbool ean)

e ghool ean ags_autonmti on_renobve_accel erati on_at _position(AgsAut omati on*,
gui nt, gdoubl e)

The automation object provides functions to lookup a specific point or region, too.

e AgsAccel eration* ags_automati on_find_poi nt (AgsAut omati on*, guint, gdoubl e,
gbool ean)

e GList* ags_automation_find_regi on(AgsAut omati on*, guint, gdouble, guint,
gdoubl e, gbool ean)

AgsWave and AgsBuffer

Thewave objectsstoresyour buffersasaGList. Thereare anal ogousto notation functionsto add or remove buffers.

e void ags_wave_add_buffer (AgsWave*, AgsBuffer*, gbool ean)

22

AgsAudio a container
of AgsChannel

e ghool ean ags_wave_renove_buffer(Ags\Wave*, AgsBuffer*, gbool ean)

AgsAudio holds a sorted list of AgsWave objects, gi nt ags_wave_sort _func(gconst poi nter,
gconst poi nt er) does the actua sorting. You can use it with CGList*
g_list_insert_sorted(GList*, gpointer, GCompareFunc).

AgsWave holds a sorted list of AgsBuffer objects, gint ags_buffer_sort_func
(gconst poi nt er, gconst poi nter) does the actua sorting. You can use it with GList*
g_list_insert_sorted(CGist*, gpoi nt er, CConpar eFunc) . AgsWavetimestamp uses

sample position with matching samplerate. As using void ags_tinmestanp_set _ags_of f set
(AgsTi mest anmp*, gui nt 64) ags offset equals 0 is your very first sasmple. You have to introduce after
AGS_WAVE_DEFAULT_BUFFER _LENGTH * sanpl er at e samples a new AgsWave object. The actual
playback recall does bisect AgsWave and AgsBuffer in order to get current playing audio data.

AgsBuffer:data contains your actual audio data of AgsBuffer:format type. AgsBuffer:x is the actual sample
position with matching samplerate.

Note audio effects are not applied to AgsWave but to AgsAudioSignal. The program flow is as following:
1. ags-fx-playback does feed AgsWave to AgsAudioSigna of Agslnput.
2. ags-fx-buffer does buffer AgsAudioSignal from Agslnput to AgsOutput.

3. Ancther AgsAudio containing ags-fx-playback, then it plays it on your soundcard. Assumed you prior linked
the the audio tree.

In this example, we first read audio data from 2 different files and concat the returned AgsWave objects. Note if
you want to read multi-channel data, you have to modify the example with afor loop or such, to copy overlapping
AgsBuffer. AgsBuffer:x shall be unique for specific audio channel.

Example5.3. Concat AgsWave

#i ncl ude <glib. h>

#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>
#i ncl ude <ags/|i bags-audi o. h>

#defi ne FI LENAME A "test 000. wav"
#define FILENAME B "test 001. wav"

AgsAudi o *audi o;
AgsAudi oFil e *audio_file;

AgsTi nestanp *tinestanp_a, *tinestanp_b;
AgsAppl i cati onContext *application_context;
Gbj ect *current _soundcar d;

xm Node *cli pboard

GLi st *start_soundcard;

Glist *start_wave_a, *end_wave_a;

Glist *start_wave_b;

guint64 file_a frame_count;

gui nt audi o_channel s;

gui nt out put _pads, input_pads;
guint i;

23

AgsAudio a container
of AgsChannel

/* get application context and soundcard */
application_context = ags_application_context_get_instance();

start_soundcard = ags_sound_provi der _get _soundcar d(AGS_SOUND_PROVI DER(appl i cati on_cont e:
current _soundcard = start_soundcard->dat a;
audi o_channel s = 1;

out put _pads = 1;
i nput _pads = 1;

audi o = ags_audi o_new(current _soundcard);
ags_audi o_set _fl ags(audi o,
(AGS_AUDI O_SYNC |
AGS_AUDI O QUTPUT_HAS_RECYCLI NG |
AGS_AUDI O_| NPUT_HAS_RECYCLI NG)) ;

ags_audi o_set _audi o_channel s(audi o,
audi o_channel s) ;

ags_audi o_set _pads(audi o,
AGS_TYPE_QUTPUT,
out put _pads) ;

ags_audi o_set _pads(audi o,
AGS_TYPE_I NPUT,

i nput _pads);

/* open first audio file */

audio_file = ags_audio_file_new(FI LENAVE A,
current _soundcard,
-1);

ags_audio_file_open(audio_file);

ags_sound_r esour ce_i nf o(AGS_SOUND RESOURCE(audi o_fil e->sound_r esource),
&ile_a frame_count,
NULL, NULL);

start_wave_a = ags_sound_resource_read_wave(AGS_SOUND RESCURCE(audi o_fil e->sound_r esour
current _soundcard,
0, // change to -1 for all audio channels
Ol
0.0, 0);

/* open second audio file */

audio_file = ags_audio_file_new(FI LENAVE B,
current _soundcard,
-1);

ags_audio_file_open(audio_file);

start_wave_b = ags_sound_resource_read_wave(AGS_SOUND RESCURCE(audi o_fil e->sound_resour
current _soundcard,
0, // change to -1 for all audio channels
file_a frane_count,
0.0, 0);

/* concat AgsWave */

24

AgsAudio a container
of AgsChannel

audi o- >wave = start_wave_a,

end_wave_a = g_list_last(start_wave_a);

ti mestanp_a = ags_wave_get _tinestanp(end_wave_a->dat a) ;
ti mestanp_b = ags_wave_get _tinestanp(start_wave_ b->data);

if(ags_tinmestanp_get_ags_offset(timestanp_a) == ags_tinestanp_get ags_offset(tinmestanp_|
CGList *start_buffer_a, *end buffer_a,;
CGList *start_buffer_b, *buffer_b;

start_buffer_a = ags_wave_get buffer(start_wave_a->data);
end_buffer_a = g list_last(start_buffer_a->data);

buffer b =
start_buffer_b = ags_wave_get buffer(start_wave_ b->data);

i f(ags_buffer_get_ x(buffer_b->data) == ags_buffer_get_ x(end_buffer_a->data))
AgsBuf fer *current_m x_buffer_b;

current_mx_buffer_b = start_buffer_b->data;
start_buffer_b = start_buffer_b->next;

ags_audi o_buffer_util _copy_buffer_to_buffer(AGS BUFFER(start _buffer_a->data)->dat a,

current_m x_buffer_b->data, 1, O,
buf fer_size, ags_audi o_buffer_util _get_copy_node(ags_audi o_buffer_util _format_fro
ags_audi o_buffer_util _format_from soundcard(ags_buffer_get format(current_|

end_buffer_a->next = start_buffer_b;

if(start_buffer_b !'= NULL){
start_buffer_b->prev = end_buffer_a;

}

}el se{
end_buffer_a->next = start_buffer_b;
start_buffer_b->prev = end_buffer_a;

}

}el se{
end_wave_a->next = start_wave_b;
start_wave_b->prev = end_wave_a;

}

AgsRecalllD and AgsRecyclingContext

Asmentioned previously in this chapter AgsAudio organizesyour recall ids and recycling contices. Thefollowing
functions are here to add and remove them.

 void ags_audi o_add_recal | _i d(AgsAudi o*, Gbj ect*)
e void ags_audi o_renove_recal | _i d(AgsAudi o*, GObj ect*)
e void ags_audi o_add_recycling_cont ext (AgsAudi o*, GObj ect*)

e void ags_audi o_renove_recycling_cont ext (AgsAudi o*, GObj ect*)

25

AgsAudio a container
of AgsChannel

Dealing with recalls

Since AgsAudio is your entry point to do sound processing there are some useful functions to
set it up, but later on them. Instances of AgsRecallAudio base object may be added or removed
with voi d ags_audi o_add_recal | (AgsAudi o*, Gbj ect *, gbool ean) and void
ags_audi o_renove_recal | (AgsAudi o*, Gbject*, gbool ean).

