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Chapter 1

Introduction

1.1 Notations used in this manual

In this manual, the information that you enter is typeset in typewriter font. User input typically
takes one of three forms:

• Commands that you enter on the command line.
For example, to compute the sin of π/4, you can type

sin(pi/4)

• Commands requiring a pre�x key.
These are indicated by separating the pre�x key and the standard key with a plus +. For example,
to exit an Xcas session, you can type the control key along with the q key, which will be denoted

Ctrl+Q

• Menu commands.
When denoting menu items, submenus are connected using I. For example, from within Xcas

you can choose the File menu, then choose the Open submenu, and then choose the File item.
This will be indicated by

File I Open I File

When describing entering a command, speci�c values that you enter for arguments are in typewriter
font, while argument placeholders that should be replaced by actual values are in italics. Optional
arguments will be enclosed by angle brackets. For example, you can �nd the derivative of an expression
with the diff command (see Section 5.19.4 p.233), which takes the form diff(expr 〈,x〉]) where expr
is an expression and x is a variable or list of variables. If the optional variable is omitted, then it will
default to x. A speci�c example is diff(x*sin(x),x).

The index uses di�erent typefaces for di�erent parts of the language. The commands themselves
are written with normal characters, command options are written in italics and values of commands
or options are written in typewriter font. For example (as you will see later), you can draw a blue
parabola with the command

plotfunc(x�2,color = blue)

In the index, you will see

• plotfunc, the command, written in normal text.

• color, the command option, written in italics.

• blue, the value given to the option, written in typewriter font.
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1.2 Interfaces for the giac library

The giac library is a C++ mathematics library. It comes with two interfaces you can use directly; a
graphical interface and a command-line interface. All interfaces can do symbolic and numeric calcula-
tions, use giac's programming language, and have a built in help function.

The graphical interface is called Xcas, and is the most full-featured interface. Xcas has additional
help features to make it easy to use, plus it has a built-in spreadsheet, it can do dynamic geometry and
it can do turtle graphics. The output given by this interface is typeset; for example:
Input:

sqrt(1/2)

Output: √
2

2

The command-line interface can be run inside a terminal, and in a graphical environment can also
draw graphs. The output given by this interface is in text form; for example:
Input:

sqrt(1/2)

Output:

sqrt(2)/2

There is also a web version, which can be run through a javascript-enabled browser (it works best
with Firefox), either over the internet or from local �les. Other programs (for example, TeXmacs) have
interfaces for the command-line version. Some of these interfaces, such as the two mentioned here,
typeset their output.

1.2.1 The Xcas interface

How you start Xcas in a graphical environment depends on which operating system you are using.

• If you are using Unix, you can usually �nd an entry for the program in a menu provided your
desktop environment. Otherwise, you can start it from a terminal by typing

xcas &

If for some reason Xcas becomes unresponsive, you can open a terminal and type

killall xcas

This will kill any running Xcas processes. Xcas keeps an automatic backup �les, so when you
restart Xcas, you will be asked if you want to resume where you left o�.

• If you are running Windows, you can use the explorer to go to the directory where Xcas is installed.
In that directory is a �le called xcas.bat. You can click on that �le to start Xcas.

• If you are running Mac OS, you can use the Finder to go to the xcas_image.dmg �le and double-
click it. Then double-click the Xcas disk icon. Finally, you can double-click the Xcas program to
launch Xcas.

When you start Xcas, a window will open with menu entries across the top, below that will be a
bar giving information about the current Xcas con�guration, and below that will be an entry line you
can use to enter commands. This interface will be described in more detail later, but the menu item

HelpIInterface

will bring up an introduction.
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1.2.2 The command-line interface: icas giac

In Unix and MacOS you can run giac from a terminal with the command icas (the command giac

also works). There are two ways to use the command-line interface.
If you just want to evaluate one expression, you can give icas the expression (in quotes) as a

command line argument. For example, to factor the polynomial x2 − 1, you can type

icas 'factor(x�2-1)'

at a command prompt. The result will be

(x-1)*(x+1)

and you will be returned to the operating system command line.
If you want to evaluate several commands, you can enter an interactive giac session by entering the

command icas (or giac) by itself at a command prompt. You will then be given a prompt speci�cally
for giac commands, which will look like

0�

You can enter a giac command at this prompt and get the result.

0>> factor(x^2-1)

(x-1)*(x+1)

1>>

After the result, you will be given another prompt for giac commands. You can exit this interactive
session by typing Ctrl+D.

You can also run icas in batch mode; that is, you can have icas run giac commands stored in a
�le. This can be done in Windows as well as Unix and Mac OS. To do this, simply enter

icas �lename

at a command prompt, where �lename is the name of the �le containing the giac commands.

1.2.3 The Firefox interface

You can run giac without installing it by using a javascript-enabled web browser. Using Firefox for this
is highly recommended; Firefox runs giac several times faster than Chrome, for example, and Firefox
also supports MathML natively.

To run giac through Firefox, you can open the url https://www-fourier.ujf-grenoble.fr/

~parisse/giac/xcasen.html. At the top of this page will be a button which will open a quick tu-
torial; the tutorial also tells you how to install the necessary �les to run giac through Firefox without
being connected to the internet.

1.2.4 The TeXmacs interface

TeXmacs (http://www.texmacs.org) is a sophisticated word processor with special mathematical fea-
tures. As well as being designed to nicely typeset mathematics, it can be used as a frontend for various
mathematics programs, including giac.

Once you've started TeXmacs, you can interactively run giac within TeXmacs with the menu
command InsertISessionIGiac. Once started, you can enter giac commands as you would in the
command-line interface. You can later re-enter a giac entry line by choosing it with your arrow keys
or clicking on it with a mouse. The TeXmacs interface also has a menu containing giac commands.

Note that a giac session in TeXmacs may be started directly from a terminal using the script xgiac
available in the src subdirectory of the giac source.

Within TeXmacs, you can combine giac commands and their output with ordinary text. To enter
normal text within a giac session, use the menu item FocusIInsert Text Field Above.

https://www-fourier.ujf-grenoble.fr/~parisse/giac/xcasen.html
https://www-fourier.ujf-grenoble.fr/~parisse/giac/xcasen.html
http://www.texmacs.org
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You can also use mathematical input when entering commands, which allows for fast typing of
complex formulas. For details, see the giac plugin documentation in TeXmacs. Also, any command
output in a TeXmacs session (or a part of it) may be copied back to an input �eld, thanks to the
conversion routines between giac syntax and TeXmacs Scheme.

Graphics created by giac are converted to PDF and embedded into TeXmacs sessions. Note that
this requires the Ghostscript package to be installed on your system.

1.2.5 Checking the version of giac that you are using: version giac

The version (or giac) command returns the version of giac that is running. It doesn't have any
arguments, but it does require parentheses.
Input:

version()

Output:

"giac 1.6.0, (c) B. Parisse and R. De Graeve, Institut Fourier, Universite de Grenoble I"
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The Xcas interface

2.1 The entry levels

The Xcas interface can run several independent calculation sessions, each session will be contained
in a separate tab. Before you understand the Xcas interface, it would help to be familiar with the
components of a session.

Each session can have any number of input levels. Each input level will have a number to the left
of it; the number is used to identify the level. Each level can have one of the following:

• A command line.
This is the default; you can open a new command line with Alt+N.
You can enter a giac command (or a series of commands separated by semicolons) on a command
line and send it to be evaluated by hitting enter. The result will then be displayed, and another
command line will appear. You can also scroll through the command history with Ctrl+Up and
Ctrl+Down.

If the output is a number or an expression, then it will appear in blue text in a small area below
the input region; this area will be an expression editor (see Section 3.3 p.70). There will be a
scrollbar and a small M to the right of this area; the M is a menu which gives you various options.

If the output is a graphic, then it will appear in a graphing area below the input region. To the
right of the graphic will be a control panel which you can use to manipulate the graphic (see
Section 7.2 p.584).

• An expression editor.
See Section 3.3 p.70. You can open an expression editor with Alt+E.

• A two-dimensional geometry screen.
See Section 7.2 p.584. You can open a two-dimensional geometry screen with Alt+G. This level
will have a screen, as well as a control panel, menus and a command line to control the screen.

• A three-dimensional geometry screen.
See Section 7.2 p.584. You can open a three-dimensional geometry screen with Alt+H. This level
will have a screen, as well as a control panel, menus and a command line to control the screen.

• A turtle graphics screen.
You can open a turtle graphics screen with Alt+D. This level will have a screen, as well as a
program editor and command line.

• A spreadsheet.
See Section 3.5 p.73. You can open a spreadsheet with Alt+T. A spreadsheet can open a graphic
screen.

• A program editor.
See Section 12.1.1 p.743. You can open a program editor with Alt+P.
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• A comment line.
See Section 3.2 p.70. You can open a comment line with Alt+C.

Levels can be moved up and down in a session, or even moved to a di�erent session.
The level containing the cursor is the current level. The current level can be evaluated or re-evaluated

by typing enter.
You can select a level (for later operations) by clicking on the number in the white box to the left

of the level. Once selected, the box containing the number turns black. You can select a range of levels
by clicking on the number for the beginning level, and then holding the shift key while you click on the
number for the ending level.

You can copy the instructions in a range of levels by selecting the range, and then clicking the middle
mouse button on the number of the target level.

2.2 The starting window

When you �rst start Xcas, you get a largely blank window.

The �rst row will consist of the main menus; you can save and load Xcas sessions, con�gure Xcas and
its interface and run various commands with entries from these menus.

The second row will contains tabs; one tab for each session that you are running in Xcas. Each tab
will have the name of its session, or Unnamed if the session has no name. The �rst time you start Xcas,
there will be only one session, which will be unnamed.

The third row will contain various buttons.

• The �rst button, ? , opens the help index (The same as the HelpIIndex menu entry; see Sec-
tion 2.3 p.46). If there is a command on the command line, the help index will open at this
command.

• The second button, Save , saves the session in a �le. The �rst time you click on it you will be
prompted for a �le name ending in .xws in which to save the session. The button will be pink if
the session is not saved or if it has changed since the last change, it will be green once the session
is saved. The name in the title will be the name of the �le used to save the session.

• The third button, which in the picture above is

Config: exact real RAD 12 xcas 6.2148M ,

is a status line indicating the current Xcas con�guration (see Section 2.5 p.54). If the session is
unsaved, it will begin with Config:; if the session is saved in a �le �lename.xws, this button will
begin with Config �lename.xws:. Other information on this status line:
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1. exact or approx
This tells you whether Xcas will give you exact values, such as

√
2, when possible or gives

you decimal approximations, such as 1.4142135. (See Section 2.5.4 p.55.)

2. real, cplx or CPLX.
When this shows real (for example), then Xcas will by default only �nd real solutions of
equations. When this shows cplx, then Xcas will �nd complex solutions of equations. When
this shows CPLX, then Xcas will regard variables as complex; for example, it won't simplify
re(z) (the real part of the variable z) to z. (See sections 2.5.5 and 2.5.6.)

3. RAD or DEG.
This tells you whether angles, as in trigonometric arguments, are measured in radians or
degrees. (See Section 2.5.3 p.55.)

4. An integer.
This tells you how many signi�cant digits will be used in �oating point calculations. (See
Section 2.5.1 p.54.)

5. xcas, python �=**, python �=xor, maple, mupad, or ti89.
This tells you what syntax Xcas will use. Xcas can be set to emulate the languages of Python,
Maple, MuPAD, or the TI89 series of calculators. (See Section 2.5.2 p.54.)

6. The last item tells you how much memory Xcas is using.

Clicking on this status line button opens a window where you can con�gure the settings shown
on this line as well as some other settings; you can also open the window with the menu item
CfgICAS Configuration (see Section 2.5.7 p.56).

• The fourth button, STOP (in red), is used to halt a computation which is running on too long.

• The �fth button, Kbd , toggles an on-screen scienti�c keyboard at the bottom of the window.

Along the right hand side of the keyboard are some keys that can be used to change the keyboard.

� The X key hides the keyboard, just like pressing the Kbd button again.

� The cmds key toggles a menu bar at the bottom of the screen which can be used as an
alternate menu or persistent submenu. This bar will contain buttons home, <<, some menu
titles, >>, var, cust and X.

The << and >> buttons scroll through menu items. Clicking on one of the menu buttons
will perform the appropriate action or replace the menu items by its submenu items. When
submenu items appear, there will also be a BACK button to return to the previous menu.
Clicking on the home button returns the menu buttons to the main menu.

After the menu buttons is a var button. This replaces the menu buttons by buttons rep-
resenting the variables that you have de�ned. After that is a cust button, which displays
commands that you store in a list variable CST (see section 4.4.10).

The last button, X, closes the menu bar.

� The msg key brings up a message window at the bottom of the window which will give you
helpful messages; for example, if you save a graphic, it will tell you the name of the �le it is
saved in and how to include it in a LATEX �le.

� The abc key toggles the keyboard between the scienti�c keyboard and an alphabetic keyboard.

• The �fth button, X , closes the current session.
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2.3 Getting help

Xcas is an extensive program, but using it is simpli�ed with several di�erent ways of getting help.
The help menu (see section 2.4.4) has several submenus for various forms of help, some of which are
mentioned below.

Tooltips

If you hover the mouse cursor over certain parts of the Xcas window, a temporary window will appear
with information about the part. For example, if you move the mouse cursor over the status line, you
will get a message saying Current CAS status. Click to modify.

If you type a function name in the Xcas command line, a similar temporary window will appear
with information about the function.

HTML help

If you press the F12 key, you will get a window which you can use to search the html version of the
manual. You can also open this window with the menu entry HelpIFind word in HTML help.

The HTML help window has a search area; if you type a string in that area you will be given a list
of help topics that contain that string. If you choose a topic and click View, your web browser will show
the appropriate page of the manual.

The help index

If you click on the ? button on the status line you will get the help index. You can also get the help
index with the menu item HelpIIndex.

The help index is a list of the giac function and variable names.

You can scroll through the help index items and click on the word that you want. There is also a line
in the help index window that you can use to search the index; you can enter some text and be taken
to the part of the index with the words that begin with that text. The ? button next to this search line
will open the HTML help window.

If you select a function or variable name, a list of related words (names of functions or variables)
and a list of synonymous words will appear in regions to the right.
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Below the search line, there will be an area which will have a brief description of the chosen term
as well as how to call it. If the term is a command name, the calling sequence will be given as the
command name with the arguments within parentheses separated by commas. Any optional arguments
will be shown within brackets. In the above example, the �rst argument to plotfunc is an expression,
representing the function to be graphed. There is an optional second argument, which is either a variable
name (which defaults to x) or a vector of variable names for multivariable functions. Finally, there is
an optional third argument which can be used to specify a color for the graph.

Below the brief description will be some entry �elds that you can use to enter the arguments. If you
�ll them out and press the enter key, the command with the arguments �lled out will be put on the
command line.

Below the entry �elds for the arguments will be a list of examples of the command being used. If
you click on one of these examples, it will be put on the command line.

A more thorough description of the function and its arguments is available with the Details button
at the top of the help index, which will open the relevant part of the manual in your browser. Alter-
natively, if you click on the ? button next to the search line, you will be taken to the HTML help
window.

You can also open the help index in the following ways:

• You can press the tab key while at the Xcas command line.
If you have entered part of a command name, you will be at the part of the index with words that
begin with the text that you entered.

• You can select a command from one of the menus. If Auto index help is chosen (see Section 2.5.9
p.59), then the help index will open with the command chosen.

findhelp

You can get help from Xcas by using the findhelp function. If you enter findhelp(function) (or
equivalently ?function) at the command input, where function is the name of a giac function, then
some notes on function will appear in the answer portion and the appropriate page of the manual will
appear in your web browser.

2.4 The menus

The menus provide di�erent ways to work with Xcas and its sessions, as well as ways of inserting
functions and constants into the current session. Selecting a menu item corresponding to a function or
constant brings up the help index (see section 2.3) with the chosen function or constant selected.
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2.4.1 The File menu

The File menu contains commands that are used to save sessions, save parts of sessions, and load
previously saved sessions. This menu contains the following entries:

• New Session

This creates and opens a new session.
The new session will be in a new tab, which will be labeled Unnamed until you save it (using the
menu item FileISave or the keystroke Alt+S).

• Open

This allows you to open a previously saved session.
There will be a submenu with a list of saved session �les in the primary directory (see Section 4.6.1
p.88) that you can open, as well as a File item which will open a directory browser you can use
to �nd a session �le. This directory browser can also be opened with Alt-O.

• Import

This allows you to open a session that was created with the Maple CAS, a TI89 calculator or a
Voyage200 calculator. You can execute this session with the EditIExecute Session menu entry,
but it may be better to execute the commands one at a time to see if any modi�cations need to
be done.

• Clone

This creates a copy of the current session in a Firefox interface; either using the server at http:
//www-fourier.ujf-grenoble.fr/~parisse/xcasen.html (Online) or a local copy (Offline).

• Insert

This allows you to insert a previously saved session, a link to a Firefox session, or a previously
saved �gure, spreadsheet or program.

• Save (Alt+S)
This saves the current session.

• Save as

This saves the current session under a name that you choose.

• Save all

This saves all of the sessions.

• Export as

This allows you to save the current session in di�erent formats; either in KhiCas (which is giac
ported to run on various calculators) format, standard Xcas format, Xcas with Python syntax
format, Maple format, MuPAD format or TI89 format.

• Kill

This kills the current session.

• Print

This allows you to create an image of the session in various ways.
The Preview menu item saves an image of the current session in a �le that you name. The To

printer item sends an image of the current session to the printer. The Preview selected levels

item saves the images of the commands and outputs of the selected levels, each in a separate �le.

• LaTeX

This has submenu items that render the session in LATEX and give you the result in various ways.
The LaTeX preview menu item displays a compiled LATEX version of the current session. The
LaTeX print item saves a copy of the session in LATEX form, along with the compiled version in
various formats. The LaTeX print selection does the same as LaTeX print, but only for the
selected levels.

http://www-fourier.ujf-grenoble.fr/~parisse/xcasen.html
http://www-fourier.ujf-grenoble.fr/~parisse/xcasen.html
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• Screen capture

This creates a screenshot that is saved in various formats.

• Quit and update Xcas

This quits Xcas after checking for a newer version.

• Quit (Ctrl+Q)
This quits Xcas.

2.4.2 The Edit menu

The Edit menu contains commands that are used to execute and undo parts of the current session.
This menu contains the following entries:

• Execute worksheet (Ctrl-F9)
This recalculates each level in the session.

• Execute worksheet with pauses

This recalculates each level in the session, pausing between calculations.

• Execute below

This recalculates the current level and each level below it.

• Remove answers below

This removes the answers to the current level and the levels below it.

• Undo (Ctrl+Z)
This undoes the latest edit done to the levels, including a deletion of a level. It can be repeated
to undo more than one edit.

• Redo (Ctrl+Y)
This redoes the undone editing.

• Paste

This pastes the contents of the system clipboard to the cursor position.

• Del selected levels

This deletes any entry levels that you have selected.

• selection -> LaTeX (Ctrl+T)
This puts a LATEX version of the selection (level, part of a level, or answer selected by clicking and
dragging the mouse) on the system clipboard.

• New entry (Alt+N)
This inserts a new entry level above the current one.

• New parameter (Ctrl+P)
This brings up a window in which you can enter a name and conditions for a new parameter.

• Insert newline

This inserts a newline below the cursor. Note that simply typing return will evaluate the current
entry rather than inserting a newline.

• Merge selected levels

This merges the selected levels into a single level.
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2.4.3 The Cfg menu

The Cfg menu contains commands that are used to set the behaviour of Xcas. This menu contains the
following entries:

• Cas configuration

This opens a window that allows you to con�gure how Xcas performs calculations (see Section 2.5.7
p.56). This is the same window you get when you click on the status line.

• Graph configuration

This opens a window that allows you to con�gure the default settings for a graph (see Section 2.5.8
p.58). This includes such things as the initial ranges of the variables. Each graph also has a cfg

button to con�gure the settings on a per graph basis.

• General configuration

This opens a window that allows you to con�gure various non-computational aspects of Xcas,
such as the fonts, the default paper size, and the like (see Section 2.5.9 p.59).

• Mode (syntax)

This changes the default syntax (see Section 2.5.2 p.54). By default, Xcas uses its own syntax,
but you can change it to Python syntax, Maple syntax, MuPAD syntax or TI89 syntax.

• Show

This displays parts of Xcas.

� DispG

This shows the graphics display screen; which has all graphical commands from the session
together on one screen.

� keyboard

This shows the on-screen keyboard; the same as clicking on the Kbd button on the status line
(see Section 2.2 p.44, item 2.2).

� bandeau

This shows the menu buttons at the bottom of the window; the same as clicking on cmds on
the on-screen keyboard (see Section 2.2 p.44, item 2.2).

� msg

This shows the messages window; the same as clicking on msg on the on-screen keyboard (see
Section 2.2 p.44, item 2.2).

• Hide

This hides the same items that you can show with Show.

• Index language

This allows you to choose a language in which to display the help index.

• Colors

This allows you to choose colors for various parts of the display.

• Session font

This allows you to choose a font for the sessions.

• All fonts

This allows you to choose fonts for the session, the main menu and the keyboard.

• browser

This allows you to choose a browser that Xcas will use when needed. If this is blank, then Xcas

will use its own internal browser.
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• Save configuration

This saves the con�gurations that you chose with the Cfg menu or chose by clicking on the status
line.

2.4.4 The Help menu

The Help menu contains commands that let you get information about Xcas from various sources. This
menu contains the following entries:

• Index

This brings up the help index (see Section 2.3 p.46).

• Find word in HTML help (F12)
This brings up a page which helps you search for keywords in the html documentation that came
with Xcas (see Section 2.3 p.46). The help will be displayed in your browser.

• Interface

This brings up a tutorial for the Xcas interface. The tutorial will be displayed in your browser.

• Reference card, fiches

This brings up a pdf reference card for Xcas. The card will be displayed in your browser.

• Manuals

This allows you to choose from a variety of manuals for Xcas, which will appear in your browser.

� CAS reference

This brings up the manual for Xcas.

� Algorithmes (HTML)

This brings up a manual for the algorithms used by Xcas.

� Algorithmes (PDF)

This brings up a pdf version of the manual for the algorithms used by Xcas.

� Geometry

This brings up a manual for two-dimensional geometry in Xcas.

� Programmation

This brings up a manual for programming in Xcas.

� Simulation

This brings up a manual for statistics and using the Xcas spreadsheet.

� Turtle

This brings up a manual for using the Turtle drawing screen in Xcas.

� Exercices

This brings up a page of exercises that you can do with Xcas.

� Amusement

This brings up a page of mathematical amusements that you can work through with Xcas.

� PARI-GP

This brings up documentation for the GP/PARI functions.

• Internet

The Internet menu contains menu items that take you to various web pages related to Xcas.
Among them are the following entries:

� Forum

This takes you to the Xcas forum.

� Update help

This installs updated help �les (retrieved from the Xcas website).
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There are also several menu items that take you to Xcas related pages written in French; namely:

� Aide-memoire lycee

This takes you to a paper discussing Xcas and high school.

� Documents pedagogiques lycee

This takes you to a page on the Xcas website with a list of useful links.

� Documents algorithmique

This takes you to a page on the Xcas website with a list of links.

� Site Lycee de G. Connan

This takes you to a page about a free book written by Guillaume Connan teaching algorithms
to high school students.

� Site Lycee de L. Briel

This takes you to a website about Xcas for high school students.

� Calcul formel au lycee, par D. Chevallair

This takes you to a pdf �le discussing the use of Xcas in high school.

� Site de F. Han

This takes you to a website by Frederic Han about Xcas and a QT frontent for giac.

� Ressources Capes

This takes you to a website with various external sources.

� Ressources Agregation externe

This takes you to a collection of external resources.

� Ressources Agregation interne

This takes you to a page on the Xcas website.

• Start with CAS

This menu has the following entries:

� Tutorial

This opens up the tutorial.

� Solutions

This opens up the solutions to the exercises in the tutorial.

• Tutoriel algo

This opens up a tutorial on algorithms and programming with Xcas.

• Rebuild help cache

This rebuilds the help index.

• About

This displays a message window with information about Xcas.

• Examples

This allows you to choose from a variety of example worksheets, which will then be copied to your
current directory and opened.

2.4.5 The Toolbox menu

The Toolbox menu contains commands that are used to insert operators into the session. This menu
includes the following entries:

• New entry (Alt+N)
This inserts a new level.
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• New comment (Alt+C)
This inserts a new comment level.

The other entries let you insert mathematical operations into the current level. If Auto index help is
chosen (see Section 2.5.9 p.59), then the help index will open help index (see Section 2.3 p.46) with the
chosen command selected.

2.4.6 The Expression menu

The Expression menu contains commands that are used to transform expressions. The �rst entry
is New expression (which is equivalent to Alt+E), which inserts a new level and brings up the on-
screen keyboard (see Section 2.2 p.44, item 2.2). The rest of the entries can be used to insert various
transformations.

2.4.7 The Cmds menu

The Cmds menu contains various giac functions and constants separated into categories. If Auto index

help is chosen (see Section 2.5.9 p.59), then when you select a function or constant, the help index (see
Section 2.3 p.46) opens with the function or constant selected, which can be used to insert the entry on
the command line. Otherwise, the constant or function will be inserted on the command line.

2.4.8 The Prg menu

The Prg menu contains commands that are used to write giac programs. The �rst entry, PrgINew

program (equivalent to Alt+P), inserts a program level and brings up the program editor (see Sec-
tion 12.1.1 p.743).The other entries are useful commands for writing giac programs.

2.4.9 The Graphic menu

The Graphicmenu contains commands that are used to create graphs. The �rst entry, GraphicIAttributs

(equivalent to Alt+K), brings up a window containing di�erent attributes of the graph (such as line width,
color, etc.). The other entries are commands for creating and manipulating graphs.

2.4.10 The Geo menu

The Geo menu contains commands that are used to work with two- and three-dimensional geometric
�gures. The �rst two entries, GeoINew figure 2d (equivalent to Alt+G) and GeoINew figure 3d

(equivalent to Alt+H) create levels for two- and three-dimensional �gures, respectively. (See Section 7.2
p.584.) The other menu items are for working with the �gures.

2.4.11 The Spreadsheet menu

The Spreadsheet menu contains commands that are used to work with spreadsheets. (See See Sec-
tion 3.5 p.73.) The �rst menu item, SpreadsheetINew spreadsheet (equivalent to Alt+T), brings up a
window where you can set the size and other attributes of a spreadsheet, after which one will be created.
The submenus contain commands for working with spreadsheets. Notice that the spreadsheet itself will
have menus that are the same as these submenus.

2.4.12 The Phys menu

The Phys menu contains submenus with various categories of constants, as well as functions for con-
verting units.
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2.4.13 The Highschool menu

The Highschool menu contains computer algebra commands that are useful at di�erent levels of high-
school. There is also a Program submenu with some program control functions.

2.4.14 The Turtle menu

The Turtle menu contains the commands that are used to create and control a Turtle screen. The
�rst menu item, TurtleINew turtle, creates a Turtle drawing screen. The other menu items contain
commands for working with the screen.

2.5 Con�guring Xcas

2.5.1 The number of signi�cant digits: Digits DIGITS

By default, Xcas uses and displays 12 signi�cant digits, but you can set the number of digits to other
positive integers. If you set the number of signi�cant digits to a number less than 14, then Xcas will
use the computer's �oating point hardware, and so calculations will be done to more signi�cant digits
than you asked for, but only the number of digits that you asked for will be displayed. If you set the
number of signi�cant digits to 14 or higher, then both the computations and the display will use that
number of digits.

You can set the number of signi�cant digits for Xcas by using the CAS con�guration screen (see
Section 2.5.7 p.56). The number of signi�cant digits is stored in the variable DIGITS or Digits, so you
can also set it by giving the variable DIGITS a new value, as in DIGITS:= 20. The value will be stored
in the con�guration �le (see Section 2.5.10 p.60), and so can also be set there.

2.5.2 The language mode: xcas_mode

Xcas has its own language which it uses by default, but you can have it use Python (with the option
having the � character represent either exponentiation or the exclusive or operator), the language used
by Maple, MuPAD or the TI89 calculator.

You can set which language Xcas uses in the CAS con�guration screen (see Section 2.5.7 p.56). You
can also set the language with the xcas_mode command.

• The xcas_mode command takes one argument: an integer: 0, 1, 2, 3, 256 or 512.

� xcas_mode(0)

to use the Xcas language.

� xcas_mode(1)

to use the Maple language.

� xcas_mode(2)

to use the MuPAD language.

� xcas_mode(3)

to use the TI89 language.

� xcas_mode(256)

to use the Python language with � representing exponentiation.

� xcas_mode(512)

to use the Python language with � representing exclusive or.

The language you choose will be stored in the con�guration �le (see Section 2.5.10 p.60), and so can
also be set there.
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2.5.3 The units for angles: angle_radian

By default, Xcas assumes that any angles you use (for example, as the argument to a trigonometric
function) are being measured in radians. If you want, you can have Xcas use degrees.

You can set which angle measure Xcas uses in the CAS con�guration screen (see Section 2.5.7 p.56).
Your choice will be stored in the variable angle_radian; this will be 1 if you measure your angles in
radians and 0 if you measure your angles in degrees. You can also change which angle measure you use
by setting the variable angle_radian to the appropriate value. The angle measure you want to use will
be stored in the con�guration �le (see Section 2.5.10 p.60), and so can also be set there.

2.5.4 Exact or approximate values: approx_mode

Some numbers, such as π and
√

2, can't be written down exactly as decimal numbers. When computing
with such numbers, by default Xcas leaves them in exact, symbolic form. If you want, you can have
Xcas automatically give you decimal approximations for these numbers.

You can set whether or not Xcas gives you exact or approximate values by using the CAS con�gu-
ration screen (see Section 2.5.7 p.56). Your choice will be stored in the variable approx_mode, where a
value of 0 means that Xcas will give you exact answers when possible and a value of 1 means that Xcas
will give you decimal approximations. Your choice will be stored in the con�guration �le (see section
2.5.10), and so can also be set there.

2.5.5 Complex numbers: cfactor complex_mode

When factoring polynomials (see Section 5.12.10 p.176), by default Xcas won't introduce complex num-
bers if they aren't already being used. For example,

factor(x�2 + 2)

simply returns
x2 + 2

but if an expression already involves complex numbers then Xcas uses them;

factor(i*x�2 + 2*i)

will return (
x− i

√
2
)(

ix−
√

2
)

Xcas can also �nd complex roots when complex numbers are not present; for example, the command
cfactor (see Section 5.12.10 p.176) will factor over the complex numbers.
cFactor is a synonym for cfactor.

cfactor(x�2 + 2)

returns (
x+ i

√
2
)(

x− i
√

2
)

If you want Xcas to use complex numbers by default, you can turn on complex mode. In complex
mode,

factor(x�2 + 2)

returns (
x+ i

√
2
)(

x− i
√

2
)

You can turn on complex mode from the CAS con�guration screen (see Section 2.5.7 p.56). This
mode is determined by the value of the variable complex_mode; if this is 1 then complex mode is on, if
this is 0 then complex mode is o�. This option will be stored in the con�guration �le (see Section 2.5.10
p.60), and so can also be set there.
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2.5.6 Complex variables: complex_variables

By default, new variables are assumed to be real; functions which work with the real and imaginary parts
of variables will assume that a variable is real. For example, re returns the real part of its argument
and im returns the imaginary part (see Section 5.10.2 p.167), and so

re(z)

returns
z

and

im(z)

returns
0

If you want variables to be complex by default, you can have Xcas use complex variable mode. You
can set this from the CAS con�guration screen (see Section 2.5.7 p.56). Your choice will be stored in
the variable complex_variables, where a value of 0 means that Xcas will assume that variables are
real and and a value of 1 means that Xcas will assume that variables are complex. Your choice will be
stored in the con�guration �le (see Section 2.5.10 p.60), and so can also be set there.

2.5.7 Con�guring the computations

You can con�gure how Xcas computes by using the menu item CfgICas configuration or by clicking
on the status line. This will open a window with the following options:

1. Prog style (default: Xcas)
This has a menu from which you can choose a di�erent language to program in; you can choose
from Xcas, Python �==** (Python syntax, except that � will be the exponentiation operator as in
Xcas rather than the exclusive or operator as in Python), Python �==xor (Python syntax, where
� is the exclusive or operator), Maple, Mupad and TI89/92.

2. eval (default: 25)
This has an input �eld where you can type in a positive integer specifying the maximum number
of recursions allowed when evaluating expressions.

3. prog (default: 1)
This has an input �eld where you can type in a positive integer specifying the maximum number
of recursions allowed when executing programs.

4. recurs (default: 100)
This has an input �eld where you can type in a positive integer specifying the maximum number
of recursive calls.

5. debug (default: 0)
This has an input �eld where you can type in a 0 or 1. If this is 1, then Xcas will display
intermediate information on the algorithms used by giac. If this is 0, then no such information
is displayed.

6. maxiter (default: 20)
This has an input �eld where you can type in an integer specifying the maximum number of
iterations to be used in Newton's method.

7. Float format (default: standard)
This has a menu from which you can choose how to display decimal numbers. Your choices will
be:
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• standard In standard notation, a number will be written out completely without using
exponentials; for example, 15000.12 will be displayed as 15000.12.

• scientific In scienti�c notation, a number will be written as a number between 1 and 10
times a power of ten; for example, 15000.12 will be displayed as 1.500012000000e+04 (where
the number after e indicates the power of 10).

• engineer In engineering notation, a number will be written as a number between 1 and 1000
times a power of ten, where the power of 10 is a multiple of three. For example, 15000.12
will be displayed as 15.00012e3.

8. Digits (default: 12)
This has an input �eld where you can type in a positive integer which will indicate the number of
signi�cant digits that Xcas will use.

9. epsilon (default: 1e-12)
This has an input �eld where you can type in a �oating point number which will be the value of
epsilon used by epsilon2zero, which is a function that replaces numbers with absolute value less
than epsilon by 0 (see Section 5.59.1 p.572).

10. proba (default: 1e-15)
This has an input �eld where you can type in a �oating point number. If this number is greater than
zero, then in some cases giac can use probabilistic algorithms and give a result with probability
of being false less than this value. (One such example of a probabilistic algorithm that giac can
use is the algorithm to compute the determinant of a large matrix with integer coe�cients.)

11. approx (default: unchecked)
This has a checkbox. If the box is checked, then exact numbers such as

√
2 will be given a �oating

point approximation. If the box in unchecked, then exact values will be used when possible. (See
Section 2.5.4 p.55.)

12. autosimplify (default: 1)
This has an input �eld where you can type in 0, 1 or 2. A value of 0 means no automatic
simpli�cation will be done, a value of 1 means grouped simpli�cation will be automatic. A value
of 2 means that all simpli�cation will be automatic.

13. threads (default: 1)
This has an input �eld where you can enter a positive integer to indicate the number of threads
(for a possible future threaded version).

14. Integer basis (default: 10)
This has a menu from which you can choose an integer base to work in; your choices will be 8, 10
and 16.

15. radian (default: checked)
This has a checkbox. If the box is checked, then angles will be measured in radians, otherwise
they will be measured in degrees.

16. Complex (default: unchecked)
This has a checkbox. If this box is checked, then giac will work in complex mode, meaning, for
example, that polynomials will be factored with complex numbers if necessary.

17. Cmplx_var (default: unchecked)
This has a checkbox. If this box is checked, then variables will by default be assumed to be
complex. For example, the expression re(z) won't be simpli�ed, it will return re(z). If this box
is unchecked, then variables by default will be assumed to be real, and so re(z) will be simpli�ed
to z.



58 CHAPTER 2. THE XCAS INTERFACE

18. increasing power (default: unchecked)
This has a checkbox. If this box is checked, then polynomials will be written out in increasing
powers of the variable; otherwise they will be written in decreasing powers.

19. All_trig_sol (default: unchecked)
This has a checkbox. If this box is checked, then Xcas will give the complete solutions of trigono-
metric equations. For example, the solution of cos(x) = 0 will be given as [(2n_0π+π)/2], where
n0 can be any integer. If this box is unchecked, then only the primary solutions of trigonometric
equations will be given. For example, the solutions of cos(x) = 0 will be the pair [−π/2, π/2].

20. Sqrt (default: checked)
This has a checkbox. If this box is checked, then the factor command will factor second degree
polynomials, even when the roots are not in the �eld determined by the coe�cients. For example,
factor(x�2 - 3) will return

(
x−
√

3
) (
x+
√

3
)
. If this box is unchecked, then factor(x�2 -

3) will return x2 − 3.

This page also has buttons for applying the settings, saving the settings for future sessions, canceling
any new settings, and restoring the default settings.

2.5.8 Con�guring the graphics

You can con�gure each graphics screen by clicking on the cfg button on the graphics screen's control
panel to the right of the graph. You can also change the default graphical con�guration using the the
menu item CfgIGraph configuration. You will then be given a window in which you can change the
following options:

• X- and X+

These determine the x values for which calculations will be done.

• Y- and Y+

These determine the y values for which calculations will be done.

• Z- and Z+

These determine the z values for which calculations will be done.

• t- and t+

These determine the t values for which calculations will be done; when plotting parametric curves,
for example.

• WX- and WX+

These determine the range of x values for the viewing window.

• WY- and WY+

These determine the range of y values for the viewing window.

• TX and TY

These determine the tick ranges on the x- and y-axes.

• class_min

This determines the minimum size of a statistics class.

• class_size

This determines the default size of a statistics class.

• autoscale

When checked, the graphic will be autoscaled.

• ortho

When checked, all axes of the graphic will be scaled equally.
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• >W and W>

These are convenient shortcuts to copy the X-, X+, Y- and Y+ values to WX-, WX+, WY- and WY+, or
the other way around.

Note that the viewing window is not the same as the calculation window; if the calculation window is
larger than the visible window, then you can scroll to bring other parts of the calculation window into
view.

This page also has buttons for applying the settings, saving the settings for future sessions, or
canceling any new settings.

2.5.9 More con�guration

You can con�gure other aspects of Xcas (besides the computational aspects and graphics) using the the
menu item CfgIGeneral configuration. You will then be given a window in which you can change
the following options:

• Font

This lets you choose a session font, the same as choosing the menu item CfgISession font.

• Level

This determines what type of level should be open when you start a new session.

• browser

This determines what browser Xcas will use when it requires one, for example when displaying
help. If this is empty, Xcas will use its built-in browser.

• Auto HTML help

If this box is checked, then whenever you choose a function from a menu, a help page for that
function will appear in your browser. Regardless of whether this box is checked or not, the help
page will also appear in your browser if you enter ?function from a command box.

• Auto index help If this box is checked, then whenever you choose a command from a menu, the
help index page for that function will appear. This is the same page you get when you choose the
command from the help index. (See Section 2.3 p.46.)

• Print format

This determines the paper size for printing and saving �les. There is also a button you can use to
have the printing done in landscape mode; if this button is not checked, the printing will be done
in portrait.

• Disable Tool tips

If this box is checked, Xcas will stop displaying tool tips (see Section 2.3 p.46).

• rows and columns

These determine the default number of rows and columns for the matrix editor and spreadsheet
(see Section 3.5 p.73).

• PS view

This determines what program is used to preview Postscript �les.

• Step by step

If this is checked, then Xcas will not save context information.

• Proxy

This sets a proxy server for updates.
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2.5.10 The con�guration �le: widget_size cas_setup xcas_mode xyztrange

When you save changes to your con�guration, they are stored in a con�guration �le, which will be
.xcasrc in your home directory in Unix and xcas.rc in Windows. This �le will have four functions
� widget_size, cas_setup, xcas_mode and xyztrange � which determine the con�guration and which
are evaluated when Xcas starts.

The widget_size command sets properties of the opening Xcas window.

• widget_size takes between 1 and 12 arguments. The arguments (in order) are:

� Font size. The �rst argument is a positive integer specifying the font size. Optionally, this
can be a bracketed list whose �rst number indicates the font and the second the font size.

� Horizontal and vertical o�set. The second and third arguments are horizontal and vertical
distances in pixels from the upper left hand corner of the screen. They specify where the
upper left corner of the Xcas window is when it opens.

� Window size. The fourth and �fth arguments specify the width and height in pixels of the
Xcas window when it opens.

� Keyboard (see Section 2.2 p.44, item 2.2). The sixth argument is either 0 or 1; a 1 indicates
that the on-screen keyboard will be open when Xcas starts, a 0 indicates that the keyboard
will be hidden.

� Open browser. The seventh argument is either 0 or 1; a 1 indicates that the browser will be
automatically opened to display help for the selected command in the menu or index, a 0
indicates that the browser will not be automatically opened.

� Message window (see Section 2.2 p.44, item 2.2). The eighth argument is either 0 or 1; a 1
indicates that Xcas will open with the message window, a 0 indicates that Xcas will open
without the message window.

� The ninth argument is currently not used.

� Browser name. The tenth argument is a string with the name of the browser to use to read
the help pages. A value of "builtin" means that Xcas will use a small browser built into
Xcas.

� Starting level (see Section 2.1 p.43). The eleventh argument indicates what level Xcas will
start at; a 0 means command line, a 1 means program editor, a 2 means spreadsheet, and a
3 means a 2-d geometry screen.

� Postscript previewer. The twelfth argument is a string with the name of a program for
postscript previews; for example, "gv".

The cas_setup command determines how computations will be performed.

• cas_setup takes nine arguments. The arguments (in order) are:

� Approximate mode (see Section 2.5.4 p.55). A 1 means Xcas works in approximate mode, a
0 means exact mode.

� Complex variables (see Section 2.5.5 p.55). A 1 means Xcas works with complex variables, a
0 means real variables.

� Complex mode (see Section 2.5.5 p.55). A 1 means Xcas works with in complex mode, a 0
means real mode.

� Radian (see Section 2.5.3 p.55). A 1 means work in radians, a 0 means work in degrees.

� Display format (see Section 2.5.7 p.56, item 7). A 0 means use the standard format to display
numbers, a 1 means use scienti�c format, a 2 means use engineering format, and a 3 means
use �oating hexadecimal format (which is standardized with a non-zero �rst digit).

� Epsilon (see Section 2.5.7 p.56, item 9). This is the value of epsilon used by Xcas.
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� Digits. This is the number of digits to use to display a �oat.

� Tasks. This will be used in the future for parallelism.

� Increasing power. This is 0 to display polynomials in increasing power, 1 to display polyno-
mials in decreasing powers.

The xcas_mode command determines what computer language Xcas will use (see Section 2.5.2 p.54).

• The xcas_mode command takes one argument: an integer: 0, 1, 2, 3, 256 or 512.

� xcas_mode(0)

to use the Xcas language.

� xcas_mode(1)

to use the Maple language.

� xcas_mode(2)

to use the MuPAD language.

� xcas_mode(3)

to use the TI89 language.

� xcas_mode(256)

to use the Python language with � representing exponentiation.

� xcas_mode(512)

to use the Python language with � representing exclusive or.

The xyztrange command sets or returns the values of the graphics con�guration.

To set the values:

• xyztrange takes 12 arguments:

� x- and x+, the beginning and the end of the x interval for which calculations will be done.

� y- and y+, the beginning and the end of the y interval for which calculations will be done.

� z- and z+, the beginning and the end of the z interval for which calculations will be done.

� t- and t+, the beginning and the end of the t interval for which calculations will be done,
when plotting parametric curves, for example.

� wx- and wx+, the beginning and the end of the x values for the viewing window.

� wy- and wy+, the beginning and the end of the y values for the viewing window.

� show_axes, to determine whether axes are shown or hidden (1 to show, 0 to hide).

� class_min, the minimum size of a statistics class.

� class_size, the default size of a statistics class.

• xyztrange(x-,x+,y-,y+,z-,z+,t-,t+,wx-,wx+,wy-,wy+,show_axes,class_min,class_size) sets the pa-
rameters to the given values.

Note that the viewing window is not the same as the calculation window; if the calculation window is
larger than the visible window, then you can scroll to bring other parts of the calculation window into
view.

To return the values:

• xyztrange takes no arguments.

• xyztrange() returns a matrix where each row consists of a short description of the �rst twelve
arguments along with their values.
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2.6 Printing and saving

2.6.1 Saving a session

Each tab above the status line represents a session, the tab for the active session will be yellow. The
label of each tab will be the name of the �le that the session is saved in; if the session hasn't been saved
the tab will read Unnamed.

You can save your current session by clicking on the Save button on the status line. If the session
contains unsaved changes the Save button will be red; the button will be green when nothing needs to
be saved. The �rst time that you save a session you will be prompted for a �le name; you should choose
a name that ends in .xws. Subsequent times that you save a session it will be saved in the same �le; to
save a session in a di�erent �le you can use the menu item FileISave as.

If you have a session saved in a �le and you want to load it in a tab, you can use the menu item
FileIOpen. From there you can choose a speci�c �le from a list or open a directory browser that you
can use to choose a �le. The directory browser can also be opened with Alt-O.

2.6.2 Saving a spreadsheet

If you have a spreadsheet in one of the levels, you can save it separately from the rest of the session.

When a spreadsheet is inserted it will have menus next to the level number. The Table menu
has items that let you save the spreadsheet in di�erent formats, as well as insert previously saved
spreadsheets.

You can save a spreadsheet with the TableISave sheet as text menu item. If you select that,
you will be prompted for a �le name; you should choose a �le name that ends in .tab. Once you save
a spreadsheet, there will be a button to the right of the menus which you can use to save any changes
you make. If you want to save the spreadsheet under a di�erent name, you can use the TableISave as

alternate filename menu entry.

You can save a spreadsheet in other formats. The TableISave as CSV menu item will save a
spreadsheet in a comma-separated values �le, and the TableISave as mathml menu item will save the
spreadsheet in as a MathML �le.

You can use the Table menu to insert previously saved spreadsheets; the menu item TableIInsert

will bring up a directory browser that you can use to select a �le to enter.

2.6.3 Saving a program

You can open up a program editor (see Section 12.1.1 p.743) with the menu item PrgINew program or
with Alt-P. If you select this item, you will be prompted for information to �ll out a template for a
program and then be left in the program editor.

At the top of the program editor are menus and buttons, at the far right will be a Save button that
you can press to save the program. The �rst time you save a program, you will be prompted for a �le
name; you should choose a name ending in .cxx. Once a program is saved, the �le name will appear to
the right of the Save button. If you want to save the program under a di�erent name, you can use the
ProgISave as item from the program editor menu.

To insert a previously saved program, you can use the ProgILoad item from the program editor
menu.

2.6.4 Printing a session

You can print a session with the FileIPrintITo printer menu item.

If you prefer to save the printed form as a �le, you can use the FileIPrintIPreview menu item.
You will prompted for a �le name to save the printed form in; the �le will be a PostScript �le, so the
name should end in .ps. If you only want to save certain levels in printable form, you can use the
FileIPrintIPreview selected levels menu item; this �le will be encapsulated PostScript, so the
name should end in .eps.
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2.7 Translating to other computer languages

Xcas can translate a session, or parts of a session, to other computer languages; notably LATEX and
MathML.

2.7.1 Translating an expression to LATEX: latex

The latex command translates expressions to LATEX.

• latex takes one argument:
expr, an expression.

• latex(expr) returns the result of evaluating expr written in the LATEX typesetting language.

Example.

Input:

latex(1+1/2)

Output:

\frac{3}{2}

2.7.2 Translating the entire session to LATEX

To save your entire document as a complete LATEX �le, you can use the menu item FileILaTeXILaTeX

preview.

2.7.3 Translating graphical output to LATEX: graph2tex graph3d2tex

You can see all of your graphic output at once on the DispG screen, which you can bring up with the
command DispG(). (This screen can be cleared with the command line command erase().) On the
DispG screen there will be a Print menu; the PrintILaTeX print will give you several �les DispG.tex,
DispG.dvi, DispG.ps and DispG.png with the graphics in di�erent formats. To save it without using
the DispG() command you can use the graph2tex command.

The graph2tex command saves all current graphic output to a LATEX �le.

• graph2tex takes one argument:
�lename.tex, the name of a �le.

• graph2tex("�lename.tex") saves all graphic output in LATEX form to the �le �lename.tex.

Example.

Input:

graph2tex("myfile.tex")

results in a LATEX �le named myfile.tex with the graphs. To save a three-dimensional graph, you can
use the command graph3d2tex.

To save a single graph as a LATEX �le, you can use the M menu to the right of the graph. Selecting
MIExport PrintIPrint (with LaTeX) will save the current graph. You can also save a single graph
by selecting that level, then use the menu item FileILaTeXILaTeX print selection. This method
will save the graph in several formats; sessionname.tex, sessionname.dvi, sessionname.ps and ses-
sionname.png. If the session has not been saved and named, the �les will begin with sessionn for
some integer n.
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2.7.4 Translating an expression to MathML: mathml

The mathml command translates expressions to MathML.

• mathml takes one argument:
expr, an expression.

• mathml(expr) returns the result of evaluating expr written in MathML.

Example.

Input:

mathml(1/4 + 1/4)

Output:

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"

"http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd" [

<!ENTITY mathml "http://www.w3.org/1998/Math/MathML">

]>

<html xmlns="http://www.w3.org/1999/xhtml">

<body>

<math mode="display" xmlns="http://www.w3.org/1998/Math/MathML">

<mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac>

</math><br/>

</body> </html>

which is the number 1/2 in MathML form, along with enough information to make it a complete HTML
document.

2.7.5 Translating a spreadsheet to MathML

You can translate an entire spreadsheet to MathML with the spreadsheet menu command TableISave

as mathml.

2.7.6 Indent an XML string: xml_print

The xml_print command formats an XML string.

• xml_print takes one argument:
str, a string, assumed to contain XML.

• xml_print(str) returns a string with the XML code indented for better readability. The default
indentation is two spaces.

Example.

Input:

xml_print("<?xml version='1.0'?><root><child1>some

content</child1><child2></child2><child3/></root>")

Output:
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<?xml version='1.0'?>

<root>

<child1>some content</child1>

<child2></child2>

<child3/>

</root>

2.7.7 Export to presentation or content MathML: export_mathml

You can translate the result of an expression into various types of MathML with the export_mathml

command.

• export_mathml takes one mandatory argument and one optional argument:

� expr, an expression.

� Optionally, format, which can be content or display, specifying what output format should
be used.

• export_mathml(expr 〈 ,format〉) returns the result of evaluating expr written in MathML, with
a single math block which will be a semantics block.

� With no second argument, the semantics block will contain both presentation and content
MathML.

� With a second argument of content, the semantics block will only contain the content
MathML.

� With a second argument of display, the semantics block will only contain the presentation
MathML.

Examples.

• Input:

xml_print(export_mathml(a+2*b))

Output:
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<math xmlns='http://www.w3.org/1998/Math/MathML'>

<semantics>

<mrow xref='id5'>

<mi xref='id1'>a</mi>

<mo>+</mo>

<mrow xref='id4'>

<mn xref='id2'>2</mn>

<mo>&it;</mo>

<mi xref='id3'>b</mi>

</mrow>

</mrow>

<annotation-xml encoding='MathML-Content'>

<apply id='id5'>

<plus/>

<ci id='id1'>a</ci>

<apply id='id4'>

<times/>

<cn id='id2' type='integer'>2</cn>

<ci id='id3'>b</ci>

</apply>

</apply>

</annotation-xml>

<annotation encoding='giac'>a+2*b</annotation>

</semantics>

</math>

• Input:

xml_print(export_mathml(a+2*b,content))

Output:

<math xmlns='http://www.w3.org/1998/Math/MathML'>

<apply id='id5'>

<plus/>

<ci id='id1'>a</ci>

<apply id='id4'>

<times/>

<cn id='id2' type='integer'>2</cn>

<ci id='id3'>b</ci>

</apply>

</apply>

</math>

• Input:

xml_print(export_mathml(a+2*b,display))

Output:
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<math xmlns='http://www.w3.org/1998/Math/MathML'>

<mrow>

<mi>a</mi>

<mo>+</mo>

<mrow>

<mn>2</mn>

<mo>&it;</mo>

<mi>b</mi>

</mrow>

</mrow>

</math>

• Input:

s:=export_mathml(1/(x�2+1),display):;

xml_print(s)

Output:

<math mode='display' xmlns='http://www.w3.org/1998/Math/MathML'>

<mfrac>

<mn>1</mn>

<mrow>

<msup>

<mi>x</mi>

<mn>2</mn>

</msup>

<mo>+</mo>

<mn>1</mn>

</mrow>

</mfrac>

</math>

2.7.8 Translating a Maple �le to Xcas: maple2xcas

The maple2xcas command translates a �le of Maple commands to the Xcas language.

• maple2xcas takes two arguments:

� Maple�le, the name of the Maple input �le.

� XcasFile, the �le where you want to save the Xcas commands.

• maple2xcas("MapleFile","XcasFile") results in an Xcas �le named XcasFile with the Maple
commands in MapleFile translated to the Xcas language.
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Chapter 3

Entry in Xcas

3.1 Suppressing output: nodisp :;

If you enter a command into Xcas, the result will appear in the output box below the input. If you
enter

a:= 2+2

then

4

will appear in the output box.

The nodisp command is used to evaluate an expression and suppress the output.

• nodisp takes one argument:
expr, an expression.

• nodisp(expr) evaluates expr but displays Done in place of the result.

Example.

Input:

nodisp(a:= 2+2)

Output:

Done

and a will be set to 4.

An alternate way of suppressing the output is to end the input with :;.

Example.

Input:

b:= 3+3:;

Output:

Done

and b will be set to 6.

69
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3.2 Entering comments: comment

You can annotate an Xcas session by adding comments. You can enter a comment on the current line
at any time by typing Alt+C. The line will appear in green text and conclude when you type Enter.
Comments are not evaluated and so have no output. If you have started entering a command when you
begin a comment, the command line with the start of the command will be pushed down so that you
can �nish it when you complete the comment.

You can open the browser using a comment line by entering the web address beginning with the @

sign. If you enter the comment line

The Xcas homepage is at

@www-fourier.ujf-grenoble.fr/~parisse/giac.html

then the browser will open to the Xcas home page.
To add a comment to a program, rather than a session, you can use the comment command.

• comment takes one argument:
str, a string.

• comment(str) makes str a comment.

Alternatively, any part of a program between // and the end of the line is a comment. So both

bs():= {comment("Hello"); return "Hi there!";}

and

bs():= { // Hello

return "Hi there!";}

are programs with the comment "Hello".

3.3 Editing expressions

You can enter expressions on the command line, but Xcas also has a built-in expression editor that
you can use to enter expressions in two dimensions, the way they normally look when typeset. When
you have an expression in the editor, you can also manipulate subexpressions apart from the entire
expression.

3.3.1 Entering expressions in the editor: an example

The expression
x+ 2

x2 − 4

can be entered on the command line with

(x+2)/(x�2-4)

You also can use the expression editor to enter it visually, as x + 2 on top of x2 − 4. To do this, you
can start the expression editor with the Alt+E keystroke (or the Expression I New Expression menu
command). There will be a small M on the right side of the expression line, which is a menu with
some commands you can use on the expressions. There will also be a 0 selected on the expression line
and an on-screen keyboard at the bottom (see Section 2.2 p.44, item 2.2). If you type x + 2, it will
overwrite the 0. To make this the top of the fraction, you can select it with the mouse (you can also
make selections with the keyboard, as will be discussed later) and then type /. This will leave the x +

2 on the top of a horizontal fraction bar and the cursor on the bottom. To enter x2 − 4 on the bottom,
begin by typing x. Selecting this x and typing �2 will put on the superscript. Finally, selecting the x2

and typing - 4 will �nish the bottom. If you then hit Enter, the expression will be evaluated and will
appear on the output line.

@www-fourier.ujf-grenoble.fr/~parisse/giac.html
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3.3.2 Subexpressions

Xcas can operate on expressions in the expression editor or subexpressions of the expression. To under-
stand subexpressions and how to select them, it helps to know that Xcas stores expressions as trees.

A tree, in this sense, consists of objects called nodes. A node can be connected to lower nodes,
called the children of the node. Each node (except one) will be connected to exactly one node above it,
called the parent node. One special node, called the root node, won't have a parent node. Two nodes
with the same parent nodes are called siblings. Finally, if a node doesn't have any children, it is called
a leaf. This terminology comes from a visual representation of a tree,

which looks like an upside-down tree; the root is at the top and the leaves are at the bottom.
Given an expression, the nodes of the corresponding tree are the functions, operators, variables and

constants. The children of a function node are its arguments, the children of an operator node are its
operands, and the constants and variables will be the leaves. For example, the tree for sin(2 ∗ x + y)
will look like

A subexpression of an expression will be a selected node together with the nodes below it. For example,
both 2 ∗ x and 2 ∗ x+ y are subexpressions of sin(2 ∗ x+ y), but x+ y is not.

A subexpression of the contents of the expression editor can be selected with the mouse; the selection
will appear white on a black background. A subexpression can also be chosen with the keyboard using
the arrow keys. Given a selection:

• The up arrow will go to the parent node.
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• The down arrow will go to the leftmost child node.

• The right and left arrows will go to the right and left sibling nodes.

• The control key with the right and left arrows will switch the selection with the corresponding
sibling.

• If a constant or variable is selected, the backspace key will delete it. For other selections, backspace
will delete the function or operator, and another backspace will delete the arguments or operands.

You can use the arrow keys to navigate the tree structure of an expression, which isn't always
evident by looking at the expression itself. For example, suppose you enter x*y*z in the editor. The
two multiplications will be a di�erent levels; the tree will look like

If you select the entire expression with the up arrow and then go to the M menu to the right of the line
and choose eval, then the expression will look the same but, as you can check by navigating it with the
arrow keys, the tree will look like

3.3.3 Manipulating subexpressions

If a subexpression is selected in the expression editor, then any menu command will be applied to that
subexpression.

For example, suppose that you enter the expression

(x+1)*(x+2)*(x-1)

in the expression editor. Note that you can use the abilities of the editor to make this easier. First,
enter x+1. Select this with the up arrow, then type * followed by x+2. Select the x+2 with the up
arrow and then type * followed by x-1. Using the up arrow again will select the x-1. Select the entire
expression with the up arrow, and then select eval from the M menu. This will put all factors at the
same level. Suppose you want the factors (x+1)*(x+2) to be expanded. You could select (x+1)*(x+2)
with the mouse and do one of the following:

• Select the ExpressionIMiscInormalmenu item. You will then have normal((x+1)*(x+2))*(x-1)
in the editor. If you hit enter, the result (x2 + 3x+ 2) ∗ (x− 1) will appear in the output window.

• Select the ExpressionIMiscInormalmenu item, so again you have normal((x+1)*(x+2))*(x-1)
in the editor. Now if you select eval from the Mmenu, then the expression in the editor will become
the result (x2 + 3x+ 2) ∗ (x− 1), which you can continue editing.
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• Choose normal from the M menu. This will apply normal to the selection, and again you will have
the result (x2 + 3x+ 2) ∗ (x− 1) in the editor.

There are also keystroke commands that you can use to operate on subexpressions that you've
selected. There are the usual Ctrl+Z and Ctrl+Y for undoing and redoing. Some of the others are given
in the following table.

Key Action on selection

Ctrl+D di�erentiate
Ctrl+F factor
Ctrl+L limit
Ctrl+N normalize
Ctrl+P partial fraction
Ctrl+R integrate
Ctrl+S simplify
Ctrl+T copy LATEX version to clipboard

3.4 Previous results: ans

The ans command returns the results of previous commands.

• ans takes one optionaly argument:
Optionally, n, an integer (the number of the command beginning with 0).

• ans(〈n〉) returns the corresponding result; in particular, ans(-1) returns the previous result.

Example.

If the �rst command that you enter is:
Input:

2+5

resulting in
Output:

7

then later references to ans(0) will evaluate to 7.

Note that the argument to ans doesn't correspond to the line number in Xcas. For one thing, the
line numbers begin at 1. What's more, if you go back and re-evaluate a previous line, then that will
become part of the commands that ans keeps track of.

If you give ans a negative number, then it counts backwards from the current input. To get the
latest output, for example, you can use ans(-1). With no argument, ans() will also return the latest
output.

Similarly, the quest command returns the previous inputs. Since these will often be simpli�ed to
be the same as the output, quest(n) sometimes has the same value as ans(n).

You can also use Ctrl plus the arrow keys to scroll through previous inputs. With the cursor on the
command line, Ctrl+uparrow will go backwards in the list of previous commands and display them on
the current line, and Ctrl+downarrow will go forwards.

3.5 Spreadsheet

3.5.1 Opening a spreadsheet

You can open a spreadsheet (or a matrix editor) with the SpreadsheetINew Spreadsheet menu item
or with the key Alt+T.
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When you open a new spreadsheet, you will be given a con�guration screen with the following
options:

• Variable This has a input �eld where you can type in a variable name; the spreadsheet will be
saved as a matrix in this variable.

• Rows and Columns These have input �elds where you can type in positive integers specifying the
number of rows and columns in the spreadsheet.

• Eval This has a checkbox. If the box is checked, then the spreadsheet will be re-evaluated every
time you make a change to it. If it is not checked, it won't be re-evaluated when changes are made,
but you can still re-evaluate the spreadsheet with the eval button on the spreadsheet menu bar.

• Distribute This has a checkbox. If it is checked, then entering a matrix will distribute the
contents across an appropriate array of cells. If it is not checked, then the matrix will be put in
one cell.

• Landscape This has a checkbox. If it is checked, then the graphical representation of the spread-
sheet will be displayed below the spreadsheet. If it is not checked, then it will be displayed to the
right of the spreadsheet.

• Move right This has a checkbox. If it is checked, then the cursor will move to the cell to the right
of the current cell when data is entered. If this is not checked, the cursor will be moved to the
cell below the current cell.

• Spreadsheet This has a checkbox. If it is checked, the spreadsheet will be formatted as a spread-
sheet. If it is not checked, it will be formatted as a matrix.

• Graph This has a checkbox. If it is checked, the graphical representation of the spreadsheet will
be displayed. If it is not checked, the graphical representation will not be displayed.

• Undo history This has an input �eld where you can type in a postive integer, specifying how
many undo's can be performed at a time.

The con�guration screen can be reopened with the EditIConfigurationICfg window menu attached
to the spreadsheet.

3.5.2 The spreadsheet window

When you open a spreadsheet, the input line will become the spreadsheet.

The top will be a menu bar with Table, Edit and Maths menus as well as eval, val, init, 2-d and
3-d buttons. To the right will be the name of the �le the spreadsheet will be saved into. Below the
menu bar will be two boxes; a box which displays the active cell (and can be used to choose a cell) and
a command line to enter information into the cell. Below that will be a status line, you can click on
this to return to the con�guration screen.
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CAS building blocks

4.1 Numbers

Xcas works with both real and complex numbers. The real numbers can be integers, rational numbers,
�oating point numbers or symbolic constants.

You can enter an integer by simply typing the digits.
Input:

1234321

Output:

1234321

Alternatively, you can enter an integer in binary (base 2) by pre�xing the digits (0 through 1) with 0b,
in octal (base 8) by pre�xing the digits (0 through 7) with 0 or 0o, and in hexadecimal (base 16) by
pre�xing the digits (0 through 9 and a through f) with 0x. (See Section 5.4.1 p.108.)
Input:

0xab12

Output:

43794

You can enter a rational number as the ratio of two integers.
Input:

123/45

Output:
41

15

The result will be put in lowest terms. If the top is a multiple of the bottom, the result will be an
integer.
Input:

123/3

Output:

41

A �oating point number is regarded as an approximation to a real number. You can enter a �oating
point number by writing it out with a decimal point.
Input:

123.45

75
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Output:
123.45

You can also enter a �oating point number by entering a sequence of digits, with an optional decimal
point, followed by e and then an integer, where the e represents �times 10 to the following power.�
Input:

1234e3

Output:
1234000.0

Floating point numbers with a large number of digits will be printed with e notation; you can control
how other �oats are displayed (see Section 2.5.7 p.56, item 7). An integer or rational number can be
converted to a �oating point number with evalf (see Section 5.8.1 p.143).

A complex number is a number of the form a+bi, where a and b are real numbers. The numbers a
and b will be the same type of real number; one type will be converted to the other type if necessary
(an integer can be converted to a rational number or a �oating point number, and a rational number
can be converted to a �oating point number).
Input:

3 + 1.1i

Output:
3 + 1.1i

4.2 Symbolic constants: e pi infinity inf i euler_gamma

Xcas has the standard constants given by built-in symbols, given in the following table.

Symbol Value

e (or %e) the number exp(1)
pi (or %pi) the number π
infinity unsigned ∞
+infinity (or inf) +∞
-infinity (or -inf) −∞
i (or %i) the complex number i
euler_gamma Euler's constant γ; namely,

limn→∞ (
∑n

k=1− ln(n))

Since these numbers cannot be written exactly as standard decimal numbers, they are necessarily
left unevaluated in exact results (see Section 2.5.4 p.55).
Input:

2*pi

Output:
2π

Input:

2.0*pi

Output:
6.28318530718

You can also use evalf (see Section 5.8.1 p.143), for example, to approximate one of the real-valued
constants to as many decimal places as you want.
Input:

evalf(pi,50)

Output:
3.1415926535897932384626433832795028841971693993751
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4.3 Sequences, sets and lists

4.3.1 Sequences: seq[] ()

A sequence is represented by a sequence of elements separated by commas, without delimiters or with
either parentheses (( and )) or seq[ and ] as delimiters, as in:
Input:

1,2,3,4

or:

(1,2,3,4)

or:

seq[1,2,3,4]

Output:

1, 2, 3, 4

Note that the order of the elements of a sequence is signi�cant. For example, if B:=(5,6,3,4) and
C:=(3,4,5,6), then B==C returns false.
(A value can be assigned to a variable with the := operator; see Section 4.4.1 p.79. Also, == is the test
for equality; see Section 5.1.2 p.91.)

Note also that the expressions seq[. . .] and seq(. . .) are not the same (see Section 5.39.2 p.394 for
information on seq(. . .)). For example, seq([0,2])=(0,0) and seq([0,1,1,5])=[0,0,0,0,0] but
seq[0,2]=(0,2) and seq[0,1,1,5]=(0,1,1,5)

See Section 5.39 p.393 for operations on sequences.

4.3.2 Sets: set[]

To de�ne a set of elements, put the elements separated by commas, with delimiters %{ and %} or set[
and ].
Input:

set[1,2,3,4]

or:

%{1,2,3,4%}

Output:

[[1, 2, 3, 4]]

In the Xcas output, the set delimiters are displayed as [[ and ]] in order not to confuse sets with lists (see
Section 4.3.3 p.78). For example, [[1,2,3 ]]is the set %{1,2,3%}, unlike [1,2,3] (normal brackets) which is
the list [1,2,3].
Input:

A:=%{1,2,3,4%}

or:

A:=set[1,2,3,4]

Output:

[[1, 2, 3, 4]]

Input:
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B:=%{5,5,6,3,4%}

or:

B:=set[5,5,6,3,4]

Output:

[[5, 6, 3, 4]]

Remark.
The order in a set is not signi�cant and the elements in a set are all distinct. If you input B:=%{5,5,6,3,4%}
and C:=%{3,4,5,3,6%}, then B==C will return true.

See Section 5.41 p.426 for operations on sets.

4.3.3 Lists: [ ]

A list is delimited by [ and ], its elements must be separated by commas. For example, [1,2,5] is a
list of three integers. Lists are also called vectors in Xcas.

Lists can contain lists (for example, a matrix is a list of lists of the same size, see Section 5.44 p.438).
Lists may be used to represent vectors (lists of coordinates), matrices, or univariate polynomials (lists
of coe�cients by decreasing order, see Section 5.27.1 p.301).

Lists are di�erent from sequences, because sequences are �at: an element of a sequence cannot be a
sequence. Lists are di�erent from sets, because for a list, the order is important and the same element
can be repeated in a list (unlike in a set where each element is unique). See Section 5.40 p.403 for
operations on lists.

In Xcas output:

• list delimiters are displayed as [,],

• matrix delimiters are displayed as [,]

• polynomial delimiters are displayed as [], []

• set delimiters are displayed as [[, ]].

4.3.4 Accessing elements

The elements of sequences and lists are indexed starting from 0 in Xcas syntax mode and from 1 in all
other syntax modes (see Section 2.5.2 p.54). To access an element of a list or a sequence, follow the list
with the index between square brackets.

Examples.

• Input:

L:= [2,5,1,4]

Output:

[2, 5, 1, 4]

• Input:

L[1]

Output:

5
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• To access the last element of a list or sequence, you can put -1 between square brackets.
Input:

L[-1]

Output:
4

If you want the indices to start from 1 in Xcas syntax mode, you can enter the index between double
brackets.

Example.

Input:

L[[1]]

Output:
2

4.4 Variables

4.4.1 Variable names

A variable or function name is a sequence of letters, numbers and underscores that begins with a letter.
If you de�ne your own variable or function, you can't use the names of built-in variables or functions
or other keywords reserved by Xcas.

4.4.2 Assigning values: := => = assign sto Store

You can assign a value to a variable with the := operator. For example, to give the variable a the value
of 4, you can enter

a:= 4

Alternatively, you can use the => operator; when you use this operator, the value comes before the
variable;

4 => a

The function sto (or Store) can also be used; again, the value comes before the variable (the value is
stored into the variable);

sto(4,a)

After any one of these commands, whenever you use the variable a in an expression, it will be replaced
by 4.

You can use sequences or lists to make multiple assignments at the same time. For example,

(a,b,c):= (1,2,3)

will assign a the value 1, b the value 2 and c the value 3. Note that this can be used to switch the
values of two variables; with a and b as above, the command

(a,b):= (b,a)

will set a equal to b's original value, namely 2, and will set b equal to a's original value, namely 1.
Another way to assign values to variables, useful in Maple mode, is with the assign command. If

you enter
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assign(a,3)

or

assign(a = 3)

then a will have the value 3. You can assign multiple values at once; if you enter

assign([a = 1, b = 2])

then a will have the value 1 and b will have the value 2. This command can be useful in Maple mode,
where solutions of equations are returned as equations. For example, if you enter (in Maple mode)

sol:= solve([x + y = 1, y = 2],[x,y])

(see Section 5.55.6 p.544) you will get

[x = −1, y = 2]

If you then enter

assign(sol)

the variable x will have value -1 and y will have the value 2. This same e�ect can be achieved in
standard Xcas mode, where

sol:= solve([x + y = 1, y = 2],[x,y])

will return

[[−1, 2]]

In this case, the command

[x,y]:= sol[0]

will assign x the value -1 and y the value 2.

4.4.3 Assignment by reference: =<

A list is simply a sequence of values separated by commas and delimited by [ and ] (see Section 5.39
p.393). Suppose you give the variable a the value [1,1,3,4,5],

a:= [1,1,3,4,5]

If you later assign to a the value [1,2,3,4,5], then a new list is created. It may be better to just change
the second value in the original list by reference. This can be done with the =< command. Recalling
that lists are indexed beginning at 0, the command

a[1] =< 2

will simply change the value of the second element of the list instead of creating a new list, and is a
more e�cient way to change the value of a to [1,2,3,4,5].
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4.4.4 Copying lists: copy

If you enter

list1:= [1,2,3]

and then

list2:= list1

then list1 and list2 will be equal to the same list, not simply two lists with the same elements. In
particular, if you change (by reference) the value of an element of list1, then the change will also be
re�ected in list2. For example, if you enter

list1[1] =< 5

then both list1 and list2 will be equal to [1,5,3].

The copy command creates a copy of a list (or vector or matrix) which is equal to the original list,
but distinct from it. For example, if you enter

list1:= [1,2,3]

and then

list2:= copy(list1)

then list1 and list2 will both be [1,2,3], but now if you enter

list1[1] =< 5

then list1 will be equal to [1,5,3] but list2 will still be [1,2,3].

4.4.5 Incrementing variables: += -= *= /=

You can increase the value of a variable a by 4, for example, with

a:= a + 4

If beforehand a were equal to 4, it would now be equal to 8. A shorthand way of doing this is with the
+= operator;

a += 4

will also increase the value of a by 4.

Similar shorthands exist for subtraction, multiplication and division. If a is equal to 8 and you enter

a -= 2

then a will be equal to 6. If you follow this with

a *= 3

then a will be equal to 18, and �nally

a /= 9

will end with a equal to 2.
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4.4.6 Storing and recalling variables and their values: archive unarchive

The archive command stores the values of variables for later use in a �le of your choosing.

• archive takes two arguments:

� �lename, a �lename in which to store values.

� vars, a variable or list of variables.

• archive("�lename",vars) saves the values of vars (or the values of the variables in the list) in
�le �lename.

For example, if the variable a has the value 2 and the variable bee has the value "letter" (a string),
then entering

archive("foo",[a,bee])

will create a �le named �foo� which contains the values 2 and "letter" in a format meant to be
e�ciently read by Xcas.

The unarchive command will read the values from a �le created with archive.

• unarchive takes one argument:
�lename, the �lename.

• unarchive("�lename") returns the value or list of values stored in �lename.

Example.

With the �le �foo� as above:
Input:

unarchive("foo")

Output:

[2, "letter"]

If you want to reassign these values to a and bee, you can enter

[a,bee]:= unarchive("foo")

4.4.7 Copying variables: CopyVar

The CopyVar command copies the contents of one variable into another, without evaluating the contents.

• CopyVar takes two arguments:

� fromvar, the name of a variable to copy from.

� tovar, the name of a variable to copy to.

• CopyVar(fromvar,tovar) copies the unevaluated contents of fromvar into tovar.
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Example.

Input:

a:=c

c:=5

CopyVar(a,b)

Output:
c

then:

b

Output:
5

Changing the value if c will also change the output of b, since b contains c.
Input:

c:=10:;

b

Output:
10

4.4.8 Assumptions on variables: about additionally assume purge supposons and or

If variable is a purely symbolic variable (i.e., it doesn't have a value or any assumptions made about
it), then

abs(variable)

will return
|variable|

since Xcas doesn't know what type of value the variable is supposed to represent.
The assume (or supposons) command lets you tell Xcas some properties of a variable without giving

the variable a speci�c value. The additionally command can be used to add assumptions to a variable.
The about command will display the current assumptions about a variable, and the purge command
will remove all values and assumptions about a variable.

assume (or supposons) takes one mandatory argument and one optional argument:

• assumptions, statements about a variable (such as equalities and inequalities, possibly combined
with and and or, and domains).

• Optionally, additionally, which indicates that the assumptions are to be added to previous
assumptions, as opposed to replace them.

assume(assumptions 〈,additionally〉) places the assumptions on the variable. With no second argu-
ment, it will remove any previous assumptions.

• additionally takes one argument:
assumptions as above.

• additionally(assumptions) adds the assumptions to a variable without removing assumptions.
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• about takes one argument:
var, the name of a variable.

• about(var) returns the current assumptions on the variable.

• purge takes one argument:
var, a variable name or a sequence of variable names.

• purge(var) removes any assumptions you have made about the variable var (or about all the
variables in the sequence).

For example, if you enter

assume(variable > 0)

then Xcas will assume that variable is a positive real number, and so

abs(variable)

will be evaluated to
variable

You can put one or more conditions in the assume command by combining them with and and or.
For example, if you want the variable a to be in [2, 4) ∪ (6,∞), you can enter

assume((a >= 2 and a < 4) or a > 6)

If a variable has attached assumptions, then making another assumption with assume will remove
the original assumptions. To add extra assumptions, you can either use the additionally command or
give assume a second argument of additionally. If you assume that b > 0 with

assume(b > 0)

and you want to add the condition that b < 1, you can either enter

assume(b < 1, additionally)

or

additionally(b < 1)

As well as equalities and inequalities, you can make assumptions about the domain of a variable. If
you want n to represent an integer, for example, you can enter

assume(n, integer)

If you want n to be a positive integer, you can add the condition

additionally(n > 0)

You can also assume a variable is in one of the domains real, integer, complex or rational (see
Section 12.2.5 p.748).

You can check the assumptions on a variable with the about command. For the above positive
integer n,
Input:

about(n)

Output:

assume[integer,[line[0,+infinity]],[0]]
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The �rst element tells you that n is an integer, the second element tells you that n is between 0 and
+infinity, and the third element tells you that the value 0 is excluded.

If you assume that a variable is equal to a speci�c value, such as

assume(c = 2)

then by default the variable c will remain unevaluated in later levels. If you want an expression involving
c to be evaluated, you would need to put the expression inside the evalf command (see Section 5.8.1
p.143). After the above assumption on c, if you enter

evalf(c�2 + 3)

then you will get

7.0

Right below the assume(c = 2) command line there will be a slider; namely arrows pointing left and
right with the value 2 between them. These can be used to change the values of c. If you click on the
right arrow, the assume(c = 2) command will transform to

assume(c=[2.2,-10.0,10.0,0.0])

and the value between the arrows will be 2.2. Also, any later levels where the variable c is evaluated
will be re-evaluated with the value of c now 2.2. The output to evalf(c�2 + 3 will become

7.84

The -10.0 and 10.0 in the assume line represent the smallest and largest values that c can become
using the sliders. You can set them yourself in the assume command, as well as the increment that the
value will change; if you want c to start with the value 5 and vary between 2 and 8 in increments of
0.05, then you can enter

assume(c = [5,2,8,0.05])

Recall the purge command removes assumptions about a variable.
Input:

purge(a)

then a will no longer have any assumptions made about it.
Input:

purge(a,b)

then a and b will no longer have any assumptions made about them.

4.4.9 Unassigning variables: VARS purge DelVar del restart rm_a_z rm_all_vars

Xcas has commands that help you keep track of what variables you are using and resetting them if
desired. The VARS command will list all the variables that you are using, the purge, DelVar and del

commands will delete selected variables, and the rm_a_z and rm_all_vars commands will remove classes
of variables.

• VARS takes no arguments.

• VARS() returns a list of the variables that you have assigned values or made assumptions on.
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Example.

Input:

a:= 1

anothervar:= 2

then:

VARS()

Output:
[a, anothervar]

The purge command will clear the values and assumptions you make on variables (see Section 4.4.8
p.83). For TI compatibility there is also DelVar, and for Python compatibility there is del.

• The purge command takes one argument:
var, the name of a variable.

• purge(var) clears the variable var of all values and assumptions.

• The DelVar (and del) commands take one argument:
var, the name of a variable.

• Delvar var (or del var) removes the values attached to var. (Note that they do not take their
argument in parentheses.

Example.

To clear the variable a:
Input:

purge(a)

or (for TI compatibility):
Input:

DelVar a

or (for Python compatibility):
Input:

del a

The rm_all_vars and restart commands clear the values and assumptions you have made on all
variables you can use.

• rm_all_vars takes no arguments.

• rm_all_vars() removes all the values that you have attached to variables.

• restart takes no arguments.

• restart removes all the values that you have attached to variables. (Note that it does not use
parentheses.)

The rm_a_z command clears the values and assumptions on all variables with single lowercase letter
names.

• rm_a_z takes no arguments.

• rm_a_z() purges all variables whose names are one letter and lowercase.
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Example.

If you have variables names A,B,a,b,myvar, then after:
Input:

rm_a_z()

you will only have the variables named A,B,myvar.

4.4.10 The CST variable

The menu available with the cust button in the bandeau on the onscreen keyboard (see Section 2.2
p.44, item 2.2) is de�ned with the CST variable. It is a list where each list item determines a menu item;
a list item is either a builtin command name or a list itself consisting of a string to be displayed in the
menu and the input to be entered when the item is selected.

For example, to create a custom de�ned menu with the builtin function diff, a user de�ned function
foo, and a menu item to insert the number 22/7, you can:
Input:

CST:= [diff,["foo",foo],["My pi approx",22/7]]

Note that if the input to be entered is a variable and the variable has a value when CST is de�ned,
then CST will contain the value of the variable. For example,
Input:

app:= 22/7

CST:= [diff,["foo",foo],["My pi approx",app]]

will be equivalent to the previous de�nition of CST. However, if the variable does not have a value when
CST is de�ned, for example:
Input:

CST:= [diff,["foo",foo],["My pi approx",app]]

app:= 22/7

then CST will behave as the previous values to begin with, but in this case if the variable app is changed,
the the result of pressing the My pi approx button will change also.

Since CST is a list, a function can be added to the cust menu with the concat command (see
Section 5.40.13 p.411);
Input:

CST:= concat(CST,evalc)

will add the evalc command to the cust menu.

4.5 Functions

4.5.1 De�ning functions

Similar to how you can assign a value to a variable (see Section 4.4.2 p.79), you can use the := and =>

operators to de�ne a function; both

f(x):= x�2

and

x�2 => f(x)
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give the name f to the function which takes a value and returns the square of the value. In either case,
if you then enter:
Input:

f(3)

you will get:
Output:

9

You can de�ne an anonymous function, namely a function without a name, with the -> operator;
the squaring function can be written

x -> x�2

You can use this form of the function to assign it a name; both

f:= x -> x�2

and

x -> x�2 => f

are alternate ways to de�ne f as the squaring function.
You can similarly de�ne functions of more than one variable. For example, to de�ne a function

which takes the lengths of the two legs of a right triangle and returns the hypotenuse, you could enter

hypot(a,b):= sqrt(a�2 + b�2)

or

hypot:= (a,b) -> sqrt(a�2 + b�2)

4.6 Directories

4.6.1 Working directories: pwd cd

Xcas has a working directory where it stores �les that it creates; typically this is the user's home
directory. The pwd command will tell you what the current working directory is, and and the cd

command lets you change it.

• pwd takes no arguments.

• pwd() returns the name of the current working directory.

Example.

Input:

pwd()

Output: might be something like:

/home/username

• The cd command takes one argument:
dirname, the name of a directory (a string).

• cd(dirname) changes the working directory to dirname.
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Example.

If you enter:
Input:

cd("foo")

or (on a Unix system):
Input:

cd("/home/username/foo")

then the working directory will change to the directory foo, if it exists. Afterwards, any �les that you
save from Xcas will be in that directory.

To load or read a �le, it will need to be in the working directory. Note that if you have the same
�le name in di�erent directories, then loading the �le name will load the �le in the current directory.

4.6.2 Reading �les: read load

Information for Xcas can be stored in a �le; this information can be read with the read or load command,
depending on the type of information.

The read command reads a �le containing Xcas information, such as a program that you saved (see
Section 2.6.3 p.62) or simply commands that you typed into a �le with a text editor. The �le should
have the su�x .cxx.

• read takes one argument:
�lename, the name of a �le (a string) containing a saved program (see Section 2.6.3 p.62) or other
commands.

• read(�lename) reads the content of the �le.

Example.

If you have a �le named myfunction.cxx,
Input:

read("myfunction.cxx")

will read in the �le, as long as the directory is in the current working directory. If the �le is in a di�erent
directory, you can still read it by giving the path to the �le,
Input:

read("/path/to/file/myfunction.cxx")

The load command reads in a saved session (see Section 2.6.1 p.62), which will end in .xws.

• load takes one argument:
�lename, the name of a �le (a string) containing a saved session.

• load(�lename) loads the session stored in �lename.

Example.

If you have a session saved in the �le mysession.xws,
Input:

load("mysession.xws")

loads mysession.xws.
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4.6.3 Internal directories: NewFold SetFold GetFold DelFold VARS

You can create a directory that isn't actually on your hard drive but is treated like one by Xcas with
the command NewFold.

• NewFold takes one argument: MyIntDir, a variable name (see Section 4.4.1 p.79).

• NewFold(MyIntDir) creates a new internal directory named MyIntDir. (Note that quotation
marks are not used.)

Internal directories will be listed with the VARS() command (see Section 4.4.9 p.85).
To actually use this directory, you'll have to use the SetFold command.

• The SetFold command takes one argument:
MyIntDir, the variable name of an internal directory created with NewFold.

• SetFold(MyIntDir) makes MyIntDir the working directory (see Section 4.6.1 p.88).

Finally, you can print out the internal directory that you are in with the GetFold command.

• GetFold takes no arguments.

• GetFold() returns the name of the current internal directory.

Example.

Input:

GetFold()

will display the current internal directory.

The DelFold command will delete an internal directory.

• DelFold takes one argument:
MyIntDir, the variable name of an internal directory.

• DelFold(MyIntDir) will delete the directory if it is empty.
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The CAS functions

5.1 Booleans

5.1.1 Boolean values: true false

The symbols true and false are booleans, and are meant to indicate a statement is true or false.

These constants have synonyms:

• true is the same as TRUE or 1.

• false is the same as FALSE or 0.

A function which returns a boolean is called a test (or a condition or a boolean function).

5.1.2 Tests: == != > >= < =<

The usual comparison operators between numbers are examples of tests. In Xcas, they are the in�xed
operators:

==

a==b tests the equality between a and b and returns 1 if a is equal to b and 0 otherwise.
Look out !
Note that a=b is not a boolean!!!! This form is used to state that the expression is an equality,
perhaps with the intent to solve it. To test for equality, you need to use a==b, which is a boolean.

!=

a!=b returns 1 if a and b are di�erent and 0 otherwise.

>=

a>=b returns 1 if a is greater than or equal to b and 0 otherwise.

>

a>b returns 1 if a is strictly greater than b and 0 otherwise.

<=

a<=b returns 1 if a is less than or equal to b and 0 otherwise.

<

a<b returns 1 if a is strictly less than b and 0 otherwise.

5.1.3 De�ning functions with boolean tests: ifte ?: when

You can use boolean tests to de�ne functions not given by a single simple formula. Notably, you can
use the ifte command or ?: operator to de�ne piecewise-de�ned functions.

91
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• ifte takes three arguments:

� condition, a boolean condition.

� true-result, the result to return if condition is true.

� false-result, the result to return if condition is false.

• ifte(condition, true-result, false-result) returns true-result if condition is true and returns false-
result if condition if false.

Example.

You can de�ne your own absolute value function with:
Input:

myabs(x):= ifte(x >= 0, x, -1*x)

Afterwards, entering:
Input:

myabs(-4)

will return:

4

However, myabs will return an error if it can't evaluate the condition.
Input:

myabs(x)

Output:

Ifte: Unable to check test Error: Bad Argument Value

The ?: construct behaves similarly to ifte, but is structured di�erently and doesn't return an error
if the condition can't be evaluated.

• The ?: construct takes three arguments:

� condition, a boolean condition.

� true-result, the result to return if condition is true.

� false-result, the result to return if condition is false.

• condition?true-result:false-result returns true-result if condition is true and returns false-result if
condition if false.

Example.

You can de�ne your absolute value function with

myabs(x):= (x >= 0)? x: -1*x

If you enter

myabs(-4)

you will again get

4
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but now if the conditional can't be evaluated, you won't get an error.
Input:

myabs(x)

Output:

((x >= 0)? x: -x)

The when and IFTE commands are pre�xed synonyms for the ?: construct.

• when (and IFTE) take three arguments:

� condition, a boolean condition.

� true-result, the result to return if condition is true.

� false-result, the result to return if condition is false.

• when(condition, true-result, false-result) (and IFTE(condition, true-result, false-result)) return
true-result if condition is true and returns false-result if condition if false.

(condition)? true-result: false-result

when(condition, true-result, false-result)

and

IFTE(condition, true-result, false-result)

all represent the same expression.

If you want to de�ne a function with several pieces, it may be simpler to use the piecewise function.

• piecewise takes an unspeci�ed (odd) number of arguments:

� cond1, return1, cond2, return2, . . . , condn, returnn, an arbitrary number of pairs of conditions
and corresponding return values.

� default, a result to return if none of the conditions are true.

• piecewise(cond1, return1, . . . , condn, returnn, default) returns returnk if condk is the �rst true
condition, or default if none of the conditions are true.

Example.

To de�ne

f(x) =


−2 if x < −2

3x+ 4 if − 2 ≤ x < −1

1 if − 1 ≤ x < 0

x+ 1 if x ≥ 0

you can enter:
Input:

f(x):= piecewise(x < -2, -2, x < -1, 3*x+4, x < 0, 1, x + 1)
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5.1.4 Boolean operators: or xor and not

Booleans can be combined to form new booleans. For example, with and: the statement �boolean 1 and

boolean 2 � is true if both boolean 1 and boolean 2 are true, otherwise the statement is false.

Xcas has the standard boolean operators, as follows (a and b are two booleans):

or (or ||)
These are in�xed operators. (a or b) (or (a || b)) returns 0 (or false) if a and b are both
equal to 0 (or false) and returns 1 (or true) otherwise.

xor

This is an in�xed operator. It is the �exclusive or� operator, meaning �one or the other but not
both�. (a xor b) returns 1 if a is equal to 1 and b is equal to 0 or if a is equal to 0 and b is equal
to 1, and returns 0 if a and b are both equal to 0 or if a and b are both equal to 1.

and (or &&)
These are in�xed operators. (a and b) (or (a && b)) returns 1 (or true) if a and b are both
equal to 1 (or true) and returns 0 (or false) otherwise.

not

This is a pre�xed operator. not(a) returns 1 (or true) if a is equal to 0 (or false), and 0 (or
false) if a is equal to 1 (or true).

Examples.

• Input:

1>=0 or 1<0

Output:

1

• Input:

1>=0 xor 1>0

Output:

0

• Input:

1>=0 and 1>0

Output:

1

• Input:

not(0==0)

Output:

0
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5.1.5 Transforming a boolean expression to a list: exp2list

The exp2list command can transform certain booleans into a list.

• exp2list takes one argument: eqseq, a sequence of equalities (or inequalities) connected with ors,
such as (x = a1) or ...or (x = an).

• exp2list(eqseq) returns the list [a1, . . . , an] of right-hand sides of the (in)equalities.

The exp2list command is useful in TI mode for easier processing of the answer to a solve command.

Examples.

• Input:

exp2list((x=2) or (x=0))

Output:

[2, 0]

• Input:

exp2list((x>0) or (x<2))

Output:

[0, 2]

• In TI mode
Input:

exp2list(solve((x-1)*(x-2)))

Output:

[1, 2]

5.1.6 Transforming a list into a boolean expression: list2exp

The list2exp command is the inverse of exp2list; it takes lists and tranforms them into boolean
expressions. It can do this in two ways.

The �rst way:

• list2exp takes two arguments:

� L, a list of values of the form [a1, . . . , an]

� x, a variable name.

• list2exp(L, x) returns the boolean expression ((x = a1) or ...(x = an)).
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Examples.

• Input:

list2exp([0,1,2],a)

Output:
a = 0 ∨ a = 1 ∨ a = 2

• Input:

list2exp(solve(x�2-1=0,x),x)

Output:
x = −1 ∨ x = 1

Alternatively:

• list2exp takes two arguments:

� L, a list where each element of L it itself a list of n values of the form [a1, . . . , an].

� vars, a list [x1, . . . , xn] of n variable names.

In this case:

• list2exp(L,vars) returns a boolean expression of the form ((x1 = a1) and ...and (xn = an)
for each list of n values in the �rst argument, combined with ors.

Example.

Input:

list2exp([[3,9], [-1,1]], [x, y])

Output:
x = 3 ∧ y = 9 ∨ x = −1 ∧ y = 1

5.1.7 Evaluating booleans: evalb

The Maple command evalb evaluates a boolean expression (see Section 5.1 p.91). Since Xcas evaluates
booleans automatically, it includes a evalb command only here for compatibility and is equivalent to
eval (see Section 5.12.1 p.171).

• evalb takes one argument:
bool, a boolean expression.

• evalb()bool) returns 1 if bool is true and returns 0 otherwise.

Examples.

• Input:

evalb(sqrt(2)>1.41)

or:

sqrt(2)>1.41
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Output:
1

• Input:

evalb(sqrt(2)>1.42)

or:

sqrt(2)>1.42

Output:
0

5.2 Bitwise operators

5.2.1 Basic operators: bitor bitxor bitand

Bitwise operators operate on the base 2 representations of integers, even if they are not presented in base
2. For example, the bitwise or (see Section 5.1.4 p.94) operator will take two integers and and return
an integer whose base 2 digits are the logical ors of the corresponding base two digits of the inputs (see
Section 5.1.4 p.94). Thus, to �nd the bitwise or of 6 and 4, look at their base 2 representations, which
are 0b110 (the 0b pre�x indicates that it's in base 2, see Section 4.1 p.75) and 0b100, respectively. The
logical or or their rightmost digits is 0 or 0=0. The logical or of their next digits is 1 or 0=1, and
the logical or of their remaining digits is 1 or 1=1. So the bitwise or of 6 and 4 is 0b110, which is 6.

To work with bitwise operators, it isn't necessary but it may be useful to work with integers in a
base which is a power of 2. The integers can be entered in binary (base 2), octal (base 8) or hexadecimal
(base 16) (see Section 5.4.1 p.108). To write an integer in binary, pre�x it with 0b; to write an integer in
octal, pre�x it with 0 or 0o; and to write a integer in hexadecimal (base 16), pre�x it with 0x. Integers
may also be output in octal or hexadecimal notation (see Section 2.5.7 p.56, item 14).

There are bitwise versions of the logical operators or, xor and and; they are all pre�xed operators
which take two arguments, which are both integers.

• bitor is bitwise logical inclusive or.
Input:

bitor(0x12,0x38)

or:

bitor(18,56)

Output:
58

because:
18 is written 0x12 in base 16 or 0b010010 in base 2,
56 is written 0x38 in base 16 or 0b111000 in base 2,
hence bitor(18,56) is 0b111010 in base 2 and so is equal to 58.

• bitxor is bitwise logical exclusive or.
Input:

bitxor(0x12,0x38)
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or:

bitxor(18,56)

Output:

42

because:
18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
bitxor(18,56) is written 0b101010 in base 2 and so, is equal to 42.

• bitand is bitwise logical and.
Input:

bitand(0x12,0x38)

or:

bitand(18,56)

Output:

16

because:
18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
bitand(18,56) is written 0b010000 in base 2 and so is equal to 16.

5.2.2 Bitwise Hamming distance: hamdist

The Hamming distance between two integers is the number of di�erences between the bits of the two
integers. The hamdist operator �nds the Hamming distance between two integers.

• hamdist takes two arguments:
m and n, both integers.

• hamdist(m,n) returns the Hamming distance between m and n.

Example.

Input:

hamdist(0x12,0x38)

or:

hamdist(18,56)

Output:

3

because:
18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
hamdist(18,56) is equal to 1+0+1+0+1+0 and so is equal to 3.
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5.3 Strings

5.3.1 Characters and strings: "

Strings are delimited with quotation marks, ". A character is a string of length one.
Do not confuse " with ' (or quote) which is used to prevent evaluation of an expression (see Section 5.12.4
p.173). For example, "a" returns a string with one character but 'a' or quote(a) returns the variable
a unevaluated.

When a string is entered on a command line, it is evaluated to itself, hence the output is the same
string. You can use + to concatenate two strings or a string and another object (where the other object
will be converted to a string, see Section 5.3.12 p.105).

Examples.

• Input:

"Hello"

Output:

"Hello"

• Input:

"Hello"+", how are you?"

Output:

"Hello, how are you?"

• Input:

"Hello"+ 123

Output:

"Hello123"

You can refer to a particular character of a string using index notation, like for lists (see Section 5.40
p.403). Indices begin at 0 in Xcas mode, 1 in other modes.

Example.

Input:

"Hello"[1]

Output:

"e"

5.3.2 The newline character: \n

A newline can be inserted into a string with \n.
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Example.

Input:

Hello\nHow are you?

Output:

Hello

How are you?

5.3.3 The length of a string: size length

The size command can �nd the length of a string (as well as the length of lists in general, see Sec-
tion 5.39.3 p.397).
length is a synonym for size.

• size takes one argument:
str, a string.

• size(str) returns the length of the string.

Example.

Input:

size("hello")

Output:
5

5.3.4 The left and right parts of a string: left right

The left and right commands can �nd the left and right parts of a string. (See Section 5.15.3 p.200,
Section 5.37.1 p.385, Section 5.38.2 p.388, Section 5.40.6 p.406, Section 5.55.4 p.544 and Section 5.55.5
p.544 for other uses of left and right.)

• left takes two arguments:

� str, a string.

� n, a non-negative integer.

• left(str,n) returns the �rst n characters of the string str.

Example.

Input:

left("hello",3)

Output:

"hel"

• right takes two arguments:

� str, a string.

� n, a non-negative integer.

• right(str,n) returns the last n characters of the string str.
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Example.

Input:

right("hello",4)

Output:

"ello"

5.3.5 First character, middle and end of a string: head mid tail

The head command �nds the �rst character of a string.

• head takes one argument:
str, a string.

• head(str) returns the �rst character of the string str.

Example.

Input:

head("Hello")

Output:

"H"

The mid command �nds a selected part from the middle of a string.

• mid takes three arguments:

� str, a string.

� p, an integer for the starting index of the result.

� q, an integer q for the length of the string.

• mid(str,p,q) returns the part of the string str starting with the character at index p with length
q. (Remember that the �rst index is 0 in Xcas mode.)

Example.

Input:

mid("Hello",1,3)

Output:

"ell"

The tail command removes the �rst character of a string.

• tail takes one argument:
str, a string.

• tail(str) returns the string str without its �rst character.

Input:

tail("Hello")

Output:

"ello"
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5.3.6 Concatenation of a sequence of words: cumSum

The cumSum command works on strings like it does on expressions by doing partial concatenation (see
Section 5.40.27 p.419).

• cumSum takes one argument:
L, a list of strings.

• cumSum(L) returns a list of strings where the element of index k is the concatenation of the strings
in L with indices 0 to k.

Example.

Input:

cumSum("Hello, ","is ","that ","you?")

Output:

"Hello, ","Hello, is ","Hello, is that ","Hello, is that you?

5.3.7 ASCII code of a character: ord

The ord command �nds the ASCII code of a character.

• ord takes one argument:
str, a string (or a list of strings). ord(str) returns the ASCII code of the �rst character of str (or
the list of the ASCII codes of the �rst characters of the elements of the list str).

Example.

Input:

ord("a")

Output:

97

Input:

ord("abcd")

Output:

97

Input:

ord(["abcd","cde"])

Output:

[97, 99]

Input:

ord(["a","b","c","d"])

Output:

[97, 98, 99, 100]
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5.3.8 ASCII code of a string: asc

The asc command �nds the ASCII codes of all the characters in a string.

• asc takes one argument:
str, a string.

• asc(str) returns the list of the ASCII codes of the characters of s.

Examples.

• Input:

asc("abcd")

Output:
[97, 98, 99, 100]

• Input:

asc("a")

Output:
[97]

5.3.9 String de�ned by the ASCII codes of its characters: char

The char command translates ASCII codes to strings.

• char takes one argument:
c, an integer representing an ASCII code or a list of ASCII codes.

• char(c) returns the string whose character has ASCII code c or whose characters have ASCII
codes the elements of the list c.

Example.

Input:

char([97,98,99,100])

Output:
"abcd"

Input:

char(97)

Output:
"a"

Note that there are 256 ASCII codes, 0 through 255. If asc is given an integer c not in that range,
it will use the integer in that range which equals c modulo 256.
Input:

char(353)

Output:
"a"

because 353− 256 = 97.
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5.3.10 Finding a character in a string: inString

The inString command tests to see if a string contains a character.

• inString takes two arguments:

� str, a string.

� c, a character.

• inString(str , c) returns the index of its �rst occurrence of the character c in the string str, or -1
if c does not occur in str.

Examples.

• Input:

inString("abcded","d")

Output:
3

• Input:

inString("abcd","e")

Output:
−1

5.3.11 Concatenating objects into a string: cat

The cat command transforms a sequence of objects into a string.

• cat takes one argument:
seq, a sequence of objects.

• cat(seq) returns the concatenation of the string representations of these objects as a single string.

Examples.

• Input:

cat("abcd",3,"d")

Output:
"abcd3d"

• Input:

c:=5

cat("abcd",c,"e")

Output:
"abcd5e"

• Input:

purge(c)

cat(15,c,3)

Output:
"15c3"
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5.3.12 Adding an object to a string: +

The '+' command can be used like cat (see Section 5.3.11 p.104), and the + operator is the in�xed
version. (See Section 5.16.1 p.202 for other uses of + and '+'.)

• '+' takes one argument:
seq, a sequence of objects, at least one of which is a string.

• '+'(seq) returns the concatenation of the string representations of the objects in seq.

Warning.
+ is in�xed and '+' is pre�xed.

Examples.

• Input:

'+'("abcd",3,"d")

or:

"abcd"+3+"d"

Output:
"abcd3d"

• Input:

c:=5

then:

"abcd"+c+"d"

or:

'+'("abcd",c,"d")

Output:
"abcd5d"

5.3.13 Transforming a real number into a string: cat +

The cat command (see Section 5.3.11 p.104) can also be used to transform a real number into a string,
as can + (see Section 5.3.12 p.105).

If cat has a real number as an argument, the result will be a string.

Example.

Input:

cat(123)

Output:
"123"

Similarly, if you add a real number to an empty string, the result will be a string.
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Example.

Input:

""+123

Output:

"123"

5.3.14 Transforming a string into a number: expr

The expr command transforms a string representing a valid Xcas statement into the actual statement.

• expr takes one argument:
str, a string corresponding to an Xcas statement.

• expr(str) evaluates the statement.

Examples.

• Input:

expr("a:=1")

Output:

1

Then:
Input:

a

Output:

1

In particular, expr can transform a string representing a number into the number (see Section 4.1
p.75).

• Input:

expr("123")

Output:

123

• Input:

expr("0123")

Output:

83

since 0123 represents a base 8 integer (see Section 5.4.1 p.108) and 1 · 82 + 2 · 8 + 3 = 83.

• Input:

expr("0x12f")
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Output:

303

since 0x12f represents a base 16 number and 1 ∗ 162 + 2 ∗ 16 + 15 = 303.

• Input:

expr("123.4567")

Output:

123.4567

• Input:

expr("123e-5")

Output:

0.00123

5.3.15 Levensthein distance: levenshtein

The levenshtein command computes the Levenshtein distance between two words, which is the min-
imum number of single-character edits (insertions, deletions or substitutions) required to change one
word into the other.

levenshtein takes two arguments:

• s1, a vector or string.

• s2, a vector or string.

levenshtein returns the minimum number n of edits required to transform s1 into s2.

Example.

• Input:

levenshtein("kitten","sitting")

• Output:

3

5.3.16 Hamming distance between sequences: hamdist

The hamdist command computes the Hamming distance between two sequences of equal lengths, which
is de�ned to be the number of elements at same positions which do not match.

hamdist takes two arguments:

• s1, a vector or string.

• s2, a vector or string.

hamdist returns the number n of characters in s1 that are di�erent than the corresponding characters
in s2.



108 CHAPTER 5. THE CAS FUNCTIONS

Example.

• Input:

hamdist("cats","dogs")

• Output:
3

5.4 Writing an integer in a di�erent base

5.4.1 Writing an integer in base 2, 8 or 16

Integers are typically entered and displayed in base 10. You can also enter an integer in base 2 (binary),
base 8 (octal) or base 16 (hexadecimal).

You can enter a number in base 2 by pre�xing it with 0b; the remaining digits have to be 0 or 1
since it is binary.

Example.

Input:

0b101

Output:
5

since 101 in binary is the same as 1 · 1 + 0 · 2 + 1 · 22 = 5 in decimal.

You can enter a number in octal by pre�xing it with 0 or 0o; the remaining digits have to be 0

through 7 since it is base 8.

Example.

Input:

0512

Output:
330

since 512 in base 8 is the same as 2 · 1 + 1 · 8 + 5 · 82 = 330 in decimal.

You can enter a number in hexademical by pre�xing it with 0x; the remaining digits have to be 0

through 9 or a through f (where a is 10, b is 11, . . . , f is 15).

Example.

Input:

0x2f3

Output:
755

since 2f3 in base 16 is the same as 3 · 1 + 15 · 16 + 2 · 162 = 755 in decimal.

You can have Xcas print integers in octal or hexadecimal, as well as the default decimal. To change
the base used for display, you can click on the red CAS status button and choose from the Integer

basis menu (see Section 2.5.7 p.56, item 14). If you have Xcas set to display in hexadecimal, you will
get the following:
Input:
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15

Output:
0xF

Input:

0x15

Output:
0x15

5.4.2 Writing an integer in an arbitrary base b: convert

The convert command does various kinds of conversions depending on the option given as the second
argument (see Section 5.23.26 p.277). convertir is a synonym for convert.

One thing that convert can do is convert integers to arbitrary bases and back to the default base,
both with the option base.

To convert an integer into the list of its �digits� in base b:

• convert takes three arguments:

� n, an integer.

� base, the symbol verbatim.

� b, a positive integer, the value of the base.

• convert(n,base,b) returns the list of digits of the integer n when written in base b. The list of
digits will start with the 1s term, then the bs term, the b2 term, etc.

Example.

Input:

convert(123,base,8)

Output:
[3, 7, 1]

To check the answer, input 0173 (see Section 5.4.1 p.108) or horner(revlist([3,7,1]),8) (see Sec-
tion 5.27.19 p.312 and Section 5.40.15 p.412) or convert([3,7,1],base,8). The result will be 123.

The base used for convert can be any integer greater than 1.

Example.

Input:

convert(142,base,12)

Output:
[10, 11]

To convert the its �digits� in base b into a base 10 integer:

• convert takes three arguments:

� L, a list of integers representing the digits of the integer in base b, assumed to go in order of
increasing signi�cance.

� base, the symbol verbatim.

� b, a positive integer, the value of the base.

• convert(L,base,b) returns the integer which, in base b, has the digits given in L.
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Examples.

• Input:

convert([3,7,1],base,8)

Output:
123

• Input:

convert([10,11],base,12)

Output:
142

5.5 Integers (and Gaussian Integers)

Xcas can manage integers with unlimited precision, such as the following (see Section 5.6.1 p.132):
Input:

factorial(100)

Output:

9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253
697920827223758251185210916864000000000000000000000000

Gaussian integers are numbers of the form a+ ib, where a and b are in Z. For most functions in this
section, you can use Gaussian integers in place of integers.

5.5.1 GCD: gcd igcd Gcd

The gcd command �nds the greatest common divisor (GCD) of a set of integers or polynomials. (See
also Section 5.28.5 p.330 for polynomials.) It can be called with one or two arguments.
igcd is a synonym for gcd.

With one argument:

• gcd takes one argument:
seq, a sequence or list of integers or polynomials.

• gcd(seq) returns the GCD of the elements of seq.

Examples.

• Input:

gcd(18,15)

Output:
3

• Input:

gcd(18,15,21,36)
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Output:
3

• Input:

gcd([18,15,21,36])

Output:
3

• Input:

gcd(-5-12*i,11-10*i)

Output:
3 + 2i

With two arguments:

• gcd takes two arguments:
s and t, two lists of the same length containing integers or polynomials (alternatively, a matrix m
with two rows whose elements are integers or polynomials).

• gcd(s,t) (or gcd(m)) returns the list whose kth element is the GCD of the kth elements of s and
t (or the kth column of m).

Examples.

• Input:

gcd([6,10,12],[21,5,8])

or:

gcd([[6,10,12],[21,5,8]])

Output:
[3, 5, 4]

• Find the greatest common divisor of 4n+ 1 and 5n+ 3 when n ∈ N.
Input:

f(n):=gcd(4*n+1,5*n+3)

then input:

essai(n):={

local j,a,L;

L:=NULL;

for (j:=-n;j<n;j++) {

a:=f(j);

if (a!=1) {

L:=L,[j,a];

}

}

return L;

}
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then input:

essai(20)

Output:

[−16, 7] , [−9, 7] , [−2, 7] , [5, 7] , [12, 7] , [19, 7]

From this information, a reasonable conjecture would be that gcd(4n+1, 5n+3) = 7 if n = 7k−2
for some k ∈ Z and gcd(4n+ 1, 5n+ 3) = 1 otherwise.

Since gcd(a, b) = gcd(a, b−c·a) for integers a,b and c; we have gcd(4n+1, 5n+3) = gcd(4n+1, 5n+
3− (4n+ 1)) = gcd(4n+ 1, n+ 2) = gcd(4n+ 1−4(n+ 2), n+ 2) = gcd(−7, n+ 2) = gcd(7, n+ 2),
and so gcd(4n + 1, 5n + 3) = 7 if 7 divides n + 2, namely n + 2 = 7k or n = 7k − 2, and
gcd(4n+ 1, 5n+ 3) = 1 otherwise. This proves the conjecture.

The Gcd command is the inert form of gcd; namely, it evaluates to gcd, for later evaluation.

Examples.

• Input:

Gcd(18,15)

Output:

gcd (18, 15)

• Input:

eval(Gcd(18,15))

Output:

3

(See Section 5.12.1 p.171.)

5.5.2 GCD of a list of integers: lgcd

The lgcd command also �nds the GCD of a list of integers or polynomials.

• lgcd takes one argument:
L, a list of integers (or polynomials).

• lgcd(L) returns the GCD of all the integers (or polynomials) in the list L.

Example.

Input:

lgcd([18,15,21,36])

Output:

3

Remark.
lgcd does not accept two lists as arguments (even if they have the same size).
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5.5.3 The least common multiple: lcm

The lcm command �nds the least common multiple (LCM) of a set of integers or polynomials. (See also
Section 5.28.8 p.333 for polynomials.)

With one argument:

• lcm takes one argument:
seq, a sequence or list of integers or polynomials.

• lcm(seq) returns the LCM of the elements of s.

Examples.

• Input:

lcm(18,15)

Output:
90

• Input:

lcm(-5-12*i,11-10*i)

Output:
−53 + 8i

• Input:

lcm(18,15,21,36)

Output:
1260

• Input:

lcm([18,15,21,36])

Output:
1260

With two arguments:

• lcm takes two arguments:
s and t, two lists of the same length containing integers or polynomials (alternatively, a matrix m
with two rows whose elements are integers or polynomials).

• lcm(s,t) (or lcm(m)) returns the list whose kth element is the LCM of the kth elements of s and
t (or the kth column of m).

Example.

Input:

lcm([6,10,12],[21,5,8])

or:

lcm([[6,10,12],[21,5,8]])

Output:
[42, 10, 24]
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5.5.4 Decomposition into prime factors: ifactor

The ifactor command factors an integer into its prime factors. (Note that a prime factor of a Gaussian
integer is only determined up to a factor of ±1 or ±i.)

• ifactor takes one argument:
n, an integer or a list of integers.

• ifactor(n) returns n in factored form (or a list of the integers in factored form).

Examples.

• Input:

ifactor(90)

Output:

5 · 2 · 32

• Input:

ifactor(-90)

Output:

−5 · 2 · 32

• Input:

ifactor(14+23*i)

Output:

i (2− i)2 (5 + 2i)

• Input:

ifactor([36,52])

Output: [
22 · 32, 13 · 22

]
5.5.5 List of prime factors: ifactors

The ifactors command decomposes an integer into prime factors.

• ifactors takes one argument:
n, an integer or a list of integers.

• ifactors(n) decomposes the integer n (or the integers of the list) into prime factors, given as a
list (or a list of lists) in which each prime factor is followed by its multiplicity.
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Examples.

• Input:

ifactors(90)

Output:
[2, 1, 3, 2, 5, 1]

since 90 = 213251.

• Input:

ifactors(-90)

Output:
[−1, 1, 2, 1, 3, 2, 5, 1]

• Input:

ifactors(31+22*i)

Output:
[i, 1, 2− i, 1, 4− i, 2]

• Input:

ifactors([36,52])

Output: [
2 2 3 2
2 2 13 1

]
5.5.6 Matrix of factors: maple_ifactors

The maple_ifactors command decomposes an integer into prime factors, and returns the result in
Maple syntax.