All audio processing is performed by one single function. Wheter you want to initialize, run or cancel playback.
Thisisal doneby voi d ags_channel _recursive_run_stage(AgsChannel *, gint, guint).

The following signals are triggered during playback ::play, ::tact and ::done - ::cancel and ::remove during
termination.

Get port of recall

Ports are accessed as CLi st * from recall by accessing AgsRecall:port property.

Below an exampl e shows howto instantiate an application context implementation, obtain it by itsgeneric function
ags_application_context _get instance() and create an audio object with ags-fx recalls.

Therecalls port "./volume[0]" ismodified by ags_port _safe_wite(AgsPort*, Gval ue*).

Example 5.4. Modify recall port

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|ibags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAudi o *audi o;
AgsRecal | Cont ai ner *play_contai ner, *recall _container;

AgsAppl i cati onContext *application_context;
Gbj ect *current _soundcar d;

GLi st *start_soundcard;

GList *start _recall, *recall;

GList *start_port, *port;

gui nt audi o_channel s;

gui nt out put _pads, input_pads;

gf l oat vol une;

ags_audi o_application_context _new();

/* get application context and soundcard */
application_context = ags_application_context _get instance();

start_soundcard = ags_sound_provi der _get soundcar d(AGS_SOUND PROVI DER(appl i cati on_cont e
current _soundcard = start_soundcar d- >dat a;

/* creat audio and resize channels */
audi o_channel s = 2;

out put _pads = 1;

26

AgsAudio a container
of AgsChannel

i nput _pads = 1;

audi o = ags_audi o_new(current _soundcard);
ags_audi o_set _audi o_channel s(audi o,
audi o_channel s) ;

ags_audi o_set _pads(audi o,

AGS_TYPE_QUTPUT,

out put _pads) ;
ags_audi o_set _pads(audi o,

AGS_TYPE_I NPUT

i nput _pads);

/* add ags-fx-volune */
pl ay_cont ai ner = ags_recal |l _contai ner_new);
recal | _container = ags_recall _contai ner_new);

start_recall = ags_fx_factory_create(audio,
pl ay_cont ai ner, recall _contai ner
"ags-fx-vol une",
NULL,
NULL,
0, audi o_channel s,
0, i nput_pads,

?:AGS_FX_FACT(PY_ADD | AGS_FX_FACTORY_| NPUT),
0);

recall = start _recall;

vol une = 0.75;

whil e(recal |l !'= NULL){

start_port = NULL,

g_obj ect _get(recal |l ->dat a,
"port", &start_port,
NULL) ;

port = ags_port_find_specifier(start_port,
"./volume[0]");

i f(port != NULL)({
Gval ue value = G VALUE INT;

g_val ue_init (&val ue,
G _TYPE_FLOAT) ;

g_val ue_set fl oat (&val ue,
vol une) ;

ags_port_safe_wite(port->data,
&val ue);

}

g list free full(start_port,
(CDestroyNotify) g_object_unref);

/* iterate */
recall = recall->next;

27

AgsAudio a container
of AgsChannel

}

g list free full(start_recall,
(CDestroyNotify) g_object_unref);

g list free full(start_soundcard,
(CDestroyNotify) g_object_unref);

Open audio files

Thereisahandy functioncalledvoi d ags_audi o_open_fil es(AgsAudi o*, GSLi st*, gbool ean,
gbool ean) taking as parameter filenames as GSList, overwrite channels and create channels as boolean.
Filenames is a single linked list of strings, overwrite channels means use pre-alocated channels and
create_channelsto allow instantiate new channels. The boolean parameters can be combined as you want.

Audio container

The AgsAudioContainer object can open Soundfont2, Gig and DLS2 files by using libinstpatch. The
AgsAudioContainer:sound-container field implements AgsSoundContainer and provides you many functions to
dealing with container formats.

There are convenient functions to obtain a GObject subtype implementing AgsSoundResource:
e GList* ags sound_container_get resource_all()

e GList* ags sound_container_get resource_by name()

» GList* ags sound_container_get_resource by index()

e GList* ags sound_container_get_resource_current()

Audio file

The AgsAudioFile object can open FLAC, WAV, AIFF and OGG using libsndfile. The AgsAudioFile:sound-
resource field implements AgsSoundResource and provides you many functionsto dealing with audio file formats.

» void ags sound_resource_info()

» void ags sound_resource_set_presets()
» void ags sound resource get presets()
» guint ags sound_resource read()

» void ags sound_resource_write()
 void ags sound_resource flush()

» void ags sound_resource_seek()

28

Chapter 6. Your tree linked with
AgsChannel

AgsChannel forms your audio processing tree and contains recalls, too. Y ou might want to iterate the channels of
your audio object or just call one of these functions:

* AgsChannel * ags_channel _first (AgsChannel *)

» AgsChannel * ags_channel _I ast (AgsChannel *)

» AgsChannel * ags_channel _nt h(AgsChannel *, gui nt)

» AgsChannel * ags_channel _pad first (AgsChannel *)

e AgsChannel * ags_channel pad_| ast (AgsChannel *)

* AgsChannel * ags_channel _pad_nt h(AgsChannel *, gui nt)

As you see there is a grained access to channels. You can lookup channels from with the same audio channel
with the functions containing pad in its name. An other exciting feature is finding channels having an assigned
recycling. These functions operate on the very same audio channel.

» AgsChannel * ags_channel _first_with_recycling(AgsChannel *)

e AgsChannel * ags_channel | ast_with_recycling(AgsChannel *)

e AgsChannel * ags_channel prev_wi th_recycli ng(AgsChannel *)

* AgsChannel * ags_channel _next_wi th_recycl i ng(AgsChannel *)

Following object fields are changed during linking. Further a new AgsRecycling might be instantiated to be
providedasfirst_recyclingandl ast_recycl i ng of specified Agsinput eg. if itiSNULL. So thisinput
has got its very own recycling as specified by AGS_AUDI O_| NPUT_HAS_RECYCLI NG

» AgsChannel : i nk recursive AgsChannel:first-recycling and AgsChannel:| ast-

recycling as needed AgsRecycling: parent AgsRecycling: prev or
AgsRecycl i ng: next

The pattern

There can AgsPattern being added to a channel by voi d
ags_channel _add_pattern(AgsChannel *, GObject*). Later if not used anymore likewise call
voi d ags_channel renove_ pattern(AgsChannel *, Gbject*).

Example 6.1. Adding AgsPattern
#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsChannel *channel ;

29

Y our tree linked with AgsChannel

AgsPattern *pattern;

gui nt n_bank_0, n_bank_1;
gui nt | engt h;

/* create channel */
channel = ags_channel _new(NULL);

/* create pattern, set dinmension and add it to channel */
n_bank_ 0 4,
n_bank 1 12;

| ength = 64;

pattern = ags_pattern_new();
ags_pattern_set _di m pattern,
n_bank_0,
n_bank 1,
| engt h);
ags_channel _add_pattern(channel,
pattern);

Linking overview

In this section you get some knowledge about AgsChannel internals. Here you get an overview of the audio layer.
All coderelated to it is located in subdirectory <ags/audio>. Linking AgsChannel is a quiet complex thing but If
you wishtodo soyou canjust cal voi d ags_channel _set |ink(AgsChannel *, AgsChannel *,
CGEr ror **) and thiswill the especialy covered here.

AgsAudio, AgsChannel and AgsRecycling are involved in linking. When talking about linking we should view
AgsChannel objects as networked and therefore exists an additional nested network of AgsRecycling objects.

The AgsAudio object gives clarification about how AgsChannel has to be accessed either synchronously or
asynchronously. Further it tells us whether AgsOutput or Agslinput has a new audio stream which causes in
conjunction a dedicated AgsRecycling associated with the appropriate AgsChannel.

30

Y our tree linked with AgsChannel

gsAudio#0

in#l@

DUt#DO out#1

AgsAudio# l ﬂut#[:l® eut#l@

in#0 @m#l g2 Bin# 3o 24 @&{3’ 27O

N S

gsAudio#2

yr
W
nut#D*h' out#F 1L [AgsAudio#3

out

DOin#lO in#DOin#lO

Table6.1. AGS network layer table

object flags
Audio#0 AGS AUDIO_SYNC|

AGS _AUDIO_OUTPUT_HAS RECYCLING
Audio#l AGS AUDIO_ASYNC

31

Y our tree linked with AgsChannel

object flags
Audio#2 AGS AUDIO_ASYNC|

AGS AUDIO_OUTPUT_HAS RECYCLING
Audio#3 AGS _AUDIO_ASYNC|

AGS AUDIO_OUTPUT_HAS RECYCLING
Audio#4 AGS AUDIO _ASYNC|

AGS AUDIO_OUTPUT_HAS RECYCLING

* green:
 Bidirectional linked AgsChannel to an other AgsChannel.
e Generaly you link an AgsOutput to an Agsinput.
o red:
 Bidirectional linked AgsRecycling to an other AgsRecycling on the same level.
e They arelinked across AgsAudio objects.
« Same level meansthe linked AgsRecycling are all child nodes of a parent AgsRecycling.
o yellow:
« Unidirectional linked AgsRecycling to an AgsChannel.

e First AgsRecycling of an AgsOutput and last AgsRecycling of an (other) AgsOutput are linked to an
AgsChannel.

Limitations

» You may not create any kind of loops.

* You may not set AGS AUDIO INPUT_HAS RECYCLING without setting
AGS AUDIO_OUTPUT_HAS RECYCLING flag.

Hands-On

There may be two ways how you can link AgsChannel objects.

Example 6.2. Prerequisites
#i ncl ude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|ibags. h>
#i ncl ude <ags/|i bags-audio. h>

AgsAudi o *mast er _audi o, *sl ave_audi o;
AgsLi nkChannel *I|i nkChannel ;

AgsAppl i cati onCont ext *application_context;
AgsTaskLauncher *task_| auncher;

Gbj ect *soundcard;

32

Y our tree linked with AgsChannel

CGError *error;

application_context = ags_application_context_get_instance();
task_l auncher = ags_concurrency_provi der_get task | auncher (AGS_CONCURRENCY_PROVI DER(app

/* create AgsAudi o objects */
mast er _audi o = (AgsAudi o *) g_object_new AGS_TYPE_AUDI O
"soundcard", soundcard
NULL) ;
sl ave_audi o = (AgsAudi o *) g_object_new AGS_TYPE_AUDI O
"soundcard", soundcard
NULL) ;

/* assign AgsAudi oSi gnal objects to master_audi o and sl ave_audio */
ags_audi o_set _fl ags(naster_audi o,
AGS_AUDI O_ QUTPUT_HAS RECYCLI NG) ;
ags_audi o_set _fl ags(sl ave_audi o,
(AGS_AUDI O ASYNC | AGS_AUDI O QUTPUT_HAS RECYCLI NG | AGS_AUDI O_I NPUT

/* create AgsChannel objects within master_audi o and slave_audio */
ags_audi o_set _audi o_channel s(mast er _audi o, 2);

ags_audi o_set _pads(master_audi o, AGS_TYPE_OUTPUT, 1);

ags_audi o_set _pads(master_audi o, AGS_TYPE_ | NPUT, 1);

ags_audi o_set _audi o_channel s(sl ave_audi o, 2);
ags_audi o_set _pads(sl ave_audi o, AGS TYPE QUTPUT, 1);
ags_audi o_set _pads(sl ave_audi o, AGS TYPE | NPUT, 8);

Assumed you know really what you do, you may be interested in following code.

Example 6.3. Thread-Unsafe way

/* link master_audio's input with slave_audi o's out put */

ags_channel _set | i nk(ags_channel _nt h(mast er _audi o->i nput, 0),
ags_channel _nt h(sl ave_audi o- >out put, 0),
&error);

ags_channel _set | i nk(ags_channel _nt h(mast er _audi o->i nput, 1),
ags_channel _nt h(sl ave_audi o->out put, 1),
&error);

But generally you wish to create an AgsTask object and let it to link the AgsChannel for you.

Example 6.4. M ultithread-Safe way

/* creating AgsLink task and add it to AgsDevout */
i nk_channel = ags_link_channel _new(ags_channel nth(naster_audi o->i nput, 0),
ags_channel _nt h(sl ave_audi o- >out put, 0));
ags_task | auncher _add task(task_| auncher,
I i nk_channel) ;

33

Y our tree linked with AgsChannel

i nk_channel = ags_link_channel _new(ags_channel _nt h(naster_audi o->i nput, 1),
ags_channel _nt h(sl ave_audi o- >out put, 1));
ags_task_| auncher _add_t ask(task_| auncher,
I i nk_channel) ;

Chapter 7. The recycling tree

AgsRecycling has a strong relation to AgsChannel although not every channel might have its very own recycling.
Rather having areference to astart and end region of an inter-connnected AgsRecycling. It may create or destroy
audio signals event based.

Inter-connected gets its meaning as void ags_channel _set _recycling(AgsChannel *,
AgsRecycl i ng*, AgsRecycl i ng*, gbool ean, gbool ean) invoked by void
ags_channel _set _|ink(AgsChannel *, AgsChannel *, GError**) connects AgsRecycling:next
and AgsRecycling:prev together from different channels. Providing you the AgsRecyclingContext. A recycling
context has generally one parent and many children from different channels.

AgsRecalllD points to one recycling context in order to make decisions of what level you are running in.
Theoretically super-threaded tree can run upto the recycling context level.