• maple_ifactors takes one argument:
n, an integer or a list of integers.

• maple_ifactors(n) decomposes the integer n (or the integers of the list) into prime factors, given
as a list following the Maple syntax; namely, a list starting with +1 or -1 (for the sign), then a
matrix with 2 columns whose rows are the prime factors and their multiplicity (or a list of such
lists).

Examples.

• Input:

maple_ifactors(90)

Output: 1,

 2 1
3 2
5 1


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• Input:

maple_ifactor([36,52])

Output:  1

[
2 2
3 2

]
1

[
2 2
13 1

]


5.5.7 The divisors of a number: idivis divisors

The idivis command �nds the divisors of an (ordinary) integer.
divisors is a synonym for idivis.

• idivis takes one argument:
n, an integer or list of integers.

• idivis(n) returns the list of the divisors of the integer n (or of a list of such lists).

Examples.

• Input:

idivis(36)

Output:

[1, 2, 3, 4, 6, 9, 12, 18, 36]

• Input:

idivis([36,22])

Output:

[[1, 2, 3, 4, 6, 9, 12, 18, 36] , [1, 2, 11, 22]]

5.5.8 The integer Euclidean quotient: iquo intDiv div

The quotient and remainder of ordinary integers a and b are respectively integers q and r, where
a = b ∗ q + r and 0 ≤ r < b.

The quotient and remainder of Gaussian integers a and b are respectively Gaussian integers q and r
where r = a− b ∗ q is as small as possible. It can be proven that r can be found so that |r|2 ≤ |b|2/2.

The iquo command �nds the integer quotient of two integers.
intDiv is a synonym for iquo.

• iquo takes two arguments:
a and b, integers.

• iquo(a,b) returns the quotient q of a and b.
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Examples.

• Input:

iquo(148,5)

Output:
29

• Input:

iquo(factorial(148),factorial(145)+2 )

Output:
3176375

• Input:

iquo(25+12*i,5+7*i)

Output:
3− 2i

Here r = a− b ∗ q = −4 + i and | − 4 + i|2 = 17 < |5 + 7 ∗ i|2/2 = 74/2 = 37

The div operator is the in�xed version of iquo.

Example.

Input:

148 div 5

Output:
29

5.5.9 The integer Euclidean remainder: irem remain smod mods mod %

The irem command �nds the remainder of two integers (see Section 5.5.8 p.116).
remain is a synonym for irem.

• irem takes two arguments:
a and b, integers.

• irem(a,b) returns the remainder r of a divided by b.

Examples.

• Input:

irem(148,5)

Output:
3

• Input:

irem(factorial(148),factorial(45)+2 )
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Output:
111615339728229933018338917803008301992120942047239639312

• Input:

irem(25+12*i,5+7*i)

Output:
−4 + i

Here r = a− b ∗ q = −4 + i and | − 4 + i|2 = 17 < |5 + 7 ∗ i|2/2 = 74/2 = 37

The smod command �nds the symmetric remainder of two (ordinary) integers.
mods is a synonym for smod.

• smod takes two arguments:
a and b, integers.

• smod(a,b) returns the symmetric remainder s of the Euclidean division of a and b; namely, the
value s with a = b ∗ q + s and −b/2 < s ≤ b/2.

Example.

Input:

smod(148,5)

Output:
−2

The mod operator is an in�xed operator which takes an integer to a modular integer.
% is a synonym for mod.

• mod has two operands: a and b, ordinary integers.

• a mod b returns r%b in Z/bZ, where r is the remainder of the Euclidean division of the arguments
a and b.

Example.

Input:

148 mod 5

or:

148 % 5

Output:
(−2) % 5

Note that the result -2 % 5 is not an integer (-2) but an element of Z/5Z (see Section 5.34 p.363 for
the possible operations in Z/5Z).

5.5.10 Euclidean quotient and Euclidean remainder of two integers: iquorem

The iquorem command �nds both the quotient and remainder of two integers (see Section 5.5.8 p.116).

• iquorem takes two arguments:
a and b, integers.

• iquorem(a,b) returns the list [q, r], where q is the quotient and r the remainder of a divided by
b.
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Examples.

• Input:

iquorem(148,5)

Output:
[29, 3]

• Input:

iquorem(25+12*i,5+7*i)

Output:
[3− 2i,−4 + i]

5.5.11 Test of evenness: even

The even command tests an integer to see if it is even. (A Gaussian integer a+ ib is even exactly when
a and b are both even and odd otherwise.)

• even takes one argument:
n, an integer.

• even(n) returns 1 if n is even and returns 0 if n is odd.

Examples.

• Input:

even(148)

Output:
1

• Input:

even(149)

Output:
0

• Input:

even(2+4*i)

Output:
1

5.5.12 Test of oddness: odd

The odd command tests an integer to see if it is odd.

• odd takes one argument:
n, an integer.

• odd(n) returns 1 if n is odd and returns 0 if n is even.
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Examples.

• Input:

odd(148)

Output:
0

• Input:

odd(149)

Output:
1

5.5.13 Test of pseudo-primality: is_pseudoprime

A pseudo-prime is a number with a large probability of being prime (cf. Rabin's Algorithm and Miller-
Rabin's Algorithm in the Algorithmic part (menu HelpIManualsIProgramming)). For numbers less
than 1014, pseudo-prime and prime are equivalent.

The is_pseudoprime command is a test for a pseudo-prime.

• is_pseudoprime takes one argument:
n, an integer.

• is_pseudoprime(n) returns 0, 1 or 2.

� If it returns 0, then n is not prime.

� If it returns 1, then n is a prime.

� If it returns 2, then n is pseudo-prime (most probably prime).

Examples.

• Input:

is_pseudoprime(100003)

Output:
1

• Input:

is_pseudoprime(9856989898997)

Output:
2

• Input:

is_pseudoprime(14)

Output:
0

• Input:

is_pseudoprime(9856989898997789789)

Output:
1
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5.5.14 Test of primality: is_prime isprime isPrime

The is_prime, isprime and isPrime commands are tests for primality.

• is_prime takes one argument:
n, an integer.

• is_prime(n) returns 1 if n is prime and 0 if n is not prime.

isprime and isPrime are the same as is_prime, except they return true or false.

Examples.

• Input:

is_prime(100003)

Output:

1

• Input:

isprime(100003)

Output:

true

• Input:

is_prime(98569898989987)

Output:

1

• Input:

is_prime(14)

Output:

0

• Input:

isprime(14)

Output:

false

You can use the command pari("isprime",n,1) (see Section 5.7.10 p.143) to get a primality certi�-
cate (see the documentation PARI/GP with the menu HelpIManualsIPARI-GP) and pari("isprime",n,2)
to use the APRCL test.
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Examples.

• Input:

isprime(9856989898997789789)

Output:

true

• Input:

pari("isprime",9856989898997789789,1)

Output: 
2 2 1
19 2 1
941 2 1
1873 2 1


which are the coe�cients giving the proof of primality by the p− 1 Selfridge-Pocklington-Lehmer
test.

5.5.15 The smallest pseudo-prime greater than n: nextprime

The nextprime command �nds pseudo-primes larger than a given target.

• nextprime takes one argument:
n, an integer.

• nextprime(n) returns the smallest pseudo-prime (or prime) greater than n.

Example.

Input:

nextprime(75)

Output:

79

5.5.16 The greatest pseudo-prime less than n: prevprime

The prevprime command �nds pseudo-primes less than a given target.

• prevprime takes one argument:
n, an integer greater than 2.

• prevprime(n) returns the largest pseudo-prime (or prime) less than n.

Example.

Input:

prevprime(75)

Output:

73
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5.5.17 The nth pseudo-prime number: ithprime

The ithprime command �nds pseudo-primes.

• ithprime takes one argument:
n, a positive integer.

• ithprime(n) returns the nth pseudo-prime number.

Examples.

• Input:

ithprime(75)

Output:
379

• Input:

ithprime(k) $ (k=1..20)

Output:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

5.5.18 The number of pseudo-primes less than or equal to n: nprimes

The nprimes command counts the number of pseudo-primes.

• nprimes takes one argument:
n, a non-negative integer.

• nprimes(n) returns the number of pseudo-primes (or primes) less than or equal to n.

Examples.

• Input:

nprimes(5)

Output:
3

• Input:

nprimes(10)

Output:
4

5.5.19 Bézout's Identity: iegcd igcdex

Bézout's Identity states that for any integers a and b, there exist integers u and v such that gcd(a, b) =
au+ bv. The iegcd command computes the coe�cients u and v.
igcdex is a synonym for iegcd.

• iegcd takes two arguments:
a and b, integers.

• iegcd(a,b) returns the list [u,v,d], where au+ bv = d and d = gcd(a, b).
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Example.

Input:

iegcd(48,30)

Output:

[2,−3, 6]

In other words:

2 · 48 + (−3) · 30 = 6

5.5.20 Solving au+ bv = c in Z: iabcuv

The iabcuv solves a linear Diophantine equation in two variables.

• The iabcuv command takes three arguments:
a, b and c, integers.

• iabcuv(a,b,c) returns the list [u,v] where au+ bv = c.

Note that c must be a multiple of gcd(a, b) for the existence of a solution.

Example.

Input:

iabcuv(48,30,18)

Output:

[6,−9]

5.5.21 Chinese remainders: ichinrem ichrem chrem

The Chinese Remainder Theorem states that if p1, p2, . . . , pn are relatively prime, then for any integers
a1, a2, . . . an there is a number c such that c = a1 (mod p1), c = a2 (mod p2), . . . , c = an (mod pn).
The ichinrem command will �nd this value of c.
ichrem is a synonym for ichinrem.

• ichinrem takes one or more arguments:
Each argument is a pair of integers ak and pk either as a list [ak, pk] or as a modular integer ak%pk.

• ichinrem([a1, p1],[a2, p2],...,[an, pn]) if possible returns a list [c,L], where L = lcm(p1, p2, . . . , pn)
and c satis�es c = ak (mod pk) for k = 1, . . . , n.

Note that any multiple of L = lcm(p1, p2, . . . , pn) can be added to c and the equalities will still be true.
If the pk are relatively prime, then by the Chinese remainder theorem a solution c will exist; what's
more, any two solutions will be congruent modulo the product of the pks.
If all of the arguments are given as modular integers, then the result will also be given as a modular
integer c%l.

The chrem command does the same thing as ichinrem, but the input is given in a di�erent form.

• chrem takes two arguments:
[a1, . . . , an] and [p1, . . . , pn], lists of integers of the same size.

• chrem([a1, . . . , an], [p1, . . . , pn]) returns [c, L], as for ichinrem.

Be careful with the order of the parameters, indeed:
chrem([a,b],[p,q])=ichrem([a,p],[b,q])=ichinrem([a,p],[b,q])
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Examples.

• Solve:

x = 3 (mod 5)

x = 9 (mod 13)

Input:

ichinrem([3,5],[9,13])

or:

ichrem([3,5],[9,13])

Output:
[48, 65]

so x=48 (mod 65)

You can also input:

ichrem(3%5,9%13)

Output:
(−17) % 65

(note that 48 = −17 (mod 65)).
Recalling that chrem takes its arguments in a di�erent form, you can also enter:
Input:

chrem([3,9],[5,13])

Output:
[48, 65]

• Solve:

x = 3 (mod 5)

x = 4 (mod 7)

x = 1 (mod 9)

Input:

ichinrem([3,5],[4,7],[1,9])

Output:
[298, 315]

hence x=298 (mod 315)

Alternative input:

ichinrem([3%5,4%7,1%9])

Output:
(−17) % 315

(note that 298 = −17 (mod 315)).
Again, with the arguments in a di�erent form, you can also enter:
Input:
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chrem([3,4,1],[5,7,9])

Output:
[298, 315]

Remark.
These three commands, ichinrem, ichrem and chrem, may also be used to �nd the coe�cients of a
polynomial whose equivalence classes are known modulo several integers by using polynomials with
integer coe�cients instead of integers for the ak.
For example, to �nd ax+ b modulo 315 = 5× 7× 9 under the assumptions

a = 3 (mod 5)

a = 4 (mod 7)

a = 1 (mod 9)

and

b = 1 (mod 5)

b = 2 (mod 7)

b = 3 (mod 9)

Example.

Input:

ichinrem((3x+1)%5,(4x+2)%7,(x+3)%9)

Output:
((−17) % 315)x+ 156 % 315

hence a=-17 (mod 315) and b=156 (mod 315).
As before, chrem takes the same input in a di�erent format.
Input:

chrem([3x+1,4x+2,x+3],[5,7,9])

Output:
[298x+ 156, 315]

(note that 298 = −17 (mod 3)15).

5.5.22 Solving a2 + b2 = p in Z: pa2b2

Any prime number congruent to 1 modulo 4 can be written as a sum of two squares. The pa2b2

command �nds such a decomposition.

• pa2b2 takes one argument:
p, a prime number which is congruent to 1 modulo 4.

• pa2b2(p) returns a list of integers [a,b], where p = a2 + b2.

Example.

Input:

pa2b2(17)

Output:
[4, 1]

indeed, 17 = 42 + 12.
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5.5.23 Solving Diophantine equations: isolve

The isolve command attempts to solve the given equations over the integers. Note that it automatically
solves for all of the indeterminates present in the equations.

• isolve takes one mandatory argument: an equation or list of equations.

• isolve also takes the following optional arguments:

� a (sequence or list of) symbol(s), which are used as the names for global variables present in
the solution, can be passed as the second argument. These names default to _Z0,_Z1, . . .
for general integers and to _N0,_N1, . . . for positive integers.

� seq=false, which makes isolve return only particular/fundamental solution(s) found by
the solver. By default, seq=true, which makes isolve return sequences (classes) of solutions
whenever possible.

• isolve can solve the following types of equations:

� (systems of) linear equation(s)

� general quadratic equations with two indeterminates

� equations of the type Q(x, y, z) = 0, where Q is a ternary quadratic form

� equations of the type f(x) = g(y), where f, g ∈ Z[X] are monic polynomials with degrees m
and n such that gcd(m,n) > 1 and f(x)− g(y) is irreducible in Q[X,Y ]

Examples.

• Linear equations and systems can be solved.
Input:

isolve(5x+42y+8=0)

Output:

[x = −10 + 42_Z0, y = 1− 5_Z0]

Input:

isolve([x+y-z=4,x-2y+3z=3],m)

Output:

[x = m, y = −4m+ 15, z = −3m+ 11]

• Here we �nd the general solution to Pell-type equation x2 − 23y2 = 1.
Input:

sol:=isolve(x�2-23y�2=1,n)

Output: [
x =

(
24 + 5

√
23
)n

+
(
24− 5

√
23
)n

2
, y =

(
24 + 5

√
23
)n − (24− 5

√
23
)n

2
√

23

]

To check that it is indeed the solution, enter:

simplify(subs(x�2-23y�2-1,sol))
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Output:
0

Now to obtain e.g. the �rst four solutions, enter:

simplify(apply(unapply(apply(rhs,sol),n),[1,2,3,4]))

Output:
[[24, 5], [1151, 240], [55224, 11515], [2649601, 552480]]

To obtain only the fundamental solution, enter:

isolve(x�2-23y�2=1,seq=false)

Output:
[x = 24, y = 5]

• The following two examples demonstrate solving quadratic equations with two indeterminates.
Input:

isolve(x�2-5x*y+4y�2=16)

Output: 

x = −4, y = −5
x = 0, y = −2
x = 4, y = 0
x = 10, y = 2
x = 21, y = 5
x = 4, y = 5
x = 0, y = 2
x = −4, y = 0
x = −10, y = −2
x = −21, y = −5


Input:

isolve(x�2-3x*y+y�2-x=2,n)

Output:

[[x =

(√
5−3
2

)n (
−15
√

5− 33
)

10
+

(
−
√
5−3
2

)n (
15
√

5− 33
)

10
− 2

5
,

y =

(√
5−3
2

)n (
−3
√

5− 6
)

5
+

(
−
√
5−3
2

)n (
3
√

5− 6
)

5
− 3

5
]]

Input:

isolve(8x�2-24x*y+18y�2+5x+7y+16=0)

Output: [
x = −174_Z12 + 17_Z1− 2, y = −116_Z12 + 21_Z1− 2
x = −174_Z12 + 41_Z1− 4, y = −116_Z12 + 37_Z1− 4

]
• Integral zeros of ternary quadratic forms can be found.
Input:
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isolve(x�2+11y�2+6x*y-3z�2=0,a,b,c)

Output: [
x = c

(
−44a2 + 12b2

)
, y = c

(
13a2 − 3b2 − 6ab

)
, z = c

(
−11a2 − 3b2 + 2ab

)]
The components of the above solution can be divided by the GCD of −44a2+12b2, 13a2−3b2−6ab,
and −11a2− 3b2 + 2ab, thus producing a parametrization for the pairwise-coprime solutions given
c = 1.

• Certain polynomial equations of the type f(x) = g(y) can be fully solved, as in the following
example.
Input:

isolve(x�2-3x+5=y�8-y�7+9y�6-7y�5+4y�4-y�3)

Output: 

x = −3, y = −1
x = 6, y = −1
x = 0, y = 1
x = 3, y = 1
x = 660, y = 5
x = −657, y = 5


The above list contains all integer solutions to the given equation.

5.5.24 The Euler indicatrix: euler phi

The Euler phi function (also called the Euler totient function) �nds the number of positive integers less
than a given integer and relatively prime. The euler command computes the Euler phi function.

• euler takes one argument:
n, a non-negative integer.

• euler(n) returns the number of integers larger than 1, less than n and relatively prime to n.

Example.

Input:

euler(21)

Output:

12

In other words the set of integers less than 21 and coprime with 21, {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20},
has 12 elements.

The little Fermat theorem states:

If p is a prime number, then for any integer a, ap−1 = 1 mod p.

Euler introduced his phi function to generalize the little Fermat theorem:

If a and n are relatively prime, then aeuler(n) = 1 mod n.
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Example.

Input:

powmod(5,12,21)

(see section Section 5.34.10 p.367)
Output:

1

5.5.25 Legendre symbol: legendre_symbol

If n is prime, the Legendre symbol of a is written
(
a
n

)
and de�ned by:

(a
n

)
=


0 if a = 0 mod n
1 if a 6= 0 mod n and if a = b2 mod n
−1 if a 6= 0 mod n and if a 6= b2 mod n

The Legendre symbol satis�es the following properties.

• If n is prime:

a
n−1
2 =

(a
n

)
mod n

• (
p

q

)
.

(
q

p

)
= (−1)

p−1
2 .(−1)

q−1
2 if p and q are odd and positive(

2

p

)
= (−1)

p2−1
8(

−1

p

)
= (−1)

p−1
2

The legendre_symbol command computes the Legendre symbol.

• legendre_symbol takes two arguments:
a and n, integers.

• legendre_symbol(a,n) returns the Legendre symbol
(
a
n

)
.

Examples.

• Input:

legendre_symbol(26,17)

Output:
1

• Input:

legendre_symbol(27,17)

Output:
−1

• Input:

legendre_symbol(34,17)

Output:
0
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5.5.26 Jacobi symbol: jacobi_symbol

The Jacobi symbol is a generalization of the Legendre symbol
(
a
n

)
for when n isn't prime. Let

n = pα1
1 . . . pαkk

be the prime factorization of n. The Jacobi symbol of a is de�ned by:(a
n

)
=

(
a

p1

)α1

. . .

(
a

pk

)αk
Where the left hand side is the Jacobi symbol and the right hand side contains Legendre symbols. The
jacobi_symbol command computes the Jacobi symbol.

• jacobi_symbol takes two arguments:
a and n, integers.

• jacobi_symbol(a,n) returns the Jacobi symbol
(
a
n

)
.

Examples.

• Input:

jacobi_symbol(25,12)

Output:
1

• Input:

jacobi_symbol(35,12)

Output:
−1

• Input:

jacobi_symbol(33,12)

Output:
0

5.5.27 Listing all compositions of an integer into k parts: icomp

A composition of a positive integer n is an ordered set of non-negative integers which sum to n. For
example, three compositions of 4 are

4 = 1 + 3

4 = 3 + 1

4 = 1 + 1 + 2

These compositions have two, two and three elements, respectively. The icomp command �nds all
compositions of an integer with a given number of elements.

• icomp accepts two mandatory arguments and one optional argument:

� n, a positive integer.
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� k, a positive integer not larger than n.

� Optionally, either zeros=true or zeros=false.

• icomp(n, k 〈,zeros=bool〉) returns the list of all compositions of n into k parts, where a part can
be 0. This is equivalent to the optional argument with bool equal to true. With bool equal to
false, icomp(n,k,zeros=false) returns the list of all compositions of n into k parts, where each
part is nonzero (positive).

Examples.

• Input:

icomp(4,2)

Output: 
4 0
3 1
2 2
1 3
0 4


• Input:

icomp(6,3,zeros=false)

Output: 

4 1 1
3 2 1
2 3 1
1 4 1
3 1 2
2 2 2
1 3 2
2 1 3
1 2 3
1 1 4


5.6 Combinatorial analysis

5.6.1 Factorial: factorial !

The factorial command computes the factorial of a number.
The post�x operator ! is equivalent.

• factorial takes one argument:
n, an integer.

• factorial(n) returns n!.

Example.

Input:

factorial(10)

or:
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10!

Output:
3628800

The Γ function (see Section 5.8.13 p.153) can be used to extend the factorial function to complex
numbers. The Γ function is de�ned for all complex numbers except for zero and the negative integers,
and it satis�es Γ(n + 1) = n! for all non-negative integers n. So the factorial can be extended to all
complex numbers except the negative integers by n! = Γ(n+ 1).

Examples.

• Input:

factorial(1/2)

Output: √
π

2

• Input:

factorial(i)

Output:
0.5− 0.2i

5.6.2 Binomial coe�cients: binomial comb nCr

The comb command computes the binomial coe�cients.
nCr is a synonyms for comb.

• comb takes two arguments:
n and p, integers.

• comb(n,p) returns
(
n
p

)
= Cpn.

Example.

Input:

comb(5,2)

Output:
10

Remark.
The binomial command (see Section 8.4.3 p.677) can also compute the binomial coe�cients, but unlike
comb and nCr it can take an optional third argument, a real number a, to compute the binomial
distribution. In this case binomial(n,p,a) returns

(
n
p

)
ap(1 − a)n−p, the probability of p successes in

n independent Bernoulli trials, where each trial has a probability a of success.

Example.

Input:

binomial(5,2,0.5)

Output:
0.3125
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5.6.3 Permutations: perm nPr

The perm command computes numbers of permutations.
nPr is a synonym for perm.

• perm takes two arguments:
n and p, integers.

• perm(n,p) returns P pn , the number of permutations of n objects taken p at a time.

Example.

Input:

perm(5,2)

Output:
20

5.6.4 Wilf-Zeilberger pairs: wz_certificate

The Wilf-Zeilberger certi�cate R(n, k) is used to prove the identity∑
k

U(n, k) = Cres(n)

for some constant C (typically 1) whose value can be determined by evaluating both sides for some
value of k. To see how that works, note that the above identity is equivalent to∑

k

F (n, k)

being constant, where F (n, k) = U(n, k)/res(n). The Wilf-Zeilberger certi�cate is a rational function
R(n, k) that make F (n, k) and G(n, k) = R(n, k)F (n, k) a Wilf-Zeilberger pair, meaning

• F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k) for integers n ≥ 0, k.

• limk→±∞G(n, k) = 0 for each n ≥ 0.

To see how this helps, adding the �rst equation from k = −M to k = N gives you
∑N

k=−M (F (n +
1, k)−F (n, k)) =

∑
k=−M N(G(n, k+ 1)−G(n, k)). The right-hand side is a telescoping series, and so

the equality can be written

N∑
k=−M

F (n+ 1, k)−
N∑

k=−M
F (n, k) = G(n,N + 1)−G(n,−M).

Taking the limit as N,M →∞ and using the second condition of Wilf-Zeilberger pairs, you get∑
k

F (n+ 1, k) =
∑
k

F (n, k)

and so
∑

k F (n, k) does not depend on n, and so is a constant.
The wz_certificate command computes Wilf-Zeilberger pairs.

• wz_certificate takes four arguments:

� U(n, k), an expression in two variables.

� res(k), an expression in one of the variables.

� n and k, the variables.

• wz_certificate(U(n, k),res(k),n,k) returns the Wilf-Zeilberger certi�cate R(n, k) for the iden-

tity
∑infty

k=−∞ U(n, k) = res(n).
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Example.

To show ∑
k

(−1)k
(
n

k

)(
2k

k

)
4n−k =

(
2n

n

)
:

Input:

wz_certificate((-1)�k*comb(n,k)*comb(2k,k)*4�(n-k),comb(2n,n),n,k)

Output:
2k − 1

2n+ 1

This means that R(n, k) = (2k − 1)/(2n + 1) is a Wilf-Zeilberger certi�cate; in other words F (n, k) =
(−1)k

(
n
k

)(
2k
k

)
4n−k/

(
2n
n

)
and G(n, k) = R(n, k)F (n, k) are a Wilf-Zeilberger pair. So

∑
k F (n, k) is a

constant. Since F (0, 0) = 1 and F (0, k) = 0 for k > 0,
∑

k F (0, k) = 1 and so
∑

k F (n, k) = 1 for all n,
showing ∑

k

(−1)k
(
n

k

)(
2k

k

)
4n−k =

(
2n

n

)
.

5.7 Rational numbers

5.7.1 Transform a �oating point number into a rational: exact float2rational

Rational numbers can be approximated by �oating point numbers, but since �oating point numbers
are not exact, they can't typically be converted back to the original rational number. However, the
float2rational command will try convert a �oating point to a nearby rational number.
exact is a synonym for float2rational.

• float2rational takes one argument:
d, a �oating point number.

• float2rational(d) returns a rational number q close to d; namely such that |d − q| <epsilon,
where epsilon is de�ned in the cas con�guration (Cfg menu, see Section 2.5.7 p.56, item 9) or
with the cas_setup command (see Section 2.5.10 p.60).

Examples.

• Input:

float2rational(0.3670520231)

Output (when epsilon=1e-10):
127

346

• Input:

evalf(363/28)

Output:

12.9642857143

• Input:

float2rational(12.9642857143)
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Output:
363

28

• If two representations are mixed, for example:
Input:

1/2+0.7

the rational is converted to a �oat.
Output:

1.2

• Input:

1/2+float2rational(0.7)

Output:
6

5

5.7.2 Integer and fractional part: propfrac propFrac

Rational numbers are often broken up into integer and fractional parts, where the fractional part has
absolute value less than 1; i.e., the absolute value of the top integer is smaller than that of the bottom
integer. Such a fraction is called a proper fraction. The propfrac command writes a fraction as an
integer plus a proper fraction.
propFrac is a synonym for propfrac.

• propfrac takes one argument:
r, a rational number.

• propfrac(r) returns

q +
r

b
with 0 ≤ r < b

where r =
a

b
is in lowest terms and and a = bq + r.

(For rational expressions, see Section 5.32.8 p.360.)

Examples.

• Input:

propfrac(42/15)

Output:

2 +
4

5

• Input:

propfrac(43/12)

Output:

3 +
7

12
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5.7.3 Numerator of a fraction after simpli�cation: numer getNum

The numer command �nds the numerator of a fraction.
getNum is a synonym for numer.

• numer takes one argument:
r, a fraction.

• numer(r) returns the numerator of r after it has been reduced to lowest terms. (For rational
expressions, see Section 5.32.2 p.358 and Section 5.32.1 p.357.)

Examples.

• Input:

numer(42/12)

or:

getNum(42/12)

Output:
7

• To avoid simpli�cation, the argument must be quoted (see Section 5.12.4 p.173).
(For rational fractions see 5.32.1).
Input:

numer('42/12')

or:

getNum('42/12')

Output:
42

5.7.4 Denominator of a fraction after simpli�cation: denom getDenom

The denom command �nds the denominator of a fraction.
getDenom is a synonym for denom.

• denom takes one argument:
r a fraction.

• denom(r) returns the denominator of r after it has been reduced to lowest terms. (For rational
expressions see Section 5.32.4 p.359).

Example.

Input:

denom(42/12)

or:

getDenom(42/12)
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Output:
2

To avoid simpli�cation, the argument must be quoted (see Section 5.12.4 p.173).
(For rational expressions see Section 5.32.3 p.358).
Input:

denom('42/12')

or:

getDenom('42/12')

Output:
12

5.7.5 Numerator and denominator of a fraction: f2nd fxnd

The f2nd command �nds the numerator and denominator of a fraction.
fxnd is a synonym for f2nd.

• f2nd takes one argument:
r, a fraction.

• f2nd(r) returns the list of the numerator and denominator of r after it has been reduced to lowest
terms. (For rational expressions see Section 5.32.5 p.359).

Example.

Input:

f2nd(42/12)

Output:
[7, 2]

5.7.6 Simplifying a pair of integers: simp2

The simp2 command reduces a fraction to lowest terms, where the fraction is given as a separate
numerator and denominator. (See also Section 5.32.6 p.360.)

• simp2 takes one or two arguments:
[a, b], a list of two integers or simply the two integers a, b.

• simp2([a,b]) or simp2(a,b) returns the integers after they have been divided by their greatest
common divisor; i.e., the corresponding fraction will be in lowest terms.

Examples.

• Input:

simp2(18,15)

Output:
[6, 5]

• Input:

simp2([42,12])

Output:
[7, 2]
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5.7.7 Continued fraction representation of a real: dfc

Any real number a can be written as a continued fraction:

a = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

, which is often abbreviated [a0; a1, a2, a3, . . . ]. The dfc command writes a real number as a continued
fraction.

• dfc takes one mandatory argument and one optional argument:

� a, a real number.

� Optionally, n an integer or epsilon, a positive real number.

• dfc(a) returns the list of the continued fraction representation of a with precision epsilon, which
is given by Section 2.5.7 p.56, item 9.

• dfc(a,epsilon) returns the list of the continued fraction representation which approximates a or
evalf(a) with the speci�ed precision epsilon.

• dfc(a,n) returns the list of the continued fraction representation of a of order n.

Remarks.

• The convert command with the option confrac (see Section 5.23.26 p.277) has a similar func-
tionality: in that case the value of epsilon is the value de�ned in the cas con�guration and the
answer may be stored in an optional third argument.

• If the last element of the result is a list, the representation is ultimately periodic, and the last
element is the period. It means that the real is a root of an equation of order 2 with integer
coe�cients. So If dfc(a)=[a0,a1,a2,[b0,b1]] then:

a = a0 +
1

a1 + 1
a2+ 1

b0+ 1

b1+ 1
b0+...

• if the last element of the result is not an integer, it represents a remainder r (a = a0 + 1/ . . . +
1/an+ 1/r). So if dfc(a)=[a0,a1,a2,r] then:

a = a0 +
1

a1 + 1
a2+ 1

r

Be aware that this remainder has lost most of its accuracy.

Examples.

• Input:

dfc(sqrt(2),5)

Output:
[1, 2, [2]]

• Input:
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dfc(evalf(sqrt(2)),1e-9)

or:

dfc(sqrt(2),1e-9)

Output:

[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

• Input:

convert(sqrt(2),confrac,'dev')

Output (if in the cas con�guration epsilon=1e-9):

[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

and [1,2,2,2,2,2,2,2,2,2,2,2,2] is stored in dev.

• Input:

dfc(9976/6961,5)

Output: [
1, 2, 3, 4, 5,

43

7

]
Input (to verify):

1+1/(2+1/(3+1/(4+1/(5+7/43))))

Output:
9976

6961

• Input:

convert(9976/6961,confrac,'l')

Output (if in the cas con�guration epsilon=1e-9):

[1, 2, 3, 4, 5, 6, 7]

and [1,2,3,4,5,6,7] is stored in l.

• Input:

dfc(pi,5)

Output: [
3, 7, 15, 1, 292,

−113π + 355

33102π − 103993

]
• Input:

dfc(evalf(pi),5)
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Output (if �oats are hardware �oats, e.g. for Digits=12):

[3, 7, 15, 1, 292, 1.57581843574]

• Input:

dfc(evalf(pi),1e-9)

or:

dfc(pi,1e-9)

or (if in the cas con�guration epsilon=1e-9):

convert(pi,confrac,'ll')

Output:
[3, 7, 15, 1, 292]

and [3,7,15,1,292] is stored in ll.

5.7.8 Transforming a continued fraction representation into a real: dfc2f

The dfc2f command transforms a continued fraction into a real number.

• dfc2f takes one argument:
L, a list representing a continued fraction, which can be:

� a list of integers for a rational number.

� a list whose last element is a list for an ultimately periodic representation, i.e. a quadratic
number, that is a root of a second order equation with integer coe�cients.

� a list with a remainder r as last element (a = a0 + 1/ . . .+ 1/an+ 1/r).

• dfc2f(L) returns the rational number or the quadratic number whose continued fraction repre-
sentation is L.

Examples.

• Input:

dfc2f([1,2,[2]])

Output:
1

1√
2+1

+ 2
+ 1

After simpli�cation with normal: √
2

• Input:

dfc2f([1,2,3])

Output:
10

7
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• Input:

normal(dfc2f([3,3,6,[3,6]]))

Output: √
11

• Input:

dfc2f([1,2,3,4,5,6,7])

Output:
9976

6961

Input (to verify):

1+1/(2+1/(3+1/(4+1/(5+1/(6+1/7)))))

Output:
9976

6961

• Input:

dfc2f([1,2,3,4,5,43/7])

Output:
9976

6961

Input (to verify):

1+1/(2+1/(3+1/(4+1/(5+7/43))))

Output:
9976

6961

5.7.9 The n-th Bernoulli number: bernoulli

The Bernoulli polynomial Bn is de�ned by:

B0 = 1, Bn
′(x) = nBn−1(x),

∫ 1

0
Bn(x)dx = 0

The nth Bernoulli number is Bn = Bn(0), and is also given by the formula:

t

et − 1
=

+∞∑
n=0

B(n)

n!
tn

The bernoulli command computes the Bernoulli numbers.

• bernoulli takes one argument:
n, an integer.

• bernoulli(n) returns the n-th Bernoulli number, Bn.



5.8. REAL NUMBERS 143

Example.

Input:

bernoulli(6)

Output:
1

42

5.7.10 Accessing to PARI/GP commands: pari

PARI/GP (https://pari.math.u-bordeaux.fr/) is a computer algebra system which focuses on num-
ber theory. Xcas can use the PARI/GP functions with the pari command.

The arguments of pari depends on the PARI/GP function it is using.

• pari with a string as �rst argument (the PARI command name) executes the corresponding PARI
command with the remaining arguments. For example pari("weber",1+i) executes the PARI
command weber(1+i).

• pari without any argument exports all PARI/GP functions to Xcas with the pre�x pari_. If the
name of a PARI function is not also the name of an Xcas command, that function will also be
exported without the pre�x.

For example, after calling pari(), the commands pari_weber(1+i) and weber(1+i) will execute the
PARI command weber(1+i).

The documentation of PARI/GP is available with the menu HelpIManuals.

5.8 Real numbers

5.8.1 Evaluating a real at a given precision: evalf Digits DIGITS

A real number is an exact number and its numeric evaluation at a given precision is a �oating number
represented in base 2. The precision of a �oating number is the number of bits of its mantissa, which is
at least 53 (hardware �oat numbers, also known as double).

Floating numbers are displayed in base 10 with a number of digits controlled by the user either by
assigning the Digits variable or by modifying the Cas con�guration (see Section 2.5.7 p.56, item 8).
By default Digits is equal to 12.

The number of digits displayed controls the number of bits of the mantissa; if Digits is less than
15, 53 bits are used, if Digits is strictly greater than 15, the number of bits is a roundo� of Digits
times log2(10).

An expression can be coerced into a �oating number with the evalf command (see Section 5.8.1
p.143). The evalf command may have an optional second argument which will specify the precision to
use.

Note that if an expression contains a �oating number, evaluation will try to convert other arguments
to �oating point numbers in order to coerce the whole expression to a single �oating number.

Examples.

• Input:

1+1/2

Output:
3

2

https://pari.math.u-bordeaux.fr/
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• Input:

1.0+1/2

Output:
1.5

• Input:

exp(pi*sqrt(20))

Output:

e2π
√
5

With evalf, input:

evalf(exp(pi*2*sqrt(5)))

Output:
1263794.75367

• Input:

1.1�20

Output:
6.72749994932

• Input:

sqrt(2)�21

Output: √
2 · 210

• Input (for a result with 30 digits):

Digits:=30

Input (for the numeric value of eπ
√
163):

evalf(exp(pi*sqrt(163)))

Output:
0.262537412640768743999999999985× 108

Note that Digits is now set to 30. If you didn't want to change the value of Digits, you could
have entered:
Input:

evalf(exp(pi*sqrt(163)),30)

5.8.2 The standard in�xed operators on real numbers: + - * / �

The +, -, *, /, and � operators are the usual in�xed operators to do addition, subtraction, multiplication,
division and raising to a power.
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Examples.

• Input:

3+2

Output:
5

• Input:

3-2

Output:
1

• Input:

3*2

Output:
6

• Input:

3/2

Output:
3

2

• Input:

3.2/2.1

Output:
1.52380952381

• Input:

3�2

Output:
9

• Input:

3.2�2.1

Output:
11.5031015682

Remark.
You can use the square key or the cube key if your keyboard has one; for example: 32 returns 9.

Remarks on non integral powers.
If x is not an integer, then ax = exp(x ln(a)), hence if x is not rational, then ax is well-de�ned only for
a > 0. If x is rational and a < 0, the principal branch of the logarithm is used, leading to a complex
number. Note the di�erence between n

√
a and a

1
n when n is an odd integer.
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Example.

To draw the graph of y = 3
√
x3 − x2:

Input:

plotfunc(ifte(x>0,(x�3-x�2)�(1/3),

-(x�2-x�3)�(1/3)),x,xstep=0.01)

You might also input:

plotimplicit(y�3=x�3-x�2)

but this is much slower and much less accurate.

5.8.3 Pre�xed division on reals: rdiv

The rdiv command is the pre�xed form of the usual division operator.

Examples.

• Input:

rdiv(3,2)

Output:
3

2

• Input:

rdiv(3.2,2.1)

Output:

1.52380952381

5.8.4 n-th root: root

The root command �nds roots of numbers.

• root takes two arguments:
n and a, numbers.

• root(n,a) returns the nth root of a (i.e. a1/n). If a < 0, the n-th root is a complex number with
argument 2π/n.

Examples.

• Input:

root(3,2)

Output:

2
1
3

• Input:

root(3,2.0)
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Output:

1.25992104989

• Input:

root(3,sqrt(2))

Output:

2
1
6

5.8.5 The exponential integral function: Ei

The exponential integral Ei is de�ned for non-zero real numbers x by

Ei(x) =

∫ x

t=−∞

exp(t)

t
dt.

For x > 0, this integral is improper but the principal value exists. This function satis�es Ei(0) =
−∞, Ei(−∞) = 0.

Since
exp(x)

x
=

1

x
+ 1 +

x

2!
+
x2

3!
+ . . . ,

the Ei function can be extended to C− {0} (with a branch cut on the positive real axis) by

Ei(z) = ln(z) + γ + x+
x2

2 · 2!
+

x3

3 · 3!
+ . . .

where γ = 0.57721566490 . . . is Euler's constant.

The Ei command takes one or two arguments.

With one argument, the Ei command computes the exponential integral.

• Ei takes one argument:
z, a complex number.

• Ei(z) returns the value of the exponential integral at z.

Examples.

• Input:

Ei(1.0)

Output:

1.89511781636

• Input:

Ei(-1.0)

Output:

−0.219383934396

• Input:

Ei(1.)-Ei(-1.)
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Output:
2.11450175075

• Input:

int((exp(x)-1)/x,x=-1..1.)

Output:
2.11450175075

• The input:
Input:

evalf(Ei(-1)-sum((-1)�n/n/n!,n=1..100))

approximates the Euler's constant γ
Output:

0.577215664902

Another type of exponential integral is

E1(x) =

∫ ∞
x

exp(−t)
t

dt =

∫ ∞
1

exp(−tx)

t
dt

which satis�es
E1(x) = −Ei(−x)

This can be generalized to

En(x) =

∫ ∞
1

exp(−tx)n

t
dt

These functions satisfy

E1(x) = −Ei(x)

E2(x) = e−x + xEi(−x) = e−x − x ∗ E1(x)

and, for n ≥ 2,
En(x) = (e−x − xEn−1(x))/(n− 1)

With two arguments, the Ei command computes this version of the exponential integral.

• Ei takes two arguments:

� z, a complex number.

� n, a positive integer.

• Ei(z,n) returns the value of En(z).

Examples.

• Input:

Ei(1.0,1)

Output:
0.219383934396

• Input:

Ei(3.0,2)

Output:
0.0106419250853
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5.8.6 The logarithmic integral function: Li

The logarithmic integral function is de�ned by

Li(x) = Ei(ln(x)) =

∫ exp(x)

t=0

1

ln(t)
dt

The Li command computes the logarithmic integral.

• Li takes one argument:
z, a complex number.

• Li(z) returns the value of the logarithmic integral Li(z).

Example.

Input:

Li(2.0)

Output:
1.04516378012

5.8.7 The cosine integral function: Ci

The cosine integral function is de�ned by

Ci(x) =

∫ x

+∞

cos(t)

t
dt

= ln(t) + γ +

∫ x

t=0

cos(t)− 1

t
dt

and Ci(0) = −∞,Ci(−∞) = iπ and Ci(+∞) = 0.
The Ci command computes the cosine integral function.

• Ci takes one argument:
z, a complex number.

• Ci(z) returns the value of the cosine integral function Ci(z).

Examples.

• Input:

Ci(1.0)

Output:
0.337403922901

• Input:

Ci(-1.0)

Output:
0.337403922901 + 3.14159265359i

• Input:

Ci(1.0) - Ci(-1.0)

Output:
−3.14159265359i
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5.8.8 The sine integral function: Si

The sine integral function is de�ned by

Si(x) =

∫ x

0

sin(t)

t
dt

and Si(0) = 0, Si(−∞) = −π/2 and Si(+∞) = π/2. Note that Si is an odd function.
The Si command computes the sine integral function.

• Si command takes one argument:
z, a complex number.

• Si(z) returns the value of the sine integral function Si(z).

Example.

Input:

Si(1.0)

Output:
0.946083070367

Input:

Si(-1.0)

Output:
−0.946083070367

5.8.9 The Heaviside function: Heaviside

The Heaviside function is the step function

H(x) =

{
0 for x < 0

1 for x ≥ 0

The Heaviside command computes the Heaviside function.

• Heaviside takes one argument:
x, a real number.

• Heaviside(x) returns the value of the Heaviside function H(x).

Examples.

• Input:

Heaviside(2)

Output:
1

• Input:

Heaviside(-4)

Output:
0
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5.8.10 The Dirac distribution: Dirac

The Dirac δ distribution is the distributional derivative of the Heaviside function. This means that∫ ∞
−∞

δ(x)dx = 1

and, in fact, ∫ b

a
δ(x)dx =

{
1 if 0 ∈ [a, b]

1 otherwise

The de�ning property of the Dirac distribution is that∫ ∞
−∞

δ(x)f(x)dx = f(0)

and consequently ∫ b

a
δ(x− c)f(x)dx = f(c)

as long as c is in [a, b].
The Dirac command represents the Dirac distribution.

Examples.

• Input:

int(Dirac(x)*sin(x),x,-1,2)

Output:
sin (0)

• Input:

int(Dirac(x-1)*sin(x),x,-1,2)

Output:
sin (1)

If you have Dirac compute a value:

• Dirac it takes one argument:
x, a real number.

• Dirac(x) returns ∞ if x = 0, it returns 0 otherwise.

5.8.11 Error function: erf

The error function erf is de�ned by:

erf(x) =
2√
π

∫ x

0
e−t

2
dt

where the constant 2√
π
is chosen so that

erf(+∞) = 1, erf(−∞) = −1

since ∫ +∞

0
e−t

2
dt =

√
π

2

The erf command computes the error function.

• erf takes one argument:
a, a number.

• erf(a) returns the value of erf(a).
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Examples.

• Input:

erf(1)

Output:
erf (1)

• Input:

erf(1.0)

Output:
0.84270079295

• Input:

erf(1/(sqrt(2)))*1/2+0.5

Output:
0.841344746069

Remark.
The relation between erf and normal_cdf (see Section 8.4.7 p.683) is:

normal_cdf(x) =
1

2
+

1

2
erf(

x√
2

)

Indeed, making the change of variable t = u ∗
√

2 in

normal_cdf(x) =
1

2
+

1√
2π

∫ x

0
e−t

2/2dt

gives:

normal_cdf(x) =
1

2
+

1√
π

∫ x√
2

0
e−u

2
du =

1

2
+

1

2
erf(

x√
2

)

Check:
Input:

normal_cdf(1.0)

Output:
0.841344746069

5.8.12 Complementary error function: erfc

The complementary error function is de�ned by

erfc(x) =
2√
π

∫ +∞

x
e−t

2
dt = 1− erf(x)

Hence erfc(0) = 1, since ∫ +∞

0
e−t

2
dt =

√
π

2

The erfc command computes the complementary error function.

• erfc takes one argument:
a, a number.

• erfc(a) returns the value of the complementary error function erfc(a).



5.8. REAL NUMBERS 153

Examples.

• Input:

erfc(1)

Output:

1− erf (1)

• Input:

1- erfc(1/(sqrt(2)))*0.5

Output:

0.841344746069

Remark.
The relation between erfc and normal_cdf (see Section 8.4.7 p.683) is:

normal_cdf(x) = 1− 1

2
erfc(

x√
2

)

Check:
Input:

normal_cdf(1.0)

Output:

0.841344746069

5.8.13 The Γ function: Gamma

The Gamma function is de�ned by

Γ(x) =

∫ +∞

0
e−ttx−1dt, if x > 0

If x is a positive integer, Γ is computed by applying the recurrence:

Γ(x+ 1) = x ∗ Γ(x), Γ(1) = 1

Hence:

Γ(n+ 1) = n!

and the Gamma function is used to generalize the factorial (see Section 5.6.1 p.132).

The Gamma command computes the Gamma function.

• Gamma takes one argument:
a, a number.

• Gamma(a) returns the value Γ(a).



154 CHAPTER 5. THE CAS FUNCTIONS

Examples.

• Input:

Gamma(5)

Output:

24

• Input:

Gamma(0.7)

Output:

1.29805533265

• Input:

Gamma(-0.3)

Output:

−4.32685110883

Indeed: Gamma(0.7)=-0.3*Gamma(-0.3)

• Input:

Gamma(-1.3)

Output:

3.32834700679

Indeed Gamma(0.7)=-0.3*Gamma(-0.3)=(-0.3)*(-1.3)*Gamma(-1.3)

5.8.14 The upper incomplete γ function: ugamma

The upper incomplete γ function is de�ned by

Γ(a, b) =

∫ +∞

b
e−tta−1dt.

The ugamma command computes the upper incomplete γ function.

• ugamma takes two arguments:

� a, a number.

� b, a positive real number.

• ugamma(a,b) returns the value of Γ(a, b).
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Examples.

• Input:

ugamma(3.0,2.0)

Output:

1.35335283237

• Input:

ugamma(-1.3,2)

Output:

0.0142127568837

5.8.15 The lower incomplete γ function: igamma

The lower incomplete γ function is de�ned by

γ(a, b) =

∫ b

0
e−tta−1dt.

The igamma command computes the lower incomplete γ function.

• igamma takes two mandatory arguments and one optional argument:

� a, a number.

� b, a positive real number.

� Optionally, the number 1.

• igamma(a,b) returns γ(a, b).

• igamma(a,b,1) returns a normalized version of the function; namely γ(a, b)/Γ(a).

Examples.

• Input:

igamma(4.0,3.0)

Output:

2.11660866731

• Input:

igamma(4.0,3.0,1)

Output:

0.352768111218

since Γ(4) = 6 and 2.11660866731/6 = 0.352768111218.
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5.8.16 The β function: Beta

The β function is de�ned by

β(x, y) =

∫ 1

0
tx−1(1− t)y−1 =

Γ(x) ∗ Γ(y)

Γ(x+ y)

This is de�ned for x and y positive reals (to ensure the convergence of the integral) and by extension
for x and y if they are not negative integers.
Remarkable values:

β(1, 1) = 1, β(n, 1) =
1

n
, β(n, 2) =

1

n(n+ 1)

The Beta command computes the β function.

• Beta takes two arguments:
a and b, real numbers.

• Beta(a,b) returns the value of the β(a, b).

Examples.

• Input:

Beta(5,2)

Output:
1

30

• Input:

Beta(x,y)

Output:
Γ (x) Γ (y)

Γ (x+ y)

• Input:

Beta(5.1,2.2)

Output:
0.0242053671402

5.8.17 Derivatives of the DiGamma function: Psi

The DiGamma function is the derivative of the logarithm of the Γ function (see Section 5.8.13 p.153),

ψ(z) =
d

dz
ln(Γ(z)) =

Γ′(z)

Γ(z)

This function is used to evaluated sums of rational functions having poles at integers.
The Psi function computes the DiGamma function and its derivatives.

• Psi takes one mandatory argument and one optional argument:

� a, a real number.

� Optionally, n, a non-negative integer.

• Psi(a) returns the value of the DiGamma function ψ(a).

• Psi(a,n) returns the nth derivative of the DiGamma function at x = a.
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Examples.

• Input:

Psi(3)

Output:
3

2
− γ

• Input:

evalf(Psi(3))

Output:

0.922784335098

• Input:

Psi(3,1)

Output:
π2

6
− 5

4

5.8.18 The ζ function: Zeta

The ζ function is de�ned by

ζ(x) =

+∞∑
n=1

1

nx

for x > 1, and by its meromorphic continuation for x < 1.

The Zeta command computes the ζ function.

• Zeta takes one argument:
x, a real number.

• Zeta(x) returns the value of the ζ function ζ(x).

Examples.

• Input:

Zeta(2)

Output:
π2

6

• Input:

Zeta(4)

Output:
π4

90
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5.8.19 Airy functions: Airy_Ai and Airy_Bi

The Airy functions of the �rst and second kind are de�ned by

Ai(x) = (1/π)

∫ ∞
0

cos(t3/3 + x ∗ t)dt

Bi(x) = (1/π)

∫ ∞
0

(e−t
3/3 + sin(t3/3 + x ∗ t))dt

The have the properties that, if f and g are two entire series solutions of

w′′ − x ∗ w = 0

then

Ai(x) = Ai(0) ∗ f(x) + Ai′(0) ∗ g(x)

Bi(x) =
√

3(Ai(0) ∗ f(x)−Ai′(0) ∗ g(x))

more precisely:

f(x) =
∞∑
k=0

3k

(
Γ(k + 1

3)

Γ(13)

)
x3k

(3k)!

g(x) =
∞∑
k=0

3k

(
Γ(k + 2

3)

Γ(23)

)
x3k+1

(3k + 1)!

The Airy_Ai and Airy_Bi commands compute the Airy functions.

• Airy_Ai and Airy_Bi take one argument:
x, a real number.

• Airy_Ai(x) and Airy_Bi(x) return the values of the Airy functions.

Examples.

• Input:

Airy_Ai(1)

Output:
0.135292416313

• Input:

Airy_Bi(1)

Output:
1.20742359495

• Input:

Airy_Ai(0)

Output:
0.355028053888

• Input:

Airy_Bi(0)

Output:
0.614926627446
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5.9 Permutations

A permutation p of size n is a bijection from [0..n − 1] to [0..n − 1] and is represented by the list:
[p(0), p(1), p(2) . . . p(n− 1)].
For example, the permutation p represented by [1, 3, 2, 0] is the function from [0, 1, 2, 3] to [0, 1, 2, 3]
de�ned by:

p(0) = 1, p(1) = 3, p(2) = 2, p(3) = 0

A cycle c of size p, represented by the list [a0, . . . , ap−1] (0 ≤ ak ≤ n− 1), is the permutation such that

c(ai) = ai+1 for (i = 0..p− 2), c(ap−1) = a0, c(k) = k otherwise

For example, the cycle c represented by the list [3, 2, 1] is the permutation c de�ned by c(3) = 2, c(2) =
1, c(1) = 3, c(0) = 0 (i.e. the permutation represented by the list [0, 3, 1, 2]).

5.9.1 Random permutation: randperm shuffle

The randperm command computes a random permutation.
shuffle is a synonym for randperm.

• randperm takes one argument:
n, an integer.

• randperm(n) returns a random permutation of [0..n− 1].

Example.

Input:

randperm(3)

Output (example):

[2, 0, 1]

5.9.2 Previous and next permutation: prevperm nextperm

The set of n-tuples of an ordered set can be put in lexicographic order, where the tuple (a1, a2, . . . , an)
comes before (b1, b2, . . . , bn) exactly when for some k (possibly k = 0), ai = bi for i = 1, . . . , k − 1 and
ak < bk. For example, the set of permutations of size 3 in lexicographic order is

(0, 1, 2)
(0, 2, 1)
(1, 0, 2)
(1, 2, 0)
(2, 0, 1)
(2, 1, 0)

The prevperm and nextperm commands �nd the preceding and succeeding permutation.

• prevperm takes one argument:
p, a permutation.

• prevperm(p) returns the previous permutation in lexicographic order, or undef if there is no
previous permutation.
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Example.

Input:

prevperm([0,3,1,2])

Output:
[0, 2, 3, 1]

• nextperm takes one argument:
p, a permutation.

• nextperm(p) returns the next permutation in lexicographic order, or undef if there is no next
permutation.

Example.

Input:

nextperm([0,2,3,1])

Output:
[0, 3, 1, 2]

5.9.3 Decomposing a permuation into a product of disjoint cycles: permu2cycles

Any permutation can be decomposed as a sequence of cycles which have no elements in common. For
example, the permutation [1, 3, 4, 0, 2] can be written as a combination of the cycles [0, 1, 3] and [2, 4].

The permu2cycles command decomposes a permutation into a combination of cycles.

• permu2cycles takes one argument:
p, a permutation.

• permu2cycles(p) returns the decomposition of p as a product of disjoint cycles. A cycle is
represented by a list, a cyclic decomposition is represented by a list of lists.

Examples.

• Input:

permu2cycles([1,3,4,5,2,0])

Output:
[[0, 1, 3, 5] , [2, 4]]

In the answer the cycles of size 1 are omitted, except if n− 1 is a �xed point of the permutation
(this is required to �nd the value of n from the cycle decomposition).

• Input:

permu2cycles([0,1,2,4,3,5])

Output:
[[5] , [3, 4]]

• Input:

permu2cycles([0,1,2,3,5,4])

Output:
[[4, 5]]
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5.9.4 Product of cycles to permutation: cycles2permu

The cycles2permu command is the inverse of perm2cycles; it turns a sequence of cycles into a permu-
tation.

• cycles2permu takes one argument:
c, a list of cycles.

• cycles2permu(c) returns the permutation (of size n chosen as small as possible) that is the
product of the given cycles.

Examples.

• Input:

cycles2permu([[1,3,5],[2,4]])

Output:

[0, 3, 4, 5, 2, 1]

• Input:

cycles2permu([[2,4]])

Output:

[0, 1, 4, 3, 2]

• Input:

cycles2permu([[5],[2,4]])

Output:

[0, 1, 4, 3, 2, 5]

5.9.5 Transforming a cycle into a permutation: cycle2perm

A cycle is a type of permutation, but has a di�erent representation.
The cycle2perm command converts a cycle to the cycle written as a permutation.

• cycle2perm takes one argument:
c, a cycle c.

• cycle2perm(c) returns the permutation of size n corresponding to the cycle c, where n is chosen
as small as possible (see also permu2cycles and cycles2permu).

Example.

Input:

cycle2perm([1,3,5])

Output:

[0, 3, 2, 5, 4, 1]
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5.9.6 Transforming a permutation into a matrix: permu2mat

The matrix of a permutation p of size n is the matrix obtained by permuting the rows of the identity
matrix of size n with the permutation p. Multiplying this matrix by a column vector of size n is the
same as permuting the elements of the vector with the permutation p.

The permu2mat command �nds the matrix of a given permutation.

• permu2mat takes one argument:
p, a permutation p.

• permu2mat(p) returns the matrix of the permutation p.

Example.

Input:

permu2mat([2,0,1])

Output:  0 0 1
1 0 0
0 1 0


5.9.7 Checking for a permutation: is_permu

A permutation can be written as a list, but not every list corresponds to a permutation. The is_permu
is a boolean function which checks to see if a given list is a permutation.

• is_permu takes one argument:
L, a list.

• is_permu(L) returns 1 if L is a permutation and returns 0 if L is not a permutation.

Examples.

• Input:

is_permu([2,1,3])

Output:

0

• Input:

is_permu([2,1,3,0])

Output:

1

5.9.8 Checking for a cycle: is_cycle

The is_cycle command is a boolean function which checks to see if a list represents a cycle.

• is_cycle takes one argument:
L, a list.

• is_cycle(L) returns 1 if L is a cycle and returns 0 if L is not a cycle.
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Examples.

• Input:

is_cycle([2,1,3])

Output:

1

• Input:

is_cycle([2,1,3,2])

Output:

0

5.9.9 Product of two permutations: p1op2 c1op2 p1oc2 c1oc2

Permutations are functions, and so can be composed. Since cycles can be represented di�erently than
other permutations, there are commands for composing permutations of di�erent types.

Warning.
Composition is done using the standard mathematical notation; that is, the function given as the second
argument is performed �rst.

The p1op2 command composes two permutations.

• p1op2 takes two arguments:
p1 and p2, permutations.

• p1op2(p1, p2) returns the permutation p1 ◦ p2 obtained by composition.

Example.

Input:

p1op2([3,4,5,2,0,1],[2,0,1,4,3,5])

Output:

[5, 3, 4, 0, 2, 1]

The c1op2 command composes a cycle and a permutation.

• c1op2 takes two arguments:

� c1, a cycle.

� p2, a permutation.

• c1op2(c1, p2) returns the permutation c1 ◦ p2 obtained by composition.
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Example.

Input:

c1op2([3,4,5],[2,0,1,4,3,5])

Output:
[2, 0, 1, 5, 4, 3]

The p1oc2 command composes a permutation and a cycle.

• p1oc2 takes two arguments:

� p1, a permutation.

� c2, a cycle.

p1oc2(p1, c2) returns the permutation p1 ◦ c2 obtained by composition.

Example.

Input:

p1oc2([3,4,5,2,0,1],[2,0,1])

Output:
[4, 5, 3, 2, 0, 1]

The c1oc2 command composes two cycles.

• c1oc2 takes two arguments:
c1 and c2, cycles.

• c1oc2(c1, c2) returns the permutation c1 ◦ c2 obtained by composition.

Example.

Input:

c1oc2([3,4,5],[2,0,1])

Output:
[1, 2, 0, 4, 5, 3]

5.9.10 Signature of a permutation: signature

Every permutation can be decomposed into a product of transpositions (cycles with only two elements).
The number of transpositions is not unique, but for any permutation the number will be either odd or
even. The signature of a permutation is equal to:

• 1 if the permutation is equal to an even product of transpositions,

• -1 if the permutation is equal to an odd product of transpositions.

The signature of a cycle of size k is: (−1)k+1.
The signature command computes the signature of a permutation.

• signature takes one argument:
p, a permutation.

• signature(p) returns the signature of the permutation p.
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Example.

Input:

signature([3,4,5,2,0,1])

Output:

−1

5.9.11 Inverse of a permutation: perminv

Every permutation has an inverse, which is also a permutation.

The perminv command computes the inverse of a permutation.

• perminv takes one argument:
p, a permutation.

• perminv(p) returns the permutation that is the inverse of p.

Example.

Input:

perminv([1,2,0])

Output:

[2, 0, 1]

5.9.12 Inverse of a cycle: cycleinv

The inverse of a cycle will be another cycle.

The cycleinv command computes the inverse of a cycle.

• cycleinv takes one argument:
c, a cycle.

• cycleinv(c) returns the cycle that is the inverse of c.

Example.

Input:

cycleinv([2,0,1])

Output:

[1, 0, 2]

5.9.13 Order of a permutation: permuorder

If any permutation p on a �nite set [0, . . . , n − 1] is repeated often enough, it reach be the identity
permutation. The smallest m such that pm is the identity is called the order of p.

The permuorder command computes the order of a permutation.

• permuorder takes one argument:
p, a permutation.

• permuorder(p) returns the order of the permutation p.
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Examples.

• Input:

permuorder([0,2,1])

Output:

2

• Input:

permuorder([3,2,1,4,0])

Output:

6

5.9.14 The group generated by two permutations: groupermu

Given permutations a and b, the group they generate is the set of all possible compositions of any
number of as and any number of bs.

The groupermu command computes the group generated by two permutations.

• groupermu takes two arguments:
a and b, permutations.

• groupermu(a,b) returns the group of the permutations generated by a and b.

Example.

Input:

groupermu([0,2,1,3],[3,1,2,0])

Output: 
0 2 1 3
3 1 2 0
0 1 2 3
3 2 1 0


5.10 Complex numbers

Note that complex numbers, as well as being numbers, are used to represent points in the plane (see
Section 13.6.2 p.789). Some functions and operators which work on complex numbers also work on
points.

5.10.1 The usual complex operators: + - * / �

The +, -, *, /, � operators are the usual operators to perform addition, subtraction, multiplication,
division and for raising to a power.
Input:

(1+2*i)�2

Output:

−3 + 4i
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5.10.2 The real and imaginary parts of a complex number: re real im imag

The re (or real) and im (or imag) commands �nd the real and imaginary parts of a complex number.

The re command �nds the real part of a complex number.
real is a synonym for re.

• re takes one argument:
a, a complex number (or point).

• re(a) returns the real part of the complex number a (or the projection of the point a onto the x
axis).

Example.

Input:

re(3+4*i)

Output:

3

The im command �nds the imaginary part of a complex number.
imag is a synonym for im.

• im takes one argument:
a, a complex number (or point).

• im(a) returns the imaginary part of the complex number a (or the projection of the point a onto
the y axis).

Example.

Input:

im(3+4*i)

Output:

4

5.10.3 Writing a complex number z in rectangular form: evalc

The evalc command will ensure that a complex number is in rectangular form.

• evalc takes one argument:
z, a complex number.

• evalc(z) returns z written as re(z)+i*im(z).

Example.

Input:

evalc(sqrt(2)*exp(i*pi/4))

Output:

1 + i
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5.10.4 The modulus and argument of a complex number: abs arg

A complex number z can be written in polar form reiθ, where r is the modulus and θ is the argument.
The angle θ is only determined up to a multiple of 2π; there will be a unique value in the interval
(−π, π], the value in this interval is called the principal value of the argument.

The abs and arg commands �nd the modulus and argument of a complex number.

The abs command �nds the modulus of a complex number (see also Section 5.16.2 p.208).

• abs takes one argument:
z, a complex number.

• abs(z) returns the modulus |z|.

Example.

Input:

abs(3+4*i)

Output:

5

The arg command �nds the argument of a complex number.

• arg takes one argument:
z, a complex number.

• arg(z) returns the principal value of the argument of z.

Examples.

• Input:

arg(3+4*i)

Output:

arctan

(
4

3

)
• Input:

arg(3.0+4.0*i)

Output:

0.927295218002

5.10.5 The normalized complex number: normalize unitV

The normalize command �nds the unit complex number with the same direction as a given complex
number.
unitV is a synonym for normalize.

• normalize takes one argument:
z, a non-zero complex number.

• normalize(z) returns the unit complex number with the same direction as z, namely z divided
by the modulus of z.
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Example.

Input:

normalize(3+4*i)

Output:
3 + 4i

5

5.10.6 Conjugate of a complex number: conj

The conj command �nds the conjugate of a complex number.

• conj takes one argument:
z, a complex number.

• conj(z) returns the complex conjugate of z.

Example.

Input:

conj(3+4*i)

Output:
3− 4i

5.10.7 Multiplication by the complex conjugate: mult_c_conjugate

The denominator of a complex expression can be made a real number by multiplying the numerator and
denominator of the expression by the complex conjugate of the denominator. The mult_c_conjugate

can perform this multiplication.

• mult_c_conjugate takes one argument:
expr, a complex expression.

• mult_c_conjugate(expr) returns the following:

� If expr is a fraction with a complex (non-real) denominator, then this expression is returned
with the numerator and denominator multiplied by the complex conjugate of the denomina-
tor.

� If expr is a fraction with a real denominator (if expr is not a fraction, it is regarded as a
fraction with a denominator of 1), then this expression is returned with the numerator and
denominator multiplied by the complex conjugate of the numerator.

Examples.

• Input:

mult_c_conjugate((2+i)/(2+3*i))

Output:
(2 + i) (2− 3i)

(2 + 3i) (2− 3i)

• Input:

mult_c_conjugate((2+i)/2)

Output:
(2 + i) (2− i)

2 (2− i)
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5.10.8 Barycenter of complex numbers: barycenter

The barycenter, or center of mass, of a set of points A1, A2, . . . , An with masses α1, α2, . . . , αn is

α1A1 + · · ·+ αnAn
α1 + · · ·+ αn

This formula makes sense even if the αj are not positive real numbers, and is still called the barycenter
of the weighted points.

The barycenter command computes the barycenter of a set of weighted points.

• barycenter takes an unspeci�ed number of arguments:
each argument is a list lj = [Aj , αj ] containing a point Aj (or the a�x of a point) and a weight
αj for the point. The sum of the weights needs to be non-zero.
These lists can also be given as two columns of a matrix.

• barycenter(l1, l2, . . . , ln) returns the barycenter of the points Aj weighted by the real coe�cients
αj . If

∑
αj = 0, barycenter returns an error.

Warning.
The barycenter command returns a point, not a complex number. To have a complex number in the
output, the input must be affix(barycenter(l1, l2)) (see Section 13.13.1 p.836).

Example.

Input:

affix(barycenter([1+i,2],[1-i,1]))

or:

affix(barycenter([[1+i,2],[1-i,1]]))

Output:
3 + i

3

5.11 Algebraic numbers

5.11.1 De�nition

A real algebraic number is a real root of a polynomial with integer coe�cients.
A complex algebraic number is a root of a polynomial with coe�cients which are Gaussian integers.

5.11.2 Minimum polynomial of an algebraic number: pmin

The minimal polynomial of an algebraic number is the monic polynomial of smallest degree with integer
coe�cents which has the algebraic number as a root.

The pmin command �nds the minimum polynomial of an algebraic number.

• pmin takes one mandatory argument and one optional argument:

� α, an algebraic number.

� Optionally, x, a variable name to use as the variable in the polynomial.

• pmin(α) returns the minimal polynomial for α, where the polynomial is given as a list of the
coe�cients (see Section 5.27.1 p.301).
pmin(α, x) returns the minimal polynomial for α as a symbolic expression with the variable x.
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Examples.

• Input:

pmin(sqrt(2) + sqrt(3))

Output:

[]1, 0,−10, 0, 1[]

• Input:

pmin(sqrt(2) + sqrt(3),x)

Output:

x4 − 10x2 + 1

Note that (
√

2 +
√

3)2 = 5 + 2
√

6 and so ((
√

2 +
√

3)2 − 5)2 = 24, which can be rewritten as
(
√

2 +
√

3)4 − 10(
√

2 +
√

3)2 + 1 = 0.

• Input:

pmin(sqrt(2) + i*sqrt(3))

Output:

[]1, 0, 2, 0, 25[]

• Input:

pmin(sqrt(2) + i*sqrt(3),z)

Output:

z4 + 2z2 + 25

• Input:

pmin(sqrt(2) + 2*i)

Output:

[]1, 0, 4, 0, 36[]

• Input:

pmin(sqrt(2) + 2*i,z)

Output:

z4 + 4z2 + 36

5.12 Algebraic expressions

5.12.1 Evaluating an expression: eval

The eval command is used to evaluate an expression. Since Xcas always evaluates expressions entered
in the command line, eval is mainly used to evaluate a sub-expression in the expression editor (see
Section 3.3 p.70).
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Examples.

• Input:

a:=2

Output:
2

• Input:

eval(2+3*a)

or:

2+3*a

Output:
8

5.12.2 Changing the evaluation level: eval_level

When it evaluates expressions, the maximum number of recursions that Xcas will do it called the
evaluation level. This is 25 by default, but you can change the default level with the eval box in the
CAS con�guration screen (see section 2.5.7).

The eval_level command will change the evaluation level for the current session.

• eval_level takes one optional argument:
Optionally n, a positive integer.

• eval_level() returns the current evaluation level.

• eval_level(n) sets the evaluation level to n.

Example.

Input:

purge(a,b,c)

a:=b+1; b:=c+1; c:=3;

Input:

eval_level()

Output:
25

Input:

a,b,c

Output:
5, 4, 3

Input:

eval_level(1)

a,b,c
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Output:

b+ 1, c+ 1, 3

Input:

eval_level(2)

a,b,c

Output:

c+ 2, 4, 3

Input:

eval_level(3)

a,b,c

Output:

5, 4, 3

Input:

eval_level()

Output:

3

5.12.3 Evaluating algebraic expressions: evala

In Maple, evala is used to evaluate an expression with algebraic extensions. In Xcas, evala is not
necessary, it behaves like eval (see Section 5.12.1 p.171), but it is included for Maple compatibility.

5.12.4 Preventing evaluation: quote hold '

You can prevent an expression from being evaluated by quoting it, either by preceding it with ' or with
the quote or hold) command.

Remark.
If a is a variable, then a:=quote(a) (or a:=hold(a)) is equivalent to purge(a) (for the sake of Maple
compatibility). It returns the value of this variable (or the hypothesis done on this variable).

Example.

Input:

a:=2;quote(2+3*a)

or:

a:=2;'2+3*a'

Output:

2, 2 + 3a
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5.12.5 Forcing evaluation: unquote

unquote is used for evaluation inside a quoted expression.
For example in an assignment, the variable is automatically quoted (not evaluated) so that the user
does not have to quote it explicitly each time he want to modify its value. In some circumstances, you
might want to evaluate it.
Input:

purge(b);a:=b;unquote(a):=3

The variable b begins as a purely symbolic variable, and the value of a is equal to the symbolic variable
b. In the assignment unquote(a):=3, the left hand side unquote(a) is evaluated to b, and so b is
assigned the value 3. Since a evaluates to the same thing as b, a also evaluated to 3.
Input:

a,b

Output:

3, 3

5.12.6 Distribution: expand fdistrib

The expand command distributes multiplication across addition.
fdistrib is a synonym for expand.

• expand takes one argument:
expr, an expression.

• expand(expr) returns the expression expr with multiplication distributed with respect to addition.

Example.

Input:

expand((x+1)*(x-2))

or:

fdistrib((x+1)*(x-2))

Output:

x2 − x− 2

5.12.7 Canonical form: canonical_form

The canonical form of a second degree polyomial in a variable x is the form a(x− c)2 + b.

The canonical_form command �nds the canonical form of a second degree polynomial.

• canonical_form takes one argument:
p, a second degree polynomial.

• canonical_form(p) returns the canonical form of p.
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Examples.

• Input:

canonical_form(x�2-6*x+1)

Output:
(x− 3)2 − 8

• Input:

canonical_form(2*t�2+3*t+8)

Output:

2

(
t+

3

4

)2

+
55

8

5.12.8 Multiplication by the conjugate quantity: mult_conjugate

The mult_conjugate tries to remove square roots from the bottom of an expression.

• mult_conjugate takes one argument:
expr, an expression. The denominator or numerator is supposed to contain a square root.

• mult_conjugate(expr) returns the following:

� If expr is a fraction and the denominator contains a square root, then this expression is re-
turned with the numerator and denominator multiplied by the conjugate of the denominator.

� If expr is a fraction and the numerator, but not the denominator, contains a square root
(if expr is not a fraction, it is regarded as a fraction with a denominator of 1), then this
expression is returned with the numerator and denominator multiplied by the conjugate of
the numerator.

Examples.

• Input:

mult_conjugate((2+sqrt(2))/(2+sqrt(3)))

Output: (
2 +
√

2
) (

2−
√

3
)(

2 +
√

3
) (

2−
√

3
)

• Input:

mult_conjugate((2+sqrt(2))/(sqrt(2)+sqrt(3)))

Output: (
2 +
√

2
) (
−
√

2 +
√

3
)(√

2 +
√

3
) (
−
√

2 +
√

3
)

• Input:

mult_conjugate((2+sqrt(2))/2)

Output: (
2 +
√

2
) (

2−
√

2
)

2
(
2−
√

2
)
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5.12.9 Separation of variables: split

The split command tries to factor an expression involving two variables into the product of two
expressions, each of which depends on only one of the variables.

• split takes two arguments:

� expr, an expression depending on two variables x and y.

� [x, y], the list of these two variables.

• split(expr,[x,y]) returns a list [factor1,factor2], if such a list exists, where expr=factor1·factor2,
factor1 only depends on x and factor2 only depends on y. If such a factorization doesn't exist, the
list [0] is returned.

Examples.

• Input:

split((x+1)*(y-2),[x,y])

or:

split(x*y-2*x+y-2,[x,y])

Output:

[x+ 1, y − 2]

• Input:

split((x�2*y�2-1,[x,y])

Output:

[0]

5.12.10 Factoring: factor cfactor

The factor and cfactor commands factor expressions over their coe�cient �elds or extensions of their
�elds. (See also Section 5.27.16 p.309.)

• factor takes one mandatory argument and one optional argument:

� expr, an expression or a list of expressions.

� Optionally, α, to specify an extension �eld.

• factor(expr) returns expr factored over the �eld of its coe�cients, with the addition of i in
complex mode (see Section 2.5.5 p.55). If sqrt is enabled in the Cas con�guration (see Section 2.5.7
p.56), polynomials of order 2 are factorized in complex mode or in real mode if the discriminant
is positive.
factor(expr,α) returns expr factored over F [α], where F is the �eld of coe�cients of expr.

• cfactor factors like factor, except the �eld includes i whether in real or complex mode.
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Examples.

• Factor x4 − 1 over Q.
Input:

factor(x�4-1)

Output:

(x− 1) (x+ 1)
(
x2 + 1

)
The coe�cients are rationals, hence the factors are polynomials with rationals coe�cients.

• Factor x4 − 1 over Q[i].
This can be done in a number of ways.

� Using cfactor.
Input:

cfactor(x�4-1

� Using factor with adding i to the extension �eld.
Input:

factor(x�4-1,i)

� Using factor in complex mode.
Input (in complex mode):

factor(x�4-1)

In all cases, the result will be:
Output:

(x− 1) (x+ 1) (x+ i) (x− i)

• Factor x4 + 1 over Q
Input:

factor(x�4+1)

Output:

x4 + 1

Indeed x4 + 1 has no factor with rational coe�cients.

• Factor x4 + 1 over Q[i].
Using complex mode:
Input:

cfactor(x�4+1)

Output: (
x2 + i

) (
x2 − i

)
• Factor x4 + 1 over R.
You have to provide the square root required for extending the rationals. In order to do that with
the help of Xcas, �rst check complex in the cas con�guration:
Input:

solve(x�4+1,x)
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Output: [
1

2

√
2 (1− i) ,−1

2

√
2 (1− i) ,−1

2

√
2 (1− i) i,

1

2

√
2 (1− i) i

]
The roots depend on

√
2, and so will be in Q[

√
2]. Putting Xcas back in real mode, either check

the sqrt box in the Cas con�guration or:
Input:

factor(x�4+1,sqrt(2))

Output: (
x2 −

√
2x+ 1

)(
x2 +

√
2x+ 1

)
To factor over C, put Xcas back in complex mode or input cfactor(x�4+1,sqrt(2)).

5.12.11 Zeros of an expression: zeros

The zeros command �nds the zeros of an expression.

• zeros takes one mandatory argument and one optional argument:

� expr, an expression.

� Optionally, x, a variable name to use (which by default will be x).

• zeros(expr 〈, x〉) returns a list of values of the variable where the expression vanishes. The list may
be incomplete in exact mode if the expression is not a polynomial or if intermediate factorizations
have irreducible factors of order strictly greater than 2.

In real mode, (which means the complex box is unchecked in the Cas con�guration (see Sec-
tion 2.5.7 p.56) or with complex_mode:=0), only reals zeros are returned. With (complex_mode:=1),
real and complex zeros are returned. cZeros behaves like zeros, except that it returns complex
zeros whether in real or complex mode.

Examples.

• Input (in real mode):

zeros(x�2+4)

Output:
[]

Input (in complex mode):

zeros(x�2+4)

Output:
[−2i, 2i]

Input (in real or complex mode):

cZeros(x�2+4)

Output:
[−2i, 2i]

• Input (in real mode):
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zeros(ln(x)�2-2)

Output: [
e
√
2, e−

√
2
]

• Input (in real mode):

zeros(ln(y)�2-2,y)

Output: [
e
√
2, e−

√
2
]

• Input (in real mode):

zeros(x*(exp(x))�2-2*x-2*(exp(x))�2+4)

Output: [
ln (2)

2
, 2

]

5.12.12 Regrouping expressions: regroup

The regroup command simpli�es expressions.

• regroup takes one argument:
expr, an expression.

• regroup(expr) returns expr with some straightforward simpli�cations.

Example.

Input:

regroup(x + 3 * x + 5 * 4 / x)

Output:

4x+
20

x

5.12.13 Normal form: normal

The normal command takes an expression and considers it to be a rational function with respect to
generalized identi�ers (which are either true identi�ers or transcendental functions replaced by tempo-
rary identi�ers) with coe�cients in Q or Q[i] or in an algebraic extension (such as Q[

√
2] and �nds its

expanded irreducible representation.

• normal takes one argument:
expr, an expression.

• normal(expr) returns the expanded irreducible representation of expr. (See also ratnormal,
Section 5.12.16 p.182, for pure rational function or simplify, Section 5.12.14 p.180, if the tran-
scendental functions are not algebraically independent.)
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Examples.

• Input:

normal((x-1)*(x+1))

Output:
x2 − 1

• Input:

normal((1-sin(x))*(1+sin(x))

Output:
− sin2 x+ 1

Remarks.

• Unlike simplify, normal does not try to �nd algebraic relations between transcendental functions
like cos(x)2 + sin(x)2 = 1.

• It is sometimes necessary to run the normal command twice to get a fully irreducible representation
of an expression containing algebraic extensions.

5.12.14 Simplifying: simplify

The simplify command simpli�es an expression. It behaves like normal for rational functions and
algebraic extensions. For expressions containing transcendental functions, simplify tries �rst to rewrite
them in terms of algebraically independent transcendental functions. For trigonometric expressions,
this requires radian mode (check radian in the cas con�guration, see Section 2.5.7 p.56, or input
angle_radian:=1).

• simplify takes one argument:
expr, an expression.

• simplify(expr) returns a simpli�ed version of expr.

Examples.

• Input:

simplify((x-1)*(x+1))

Output:
x2 − 1

• Input:

simplify(3-54*sqrt(1/162))

Output:
−3
√

2 + 3

• Input:

simplify((sin(3*x)+sin(7*x))/sin(5*x))

Output:
2 cos (2x)
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5.12.15 Automatic simpli�cation: autosimplify

The autosimplify command determines how much simpli�cation Xcas will do automatically when you
enter an expression. Note that autosimplify only works with Xcas, it doesn't work with icas or any
other frontend.

By default, Xcas will apply the regroup command (see Section 5.12.12 p.179) to your input, but the
autosimplify command can change this to applying another rewriting command to your input, such
as simplify (see Section 5.12.14 p.180), factor (see Section 5.12.10 p.176), or even nop for no simpli-
�cation. With no arguments, autosimplify will return the current rewriting command. Otherwise:

• autosimplify command takes one argument:
cmd, a command that will be used to rewrite the results in Xcas.

• autosimplify(cmd) will tell Xcas to apply cmd to subsequent inputs. To change the simpli�ca-
tion mode during a session, the autosimplify command should be on its own line.

Examples.

• Input:

autosimplify(nop)

then:

1 + x�2 - 2

Output:
1 + x2 − 2

• Input:

autosimplify(simplify)

then:

1 + x�2 - 2

Output:
x2 − 1

• Input:

autosimplify(factor)

then:

1 + x�2 - 2

Output:
(x− 1) (x+ 1)

• Input:

autosimplify(regroup)

then:

1 + x�2 - 2

Output:
x2 − 1
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5.12.16 Normal form for rational functions: ratnormal

The ratnormal command rewrites an expression using its irreducible representation. The expression is
viewed as a multivariate rational function with coe�cients in Q (or Q[i]). The variables are general-
ized identi�ers which are assumed to be algebraically independent. Unlike with normal, an algebraic
extension is considered as a generalized identi�er. Therefore ratnormal is faster but might miss some
simpli�cations if the expression contains radicals or algebraically dependent transcendental functions.

• ratnormal takes one argument:
expr, an expression.

• ratnormal(expr) returns the irreducible representation of expr.

Examples.

• Input:

ratnormal((x�3-1)/(x�2-1))

Output:
x2 + x+ 1

x+ 1

• Input:

ratnormal((-2x�3+3x�2+5x-6)/(x�2-2x+1))

Output:
−2x2 + x+ 6

x− 1

5.12.17 Substituting a variable by a value: |

The | operator is an in�xed operator that evaluates an expression after giving values to some variables.
It does not evaluate the expression before the variables are replaced by the requested values.

• | is an in�xed operator, so takes two arguments:

� expr, an expression depending on one or more variables on the left hand side.

� x1 = a1, ldots; an equality or sequence of several equalities.

• expr|x1 = a1, . . . returns the expression expr with x1 replaced by a1, etc.

Examples.

• Input:

a�2 + 1 | a = 2

Output (even if a has been assigned a value):

5

• Input:

a�2 + b | a = 2, b = 3

Output (even if a or b had been assigned a value):

7
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5.12.18 Substituting a variable by a value: subst

The subst command replaces speci�ed variables in an expression by speci�ed values. Unlike the |

operator, the subst command evaluates the expression before replacing the variables. Since subst does
not quote its argument, in a normal evaluation process the substitution variable should be purged (see
Section 4.4.8 p.83), otherwise it will be replaced by its assigned value before substitution is done.

The subst command can specify the values of variables in two di�erent ways.
The �rst way:

• subst takes two arguments.

� expr, an expression.

� eqs, an equation of the form x = a, or a list of such equalities.

• subst(expr,eqs) returns the expression with the variables replaced by their values.

Examples.

• Input (if the variable a is purged, otherwise �rst enter purge(a)):

subst(a�2+1,a=2)

Output:
5

• Input (if the variables a and b are purged, otherwise �rst enter purge(a,b)):

subst(a�2+b,[a=2,b=1])

Output:
5

The second way:

• subst takes three arguments.

� expr, an expression.

� vars, a variable or a list of variables.

� vals, a value or a list of values for substitution.

• subst(expr,vars,vals) returns the expression with the variables replaced by their values.

Examples.

• Input (if the variable a is purged, otherwise �rst enter purge(a)):

subst(a�2+1,a,2)

Output:
5

• Input (if the variables a and b are purged, otherwise �rst enter purge(a,b)):

subst(a�2+b,[a,b],[2,1])

Output:
5
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subst may also be used to make a change of variable in an integral. In this case the integrate

command (see Section 5.20.1 p.239) should be quoted (see Section 5.12.4 p.173, otherwise, the integral
would be computed before substitution) or the inert form Int should be used. In both cases, the name
of the integration variable must be given as an argument of Int or integrate even you are integrating
with respect to x.

Examples.

• Input:

subst('integrate(sin(x�2)*x,x,0,pi/2)',x=sqrt(t))

or:

subst(Int(sin(x�2)*x,x,0,pi/2),x=sqrt(t))

Output: ∫ π2

4

0

1

2
sin t ·

√
t
√
t
−1

dt

Input:

subst('integrate(sin(x�2)*x,x)',x=sqrt(t))

or:

subst(Int(sin(x�2)*x,x),x=sqrt(t))

Output: ∫
1

2
sin t ·

√
t
√
t
−1

dt

5.12.19 Substituting a variable by a value: ()

Another way to substitute a variable by a value, besides with the | operator or the subst command,
is with something akin to functional notation. You can follow an expression or expression name with
equalities of the form variable = value.

Examples.

• Input:

Expr:= x + 2*y + 3*z

then:

subst(Expr,[x=1,y=2])

or:

Expr | x=1, y=2

or:

Expr(x=1,y=2)
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Output:

5 + 3z

• Input:

(h*k*t�2+h�3*t�3)(t=2)

Output:

4hk + 8h3

5.12.20 Substituting a variable by a value (Maple and Mupad compatibility): subs

In Maple and in Mupad, you would use the subs command to substitute a variable by a value in an
expression. But the order of the arguments di�er between Maple and Mupad. Therefore, to achieve
compatibility, in Xcas, the subs command arguments order depends on the mode (see Section 2.5.2
p.54).

In Maple mode:

• subs takes two arguments:

� eq, an equality or list of equalities of the form var=value.

� expr, an expression.

• subs(eq,expr) returns the expression with the variables replaced by their given values.

Examples.

• Input in Maple mode (if the variable a is purged, otherwise �rst enter purge(a)):

subs(a=2,a�2+1)

Output:

5

• Input in Maple mode (if the variables a and b are purged, otherwise �rst enter purge(a,b)):

subs([a=2,b=1],a�2+b)

Output:

5

In Mupad or Xcas or TI modes, subs behaves like subst (see Section 5.12.18 p.183).

• subst takes two or three arguments.

� expr, an expression.

� eqs, an equality of the form var=value or a list of such equalities, or
vars,vals, a variable or list of variables followed by a value or a list of values for substitution.

• subs(expr,eqs) or subs(expr,vars,vals) returns the expression with the variables replaced by
their given values.
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Examples.

• Input in Mupad or Xcas or TI modes (if the variable a is purged, otherwise �rst enter purge(a)):

subs(a�2+1,a=2)

or:

subs(a�2+1,a,2)

Output:
5

• Input in Mupad or Xcas or TI modes (if the variables a and b are purged, otherwise �rst enter
purge(a,b) �rst):

subs(a�2+b,[a=2,b=1])

or:

subs(a�2+b,[a,b],[2,1])

Output:
5

Note that subs does not quote its argument, hence in a normal evaluation process, the substitution
variable should be purged otherwise it will be replaced by its assigned value before substitution is done.

5.12.21 Substituting a subexpression by another expression: algsubs

The algsubs command replaces subexpressions of an expression, rather than just replace variables.

• algsubs takes two arguments:

� expr1=expr2, an equation between two expressions.

� expr, another expression.

• algsubs(expr1=expr2,expr) returns the last expression expr with expr1 replaced by expr2.

Examples.

• Input:

algsubs(x�2 = u, 1 + x�2 + x�4)

Output:
u2 + u+ 1

• Input:

algsubs(a*b/c = d, 2*a*b�2/c)

Output:
2 ∗ b ∗ d

• Input:

algsubs(2a = p�2-q�2, algsubs (2c = p�2 + q�2, c�2-a�2))

Output:
p2q2
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5.12.22 Eliminating one or more variables from a list of equations: eliminate

The eliminate command eliminates variables from a list of equations.

• eliminate takes two arguments:

� eqns, a list of equations.

� vars, the variable or list of variables to eliminate. The equations can be given as expressions,
in which case they will be assumed to be 0.

• eliminate(eqns,vars) returns the equations with the variables vars eliminated or an indication
that Xcas can't eliminate them.

Examples.

Assuming the variables used haven't been set to any values:

• Input:

eliminate([x = v0*t, y = y0-g*t�2], t)

Output: [
gx2 + yv20 − v20y0

]
• Input:

eliminate([x+y+z+t-2,x*y*t=1,x�2+t�2=z�2],[x,z])

Output: [
2t2y2 − 4t2y + ty3 − 4ty2 + 4ty + 2t+ 2y − 4

]
If the variable(s) can't be eliminated, then eliminate returns [1] or [-1]. If eliminate returns

[], that means the equations determine the values of the variables to be eliminated.

Examples.

• Input:

x:=2;y:=-5

eliminate([x=2*t,y=1-10*t�2],t)

Output:
[1]

since t cannot be eliminated from both equations.

• Input:

x:=2;y:=-9

eliminate([x=2*t,y=1-10*t�2],t)

Output:
[]

since the �rst equation gives t= 1, which satis�es the second equation.

• Input:

x:= 2; y:= -9

eliminate([x = 2*t, y = 1-10*t�2, z = x + y - t], t)

Output:
[1, z + 8]

since the �rst equation gives t= 1, which satis�es the second equation, and so that leaves z = 2

- 9 - 1 = -8, or z + 8 = 0.
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5.12.23 Evaluating a primitive at boundaries: preval

The preval command evaluates an expression from one value to another, such as in done when evaluating
a de�nite integral using the Fundamental Theorem of Calculus.

• preval takes three arguments:

� F , an expression depending on the variable x.

� a and b, two expressions.

• preval(F,a,b) returns F|x=b − F|x=a.

preval is used to compute a de�nite integral when the primitive F of the integrand f is known.
Assume, for example, that F:=int(f,x), then preval(F,a,b) is equivalent to int(f,x,a,b), but does
not require you to recompute F from f if you change the values of a or b.

Example.

Input:

preval(x�2+x,2,3)

Output:
6

5.12.24 Sub-expression of an expression: part

The part command �nds subexpressions of an expression. (See Section 3.3.2 p.71.)

• part takes two arguments:

� expr, an expression.

� n, an integer.

• part(expr,n) evaluates expr and then returns the nth sub-expression of expr.

Examples.

• Input:

part(x�2+x+1,2)

Output:
x

• Input:

part(x�2+(x+1)*(y-2)+2,2)

Output:
(x+ 1) (y − 2)

• Input:

part((x+1)*(y-2)/2,2)

Output:
y − 2
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5.13 Values of a sequence un

5.13.1 Array of values of a sequence : tablefunc

The tablefunc command �lls two columns of a spreadsheet with a table of values of a function. The
spreadsheet can be opened with Alt+t (see Section 3.5 p.73).

• tablefunc takes four arguments:

� f(x), a formula for a function.

� x, the variable.

� x0, the beginning value of x.

� inc, an increment for x.

• tablefunc(f(x),x,x0,inc) �lls two columns of the spreadsheet, the current column and the
following column, starting with the chosen cell. The current column starts with the variable x,
followed by the initial value x0, then x0+inc, x0 + 2inc, . . . . The following column starts with the
formula f(x), followed by f(x) evaluated at the values in the �rst column. (If the current cell is
column C, row n, it will contain x, the cell below it will contain inc, and the cell below it in row
k will contain =C(k−1) + C$(n+ 1), and the corresponding cells in the next column will contain
=evalf(subst(D$n,C$n,Ck)).)

Example.

Display the values of the sequence un = sin(n)
Select a cell of a spreadsheet (for example C0) and:
Input:

tablefunc(sin(n),n,0,1)

Output:

row C D

n sin(n)

0 0.0

1 0.841470984808

2 0.909297426826

3 0.14112000806

4 -0.756802495308
...

...

The graphic representation may be plotted with the plotfunc command (see 7.4.1).

5.13.2 Values of a recurrence relation or a system: seqsolve

(See also Section 5.13.3 p.190.)

The seqsolve command �nds the terms of a recurrence relation.

• seqsolve takes three arguments:

� exprs, an expression or list of expressions that de�ne the recurrence relation.

� vars, a list of the variables used.

� a, the starting value.

• seqsolve(exprs,vars,a) returns a formula for the nth term of the sequence.
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For example, if a recurrence relation is de�ned by un+1 = f(un, n) with u0 = a, the arguments to
seqsolve will be f(x, n), [x, n] and a. If the recurrence relation is de�ned by un+2 = g(un, un+1, n)
with u0 = a and u1 = b, the arguments to seqsolve will be g(x, y, n), [x, y, n] and [a, b].

The recurrence relation must have a homogeneous linear part, the nonhomogeneous part must be a
linear combination of a polynomials in n times geometric terms in n.

Examples.

• Find un, given that un+1 = 2un + n and u0 = 3.
Input:

seqsolve(2x+n,[x,n],3)

Output:
−n− 1 + 4 · 2n

• Find un, given that un+1 = 2un + n3n and u0 = 3.
Input:

seqsolve(2x+n*3�n,[x,n],3)

Output:
(n− 3) · 3n + 6 · 2n

• Find un, given that un+1 = un + un−1, u0 = 0 and u1 = 1.
Input:

seqsolve(x+y,[x,y,n],[0,1])

Output:

5
(
−
√
5+1
2

)n
− 4

(
−
√
5+1
2

)n√
5− 5

(
−
√
5+1
2

)n
+ 5

(√
5+1
2

)n
+ 4

(√
5+1
2

)n√
5− 5

(√
5+1
2

)n
20

• Find un and vn, given that un+1 = un + 2vn, vn+1 = un + n+ 1 with u0 = 1, v0 = 1.
Input:

seqsolve([x+2*y,n+1+x],[x,y,n],[0,1])

Output: [
−2n− (−1)n + 4 · 2n − 3

2
,
(−1)n + 2 · 2n − 1

2

]
5.13.3 Values of a recurrence relation or a system: rsolve

(See also Section 5.13.2 p.189.)
The rsolve command is an alternate way to �nd the values of a recurrence relation. Note that

rsolve is more �exible than seqsolve since:

• The sequence doesn't have to start with u0.

• The sequence can have several starting values, such as initial condition u20 = 1, which is why
rsolve returns a list.

• The notation for the recurrence relation is similar to how it is written in mathematics.
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• rsolve takes three arguments:

� eqns, an equation or list of equations that de�ne the recurrence relation.

� fns, the function or list of functions (with their variables) used.

� startvals, the equation or list of equations for the starting values.

• rsolve(eqns,fns,startvals) returns a list containing a formula for the nth term of the sequence.
(If there is more than one sequence, it will return a formula for each one.)

For example, if a recurrence relation is de�ned by un+1 = f(un, n) with u0 = a, the arguments to
rsolve will be u(n+ 1) = f(u(n), n), u(n) and u(0) = a.

The recurrence relation must either be a homogeneous linear part with a nonhomogeneous part
being a linear combination of polynomials in n times geometric terms in n (such as un+1 = 2un +n3n),
or a linear fractional transformation (such as un+1 = (un − 1)/(un − 2)).

Examples.

• Find un, given that un+1 = 2un + n and u0 = 3.
Input:

rsolve(u(n+1) = 2*u(n) + n, u(n), u(0)=3)

Output:

[−n+ 4 · 2n − 1]

• Find un, given that un+1 = 2un + n and u21 = 1.
Input:

rsolve(u(n+1) = 2*u(n) + n, u(n), u(1)�2 = 1)

Output: [
−n+

3

2
· 2n − 1,−n+

1

2
· 2n − 1

]
Note that there are two formulas, since the starting formula u21 = 1 gives two possible starting
values: u1 = 1 and u1 = 2.

• Find un, given that un+1 = 2un + n3n and u0 = 3.
Input:

rsolve(u(n+1) = 2*u(n) + n*3�n,u(n), u(0)=3)

Output:

[n · 3n + 6 · 2n − 3 · 3n]

• Find un, given that un+1 = (un − 1)/(un − 2) and u0 = 4.
Input:

rsolve(u(n+1) = (u(n)-1)/(u(n)-2),u(n), u(0)=4)

Output: (20
√

5 + 60
) (√

5−3
2

)n
+ 60

√
5− 140

40
(√

5−3
2

)n
+ 20
√

5− 60


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• Find un given that un+1 = un + un−1 with u0 = 0, u1 = 1.
Input:

rsolve(u(n+1) = u(n) + u(n-1), u(n), u(0) = 0, u(1) = 1)

Output: [
−
√

5

5

(
−
√

5 + 1

2

)n
+

1

5

√
5

(√
5 + 1

2

)n]
• To �nd un and vn, given that un+1 = un + vn, vn+1 = un − vn with u0 = 0, v0 = 1.
Input:

rsolve([u(n+1) = u(n) + v(n), v(n+1) = u(n) - v(n)], [u(n),v(n)], [u(0)=1,

v(0)=1])

Output:[
1
2

(
−
√

2 + 1
) (
−
√

2
)n+1−1

+ 1
2

(√
2 + 1

)
· 2

n+1−1
2

1
2

(
−
√

2
)n+1−1

+ 1
2 · 2

n+1−1
2

]
5.13.4 Table of values and graph of a recurrent sequence: tableseq

The tableseq command �lls a column of a spreadsheet with a recurrence relation. The spreadsheet can
be opened with Alt+t (see Section 3.5 p.73).

tableseq takes three arguments, which can be di�erent depending on how many terms are involved
in the recurrence relation.

For a one term recurrence relation:

• tableseq takes three arguments:

� f(x), a formula which de�nes the recurrence, through un+1 = f(un).

� x, the variable.

� u0, the initial term of the sequence.

• tableseq(f(x),x,u0) �lls the current column of the spreadsheet, starting with the selected cell
(or cell 0 if the entire column is selected), with the formula f(x), the next cell with the variable
x, followed by the terms u0, u1, . . . of the sequence. (If the current cell is column C, row n, these
latter cells will actually contain (if in row k) =evalf(subst(C$n,C$(n + 1),C(k − 1))), which
means if you change the value in one cell, the values in the later cells will change accordingly.) See
also plotseq, Section 7.17 p.619, for a graphic representation of a one-term recurrence sequence.

Example.

Display the values of the sequence u0 = 3.5, un+1 = sin(un)
Select a cell of the spreadsheet (for example B0) and input in the command line:

tableseq(sin(x),x,3.5)

Output:

row B

0 sin(x)

1 x

2 3.5

3 -0.35078322769

4 -0.343633444925

5 -0.336910330426

. . . . . .
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More generally, for a recurrence relation where each term depends on the previous k terms:

• tableseq takes three arguments:

� f(x1, x2, . . . , xk), a formula which de�nes the recurrence, through un+1 = f(un, . . . , un−k).

� [x1, . . . , xk], a list of variables.

� [u0, . . . , uk−1], a list of the beginning k terms.

• tableseq(f(x1, . . . , xk),[x1, . . . , xk],[u0, . . . , uk−1]) �lls the current column of the spreadsheet,
starting with the selected cell (or cell 0 if the entire column is selected), with the formula
f(x1, x2, . . . , xk), followed by the variables x1,. . . ,xk, followed by the terms u0, u1, . . . of the se-
quence.

Example.

Display the values of the Fibonacci sequence u0 = 1, u1 = 1, . . . , un+2 = un + un+1

Select a cell, say B0, and:
Input:

tableseq(x+y,[x,y],[1,1])

Output:

row B

0 x+y

1 x

2 y

3 1

4 1

5 2

. . . . . .

5.14 Operators or in�xed functions

An operator is an in�xed function. For example, the arithmetic functions +, -, *, /, and � are operators.
(See Section 5.8.2 p.144 and Section 5.10.1 p.166.)

5.14.1 Xcas operators: $ %

• $ is the in�xed version of seq (see Section 5.39.2 p.394).
Example.
Input:

(2�k)$(k=0..3)

(do not forget to put parenthesis around the arguments)
or:

seq(2�k,k=0..3)

Output:
1, 2, 4, 8

• mod or % de�nes a modular number; a mod n is the equivalence class of a in Z/nZ.
Example.
Input:
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5 % 7

or:

5 mod 7

Output:
(−2) % 7

• @ is used to compose functions; (f@g)(x) = f(g(x)).
Example.
Input:

(sin@exp)(x)

Output:
sin (ex)

• @@ is used to compose a function with itself many times (like a power, replacing multiplication by
composition); for example, (f@@3)(x) = f(f(f(x))).
Example.
Input:

(sin@@4)(x)

Output:
sin (sin (sin (sinx)))

• minus, union and intersect return the di�erence, the union and the intersection of two sets,
respectively. (See Section 4.3.2 p.77).
Example.
Input:

A := set[1,2,3,4];

B := set[3,4,5,6];

then:

A minus B

Output:
[[1, 2]]

Input:

A union B

Output:
[[1, 2, 3, 4, 5, 6]]

then:

A intersect B

Output:
[[3, 4]]
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• -> is used to de�ne a function, which can be assigned a name.
Example.
Input:

(x->x�2)(3)

Output:
9

Input:

f := x -> x�2

then:

f(3)

Output:
9

• => is the in�xed version of sto (see Section 4.4.2 p.79) and so is used to store an expression in a
variable.
Example.
Input:

2 => a

then:

a

Output:
2

• := is used to store an expression in a variable, but the variable comes �rst (the argument order is
switched from =>).
Example.
Input:

a := 2

then:

a

Output:
2

• =< to store an expression in a variable, but the storage is done by reference if the target is a matrix
element or a list element. This is faster if you modify objects inside an existing list or matrix
of large size, because no copy is made, the change is done in place. Use with care, all objects
pointing to this matrix or list will be modi�ed.
Example.
Input:
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L := [2,3];

L2 := L;

then:

L[0] =< 5

and:

L

Output:

[5, 3]

Input:

L2

Output:

[5, 3]

5.14.2 De�ning an operator: user_operator

The user_operator command lets you de�ne an operator or delete an operator you previously de�ned.
When you use an operator you de�ned, you have to make sure that you leave spaces around the operator.

To de�ne an operator:

• user_operator takes three arguments:

� name, a string which is the name of the operator.

� fn, a function of one or two variables with values in R or in true, false.

� type, to specify what kind of an operator you are de�ning. The possible values are:

∗ Binary, to de�ne an in�xed operator. In this case, fnmust be a function of two variables.

∗ Prefix (or Unary), to de�ne a pre�xed operator. In this case, fn must be a function of
one variable.

∗ Postfix, to de�ne a post�xed operator. In this case fn must be a function of one variable.

• user_operator(name,fn,type) returns 1 if the de�nition was successful and otherwise returns 0.

Examples.

• Example 1.
Let R be de�ned on R× R by x R y = x ∗ y + x+ y.
To de�ne R:
Input:

user_operator("R",(x,y)->x*y+x+y,Binary)

Output:

1

Input:

5 R 7
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(Do not forget to put spaces around R.)
Output:

47

• Example 2.
Let S be de�ned on N by:
for x and y integers, x S y means that x and y are not coprime.
To de�ne S:
Input:

user_operator("S",(x,y)->(gcd(x,y))!=1,Binary)

Output:

1

Input:

5 S 7

(Do not forget to put spaces around S.)
Output:

false

Input:

8 S 12

Do not forget to put spaces around S.
Output:

true

• Example 3.
Let T be de�ned on R by Tx = x2.
To de�ne T :
Input:

user_operator("T",x->x�2,Prefix)

Output:

1

Input:

T 4

(Do not forget to put a space before T.)
Output:

16

• Example 4.
Let U be de�ned on R by xU = 5x.
To de�ne U :
Input:

user_operator("U",x->5*x,Postfix)
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Output:
1

Input:

3 U

(Do not forget to put a space before T.)
Output:

15

To delete an operator:

• user_operator takes two arguments:

� name, a string which is the name of the operator.

� Delete

• user_operator(name,Delete) deletes the operator.

5.15 Functions and expressions with symbolic variables

5.15.1 The di�erence between a function and an expression

Functions are often de�ned with expressions; for example, f(x):=x�2-1 de�nes a function f, whose
value at x is given by x2 + 1. (The function f can also be de�ned by f:=x->x�2-1.) But the function
is not the same as the expression; the variable x is only a placeholder for the function; it is not part of
actual de�nition of the function. Compare this with g:=x�2-1, where g is a variable which stores the
expression x�2-1 and so the identi�er x is part of the de�nition of g. To �nd the value of f for x = 2,
you can enter f(2), but to use g to �nd the same value you have to do an explicit substitution and
enter subst(g,x=2).

When a command expects a function as argument, this argument should be either the de�nition of
the function (e.g. x->x�2-1) or a variable name assigned to a function (e.g. f previously de�ned by
f(x):=x�2-1).
When a command expects an expression as argument, this argument should be either the de�nition of
the expression (for example x�2-1), or a variable name assigned to an expression (e.g. g previously
de�ned by g:=x�2-1), or the evaluation of a function (e.g. f(x) where f is the previously de�ned
function by f(x):=x�2-1).

5.15.2 Transforming an expression into a function: unapply

The unapply command transforms an expression into a function.

• unapply takes two arguments:

� expr, an expression.

� x, the name of a variable or sequence of names of variables.

• unapply(expr,x) returns the function de�ned by the expression expr and variable(s) x, as in
x->expr.

Examples.

• Input:

unapply(exp(x+2),x)
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Output:

x 7→ ex+2

• Input:

unapply(x*y-x-y,(x,y))

Output:

(x, y) 7→ xy − x− y

Warning.
When a function being is de�ned, the right side of the assignment is not evaluated, hence g:=sin(x+1);
f(x):=g does not de�ne the function f : x → sin(x + 1) but de�nes the function f : x → g. To de�ne
the former function, unapply should be used, as in the following example:
Example.
Input:

g:= sin(x+1); f:=unapply(g,x)

Output:

sin (x+ 1) , x 7→ sin (x+ 1)

hence, the variable g is assigned to a symbolic expression and the variable f is assigned to a function.

Examples.

• Input:

f:=unapply(lagrange([1,2,3],[4,8,12]),x)

(See Section 5.27.29 p.317.) Output:

x 7→ 4 (x− 1) + 4

• Input:

f:=unapply(integrate(log(t),t,1,x),x)

Output:

x 7→ x lnx− x+ 1

• Input:

f:=unapply(integrate(log(t),t,1,x),x):;

f(x)

Output:

x lnx− x+ 1

Remark.
Suppose that f is a function of 2 variables f : (x,w) → f(x,w), and that g is the function de�ned by
g : w → hw, where hw is the function de�ned by hw(x) = f(x,w).
unapply can also be used to de�ne g.
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Example.

Input:

f(x,w):=2*x+w:;

g(w):=unapply(f(x,w),x):;

g(3)

Output:
x 7→ 2x+ 3

5.15.3 Top and leaves of an expression: sommet feuille op left right

An expression can be represented by a tree. The top of the tree is either an operator or a function and
the leaves of the tree are the arguments of the operator or function (see also 5.39.10).

The sommet command �nds the top of an expression.

• sommet takes one argument:
expr, an expression.

• sommet(expr) returns the top of expr.

Examples.

• Input:

sommet(sin(x+2))

Output:
sin

• Input:

sommet(x+2*y)

Output:
+

The op command �nds the list of the leaves of an expression.
feuille is a synonym for op.

• op takes one argument:
expr, an expression.

• op(expr) returns the leaves of expr.

Examples.

• Input:

op(sin(x+2))

or:

feuille(sin(x+2))

Output:
x+ 2
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• Input:

op(x+2*y)

or:

feuille(x+2*y)

Output:
x, 2y

If the top of an expression expr is an in�xed operator, the left hand side will be expr[1] and the right
hand side will be expr[2]. The left and right commands are alternative commands to �nd the sides
(see Section 5.3.4 p.100, Section 5.37.1 p.385, Section 5.38.2 p.388, Section 5.40.6 p.406, Section 5.55.4
p.544 and Section 5.55.5 p.544 for speci�c uses of left and right.)

• left and right take one argument:
expr, an expression whose top is an in�xed operator.

• left(expr) returns the left side of the operator.

• right(expr) returns the right side of the operator.

Examples.

• Input:

sommet(y=x�2)

Output:
=

• Input:

left(y=x�2)

Output:
y

• Input:

right(y=x�2)

Output:
x2

Remark.
If a function is de�ned by a program (see Section 12.1.2 p.743) then the top will be the function
'program' and the leaves will be a sequence consisting of the arguments of the de�ned function, followed
by a sequence of 0s (one for each argument) followed by the body of the function. For example, de�ne
the pgcd function:

pgcd(a,b):={local r; while (b!=0) {r:=irem(a,b);a:=b;b:=r;} return a;}

Then:
Input:
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sommet(pgcd)

Output:

program

Input:

feuille(pgcd)[0]

or:

op(pgcd)[0]

Output:

a, b

Input:

feuille(pgcd)[1]

or:

op(pgcd)[1]

Output:

0, 0

Input:

feuille(pgcd)[2]

or:

op(pgcd)[2]

Output:

{ local r;

while(b<>0){

r:=irem(a,b);

a:=b;

b:=r;

};; ;

return(a);

}

5.16 Functions

5.16.1 Context-dependent functions.

The + operator

The + operator is in�xed and '+' is its pre�xed version. The + operator will add numbers (see Sec-
tion 5.8.2 p.144), concatenate strings (see Section 5.3.12 p.105), and convert a number to a string if
necessary. Addition makes sense for other objects, and + can �exibly deal with them; the result of using
the + operator depends on the nature of its arguments.
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Examples.

• Input:

1+2+3+4

or:

'+'(1,2,3,4)

or:

(1,2)+(3,4)

or:

(1,2,3)+4)

Output:
10

(See Section 5.39.9 p.401.)

• Input:

1+i+2+3*i

or:

'+'(1,i,2,3*i)

Output:
3 + 4i

• Input:

[1,2,3]+[4,1]

or:

[1,2,3]+[4,1,0]

or:

'+'([1,2,3],[4,1])

Output:
[5, 3, 3]

• Input:

[1,2]+[3,4]

or:

'+'([1,2],[3,4])
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Output:

[4, 6]

• Input:

[[1,2],[3,4]]+[[1,2],[3,4]]

Output: [
2 4
6 8

]
• Input:

[1,2,3]+4

or:

'+'([1,2,3],4)

Output:

[]1, 2, 7[]

(This is a polynomial; see Section 5.27.1 p.301.)

• Input:

[1,2,3]+(4,1)

or:

'+'([1,2,3],4,1)

Output:

[]1, 2, 8[]

• Input:

"Hel"+"lo"

or:

'+'("Hel","lo")

Output:

"Hello"

The -,* and / operators

The -, * and / operators (and their pre�xed versions '-', '*' and '/'), like the + operator, are �exible
and operate on compound objects (such as lists and sequences), but don't concatenate strings.
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Examples of - and '-'.

• Input:

(1,2)-(3,4)

Output:
−4

• Input:

(1,2,3)-4

Output:
2

• Input:

[1,2,3]-[4,1]

or:

[1,2,3]-[4,1,0]

or:

'-'([1,2,3],[4,1])

Output:
[−3, 1, 3]

• Input:

[1,2]-[3,4]

or:

'-'([1,2],[3,4])

Output:
[−2,−2]

• Input:

[[3,4],[1,2]]-[[1,2],[3,4]]

Output: [
2 2
−2 −2

]
• Input:

[1,2,3]-4

or:
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'-'([1,2,3],4)

Output:
[]1, 2,−1[]

• Input:

[1,2,3]-(4,1)

Output:
[]1, 2,−2[]

Examples of * and '*'.

• Input:

(1,2)*(3,4)

or:

(1,2,3)*4

or:

1*2*3*4

or:

'*'(1,2,3,4)

Output:
24

• Input:

1*i*2*3*i

or:

'*'(1,i,2,3*i)

Output:
−6

• Input:

[10,2,3]*[4,1]

or:

[10,2,3]*[4,1,0]

or:

'*'([10,2,3],[4,1])
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Output:
42

These compute the scalar product.

• Input:

[1,2]*[3,4]

or:

'*'([1,2],[3,4])

Output:
11

These compute the scalar product.