Note, recyclings have they own recall base object AgsRecallRecycling. Usualy, you do void
ags_recal |l _add_chil d(AgsRecal | *, AgsRecal | *) toinstancesinherit of AgsRecallChannelRun.

Add and remove audio signal

The two signals ::add_audio_signal and ::remove audio_signal should be invoked as adding or removing
AgsAudioSignal to an AgsRecycling. Recalls act as producer or consumer of AgsAudioSignal. They do basically
play notation or process your effects. Its are located in AgsAudio or AgsChannel.

Thereis generally a need for providing atemplate audio signal within your recycling. As this does this example.
This reduces the overhead of reading files for every playing during a button click, notation or pattern.

Example 7.1. AgsRecycling and AgsAudioSignal

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsRecycling *recycling;
AgsAudi 0Si gnal *tenpl ate;

AgsAppl i cati onCont ext *application_context;

Gbj ect *current_soundcar d;

GLi st *start_soundcard;

gui nt stream. ength;

application_context = ags_application_context get instance();

start_soundcard = ags_sound_provi der _get soundcar d(AGS_SOUND PROVI DER(appl i cati on_cont e
current _soundcard = NULL;

i f(start_soundcard != NULL){
current _soundcard = start_soundcar d- >dat a;
}

35

Therecycling tree

/* create recycling */
recycling = ags_recycling_newcurrent_soundcard);

/* create audio signal and add to recycling */
stream | ength = 5;

audi o_si gnal = ags_audi o_si gnal _new(current_soundcard,
recycling,
NULL,

stream | ength);
ags_audi o_si gnal _set _fl ags(audi o_si gnal,
AGS_AUDI O_SI GNAL_TEMPLATE) ;
ags_recycling_add_audi o_si gnal (recycli g,
audi o_si gnal) ;

g list free full(start_soundcard,
(CDestroyNotify) g_object_unref);

36

Chapter 8. Your audio data in
AgsAudioSignal

AgsAudioSignal isthe object orientated representation of your audio data. It hasa GList with data pointer to audio
buffers. There convenience functions to resize the stream.

* void ags_audi o_si gnal _stream resi ze(AgsAudi 0Si gnal *, gui nt)
 void ags_audi o_si gnal _stream safe _resi ze(AgsAudi 0Si gnal *, gui nt)
» void ags_audi o_si ghal _add_st rean{ AgsAudi oSi gnal *)

There exists a safe resize function because the audio signal might be in use and it doesn't allow to shrink beyond
used entries. This could be fatal if an effect processor is using the stream and it gets freed as it usesiit.

voi d ags_audi o_si gnal _duplicate_streanm AgsAudi oSi gnal *, AgsAudi 0Si gnal *) can
be used to blue-print one audio signals buffer to an other audio signal. Or you might call AgsAudi oSi gnal *
ags_audi o_signal _get tenpl ate(G.i st*) fromyour AgsRecycling internal GList of audio signals
to get the template.

37

Chapter 9. Effects

You may directly inherit by <agsaudio/ags recall.h> to do some wicked stuff. But generally you should inherit
by these subclasses of AgsRecall:

» <agsaudio/ags recall_audio.h>

» <agsaudio/ags recall_audio_run.h>

» <ags/audio/ags recall_channel.h>

» <agYaudio/ags recall_channel_run.h>
» <agsaudio/ags recall_recycling.h>

» <ggsaudio/ags recall_audio_signal.h>

Y ou probably wish to have different context for fields of an effect, that's what these objects take on. But before
we cover them in detail, we take alook at the lifecycle an effect must accomplish.

Play/recall context

Don't mix this context up with static/runtime context we talked before. The AgsRecall may have two faces or may
be just one for play context.

The play context will be called in case the higher level of AgsRecycling will output to adevice e.g. the soundcard
and no further processing will be done.

Therecall context meansthat the AgsRecall will pass one or more cycles of copying or sequencing. Thisdesignis

intended to make ags as modul ar and reusable over different use cases as possible. Practically it should be possible
to chain up severa sequencers.

Hands-On instantiating an effect

After you got an overview of the basic lifecycle of an effect it'stimeto create an effect. In this guide we will cover
instatiating an effect by using the echo effect. In the following chapter we'll take alook inside the echo effect.

AgsRecallContainer

AgsRecallContainer isn't arecall itself but you can useit to retrieve a different context.

Example9.1. Creating AgsRecallContainer

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAudi o *audi o;
AgsChannel *channel ;
AgsRecal | Cont ai ner *echo_cont ai ner;

38

Effects

Gbj ect *soundcard;

soundcard = ags_al sa_devout _new();

audi o = ags_audi o_new(devout);

/* create the container */

recal | _contai ner = (AgsRecal | Contai ner *) g_object_new AGS_TYPE_RECALL_CONTAI NER
NULL) ;

ags_audi o_add_recal | _cont ai ner (audi o,
(Gbj ect *) recall _container);

AgsRecallAudio context

Thisis acontext you want to use for fields applicable to the entire AgsAudio object.

Example 9.2. Creating AgsEchoAudio
#i ncl ude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/|i bags-audi 0. h>

AgsEchoAudi o *echo_audi o;
echo_audi o = (AgsEchoAudi o *) g_object _new AGS TYPE_ECHO AUDI O
"soundcard", soundcard
"audi 0", audio,
"recal |l -contai ner”, echo_contai ner
NULL) ;

ags_recal |l _set_flags(echo_audi o,
AGS_RECALL_TEMPLATE)

AgsRecallChannel context

This context you can use for fields applicable to the AgsChannel you want to modify.

Example 9.3. Creating AgsEchoChannel
#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsEchoChannel *echo_channel

echo_channel = (AgsEchoChannel *) g _object new AGS TYPE ECHO CHANNEL
"soundcard", soundcard

39

Effects

"channel ", channel

"recal |l -contai ner”, echo_contai ner

"del ay", (devout->frequency * (60 / devo
"repeat", 3,

"fade", -0.25,

"dry", 0.5,

NULL) ;

ags_recal |l _set_flags(echo_channel
AGS_RECALL_TEMPLATE)

AgsRecallAudioRun context

The AgsRecall AudioRun class will be duplicated for a parental running AgsChannel. There may be severa
AgsChannel objects as parental owning a run.

Example 9.4. Creating AgsEchoAudioRun

#i ncl ude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/|i bags-audi 0. h>

echo_audi o_run = (AgsEchoAudi oRun *) g_obj ect_new AGS_TYPE ECHO AUDI O RUN,
"soundcard", soundcard
"audi 0", audio,
"recal | -audi 0", echo_audi o,
"recal |l -contai ner”, echo_contai ner
NULL) ;

ags_recall _set _fl ags(echo_audi o_run,
AGS_RECALL_TEMPLATE)

AgsRecallChannelRun context

The AgsRecall Channel Run behaves like an AgsRecall AudioRun but is designated to an AgsChannel object.

Example 9.5. Creating AgsEchoChannelRun
#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/| i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsEchoChannel Run *echo_channel _run;

echo_channel _run = (AgsEchoChannel Run *) g object new AGS TYPE ECHO CHANNEL RUN
"soundcard", soundcard

40

Effects

"channel ", channel

"recal | -channel ", echo_channel,
"recal |l -contai ner”, echo_cont ai nel
NULL) ;

ags_recal |l _set_flags(echo_channel _run,
AGS_RECALL_TEMPLATE) ;

The basic lifecycle of an effect

Inthis section I'll introduce the keyword run which can be understood as a playing instance. But | rather talk about
run because it's not guaranted that the recall outputs directly to a device.