• Input:

[[1,2],[3,4]]* [[1,2],[3,4]]

Output: [
7 10
15 22

]
• Input:

[1,2,3]*4

or:

'*'([1,2,3],4)

Output:
[4, 8, 12]

• Input:

[1,2,3]*(4,2)

or:

'*'([1,2,3],4,2)

or:

[1,2,3]*8

Output:
[8, 16, 24]

• Input:

(1,2)+i*(2,3)

or:

1+2+i*2*3

Output:
3 + 6i
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Examples of / and '/'.

• Input:

[10,2,3]/[4,1]

Output: [
5

2
, 2

]
• Input:

[1,2]/[3,4]

or:

'/'([1,2],[3,4])

Output: [
1

3
,
1

2

]
• Input:

1/[[1,2],[3,4]]

or:

'/'(1,[[1,2],[3,4]]

Output: [
−2 1
3
2 −1

2

]
• Input:

[[1,2],[3,4]]*1/ [[1,2],[3,4]]

Output: [
1 0
0 1

]
• Input:

[[1,2],[3,4]]/ [[1,2],[3,4]]

Output: [
1 1
1 1

]
(This is term-by-term division.)

5.16.2 Standard functions

• The max command �nds the maximum of a sequence of real numbers.

� max takes an arbitrary number of arguments:
seq, a sequence (or list) of real numbers.

� max(seq) returns the largest number in the sequence seq.
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Example.

Input:

max(0,1,2,-1,-2)

Output:

2

• The min command �nds the minimum of a sequence of real numbers.

� min takes an arbitrary number of arguments:
seq, a sequence (or list) of real numbers.

� min(seq) returns the smallest number in the sequence seq.

Example.

Input:

min(0,1,2,-1,-2)

Output:

−2

• The abs command �nds the absolute value of a real or complex number.

� abs takes one argument:
x, a real or complex number.

� abs(x) returns the absolute value of x.

Examples.

� Input:

abs(-5)

Output:

5

� Input:

abs(3+4*i)

Output:

5

• The sign command �nds the sign of a real number (+1 if it is positive, 0 if it is zero, and -1 if it
is negative).

� sign takes one argument:
x, a real number.

� sign(x) returns the sign of x.
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Examples.

� Input:

sign(-4)

Output:

−1

� Input:

sign(0)

Output:

0

• The floor command �nds the �oor of a real number; namely, the largest integer less than or equal
to the number.
iPart) is a synonym for floor.

� floor takes one argument:
x, a real number.

� floor(x) returns the �oor of x.

Examples.

� Input:

floor(4.1)

Output:

4

� Input:

floor(-4.1)

Output:

−5

• The round command rounds a number to the nearest integer, rounding up in the case of a half-
integer.

� round takes one argument:
x, a real number.

� round(x) returns the nearest integer to x.

Examples.

� Input:

round(3.4)

Output:

3

� Input:

round(-3.4)
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Output:

−3

� Input:

round(3.5)

Output:

4

• The ceil command �nds the ceiling of a real number; namely, the smallest integer greater than
or equal to the number.
ceiling is a synonym for ceil.

� ceil takes one argument:
x, a real number.

� ceil(x) returns the ceiling of x.

Examples.

� Input:

ceiling(4.1)

Output:

5

� Input:

ceiling(-4.1)

Output:

−4

• The frac command �nds the fractional part of a number; informally, the part of the number to
the right of the decimal point with the appropriate plus or minus sign. For a positive real number
x, the fractional part is x minus the �oor of x; for a negative real number x, the fractional part
is x minus the ceiling of x.
fPart is a synonym for frac.

� frac takes one argument:
x, a real number.

� frac(x) returns the fractional part of x.

Examples.

� Input:

frac(3.24)

Output:

0.24

� Input:

frac(-3.24)

Output:

−0.24
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• The trunc command truncates a real number; namely, it removes the fractional part. The trun-
cated number added to the fractional part will equal the original number.

� trunc takes one argument:
x, a real number.

� trunc(x) returns the truncated value of x.

Examples.

� Input:

trunc(3.24)

Output:

3

� Input:

trunc(-3.24)

Output:

−3

• The id command is the identity function.

� id takes one argument or a sequence of arguments:
seq, whose elements can be any type.

� id(seq) returns seq.

Example.

• Input:

id(a,1,"abc",[1,2,3])

Output:

a, 1, "abc", [1, 2, 3]

• The sq command squares its argument.

� sq takes one argument:
x, any object that can be multiplied by itself.

� sq(x) returns x2.

Examples.

� Input:

sq(5)

Output:

25

� Input:

sq(x+y)



5.16. FUNCTIONS 213

Output:

(x+ y)2

� Input:

sq([[1,2],[3,4]])

(This is a matrix product; see Section 5.44 p.438).
Output: [

7 10
15 22

]
� Input:

sq([1,2,3])

(This is the dot product of [1, 2, 3] with itself.)
Output:

14

• The sqrt command �nds the square root of its argument.

� sqrt takes one argument:
x, any object for which the 1/2 power makes sense.

� sqrt(x) returns x1/2.

Examples.

� Input:

sqrt(9)

Output:

3

� Input:

sqrt((x+y)�2)

Output:

|x+ y|

� Input:

simplify(sqrt([[2,3],[3,5]]))

Output: [
1 1
1 2

]
• The surd command �nds roots of quantities.

� surd takes two arguments:
x and n, numbers.

� surd(x,n) returns the nth root of x; i.e., x1/n.
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Example.

• Input:

surd(15.625,3)

Output:

2.5

• The exp command computes the exponential function.

� exp takes one argument:
x, a number.

� exp(x) returns ex.

Example.

Input:

exp(1.0)

Output:

2.71828182846

• The log command computes the natural logarithm function.
ln is a synonym for log.

� log takes one argument:
x, a number.

� log(x) returns the natural logarithm of x.

Example.

Input:

log(2.0)

Output:

0.69314718056

• The log10 computes the the base-10 logarithm.

� log10 takes one argument:
x, a number.

� log10(x) returns the base-10 logarithm of x.
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Example.

Input:

log10(1000)

Output:
3

• The logb computes the logarithm to a speci�ed base.

� logb takes two arguments:
x and b, non-zero numbers.

� logb(x,b) returns the base-b logarithm of x.

Example.

Input:

logb(10.0,2)

Output:
3.32192809489

• The standard trigonometric functions:

� The sin command is the sine function.

� The cos command is the cosine function.

� The tan command is the tangent function (tan(x)= sin(x)/cos(x)).

� The cot command is the cotangent function (cot(x)= cos(x)/sin(x)).

� The sec command is the secant function (sec(x)= 1/cos(x)).

� The csc command is the cosecant function (csc(x) = 1/sin(x)).

� These commands take one argument: x, a number.
The number x will by default represent an angle measured in radians, but you can set Xcas
to use degrees (see Section 2.5.3 p.55) by setting the variable angle_radian to 0; resetting
it to 1 will change the angle measure to radians again.

� sin(x) returns the sine of x.

Examples.

∗ Input (with angle_radian equal to 1):

sin(pi/4)

Output: √
2

2

∗ Input (with angle_radian equal to 0):

sin(30)

Output:
1

2

� cos(x) returns the cosine of x.
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Examples.

∗ Input (with angle_radian equal to 1):

cos(pi/6)

Output: √
3

2

∗ Input (with angle_radian equal to 0):

cos(90)

Output:
0

� tan(x) returns the tangent of x.

Examples.

∗ Input (with angle_radian equal to 1):

tan(pi/4)

Output:
1

∗ Input (with angle_radian equal to 0):

tan(60)

Output: √
3

� cot(x) returns the cotangent of x.

Examples.

∗ Input (with angle_radian equal to 1):

cot(pi/6)

Output:
2
√

3

2

∗ Input (with angle_radian equal to 0):

cot(45)

Output:
1

� sec(x) returns the secant of x.

Example.

∗ Input (with angle_radian equal to 1):

sec(pi/3)

Output:
2

∗ Input (with angle_radian equal to 0):

sec(30)

Output:
2√
3
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� csc(x) returns the cosecant of x.
Examples.

∗ Input (with angle_radian equal to 1):

csc(pi/4)

Output:
2√
2

∗ Input (with angle_radian equal to 0):

csc(30)

Output:
2

• The asin, acos, atan, acot, asec, acsc commands are the inverse trigonometric functions. The
latter are de�ned by:

� asec(x) = acos(1/x),

� acsc(x) = asin(1/x),

� acot(x) = atan(1/x).

arcsin is a synonym for asin.
arccos is a synonym for acos.
arctan is a synonym for atan.

� These functions take one argument: x, a number.
They return a number which can represent an angle; by default, the angles will be in ra-
dians, but you can set Xcas to use degrees (see Section 2.5.3 p.55) by setting the variable
angle_radian to 0; resetting it to 1 will change the angle measure to radians again.

� asin(x) returns the arcsine of x.

Examples.

∗ Input (with angle_radian equal to 1):

asin(1/2)

Output:
π

6
∗ Input (with angle_radian equal to 0):

asin(1)

Output:
π

2
� acos(x) returns the arccosine of x.

Examples.

∗ Input (with angle_radian equal to 1):

acos(sqrt(3)/2)

Output:
1

6
π

∗ Input (with angle_radian equal to 0):

acos(-1/2)

Output:
120

� atan(x) returns the arctangent of x.
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Examples.

∗ Input (with angle_radian equal to 1):

atan(sqrt(3))

Output:
π

3

∗ Input (with angle_radian equal to 1):

atan(1)

Output:

45

� acot(x) returns the arccotangent of x.

Examples.

∗ Input (with angle_radian equal to 1):

acot(sqrt(3))

Output:
π

6

∗ Input (with angle_radian equal to 0):

acot(1/sqrt(3))

Output:

60

� asec(x) returns the arcsecant of x.

Examples.

∗ Input (with angle_radian equal to 1):

asec(1)

Output:

0

∗ Input (with angle_radian equal to 0):

asec(sqrt(2))

Output:

45

� acsc(x) returns the arccosecant of x.

Examples.

∗ Input (with angle_radian equal to 1):

acsc(1)

Output:
π

2

∗ Input (with angle_radian equal to 0):

acsc(2)

Output:

30
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• The sinh, cosh, and tanh commands compute the hyperbolic sine, hyperbolic cosine, and hyper-
bolic tangent functions.

� These functions take one argument:
x, a number.

� sinh(x) returns the hyperbolic sine of x.

Example.

Input:

sinh(1.0)

Output:

1.17520119364

� cosh(x) returns the hyperbolic cosine of x.

Example.

Input:

cosh(0)

Output:

1

� tanh(x) returns the hyperbolic tangent of x.

Example.

Input:

tanh(-1.0)

Output:

−0.761594155956

• The asinh, acosh, and atanh commands compute the inverse hyperbolic functions.
arcsinh is a synonym for asinh.
arccosh is a synonym for acosh.
arctanh is a synonym for atanh.

� These functions take one argument:
x, a number.

� asinh(x) returns the inverse hyperbolic sine of x.

Example.

Input:

asinh(2)

Output:

ln
(

2 +
√

5
)

� acosh(x) returns the inverse hyperbolic cosine of x.
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Example.

Input:

acosh(1)

Output:

0

� atanh(x) returns the inverse hyperbolic tangent of x.

Example.

Input:

atanh(1/2)

Output:

ln (3)

2

5.16.3 De�ning algebraic functions

De�ning a function from Rp to Rq

If expr is an expression possibly involving a variable x, you can use it to de�ne a function f either by
f(x):=expr
or f := x->expr
(see Section 4.5.1 p.87).

Warning!!!
The expression after -> is not evaluated. You should use unapply (see Section 5.15.2 p.198) if you
expect the second member to be evaluated before the function is de�ned.

Example.

To de�ne f : (x)→ x ∗ sin(x),
Input:

f(x):=x*sin(x)

or:

f:=x->x*sin(x)

then:

f(pi/4)

Output:

π
√

2

8

You can similarly de�ne a function of several variables, by replacing x by a sequence (x1, . . . , xp) or
a list [x1, . . . , xp] of variables.
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Example.

Input:

f(x,y):=x*sin(y)

or:

f:=(x,y)->x*sin(y)

then:

f(2,pi/6)

Output:
1

You can also de�ne a function with values in Rq by replacing expr by a sequence (expr1,. . . ,exprq)
or list [expr1,. . . ,exprq] of expressions.

Examples.

• De�ne the function h (x, y)→ (x ∗ cos(y), x ∗ sin(y)).
Input:

h(x,y):=(x*cos(y),x*sin(y))

then:

h(2,pi/4)

Output: √
2,
√

2

• De�ne the function h (x, y)→ [x ∗ cos(y), x ∗ sin(y)].
Input:

h(x,y):=[x*cos(y),x*sin(y)];

or:

h:=(x,y)->[x*cos(y),x*sin(y)];

or:

h(x,y):={[x*cos(y),x*sin(y)]};

or:

h:=(x,y)->return[x*cos(y),x*sin(y)];

or:

h(x,y):={return [x*cos(y),x*sin(y)];}

then:

h(2,pi/4)

Output: [√
2,
√

2
]
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De�ning families of function from Rp−1 to Rq using a function from Rp to Rq

Suppose that the function f : (x, y) → f(x, y) is de�ned, and you want to de�ne a family of functions
g(t) such that g(t)(y) := f(t, y) (i.e. t is viewed as a parameter). Since the expression after -> (or :=) is
not evaluated, you should not de�ne g(t) by g(t):=y->f(t,y); you have to use the unapply command
(see Section 5.15.2 p.198).

For example, to de�ne f : (x, y)→ x sin(y) and g(t) : y → f(t, y):
Input:

f(x,y):=x*sin(y);g(t):=unapply(f(t,y),y)

then:

g(2)

Output:

y 7→ 2 sin y

Input:

g(2)(1)

Output:

2 sin (1)

For another example, suppose that you want to de�ne the function h : (x, y)→ [x∗cos(y), x∗ sin(y)]
and then you want to de�ne the family of functions k(t) having t as parameter such that k(t)(y) :=
h(t, y). To de�ne the function h(x, y)
Input:

h(x,y):=(x*cos(y),x*sin(y))

To de�ne properly the function k(t): Input:

k(t):=unapply(h(x,t),x)

then:

k(2)

Output:

x 7→ (x cos (2) , x sin (2))

(x)->(x*cos(2),x*sin(2))

Input:

k(2)(1)

Output:

cos (2) , sin (2)

5.16.4 Composing functions: @

With Xcas, the composition of functions is done with the in�xed operator @ (see Section 5.14.1 p.193).
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Examples.

• Input:

(sq@sin+id)(x)

Output:

sin2(x) + x

• Input:

(sin@sin)(pi/2)

Output:

sin (1)

5.16.5 Repeated function composition: @@

With Xcas, the repeated composition of a function with itself n ∈ N times is done with the in�xed
operator @@ (see Section 5.14.1 p.193).

Examples.

• Input:

(sin@@3)(x)

Output:

sin (sin (sinx))

• Input:

(sin@@2)(pi/2)

Output:

sin (1)

5.16.6 De�ning a function with history: as_function_of

The as_function_of command creates a function de�ned by an expression, even if the desired variable
already has a value.

• as_function_of takes two arguments:

� x, a variable.

� exprvar, another variable containing an expression which itself may involve x.

• as_function_of(exprvar,x) returns a function de�ned by the expression that exprvar contains.
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Example.

Input:

a:=sin(x)

Output:

sin (x)

Input:

b:=sqrt(1+a�2)

Output: √
1 + sin2 x

Input:

c:=as_function_of(b,a)

Output:

(a) -> { return(sqrt(1+a�2));}

Input:

c(x)

Output: √
1 + x2

Warning !!
If the variable b has been assigned several times, the �rst assignment of b following the last assignment
of a will be used. Moreover, the order used is the order of validation of the commandlines, which may
not be re�ected by the Xcas interface if you reused previous commandlines.

Example.

Input:

a:=2 b:=2*a+1 b:=3*a+2 c:=as_function_of(b,a)

Output:

(a) -> {return(2*a+1);}

So c(x) is equal to 2*x+1. But: Input:

a:=2

b:=2*a+1

a:=2

b:=3*a+2

c:=as_function_of(b,a)

Output:

(a) -> {return(3*a+2);}

So c(x) is equal to 3*x+2.
Hence the line where a is de�ned must be reevaluated before the good de�nition of b.
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5.17 Getting information about functions from R to R

5.17.1 The domain of a function: domain

The domain command �nds the domain of a function.

• domain takes one mandatory argument and one optional argument:

� expr, an expression involving a single variable.

� Optionally, x, the variable, which by default will be x.

• domain(expr 〈, x〉) returns the domain of the function de�ned by expr.

Examples.

• Input:

domain(ln(x+1))

Output:
x > −1

• Input:

domain(asin(2*t),t)

Output:

t ≥ −1

2
∧ t ≤ 1

2

5.17.2 Table of variations of a function: tabvar

The table of variations of a function consists of

• The �rst row, for the variable, which gives the endpoints of subintervals of the domain, as well as
any critical points and in�ection points.

• The second row, for the derivative, which gives the values of the derivative at the values in the
�rst row (or limits as the variable approaches one of the values) and between them the sign (+ or
−) of the derivative in the corresponding subinterval.

• The third row, for the function, which gives the values of the function at the values in the �rst
row, and between them whether the function is increasing or decreasing in the corresponding
subinterval.

• The fourth row, for the second derivative, which gives the values of the second derivative at the
values in the �rst row, and between them whether the second derivative is positive or negative
(and hence whether the graph is concave up or concave down) in the subinterval.

The tabvar command �nds the table of variations of a function.

• tabvar takes one mandatory argument and one optional argument.

� expr, an expression of a single variable.

� Optionally, x, the variable (by default, x =x).

• tabvar(expr 〈, x〉) returns the table of variations of the function f(x) = expr and draws the graph
on the DispG screen, accessible with the menu CfgIShowIDispG.
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Examples.

• Input:

tabvar(x�2 - x - 2,x)

Output:

Function plot x�2-x-2, variable x

Domain x

Vertical parabolic asymptote at -infinity

Vertical parabolic asymptote at +infinity

Variations x�2-x-2
x −∞ 1

2 +∞
y′ = 2x− 1 −∞ − 0 + +∞

y = x2 − x− 2 +∞ ↓ −9
4 ↑ +∞

y′′ 2 +(∪) 2 +(∪) 2


plotfunc(x�2-x-2,x=((-0.6681472) .. 1.7222552))

Inside Xcas you can see the function with Cfg>Show>DispG.

• Input:

tabvar((2*t-1)/(t-1),t)

Output:

Function plot (2*t-1)/(t-1), variable t

Domain t<>1

Vertical asymptote x=1

Horizontal asymptote y=2

Horizontal asymptote y=2

Variations (2*t-1)/(t-1)
t −∞ 1 1 +∞

y′ = − 1
(t−1)2 0 − || || − 0

y = 2t−1
t−1 2 ↓ −∞ +∞ ↓ 2

y′′ 0 −(∩) || || +(∪) 0


plotfunc((2*t-1)/(t-1),t=((-0.1681472) .. 2.2222552))

Inside Xcas you can see the function with Cfg>Show>DispG.

Note that in this case, the value 1 appears twice in the �rst row, so that both one-sided limits of
y can be displayed at the vertical asymptote t = 1. The values of 2 for y at −∞ and ∞ indicate
a horizontal asymptote of y = 2.

5.18 Limits: limit

The limit command computes limits, both at numbers and in�nities, and in the real case it can compute
one-sided limits.

• limit takes three mandatory and one optional argument.
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� expr, an expression.

� x, the name of a variable.

� a, the limit point.

� Optionally, side (either 0, -1 or 1), to specify which side to take a one-sided limit (by default
side=0).

• limit(expr,x, a 〈,side〉) returns the limit of expr as x approaches a.

� If side is 0 (the default), then the ordinary limit is returned.

� If side is -1, then the limit from the left (x < a) is returned.

� If side is 1, then the limit from the right (x > a) is returned.

Remark:
It is also possible to put x=a as argument instead of x,a; limit(expr,var=pt[,side]) is equivalent to
limit(expr,var,pt[,side]).

Examples.

• Input:

limit(1/x,x,0,-1)

or:

limit(1/x,x=0,-1)

Output:

−∞

• Input:

limit(1/x,x,0,1)

or:

limit(1/x,x=0,1)

Output:

+∞

• Input:

limit(1/x,x,0,0)

or:

limit(1/x,x,0)

or:

limit(1/x,x=0)
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Output:

∞

(Note that∞ or in�nity without an explicit + or - represents unsigned in�nity.) Hence, abs(1/x)
approaches +∞ when x approaches 0.

Exercises.

• Find, for n > 2, the limit as x approaches 0 of:

n tan(x)− tan(nx)

sin(nx)− n sin(x)

Input:

limit((n*tan(x)-tan(n*x))/(sin(n*x)-n*sin(x)),x=0)

Output:

2

• Find the limit as x approaches +∞ of√
x+

√
x+
√
x−
√
x

Input:

limit(sqrt(x+sqrt(x+sqrt(x)))-sqrt(x),x=+infinity)

Output:
1

2

• Find the limit as x approaches 0 of√
1 + x+ x2/2− exp(x/2)

(1− cos(x)) sin(x)

Input:

limit((sqrt(1+x+x�2/2)-exp(x/2))/((1-cos(x))*sin(x)),x,0)

Output:

−1

6

5.19 Derivation and applications

5.19.1 Functional derivative: function_diff

The function_diff command �nds the derivatives of functions (as opposed to expressions, see Sec-
tion 5.15.1 p.198).

• function_diff takes one argument: f , a function.

• function_diff(f) returns the derivative f ′ of f .



5.19. DERIVATION AND APPLICATIONS 229

Examples.

• Input:

function_diff(sin)

Output:

x 7→ cos x

• Input:

function_diff(sin)(x)

Output:

cosx

• Input:

f(x):=x�2+x*cos(x)

function_diff(f)

Output:

x 7→ cos x− x sin x + 2x

• Input:

function_diff(f)(x)

Output:

cosx− x sinx+ 2x

• To de�ne the function g as f ′:
Input:

g:=function_diff(f)

• The function_diff instruction has the same e�ect as using the expression derivative diff (see
Section 5.19.4 p.233) in conjunction with unapply (see Section 5.15.2 p.198):
Input:

g:=unapply(diff(f(x),x),x)

g(x)

Output:

cosx− x sinx+ 2x

Warning!!!
In Maple mode (see Section 2.5.2 p.54), for compatibility, D may be used in place of function_diff.
For this reason, it is impossible to assign a variable named D in Maple mode (hence you can not name
a geometric object D).
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5.19.2 Length of an arc: arcLen

The arcLen command �nds the lengths of curves in the plane, which can either be given by an equation
or a curve object.

To �nd the length of a curve given by an equation:

• arcLen takes four arguments:

� expr, an expression (resp. a list of two expressions [expr1,expr2]) involving a variable x.

� x, the name of the variable.

� a and b, two values for the bounds of this variable.

• arcLen(expr,x, a, b) (resp. arcLen([expr1,expr2]x, a, b)) returns the length of the curve de�ned
by y = f(x) =expr (resp. by x1 =expr1,x2 =expr2) as x varies from a to b, using the formula

arcLen(f(x), x, a, b) =

∫ b

a

√
f ′(x)2 + 1dx

or

arcLen(f(x), x, a, b) =

∫ b

a

√
x′(t)2 + y′(t)2dt

Examples.

• Compute the length of the parabola y = x2 from x = 0 to x = 1.
Input:

arcLen(x�2,x,0,1)

or:

arcLen([t,t�2],t,0,1)

Output:
2
√

5− ln
(√

5− 2
)

4

• Compute the length of the curve y = cosh(x) from x = 0 to x = ln(2).
Input:

arcLen(cosh(x),x,0,log(2))

Output:
3

4

• Compute the length of the circle x = cos(t), y = sin(t) from t = 0 to t = 2 ∗ π.
Input:

arcLen([cos(t),sin(t)],t,0,2*pi)

Output:
2π

To �nd the length of a curve given by a curve object:

• arcLen takes a single argument: curve, a geometric curve de�ned in one of the graphics chapters
(chapters 13 and 14).

• arcLen(curve) returns the length of the curve.
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Examples.

• Input:

arcLen(circle(0,1,0,pi/2))

Output:
1

2
π

• Input:

arcLen(arc(0,1,pi/2))

Output:
1

4
π
√

2

5.19.3 Maximum and minimum of an expression: fMax fMin

The fMax and fMin commands �nd where maxima and minima occur. They can do this for expressions
of one variable or for expressions of several variables subject to a set of constraints, either equalities or
inequalities.

The �nd the maximum and minimum of an expression with one variable:

• fMax and fMin take two arguments:

� expr, an expression involving one variable.

� Optionally, x, the name of the variable (by default x=x).

• fMax(expr 〈, x〉) returns the value of x that maximizes the expression.

• fMin(expr 〈, x〉) returns the value of x that minimizes the expression.

Examples.

• Input:

fMax(sin(x),x)

or:

fMax(sin(x))

or:

fMax(sin(y),y)

Output:
π

2

• Input:

fMin(sin(x),x)

or:
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fMin(sin(x))

or:

fMin(sin(y),y)

Output:

−π
2

The �nd the maximum and minimum of an expression with several variables subject to constraints:

• fMax and fMin take four mandatory and two optional arguments:

� expr, an expression with several variables.

� constr, a list of constraints (equalities and inequalities).

� vars, a list of the variables.

� init, an initial guess (which must be a list of nonzero reals representing a feasible point).

� Optionally, ε, the precision. If this isn't given, the default epsilon value is used (see Sec-
tion 2.5.7 p.56, item 9).

� Optionally, N , the maximum number of iterations.

The expression expr does not need to be di�erentiable.

• fMax(expr, constr ,vars ,init 〈, ε〉 〈, N〉) returns the vector of values that maximizes expr subject
to the constraints constr.

• fMin(expr, constr ,vars ,init 〈, ε〉 〈, N〉) returns the vector of values that minimizes expr subject
to the constraints constr.

Examples.

• Input:

fMax((x-2)�2+(y-1)�2,[-.25x�2-y�2+1>=0,x-2y+1=0],[x,y],[.5,.75])

Output:

[−1.82287565553,−0.411437827766]

• Input:

fMin((x-5)�2+y�2-25,[y>=x�2],[x,y],[1,1])

Output:

[1.2347728625, 1.52466402196]

Although the initial point is required to be feasible, the algorithm will sometimes succeed even with
a poor choice of initial point. Note that the initial value of a variable must not be zero.
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5.19.4 Derivatives and partial derivatives

The diff command computes derivatives and partial derivatives of expressions.
derive is a synonym for diff.

To compute �rst order derivatives:

• diff takes one mandatory argument and one optional argument:

� expr, an expression or a list of expressions.

� Optionally, x, a variable (resp. a list of variable names, see several variable functions in 5.21).
If the only variable is x, this second argument can be omitted.

• diff(expr 〈, x〉) returns the derivative (resp. a vector of derivatives) of the expression expr (or
list of expressions) with respect to the variable x (resp. with respect to each variable in the list
x).

Examples.

• Compute:
∂(xy2z3 + xyz)

∂z

Input:

diff(x*y�2*z�3+x*y*z,z)

Output:
3xy2z2 + xy

• Compute the 3 �rst order partial derivatives of x ∗ y2 ∗ z3 + x ∗ y ∗ z.
Input:

diff(x*y�2*z�3+x*y,[x,y,z])

Output: [
y2z3 + y, 2xyz3 + x, 3xy2z2

]
• Compute:

∂3(x.y2.z3 + x.y.z)

∂y∂2z

Input:

diff(x*y �2*z�3+x*y*z,y,z$2)

Output:
12xyz

To compute higher order derivatives:

• diff takes more than two arguments:

� expr, an expression.

� x1, x2. . . , the names of the derivation variables. Note that for repeated variables, you can use
the $ operator (see Section 5.39.2 p.394) followed by the number of derivations with respect
to the variable; for example, instead of writing x, x, x you could write x$3.

• diff(expr,x1, x2,. . . ) returns the partial derivative of expr with respect to the variables x1, x2,. . . .
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Examples.

• Compute:
∂2(xy2z3 + xyz)

∂x∂z

Input:

diff(x*y�2*z�3+x*y*z,x,z)

Output:

3y2z2 + y

• Compute:
∂3(xy2z3 + xyz)

∂x∂2z

Input:

diff(x*y�2*z�3+x*y*z,x,z,z)

or:

diff(x*y�2*z�3+x*y*z,x,z$2)

Output:

6y2z

• Compute the third derivative of:
1

x2 + 2

Input:

normal(diff((1)/(x�2+2),x,x,x))

or:

normal(diff((1)/(x�2+2),x$3))

Output:
−24x3 + 48x

x8 + 8x6 + 24x4 + 32x2 + 16

Remark.

• Note the di�erence between diff(f, x, y) and diff(f,[x, y]):

diff(f, x, y) returns
∂2(f)

∂x∂y
and diff(f, [x, y]) returns [

∂(f)

∂x
,
∂(f)

∂y
]

• Never de�ne a derivative function with f1(x):=diff(f(x),x). Indeed, x would mean two di�erent
things Xcas is unable to deal with: on the left hand side, x is the variable name to de�ne the f1
function, and on the right hand side, x is the di�erentiation variable. The right way to de�ne a
derivative is either with function_diff or:

f1:=unapply(diff(f(x),x),x)
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5.19.5 Implicit di�erentiation: implicitdiff

The implicitdiff command can di�erentiate implicitly de�ned functions or expressions containing
implicitly de�ned functions. It has three di�erent calling sequences.

To implicitly di�erentiate dependent variables:

• implicitdiff takes four arguments:

� constraints, an equation or list of equations which implicitly de�ne the dependent variables
as functions of the independent variables; these will be of the form

gi(x1, . . . , xn, y1, . . . , ym) = 0

for i = 1, 2, . . . ,m, where x1, ldots, xn are the independent variables and y1, . . . , ym are the
dependent variables.

� depvars, the list of dependent variables, where each dependent variable can optionally be
written as a function of the xi or the name written as a function of the independent variables
yi(x1, . . . , xn). If there is only one dependent variable, this can be omitted.

� y, a dependent variable or a list of dependent variables to be di�erentiated.

� di�vars, a sequence of independent variables xi1 , . . . , xik with respect to di�erentiate.

• implicitdiff(constraints 〈,depvars 〉],y,di�vars) returns the derivative (or list of derivatives) of
y with respect to di�vars.

Examples.

• Input:

implicitdiff(x�2*y+y�2=1,y,x)

Output:

− 2xy

x2 + 2y

• Input:

implicitdiff([x�2+y=z,x+y*z=1],[y(x),z(x)],y,x)

Output:
−2xy − 1

y + z

To �nd a speci�ed derivative of an expression containing implicitly de�ned functions:

• implicitdiff takes four arguments:

� expr, a di�erentiable expression involving independent variables x1, x2, . . . , xn and dependent
variables y1, y2, . . . , ym.

� constraints, an equation or list of equations which implicitly de�ne the dependent variables
as functions of the independent variables; these will be of the form

gi(x1, . . . , xn, y1, . . . , ym) = 0

for i = 1, 2, . . . ,m.
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� depvars, the dependent variable or list of dependent variables, where each dependent variable
can either be the variable name yi or the name written as a function of the independent
variables yi(x1, . . . , xn)).

� di�vars, a sequence of independent variables xi1 , . . . , xik with respect to which expr is di�er-
entiated.

• implicitdiff(expr,implicitdef,depvars,di�vars) returns the expression expr di�erentiated with
respect to di�vars.

Example.

Input:

implicitdiff(x*y,-2x�3+15x�2*y+11y�3-24y=0,y(x),x)

Output:
2x3 − 5x2y + 11y3 − 8y

5x2 + 11y2 − 8

To �nd all kth order derivatives of an expression involving implicitly de�ned functions:

• implicitdiff takes four mandatory arguments and one optional argument:

� expr, a di�erentiable expression involving independent variables x1, x2, . . . , xn and dependent
variables y1, y2, . . . , ym.

� constraints, an equation or list of equations which implicitly de�ne the dependent variables
as functions of the independent variables; these will be of the form

gi(x1, . . . , xn, y1, . . . , ym) = 0

for i = 1, 2, . . . ,m.

� vars, a list [x1, . . . , xn, y1, . . . , ym] of the independent and dependent variables entered as
symbols in single list such that dependent variables come last.

� order=k, where k is the order of the derivatives to be taken.

� Optionally, a, a point where the partial derivatives should be evaluated at.

• implicitdiff(expr,implicitdef,vars,order=k 〈, a〉) returns all partial derivatives of order k. If
k = 1 they are returned in a single list, which represents the gradient of expr with respect to
independent variables. If k = 2 the corresponding Hessian matrix is returned (see Section 5.21.3
p.251). If k > 2, a table with keys in form [k1,k2,..,kn], where

∑n
i=1 ki = k, is returned. Such

a key corresponds to
∂kf

∂vark11 ∂vark22 · · · ∂var
kn
n

.

Examples.

• Input:

f:=x*y*z; g:=-2x�3+15x�2*y+11y�3-24y=0;

implicitdiff(f,g,[x,z,y],order=1)

Output: [
2x3z − 5x2yz + 11y3z − 8yz

5x2 + 11y2 − 8
, xy

]
• Input:
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implicitdiff(f,g,[x,z,y],order=2,[1,-1,0])

Output: [
64
9 −2

3
−2

3 0

]
• In the next example, the value of ∂

4f
∂x4

is computed at the point (x = 0, y = 0, z).
Input:

pd:=implicitdiff(f,g,[x,z,y],order=4,[0,z,0]);

pd[4,0]

Output:

−2z

5.19.6 Numerical di�erentiation: numdiff

The numdiff command �nds numerical approximations to derivatives.

• numdiff takes three mandatory arguments and one optional argument.

� X = [α0, α1, . . . , αn], Y = [β0, β1, . . . , βn], two lists of real numbers, where n ≥ 1.

� x0, a real number.

� Optionally, m, an integer or a sequence of integers (by default 1).

• numdiff(X,Y, x0 〈,m〉) returns an approximation of them-th derivative of a function f at x0, or a
sequence of derivatives of order given by the sequence m, where f has values given by f(αk) = βk,
k = 0, 1, . . . , n.

numdiff uses Fornberg's algorithm (1988) improved by Sadiq and Viswanath (2014). The complexity
of the algorithm is O(n2m) in both time and space.

Note that α0, α1, . . . , αn do not have to be equally spaced, but they must be mutually di�erent and
input in ascending order. There are no restrictions on the choice of x0.

Rounding errors are usually not damaging for m ≤ 4. For higher m, consider providing exact input
data.

Examples.

• Let f(x) = sin(x)e−x, x ∈ [0, 1]. Sample this function at the points in

X = [0, 0.1, 0.2, 0.4, 0.5, 0.7, 0.8, 1]

to approximate f ′′(1/π).
Input:

f:=unapply(sin(x)*exp(-x),x):;

X:=[0,0.1,0.2,0.4,0.5,0.7,0.8,1]:;

Y:=apply(f,X):;

Now you can approximate the second derivative of f at the point x0 = 1
π .

Input:

x0:=1/pi:;

d:=numdiff(X,Y,x0,2)
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Output:
−1.38167652799

Finally, compute the relative error of the obtained approximation.
Input:

abs(d-f�(x0))/abs(f�(x0))*100

Output:
2.82975186496× 10−5

The result is expressed in percentages.

• Use a sequence of values for the parameter m to �nd a list of approximations of the respective
derivatives at x0. This is faster than calling numdiff to approximate one derivative at a time.
Speci�cally, approximate the �rst, second and third derivative of the function

f(x) = 1− 1

1 + x2
, x ∈ [0, 1],

at the point x0 = 0.57 by sampling f at 21 equidistant points in the segment [0, 1].
Input:

f:=unapply(1-1/(1+x�2),x)

X:=[(0.05*k)$(k=0..20)]:; Y:=apply(f,X):;

numdiff(X,Y,0.57,1,2,3)

Output:
[0.649439427528, 0.0217571104587,−2.99724196738]

Actual values: f ′(x0) = 0.649439427528, f ′′(x0) = 0.0217571104558 and f ′′′(x0) = −2.99724196764.

numdiff can be used for generating custom �nite-di�erence stencils for approximation of derivatives.

Example.

Let X = [−1, 0, 2, 4], Y = [a, b, c, d] and x0 = 1. To obtain an approximation formula for the second
derivative:
Input:

numdiff([-1,0,2,4],[a,b,c,d],1,2)

Output:
2

5
a− b

2
+

d

10
The approximation is always a linear combination of elements in Y , regardless of X, x0 and m.

Given the lists X = [α0, α1, . . . , αn] and Y = [β0, β1, . . . , βn], the Lagrange polynomial passing
through points (αk, βk) where k = 0, 1, . . . , n can be obtained by setting m = 0 and entering a symbol
for x0.

Example.

Let X = [−2, 0, 1] and Y = [2, 4, 1]:
Input:

expand(numdiff([-2,0,1],[2,4,1],x,0))

Output:

−4

3
x2 − 5

3
x+ 4

The same result is obtained by entering lagrange([-2,0,1],[2,4,1],x).
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5.20 Integration

5.20.1 Antiderivative and de�nite integral: integrate int Int

The int and integrate commands compute a primitive or a de�nite integral. A di�erence between
the two commands is that if you input quest() just after the evaluation of integrate, the answer is
written with the

∫
symbol.

Int is the inert form of integrate; namely, it evaluates to integrate for later evaluation.

To �nd a primitive (an antiderivative):

• int (or integrate) takes one mandatory argument and one optional argument:

� expr, an expression.

� Optionally, x, the name of a variable (by default the value is x, so if the variable is x the
second argument is unnecessary).

• int(expr 〈, x〉) (or integrate(expr 〈, x〉)) returns a primitive of expr with respect to x.

Examples.

• Input:

integrate(x�2)

Output:
x3

3

• Input:

integrate(t�2,t)

Output:
t3

3

To evaluate a de�nite integral:

• int (or integrate) takes four arguments:

� expr, an expression.

� x, the variable.

� a and b, the bounds of the de�nite integral.

• int(expr,x, a, b) (or integrate(expr,x, a, b)) returns the exact value of the de�nite integral if the
computation was successful or an unevaluated integral otherwise.

Examples.

• Input:

integrate(x�2,x,1,2)

Output:
7

3
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• Input:

integrate(1/(sin(x)+2),x,0,2*pi)

Output:
2

3
π
√

3

Int is the inert form of integrate, it prevents evaluation, for example to avoid a symbolic compu-
tation that might not be successful if you just want a numeric evaluation.

Example.

Input:

evalf(Int(exp(x�2),x,0,1))

or:

evalf(int(exp(x�2),x,0,1))

Output:
1.46265174591

Exercises.

1. Let

f(x) =
x

x2 − 1
+ ln(

x+ 1

x− 1
)

Find a primitive of f .
Input:

int(x/(x�2-1)+ln((x+1)/(x-1)))

Output:

x ln

(
x+ 1

x− 1

)
+

2

2
ln
∣∣x2 − 1

∣∣+
ln
∣∣x2 − 1

∣∣
2

Alternatively, de�ne the function f,
Input:

f(x):=x/(x�2-1)+ln((x+1)/(x-1))

then:

int(f(x))

The output, of course, will be the same.

Warning.
For Xcas, log is the natural logarithm (like ln); log10 is the base-10 logarithm.

2. Compute: ∫
2

x6 + 2 · x4 + x2
dx

Input:

int(2/(x�6+2*x�4+x�2))
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Output:

2

(
−3x2 − 2

2 (x3 + x)
− 3

2
arctanx

)
3. Compute: ∫

1

sin(x) + sin(2 · x)
dx

Input:

integrate(1/(sin(x)+sin(2*x )))

Output:

2

 ln
(
1−cosx
1+cosx

)
12

−
ln
∣∣∣1−cosx1+cosx − 3

∣∣∣
3


5.20.2 Primitive and de�nite integral: risch

The Risch algorithm is a powerful algorithm for �nding an elementary primitive of an elementary
function or concluding that one doesn't exist. The risch command �nds primitives and can use them
to evaluate de�nite integrals.

To �nd a primitive:

• risch takes one mandatory argument and one optional argument:

� expr, an expression.

� Optionally x, the name of a variable (by default the variable is x).

• risch(expr 〈, x〉) returns a primitive of expr with respect to x.

Examples.

• Input:

risch(x�2)

Output:
x3

3

• Input:

risch(t�2,t)

Output:
t3

3

• Input:

risch(exp(-x�2))

Output: ∫
e−x

2
dx

meaning that exp(−x2) has no primitive expressed with the usual functions.
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To evaluate a de�nite integral:

• risch takes four arguments:

� expr, an expression expr.

� x, the variable.

� a and b, the bounds of the de�nite integral.

• int(expr , x, a, b) returns the exact value of the de�nite integral if the computation was successful
or an unevaluated integral otherwise.

Example.

Input:

risch(x�2,x,0,1)

Output:
1

3

5.20.3 Discrete summation: sum

The sum command can evaluate sums, series, and �nd discrete antiderivatives. A discrete antiderivative
of a sum

∑
n f(n) is an expression G such that G|x=n+1−G|x=n = f(n), which means that

∑N
n=M f(n) =

G|x=N+1 −G|M .

To evaluate a sum or series:

• sum takes four arguments:

� expr, an expression.

� k, the name of the variable.

� n0 and n1, integers (the bounds of the sum).

• sum(expr,k, n0, n1) returns the sum
∑n1

k=n0
expr.

Examples.

• Input:

sum(1,k,-2,n)

Output:

n+ 1 + 2

• Input:

normal(sum(2*k-1,k,1,n))

Output:

n2

• Input:

sum(1/(n�2),n,1,10)
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Output:
1968329

1270080

• Input:

sum(1/(n�2),n,1,+(infinity))

Output:
1

6
π2

• Input:

sum(1/(n�3-n),n,2,10)

Output:
27

110

• Input:

sum(1/(n�3-n),n,2,+(infinity))

Output:
1

4
This result comes from the decomposition of 1/(n�3-n) (see Section 5.32.9 p.361).
Input:

partfrac(1/(n�3-n))

Output:

− 1

n
+

1

2 (n− 1)
+

1

2 (n+ 1)

Hence:
N∑
n=2

− 1

n
= −

N−1∑
n=1

1

n+ 1
= −1

2
−
N−2∑
n=2

1

n+ 1
− 1

N

1

2

N∑
n=2

1

n− 1
=

1

2
(
N−2∑
n=0

1

n+ 1
) =

1

2
(1 +

1

2
+
N−2∑
n=2

1

n+ 1
)

1

2

N∑
n=2

1

n+ 1
=

1

2
(

N−2∑
n=2

1

n+ 1
+

1

N
+

1

N + 1
)

After simpli�cation by
∑N−2

n=2 , it remains:

−1

2
+

1

2
(1 +

1

2
)− 1

N
+

1

2
(

1

N
+

1

N + 1
) =

1

4
− 1

2N(N + 1)
Therefore:

� for N = 10 the sum is equal to: 1/4− 1/220 = 27/110

� for N = +∞ the sum is equal to: 1/4 because 1
2N(N+1) approaches zero when N approaches

in�nity.

To �nd a discrete antiderivative:

• sum takes two arguments:

� expr, an expression.

� k, the name of the variable.

• sum(expr,x) returns a discrete antiderivative.



244 CHAPTER 5. THE CAS FUNCTIONS

Example.

Input:

sum(1/(x*(x+1)),x)

Output:

−1

x

5.20.4 Riemann sum: sum_riemann

Given a function f on [0, 1], the Riemann sum corresponding to dividing the interval into n equal parts
and using the right endpoints is

n∑
k=1

f(
x

n
)
1

n
.

The sum_riemann command determines if a sum is such a Riemann sum, and if it is, evaluates the
integral.

• sum_riemann takes two arguments:

� expr, an expression depending on two variables.

� [n,k], the list of those two variables.

• sum_riemann(expr,[n,k]) returns

lim
n→∞

n∑
k=1

expr

(which, viewing the sum as a Riemann sum of a continuous function on [0, 1], is the de�nite
integral) or returns "it is probably not a Riemann sum" when the no result is found.

Exercises.

1. Suppose Sn =

n∑
k=1

k2

n3
.

Compute lim
n→+∞

Sn.

Input:

sum_riemann(k�2/n�3,[n,k])

Output:
1

3

2. Suppose Sn =
n∑
k=1

k3

n4
.

Compute lim
n→+∞

Sn.

Input:

sum_riemann(k�3/n�4,[n,k])

Output:
1

4
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3. Compute lim
n→+∞

(
1

n+ 1
+

1

n+ 2
+ . . .+

1

n+ n
).

Input:

sum_riemann(1/(n+k),[n,k])

Output:
ln (2)

4. Suppose Sn =

n∑
k=1

32n3

16n4 − k4
.

Compute lim
n→+∞

Sn.

Input:

sum_riemann(32*n�3/(16*n�4-k�4),[n,k])

Output:

2 arctan

(
1

2

)
+ ln (3)

5.20.5 Integration by parts

Recall the integration by parts formula:∫
u(x)v′(x)dx = u(x)v(x)−

∫
v(x)u′(x)dx.

If you want to integrate a function f(x) by parts, you need to specify how to write f(x) as u(x)v′(x),
which you can do by either specifying u(x) or v(x). The result will be in the form F (x) +

∫
g(x)dx,

where F (x) = u(x)v(x) and g(x) = −v(x)u′(x).
In some cases, to �nish an integral you need to integrate by parts more than once. After one

integrating by parts once and getting F (x) +
∫
g(x)dx, you may have to integrate

∫
g(x)dx by parts

and add F (x) to the result.
Xcas has two commands for integrating by parts: ibpdv (where you specify v(x)) and ibpu (where

you specify u(x)), both of which return the result as a list [F (x), g(x)]. Both of these commands allow
you to keep track of the function F (x) you may need to add to the result of a subsequent integration
by parts.

ibpdv

The ibpdv command is used to search the primitive of an expression written as u(x)v′(x) by specifying
v(x).

• ibpdv takes two arguments:

� uvprime, an expression which you can think of as u(x)v′(x), or
[Fexpr,uvprime], a list of two expressions, where again you can think of uvprime as u(x)v′(x),
and Fexpr represents the function F (x) that you can add to the result of integrating by parts.

� vexpr, an expression you can think of as v(x). If vexpr is 0, then instead of integrating by
parts, the expression uvprime is integrated as a whole (this can be useful for �nishing a
multi-step integration by parts problem).

• ibpdv(uvprime,vexpr)) (or ibpdv([Fexpr,uvprime],vexpr))) returns:

� If vexpr is not 0:
[u(x)v(x),−v(x)u′(x)] (or [F (x) + u(x)v(x),−v(x)u′(x)] if the �rst argument is a list).
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� If vexpr is 0:
G(x) (or F (x) +G(x), if the �rst argument is a list), where G(x) is a primitive of uvprime.

Hence, ibpdv returns the terms computed in an integration by parts, with the possibility of doing several
ibpdvs successively.
When the answer of ibpdv(u(x)*v'(x),v(x)) is computed, to obtain a primitive of u(x)v′(x), it
remains to compute the integral of the second term of this answer and then to sum this integral with
the �rst term of this answer: to do this, just use ibpdv command with the answer as �rst argument and
a new v(x) (or 0 to terminate the integration) as second argument.

Example.

Input:

ibpdv(ln(x),x)

Output:
[x lnx,−1]

then:

ibpdv([x*ln(x),-1],0)

or:

ibpdv(ans(),0)

Output:
−x+ x lnx

Remark.
When the �rst argument of ibpdv is a list of two elements, ibpdv works only on the last element of this
list and adds the integrated term to the �rst element of this list. (therefore it is possible to do several
ibpdvs successively).

Example.

To evaluate
∫

(ln(x))2dx:
Input:

ibpdv((ln(x))�2,x)

Output: [
x ln2 x,−2 lnx

]
It remains to integrate -(2*ln(x)):
Input:

ibpdv([x*(ln(x))�2,-(2*log(x))],x)

or:

ibpdv(ans(),x)

Output: [
x ln2 x− 2x lnx, 2

]
And now it remains to integrate 2:
Input:
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ibpdv([x*(ln(x))�2+x*(-(2*log(x))),2],0)

or:

ibpdv(ans(),0)

Output:
x ln2 x− 2x lnx+ 2x

ibpu

The ibpu command is used to search the primitive of an expression written as u(x)v′(x) by specifying
u(x).

• ibpu takes two arguments:

� uvprime, an expression which you can think of as u(x)v′(x), or
[Fexpr,uvprime], a list of two expressions, where again you can think of uvprime as u(x)v′(x),
and Fexpr represents the function F (x) that you can add to the result of integrating by parts.

� uexpr, an expression you can think of as u(x). If uexpr is 0, then instead of integrating
by parts, the expression uvprime is integrated as a whole (this can be useful for �nishing a
multi-step integration by parts problem).

• ibpu(uvprime,uexpr) (or ibpu([Fexpr,uvprime],uexpr)) returns:

� If uexpr is not 0:
[u(x)v(x),−v(x)u′(x)] (or [F (x) + u(x)v(x),−v(x)u′(x)] if the �rst argument is a list).

� If uexpr is 0:
G(x) (or F (x) +G(x), if the �rst argument is a list), where G(x) is a primitive of uvprime.

Hence, ibpu returns the terms computed in an integration by parts, with the possibility of doing several
ibpus successively.
When the answer of ibpu(u(x)*v'(x),u(x)) is computed, to obtain a primitive of u(x)v′(x), it remains
to compute the integral of the second term of this answer and then to sum this integral with the �rst
term of this answer: to do this, just use the ibpu command with the answer as �rst argument and a
new u(x) (or 0 to terminate the integration) as second argument.

Example.

Input:

ibpu(ln(x),ln(x))

Output:
[x lnx,−1]

then:

ibpu([x*ln(x),-1],0)

or:

ibpu(ans(),0)

Output:
−x+ x lnx

Remark.
When the �rst argument of ibpu is a list of two elements, ibpu works only on the last element of this
list and adds the integrated term to the �rst element of this list. Therefore it is possible to do several
ibpus successively, similarly to how you can do several ibpdvs successively.
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Example.

To evaluate
∫

(ln(x))2dx:
Input:

ibpu((ln(x))�2,(ln(x))�2)

Output: [
x ln2 x,−2 lnx

]
It remains to integrate -(2*ln(x)):
Input:

ibpu([x*(ln(x))�2,-(2*ln(x))],ln(x))

or:

ibpu(ans(),ln(x))

Output: [
x ln2 x− 2x lnx, 2

]
Finally, it remains to integrate 2: Input:

ibpu([x*(ln(x))�2+x*(-(2*ln(x))),2],0)

or:

ibpu(ans(),0)

Output:
x ln2 x− 2x lnx+ 2x

5.20.6 Change of variables: subst

See the subst command in Section 5.12.18 p.183.

5.20.7 Integrals and limits

The limit command (see Section 5.18 p.226) can compute limits involving integrals.subsubsection*Examples.

• Find the limit, as a approaches +∞, of ∫ a

2

1

x2
dx

Input (if a is assigned, �rst input purge(a)):

limit(integrate(1/(x�2),x,2,a),a,+(infinity))

Output:
1

2

Since
∫ a
2 1/x2dx = 1/2− 1/a, the integral

∫ a
2 1/x2dx tends to 1/2 as a goes to in�nity.

• Find the limit, as a approaches +∞, of∫ a

2

(
x

x2 − 1
+ ln

(
x+ 1

x− 1

))
dx

Input (if a is assigned, �rst input purge(a):
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limit(integrate(x/(x�2-1)+log((x+1)/(x-1)),x,2,a),a,+infinity)

Output:
+∞

Since
∫ a
2 x/(x

2 − 1)dx = (1/2)(ln(a2 − 1) − ln(3)) and
∫ a
2 ln((x + 1)/(x − 1))dx = ln(a + 1) +

ln(a− 1) + a ln((a+ 1)/(a− 1))− 3 ln(3), the integral
∫ a
2 x/(x

2 − 1) + ln((x+ 1)/(x− 1))dx goes
to in�nity as a goes to in�nity.

• For an example when the integral can't be simply evaluated, �nd the limit, as a approaches 0, of∫ 3a

a

cos(x)

x
dx

Input:

limit(int(cos(x)/x,x,a,3a),a,0)

Output:
ln (3)

To �nd this limit yourself, you can note that 1−x2/2 ≤ cos(x) ≤ 1, and so 1/x−x/2 ≤ cos(x)/x ≤
1/x, and so

∫ 3a
a 1/x − x/2dx ≤

∫ 3a
a cos(x)/xdx ≤

∫ 3a
a 1/xdx, which gives you ln(3) − 2a2 ≤∫ 3a

a cos(x)/xdx ≤ ln(3), and so as a approaches 0,
∫ 3a
a cos(x)/xdx will approach ln(3).

5.21 Multivariate calculus

5.21.1 Gradient: derive deriver diff grad

The derive command �nds partial derivatives of a multivariable expression.
diff and grad can be used synonymously for derive here.

• derive takes two arguments:

� expr, an expression involving n real variables.

� [x1, . . . , xn], a vector of the variable names.

• derive(expr,[x1, . . . , xn]) returns the gradient of expr ; namely, the vector of partial derivatives
of expr with respect to x1, . . . , xn.
For example, in dimension n = 3, with variables [x, y, z],

−−→
grad(F ) = [

∂F

∂x
,
∂F

∂y
,
∂F

∂z
]

Example.

Find the gradient of F (x, y, z) = 2x2y − xz3.
Input:

derive(2*x�2*y-x*z�3,[x,y,z])

or:

diff(2*x�2*y-x*z�3,[x,y,z])

or:

grad(2*x�2*y-x*z�3,[x,y,z])
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Output: [
2 · 2xy − z3, 2x2,−3xz2

]
Output after simpli�cation with normal(ans()):[

4xy − z3, 2x2,−3xz2
]

To �nd the critical points of F (x, y, z) = 2x2y − xz3:
Input:

solve(derive(2*x�2*y-x*z�3,[x,y,z]),[x,y,z])

Output:
[[0, y, 0]]

5.21.2 Laplacian: laplacian

Recall, the Laplacian of a function F of n variables x1, . . . , xn is

∇2(F ) =
∂2F

∂x21
+
∂2F

∂x22
+ · · ·+ ∂2F

∂x2n

Also, the n×n discrete Laplacian matrix (also called the second di�erence matrix) is the n×n tridiagonal
matrix with 2s on the main diagonal, −1s just above and below the main diagonal;

2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

... 0
0 · · · −1 2 −1
0 · · · 0 −1 2


If L is the n × n discrete Laplacian matrix and Y is an n × 1 column vector whose kth coordinate is
yi = y(a+ k∆x) for a twice di�erential function y, then the kth coordinate of LY will be −y(a+ (k −
1)∆x)+2y(a+k∆x)−y(a+(k−1)∆x) (implicitly assuming that y(a) = y(a+(N +1)∆x) = 0), which
approximates y′′(a + k∆x). So LY is approximately −∆x2Y ′′, where Y ′′ is the n × 1 column vector
whose kth coordinate is y′′(a+ kδx).

The laplacian command can compute the Laplacian operator or the discrete Laplacian matrix.
To compute the Laplacian operator:

• laplacian takes two arguments:

� expr, an expression involving several variables.

� vars, a list of the variable names.

• laplacian(expr,vars) returns the Laplacian of the expression.

Example.

Find the Laplacian of F (x, y, z) = 2x2y − xz3.
Input:

laplacian(2*x�2*y-x*z�3,[x,y,z])

Output:
−6xz + 4y

To compute the discrete Laplacian matrix:

• laplacian takes one argument:
n, an integer or �oating-point integer.

• laplacian(n) returns the n× n discrete Laplacian matrix.
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Examples.

• Input:

laplacian(3)

Output:  2 −1 0
−1 2 −1
0 −1 2


• Input:

laplacian(2.0)

Output: [
2.0 −1.0
−1.0 2.0

]
5.21.3 Hessian matrix: hessian

Recall, the Hessian of a function F of n variables x1, . . . , xn is the matrix of second order derivatives:
∂2F
∂x21

· · · ∂2F
∂x1∂xn

...
...

...
∂2F

∂xn∂x1
· · · ∂2F

∂x2n


The hessian command computes the Hessian of a function.

• hessian takes two arguments:

� expr, an expression involving several variables.

� vars, a list of the variable names.

• hessian(expr,vars) returns the Hessian of the expression.

Examples.

• Find the Hessian matrix of F (x, y, z) = 2x2y − xz3.
Input:

hessian(2*x�2*y-x*z�3 , [x,y,z])

Output:  4y 4x −3z2

2 · 2x 0 0
−3z2 0 −2 · 3xz


• To get the Hessian matrix at the critical points:
Input:

solve(derive(2*x�2*y-x*z�3,[x,y,z]),[x,y,z])

Output (the critical points):
[[0, y, 0]]

Input (to evaluate the Hessian at these points):
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subst([[4*y,4*x,-(3*z�2)],[2*2*x,0,0], [-(3*z�2),0,6*x*z]],[x,y,z],[0,y,0])

Output:  4y 0 0
0 0 0
0 0 0


5.21.4 Divergence: divergence

Recall that the divergence of a vector �eld F = [F1, . . . , Fn] with variables [x1, . . . , xn] is

÷F =
∂F1

x1
+ · · ·+ ∂Fn

xn

The divergence command computes the divergence of a vector �eld.

• divergence takes two arguments:

� F , a vector �eld given as a list [F1, . . . , Fn] of expressions.

� vars, a list of the variable names.

• divergence(F ,vars) returns the divergence of the vector �eld F .

Example.

Input:

divergence([x*z,-y�2,2*x�y],[x,y,z])

Output:

−2y + z

5.21.5 Rotational: curl

The curl of a three-dimensional vector �eld F = [F1, F2, F3] with variables [x1, x2, x3] is

curlF = [
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2
]

The curl command computes the curl of a three dimensional vector �eld (note that it must be three
dimensional).

• curl takes two arguments:

� F , a three-dimensional vector �eld, given as a list of three expressions depending on three
variables.

� vars, a list of the three variable names.

• curl(F,vars) returns the curl of the vector �eld.

Example.

Input:

curl([x*z,-y�2,2*x�y],[x,y,z])

Output: [
2 lnx · xy, x− 2yxy−1, 0

]
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5.21.6 Potential: potential

Recall that a vector �eld F is conservative if there is a scalar-valued function f such that gradf = F.
In this case, f is called a potential of F, and is only determined up to a constant.

The potential command computes the potential of a vector �eld, or signals an error if the vector
�eld is not conservative.

• potential takes two arguments:

� F, a vector �eld given as a list of n expressions involving n variables.

� vars, a list of the variable names.

• potential(F,vars) returns a potential function for F if F is conservative, and raises an error
otherwise.

Note that potential is the reciprocal function of derive.

Example.

Input:

potential([2*x*y+3,x�2-4*z,-4*y],[x,y,z])

Output:
x2y + 3x− 4yz

Note that in R3, a vector �eld F is conservative if and only if its curl is zero; i.e., if curlF = 0. In
time-independent electro-magnetism, F = E is the electric �eld and f is the electric potential.

5.21.7 Conservative �ux �eld: vpotential

A vector �eld F in R3 is a conservative �ux �eld, or a solenoidal �eld, if there is a vector �eld G such
that curlG = F. Given a conservative �ux vector �eld F, the general solution of curlG = F is the sum
of a particular solution and the gradient of an arbitrary functions.

The vpotential command �nds a particular vector �eld G such that curlG = F if F is a conser-
vative �ux �eld, and signals an error otherwise. Speci�cally, vpotential returns the solution G with
zero as the �rst component.

• vpotential takes two arguments:

� F , a vector �eld in R3, given as a list of three expressions depending on three variables.

� vars, a list of the variable names.

• vpotential(F vars) returns a solution of curlG = F whose �rst coordinate is zero if F is a
conservative vector �eld, and signals an error otherwise.

vpotential is the reciprocal function of curl.

Example.

Input:

vpotential([2*x*y+3,x�2-4*z,-2*y*z],[x,y,z])

Output: [
0,−2xyz,−x

3

3
+ 4xz + 3y

]
In R3, a vector �eld F is a curl if and only if its divergence is zero. In time-independent electro-

magnetism, F = B is the magnetic �eld and G = A is the potential vector.



254 CHAPTER 5. THE CAS FUNCTIONS

5.21.8 Determining where a function is convex: convex

The convex command determines where a function is convex.

• convex takes two mandatory arguments and one optional argument:

� expr, an expression which is at least twice di�erentiable, which speci�es a function f .

� vars, the variable or list of variables in the expression. Some variables may depend on a
common independent parameter, say t, when entered as e.g. x(t) instead of x. The �rst
derivatives of such variables, when encountered in f , are treated as independent parameters
of the function.

� Optionally, simplify, which enables advanced simpli�cation of the intermediate symbolic
expressions and the �nal result.

• convex(expr,vars 〈,simplify=bool〉) returns:

� true, if the function is convex on the entire domain.

� false, if the function is nowhere convex.

� otherwise, the list of inequalities specifying the domain on which the function is convex.

• The convex command operates by computing the Hessian Hf of f (see Section 5.21.3 p.251) and
its LDL factorization. If the resulting block-diagonal matrix is positive semide�nite, then Hf is
positive semide�nite and f is hence convex.

• Advanced simpli�cation can be applied when generating convexity conditions by passing the
simplify argument. By default, only basic simpli�cation is applied by using the ratnormal

command.

• The function f concave if and only if the function g = −f is convex.

Examples.

• Input:

convex(3*exp(x)+5x�4-ln(x),x)

Output:
true

• Input:

convex(x�2+y�2+3z�2-x*y+2x*z+y*z,[x,y,z])

Output:
true

• Input:

convex(x1�3+2x1�2+2*x1*x2+x2�2/2-8x1-2x2-8,[x1,x2],simplify)

Output:
[x1 ≥ 0]

• In the example below, we �nd the values of a ∈ R for which the function

f(x, y, z) = x2 + x z + a y z + z2

is convex.
Input:
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convex(x�2+x*z+a*y*z+z�2,[x,y,z])

Output:
false

Note that the function is convex for a = 0. However, the convex command does not support
equalities as convexity constraints.

• For the next example, �nd all values a ∈ R for which the function

f(x, y, z) = x2 + 2 y2 + a z2 − 2x y + 2x z − 6 y z

is convex on R3.
Input:

convex(x�2+2y�2+a*z�2-2x*y+2x*z-6y*z,[x,y,z],simplify)

Output:
[a ≥ 5]

• Find the set S ⊂ R2 on which the function f : R2 → R de�ned by

f(x1, x2) = exp(x1) + exp(x2) + x1 x2

is convex.
Input:

condition:=convex(exp(x1)+exp(x2)+x1*x2,[x1,x2],simplify)

Output:
[ex1ex2 − 1 ≥ 0]

Input:

lin(condition)

(See Section 5.24.4 p.279.)
Output: [

ex1+x2 − 1 ≥ 0
]

From here you conclude that f is convex when x1 + x2 ≥ 0. The set S is therefore the half-space
de�ned by this inequality.

The algorithm respects the assumptions that may be set upon variables. Therefore, the convexity
of a given function can be checked on a particular domain.

Examples.

• Input:

assume(x1>0),assume(x2>0):;

convex(exp(x1)+exp(x2)+x1*x2,[x1,x2])

Output:
true

• Input:

assume(x>=0 and x<=pi/4):;

convex(exp(y)*sec(x)�3-z,[x,y,z])

Output:
true
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5.22 Calculus of variations

5.22.1 The Brachistochrone Problem

The Brachistochrone problem is perhaps the original problem in the calculus of variations. The problem
is to �nd the curve from two points in a plane such that an object falling under its own weight will get
from the �rst point to the second in the shortest time.

If the points are (0, y0) and (x1, 0), with y0 > 0 and x1 > 0, this becomes the problem of minimizing
the objective functional

T (y) =

∫ x1

0
L(t, y(x), y′(x)) dx

where the function L is de�ned by

L(t, y(x), y′(x)) =

√
1 + y′(x)2

2 g y(x)

for y : [0, x1]→ R such that y(0) = y0 and y(x1) = 0 (the constant g is the gravitational acceleration).

More generally, one type of problem in the Calculus of variations is to minimize (or maximize) a
functional

F (y) =

∫ b

a
f(x, y, y′) dx

over all functions y ∈ C2[a, b] with boundary conditions y(a) = A and y(b) = B, where A,B ∈ R. The
function f is called the Lagrangian.

5.22.2 Euler-Lagrange equation(s): euler_lagrange

The Euler-Lagrange equations for a Lagrangian function f(x, y, y′) are di�erential equations which must
be satis�ed by extrema of the functional F (y).

The euler_lagrange command �nds the Euler-Lagrange equations for a Lagrangian f . The function
f can be given in one of two ways. For the �rst way:

• euler_lagrange takes one mandatory argument and two optional arguments:

� expr, an expression involving an independent variable, a dependent variable, and the depen-
dent variable prime.

� Optionally, indvar, the independent variable (by default x).

� Optionally, depvar, the dependent variable (by default y).
If a function y ∈ Rn is required (by default n = 1), you can enter y = (y1, y2, . . . , yn) as a
vector [y1, y2, . . . , yn]. In that case, y′ = (y′1, y

′
2, . . . , y

′
n).

An alternate way to specify the independent and dependent variables is by replacing both optional
arguments by either, for example, y(x) or [y1(x), y2(x), . . . , yn(x)].

• euler_lagrange(expr 〈,indvar,depvar 〉) returns the system of di�erential Euler-Lagrange equa-
tions.
If n = 1, a single equation is returned:

∂f

∂y
=

d

dx

∂f

∂y′
. (5.1)

In general, n equations are returned:

∂f

∂yk
=

d

dx

∂f

∂y′k
, k = 1, 2, . . . , n.
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The degrees of these di�erential equations are kept as low as possible. If, for example, ∂f
∂y = 0, the

equation ∂f
∂y′ = K is returned, where K ∈ R is an arbitrary constant. Similarly, using the Hamiltonian

H(x, y, y′) = y′
∂

∂y′
f(x, y, y′)− f(x, y, y′)

the Euler-Lagrange equation is simpli�ed in the case n = 1 and ∂f
∂t = 0 to:

H(x, y, y′) = K, (5.2)

since it can be shown that d
dx H(y, y′, x) = 0. Therefore the Euler-Lagrange equations, which are

generally of order two in y, are returned in a simpler form of order one in the aforementioned cases. If
n = 1 and ∂f

∂x = 0, then both equations (5.1) and (5.2) are returned, each of them being su�cient to
determine y (one of the returned equations is usually simpler than the other).

Example.

Input:

euler_lagrange(sqrt(x'(t)�2+y'(t)�2),[x(t),y(t)])

Output  d
dtx (t)√(

d
dtx (t)

)2
+
(
d
dty (t)

)2 = K0,
d
dty (t)√(

d
dtx (t)

)2
+
(
d
dty (t)

)2 = K1


where K0,K1 ∈ R are arbitrary constants (these symbols are generated automatically).

It can be proven that if f is convex (as a function of three independent variables, see Section 5.21.8
p.254), then a solution y to the Euler-Lagrange equations minimizes the functional F .

Example.

Minimize the functional F for 0 < a < b and

f(x, y, y′) = x2 y′(x)2 + y(x)2.

Input:

eq:=euler_lagrange(x�2*diff(y(x),x)�2 + y�2)

Output:

d2

dx2
y (x) =

−2 d
dxy (x)x+ y (x)

x2

This can be solved by assuming y(x) = xr for some r ∈ R.
Input:

solve(subs(eq,y(x)=x�r),r)

Output: [
−
√

5 + 1

2
,−−

√
5 + 1

2

]
The same pair of solutions is also returned by the kovacicsols command (see Section 5.57.3 p.566):
Input:

assume(x>=0):;

kovacicsols(y�=(y-2x*y')/x�2,x,y)
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Output: [√
x
√
5−1,

√
x−
√
5−1
]

You can conclude that y = C1 x
−
√
5+1
2 + C2 x

√
5+1
2 . The values of C1 and C2 are determined from the

boundary conditions. Finally, to prove that f is convex:
Input:

convex(x�2*diff(y(x),x)�2 + y�2,y(x))

Output:
true

Therefore, y minimizes F on [a, b].

Example.

Find the function y in {
y ∈ C1

[
1

2
, 1

]
: y

(
1

2

)
= −
√

3

2
, y(1) = 0

}
which minimizes the functional

F (y) =

∫ 1

1/2

√
1 + y′(x)2

x
dx.

To obtain the corresponding Euler-Lagrange equation:
Input:

eq := euler_lagrange(sqrt(1+diff(y(x),x)�2)/x)

Output:
d
dxy (x)

x

√(
d
dxy (x)

)2
+ 1

= K2

Input:

sol:=dsolve(eq)

Output: [
−
√
−K2

3x
2 + 1

K3
+ c0

]
The sought solution is the function of the above form which satis�es the boundary conditions.
Input:

y0:=sol[0]:;

c:=[K_3,c_0]:;

v:=solve([subs(y0,x=1/2)=-sqrt(3)/2,subs(y0,x=1)=0],c)

Output: [
1 0

]
Input:

y0:=normal(subs(y0,c,v[0])

Output:

−
√
−x2 + 1

To prove that y0(x) = −
√

1− x2 is indeed a minimizer for F , you need to show that the integrand in
F (y) is convex.
Input:
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convex(sqrt(1+y'�2)/x,y(x))

Output:
[x ≥ 0]

You can similarly �nd the minimizer for

F (y) =

∫ π

0

(
2 sin(x) y(x) + y′(x)2

)
dx

where y ∈ C1[0, π] and y(0) = y(π) = 0.
Input:

eq:=euler_lagrange(2*sin(x)*y(x)+diff(y(x),x)�2)

Output:
d2

dx2
y (x) = sinx

Input:

dsolve(eq and y(0)=0 and y(pi)=0,x,y)

Output:
− sinx

The above function is the sought minimizer as the integrand 2 sin(x) y(x) + y′(x)2 is convex:
Input:

convex(2*sin(x)*y(x)+diff(y(x),x)�2,y(x))

Output:
true

Example.

Minimize the functional F (y) =
∫ 1
0 (y′(x)4 − 4 y(x)) dx on C1[0, 1] with boundary conditions y(0) = 1

and y(1) = 2.
First, solve the associated Euler-Lagrange equation:

Input:

eq:=euler_lagrange(y'�4-4y,x,y)

Output: [
3

(
d

dx
y (x)

)4

+ 4y (x) = K6,
d2

dx2
y (x) = − 1

3
(

d
dxy (x)

)2
]

Input:

dsolve(eq[1] and y(0)=1 and y(1)=2,x,y)

Output: [
−3

4
(−x+ 1.52832425067)

4
3 + 2.32032831141

]
[-3*(-x+1.52832425067)�(4/3)/4+2.32032831141]

Next, check if the integrand in F (y) is convex:
Input:

convex(y'�4-4y,[x,y])

Output:
true

Hence the minimizer is

y0(x) = −3

4
(1.52832425067− x)4/3 + 2.32032831141, 0 ≤ x ≤ 1.
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5.22.3 Solution of the Brachistochrone Problem

To solve the brachistochrone problem (see Section 5.22.1 p.256), you can �rst �nd the Euler-Lagrange
equations for the Lagrangian

L(x, y(x), y′(x)) =

√
1 + y′(x)2

2 g y(x)

You can simplify this somewhat by assuming that you are using units where 2g = 1.
Input:

assume(y>=0):;

euler_lagrange(sqrt((1+y'�2)/y),x,y)

Output: − 1√((
d
dxy (x)

)2
+ 1
)
y (x)

= K2,
d2

dx2
y (x) =

−
(

d
dxy (x)

)2 − 1

2y (x)


It is easier to solve the �rst equation for y, since it is �rst-order and separable.

The �rst equation can be rewritten as

dy

dx
= −

√
C

x
− 1

for appropriate C, which can be solved by separation of variables, getting you the parametric equations

x =
1

2
C (2θ − sin(2θ))

y =
1

2
C (1− cos(2θ))

which parameterize a cycloid. This implicitly de�nes a function y = y(x) as the only stationary function
for L. The problem is to prove that it minimizes T , which would be easy if the integrand L was convex.
However, it's not the case here:
Input:

assume(y>=0):;

convex(sqrt((1+y'�2)/y),y(x))

Output: [
−
(

d

dx
y (x)

)2

+ 3 ≥ 0

]
This is equivalent to |y′(t)| ≤

√
3, which is certainly not satis�ed by the cycloid y near the point x = 0.

Using the substitution y(x) = z(x)2/2, you get y′(x) = z′(x) z(x) and

L(x, y(x), y′(x)) = P (x, z(x), z′(x)) =
√

2(z(x)−2 + z′(x)2).

The function P is convex:
Input:

assume(z>=0):;

convex(sqrt(2*(z�(-2)+z'�2)),z(x))

Output:
true

Hence the function z(t) =
√

2 y(t), stationary for P (which is veri�ed directly), minimizes the objective
functional

U(z) =

∫ x1

0
P (x, z(x), z′(x)) dx.

From here and U(z) = T (y) it easily follows that y minimizes T and is therefore the brachistochrone.
(For details see John L. Troutman, Variational Calculus and Optimal Control (second edition), page
257.)
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5.22.4 Jacobi equation: jacobi_equation

To determine whether a solution y0 to the Euler-Lagrange equations is an extrema, checking the con-
vexity of the Lagrangian f doesn't always work. Another approach is to look at the Jacobi equation,
which is

− d

dt

(
fy′ y′(y0, y

′
0, t)h

′)+

(
fy y(y0, y

′
0, t)−

d

dt
fy y′(y0, y

′
0, t)

)
h = 0. (5.3)

for unknown function h. If the Jacobi equation has a solution such that h(a) = 0, h(c) = 0 for some
c ∈ (a, b] (the interval given in the variational problem) and h not identically zero on [a, c], then c is
called a conjugate to a. If a conjugate exists, then y0 does not minimize the functional F . But the
function y0 minimizes F if fy′ y′(y0, y

′
0, x) > 0 for all x ∈ [a, b] and there are no points conjugate to a in

(a, b].
The jacobi_equation command computes the Jacobi equation.

• jacobi_equation takes �ve or six arguments:

� f(y, y′, x), an expression involving an independent variable, a dependent variable, and the
dependent variable prime.

� depvar, the independent variable.

� indvar, the dependent variable. This argument and the previous one can be combined to a
single argument depvar(indvar), which case the call has �ve arguments.

� expression y0 representing a function in C1[a, b] which is stationary for the functional F (y) =∫ b
a f(y, y′, x) dx.

� h, a symbol for the unknown function in the Jacobi equation.

� a, a real number which is the lower bound for x.

• jacobi_equation(f(y, y′, x), x, y, y0, a) returns the Jacobi equation and possibly the solution.

If the Jacobi equation can be solved by dsolve (see Section 5.57.1 p.557), a sequence containing the
equation (5.3) and its solution is returned. Otherwise, if (5.3) cannot be solved immediately, only the
Jacobi equation is returned.

Example.

Input:

jacobi_equation(-1/2*y'(t)�2+y(t)�2/2,t,y,sin(t),h,0)

Output:

− d2

dt2
h (t)− h (t) = 0, c0 sin t

5.22.5 Finding conjugate points: conjugate_equation

The conjugate_equation computes conjugate points.

• conjugate_equation takes four arguments:

� y0, an expression which depends on an independent variable and two parameters. The ex-
pression y0 is assumed to represent a stationary function for the problem of minimizing some
functional F (y) =

∫ b
a f(x, y, y′) dx.

� [α, β], a list of parameters which y0 depends on.

� [A,B], a list of the values of parameters α and β, respectively.

� x, the independent variable.

� a, a real number equal to the lower or to the upper bound for x.
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• conjugate_equation(y0, [α, β], [A,B], x, a) returns the expression

∂y0(t)

∂α

∂y0(a)

∂β
− ∂y0(a)

∂α

∂y0(t)

∂β
, (5.4)

at α = A and β = B, which is zero if and only if t is conjugate to a.

To �nd any conjugate points, set the returned expression to zero and solve.

Example.

Find a minimum for the functional

F (y) =

∫ π
2

0

(
y′(x)2 − x y(x)− y(x)2

)
dx

on D = {y ∈ C1[0, π/2] : y(0) = y(π/2) = 0}.
The corresponding Euler-Lagrange equation is:

Input:

eq:=euler_lagrange(y'(x)�2-x*y(x)-y(x)�2,y(x))

Output:
d2

dx2
y (x) = −x

2
− y (x)

The general solution is:
Input:

y0:=dsolve(eq,x,y)

Output:

c0 cosx+ c1 sinx− x

2

The stationary function depends on two parameters c0 and c1 which are �xed by the boundary conditions:
Input:

c:=solve([subs(y0,x,0)=0,subs(y0,x,pi/2)=0],[c_0,c_1])

Output: [[
0,

1

4
π

]]
Input:

conjugate_equation(y0,[c_0,c_1],c[0],x,0)

Output:

sinx

The above expression obviously has no zeros in (0, π/2], hence there are no points conjugate to 0. Since
fy′ y′ = 2 > 0, where f(y, y′, x) is the integrand in F (y) (the strong Legendre condition), y0 minimizes
F on D. To obtain y0 explicitly:
Input:

subs(y0,[c_0,c_1],c[0])

Output:
1

4
π sinx− x

2
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5.22.6 An example: Finding the surface of revolution with minimal area

In this section, you will �nd the function

y0 ∈ D = {y ∈ C1[0, 1] : y(0) = 1, y(1) = 2/3}

for which the area of the corresponding surface of revolution is minimal. The result is not necessarily
intuitive.

The area of the surface of revolution is measured by the functional

F (y) = 2π

∫ 1

0
y(x)

√
1 + y′(x)2 dx.

First, set f(y, y′, x) = y(x)
√

1 + y′(x)2 and compute the associated Euler-Lagrange equation:
Input:

eq := euler_lagrange(y(x)*sqrt(1+diff(y(x),x)�2))

Output: − y (x)√(
d
dxy (x)

)2
+ 1

= K0,
d2

dx2
y (x) =

(
d
dxy (x)

)2
+ 1

y (x)


You can obtain the stationary function by �nding the general solution of the �rst equation.
Input:

sol:=collect(simplify(dsolve(eq[0],x,y)))

(See Section 5.27.16 p.309). Output:−K0,

K0

(
−
(

e
x−c1
K0

)2

− 1

)
2e

x−c1
K0


Obviously the constant solution −K0 is not in D, so set y0 to be the second element of the above list.
That function, which can be written as

y0(x) = −K0 cosh

(
x− c1
K0

)
,

is a catenary.
Input:

y0:=sol[1]:; p:=[K_0,c_1]:;

To �nd the values of K0 and c1 from the boundary conditions, �rst plot the curves y0(0) = 1 and
y0(1) = 2

3 for K0 ∈ [−1, 1] and c1 ∈ [−1, 2] to see where they intersect each other.
Input:

eq1:=subs(y0,x=0)=1:; eq2:=subs(y0,x=1)=2/3:;

implicitplot([eq1,eq2],K_0=-1..1,c_1=-1..2)

Output:
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Observe that there are exactly two catenaries satisfying the Euler-Lagrange necessary conditions and
the given boundary conditions: the �rst with K0 ≈ −0.5 and c1 ≈ 0.6 and the second with K0 ≈ −0.3
and c1 ≈ 0.5. You can obtain the values of these constants more precisely by using fsolve.
Input:

p1:=fsolve([eq1,eq2],p,[-0.5,0.6]); p2:=fsolve([eq1,eq2],p,[-0.3,0.5])

Output:

[−0.56237423894, 0.662588703113], [−0.30613431407, 0.567138261119]

You can check, for each catenary, whether the strong Legendre condition

fy′ y′(x, yk, y
′
k) > 0

holds for k = 1, 2.
Input:

y1:=subs(y0,p,p1):; y2:=subs(y0,p,p2):;

D2f:=diff(f,diff(y(x),x),2):;

solve([eval(subs(D2f,y=y1,y(x)=y1))<=0,x>=0,x<=1],x);

solve([eval(subs(D2f,y=y2,y(x)=y2))<=0,x>=0,x<=1],x)

Output:

[], []

You can conclude that the strong Legendre condition is satis�ed in both cases, so you can proceed
by attempting to �nd the points conjugate to 0 for each catenary. The function y0 depends on two
parameters, so you can use conjugate_equation to �nd these points easily.
Input:

fsolve(conjugate_equation(y0,p,p1,x,0)=0,x=0..1)

fsolve(conjugate_equation(y0,p,p2,x,0)=0,x=0..1)

Output:

[0.0], [0.0, 0.799514772606]

You can conclude that there are no points conjugate to 0 in (0, 1] for the catenary y1, so it minimizes
the functional F . However, for the other catenary there is a conjugate point in the relevant interval,
therefore y2 is not a minimizer.

You can verify the above conclusions by computing the surface area for catenaries y1 and y2 and
comparing them.
Input:

int(y1*sqrt(1+diff(y1,x)�2),x=0..1); int(y2*sqrt(1+diff(y2,x)�2),x=0..1)
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Output:
0.81396915825, 0.826468466845

You can see that the surface formed by rotating the curve y1 is indeed smaller than the area of the
surface formed by rotating the curve y2. Finally, you can visualize both surfaces for convenience.
Input:
(see Section 7.6 p.596 for information on plot3d)

plot3d([y1*cos(t),y1*sin(t),x],x=0..1,t=0..2*pi, display=yellow+filled)

Output:

Input:

plot3d([y2*cos(t),y2*sin(t),x],x=0..1,t=0..2*pi, display=yellow+filled)

Output:

5.23 Trigonometry

Xcas can evaluate the trigonometric functions in either radians or degrees (see Section 5.16.2 p.208). It
can also manipulate them algebraically.

5.23.1 Expanding a trigonometric expression: trigexpand

The trigexpand command expands sums, di�erences and products by an integer inside the trigonometric
functions.

• trigexpand takes one argument:
expr, an expression containing trigonometric functions.
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• trigexpand(expr) returns the expression with sums, di�erences and integer products inside the
trigonometric functions expanded.

Input:

trigexpand(cos(x+y))

Output:

cosx · cos y − sinx · sin y

5.23.2 Linearizing a trigonometric expression: tlin

The tlin command linearizes products and integer powers of the trigonometric functions (e.g. in terms
of sin(n ∗ x) and cos(n ∗ x)).

• tlin takes one argument:
expr, an expression containing trigonometric functions.

• tlin(expr) returns the expression with the trigonometric functions linearized.

Examples.

• Linearize cos(x) ∗ cos(y).
Input:

tlin(cos(x)*cos(y))

Output:
cos (x− y)

2
+

cos (x+ y)

2

• Linearize cos(x)3.
Input:

tlin(cos(x)�3)

Output:
3

4
cosx+

cos (3x)

4

• Linearize 4 cos(x)2 − 2.
Input:

tlin(4*cos(x)�2-2)

Output:

2 cos (2x)

5.23.3 Increasing the phase by π/2 in a trigonometric expression: shift_phase

The shift_phase command increases the phase of a trigonometric expression by π/2.

• shift_phase takes one argument:
expr, a trigonometric expression.

• shift_phase(expr) returns expr with the phase increased by π/2 (after automatic simpli�cation).
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Examples.

• Input:

shift_phase(x + sin(x))

Output:

x− cos

(
π + 2x

2

)
• Input:

shift_phase(x + cos(x))

Output:

x+ sin

(
π + 2x

2

)
• Input:

shift_phase(x + tan(x))

Output:

x− 1

tan
(
π+2x

2

)
Quoting the argument will prevent the automatic simpli�cation.

Example.

Input:

shift_phase('sin(x + pi/2)')

Output:

− cos

(
π + 2x+ 2π2

2

)
With an unquoted sine, you get:
Input:

shift_phase(sin(x + pi/2))

Output:

sin

(
π + 2x

2

)
since sin(x+pi/2) is evaluated (in this case simpli�ed) before shift_phase is called, and shift_phase(cos(x))
returns sin((pi+2*x)/2).

5.23.4 Putting together sine and cosine of the same angle: tcollect tCollect

The tcollect command linearizes trigonometric expressions (in terms of sin(n ∗ x) and cos(n ∗ x)) and
combines sines and cosines of the same angle.
tCollect is a synonym for tcollect.

• tcollect takes one argument:
expr, an expression containing trigonometric functions.

• tcollect(expr) returns expr after �rst linearizing it and then combining sines and cosines of the
same angle.
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Examples.

• Input:

tcollect(sin(x)+cos(x))

Output:
√

2 cos

(
x− 1

4
π

)
• Input:

tcollect(2*sin(x)*cos(x)+cos(2*x))

Output:
√

2 cos

(
2x− 1

4
π

)

5.23.5 Simplifying: simplify

The simplify command simpli�es expressions. As with all automatic simpli�cations, do not expect
miracles; you will have to use speci�c rewriting rules if it does not work.

• simplify takes one argument:
expr, an expression.

• simplify(expr) returns the simpli�ed version of expr.

Example.

Input:

simplify((sin(3*x)+sin(7*x))/sin(5*x))

Output:

2 cos (2x)

Warning.
simplify is more e�cient in radian mode (which you can turn on, if it isn't already, by checking radian
in the cas con�guration or inputting angle_radian:=1, see Section 2.5.3 p.55).

5.23.6 Simplifying trigonometric expressions: trigsimplify

The trigsimplify command simpli�es trigonometric expressions by combining simplify (see Sec-
tion 5.12.14 p.180), texpand (see Section 5.25.1 p.282), tlin (see Section 5.23.2 p.266), tcollect (see
Section 5.23.4 p.267), trigsin (see Section 5.23.23 p.275), trigcos (see Section 5.23.24 p.276) and
trigtan (see Section 5.23.25 p.276) commands in a certain order.

• trigsimplify takes one argument:
expr, an argument containing trigonometric functions.

• trigsimplify(expr) returns the simpli�ed form of expr.
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Examples.

• Input:

trigsimplify((sin(x+y)-sin(x-y))/(cos(x+y)+cos(x-y)))

Output:

tan y

• Input:

trigsimplify(1-1/4*sin(2a)�2-sin(b)�2-cos(a)�4)

Output:

sin2 a− sin2 b

5.23.7 Transforming arccos into arcsin: acos2asin

The acos2asin command transforms any acoss in an expression to asins, using the identity arccos(x) =
π/2− arcsin(x).

• acos2asin takes one argument:
expr, an expression containing inverse trigonometric functions.

• acos2asin(expr) returns expr with any acoss replaced by the appropriate asins.

Example.

Input:

acos2asin(acos(x)+asin(x))

Output (after simpli�cation):
π

2

5.23.8 Transforming arccos into arctan: acos2atan

The acos2atan command transforms any acoss in an expression to atans, using the identity

arccos(x) =
π

2
− arctan

(
x√

1− x2

)
• acos2atan takes one argument:
expr, an expression containing inverse trigonometric functions.

• acos2atan(expr) returns expr with any acoss replaced by the appropriate atans.

Example.

Input:

acos2atan(acos(x))

Output:
π

2
− arctan

(
x√

1− x2

)
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5.23.9 Transforming arcsin into arccos: asin2acos

The asin2acos command transforms any asins in an expression to acoss, using the identity arcsin(x) =
π/2− arccos(x).

• asin2acos takes one argument:
expr, an expression containing inverse trigonometric functions.

• asin2acos(expr) returns expr with any asins replaced by the appropriate acoss.

Example.

Input:

asin2acos(acos(x)+asin(x))

Output (after simpli�cation):
π

2

5.23.10 Transforming arcsin into arctan: asin2atan

The asin2atan command transforms any asins in an expression to atans, using the identity

arcsin(x) = arctan

(
x√

1− x2

)
• asin2atan takes one argument:
expr, an expression containing inverse trigonometric functions.

• asin2atan(expr) returns expr with any asins replaced by the appropriate atans.

Example.

Input:

asin2atan(asin(x))

Output:

arctan

(
x√

1− x2

)
5.23.11 Transforming arctan into arcsin: atan2asin

The atan2asin command transforms any atans in an expression to asins, using the identity

arctan(x) = arcsin

(
x√

1 + x2

)
• atan2asin takes one argument:
expr, an expression containing inverse trigonometric functions.

• atan2asin(expr) returns expr with any atans replaced by the appropriate asins.

Example.

Input:

atan2asin(atan(x))

Output:

arcsin

(
x√

1 + x2

)
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5.23.12 Transforming arctan into arccos: atan2acos

The atan2acos command transforms any atans in an expression to acoss, using the identity

arctan(x) =
π

2
− arcsin

(
x√

1 + x2

)
• atan2acos takes one argument:
expr, an expression containing inverse trigonometric functions.

• atan2acos(expr) returns expr with any atans replaced by the appropriate acoss.

Example.

Input:

atan2acos(atan(x))

Output:
π

2
− arccos

(
x√

1 + x2

)
5.23.13 Transforming complex exponentials into sin and cos: sincos exp2trig

The sincos command uses the identity

eix = cos(x) + i sin(x)

to rewrite complex exponentials in terms of sine and cosine.
exp2trig is a synonym for sincos.

• sincos takes one argument:
expr, an expression containing complex exponentials.

• sincos(expr) rewrites expr in terms of sin and cos.

Examples.

• Input:

sincos(exp(i*x))

Output:
cosx+ i sinx

• Input:

exp2trig(exp(-i*x))

Output:
cosx− i sinx

• Input:

simplify(sincos(((i)*(exp((i)*x))�2-i)/(2*exp((i)*x))))

or:

simplify(exp2trig(((i)*(exp((i)*x))�2-i)/(2*exp((i)*x))))

Output:
− sinx
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5.23.14 Transforming tan(x) into sin(x)/cos(x): tan2sincos

The tan2sincos command replaces tan(x) by
sin(x)

cos(x)
in an expression.

• tan2sincos takes one argument:
expr, an expression containing trigonometric functions.

• tan2sincos(expr) returns expr with anything of the form tan(x) replaced by
sin(x)

cos(x)
.

Example.

Input:

tan2sincos(tan(2*x))

Output:
sin (2x)

cos (2x)

5.23.15 Transforming sin(x) into cos(x)*tan(x): sin2costan

The sin2costan command replaces sin(x) by cos(x) tan(x) in an expression.

• sin2costan takes one argument:
expr, an expression containing trigonometric functions.

• sin2costan(expr) returns expr with anything of the form sin(x) replaced by cos(x) tan(x).

Example.

Input:

sin2costan(sin(2*x))

Output:

tan (2x) cos (2x)

5.23.16 Transforming cos(x) into sin(x)/tan(x): cos2sintan

The cos2sintan command replaces cos(x) by
sin(x)

tan(x)
in an expression.

• cos2sintan takes one argument:
expr, an expression containing trigonometric functions.

• cos2sintan(expr) returns expr with anything of the form cos(x) replaced by
sin(x)

tan(x)
.

Example.

Input:

cos2sintan(cos(2*x))

Output:
sin (2x)

tan (2x)
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5.23.17 Rewriting tan(x) in terms of sin(2x) and cos(2x): tan2sincos2

The tan2sincos2 command replaces tan(x) by
sin(2x)

1 + cos(2x)
in an expression.

• tan2sincos2 takes one argument:
expr, an expression containing trigonometric functions.

• tan2sincos2(expr) returns expr with anything of the form tan(x) replaced by
sin(2x)

1 + cos(2x)
.

Example.

Input:

tan2sincos2(tan(x))

Output:
sin (2x)

1 + cos (2x)

5.23.18 Rewriting tan(x) in terms of cos(2x) and sin(2x): tan2cossin2

The tan2cossin2 command replaces tan(x) by
1− cos(2x)

sin(2x)
in an expression.

• tan2cossin2 takes one argument:
expr, an expression containing trigonometric functions.

• tan2cossin2(expr) returns expr with anything of the form tan(x) replaced by
1− cos(2x)

sin(2x)
.

Example.

Input:

tan2cossin2(tan(x))

Output:
1− cos (2x)

sin (2x)

5.23.19 Rewriting sin, cos, tan in terms of tan(x/2): halftan

The halftan command rewrites the trigonometric functions in terms of tan(x/2) using the identities:

sin(x) =
2 tan

(
x
2

)
tan2

(
x
2

)
+ 1

cos(x) =
1− tan2

(
x
2

)
tan2

(
x
2

)
+ 1

tan(x) =
2 tan

(
x
2

)
1− tan2

(
x
2

)
• halftan takes one argument:
expr, an expression containing trigonometric functions.

• halftan(expr) returns expr with any trigonometric functions replaced by the appropriate expres-
sion of tan(x/2).
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Examples.

• Input:

halftan(sin(2*x)/(1+cos(2*x)))

Output:
2 tan

(
2
2x
)

(
tan2

(
2
2x
)

+ 1
)(

1 +
1−tan2( 2

2
x)

tan2( 2
2
x)+1

)
Output (after simpli�cation with normal(ans())):

tanx

• Input:

halftan(sin(x)�2+cos(x)�2)

Output: (
2 tan

(
x
2

)
tan2

(
x
2

)
+ 1

)2

+

(
1− tan2

(
x
2

)
tan2

(
x
2

)
+ 1

)2

Output (after simpli�cation with normal(ans())):

1

5.23.20 Rewriting trigonometric functions in terms of tan(x/2) and hyperbolic
functions in terms of exp(x): halftan_hyp2exp

The halftan_hyp2exp command rewrites the trigonometric function in terms of tan(x/2) (like halftan,
see Section 5.23.19 p.273) and rewrites the hyperbolic functions in terms of their de�nitions using
exponentials, namely:

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

tanh(x) =
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1

• halftan_hyp2exp takes one argument:
expr, a trigonometric and hyperbolic expression.

• halftan_hyp2exp(expr) returns expr with any trigonometric functions replaced by the appropri-
ate expression in tan(x/2) and any hyperbolic functions replaced by the appropriate exponentials.

Examples.

• Input:

halftan_hyp2exp(tan(x)+tanh(x))

Output:
2 tan

(
x
2

)
1− tan2

(
x
2

) +
e2x − 1

e2x + 1

• Input:

halftan_hyp2exp(sin(x)�2+cos(x)�2-sinh(x)�2+cosh(x)�2)

Output (after simpli�cation with normal(ans())):

2
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5.23.21 Transforming trigonometric functions into complex exponentials : trig2exp

The trig2exp command replaces trigonometric functions by their complex exponential form.

• trig2exp takes one argument: expr, an expression containing trigonometric functions.

• trig2exp(expr) returns expr with the trigonometric functions replaced by the appropriate com-
plex exponentials (without linearization).

Examples.

• Input:

trig2exp(tan(x))

Output: (
eix
)2 − 1

i
(

(eix)2 + 1
)

• Input:

trig2exp(sin(x))

Output:
eix − 1

eix

2i

5.23.22 Transforming inverse trigonometric functions into logarithms: atrig2ln

Just as the trigonometric functions can be written in terms of complex exponentials, the inverse trigono-
metric functions can be written in terms of complex logarithms. The atrig2ln command does this
rewriting.

• atrig2ln takes one argument: expr, an expression containing inverse trigonometric functions.

• atrig2ln(expr) returns expr with any inverse trigonometric functions replaced by the appropriate
complex logarithms.

Example.

Input:

atrig2ln(asin(x))

Output:

i ln
(
x+

√
x2 − 1

)
+
π

2

5.23.23 Simplifying and expressing preferentially with sines: trigsin

Any trigonometric function can be written in terms of sins and coss, and with the identity sin(x)2 +
cos(x)2 = 1, the even powers of cos can be turned into powers of sin. The trigsin command performs
these substitutions.

• trigsin takes one argument:
expr, an expression containing trigonometric functions.

• trigsin(expr) returns expr with the trigonometric functions rewritten in terms of sin and cos,
with as many coss as possible transformed to sins.
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Example.

Input:

trigsin(sin(x)�4+cos(x)�2+1)

Output:

sin4 x− sin2 x+ 2

5.23.24 Simplifying and expressing preferentially with cosines: trigcos

Any trigonometric function can be written in terms of sins and coss, and with the identity sin(x)2 +
cos(x)2 = 1, the even powers of sin can be turned into powers of cos. The trigcos command performs
these substitutions.

• trigcos takes one argument:
expr, an expression containing trigonometric functions.

• trigsin(expr) returns expr with the trigonometric functions rewritten in terms of sin and cos,
with as many sins as possible transformed to coss.

Example.

Input:

trigcos(sin(x)�4+cos(x)�2+1)

Output:

cos4 x− cos2 x+ 2

5.23.25 Simplifying and expressing preferentially with tangents: trigtan

The trigtan command rewrites trigonometric expressions into expressions where as many trigonometric
functions as possible are written in terms of tangents, using the identities sin(x)2+cos(x)2 = 1, tan(x) =
sin(x)

cos(x)
.

• trigtan takes one argument:
expr, an expression containing trigonometric functions.

• trigtan(expr) returns expr with the trigonometric functions written as much as possible in terms
of tangents.

Example.

Input:

trigtan(sin(x)�4+cos(x)�2+1)

Output:

2 tan4 x+ 3 tan2 x+ 2

tan4 x+ 2 tan2 x+ 1
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5.23.26 Rewriting an expression with di�erent options: convert convertir =>

Xcas has many commands to convert expressions into di�erent forms; the convert command (or its
in�xed version =>) is a di�erent way to call many of these functions.

• convert takes two or more arguments:

� expr, an expression.

� option, an option specifying which rewrite rules to use. A third argument might be necessary
for some options. Possible values of option are:

∗ sin, to convert an expression like trigsin (see Section 5.23.23 p.275).

∗ cos, to convert an expression like trigcos (see Section 5.23.24 p.276).

∗ sincos, to convert an expression like sincos (see Section 5.23.13 p.271).

∗ trig, to convert an expression like sincos (see Section 5.23.13 p.271).

∗ tan, to convert an expression like halftan (see Section 5.23.19 p.273).

∗ exp, to convert an expression like trig2exp (see Section 5.23.21 p.275).

∗ ln, to convert an expression like trig2exp (see Section 5.23.21 p.275).

∗ expln, to convert an expression like trig2exp (see Section 5.23.21 p.275).

∗ string, to convert a expression into a string.

∗ matrix, to convert a list of lists into a matrix.

∗ array, to turn a table into an array (see Section 5.46.1 p.471).

∗ polynom, to convert a series (see Section 5.36.2 p.381) into a polynomial by removing
the remainder (see Section 5.27.25 p.315) or to convert a list representing a polynomial
into a polynomial in internal sparse multivariate form (see Section 5.27.2 p.301 and
Section 5.27.6 p.304).

∗ parfrac (or partfrac or fullparfrac), to convert a rational function into its partial
fraction decomposition (see Section 5.32.9 p.361).

∗ interval, to convert an expression which evaluates to a number into an interval (see
Section 5.38.9 p.393).

∗ list (or no argument), to convert a polynomial in internal sparse multivariate format
(see Section 5.27.2 p.301) into a list.

∗ unit, a unit, to convert a unit object to a new compatible unit (see Section 11.1.4 p.740).

The values of option that require a third argument:

∗ contfrac, to convert a number into a continued fraction. (See Section 5.7.7 p.139.) The
third argument will be the name of a variable to store the continued fraction into (which
must be quoted the variable was assigned).

∗ base, to convert a number into a di�erent base (beginning with the units digit). If expr
is a number, then the third argument will be base to convert to (see Section 5.4.2 p.109),
if expr is a list of numbers, then the third argument will be the base to convert from
(and expr will be a list of the digits in this base, starting with the units digit).

Finally, if expr is an expression with units (see Section 11.1.1 p.737), then option can be new
units to convert to (see Section 11.1.4 p.740).

• convert(expr,option[,extraop]) returns the expression with the requested conversions done.

Examples.

• Input:

convert(1.2,confrac,'fc')
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Output:
[1, 5]

and fc contains the continued fraction equal to 1.2.

• Input:

convert(123,base,10)

Output:
[3, 2, 1]

• Input:

convert([3,2,1],base,10)

Output:
123

• Input:

convert(1000_g,_kg)

Output:
1.0 kg

5.24 Exponentials and Logarithms

5.24.1 Rewriting hyperbolic functions as exponentials: hyp2exp

The hyperbolic functions are typically de�ned in terms of exponential functions; the hyp2exp command
converts hyperbolic functions into their exponential forms.

• hyp2exp takes one argument:
expr, an expression.

• hyp2exp(expr) rewrites each hyperbolic function in expr with exponentials (as a rational function
of one exponential, i.e. without linearization).

Example.

Input:

hyp2exp(sinh(x))

Output:
ex − 1

ex

2

5.24.2 Expanding exponentials: expexpand

The exponential function applied to a sum can be converted into a product of exponentials; namely,

ex+y = exey

The expexpand command does this conversion. (For expansions with other bases, see Section 5.24.6
p.280.)

• expexpand takes one argument:
expr, an expression.

• expexpand(expr) returns the expression expr with exponentials (base e) of sums rewritten as
products of exponentials.
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Example.

Input:

expexpand(exp(3*x)+exp(2*x+2))

Output:

(ex)3 + (ex)2 e2

5.24.3 Expanding logarithms: lnexpand

The logarithm applied to a product can be converted into a sum of logarithms; namely,

log(x · y) = log(x) + log(y)

The lnexpand command does this expansion.

• lnexpand takes one argument:
expr, an expression.

• lnexpand(expr) returns the expression expr with logarithms of products rewritten as sums of
logarithms.

Example.

Input:

lnexpand(ln(3*x�2)+ln(2*x+2))

Output:

ln (3) + 2 ln |x|+ ln (2) + ln (x+ 1)

5.24.4 Linearizing exponentials: lin

The lin command will linearize expressions involving exponentials; namely, it will replace products of
exponentials by exponentials of sums. It will �rst replace any hyperbolic functions by exponentials.

• lin takes one argument:
expr, an expression.

• lin(expr) returns the linearized version of expr.

Examples.

• Input:

lin(sinh(x)�2)

Output:
e2x

4
− 1

2
+

e−2x

4

• Input:

lin((exp(x)+1)�3)

Output:

e3x + 3e2x + 3ex + 1
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5.24.5 Collecting logarithms: lncollect

The lncollect command collects the logarithm in an expression; namely, it rewrites sums of logarithms
as the logarithm of a product.

• lncollect takes one argument:
expr, an expression.

• lncollect(expr) returns expr with the logarithms collected.

It may be a good idea to factor the expression with factor before collecting by lncollect).

Examples.

• Input:

lncollect(ln(x+1)+ln(x-1))

Output:
ln ((x+ 1) (x− 1))

• Input:

lncollect(exp(ln(x+1)+ln(x-1)))

Output:
(x+ 1) (x− 1)

Warning!!!
For Xcas, log is the natural logarithm, the same as ln; for the base 10 logarithm, use log10.

5.24.6 Expanding powers: powexpand

The powexpand command rewrites a power of a sum as a product of powers; it is expexpand (see
Section 5.24.2 p.278) with bases other than e.

• powexpand takes one argument:
expr, an expression.

• powexpand(expr) returns expr with powers of sums replaced by sums of powers.

Example.

Input:

powexpand(a�(x+y))

Output:
axay

5.24.7 Rewriting a power as an exponential: pow2exp

Powers with arbitrary (positive) bases are often de�ned in terms of exponentials with base e with

ax = ex ln(a)

The pow2exp rewrites powers to exponentials.

• pow2exp takes one argument:
expr, an exponential.

• pow2exp(expr) returns expr with any powers replaced by their corresponding exponential.
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Example.

Input:

pow2exp(a�(x+y))

Output:

e(x+y) ln a

5.24.8 Rewriting exp(n*ln(x)) as a power: exp2pow

The exp2pow command is the inverse of pow2exp (see Section 5.24.7 p.280).

• exp2pow takes one argument:
expr, an expression.

• exp2pow(expr) rewrites any subexpressions of expr of the form exp(n ∗ ln(x)) as xn.

Example.

Input:

exp2pow(exp(n*ln(x)))

Output:

xn

Note the di�erence with lncollect:

lncollect(exp(n*ln(x))) = exp(n*log(x))

lncollect(exp(2*ln(x))) = exp(2*log(x))

exp2pow(exp(2*ln(x))) = x�2

but

lncollect(exp(ln(x)+ln(x))) = x�2

exp2pow(exp(ln(x)+ln(x))) = x�(1+1)

5.24.9 Simplifying complex exponentials: tsimplify

The tsimplify command simpli�es transcendental expressions by rewriting the expression with complex
exponentials. It is a good idea to try other simpli�cation instructions and call tsimplify if they do not
work.

• tsimplify takes one argument:
expr, an expression.

• tsimplify(expr) returns a (possibly) simpli�ed version of expr.

Example.

Input:

tsimplify((sin(7*x)+sin(3*x))/sin(5*x))

Output: (
eix
)4

+ 1

(eix)2
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5.25 Rewriting transcendental and trigonometric expressions

5.25.1 Expanding transcendental and trigonometric expressions: texpand tExpand

The texpand command expands exponential and trigonometric functions, like simultaneous calling:
expexpand (see Section 5.24.2 p.278), which, for example, expands exp(nx) as exp(x)n,
lnexpand (see Section 5.24.3 p.279), which, for example, expands ln(xn) as n ln(x) , and
trigexpand (see Section 5.23.1 p.265), which, for example, expands sin(2x) as 2 sin(x) cos(x).
tExpand is a synonym for texpand.

• texpand takes one argument:
expr, an expression containing transcendental or trigonometric functions.

• texpand(expr) expands these functions.

Examples.

• Expand cos(x+ y).
Input:

texpand(cos(x+y))

Output:
cosx · cos y − sinx · sin y

• Expand cos(3x).
Input:

texpand(cos(3*x))

Output:
4 cos3 x− 3 cosx

• Expand
sin(3 ∗ x) + sin(7 ∗ x)

sin(5 ∗ x)
.

Input:

texpand((sin(3*x)+sin(7*x))/sin(5*x))

Output:

− 2 sinx

(16 cos4 x− 12 cos2 x+ 1) sinx
+

28 sinx · cos2 x

(16 cos4 x− 12 cos2 x+ 1) sinx
−

80 sinx · cos4 x

(16 cos4 x− 12 cos2 x+ 1) sinx
+

64 sinx · cos6 x

(16 cos4 x− 12 cos2 x+ 1) sinx

Output, after a simpli�cation with normal(ans()):

4 cos2 x− 2

• Expand exp(x+ y).
Input:

texpand(exp(x+y))

Output:
exey
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• Expand ln(x× y).
Input:

texpand(log(x*y))

Output:
ln y + lnx

• Expand ln(xn).
Input:

texpand(ln(x�n))

Output:
n lnx

• Expand ln((e2) + exp(2 ∗ ln(2)) + exp(ln(3) + ln(2))).
Input:

texpand(log(e�2)+exp(2*log(2))+exp(log(3)+log(2)))

Output:
6 + 2 · 3

or input:

texpand(log(e�2)+exp(2*log(2)))+ lncollect(exp(log(3)+log(2)))

Output:
12

• Expand exp(x+ y) + cos(x+ y) + ln(3x2).
Input:

texpand(exp(x+y)+cos(x+y)+ln(3*x�2))

Output:
cosx · cos y − sinx · sin y + exey + ln (3) + 2 ln |x|

5.25.2 Combining terms of the same type: combine

The combine command joins subexpressions of various types.

• combine takes two arguments:

� expr, an expression.

� function, the name of a function or class of functions. function can be one of exp, log, ln,
sin, cos, or trig.

• combine(expr,function) returns the expression with subexpressions corresponding to the second
argument combined.

The combine command can duplicate the e�ect of other commands.

• combine(expr,ln) or combine(expr,log) gives the same result as lncollect(expr) (see Sec-
tion 5.24.5 p.280).

• combine(expr,trig) or combine(expr,sin) or combine(expr,cos) gives the same result as tcollect(expr)
(see Section 5.23.4 p.267).
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Examples.

• Input:

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),exp)

Output:

cosx · sinx+ lnx+ ln y + ex+y

• Input:

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),trig)

or:

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),sin)

or:

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),cos)

Output:

exey + lnx+ ln y +
sin (2x)

2

• Input:

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),ln)

or:

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),log)

Output:

cosx · sinx+ exey + ln (xy)

5.26 Fourier transformation

5.26.1 Fourier coe�cients: fourier_an and fourier_bn or fourier_cn

Let f be a T -periodic continuous function on R except perhaps at a �nite number of points. One can
prove that if f is continuous at x, then;

f(x) =
a0
2

+
+∞∑
n=1

an cos(
2πnx

T
) + bn sin(

2πnx

T
)

=
+∞∑

n=−∞
cne

2iπnx
T

where the coe�cients an, bn, n ∈ N , (or cn, n ∈ Z) are the Fourier coe�cients of f . The fourier_an

and fourier_bn or fourier_cn commands compute these coe�cients.
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fourier_an

• fourier_an takes four mandatory and one optional argument:

� expr, an expression depending on a variable.

� x, the name of this variable.

� T , the period.

� n, a non-negative integer.

� Optionally, a a real number (by default a = 0).

• fourier_an(expr,x, T, n 〈, a〉) returns the Fourier coe�cient an of a function f of variable x
de�ned on [a, a+ T ) by f(x) =expr and such that f is periodic with period T :

an =
2

T

∫ a+T

a
f(x) cos(

2πnx

T
)dx

To simplify the computations, you should input assume(n,integer) (see Section 4.4.8 p.83) before
calling fourier_an with an unspeci�ed n to specify that it is an integer.

Example.

Let the function f , with period T = 2, be de�ned on [−1, 1) by f(x) = x2.
Input (to have the coe�cient a0):

fourier_an(x�2,x,2,0,-1)

Output:
1

3

Input (to have the coe�cient an (n 6= 0)):

assume(n,integer)

fourier_an(x�2,x,2,n,-1)

Output:
4 (−1)n

n2π2

fourier_bn

• fourier_bn takes four mandatory and one optional argument:

� expr, and expression depending on a variable.

� x, the name of this variable.

� T , the period.

� n, an integer.

� Optionally, a a real number (by default a = 0).

• fourier_bn(expr , x, T, n 〈, a〉) returns the Fourier coe�cient bn of a function f of variable x
de�ned on [a, a+ T ) by f(x) =expr and such that f is periodic with period T :

bn =
2

T

∫ a+T

a
f(x) sin(

2πnx

T
)dx

To simplify the computations, you should input assume(n,integer) (see Section 4.4.8 p.83) before
calling fourier_bn to specify that n is an integer.
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Examples.

• Let the function f , with period T = 2, de�ned on [−1, 1) by f(x) = x2.
Input (to get the coe�cient bn (n 6= 0)):

assume(n,integer)

fourier_bn(x�2,x,2,n,-1)

Output:

0

• Let the function f , with period T = 2, de�ned on [−1, 1) by f(x) = x3.
Input (to get the coe�cient b1):

fourier_bn(x�3,x,2,1,-1)

Output:
2π2 − 12

π3

fourier_cn

• fourier_cn takes four mandatory and one optional argument:

� expr, and expression depending on a variable.

� x, the name of this variable.

� T , the period.

� n, an integer.

� Optionally, a a real number (by default a = 0).