41

Effects

(Begin/Start)

create channel
template

recycling
changed

create
AgsRecallRecycling

Mo

running

25

"

Effects

AgsRecdll life-cycle

The implemented effect as a subclass of AgsRecall resides as template on the appropriate AgsAudio or
AgsChannel.

When recycling changes oninput, new AgsRecallRecycling will be added. Thisclassfunction may be of relevancy:
» AgsChannel::recycling-changed()

As a new run occures the AgsRecallAudioRun and AgsRecallChannelRun will be duplicated, dependencies
resolved, state initialized and enter the play loop hierarchy. These class functions will be called on the recall:

» AgsChannel::duplicate-recall()

« This function will be called on the template object to instantiate the the object which will pass further
processing.

Further processing:
« AgsRecall::resolve-dependency/()

» Therecall may want to depend on a other recall (eg. a counter) and may ignore following calls while rather
do processing on an event of the dependency.

» AgsRecdl::run-init-pre(), AgsRecall::run-init-inter() & AgsRecall::run-init-post()
* Will be called only once for the run refering to dedicated AgsRecallID.

e AgsRecal::run-pre(), AgsRecall::run-inter() & AgsRecall::run-post()
* Will be called for each cycle of arun refering to AgsRecallID.

¢ There may be more than one AgsRecalllD for atemplate i.e. there can exist more than one run at the very
sametime.

As soon as an add_audio_signal event will be emitted on an AgsRecycling, the AgsRecall AudioSignal subclass
will be instantiated which performs audio stream manipulation. These class functions will be called on the recall:

» AgsRecdl::run-init-pre(), AgsRecall::run-init-inter() & AgsRecall::run-init-post()

» AgsRecdl::automate(), AgsRecal::feed-input-queue(), AgsRecall::run-pre(), AgsRecal::run-inter(),
AgsRecall::run-post() & AgsRecall::feed-output-queue()

When you're done with processing call:

» AgsRecall::done()

A closer look at effects

As mentioned before audio processing will be done within an AgsRecall AudioSignal subclass.

43

Chapter 10. Advanced Gtk+
Sequencer's fx engine

There a well know set of recalls described here. Additionally you might want to take advantage of recals
interfacing plugin APIs like LADSPA, DSSI or LV2. You can instantiate them simply with CLi st *
ags_fx_factory_create(AgsAudi o*, AgsRecal |l Container*, AgsRecall Container*,
gchar*, gchar *, gchar *, guint, guint, guint, guint, gint, guint, guint)

Example 10.1. Using ags_fx_factory_create()
#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|ibags. h>
#i ncl ude <ags/| i bags-audi o. h>

AgsAudi o *audi o;
AgsRecal | Cont ai ner *play_contai ner, *recall container

AgsAppl i cati onContext *application_context;
Gbj ect *current _soundcard;

GLi st *start_soundcard;
Glist *start _recall;

gui nt audi o_channel s;
gui nt out put _pads, input_pads;

ags_audi o_application_context _new();

/* get application context and soundcard */
application_context = ags_application_context _get instance();

start_soundcard = ags_sound_provi der _get soundcar d(AGS_SOUND PROVI DER(appl i cati on_cont e

current _soundcard = start_soundcar d- >dat a;

/* creat audio and resize channels */
audi o_channel s = 2;

out put _pads = 1;
i nput _pads = 88;

audi o = ags_audi o_new(current _soundcard);
ags_audi o_set audi o_channel s(audi o,
audi o_channel s) ;

ags_audi o_set pads(audi o,

AGS_TYPE_QUTPUT,

out put _pads);
ags_audi o_set pads(audi o,

AGS_TYPE_I NPUT

i nput _pads);

Advanced Gtk+
Sequencer's fx engine

/* add ags-fx-notation */
pl ay_cont ai ner = ags_recal |l _contai ner_new();
recal | _container = ags_recall _contai ner_new);

start_recall = ags_fx_factory_create(audio,
pl ay_cont ai ner, recall _contai ner,
"ags-fx-notation”,
NULL,
NULL,
0, O,
0, O,
0,
(AGS_FX_FACTORY_ADD | AGS_FX_FACTORY_I NPUT),
0);

g list free full(start_recall,
(CDestroyNotify) g_object_unref);

/* add ags-fx-volune */
pl ay_cont ai ner = ags_recal |l _contai ner_new();
recal | _container = ags_recall _contai ner_new);

start_recall = ags_fx_factory_create(audio,
pl ay_cont ai ner, recall _contai ner,
"ags-fx-vol une",
NULL,
NULL,
0, audi o_channel s,
0, i nput_pads,
0,
(AGS_FX_FACTORY_ADD | AGS_FX_FACTORY_I NPUT),
0);

g list free full(start_recall,
(CDestroyNotify) g_object_unref);

g list free full(start_soundcard,
(CDestroyNotify) g_object_unref);

ags-f x-buffer Buffer audio data, produces new destination as on
source occurs AgsRecycling::add_audio_signal().

ags- f x- pl ayback Play or capture audio dataand storeit in wave objects.

ags- f x- vol unme Adjust volume of audio data.

ags-f x- peak Calculate peak of audio data.

ags-f x-eql0 Adjust 10 band equalizer.

ags-f x-anal yse Get frequency hints using FFTW3.

ags-f x- envel ope Apply envelope data per piano roll note or pattern
note.

ags-fx-pattern Play audio data based on boolean patterns.

ags-fx-notation Play, capture and feed audio data based on notation.

45

Advanced Gtk+
Sequencer's fx engine

ags-f x-l adspa Interface LADSPA plugins.

ags-f x-dssi Interface DSSI plugins.

ags-fx-1v2 Interface LV 2 plugins.

ags-fx-vst3 Interface VST 3 plugins - requires libags-vst.so to be
available.

46

Chapter 11. Thread-safe audio ports

The AgsPort object providesyou awell defined API to saferead or write datato the AgsPort. Itsaccessis protected
by mutices. All actions on ports shall happen through ::safe-read, ::safe-write, ::safe-get-property or ::safe-set-
property.

AgsPort can contain various data types. But of only one type at the time. Automation happens by adjusting ports
and perhaps even applying an AgsConversion. Further it contains some meta-information about plugin name and
port specifier.

Get and set values

Y ou can achieve this by using GValue like;

#i ncl ude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/ i bags. h>
#i ncl ude <ags/|i bags-audi o. h>

AgsPort *port;
Gval ue value = {0,};

/* create port */
port = ags_port_new();

/* initialize and set value */
g_val ue_i nit (&val ue,
G TYPE_FLOAT) ;
g_val ue_set fl oat (&val ue,
0.0);

/* performthread-safe operation */
ags_port_safe wite(port,
&val ue);

47

Chapter 12. Putting all together

So far we have seen the most important objects involved doing an audio processing tree. Now we want to do
complete example putting all together. In this example we instantiate AgsAudioT hread and AgsChannel Thread to
play asimple pattern. The sound we use is generated using a sine wave.