• fourier_cn(expr,x, T, n 〈, a〉) returns the Fourier coe�cient cn of a function f of variable x
de�ned on [a, a+ T ) by f(x) =expr and such that f is periodic with period T :

cn =
1

T

∫ a+T

a
f(x)e

−2iπnx
T dx

To simplify the computations, you should input assume(n,integer) (see Section 4.4.8 p.83) before
calling fourier_cn to specify that n is an integer.

Examples.

• Find the Fourier coe�cients cn of the periodic function f of period 2 and de�ned on [−1, 1) by
f(x) = x2.
Input (to get c0):

fourier_cn(x�2,x,2,0,-1)

Output:
1

3

Input (to get cn):

assume(n,integer)

fourier_cn(x�2,x,2,n,-1)
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Output:

2 (−1)n

n2π2

• Find the Fourier coe�cients cn of the periodic function f , of period 2, and de�ned on [0, 2) by
f(x) = x2.
Input (to have c0):

fourier_cn(x�2,x,2,0)

Output:

4

3

Input (to get cn):

assume(n,integer)

fourier_cn(x�2,x,2,n)

Output:

π · 2in+ 2

n2π2

• Find the Fourier coe�cients cn of the periodic function f of period 2π and de�ned on [0, 2π) by
f(x) = x2.
Input:

assume(n,integer)

fourier_cn(x�2,x,2*pi,n)

Output:

π · 2in+ 2

n2

You must also compute cn for n = 0: Input:

fourier_cn(x�2,x,2*pi,0)

Output:

4

3
π2

Hence for n = 0, c0 =
4π2

3
.

Remarks.

• Input purge(n) (see Section 4.4.9 p.85) to remove the hypothesis done on n.

• Input about(n) or assume(n), to know the hypothesis done on the variable n.
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5.26.2 Continuous Fourier Transform: fourier ifourier addtable

The Fourier transform of a function f is de�ned by

F (s) =

∫ +∞

−∞
e−i s x f(x) dx, s ∈ R. (5.5)

The fourier command computes the Fourier transform.

• fourier takes one mandatory argument and two optional arguments:

� expr, an expression which de�nes a function f(x) =expr.

� Optionally, x, the variable for f (by default x).

� Optionally, s, the variable for the Fourier transform (by default x).

• fourier(expr 〈, x, s〉) returns the Fourier transform F (s). If s is not given, then x will be used.

The inverse Fourier transform, as its name implies, takes a Fourier transform F (x) and returns the
original function f(x). It is given by:

f(x) =
1

2π

∫ +∞

−∞
ei s x F (s) ds. (5.6)

The ifourier command computes the inverse Fourier transform.

• ifourier takes one mandatory argument and two optional arguments:

� expr, an expression which de�nes a function F (x) =expr.

� Optionally, x, the variable for F (by default x).

� Optionally, X, the variable for the original function f (by default x).

• ifourier(expr 〈, x,X〉) returns the inverse Fourier transform f(X). If X is not given, then x will
be used.

Note the similarity between the de�nitions of the Fourier transform (equation (5.5)) and its inverse
(equation (5.6)). To compute the inverse transformation of F (s), it is enough to compute the Fourier

transform with function F (s)
2π and using the variables s and x instead of x and s, and replacing x with

−x in the result.

Examples.

• Arbitrary rational functions can be transformed. For example, we �nd the Fourier transform of
f(x) = x

x3−19x+30
.

Input:

F:=fourier(x/(x�3-19x+30),x,s)

Output:
1

56
πsign (s)

(
16ie−2is − 21ie−3is + 5ie5is

)
Input:

ifourier(F,s,x)

Output:
x

x3 − 19x+ 30
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• Find the transform of f(x) = x2+1
x2−1 :

Input:

F:=fourier((x�2+1)/(x�2-1),x,s)

Output:
2π (δ (s)− sign (s) sin s)

Input:

ifourier(F,s,x)

Output:
x2 + 1

x2 − 1

A range of other (generalized) functions and distributions can be transformed, as demonstrated in the
following examples. If fourier does not know how to transform a function, it returns the unevaluated
integral (5.5). In these cases you may try to evaluate the result using eval.

Examples.

• Input:

fourier(3x�2+2x+1,x,s)

Output:
2π (δ (s) + 2i δ (s, 1)− 3 δ (s, 2))

• Input:

fourier(Dirac(x-1)+Dirac(x+1),x,s)

Output:
2 cos s

• Input:

fourier(exp(-2*abs(x-1)),x,s)

Output:
4e−is

s2 + 4

• Input:

fourier(atan(1/(2x�2)),x,s)

Output:

2πe−
|s|
2 sin

(
s
2

)
s

2*pi*sin(s/2)*exp(-abs(s)/2)/s

• Input:
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fourier(BesselJ(3,x),x,s)

Output:

−
s
(
4s2 − 3

)
(−isign (s+ 1) + isign (s− 1))
√
−s2 + 1

• Input:

F:=fourier(sin(x)*sign(x),x,s)

Output:

− 2

s2 − 1

Input:

ifourier(F,s,x)

Output:

sign (x) sinx

• Input:

fourier(log(abs(x)),x,s)

Output:

−π (2γ δ (s) |s|+ 1)

|s|

• Input:

fourier(rect(x),x,s)

Output:
2 sin

(
s
2

)
s

• Input:

fourier(exp(-abs(x))*sinc(x),x,s)

Output:

arctan (s+ 1)− arctan (s− 1)

• Input:

fourier(1/sqrt(abs(x)),x,s)

Output: √
2
√
π√
|s|

• Input:

F:=fourier(1/cosh(2x),x,s)
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Output:
π

e−
1
4
πs + e

1
4
πs

Input:

ifourier(F,s,x)

Output:
2

e−2x + e2x

• Input:

fourier(Airy_Ai(x/2),x,s)

Output:

2e
8
3
is3

• Input:

F:=fourier(Gamma(1+i*x/3),x,s)

Output:

6πe−(3s+e−3s)

Input:

ifourier(F,s,x)

Output:

Γ

(
1

3
ix+ 1

)
• Input:

F:=fourier(atan(x/4)/x,x,s)

Output:
πugamma (0, 4 |s|)

Input:

ifourier(F,s,x)

Output:
arctan

(
x
4

)
x

• Input:

assume(a>0)

fourier(exp(-a*x�2+b),x,s)

Output:
√
a
√
πe−

s2

4a
+b

a

The Fourier transform behaves nicely when combined with convolutions. Recall the convolution (see
Section 15.2.8 p.981) of two functions f and g is

(f ∗ g)(x) =

∫ +∞

−∞
f(t) g(x− t) dt

If F(f) represents the Fourier transform of a function f , then the convolution theorem states

F(f ∗ g) = F(f) · F(g).
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Example.

In this example, the convolution theorem will be used to compute the convolution of f(x) = e−|x| with
itself.
Input:

F:=fourier(exp(-abs(x)),x,s)

Output:
2

s2 + 1
Input:

ifourier(F�2,s,x)

Output:
−x θ (−x) ex + x θ (x) e−x + e−|x|

The above result is the desired convolution (f ∗ f)(x) =
∫ +∞
−∞ f(t) f(x− t) dt.

Piecewise functions can be transformed if de�ned as

piecewise(x < a1, f1, x < a2, f2, . . . , x < an, fn, f0)

for appropriate functions f0, . . . , fn and a1, a2, . . . , an are real numbers such that a1 < a2 < · · · < an.
Inequalities may be strict or non-strict.

Example.

Input:

f:=piecewise(x<=-1,exp(x+1),x<=1,1,exp(2-2x))

F:=fourier(f,x,s)

Output:
3s cos s− is sin s+ 4 sin s

s (s− 2i) (s+ i)

You can obtain the original function f from the above result by applying ifourier.
Input:

ifourier(F,s,x)

Output:
θ (−x− 1) ex+1 + θ (x+ 1) + θ (x− 1) e−2x+2 − θ (x− 1)

You can verify that the above expression is equal to f(x) by plotting them.

Some algebraic transformations of a function behave predictably under the Fourier transform. For
example, if g(x) = f(x− a), then F(g)(s) = e−2πiasF(f)(s). The addtable command lets you assign a
function name to the Fourier (or Laplace, see Section 5.57.2 p.564) transform of another function name,
without specifying the either function. This allows you to alter the original function and see the e�ect
on the Fourier (or Laplace) transform.

• addtable takes �ve arguments:

� transform, which can be fourier or laplace and indicates the type of transform.

� f(x), where f is a symbol representing an unspeci�ed function of the variable x.

� F (s), where F is a symbol representing the transform of f and s is the new variable.

� x, the variable used by f .

� s, the variable used by F .

• addtable(transform, f(x), F (s), x, s) returns 1 if F is assigned as the transform of f , and 0
otherwise. In the case that F is assigned as the transform of f , then the transform (fourier or
laplace) of manipulations of f will be returned in terms of F and conversely.



5.26. FOURIER TRANSFORMATION 293

Examples.

• Input:

addtable(fourier,y(x),Y(s),x,s)

Output:

1

Input:

fourier(y(a*x+b),x,s)

Output:

e
ibs
a Y

(
s
a

)
|a|

Input:

fourier(Y(x),x,s)

Output:

2πy (−s)

• Input:

addtable(fourier,g(x,t),G(s,t),x,s)

Output:

1

Input:

fourier(g(x/2,3*t),x,s)

Output:

2G (2s, 3t)

Fourier transforms can be used for solving linear di�erential equations with constant coe�cients.
For example, to obtain a particular solution to the equation

y(x) + 4 y(4)(x) = δ(x),

where δ is the Dirac delta function, you can �rst transform both sides of the above equation.
Input:

L:=fourier(y(x)+4*diff(y(x),x,4),x,s); R:=fourier(Dirac(x),x,s)

Output:

4s4Y (s) + Y (s) , 1

Then you can solve the equation L = R for Y (s). Generally, you should apply csolve instead of solve.
Input:

sol:=csolve(L=R,Y(s))[0]
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Output:
1

4s4 + 1

Finally, you can apply ifourier to obtain y(x).
Input:

ifourier(sol,s,x)

Output:
1

4
e−
|x|
2

(
cos

(
|x|
2

)
+ sin

(
|x|
2

))
The above solution can be combined with solutions of the corresponding homogeneous equation to
obtain the general solution.

5.26.3 Discrete Fourier Transform and the Fast Fourier Transform

For any integer N , the Discrete Fourier Transform (DFT) is a transformation FN de�ned on the set
of periodic sequences of period N ; it depends on a choice of a primitive N -th root of unity ωN . For
sequences with complex coe�cients, we take:

ωN = e
2iπ
N

If x is a periodic sequence of period N , de�ned by the vector x = [x0, x1, . . . xN−1] then FN (x) = y is a
periodic sequence of period N , de�ned by:

(FN (x))k = yk =
N−1∑
j=0

xjω
−k·j
N ,

for k = 0..N − 1.
The Discrete Fourier Transform FN is bijective with inverse

F−1N =
1

N
FN,ωN on C

i.e.:

(F−1N,ωN
(x))

k
=

1

N

N−1∑
j=0

xjω
k·j
N

The Fast Fourier Transform (FFT) is an e�cient way to compute the discrete Fourier transform;
faster than computing each term individually. Xcas implements the FFT algorithm to compute the
discrete Fourier transform when the period of the sequence is a power of 2.

The fft command computes the discrete Fourier transform.

• fft takes one argument:
x, a list or sequence regarded as one period of a periodic sequence.

• fft(x) returns FN (x), the discrete Fourier transform of x.
If x has length which is a power of 2, then FN (x) is computed with the Fast Fourier Transform.

The ifft command computes the inverse discrete Fourier transform.

• ifft takes one argument:
x, a list or sequence regarded as one period of a periodic sequence.

• ifft(x) returns F−1N (x), the inverse discrete Fourier transform of x.
If x has length which is a power of 2, then F−1N (x) is computed with the Fast Fourier Transform.
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Examples.

• Input:

fft(0,1,1,0)

Output:

[2.0,−1.0− i, 0.0,−1.0 + i]

• Input:

ifft([2,-1-i,0,-1+i])

Output:

[0.0, 1.0, 1.0, 0.0]

The properties of the Discrete Fourier Transform

De�nitions. Let x and y be two periodic sequences of period N .

• The Hadamard product (notation ·) is de�ned by:

(x · y)k = xkyk

• the convolution product (notation ∗) is de�ned by:

(x ∗ y)k =
N−1∑
j=0

xjyk−j

Properties.

FN (x · y) =

(
1

N

)
FN (x) ∗ FN (y)

FN (x ∗ y) = FN (x) · FN (y)

Applications

1. Value of a polynomial
De�ne a polynomial P (x) =

∑N−1
j=0 cjx

j by the vector of its coe�cients c := [c0, c1, ..cN−1], where
zeroes may be added so that N is a power of 2 (so the Fast Fourier Transform can be used).

• Compute the values of P (x) at

x = ak = ω−kN = exp(
−2ikπ

N
), k = 0..N − 1

This is just the discrete Fourier transform of c since

P (ak) =
N−1∑
j=0

cj(ω
−k
N )j = FN (c)k
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Example.

Find the values of P (x+ x2) at x = 1, i,−1,−i.
Input:

P(x):=x+x�2

Here the coe�cients of P are [0,1,1,0], N = 4 and ω = exp(2iπ/4) = i.
Input:

fft([0,1,1,0])

Output:
[2.0,−1.0− i, 0.0,−1.0 + i]

Hence:

� P (1) = 2,

� P (−i) = P (ω−1) = −1− i,
� P (−1) = P (ω−2) = 0,

� P (i) = P (ω−3) = −1 + i.

• Compute the values of P (x) at

x = bk = ωkN = exp(
2ikπ

N
), k = 0..N − 1

This is N times the inverse fourier transform of c since

P (ak) =
N−1∑
j=0

cj(ω
k
N )j = NF−1N (c)k

Example.

Use this method to �nd the values of P (x+ x2) at x = 1, i,−1,−i. Input:

P(x):=x+x�2

Again, the coe�cients of P are [0,1,1,0], N = 4 and ω = exp(2iπ/4) = i.
Input:

4*ifft([0,1,1,0])

Output:
[2.0,−1.0 + i, 0.0,−1.0− i]

Hence:

� P (1) = 2,

� P (i) = P (ω1) = −1 + i,

� P (−1) = P (ω2) = 0,

� P (−i) = P (ω3) = −1− i.
You �nd of course the same values as above.

2. Trigonometric interpolation
Let f be periodic function of period 2π and let fk = f(2kπ/N) for k = 0..(N − 1). Find a
trigonometric polynomial p that interpolates f at xk = 2kπ/N , that is �nd pj , j = 0..N − 1 such
that

p(x) =

N−1∑
j=0

pjx
j , p(xk) = fk
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Replacing xk by its value in p(x) we get:

N−1∑
j=0

pj exp(i
j2kπ

N
) = fk

In other words, (fk) is the inverse DFT of (pk), hence

(pk) =
1

N
FN ( (fk) )

If the function f is real, p−k = pk, hence depending whether N is even or odd:

p(x) = p0 + 2<(

N
2
−1∑

k=0

pk exp(ikx)) + <(pN
2

exp(i
Nx

2
))

if N is even and

p(x) = p0 + 2<(

N−1
2∑

k=0

pk exp(ikx))

if N is odd.

3. Fourier series
Let f be a periodic function of period 2π and let yk = f(xk) where xk = 2kπ

N for k = 0..N − 1.
Suppose that the Fourier series of f converges to f (this will be the case if for example f is
continuous). If N is large, a good approximation of f will be given by:∑

−N
2
≤n<N

2

cn exp(inx)

Hence we want a numeric approximation of

cn =
1

2π

∫ 2π

0
f(t) exp(−int)dt

The numeric value of the integral
∫ 2π
0 f(t) exp(−int)dt can be computed by the trapezoidal rule

(note that the Romberg algorithm would not work here because the Euler Mac Laurin development
has its coe�cients equal to zero, since the integrated function is periodic, hence all its derivatives
have the same value at 0 and at 2π). If c̃n is the numeric value of cn obtained by the trapezoidal
rule, then

c̃n =
1

2π

2π

N

N−1∑
k=0

yk exp(−2i
nkπ

N
), −N

2
≤ n < N

2

Indeed, since xk = 2kπ/N and f(xk) = yk:

f(xk) exp(−inxk) = yk exp(−2i
nkπ

N
),

f(0) exp(0) = f(2π) exp(−2i
nNπ

N
) = y0 = yN

Hence:

[c̃0, ..c̃N
2
−1, c̃N

2
+1, ..cN−1] =

1

N
FN ([y0, y1 . . . y(N−1)])

since

• if n ≥ 0, c̃n = yn

• if n < 0 c̃n = yn+N
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• ωN = exp(2iπN ), so ωnN = ωn+NN

Properties.

• The coe�cients of the trigonometric polynomial that interpolates f at x = 2kπ/N are

pn = c̃n, −N
2
≤ n < N

2

• If f is a trigonometric polynomial of degree m ≤ N
2 , then

f(t) =
m−1∑
k=−m

ck exp(2ikπt)

the trigonometric polynomial that interpolates f is f itself, the numeric approximation of
the coe�cients are in fact exact (c̃n = cn).

• More generally, you can compute c̃n − cn.
Suppose that f is equal to its Fourier series, i.e. that:

f(t) =

+∞∑
m=−∞

cm exp(2iπmt),

+∞∑
m=−∞

|cm| <∞

Then:

f(xk) = f(
2kπ

N
) = yk =

+∞∑
m=−∞

cmω
km
N , c̃n =

1

N

N−1∑
k=0

ykω
−kn
N

Replace yk by its value in c̃n:

c̃n =
1

N

N−1∑
k=0

+∞∑
m=−∞

cmω
km
N ω−knN

If m 6= n (mod N), ωm−nN is an N -th root of unity di�erent from 1, hence:

ω
(m−n)N
N = 1,

N−1∑
k=0

ω
(m−n)k
N = 0

Therefore, if m − n is a multiple of N (m = n + l ·N) then
∑N−1

k=0 ω
k(m−n)
N = N , otherwise∑N−1

k=0 ω
k(m−n)
N = 0. By reversing the two sums, you get

c̃n =
1

N

+∞∑
m=−∞

cm

N−1∑
k=0

ω
k(m−n)
N

=
+∞∑
l=−∞

c(n+l·N)

= . . . cn−2·N + cn−N + cn + cn+N + cn+2·N + . . .

Conclusion: if |n| < N/2, then c̃n − cn is a sum of cj with large indices (at least N/2 in
absolute value), hence is small (depending on the rate of convergence of the Fourier series).
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Example.

Input:

f(t):=cos(t)+cos(2*t)

x:=f(2*k*pi/8)$(k=0..7)

Output:

2,

√
2

2
,−1,−

√
2

2
, 0,−

√
2

2
,−1,

√
2

2

Input:

fft(x)

Output:
[0.0, 4.0, 4.0, 0.0, 0.0, 0.0, 4.0, 4.0]

Dividing by N = 8, you get

c0 = 0, c1 = 0.5, c2 = 0.5, c3 = 0.0,
c−4 = 0.0, c−3 = 0.0, c−2 = 0.5,= c−1 = 0.5

Hence bk = 0 and ak = c−k + ck equals 1 for k = 1, 2 and 0 otherwise.

4. Convolution Product
If P (x) =

∑n−1
j=0 ajx

j and Q(x) =
∑m−1

j=0 bjx
j are given by the vectors of their coe�cients a =

[a0, a1, ..an−1] and b = [b0, b1, ..bm−1], you can compute the product of these two polynomials
using the DFT. The product of polynomials is the convolution product of the periodic sequence
of their coe�cients if the period is greater or equal to (n + m). Therefore we complete a (resp.
b) with m+ p (resp. n+ p) zeros, where p is chosen such that N = n+m+ p is a power of 2. If
a = [a0, a1, ..an−1, 0..0] and b = [b0, b1, ..bm−1, 0..0], then:

P (x)Q(x) =
n+m−1∑
j=0

(a ∗ b)jxj

If you know FN (a) and FN (b), then a ∗ b = F−1N (FN (a) · FN (b)), since

FN (x ∗ y) = FN (x) · FN (y)

5.26.4 An exercise with fft

Given temperatures T at time t, in degrees Celcius:

t 0 3 6 9 12 15 19 21

T 11 10 17 24 32 26 23 19

What was the temperature at 13h45 ?
Here N = 8 = 2 ∗m. The interpolation polynomial is

p(t) =
1

2
p−m(exp(−2i

πmt

24
) + exp(2i

πmt

24
)) +

m−1∑
k=−m+1

pk exp(2i
πkt

24
)

and

pk =
1

N

N−1∑
k=j

Tk exp(2i
πk

N
)

Input:
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q:=1/8*fft([11,10,17,24,32,26,23,19])

Output: [
20.25,−4.48115530061 + 1.72227182413i, 0.375 + 0.875i,

− 0.768844699385 + 0.222271824132, i, 0.5,

− 0.768844699385− 0.222271824132, i,

0.375− 0.875i,−4.48115530061− 1.72227182413i
]

hence:

• p0 = 20.25

• p1 = −4.48115530061 + 1.72227182413i = p−1,

• p2 = 0.375 + 0.875i = p−2,

• p3 = −0.768844699385 + 0.222271824132i = p−3,

• p4 = 0.5

Indeed

q = [q0, . . . qN−1] = [p0, ..pN
2
−1, p−N

2
, .., p−1] =

1

N
FN ([y0, ..yN−1]) =

1

N
fft(y)

Input:

pp:=[q[4],q[5],q[6],q[7],q[0],q[1],q[2],q[3]]

Here, pk = pp[k + 4] for k = −4 . . . 3. It remains to compute the value of the interpolation polynomial
at point t0 = 13.75 = 55/4.
Input:

t0(j):=exp(2*i*pi*(13+3/4)/24*j)

T0:=1/2*pp[0]*(t0(4)+t0(-4))+sum(pp[j+4]*t0(j),j,-3,3)

evalf(re(T0))

Output:

29.4863181684

The temperature is predicted to be equal to 29.49 degrees Celsius.

Remark.
Using the Lagrange interpolation polynomial (the polynomial is not periodic):
Input:

l1:=[0,3,6,9,12,15,18,21]

l2:=[11,10,17,24,32,26,23,19]

subst(lagrange(l1,l2,13+3/4),x=13+3/4)

evalf(ans())

Output:

30.1144061688
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5.27 Polynomials

5.27.1 Polynomials of a single variable: poly1

A polynomial of one variable is represented either by a symbolic expression or by the list of its coe�cients
in decreasing powers order (dense representation). In the latter case, to avoid confusion with other kinds
of lists:

• poly1[...] is used as delimiters for inputs and for text form output.

• [] . . . [] is used for Xcas output.

Note that polynomials represented as lists of coe�cients are always written in decreasing powers order
even if increasing power is checked in cas con�guration (see Section 2.5.7 p.56).

5.27.2 Polynomials of several variables: %%%{ %%%}

A polynomial of several variables can be represented in di�erent ways:

• by a symbolic expression.

• by a dense recursive 1-d representation like above.

• by a sum of monomials with non-zero coe�cients (distributed sparse representation).
A monomial with several variables is represented by a coe�cient and a list of integers (interpreted
as powers of a variable list). The delimiters for monomials are %%%{ and %%%}.
For example 3x2y is represented by %%%{3,[2,1]%%%} with respect to the variable list [x,y]),
and 2x3y2z−5xz is represented by %%%{2,[3,2,1]%%%} - %%%{5,[1,0,1]%%%} with respect to the
variable list [x,y,z].
For a sparse representation, a single variable polynomial can be regarded as a multivariate poly-
nomial with one variable.

5.27.3 Apply a function to the internal sparse format of a polynomial: map

The map command can apply a function to the coe�cients of a polynomial written in internal sparse
format. (See Section 5.40.29 p.422 for other uses of map.)

• map takes two arguments:

� P , a polynomial of k variables in internal sparse format.

� f , a function of k + 1 variables.

• map(P, f) applies f to the coe�cients of P ; namely, it returns a polynomial which replaces each
term %%%{a,[n1, . . . , nk] %%%} in P by %%%{f(a, n1, . . . , nk),[n1, . . . , nk] %%%}

Example.

Input:

map(%%%{2,[2,1]%%%} + %%%{3,[1,4]%%%},(a,b,c)->a*b*c)

Output:

%%%{4, [2, 1]%%%}+ %%%{12, [1, 4]%%%}
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5.27.4 Converting to a symbolic polynomial: r2e poly2symb

The r2e command converts lists into symbolic polynomials.
poly2symb is a synonym for r2e here.

For one-variable polynomials:

• r2e takes one mandatory argument and one optional argument:

� L, a list of coe�cients of a polynomial (in decreasing order),

� x, a symbolic variable name (by default x).

• r2e(L 〈, x〉) returns the corresponding polynomial with the given variable.

Example.

Input:

r2e([1,0,-1],x)

or:

r2e([1,0,-1])

or:

poly2symb([1,0,-1],x)

Output:
xx− 1

For sparse multivariate polynomials:

• r2e takes two arguments:

� S, a sum of monomials of the form %%%{coeff,[n1,...nk] %%%}

� vars, a vector of symbolic variables.

• r2e(S 〈,vars〉) returns the corresponding polynomial as an expression with the given variables

.

Examples:

• Input:

poly2symb(%%%{1,[2]%%%}+%%%{-1,[0]%%%},[x])

or:

r2e(%%%{1,[2]%%%}+%%%{-1,[0]%%%},[x])

Output:
x2 − 1

• Input:

r2e(%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%},[x,y])

or:

poly2symb(%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%},[x,y])

Output:
x2 − xy + 2y
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5.27.5 Converting from a symbolic polynomial: e2r symb2poly

The e2r command converts a symbolic polynomial into a list (for single variable polynomials) or a sum
of monomials.
symb2poly is a synonym for e2r.

• e2r takes two arguments:

� P , a symbolic polynomial.

� vars, the variable name (for one variable polynomials) or a list of variable names (for multi-
variable polynomials).
For one variable polynomials, this is optional and defaults to x.

• e2r(P 〈,vars〉) returns:
the representation of the polynomial as a list of coe�cients written in decreasing order, if vars is
a variable name.
a sum of monomials (sparse representation of multivariate polynomials) if vars is a list.

Examples:

• Input:

e2r(x�2-1)

or:

symb2poly(x�2-1)

or:

symb2poly(y�2-1,y)

or:

e2r(y�2-1,y)

Output:

[]1, 0,−1[]

• Input:

e2r(x�2-x*y+y, [x,y])

or:

symb2poly(x�2-x*y+2*y, [x,y])

Output:

%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%}
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5.27.6 Transforming a polynomial in internal format into a list, and conversely:
convert

The convert command does many conversions (see Section 5.23.26 p.277). Among other things, it
can convert between a polynomial in internal sparse multivariate format and a list representing the
polynomial.

To convert from a polynomial in internal sparse multivariate format to a list:

• convert takes one mandatory argument and one optional argument:

� P , a polynomial written in internal sparse multivariate format (see Section 5.27.2 p.301).

� Optionally, list.

• convert(P 〈, list〉) returns a list representing the polynomial.

Example.

Input:

p:= symb2poly(x�2 - x*y + 2y, [x,y])

Output:

%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%}

Input:

l:= convert(p,list)

or:

l:= convert(p)

Output:  1 [2, 0]
−1 [1, 1]
2 [0, 1]


which is a list of the coe�cients followed by a list of the variable powers.

To convert from a list representing a polynomial to the polynomial in internal sparse multivariate
format:

• convert takes two arguments:

� L, a list representing a polynomial.

� polynom.

• convert(L,polynom) returns the polynomial in internal sparse multivariate format (see Sec-
tion 5.27.2 p.301).

Example.

Input ( l from above):

l:=[[1,[2,0]],[-1,[1,1]],[2,[0,1]]]

Output:  1 [2, 0]
−1 [1, 1]
2 [0, 1]


Input:

convert(l,polynom)

Output:

%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%}
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5.27.7 Coe�cients of a polynomial: coeff coeffs

The coeff command �nds the coe�cients of a speci�c degree of a polynomial.
coeffs is a synonym for coeff.

• coeff takes two mandatory and one optional argument:

� P , the polynomial.

� vars, the name of the variable (or the list of the names of variables).

� Optionally, n, the degree (or the list of the degrees of the variables).

• coeff(P vars 〈, n〉) returns the nth degree coe�cient of P , or if n is not speci�ed, the list of
the coe�cients of P , including 0 in the univariate dense case and excluding 0 in the multivariate
sparse case.

Examples.

• Input:

coeff(-x�4+3*x*y�2+x,x,1)

Output:
3y2 + 1

• Input:

coeff(-x�4+3x*y�2+x,y,2)

Output:
3x

• Input:

coeff(-x�4+3x*y�2+x,[x,y],[1,2])

Output:
3

5.27.8 Polynomial degree: degree

The degree command �nds the degree of a polynomial.

• degree takes one argument:
P , a polynomial given by its symbolic representation or by the list of its coe�cients.

• degree(P) returns the degree of P (the highest degree of its non-zero monomials).

Examples.

• Input:

degree(x�3+x)

Output:
3

• Input:

degree([1,0,1,0])

Output:
3
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5.27.9 Polynomial valuation: valuation ldegree

The valuation of a polynomial is the lowest degree of its non-zero monomials. The valuation command
�nds the valuation of a polynomal.
ldegree is a synonym for valuation.

• valuation takes one argument:
P , a polynomial given by a symbolic expression or by the list of its coe�cients.

• valuation(P) returns the valuation of P .

Examples.

• Input:

valuation(x�3+x)

Output:
1

• Input:

valuation([1,0,1,0])

Output:
1

5.27.10 Leading coe�cient of a polynomial: lcoeff

The lcoeff command �nds the leading coe�cient of a polynomial; that is, the coe�cient of the mono-
mial of highest degree.

• lcoeff takes one mandatory argument and one optional argument:

� P , a polynomial given by a symbolic expression or by its list of coe�cients.

� Optionally, x, a variable name (by default x).

• lcoeff(P 〈, x〉) returns the leading coe�cient of P .

Examples.

• Input:

lcoeff([2,1,-1,0])

Output:
2

• Input:

lcoeff(3*x�2+5*x,x)

Output:
3

• Input:

lcoeff(3*x�2+5*x*y�2,y)

Output:
5x
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5.27.11 Trailing coe�cient degree of a polynomial: tcoeff

The tcoeff command �nds the trailing coe�cient of a polynomial; that is, the coe�cient of the mono-
mial of lowest degree.

• tcoeff takes one mandatory argument and one optional argument:

� P , a polynomial given by a symbolic expression or by its list of coe�cients.

� Optionally x, a variable name (by default x).

• tcoeff(P 〈, x〉) returns the trailing coe�cient of P .

Examples.

• Input:

tcoeff([2,1,-1,0])

Output:
−1

• Input:

tcoeff(3*x�2+5*x,x)

Output:
5

• Input:

tcoeff(3*x�2+5*x*y�2,y)

Output:
3x2

5.27.12 Evaluating polynomials: peval polyEval

The peval command evaluates polynomials.
polyEval is a synonym for peval.

• peval takes two arguments:

� P , a polynomial given by the list of its coe�cients.

� a, a real number.

• peval(P, a) returns the exact or numeric value of P (a), calculated using Horner's method.

Examples.

• Input:

peval([1,0,-1],sqrt(2))

Output: √
2
√

2− 1

then input:
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normal(sqrt(2)*sqrt(2)-1)

Output:

1

• Input:

peval([1,0,-1],1.4)

Output:

0.96

5.27.13 Factoring xn in a polynomial: factor_xn

The factor_xn command factors the largest power of the variable out of a polynomial, writing it as
the product of a monomial of largest degree and a rational function having a non-zero �nite limit at
in�nity.

• factor_xn takes one argument:
P , a polynomial.

• factor_xn(P) returns P written as the product of its monomial of largest degree with a rational
function having a non-zero �nite limit at in�nity.

Example.

Input:

factor_xn(-x�4+3)

Output:

x4
(
−1 + 3x−4

)
5.27.14 GCD of the coe�cients of a polynomial: content

The content of a polynomial is the GCD (greatest common divisor) of its coe�cients. The content

command computes the content of a polynomial.

• content takes one argument:
P , a polynomial given by a symbolic expression or by the list of its coe�cients.

• content(P) returns the content of P .

Example.

Input:

content(6*x�2-3*x+9)

or:

content([6,-3,9],x))

Output:

3
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5.27.15 Primitive part of a polynomial: primpart

The primitive part of a polynomial is the polynomial divided by its content (the greatest common divisor
of its coe�cients). The primpart command computes the primitive part of a polynomial.

• primpart takes one argument:
P , a polynomial given by a symbolic expression or by the list of its coe�cients.

• primpart(P) returns the primitive part of P .

Example.

Input:

primpart(6x�2-3x+9)

or:

primpart([6,-3,9],x))

Output:
2x2 − x+ 3

5.27.16 Factoring: collect

The collect command factors polynomials over their coe�cient �elds or extensions of the �elds.

• collect takes one mandatory and one optional argument:

� P , a polynomial or a list of polynomials.

� Optionally, α, a number, such as
√
n, determining an extension �eld to the �eld of coe�cients

of P .

• collect(P 〈, α〉) returns the factored form of the polynomial (or list of polynomials), where
the factorization is done over the �eld of coe�cients (such as Q) or the smallest extension �eld
containing α (e.g. Q[α]). In complex mode (see Section 2.5.7 p.56), the �eld is complexi�ed.

The factor command (see 5.12.10) will also factor polynomials over their coe�cient �elds (or extensions
of it), but will further factor each factor of degree 2 if Sqrt is checked in the cas con�guration.

Examples.

• Factor x2 − 4 over the integers, Input:

collect(x�2-4)

Output (in real mode):
(x− 2) (x+ 2)

• Factor x2 + 4 over the integers: Input:

collect(x�2+4)

Output (in real mode):
x2 + 4

Output (in complex mode):
(x+ 2i) (x− 2i)
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• Factor x2 − 2 over the rationals: Input:

collect(x�2-2)

Output (in real mode):

x2 − 2

But if you input:

collect(sqrt(2)*(x�2-2))

you get: Output:
√

2
(
x−
√

2
)(

x+
√

2
)

• Factor x3 − 2x2 + 1 and x2 − x over the rationals. Input:

collect([x�3-2*x�2+1,x�2-x])

Output: [
(x− 1)

(
x2 − x− 1

)
, x (x− 1)

]
but:
Input:

collect((x�3-2*x�2+1)*sqrt(5))

Output:

√
5

(
x+
−
√

5− 1

2

)
(x− 1)

(
x+

√
5− 1

2

)
or:
Input:

collect(x�3-2*x�2+1,sqrt(5))

Output: (
x+
−
√

5− 1

2

)
(x− 1)

(
x+

√
5− 1

2

)

5.27.17 Square-free factorization: sqrfree

The sqrfree command provides squarefree factorizations of polynomials; that is, it factors a polynomial
as a product of powers of coprime factors, where each factor has roots of multiplicity 1 (in other words,
a factor and its derivative are coprime).

• sqrfree takes one argument:
P , a polynomial.

• sqrfree(P) returns the squarefree factorization of P .
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Examples.

• Input:

sqrfree((x�2-1)*(x-1)*(x+2))

Output: (
x2 + 3x+ 2

)
(x− 1)2

• Input:

sqrfree((x�2-1)�2*(x-1)*(x+2)�2)

Output: (
x2 + 3x+ 2

)2
(x− 1)3

5.27.18 List of factors: factors

The factors command provides the factors of a polynomial as a list.

• factors takes one argument:
P , a polynomial or a list of polynomials.

• factors(P) returns a list containing the factors of P and their exponents, or a list of such lists.

Examples.

• Input:

factors(x�2+2*x+1)

Output:

[x+ 1, 2]

• Input:

factors(x�4-2*x�2+1)

Output:

[x− 1, 2, x+ 1, 2]

• Input:

factors([x�3-2*x�2+1,x�2-x])

Output: [
x− 1 1 x2 − x− 1 1
x 1 x− 1 1

]
• Input:

factors([x�2,x�2-1])

Output:

[[x, 2] , [x− 1, 1, x+ 1, 1]]
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5.27.19 Evaluating a polynomial: horner

The horner command uses Horner's method to evaluate polynomials.

• horner takes two arguments:

� P , a polynomial given by its symbolic expression or by the list of its coe�cients.

� a, a number.

• horner(P, a) returns the value P (a), computed using Horner's method.

Example.

Input:

horner(x�2-2*x+1,2)

or:

horner([1,-2,1],2)

Output:

1

5.27.20 Rewriting in terms of the powers of (x-a): ptayl

The ptayl command �nds the Taylor expansion for a polynomial (which will be �nite).

• ptayl takes two arguments:

� P , a polynomial given by a symbolic expression or by the list of its coe�cients.

� a, a number.

• ptayl(P, a) returns the polynomial T such that P (x) = T (x− a).

Examples.

• Input:

ptayl(x�2+2*x+1,2)

Output, the polynomial T:

x2 + 6x+ 9

• Input:

ptayl([1,2,1],2)

Output:

[1, 6, 9]

i.e.; x2 + 2x+ 1 = (x− 2)2 + 6(x− 2) + 9.
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5.27.21 Computing with the exact root of a polynomial: rootof

The rootof command �nds the value of one polynomial at a root of another.

• rootof takes two arguments:
P and Q, two polynomials given by the lists of their coe�cients.

• rootof(P,Q) gives the value P (α) where α is the root of Q with largest real part (and largest
imaginary part in case of equality).

In exact computations, Xcas will rewrite rational evaluations of rootof as a unique rootof with
degree(P ) <degree(Q). If the resulting rootof is the solution of a second degree equation, it will
be simpli�ed.

Example.

Let α be the root with largest imaginary part of Q(x) = x4 + 10x2 + 1 (all roots of Q have real part
equal to 0).

• Compute
1

α
.

Input:

normal(1/rootof([1,0],[1,0,10,0,1]))

P (x) = x is represented by [1,0] and α by rootof([1,0],[1,0,10,0,1]).
Output:

−i
(
−
√

2 +
√

3
)

• Compute α2.
Input:

normal(rootof([1,0],[1,0,10,0,1])�2)

or (since P (x) = x2 is represented by [1,0,0]):
Input:

normal(rootof([1,0,0],[1,0,10,0,1]))

Output:

−2
√

6− 5

5.27.22 Exact roots of a polynomial: roots

The roots command �nds roots of polynomials with their multiplicities

• roots takes one mandatory and one optional argument:

� P , a symbolic polynomial expression.

� Optionally, x, the name of the variable (the default is x).

• roots(P 〈, x〉) returns a 2 column matrix: each row is the list consisting of a root of P and its
multiplicity.
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Examples.

• Find the roots of P (x) = x5 − 2x4 + x3.
Input:

roots(x�5-16*x�4+x�3)

Output:  3
√

7 + 8 1

−3
√

7 + 8 1
0 3


• Find the roots of x10 − 15x8 + 90x6 − 270x4 + 405x2 − 243 = (x2 − 3)5.
Input:

roots(x�10-15*x�8+90*x�6-270*x�4+405*x�2-243)

Output: [ √
3 5

−
√

3 5

]
• Find the roots of t3 − 1.
Input:

roots(t�3-1,t)

Output:  1 1
i
√
3−1
2 1

−i
√
3−1
2 1


5.27.23 Coe�cients of a polynomial de�ned by its roots: pcoeff pcoef

The pcoeff command reconstructs a polynomial from its roots.
pcoef is a synonym for pcoeff.

• pcoeff takes one argument:
roots, a list of the roots of a polynomial P .

• pcoeff(roots) returns the monic polynomial having these roots, represented as the list of its
coe�cients in decreasing order.

Example.

Input:

pcoef([1,2,0,0,3])

Output:

[1,-6,11,-6,0,0]

i.e. (x− 1)(x− 2)(x2)(x− 3) = x5 − 6x4 + 11x3 − 6x2.



5.27. POLYNOMIALS 315

5.27.24 Truncating to order n: truncate

The truncate command truncates a polynomial; i.e., it removes higher order terms.

• truncate takes two arguments:

� P , a polynomial.

� n, an integer.

• truncate(P, n) returns P truncated to order n; i.e., all terms of order greater or equal to n + 1
are removed.

truncatemay be used to transform a series expansion into a polynomial or to compute a series expansion
step by step.

Examples.

• Input:

truncate((1+x+x�2/2)�3,4)

Output:
9x4 + 16x3 + 18x2 + 12x+ 4

4

• Input:

truncate(series(sin(x)),4)

Output:
−x3 + 6x

6

Note that the returned polynomial is normalized.

5.27.25 Converting a series expansion into a polynomial: convert convertir

The convert command (see Section 5.23.26 p.277), with the option polynom, converts a series (see
Section 5.36.2 p.381) into a polynomial. It should be used for operations like drawing the graph of the
Taylor series of a function near a point.

For this purpose:

• convert takes two arguments:

� series, a series.

� polynom, the option.

• convert(series,polynom) returns series with the order_size function replaced by 0.

Examples.

• Input:

convert(taylor(sin(x)),polynom)

Output:

x− x3

6
+

x5

120
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• Input:

convert(series(sin(x),x=0,6),polynom)

Output:

x− x3

6
+

x5

120

5.27.26 Random polynomial: randpoly randPoly

The randpoly command �nds random polynomials.
randPoly is a synonym for randpoly.

• randpoly takes two optional arguments:

� Optionally x, the name of a variable (by default x).

� Optionally n, an integer (by default 10).

The order of the arguments is not important.

• randpoly(〈x〉 〈, n〉) returns a monic polynomial in the variable x of degree n, having as coe�cients
random integers evenly distributed on -99..+99.

Examples.

• Input:

randpoly(t,4)

Output (for example):

t4 + 86t3 − 97t2 − 82t+ 7

• Input:

randpoly(4)

Output (for example):

x4 − 27x3 + 26x2 − 89x+ 63

• Input:

randpoly(4,u)

Output (for example):

u4 − 49u3 − 86u2 − 64u− 30

5.27.27 Changing the order of variables: reorder

The reorder command rewrites an expression, based on the priority of variables.

• reorder takes two arguments:

� expr, an expression.

� vars, a vector of variable names.

• reorder(expr,vars) expands expr according to the order of variables given in vars.
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Example.

Input:

reorder(x�2+2*x*a+a�2+z�2-x*z,[a,x,z])

Output:

a2 + 2ax+ x2 − xz + z2

Warning.
The variables must be symbolic (if not, purge them (see Section 4.4.8 p.83) before calling reorder.

5.27.28 Random lists: ranm

The ranm command �nds lists of random integers.

• ranm takes one argument:
n, an integer.

• ranm(n) returns a list of n random integers (between -99 and +99). This list can be seen as the
coe�cients of an univariate polynomial of degree n− 1.

(See also Section 8.3.16 p.674)

Example.

Input:

ranm(3)

Output (for example):

[70, 22, 42]

5.27.29 Lagrange polynomial: lagrange interp

The lagrange command �nds the Lagrange polynomial which interpolates given data.
interp is a synonym for lagrange.

• lagrange takes two mandatory arguments and one optional argument:

� l1 and l2, two lists of the same size. These can be given as a matrix with two rows.
The �rst list (resp. row) corresponds to the abscissa values xk (k = 1..n), and the second
list (resp. row) corresponds to ordinate values yk (k = 1..n).

� Optionally x, the name of a variable (by default x).

• lagrange(l1, l2 〈, x〉) returns a polynomial expression P with respect to x of degree n-1, such that
P (xi) = yi.

Examples.

• Input:

lagrange([[1,3],[0,1]])

or:

lagrange([1,3],[0,1])
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Output:
x− 1

2

since x−1
2 = 0 for x = 1 and x−1

2 = 1 for x = 3.

• Input:

lagrange([1,3],[0,1],y)

Output:
y − 1

2

Warning.
An attempted function de�nition such as f:=lagrange([1,2],[3,4],y) does not return a function but
an expression with respect to y. To de�ne f as a function, input:

f:=unapply(lagrange([1,2],[3,4],x),x)

Avoid f(x):=lagrange([1,2],[3,4],x) since then the Lagrange polynomial would be computed each
time f is called (indeed in a function de�nition, the second member of the assignment is not evaluated).
Note also that g(x):=lagrange([1,2],[3,4]) would not work since the default argument of lagrange
would be global, hence not the same as the local variable used for the de�nition of g.

5.27.30 Natural splines: spline

De�nition

Let σn be a subdivision of a real interval [a, b]:

a = x0, x1, . . . , xn = b

The function s is a spline function of degree l if s is a function from [a, b] to R such that:

• s has continuous derivatives up to the order l − 1,

• on each interval of the subdivision σn, s is a polynomial of degree less or equal than l.

Theorem

The set of spline functions of degree l on σn is an R-vector space of dimension n+ l.

Proof.
Let s be a spline function of degree l on σn.

On [a, x1], s is a polynomial A of degree less or equal to l, hence on [a, x1], s = A(x) = a0 + a1x+
. . . alx

l and A is a linear combination of 1, x, . . . xl.
On [x1, x2], s is a polynomial B of degree less or equal to l, hence on [x1, x2], s = B(x) = b0 + b1x+

. . . blx
l. Since s has continuous derivatives up to order l − 1,

∀0 ≤ j ≤ l − 1, B(j)(x1)−A(j)(x1) = 0

therefore B(x)−A(x) = α1(x− x1)l, i.e. B(x) = A(x) +α1(x− x1)l, for some α1. De�ne the function:

q1(x) =

{
0 on [a, x1]

(x− x1)l on [x1, b]

so:

s|[a,x2] = a0 + a1x+ . . . alx
l + α1q1(x)
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On [x2, x3], s is a polynomial C of degree less or equal than l, hence on [x2, x3], s = C(x) =
c0 + c1x+ . . . clx

l.
Since s has continuous derivatives up to order l − 1:

∀0 ≤ j ≤ l − 1, C(j)(x2)−B(j)(x2) = 0

therefore C(x)−B(x) = α2(x− x2)n or C(x) = B(x) + α2(x− x2)n.
De�ne the function:

q2(x) =

{
0 on [a, x2]

(x− x2)l on [x2, b]

Hence: s|[a,x3] = a0 + a1x+ . . . alx
l + α1q1(x) + α2q2(x)

Continuing, de�ne the functions

∀1 ≤ j ≤ n− 1, qj(x) =

{
0 on [a, xj ]

(x− xj)l on [xj , b]

Then
s|[a,b] = a0 + a1x+ . . . alx

l + α1q1(x) + . . .+ αn−1qn−1(x)

and so s is a linear combination of n+ l independent functions 1, x, ..xl, q1, ..qn−1.
It follows that the set of all possible s is a real vector space of dimension n+ l.

Types of spline functions

If you want to interpolate a function f on σn by a spline function s of degree l, then s must satisfy
s(xk) = yk = f(xk) for all 0 ≤ k ≤ n. This gives n+ 1 conditions, leaving l− 1 degrees of freedom. You
can therefore add l − 1 conditions, these conditions are on the derivatives of s at a and b.

Hermite interpolation, natural interpolation and periodic interpolation are three kinds of interpola-
tion obtained by specifying three kinds of constraints. The uniqueness of the solution of the interpolation
problem can be proved for each kind of constraints.

If l is odd (l = 2m− 1), there are 2m− 2 degrees of freedom. The constraints are de�ned by:

• Hermite interpolation:

∀1 ≤ j ≤ m− 1, s(j)(a) = f (j)(a), s(j)(b) = f (j)(b)

• Natural interpolation:
∀m ≤ j ≤ 2m− 2, s(j)(a) = s(j)(b) = 0

• periodic interpolation:
∀1 ≤ j ≤ 2m− 2, s(j)(a) = s(j)(b)

If l is even (l = 2m), there are 2m− 1 degrees of freedom. The constraints are de�ned by:

• Hermite interpolation:

∀1 ≤ j ≤ m− 1, s(j)(a) = f (j)(a), s(j)(b) = f (j)(b)

and
s(m)(a) = f (m)(a)

• Natural interpolation:
∀m ≤ j ≤ 2m− 2, s(j)(a) = s(j)(b) = 0

and
s(2m−1)(a) = 0

• Periodic interpolation:
∀1 ≤ j ≤ 2m− 1, s(j)(a) = s(j)(b)
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5.27.31 Natural interpolation: spline

The spline command �nds the natural spline.

• spline takes four arguments:

� Lx, a list of abscissas (in increasing order).

� Ly, a list of ordinates (the same length as Lx).

� x, a variable name.

� l, an integer for the degree.

• spline(Lx, Ly, x, l) returns the natural spline function s of degree l, where s(Lx,j) = Ly,j for
j = 0..length(Lx), as a list of polynomials, each polynomial being valid on the corresponding
interval determined by Lx.

Examples.

• Find the natural spline of degree 3, crossing through the points x0 = 0, y0 = 1, x1 = 1, y1 = 3 and
x2 = 2, y2 = 0.
Input:

spline([0,1,2],[1,3,0],x,3)

Output: [
−5

4
x3 +

13

4
x+ 1,

5

4
(x− 1)3 − 15

4
(x− 1)2 − x− 1

2
+ 3

]
Where the �rst polynomial, −5

4x
3 + 13

4 x + 1, is de�ned on the interval [0, 1] (the �rst interval

de�ned by the list [0, 1, 2]) and the second polynomial 5
4 (x− 1)3− 15

4 (x− 1)2− x−1
2 + 3 is de�ned

on the interval [1, 2], the second interval de�ned by the list [0, 1, 2].

• Find the natural spline of degree 4, crossing through the points x0 = 0, y0 = 1, x1 = 1, y1 = 3,
x2 = 2, y2 = 0 and x3 = 3, y3 = −1.
Input:

spline([0,1,2,3],[1,3,0,-1],x,4)

Output: [
− 62

121
x4 +

304

121
x+ 1,

201

121
(x− 1)4 − 248

121
(x− 1)3 − 372

121
(x− 1)2 +

56

121
(x− 1) + 3,

−139

121
(x− 2)4 +

556

121
(x− 2)3 +

90

121
(x− 2)2 − 628

121
(x− 2)

]

Output is a list of three polynomial functions of x, de�ned respectively on the intervals [0, 1], [1, 2]
and [2, 3].

• Find the natural spline interpolation of cos on [0, π/2, 3π/2].
Input:

spline([0,pi/2,3*pi/2],cos([0,pi/2,3*pi/2]),x,3)
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Output: [
4x3

3π3
− 7x

3π
+ 1,

−
2
(
x− π

2

)3
3π3

+
2
(
x− π

2

)2
π2

−
4
(
x− π

2

)
3π

]

5.27.32 Rational interpolation: thiele

The thiele command �nds the rational interpolation.

• thiele takes two arguments:

� data, a matrix with two columns. The �rst column contains the x coordinates and the second
column contains the corresponding y coordinates.
Instead of a single matrix, the data can be given as a vector of x coordinates and a vector of
y coordinates (in which casethe call to thiele has three arguments).

� v, an identi�er, number or symbolic expression (default: x).

• thiele(data,v) returns R(v) where R is the rational interpolant.

Instead of a single matrix data, two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) This method
computes Thiele interpolated continued function based on the concept of reciprocal di�erences.

It is not guaranteed that R is continuous, i.e. it may have singularities in the shortest segment which
contains all components of the x coordinates.

Examples.

• Input:

thiele([[1,3],[2,4],[4,5],[5,8]],x)

Output:
19x2 − 45x− 154

18x− 78

• Input:

thiele([1,2,a],[3,4,5],3)

Output:
13a− 29

3a− 7

• In the following example, data is obtained by sampling the function f(x) = (1− x4) e1−x
3
.

Input:

data_x:=[-1,-0.75,-0.5,-0.25,0,

0.25,0.5,0.75,1,1.25,1.5,1.75,2];

data_y:=[0.0,2.83341735599,2.88770329586,

2.75030303645,2.71828182846,2.66568510781,

2.24894558809,1.21863761951,0.0,-0.555711613283,

-0.377871362418,-0.107135851128,-0.0136782294833];

thiele(data_x,data_y,x)
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Output: (
−1.55286115659x6 + 5.87298387514x5 − 5.4439152812x4 + 1.68655817708x3

−2.40784868317x2 − 7.55954205222x+ 9.40462512097
)
/(

x6 − 1.24295718965x5 − 1.33526268624x4 + 4.03629272425x3

−0.885419321x2 − 2.77913222418x+ 3.45976823393
)

5.27.33 Rational interpolation without poles: ratinterp

The ratinterp command computes a family of pole-free rational functions which interpolate given data.
Rational interpolation usually gives better results than the classic polynomial interpolation, which may
oscillate highly in some cases.

• ratinterp takes up to three arguments:

� Matrix data with 2 columns with rows corresponding to points (xk, yk), k = 0, 1, . . . , n, or
the sequence of lists data_x = [x0, x1, . . . , xn] and data_y = [y0, y1, . . . , yn], where a = x0 <
x1 < · · · < xn = b,

� an identi�er var, which may also be a number, symbolic expression or list of numbers a
(optional, by default x),

� an integer d such that 0 ≤ d ≤ n (optional, by default 0).

• ratinterp(data〈, var, d〉) or ratinterp(data_x,data_y〈, var, d〉) returns a rational interpolation
r(a) of the given points using the method of Floater and Hormann (2006). If a is a list of
numbers a1, a2, . . . , am, then the list [r(a1) . . . , r(am)] is returned. There are at most n+1 distinct
interpolants which can be speci�ed by varying the parameter d.

Examples.

• Input:

ratinterp([1,3,5,8],[2,-1,3,4],x,1)

Output:
−19x3 + 288x2 − 1133x+ 1200

6x2 − 48x+ 210

• Input:

ratinterp([1,3,5,8],[2,-1,3,4],x,2)

Output:

−29x3

168
+

17x2

7
− 1507x

168
+

61

7

5.27.34 Trigonometric interpolation: triginterp

The triginterp command computes a trigonometric polynomial which interpolates given data.

• triginterp takes four arguments:

� L, a list of numbers.

� a, a number (the beginning of an interval).

� b, a number (the end of the interval).

� x, the name of a variable.



5.27. POLYNOMIALS 323

The last three arguments can also be given as x = a..b.

• triginterp(L, a, b, x) or triginterp(L, x = a..b) returns the trigonometric polynomial that
interpolates data given in the list L. It is assumed that the list L contains ordinate components
of the points with equidistant abscissa components between a and b such that the �rst element of
L corresponds to a and the last element to b.

Example.

For example, y may be a list of experimental measurements of some quantity taken in regular inter-
vals, with the �rst observation at time t = a and the last observation at time t = b. The resulting
trigonometric polynomial has period

T =
n (b− a)

n− 1
,

where n is the number of observations (n=size(y)). As a speci�c example, assume that the following
data is obtained by measuring the temperature every three hours:

hour of the day 0 3 6 9 12 15 18 21

temperature (◦C) 11 10 17 24 32 26 23 19

Furthermore, assume that an estimate of the temperature at 13:45 is required. To obtain a trigonometric
interpolation of the data:
Input:

tp:=triginterp([11,10,17,24,32,26,23,19],x=0..21)

Output:

81

4
+

1

8

(
−21
√

2− 42
)

cos

(
1

12
πx

)
+

1

8

(
−11
√

2− 12
)

sin

(
1

12
πx

)
+

3

4
cos

(
1

6
πx

)
−

7

4
sin

(
1

6
πx

)
+

1

8

(
21
√

2− 42
)

cos

(
1

4
πx

)
+

1

8

(
−11
√

2 + 12
)

sin

(
1

4
πx

)
+

cos
(
1
3πx

)
2

Now a temperature at 13:45 hrs can be approximated with the value of tp for x = 13.75.
Input:

tp | x=13.75

Output:

29.4863181684

If one of the input parameters is inexact, the result will be inexact too. For example:
Input:

Digits:=3:;

triginterp([11,10,17,24,32,26,23,19],x=0..21.0)

Output:

20.2− 8.96 cos (0.262x)− 3.44 sin (0.262x) + 0.75 cos (0.524x)−
1.75 sin (0.524x)− 1.54 cos (0.785x)− 0.445 sin (0.785x) + 0.5 cos (1.05x)
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5.27.35 Least-squares polynomial approximation: fitpoly

The fitpoly command is used for replacing tabular data or a function by a polynomial of suit-
able/speci�ed degree.