In order that the threads are used we provide an appropriate AgsConfig. Further we define an AgsPattern and add
the needed recalls to do playback using the AgsFxFactory.

The example creates 2 different AgsAudio objects. One called master which doesthe actual playback and asecond
called slave doing the sequencer work. Since the dave is linked to the master, we only have to start slave, which
initializes the audio tree for playback.

The dave owns the audio signa and has to provide audio processing threads for it. This is done by
AGS_AUDI O QUTPUT_HAS RECYCLI NG flag. We set the ags-fx staging flags and the staging program. We
need to do this explicitely in view of reverse compatibility to the deprecated recall engine.

Note, here thread-safety doesn't matter. If you need to do more complex work-flows, you have to care about it.
In practice you wouldn't make direct use of any struct fields. Rather use the appropriate getter/setter functions
and take care of owner ship.

Usually, you wouldn't call directly voi d ags_channel _set |i nk(AgsChannel *, AgsChannel *,
GError **) , but rather usethe AgsLinkChannel task and add it to the AgsTaskL auncher. Else, everythingisfine.

Example 12.1. Simple pattern sequencer with master playback

#i nclude <glib. h>
#i ncl ude <gli b-object. h>

#i ncl ude <ags/|i bags. h>
#i ncl ude <ags/| i bags-audi o. h>

voi d setup_cal | back(AgsAppl i cati onContext *application_context, gpointer data);

AgsAudi o* setup_nast er (AgsAppl i cati onCont ext *application_context);
AgsAudi o* setup_sl ave(AgsAppl i cationContext *application_context);

#defi ne DEFAULT_CONFI G "[generic]\n" \
"aut osave-t hr ead=f al se\ n" \
"sinple-file=true\n" \

"di sabl e- f eat ur e=experi nental \ n" \
"segnent ati on=4/ 4\ n" \

"\ n" \

"[thread]\n" \

"nmodel =super -t hr eaded\ n" \

"super -t hr eaded- scope=channel \ n" \
"l ock- gl obal =ags-t hread\ n" \

"l ock- par ent =ags-recycling-thread\n" \
"\ n" \

"[soundcard] \ n" \

"backend=al sa\ n" \

"devi ce=def aul t\ n" \

"sanpl er at e=48000\ n" \
"buffer-size=1024\n" \

"pcm channel s=2\ n" \

"dsp- channel s=2\ n" \
"format=16\n" \

"\ n" \

48

Putting all together

"[recal]\ n" \
"aut o- sense=true\ n" \
n \ I,]II

voi d setup_cal | back(AgsAppl i cati onCont ext *application_context, gpointer data)

{

AgsAudi o *master, *slave
AgsChannel *start_output, *output;
AgsChannel *start _input, *input;

AgsSt art Audi o *start _audi o;

AgsThread *mai n_| oop;
AgsTaskLauncher *task_| auncher;

CError *error;
task_| auncher = ags_concurrency_provi der_get task_| auncher (AGS_CONCURRENCY_PROVI DER(a

/* main | oop */
mai n_| oop = ags_concurrency_provi der_get _mai n_| oop(AGS_CONCURRENCY_PROVI DER(appl i cat i

/* setup audio tree */
master = setup_naster(application_context);
sl ave = setup_sl ave(application_context);

[* set link */
start _i nput = NULL;
start_out put = NULL,

g_obj ect _get (master,
"input", &start_input,
NULL) ;

g_obj ect _get (sl ave,
"input", &start_output,
NULL) ;

i nput = start_input;

i f(input !'= NULL){
g_obj ect _ref (input);
}

output = start_output;

i f(output !'= NULL){
g_obj ect _ref (output);
}

whil e(i nput !'= NULL &&
out put != NULL) {
AgsChannel *next;

error = NULL;
ags_channel _set _|i nk(i nput,
out put,

49

Putting all together

&error);

if(error !'= NULL){
g_nessage(" %", error->nessage);

}

/* iterate output */
next = ags_channel _next (out put);

g_obj ect _unref (out put);
out put = next;

[* iterate input */
next = ags_channel _next (i nput);

g_obj ect _unref (i nput);

i nput = next;

}

start_audi o = ags_start_audi o_new(sl ave,
AGS_SOUND_SCOPE_SEQUENCER)

/* launch task */
ags_task_| auncher _add_t ask(task_| auncher,
start _audio);

i f(main_loop !'= NULL){
g_obj ect _unref (mai n_| oop) ;

}

i f(task_|l auncher !'= NULL){
g_obj ect _unref(task_I| auncher);

}

if(start_output != NULL)({
g_obj ect _unref(start_output);

}

if(start_input !'= NULL){
g_obj ect _unref(start_input);
}
}

AgsAudi o*
set up_nmast er (AgsAppl i cati onCont ext *applicati on_context)
{
AgsAudi o *audi o;
AgsChannel *channel
AgsChannel *start_out put;
AgsRecal | Cont ai ner *pl ayback_pl ay_cont ai ner
AgsRecal | Cont ai ner *pl ayback_recal | _cont ai ner

Gbj ect *soundcard;

CGList *start _|ist;
CGList *start_recall;

50

Putting all together

gui nt n_audi o_channel s, n_out put _pads, n_input_pads;
gi nt position;

/* get soundcard */
start_|ist = ags_sound_provi der_get _soundcar d(AGS_SOUND_PROVI DER(appl i cati on_cont ext)

soundcard = start_|ist->data

/* create master playback */
audi o = ags_audi o_new(soundcard);

n_audi o_channel s = 2;

n_out put _pads = 1;
n_i nput _pads = 1;

ags_audi o_set _audi o_channel s(audi o,
n_audi o_channel s);

ags_audi o_set _pads(audi o,
AGS_TYPE_QUTPUT,
n_out put _pads);

ags_audi o_set _pads(audi o,
AGS_TYPE_I NPUT
n_i nput _pads) ;

/* create recall container */
position = 0;

pl ayback_pl ay_contai ner = ags_recal |l _contai ner_new();
pl ayback_recal | _contai ner = ags_recal |l _container_new();

start_recall = ags_fx_factory_create(audio,
pl ayback_pl ay_cont ai ner, playback_recal | _contai ner
"ags- f x- pl ayback",
NULL,
NULL,
0, n_audi o_channel s,
0, n_out put _pads,
posi tion,
(AGS_FX_FACTORY_ADD
AGS_FX_FACTORY_I NPUT) ,
0);

g list free full(start_recall
(CDestroyNotify) g_object_unref);

/* set output soundcard channel on ags-fx-playback */
start_out put = NULL,

g_obj ect _get (audi o,
"out put", &start_out put,
NULL) ;

channel = start_out put;

i f(channel != NULL){

51

Putting all together

g_obj ect _ref(channel);

}

whi | e(channel ! = NULL) {
AgsChannel *next;

GList *start_play, *play;
start_play = NULL;

g_obj ect _get (channel
"play", &start_play,
NULL) ;

play = start_pl ay;

while((play = ags_play_tenplate find_type(play,
AGS_TYPE_FX_PLAYBACK_CHANNEL)) != NULL){
g_obj ect _set (pl ay- >dat a,
"out put - soundcar d- channel ", channel - >audi o_channel
NULL) ;

/[* iterate */
pl ay = pl ay->next;
}

g list _free full(start_play,
(CDestroyNotify) g_object_unref);

/[* iterate */
next = ags_channel _next (channel);
g_obj ect _unref (channel) ;

channel = next;

}

[* unref */
g list free full(start_list,
(CDestroyNotify) g_object_unref);

if(start_output != NULL)({
g_obj ect _unref(start_output);
}
return(audio);
}
AgsAudi o*

set up_sl ave(AgsAppl i cati onCont ext *applicati on_context)
{

AgsAudi o *audi o;

AgsPl aybackDomai n *pl ayback_domai n

AgsChannel *channel

AgsChannel *start_input;

AgsAudi oSi gnal *audi o_si gnal

AgsRecal | Cont ai ner *pattern_play_contai ner

52

Putting all together

AgsRecal | Cont ai ner *pattern_recall _contai ner;
AgsRecal | Cont ai ner *buffer_play_cont ai ner;
AgsRecal | Cont ai ner *buffer_recal |l _container;

AgsDel ayAudi oRun *pl ay_del ay_audi o_r un;
AgsCount Beat sAudi oRun *pl ay_count _beat s_audi o_r un;

Gbj ect *soundcard;

CGList *start _|ist;
GList *start_pattern;
CGList *start _recall, *recall;

gui nt n_audi o_channel s, n_out put _pads, n_input_pads;
gi nt position;

gdoubl e vol une;

gui nt current _phase, prev_phase;

guint i, j, k;

Gval ue val ue;

static const guint staging prograni] = {
(AGS_SOUND_STAG NG_AUTOVATE | AGS_SOUND_STAG NG RUN_I NTER | AGS_SOUND_STAd NG _FX),

b

/* get soundcard */
start _|ist = ags_sound_provider_get _soundcar d(AGS_SOUND_PROVI DER(appl i cati on_cont ext)

soundcard = start _|ist->dat a;

/* create master playback */
audi o = ags_audi o_new(soundcard);
ags_audi o_set _fl ags(audi o,
(AGS_AUDI O_QUTPUT_HAS_RECYCLI NG |
AGS_AUDI O_| NPUT_HAS_RECYCLI NG)) ;
ags_audi o_set _ability_flags(audi o, (AGS_SOUND ABI LI TY_SEQUENCER));
ags_audi o_set _behavi our _fl ags(audi o, (AGS_SOUND BEHAVI OQUR PATTERN_ MODE |
AGS_SOUND_BEHAVI QUR_REVERSE_MAPPI NG |
AGS_SOUND_BEHAVI QUR_DEFAULTS_TO | NPUT)) ;

/* set ags-fx staging */
pl ayback_domai n = NULL;

g_obj ect _get (audi o,
"pl ayback-domai n", &pl ayback_domai n,
NULL) ;

i f(playback_domain !'= NULL){
for(i = 0; i < AGS_SOUND SCOPE_LAST; i ++){
AgsThread *audi o_t hr ead;

audi o_t hread = ags_pl ayback_donmai n_get _audi o_t hr ead(pl ayback_domai n,

i)

i f(audi o_thread != NULL){
ags_audi o_t hread_set _do_fx_stagi ng(audi o_t hread, TRUE);
ags_audi o_t hread_set _stagi ng_progran(audi o_t hread,
st agi ng_program

53

Putting all together

1);
g_obj ect _unref (audi o_t hread);

}

g_obj ect _unref (pl ayback_domai n) ;

}
n_audi o_channel s = 2;

n_out put _pads = 1;
n_i nput _pads = 1;

ags_audi o_set _audi o_channel s(audi o,

n_audi o_channel s);

ags_audi o_set _pads(audi o,
AGS_TYPE_QUTPUT,
n_out put _pads);

ags_audi o_set _pads(audi o,
AGS_TYPE_I NPUT
n_i nput _pads) ;

/* set sequencer ability */
channel = audi o->out put;

whi | e(channel 1= NULL) {

ags_channel _set _ability_fl ags(channel

channel = channel - >next;

}

/* add pattern and generate sound */
start _i nput = NULL;

g_obj ect _get (audi o,
"input", &start_input,

NULL) ;
channel = start_input;
i f(channel != NULL){
g_obj ect _ref(channel);
}
for(i = 0; i < n_input_pads; i++){
for(j = 0; j < n_audio_channels; j++){

AgsChannel *next;

/* pattern */
start_pattern = NULL;

g_obj ect _get (channel
"pattern", &start_pattern
NULL) ;

for(k = 0; k < 16;){

(AGS_SOUND_ABI LI TY_SEQUENCER)) ;

Putting all together

ags_pattern_toggle_bit(start_pattern->data,
Ol
Ol
K);
/[* iterate */

k += 4;
}

g list free full(start_pattern
(CDestroyNotify) g_object_unref);

/* sound */
audi o_si gnal = ags_audi o_si gnal _new();
ags_audi o_signal _set _fl ags(audi o_si gnal
AGS_AUDI O_SI GNAL_TEMPLATE) ;
ags_audi o_signal _stream resi ze(audi o_si gnal
5);

stream = audi o_si gnal - >st r eam

current _phase = 0;
volune = 1.0;

k = 0;

whi | e(stream ! = NULL) {
ags_synt h_si n(soundcard, (signed short *) stream >dat a,
0, 440.0, current_phase, audio_signal ->buffer_size,
vol ume) ;

prev_phase = current_phase;
current _phase = (prev_phase + (audi o_signal ->buffer_size) + k * audio_signal->b

/* iterate */
stream = stream >next;
k++;

}

ags_recycling_add_audi o_si gnal (channel ->first_recycling,
audi o_si gnal) ;

/[* iterate */
next = ags_channel _next (channel);

g_obj ect _unref (channel) ;

channel = next;

}
}

/* create recall container */
position = 0;

pattern_play_container = ags_recall_container_new);
pattern_recal |l _container = ags_recall _contai ner_new);

buf fer _play_contai ner = ags_recal |l _contai ner_new();

55

Putting all together

buffer_recall _container = ags_recall _contai ner_new();

/* ags-fx-pattern */

start_recall = ags_fx_factory_create(audio,
pattern_play_container, pattern_recall _container
"ags-fx-pattern”,
NULL,
NULL,
0, n_audi o_channel s,
0, n_input_pads,

posi tion,
(AGS_FX_FACTORY_ADD | AGS_FX_FACTORY_I NPUT),
0);

g list free full(start_recall
(CDestroyNotify) g_object_unref);

/* ags-fx-buffer */
start_recall = ags_fx_factory_create(audio,
buf fer _play_contai ner, buffer_recall_container
"ags-fx-buffer”,
NULL,
NULL,
0, n_audi o_channel s,
0, n_input_pads,

posi tion,
(AGS_FX_FACTORY_ADD | AGS_FX_FACTORY_I NPUT),
0);

g list free full(start_recall
(CDestroyNotify) g_object_unref);

[* unref */
g list free full(start_list,
(CDestroyNotify) g_object_unref);

if(start_input !'= NULL){
g_obj ect _unref(start_input);

}

return(audio);

}

i nt

mai n(int argc, char **argv)

{
AgsAppl i cati onCont ext *application_context;
AgsConfig *config;

config = ags_config_get_instance();
ags_config_| oad_from data(confi g,
DEFAULT_CONFI G
strl en(DEFAULT_CONFI Q) ;

/* create application context */
application_context = ags_audi o_application_context_new);
g_obj ect _ref (application_context);

56

Putting all together

g_signal _connect _after(application_context, "setup",
G CALLBACK(setup_cal I back), NULL);

ags_appl i cation_cont ext _prepare(application_context);
ags_application_context_setup(application_context);

/* main | oop run */
g_mai n_l oop_run(g_mai n_I oop_new(g_mai n_cont ext _defaul t(),
TRUE)) ;

return(0);

57

Appendix A. GNU Free
Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. [http://www.fsf.org/]

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE

The purpose of this Licenseisto make a manual, textbook, or other functional and useful document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But thisLicenseisnot limited to software manual's; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose
isinstruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants aworld-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is alicensee, and is addressed as “you”. Y ou accept the
license if you copy, modify or distribute the work in away requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A " Secondary Section” isanamed appendix or afront-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document isin part
atextbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections’ are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly with

58

http://www.fsf.org/
http://www.fsf.org/

GNU Free Documentation License

generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readersis
not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCI| without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generaly available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The“Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’ s title, preceding
the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XY Z" means a named subunit of the Document whosetitle either is precisely XY Z or contains
XYZ in parentheses following text that translates XY Z in another language. (Here XY Z stands for a specific
section name mentioned below, such as* Acknowledgements’, “Dedications’, “Endorsements’, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled
XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as
regards disclaiming warranties; any other implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in al copies, and that you add no other conditions whatsoever to those of this License. Y ou may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute alarge enough number of copies
you must also follow the conditions in section 3.

Y ou may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copiesin mediathat commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally prominent and visible. Y ou may add other
material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminousto fit legibly, you should put the first oneslisted (as many
asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document humbering more than 100, you must either include
a machine-readable Transparent copy along with each Opague copy, or state in or with each Opague copy a

59

GNU Free Documentation License

computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copiesin quantity, to
ensure that this Transparent copy will remain thus accessible at the stated location until at |east one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

Itisrequested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

Y ou may copy and distribute aModified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisaly this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses
acopy of it. In addition, you must do these thingsin the Modified Version:

A. Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and from those of
previous versions (which should, if there were any, belisted in the History section of the Document). Y ou may
use the sametitle as a previous version if the original publisher of that version gives permission.

B. List onthe Title Page, asauthors, one or more personsor entities responsiblefor authorship of the modifications
inthe Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

. State on the Title page the name of the publisher of the Modified Version, as the publisher.

. Preserve all the copyright notices of the Document.

m O O

. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

T

. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed inthe* History” section. Y ou may omit anetwork location for awork that was published at
least four yearsbeforethe Document itself, or if the original publisher of theversionit refersto givespermission.

K. For any section Entitled “ Acknowledgements’ or “ Dedications’, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve dl the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M.Delete any section Entitled “Endorsements’. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled “ Endorsements” or to conflict intitlewith any Invariant Section.

O. Preserve any Warranty Disclaimers.

60

GNU Free Documentation License

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections
asinvariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

Y ou may add a section Entitled “ Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties — for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

Y ou may add a passage of up to fivewordsasaFront-Cover Text, and apassage of up to 25 words as a Back-Cover
Text, to the end of thelist of Cover Textsin the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes acover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified VVersion.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of al of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make thetitle of each such section unique by adding at the end of it, in parentheses, the name of the original author
or publisher of that section if known, or €lse a unique number. Make the same adjustment to the section titlesin
thelist of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sections Entitled “ Acknowledgements’, and any sections
Entitled “ Dedications’. Y ou must delete all sections Entitled “ Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documentsin
al other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert acopy of thisLicenseinto the extracted document, and follow thisLicensein all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on avolume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the
compilationisnot used to limit thelegal rights of the compilation’ s users beyond what theindividual works permit.
When the Document is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of coversif the Document isin electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

61

GNU Free Documentation License

8. TRANSLATION

Trandation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sectionswith translations requires specia permission from their copyright
holders, but you may include translations of some or al Invariant Sections in addition to the original versions of
these Invariant Sections. Y ou may include atranslation of thisLicense, and all the license noticesin the Document,
and any Warranty Disclaimers, provided that you aso include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the trandlation and the
original version of this License or anotice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “ Acknowledgements’, “Dedications’, or “History”, the requirement
(section 4) to Preserveits Title (section 1) will typically require changing the actual title.

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except asexpressly provided under thisLicense.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.

However, if you ceaseall violation of thisLicense, then your licensefrom aparticular copyright holder isreinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60
days after the cessation.

Moreover, your license from a particular copyright holder isreinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, thisis the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt
of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt
of acopy of some or al of the same material does not give you any rightsto useit.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See Copyleft [http://www.gnu.org/copyleft/].

Each version of the License is given a distinguishing version number. |f the Document specifies that a particular
numbered version of this License “or any later version” appliesto it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as adraft) by the
Free Software Foundation. If the Document does not specify a version number of this License, you may choose
any version ever published (not asadraft) by the Free Software Foundation. If the Document specifiesthat aproxy
can decide which future versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes
copyrightable works and aso provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such aserver. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” meansthe Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, Cdlifornia, as well
as future copyleft versions of that license published by that same organization.

62

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

GNU Free Documentation License

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

AnMMCis“digiblefor relicensing” if it islicensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the
MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY -SA on the same site at
any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyri ght © 2013 Joél Krahemann

Perm ssion is granted to copy, distribute and/or nodify this docunent under the
terns of the GNU Free Documentation License, Version 1.3 or any |later version
publ i shed by the Free Software Foundation; with no Invariant Sections, no
Front - Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled “GNU Free Docunentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with... Texts.” line with
this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
bei ng LI ST, and with the Back-Cover Texts being LI ST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their use
in free software.

63

Appendix B. Related projects

Project Websites
G k+

Li bi nstpatch
Li bxm 2
Gst r eaner

Li bsndfile
FFTWB

Al sa

JACK

LADSPA

DSSI

Lv2

Gimp Tool Kit - http://www.gtk.org

Instrument patch library - http://www.swamiproject.org

XML library - http://www.xmlsoft.org

Multimedia framework - http://gstreamer.freedesktop.org/

Sound file library - http://www.mega-nerd.com

Fastest Fourier Transform of the West - http://www.fftw.org [http://www.fftw.org/]
Advanced Linux Sound Architecture - http://www.al sa-project.org

Jack audio connection kit - http://www.jackaudio.org

Linux Audio Developer's Simple Plugin API - http://www.ladspa.org

Disposable Soft Synth Interface - http://dssi.sourceforge.net

LADSPA version 2 - http://www.lv2plug.in

http://www.gtk.org
http://www.swamiproject.org
http://www.xmlsoft.org
http://gstreamer.freedesktop.org/
http://www.mega-nerd.com
http://www.fftw.org/
http://www.fftw.org/
http://www.alsa-project.org
http://www.jackaudio.org
http://www.ladspa.org
http://dssi.sourceforge.net
http://www.lv2plug.in