Smoothing data: polynomial regression

To �nd a polynomial that �ts tabular data:

• fitpoly takes one mandatory argument and two optional arguments:

� data, a two-column matrix or a sequence of two lists, representing the x- and y-values of data
points (x0, y0), (x1, y1), . . . , (xm, ym).

� Optionally, x[=a..b] or a..b, which is a variable x and optionally its domain [a, b] or a
segment [a, b] (by default, unset).

� Optionally, a sequence of options, each of which may be one of:

∗ limit=N , a nonnegative integer, which is the maximal degree for the resulting polyno-
mial (by default, N = 15).

∗ degree=d, where d is a nonnegative integer, which is the desired degree of the resulting
polynomial (by default, unset).

∗ threshold=tol, a positive real number, which is used for �nding an appropriate �tting
degree, as described below (by default, threshold=0.01, ignored when d is set).

∗ length=l, a positive integer, which is used for �nding an appropriate �tting degree, as
described below (by default, length=5, ignored when d is set).

• If d is set, then fitpoly returns the polynomial of degree min{d,N} which best �ts the data in
the least-squares sense.

• If d is not set, then a polynomial pn of modest degree n ≤ N but a good error suppression (thus
representing the trend of the data) is chosen using tol and l such that raising the degree does not
make a signi�cant improvement to the approximation. Precisely, n is the �rst nonnegative integer
such that

stddev[σ2n, σ
2
n+1, . . . , σ

2
n+l−1]

mean[σ20, σ
2
1, . . . , σ

2
n+l−1]

≤ tol ,

where σ2k is the sum of squared residuals
∑m

i=0(yi − pk(xi))2 and pk is the best-�tting polynomial
of degree k. Ideally, n is the smallest degree for which σ2n ≈ σ2n+1 ≈ σ2n+2 ≈ · · · , meaning that
higher-order polynomials would over�t on the noise.

• Lowering the parameter length, as well as increasing threshold, would make the algorithm more
greedy, e�ectively lowering the degree of the output polynomial. Note that when degree is set,
these two parameters are ignored.

• If no variable is speci�ed, then fitpoly returns the list of polynomial coe�cients.

• If a segment [a, b] is given, then only the data points (xk, yk) for which a ≤ xk ≤ b are considered.

subsubsection*Example.
We �nd a polynomial which best approximates the data infected by noise. The data is produced by
evaluating the polynomial f(x) = 1

100x
4 − 1

5x
3 + 6x at 100 points between x = 1 and x = 20.8. The

noise is generated by a random, normally-distributed variable.
Input:

f(x):=x�4/100-x�3/5+6x:;

x:=[(1+0.2*k)$(k=0..99)]:;

noise:=randvector(100,randvar(normal,mean=0,stddev=10)):;

y:=apply(f,x)+noise:;

fitpoly(x,y)
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We obtain the list of polynomial coe�cients, starting with the leading coe�cient.
Output:

[0.011665,−0.266955, 0.844543, 2.44967, 3.94846]

Note that the polynomial of degree 4 is returned (it has �ve coe�cients), which is, in this case, optimal
for data smoothing.

When approximating only the data in segment [1, 10], we obtain a polynomial of 9th degree (the
data curvature is now much smaller and the noise is more prominent).
Input:

length(fitpoly(x,y,1..10))

Output:

10

To make the approximating polynomial less sensitive to noise, we increase the threshold value tol.
Input:

fitpoly(x,y,t=1..10,threshold=0.05)

Output:

−1.30984955412t2 + 9.3259443857t− 2.6482979067

Alternatively, we could set the parameter length to a smaller value, e.g. 3.

Approximating functions by polynomials

To approximate a continuous function f : [a, b] → R by a polynomial pn of certain degree n which
minimizes the error in the sense of L2-norm:

• fitpoly takes two mandatory arguments and one optional argument:

� f(x), which is an univariate expression representing the function f .

� a..b, which is the domain [a, b] of f .

� Optionally, a sequence of options, each of which may be one of:

∗ limit=N , as before.

∗ degree=d, as before.

∗ ε or threshold=ε, which is a positive real number such that for the resulting polynomial
pn the following holds:

‖f − pn‖2 =

∫ b

a
(f(x)− pn(x))2dx ≤ ε

(by default, ε = 10−8). This parameter is ignored when d is set.

• fitpoly �nds pn with smallest n ≤ N such that ‖f − pn‖2 ≤ ε. If such n does not exist, then pN
is returned.

• If the parameter d is set, then pd which minimizes ‖f − pd‖ among all polynomials of degree d is
returned.

• Polynomial approximation is fast and robust even for large d and N resp. for small ε.
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Examples.

Input:

fitpoly(cos(x),0..pi/2,1e-2)

Output:

−0.244320054366x3 − 0.336364730985x2 + 1.13004492821x− 0.0107731059645

Input:

f:=exp(-7x)*5x:; g:=fitpoly(f,0..1,degree=8)

Output:

− 21.717636069x8 + 107.930784832x7 − 232.831655404x6

+ 286.778708741x5 − 222.236631985x4 + 111.004732684x3

− 33.8769709361x2 + 4.95239715728x+ 0.000500886757642

The mean absolute error of the above approximation can be estimated as follows.
Input:

sqrt(romberg((f-g)�2,x=0..1))

Output:
9.3456615562× 10−5

5.27.36 Minimax polynomial approximation: minimax

The minimax command �nds the minimax polynomial approximation of a continuous function on a
bounded interval using the Remez algorithm.

• minimax takes three mandatory argument and one optional argument:

� expr, a univariate expression representing a continuous function.

� var=a..b, a variable and the interval.

� n, a positive integer, the degree of the resulting polynomial.

� Optionally limit=m, where m is a positive integer specifying the number of iterations of the
Remez algorithm. (By default, the number of iterations is unlimited.)

• minimax(expr,var=a..b,n 〈limit=m〉) returns the minimax polynomial approximation of degree n
or lower that approximates expr on [a, b]. The largest absolute error of the resulting polynomial
will be printed in the message area.

Since the coe�cients of p are computed numerically, you should avoid setting n unnecessary high as it
may result in a poor approximation due to the roundo� errors.

Example.

Input:

minimax(sin(x),x=0..2*pi,10)

Output:

max. absolute error: 5.85231264871e-06

5.85141928628× 10−6 + 0.999777263417x+ 0.001400152516x2

− 0.170089663468x3 + 0.0042684302281x4 + 0.00525794778108x5

+ 0.00135760211866x6 − 0.000570502070425x7

+
(
6.0729711779× 10−5

)
x8 −

(
2.14787415748× 10−6

)
x9

−
(
1.49765719172× 10−15

)
x10
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5.28 Arithmetic and polynomials

Polynomials are represented by expressions or by lists of coe�cients in decreasing power order. In the
�rst case, for instructions requiring a main variable (like extended gcd computations), the variable used
by default is x if not speci�ed. For coe�cients in Z/nZ, use % n for each coe�cient of the list or apply
it to the entire expression de�ning the polynomial.

5.28.1 The divisors of a polynomial: divis

The divis command �nds the divisors of a polynomial.

• divis takes one argument:
P , a polynomial or a list of polynomials.

• divis(P) and returns the list of the divisors of P .

Examples.

• Input:

divis(x�4-1)

Output: [
1, x− 1, x+ 1, (x− 1) (x+ 1) , x2 + 1, (x− 1)

(
x2 + 1

)
,

(x+ 1)
(
x2 + 1

)
, (x− 1) (x+ 1)

(
x2 + 1

) ]
• Input:

divis([x�2,x�2-1])

Output: [[
1, x, x2

]
, [1, x− 1, x+ 1, (x− 1) (x+ 1)]

]
5.28.2 Euclidean quotient: quo Quo

The quo command �nds the quotient of the Euclidean division of two polynomials.

• quo takes two mandatory arguments and one optional argument:

� P and Q, two polynomials.

� Optionally x, the variable (by default x), if P and Q are given as expressions.

• quo(P,Q 〈, x〉) returns the Euclidean quotient of P divided by Q.

Examples.

• Input:

quo(x�2+2*x +1,x)

Output:

x+ 2

• Input:
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quo(y�2+2*y +1,y,y)

Output:
y + 2

• In list representation, to get the quotient of x2 + 2x+ 4 by x2 + x+ 2 you can also input:

quo([1,2,4],[1,1,2])

Output:
[1]

that is to say, the polynomial 1.

Quo is the inert form of quo; namely, it evaluates to quo for later evaluation. It is used when Xcas

is in Maple mode (see Section 2.5.2 p.54) to compute the euclidean quotient of the division of two
polynomials with coe�cients in Z/pZ using Maple-like syntax.

Examples.

• Input (in Xcas mode):

Quo(x�2+2*x+1,x)

Output:
quo

(
x2 + 2x+ 1, x

)
• Input (in Maple mode):

Quo(x�3+3*x,2*x�2+6*x+5) mod 5

Output:
−2x+ 1

This division was done using modular arithmetic, unlike with

quo(x�3+3*x,2*x�2+6*x+5) mod 5

where the division is done in Z[X] and reduced after to:

3x+ 6

If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is done e.g. by:

quo((x�3+3*x)% 5,(2x�2+6x+5)%5)

5.28.3 Euclidean remainder: rem Rem

The rem command �nds the remainder of the Euclidean division of two polynomials.

• rem takes two mandatory arguments and one optional argument:

� P and Q, two polynomials.

� Optionally x, the variable (by default x), if P and Q are given as expressions.

• rem(P,Q 〈, x〉) returns the Euclidean remainder of P divided by Q.



5.28. ARITHMETIC AND POLYNOMIALS 329

Examples.

• Input:

rem(x�3-1,x�2-1)

Output:

x− 1

• To have the remainder of x2 + 2x+ 4 by x2 + x+ 2, you can also do:
Input:

rem([1,2,4],[1,1,2])

Output:

[1, 2]

i.e. the polynomial x+ 2.

Rem is the inert form of rem; namely, it evaluates to rem for later evaluation. It is used when Xcas

is in Maple mode (see Section 2.5.2 p.54) to compute the euclidean remainder of the division of two
polynomials with coe�cients in Z/pZ using Maple-like syntax.

Examples.

• Input (in Xcas mode):

Rem(x�3-1,x�2-1)

Output:

rem
(
x3 − 1, x2 − 1

)
• Input (in Maple mode):

Rem(x�3+3*x,2*x�2+6*x+5) mod 5

Output:

2x

This division was done using modular arithmetic, unlike with

rem(x�3+3*x,2*x�2+6*x+5) mod 5

where the division is done in Z[X] and reduced after to:

12x

If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is entered, for example, by:

rem((x�3+3*x)% 5,(2x�2+6x+5)%5)
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5.28.4 Quotient and remainder: quorem divide

The quorem command �nds the quotient and remainder of the Euclidean division of two polynomials.
divide is a synonym for quorem.

• quorem takes two mandatory arguments and one optional argument:

� P and Q, two polynomials.

� Optionally x, the variable (by default x), if P and Q are given as expressions.

• quorem(P,Q 〈, x〉) returns a list consisting of the Euclidean quotient and the Euclidean remainder
of P divided by Q.

Examples.

• Input:

quorem([1,2,4],[1,1,2])

Output:

[[]1[], []1, 2[]]

• Input:

quorem(x�3-1,x�2-1,x)

Output:

[x, x− 1]

5.28.5 GCD of two polynomials with the Euclidean algorithm: gcd Gcd

The gcd command computes the gcd (greatest common divisor) of polynomials. (See also 5.5.1 for GCD
of integers.)

• gcd takes an unspeci�ed number or arguments:
polys, a sequence or list of polynomials.

• gcd(polys) returns the greatest common divisor of the polynomials in polys.

Examples.

• Input:

gcd(x�2+2*x+1,x�2-1)

Output:

x+ 1

• Input:

gcd(x�2-2*x+1,x�3-1,x�2-1,x�2+x-2)

or:

gcd([x�2-2*x+1,x�3-1,x�2-1,x�2+x-2])
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Output:

x− 1

• For polynomials with modular coe�cients:
Input (e.g.):

gcd((x�2+2*x+1) mod 5,(x�2-1) mod 5)

Output:

(1 % 5)x+ 1 % 5

5.28.6 GCD of two polynomials with the Euclidean algorithm: Gcd

Gcd is the inert form of gcd; namely, it evaluates to gcd for later evaluation. It is used when Xcas is in
Maple mode (see Section 2.5.2 p.54) to compute the gcd of polynomials with coe�cients in Z/pZ using
Maple-like syntax.

Examples.

• Input (in Xcas mode):

Gcd(x�3-1,x�2-1)

Output:

gcd
(
x3 − 1, x2 − 1

)
• Input (in Maple mode):

Gcd(x�2+2*x,x�2+6*x+5) mod 5

Output:

1

5.28.7 Choosing the GCD algorithm of two polynomials: ezgcd heugcd modgcd
psrgcd

The ezgcd, heugcd, modgcd and psrgcd commands compute the gcd (greatest common divisor) of two
univariate or multivariate polynomials with coe�cients in Z or Z[i] with di�erent algorithms.

• ezgcd, heugcd, modgcd and psrgcd take two arguments:
P and Q, two polynomials.

• ezgcd(P,Q) returns the gcd of P and Q computed with the ezgcd algorithm.

• heugcd(P,Q) returns the gcd of P and Q computed with the heuristic algorithm.

• modgcd(P,Q) returns the gcd P and Q computed with the modular algorithm.

• psrgcd(P,Q) returns the gcd of P and Q computed with the sub-resultant algorithm.
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Examples.

• Input:

ezgcd(x�2-2*x*y+y�2-1,x-y)

or:

heugcd(x�2-2*x*y+y�2-1,x-y)

or:

modgcd(x�2-2*x*y+y�2-1,x-y)

or:

psrgcd(x�2-2*x*y+y�2-1,x-y)

Output:
1

• Input:

ezgcd((x+y-1)*(x+y+1),(x+y+1)�2)

or:

heugcd((x+y-1)*(x+y+1),(x+y+1)�2)

or:

modgcd((x+y-1)*(x+y+1),(x+y+1)�2)

Output:
x+ y + 1

• Input:

psrgcd((x+y-1)*(x+y+1),(x+y+1)�2)

Output:
−x− y − 1

• Input:

ezgcd((x+1)�4-y�4,(x+1-y)�2)

Output:

"GCD not successful Error: Bad Argument Value"

But:
input:

heugcd((x+1)�4-y�4,(x+1-y)�2)

or:

modgcd((x+1)�4-y�4,(x+1-y)�2)

or:

psrgcd((x+1)�4-y�4,(x+1-y)�2)

Output:
x− y + 1
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5.28.8 LCM of two polynomials: lcm

The lcm command computes the LCM (Least Common Multiple) of polynomials. (See 5.5.3 for LCM
of integers).

• lcm takes an unspeci�ed number of arguments:
polys, a sequence or list of polynomials.

• lcm(polys) returns the least common multiple of the polynomials in polys.

Examples.

• Input:

lcm(x�2+2*x+1,x�2-1)

Output:

(x+ 1)
(
x2 − 1

)
• Input:

lcm(x,x�2+2*x+1,x�2-1)

or:

lcm([x,x�2+2*x+1,x�2-1])

Output: (
x2 + x

) (
x2 − 1

)
5.28.9 Bézout's Identity: egcd gcdex

Bézout's Identity (also known as Extended Greatest Common Divisor) states that for two polynomials
A(x), B(x) with greatest common divisor D(x), there exist polynomials U(x) and V (x) such that

U(x) ∗A(x) + V (x) ∗B(x) = D(x)

The egcd computes the greatest common divisor of two polynomials as well as the polynomials U(x)
and V (x) in the above identity.
gcdex is a synonym for egcd.

• egcd takes two mandatory arguments and one optional argument:

� A and B, polynomials given as expressions or lists of coe�cients in decreasing order.

� Optionally, if the polynomials are expressions, x, the variable (which defaults to x).

• egcd(A,B 〈, x〉) returns a list [U, V,D], where D is the greatest common divisor of A and B, and
U and V are the polynomials from Bézout's identity.
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Examples.

• Input:

egcd(x�2+2*x+1,x�2-1)

Output:

[1,−1, 2x+ 2]

• Input:

egcd([1,2,1],[1,0,-1])

Output:

[[1] , [−1] , [2, 2]]

• Input:

egcd(y�2-2*y+1,y�2-y+2,y)

Output:

[y − 2,−y + 3, 4]

• Input:

egcd([1,-2,1],[1,-1,2])

Output:

[[1,−2] , [−1, 3] , [4]]

5.28.10 Solving au+bv=c over polynomials: abcuv

A consequence of Bézout's identity is that given polynomials A(x), B(x) and C(x), there exist polyno-
mials U(x) and V (x) such that

C(x) = U(x) ·A(x) + V (x) ·B(x)

exactly when C(x) is a multiple of the greatest common divisor of A(x) and B(x). The abcuv command
solves this polynomial equation.

• abcuv takes three mandatory and one optional argument:

� A, B and C, three polynomials given as expressions or lists of coe�cients in decreasing order,
where C is a multiple of the greatest common divisor of A and B.

� Optionally if the polynomials are expressions, x, the variable (which defaults to x).

• abcuv(A,B,C 〈, x〉) returns a list of two expressions [U, V ] such that C = U ·A+ V ·B.
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Examples.

• Input:

abcuv(x�2+2*x+1 ,x�2-1,x+1)

Output: [
1

2
,−1

2

]
• Input:

abcuv(x�2+2*x+1 ,x�2-1,x�3+1)

Output: [
−x+ 2

2
,
3

2
x

]
• Input:

abcuv([1,2,1],[1,0,-1],[1,0,0,1])

Output:

[[]
1

2
,−1

2
,
1

2
[], []− 1

2
,
1

2
,−1

2
[]]

5.28.11 Chinese remainders: chinrem

The Chinese Remainder Theorem states that if R(x) and Q(x) are relatively prime polynomials, then
for any polynomials A(x) and B(x), there exists a polynomial P (x) such that:

P (x) = A(x) (mod R)(x)

P (x) = B(x) (mod Q)(x)

The chinrem command �nds the polynomial P .

• chinrem takes two mandatory arguments and one optional argument:

� [A,R] and [B,Q], two lists, each consisting of two polynomials given by expressions or lists
of coe�cients in decreasing order.

� Optionally, if the polynomials are expressions, x, the main variable (by default x).

• chinrem([A,R], [B,Q] 〈, x〉) returns the list [P, S], where P and S are polynomials such that:

S = RQ

P = A (mod R)

P = B (mod Q)

If R and Q are coprime, a solution P always exists and all the solutions are congruent modulo
S = R ·Q.
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Examples.

• Solve: {
P (x) = x mod (x2 + 1)
P (x) = x− 1 mod (x2 − 1)

Input:

chinrem([[1,0],[1,0,1]],[[1,-1],[1,0,-1]])

Output: [[
−1

2
, 1,−1

2

]
, [1, 0, 0, 0,−1]

]
or:

chinrem([x,x�2+1],[x-1,x�2-1])

Output: [
−x

2

2
+ x− 1

2
, x4 − 1

]

hence P (x) = −x
2 − 2x+ 1

2
(mod x4 − 1)

• Input:

chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]])

Output:

[[−1,−1, 0, 1] , [1, 1, 2, 1, 1]]

or:

chinrem([y+2,y�2+1],[y+1,y�2+y+1],y)

Output: [
−y3 − y2 + 1, y4 + y3 + 2y2 + y + 1

]
5.28.12 Cyclotomic polynomial: cyclotomic

For a positive integer n, cyclotomic polynomial of index n is the monic polynomial whose roots are
exactly the primitive nth roots of unity (an nth root of unity is primitive if the set of its powers is the
set of all the nth roots of unity). Note that this will divide xn − 1, whose roots are all the nth roots of
unity.

The cyclotomic command computes cyclotomic polynomials.

• cyclotomic takes one argument:
n, an integer.

• cyclotomic(n) returns the list of the coe�cients of the cyclotomic polynomial of index n.
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Examples.

• Let n = 4; the fourth roots of unity are: {1, i,−1,−i} and the primitive roots are: {i,−i}. Hence,
the cyclotomic polynomial of index 4 is (x− i)(x+ i) = x2 + 1.
Input (for veri�cation):

cyclotomic(4)

Output:

[1, 0, 1]

• Input:

cyclotomic(5)

Output:

[1, 1, 1, 1, 1]

Hence, the cyclotomic polynomial of index 5 is x4 + x3 + x2 + x + 1, which divides x5 − 1 since
(x− 1) ∗ (x4 + x3 + x2 + x+ 1) = x5 − 1.

• Input:

cyclotomic(10)

Output:

[1,−1, 1,−1, 1]

Hence, the cyclotomic polynomial of index 10 is x4 − x3 + x2 − x+ 1 and

(x5 − 1) ∗ (x+ 1) ∗ (x4 − x3 + x2 − x+ 1) = x10 − 1

• Input:

cyclotomic(20)

Output:

[1, 0,−1, 0, 1, 0,−1, 0, 1]

Hence, the cyclotomic polynomial of index 20 is x8 − x6 + x4 − x2 + 1 and

(x10 − 1)(x2 + 1) ∗ (x8 − x6 + x4 − x2 + 1) = x20 − 1

5.28.13 Sturm sequences and number of sign changes of P on (a, b]: sturm sturmseq
sturmab

Given a polynomial or rational expression P (x), the Sturm sequence is the sequence P1(x), P2(x), . . .
given by the recurrence relation:

• P1(x) is the opposite of the euclidean division remainder of P (x) by P ′(x).

• P2(x) is the opposite of the euclidean division remainder of P ′(x) by P1(x).

• . . .



338 CHAPTER 5. THE CAS FUNCTIONS

If P (x) is a polynomial of degree n, then this sequence has at most n terms.

If P (x) is square-free, then Sturm's Theorem gives a way to use the sequence to determine the
number of zeros of P (x) on an interval.

The sturm command can �nd either the Sturm sequence (in which case it can also be called as
sturmseq) or the number of zeros in an interval (in which case it can also be called as sturmab).

To �nd the Sturm sequence:

• sturm (or sturmseq) takes one mandatory argument and one optional argument:

� P , a polynomial or rational expression.

� Optionally, x, a variable name (by default x).

• sturm(P 〈, x〉) (or sturmseq(P 〈, x〉)) returns the list of the Sturm sequences and multiplicities
of the square-free factors of P .

Examples.

• Input:

sturm(2*x�3+2)

or:

sturm(2*y�3+2,y)

Output:

[2, [[1, 0, 0, 1] , [3, 0, 0] ,−9] , 1]

The �rst term gives the content of the numerator (here 2), then the Sturm sequence (in list rep-
resentation) [x3 + 1, 3x2,−9].

• Input:

sturm((2*x�3+2)/(3*x�2+2),x)

or:

sturmseq((2*x�3+2)/(3*x�2+2),x)

Output:

[2, [[1, 0, 0, 1] , [3, 0, 0] ,−9] , 1, [[3, 0, 2] , [6, 0] ,−72]]

The �rst term gives the content of the numerator (here 2), then the Sturm sequence of the
numerator ([[1,0,0,1],[3,0,0],-9]), then the content of the denominator (here 1) and the Sturm
sequence of the denominator ([[3,0,2],[6,0],-72]). As expressions, [x3 + 1, 3x2,−9] is the Sturm
sequence of the numerator and [3x2 + 2, 6x,−72] is the Sturm sequence of the denominator.

• Input:

sturm((x�3+1)�2,x)

or:

sturmseq((x�3+1)�2,x)
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Output:

[1, 1]

• Input:

sturm(3*(3*x�3+1)/(2*x+2),x)

Output:

[3, [[3, 0, 0, 1] , [9, 0, 0] ,−81] , 2, [[1, 1] , 1]]

The �rst term gives the content of the numerator (here 3),
the second term gives the Sturm sequence of the numerator (here 3x�3+1, 9x�2, -81),
the third term gives the content of the denominator (here 2),
the fourth term gives the Sturm sequence of the denominator (x+1,1).

• Input:

sturm(2*x�3+2,x)

or:

sturmseq(2*x�3+2,x)

Output:

[2, [[1, 0, 0, 1] , [3, 0, 0] ,−9] , 1]

• Input:

sturm((2*x�3+2)/(x+2),x)

or:

sturmseq((2*x�3+2)/(x+2),x)

Output:

[2, [[1, 0, 0, 1] , [3, 0, 0] ,−9] , 1, [[1, 2] , 1]]

To compute the number of zeros in an interval:

• sturm (or sturmab) takes four arguments:

� P , a polynomial expression.

� x, a variable name.

� a and b, two real or complex numbers.

• If a and b are reals, sturm(P, x, a, b) (or sturmab(P, x, a, b)) returns the number of sign changes
of P on (a, b]; In other words, it returns the number of zeros in [a, b) of the polynomial P/G where
G = gcd(P, P ′).

• if a or b is complex, sturm(P, x, a, b) (or sturmab(P, x, a, b)) returns the number of complex roots
of P in the rectangle having a and b as opposite vertices.
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Examples.

• Input:

sturm(x�2*(x�3+2),x,-2,0)

or:

sturmab(x�2*(x�3+2),x,-2,0)

Output:
1

• Input:

sturm(x�2*(x�3+2),x,-2,0)

or:

sturmab(x�2*(x�3+2),x,-2,0)

Output:
1

• Input:

sturm(x�3-1,x,-2-i,5+3i)

or:

sturmab(x�3-1,x,-2-i,5+3i)

Output:
3

• Input:

sturm(x�3-1,x,-i,5+3i)

Input:

sturmab(x�3-1,x,-i,5+3i)

Output:
1

Warning!!!!
The polynomial is de�ned by its symbolic expression.
Input:

sturm([1,0,0,1],x)

or:

sturm([1,0,0,2,0,0],x,-2,0)

Output:

Bad argument type
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5.28.14 Sylvester matrix of two polynomials and resultant: sylvester resultant

Given two polynomials A(x) =
∑i=n

i=0 aix
i and B(x) =

∑i=m
i=0 bix

i, their Sylvester matrix is a square
matrix of size m+ n where m=degree(B(x)) and n=degree(A(x)). The m �rst lines are made with the
A(x) coe�cients, so that:

s11 = an s12 = an−1 · · · s1(n+1) = a0 0 · · · 0

s21 = 0 s22 = an · · · s2(n+1) = a1 s2(n+2) = a0 · · · 0
...

...
...

. . .
...

. . .
...

sm1 = 0 sm2 = 0 · · · sm(n+1) = am−1 sm(n+2) = am−2 · · · a0


and the n further lines are made with the B(x) coe�cients, so that: s(m+1)1 = bm s(m+1)2 = bm−1 · · · s(m+1)(m+1) = b0 0 · · · 0

...
...

...
. . .

...
. . .

...
s(m+n)1 = 0 s(m+n)2 = 0 · · · s(m+n)(m+1) = bn−1 bn−2 · · · b0


The determinant of a Sylvester polynomial is the resultant of the two polynomials. If A and B have

integer coe�cients with non-zero resultant r, then the polynomials equation

AU +BV = r

has a unique solution U, V such that degree(U) <degree(B) and degree(V ) <degree(A), and this solution
has integer coe�cients.
Remark.
The discriminant of a polynomial is the resultant of the polynomial and its derivative.

The sylvester command computes Sylvester matrices.

• sylvester takes two arguments:
P and Q, two polynomials.

• sylvester(P,Q) returns the Sylvester matrix of P and Q.

The resultant command computes the resultant of two polynomials.

• resultant takes three arguments:

� P and Q, two polynomials.

� x, a variable.

• resultant(P,Q, x) returns the resultant of P and Q.

subsubsection*Example.
Input:

sylvester(x�3-p*x+q,3*x�2-p,x)

Output: 
1 0 −p q 0
0 1 0 −p q
3 0 −p 0 0
0 3 0 −p 0
0 0 3 0 −p


Input:

det([[1,0,-p,q,0],[0,1,0,-p,q],[3,0,-p,0,0], [0,3,0,-p,0],[0,0,3,0,-p]])
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Output:

−4p3 + 27q2

Input:

resultant(x�3-p*x+q,3*x�2-p,x)

Output:

−4p3 + 27q2

Examples using the resultant.

• Let F1 and F2 be two �xed points in the plane and A be a variable point on the circle with center
F1 and radius 2a. Find the cartesian equation of the set of pointsM , intersection of the line F1A
and of the perpendicular bisector of F2A.

Geometric answer: Since

MF1 +MF2 = MF1 +MA = F1A = 2a

M is on an ellipse with focus F1, F2 and major axis 2a.

Analytic answer: In the Cartesian coordinate system with center F1 and x-axis having the same direction as
the vector F1F2, the coordinates of A are:

A = (2a cos(θ), 2a sin(θ))

where θ is the (Ox,OA) angle. Now choose t = tan(θ/2) as parameter, so that the coordinates
of A are rational functions with respect to t. More precisely:

A = (ax, ay) = (2a
1− t2

1 + t2
, 2a

2t

1 + t2
)

If F1F2 = 2c and if I is the midpoint of AF2, then since the coordinates of F2 are F2 =
(2c, 0), the coordinates of I are

I = (c+ ax/2; ay/2) = (c+ a
1− t2

1 + t2
; a

2t

1 + t2
)

IM is orthogonal to AF2, hence M = (x; y) satis�es the equation eq1 = 0 where

eq1 := (x− ix) ∗ (ax− 2 ∗ c) + (y − iy) ∗ ay

But M = (x, y) is also on F1A, hence M satis�es the equation eq2 = 0 where

eq2 := y/x− ay/ax

The resultant of both equations with respect to t, resultant(eq1,eq2,t), is a polynomial
eq3 depending on the variables x, y, independent of t which is the cartesian equation of the
set of points M when t varies.
Input:

ax:=2*a*(1-t�2)/(1+t�2);ay:=2*a*2*t/(1+t�2);

ix:=(ax+2*c)/2; iy:=(ay/2)

eq1:=(x-ix)*(ax-2*c)+(y-iy)*ay

eq2:=y/x-ay/ax

factor(resultant(eq1,eq2,t))
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Output gives as resultant:

−(64 · (x2 + y2) · (x2 · a2 − x2 · c2 +−2 · x · a2 · c+ 2 · x · c3 − a4 + 2 · a2 · c2 + a2 · y2 − c4))

The factor −64 · (x2 + y2) is always di�erent from zero, hence the locus equation of M :

x2a2 − x2c2 +−2xa2c+ 2xc3 − a4 + 2a2c2 + a2y2 − c4 = 0

If the frame origin is O, the middle point of F1F2, then this is the cartesian equation of an

ellipse. To make the change of origin
−−−→
F1M =

−−→
F1O +

−−→
OM :

Input:

normal(subst(x�2*a�2-x�2*c�2+-2*x*a�2*c+2*x*c�3-a�4+

2*a�2*c�2+ a�2*y�2-c�4,[x,y]=[c+X,Y]))

Output:

X2a2 −X2c2 + Y 2a2 − a4 + a2c2

or if b2 = a2 − c2:
Input:

normal(subst(-c�2*X�2+c�2*a�2+X�2*a�2-a�4+a�2*Y�2,c�2=a�2-b�2))

Output:

X2b2 + Y 2a2 − a2b2

that is to say, after division by a2 ∗ b2, M satis�es the equation:

X2

a2
+
Y 2

b2
= 1

• Let F1 and F2 be �xed points and A a variable point on the circle with center F1 and radius 2a.
Find the cartesian equation of the hull of D, the segment bisector of F2A.

The segment bisector of F2A is tangent to the ellipse of focus F1, F2 and major axis 2a.

In the Cartesian coordinate system with center F1 and x-axis having the same direction as the
vector F1F2, the coordinates of A are:

A = (2a cos(θ); 2a sin(θ))

where θ is the (Ox,OA) angle. Choose t = tan(θ/2) as parameter such that the coordinates of A
are rational functions with respect to t. More precisely:

A = (ax; ay) = (2a
1− t2

1 + t2
; 2a

2t

1 + t2
)

If F1F2 = 2c and I is the midpoint of AF2:

F2 = (2c, 0), I = (c+ ax/2; ay/2) = (c+ a
1− t2

1 + t2
; a

2t

1 + t2
)

Since D is orthogonal to AF2, the equation of D is eq1 = 0 where

eq1 := (x− ix) ∗ (ax− 2 ∗ c) + (y − iy) ∗ ay

So, the hull of D is the locus of M , the intersection point of D and D′ where D′ has equation
eq2 := diff(eq1, t) = 0.
Input:
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ax:=2*a*(1-t�2)/(1+t�2);ay:=2*a*2*t/(1+t�2);

ix:=(ax+2*c)/2; iy:=(ay/2)

eq1:=normal((x-ix)*(ax-2*c)+(y-iy)*ay)

eq2:=normal(diff(eq1,t))

factor(resultant(eq1,eq2,t))

Output gives as resultant:

(−(64a2))(x2 + y2)(x2a2 − x2c2 +−2xa2c+ 2xc3 − a4 + 2a2c2 + a2y2 − c4)

The factor −64 · a2 · (x2 + y2) is always di�erent from zero, therefore the locus equation is:

x2a2 − x2c2 +−2xa2c+ 2xc3 − a4 + 2a2c2 + a2y2 − c4 = 0

If O, the midpoint of F1F2, is chosen as origin, you �nd again the cartesian equation of the ellipse:

X2

a2
+
Y 2

b2
= 1

5.29 Exact bounds for roots of a polynomial

5.29.1 Exact bounds for real roots of a polynomial: realroot

The realroot command �nds bounds for the real roots of a polynomial.

• realroot takes two mandatory arguments and two optional arguments:

� P , a polynomial.

� ε, a postive real number.

� Optionally, a, b, two complex numbers.

• realroot(P, ε) returns a list of vectors, where the elements of each vector are a list containing
one of:

� an interval of length less than ε containing a real root of the polynomial and the multiplicity
of this root.

� the value of an exact real root of the polynomial and the multiplicity of this root.

• realroot(P, ε, a, b) returns a list of vectors as above, but only for the roots lying in the interval
[a, b].

Examples.

• Find the real roots of x3 + 1.
Input:

realroot(x�3+1, 0.1)

Output: [
−1 1

]
• Find the real roots of x3 − x2 − 2x+ 2.
Input:

realroot(x�3-x�2-2*x+2, 0.1)
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Output:  −[1.40624999999999..1.50000000000001] 1
1 1

[1.37499999999999..1.43750000000001] 1


• Find the real roots of x3 − x2 − 2x+ 2 in the interval [0; 2].
Input:

realroot(x�3-x�2-2*x+2, 0.1,0,2)

Output: [
1 1

[1.37499999999999..1.43750000000001] 1

]
5.29.2 Exact bounds for complex roots of a polynomial: complexroot

The complexroot command �nds bounds for the complex roots of a polynomial.

• complexroot takes two mandatory arguments and two optional arguments:

� P , a polynomial.

� ε, a postive real number.

� Optionally, α, β, two complex numbers.

• complexroot(P, ε) returns a list of vectors, where the elements of each vector are one of:

� an interval (the boundaries of this interval are the opposite vertices of a rectangle with sides
parallel to the axis and containing a complex root of the polynomial) and the multiplicity of
this root.
Suppose the interval is [a1 + ib1, a2 + ib2] then |a1− a2| < ε, |b1− b2| < ε and the root a+ ib
satis�es a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2.

� the value of an exact complex root of the polynomial and the multiplicity of this root.

• complexroot(P, ε, α, β) returns a list of vectors as above, but only for the roots lying in the
rectangle with sides parallel to the axis having α, β as opposite vertices.

Examples.

• Find the roots of x3 + 1.
Input:

complexroot(x�3+1,0.1)

Output: −1 1
[0.499999046325680..0.500000953674320]− [0.866024494171135..0.866026401519779] i 1
[0.499999046325680..0.500000953674320] + [0.866024494171135..0.866026401519779] i 1


Hence, for x3 + 1:

� -1 is a root of multiplicity 1,

� a+ib is a root of multiplicity 1 with 0.499999046325680 ≤ a ≤ 0.500000953674320 and
−0.866026401519779 ≤ b ≤ −0.866024494171135.

� c +id is a root of multiplicity 1 with 0.499999046325680 ≤ c ≤ 0.500000953674320 and
0.866024494171135 ≤ d ≤ 0.866026401519779.
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• Find the roots of x3 + 1 lying inside the rectangle with opposite vertices −1, 1 + 2 ∗ i.
Input:

complexroot(x�3+1,0.1,-1,1+2*i)

Output:[
−1 1

[0.499999046325680..0.500000953674320] + [0.866024494171135..0.866026401519779] i 1

]
5.29.3 Exact bounds for real roots of a polynomial: VAS

The VAS command uses the Vincent-Akritas-Strzebonski algorithm to �nd intervals containing the real
roots of polynomials.

• VAS takes one argument:
P , a polynomial.

• VAS(P) returns a list of intervals which contain the real roots of P , where each interval contains
exactly one root.

Examples.

• Input:

VAS(x�3 - 7*x + 7)

Output:  −4 0
1 3

2
3
2 2


• Input:

VAS(x�5 + 2*x�4 - 6*x�3 - 7*x�2 + 7*x + 7)

Output: [
[−5,−1] ,−1,

[
1,

3

2

]
,

[
3

2
, 2

]]
• Input:

VAS(x�3 - x�2 -2*x + 2)

Output:
[[−3, 0] , 1, [1, 3]]

5.29.4 Exact bounds for positive real roots of a polynomial: VAS_positive

The VAS_positive command uses the Vincent-Akritas-Strzebonski algorithm to �nd intervals containing
the positive real roots of polynomials.

• VAS_positive takes one argument:
P , a polynomial.

• VAS_positive(P) returns a list of intervals which contain the positive real roots of P , where each
interval contains exactly one root.



5.29. EXACT BOUNDS FOR ROOTS OF A POLYNOMIAL 347

Examples.

• Input:

VAS_positive(x�3 - 7*x + 7)

Output: [
1 3

2
3
2 2

]
• Input:

VAS_positive(x�5 + 2*x�4 - 6*x�3 - 7*x�2 + 7*x + 7)

Output: [
1 3

2
3
2 2

]
• Input:

VAS_positive(x�3 - x�2 -2*x + 2)

Output:
[1, [1, 3]]

5.29.5 An upper bound for the positive real roots of a polynomial: posubLMQ

The posubLMQ command uses the Local Max Quadratic (LMQ) Akritas-Strzebonski-Vigklas algorithm
to �nd upper bounds for the positive real roots of polynomials.

• posubLMQ takes one argument:
P , a polynomial.

• posubLMQ(P) returns a (non-optimal) upper bound for the positive real roots of P .

Examples.

• Input:

posubLMQ(x�3 - 7*x + 7)

Output:
4

• Input:

posubLMQ(x�5 + 2*x�4 - 6*x�3 - 7*x�2 + 7*x + 7)

Output:
4

• Input:

posubLMQ(x�3 - x�2 -2*x + 2)

Output:
3
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5.29.6 A lower bound for the positive real roots of a polynomial: poslbdLMQ

The poslbLMQ command uses the Local Max Quadratic (LMQ) Akritas-Strzebonski-Vigklas algorithm
to �nd lower bounds for the positive real roots of polynomials.

• poslbLMQ takes one argument:
P , a polynomial.

• poslbLMQ(P) returns a (non-optimal) lower bound for the positive real roots of P .

Examples.

• Input:

poslbdLMQ(x�3 - 7*x + 7)

Output:
1

2

• Input:

poslbdLMQ(x�5 + 2*x�4 - 6*x�3 - 7*x�2 + 7*x + 7)

Output:
1

2

• Input:

poslbdLMQ(x�3 - x�2 -2*x + 2)

Output:
1

2

5.29.7 Exact values of rational roots of a polynomial: rationalroot

The rationalroot command �nds rational roots of polynomials.

• rationalroot takes one mandatory and two optional arguments:

� P , a polynomial.

� Optionally, α and β, two real numbers.

• rationalroot(P) returns the list of the value of the rational roots of P without multiplicity.

• rationalroot(P, α, β) returns the list of the rational roots of P which are in the interval [α, β].

Examples.

• Find the rational roots of 2 ∗ x3 − 3 ∗ x2 − 8 ∗ x+ 12:
Input:

rationalroot(2*x�3-3*x�2-8*x+12)

Output: [
2,−2,

3

2

]
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• Find the rational roots of 2 ∗ x3 − 3 ∗ x2 − 8 ∗ x+ 12 in [1, 2]:
Input:

rationalroot(2*x�3-3*x�2-8*x+12,1,2)

Output: [
2,

3

2

]
• Find the rational roots of 2 ∗ x3 − 3 ∗ x2 + 8 ∗ x− 12:
Input:

rationalroot(2*x�3-3*x�2+8*x-12)

Output: [
3

2

]
• Find the rational roots of 2 ∗ x3 − 3 ∗ x2 + 8 ∗ x− 12:
Input:

rationalroot(2*x�3-3*x�2+8*x-12)

Output: [
3

2

]
• Find the rational roots of (3 ∗ x− 2)2 ∗ (2x+ 1) = 18 ∗ x3 − 15 ∗ x2 − 4 ∗ x+ 4:
Input:

rationalroot(18*x�3-15*x�2-4*x+4)

Output: [
−1

2
,
2

3

]
5.29.8 Exact values of the complex rational roots of a polynomial: crationalroot

The crationalroot command �nds complex rational roots of polynomials.

• crationalroot takes one mandatory and two optional arguments:

� P , a polynomial.

� Optionally, α and β, two complex numbers.

• crationalroot(P) returns the list of the value of the rational roots of P without multiplicity.

• crationalroot(P, α, β) returns the list of the rational roots of P which are in the rectangle with
sides parallel to the axis having [α, β] as opposite vertices.

Example.

Find the rational complex roots of (x2 + 4) ∗ (2x− 3) = 2 ∗ x3 − 3 ∗ x2 + 8 ∗ x− 12:
Input:

crationalroot(2*x�3-3*x�2+8*x-12)

Output: [
2i,

3

2
,−2i

]
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5.30 Orthogonal polynomials

5.30.1 Legendre polynomials: legendre

The Legendre polynomial L(n, x) of degree n is a polynomial solution of the di�erential equation

(x2 − 1)y′′ − 2xy′ − n(n+ 1)y = 0

The Legendre polynomials satisfy the recurrence relation:

L(0, x) = 1

L(1, x) = x

L(n, x) =
2n− 1

n
xL(n− 1, x)− n− 1

n
L(n− 2, x)

These polynomials are orthogonal for the scalar product:

< f, g >=

∫ +1

−1
f(x)g(x) dx

The legendre command �nds the Legendre polynomials.

• legendre takes one mandatory argument and one optional argument:

� n, an integer.

� Optionally, x, a variable name (by default x).

• legendre(n 〈, x〉) returns the Legendre polynomial of degree n.

Examples.

• Input:

legendre(4)

Output:
35

8
x4 − 15

4
x2 +

3

8

• Input:

legendre(4,y)

Output:
35

8
y4 − 15

4
y2 +

3

8

5.30.2 Hermite polynomial: hermite

The Hermite polynomials H(n, x) satisfy the recurrence relation:

H(0, x) = 1

H(1, x) = 2x

H(n, x) = 2xH(n− 1, x)− 2(n− 1)H(n− 2, x)

These polynomials are orthogonal for the scalar product:

< f, g >=

∫ +∞

−∞
f(x)g(x)e−x

2
dx

The hermite command �nds the Hermite polynomials.
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• hermite takes one mandatory argument and one optional argument:

� n, an integer.

� Optionally, x, a variable name (by default x).

• hermite(n 〈, x〉) returns the Hermite polynomial of degree n.

Examples.

• Input:

hermite(6)

Output:
64x6 − 480x4 + 720x2 − 120

• Input:

hermite(6,y)

Output:
64y6 − 480y4 + 720y2 − 120

5.30.3 Laguerre polynomials: laguerre

The Laguerre polynomial of degree n and parameter a satisfy the following recurrence relation:

L(0, a, x) = 1

L(1, a, x) = 1 + a− x

L(n, a, x) =
2n+ a− 1− x

n
L(n− 1, a, x)− n+ a− 1

n
L(n− 2, a, x)

These polynomials are orthogonal for the scalar product

< f, g >=

∫ +∞

0
f(x)g(x)xae−xdx

The laguerre command �nds the Laguerre polynomials.

• laguerre takes one mandatory argument and two optional arguments:

� n, an integer.

� Optionally, x, a variable name (by default x).

� Optionally, a, a parameter name (by default a).

• laguerre(n 〈, x, a〉) returns the Laguerre polynomial of degree n and parameter a.

Examples.

• Input:

laguerre(2)

Output:
1

2
a2 − ax+

3

2
a+

1

2
x2 − 2x+ 1
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• Input:

laguerre(2,y)

Output:
1

2
a2 − ay +

3

2
a+

1

2
y2 − 2y + 1

• Input:

laguerre(2,y,b)

Output:
1

2
b2 − by +

3

2
b+

1

2
y2 − 2y + 1

5.30.4 Tchebychev polynomials of the �rst kind: tchebyshev1

The Tchebychev polynomial of �rst kind T (n, x) is de�ned by

T (n, x) = cos(n arccos(x))

and satisfy the recurrence relation:

T (0, x) = 1, T (1, x) = x, T (n, x) = 2xT (n− 1, x)− T (n− 2, x)

The polynomials T (n, x) are orthogonal for the scalar product

< f, g >=

∫ +1

−1

f(x)g(x)√
1− x2

dx

The tchebyshev1 command �nds the Tchebychev polynomials of the �rst kind.

• tchebyshev1 takes one mandatory argument and one optional argument:

� n, an integer.

� Optionally x, a variable name (by default x).

• tchebyshev1(n 〈, x〉) returns the Tchebychev polynomial of �rst kind of degree n.

Examples.

• Input:

tchebyshev1(4)

Output:
8x4 − 8x2 + 1

• Input:

tchebyshev1(4,y)

Output:
8y4 − 8y2 + 1

Indeed

cos(4x) = Re((cos(x) + i sin(x))4)

= cos(x)4 − 6 cos(x)2(1− cos(x)2) + ((1− cos(x)2)2

= T (4, cos(x))
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5.30.5 Tchebychev polynomial of the second kind: tchebyshev2

The Tchebychev polynomial of second kind U(n, x) is de�ned by:

U(n, x) =
sin((n+ 1). arccos(x))

sin(arccos(x))

or equivalently:
sin((n+ 1)x) = sin(x) ∗ U(n, cos(x))

These satisfy the recurrence relation:

U(0, x) = 1

U(1, x) = 2x

U(n, x) = 2xU(n− 1, x)− U(n− 2, x)

The polynomials U(n, x) are orthogonal for the scalar product

< f, g >=

∫ +1

−1
f(x)g(x)

√
1− x2dx

The tchebyshev2 command �nds the Tchebychev polynomials of the �rst kind.

• tchebyshev2 takes one mandatory argument and one optional argument:

� n, an integer.

� Optionally x, a variable name (by default x).

• tchebyshev2(n 〈, x〉) returns the Tchebychev polynomial of second kind of degree n.

Examples.

• Input:

tchebyshev2(3)

Output:
8x3 − 4x

• Input:

tchebyshev2(3,y)

Output:
8y3 − 4y

Indeed:
sin(4x) = sin(x) ∗ (8 ∗ cos(x)3 − 4 cos(x)) = sin(x) ∗ U(3, cos(x))

5.31 Gröbner basis and Gröbner reduction

5.31.1 Gröbner basis: gbasis

A set of polynomials {F1, . . . , FN} generate an ideal I; namely, I is the set of all linear combinations
of the Fj . Given such an ideal, a Gröbner basis for I is a subset G = {G1, . . . , Gn} of I such that for
any F in I, there is a Gk in G such that the leading monomial of Gk divides the leading monomial of
F . (Note that the leading monomial depends on a �xed ordering of the monomials.)

If G is a Gröbner basis for such an ideal I, then for any nonzero F in I, if you do a Euclidean
division of F by the corresponding Gk, take the remainder of this division, do again the same and so
on, at some point you get a remainder of zero.
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Example.

Let I be the ideal generated by {x3 − 2xy, x2y− 2y2 + x} with the standard lexicographic order on the
monomials. One Gröbner basis for I is

G = {g1(x, y) = x2, g2(x, y) = xy, g3(x, y) = 2y2 − x}

Consider the element F (x, y) = 2x2y− 3x2 + 6xy− 4y2 + 2x of I. The leading monomial x2y of F (x, y)
is divisible by the leading monomial x2 of g1(x, y). Dividing F (x, y) by g1(x, y) leaves a remainder of
R1(x, y) = 6xy − 4y2 + 2x. The leading monomial of R1(x, y), which is xy, is divisible by the leading
monomial of g2(x, y), which is xy. Dividing R1(x, y) by g2(x, y) leaves a remainder of R2(x, y) =
−4y2 + 2x. Finally, the leading monomial of R2(x, y), which is y2, is divisible by the leading monomial
of g3(x, y), which is y2. Dividing R2(x, y) by g3(x, y) leaves a remainder of 0.

The gbasis command computes Gröbner bases.

• gbasis takes two mandatory arguments and three optional arguments:

� polys, a list of polynomials.

� vars, a list of the variable names.

� Optionally, order, which can be one of:

∗ plex, to order the monomials lexicographically (this is the default).

∗ tdeg, to order the monomials �rst by total degree then by lexicographic order.

∗ revlex, to order the monomials reverse lexicographically.

� Optionally, with_cocoa=boolean, where boolean can be true or false. A value of true means
to use the CoCoA library to compute the Gröbner basis, a value of false means not to use it.
A value of true is recommended, but requires that CoCoA support be compiled into Xcas.

� Optionally, with_f5=boolean, where boolean can be true or false. A value of true means
to use the F5 algorithm of the CoCoA library, a value of false means not to use it. If this is
true, then the polynomials are homogenized and so the speci�ed order is not used.

• gbasis(polys,vars 〈 ,order,with_cocoa=boolean, with_f5=boolean〉) returns a Gröbner basis of
the ideal spanned by polynomials in polys.

Note that the lexicographic order depends on the order the variables are given in vars. For example, if
vars=[x,y,z], then x�2*y�4*z�3 comes before x�2*y�3*z�4, but if vars=[x,z,y], then x�2*y�4*z�3

comes after x�2*y�3*z�4.

Examples.

• Input:

gbasis([2*x*y-y�2,x�2-2*x*y],[x,y])

Output: [
y3, x2 − y2, 2xy − y2

]
Input:

gbasis([x1+x2+x3,x1*x2+x1*x3+x2*x3,x1*x2*x3-1], [x1,x2,x3],tdeg,with_cocoa=false)

Output: [
x33 − 1,−x22 − x2x3 − x23, x1 + x2 + x3

]
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5.31.2 Gröbner reduction: greduce

The greduce command will �nd a polynomial modulo I, where I is an ideal as in Section 5.31.1 p.353.

• greduce takes three arguments mandatory arguments and three optional arguments:

� P , a multivariate polynomial.

� gbasis, a vector made of polynomials which is supposed to be a Gröbner basis.

� vars, and a vector of variable names.

� Optionally, the same ordering options and CoCaA options as gbasis (see Section 5.31.1 p.353).

• greduce(P ,gbasis,vars 〈,options〉) returns the reduction of P with respect to the Gröbner basis
gbasis. It is 0 if and only if the polynomial belongs to the ideal.

Examples.

• Input:

greduce(x*y-1,[x�2-y�2,2*x*y-y�2,y�3],[x,y])

Output:
1

2
y2 − 1

that is to say xy − 1 = 1
2y

2 − 1 mod I where I is the ideal generated by the Gröbner basis
[x2−y2, 2xy−y2, y3], because 1

2y
2−1 is the Euclidean division remainder of xy−1 byG2 = 2xy−y2.

• Input:

greduce(x1�2*x3�2,[x3�3-1,-x2�2-x2*x3-x3�2,x1+x2+x3], [x1,x2,x3],tdeg)

Output:

x2

5.31.3 Testing if a polynomial or list of polynomials belongs to an ideal given by
a Gröbner basis: in_ideal

The in_ideal command determines whether or not a polynomial is in an ideal.

• in_ideal takes three mandatory arguments and one optional argument:

� P , a polynomial or a list of polynomials.

� gbasis, a list giving a Gröbner basis.

� vars, the list of polynomial variables.
If gbasis is computed with a di�erent order from the default, then vars must use the same
order.

� Optionally, an optional argument from gbasic (see Section 5.31.1 p.353), such as plex or
tdeg. By default it will be plex.

• in_ideal(P ,gbasis,vars 〈, option 〉) returns the value true (1) or false (0), or a list of trues
and falses, indicating whether or not the polynomial(s) in P are in the ideal generated by gbasis
using the variables in vars.
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Examples.

• Input:

in_ideal((x+y)�2,[y�2,x�2 + 2*x*y],[x,y])

Output:

1

• Input:

in_ideal([(x+y)�2,x+y],[y�2,x�2+2*x*y],[x,y])

Output:

[1, 0]

• Input:

in_ideal(x+y,[y�2,x�2+2*x*y],[x,y])

Output:

0

5.31.4 Building a polynomial from its evaluation: genpoly

The genpoly command �nds a polynomial which evaluates to a given polynomial.

• genpoly takes three arguments:

� P , a polynomial with n− 1 variables.

� b, an integer.

� x, the name of a variable.

• genpoly(P, b, x) returns the polynomial Q with n variables (the n − 1 variables in P and the
variable x) such that the coe�cients of Q are in the interval (−b/2, b/2] and Q|x=b = P . In other
words, P is written in base b but using the convention that the Euclidean remainder belongs to
(−b/2, b/2] (this convention is also known as s-mod representation).

Examples.

• Input:

genpoly(61,6,x)

Output:

2x2 − 2x+ 1

Indeed 61 divided by 6 is 10 with remainder 1, then 10 divided by 6 is 2 with remainder -2 (instead
of the usual quotient 1 and remainder 4 out of bounds),

61 = 2 ∗ 62 − 2 ∗ 6 + 1

• Input:

genpoly(5,6,x)
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Output:
x− 1

Indeed: 5 = 6− 1.

• Input:

genpoly(7,6,x)

Output:
x+ 1

Indeed: 7 = 6 + 1

• Input:

genpoly(7*y+5,6,x)

Output:
xy + x+ y − 1

Indeed: x ∗ y + x+ y − 1 = y(x+ 1) + (x− 1).

• Input:

genpoly(7*y+5*z�2,6,x)

Output:
xy + xz2 + y − z2

Indeed: x ∗ y + x ∗ z + y − z = y ∗ (x+ 1) + z ∗ (x− 1).

5.32 Rational functions

5.32.1 Numerator: getNum

The getNum command �nds the numerator of an unreduced rational function.

• getNum takes one argument:
rat, a rational function.

• getNum(rat) returns the numerator of rat.

Unlike numer (see Section 5.32.2 p.358), textttgetNum does not simplify the expression before extracting
the numerator.

Examples.

• Input:

getNum((x�2-1)/(x-1))

Output:
x2 − 1

• Input:

getNum((x�2+2*x+1)/(x�2-1))

Output:
x2 + 2x+ 1
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5.32.2 Numerator after simpli�cation: numer

The numer command �nds the numerator of a rational function, after it has been reduced. (See also
5.7.3.)

• numer takes one argument:
rat, a rational function.

• numer(rat) returns the numerator of the irreducible representation of rat.

Examples.

• Input:

numer((x�2-1)/(x-1))

Output:

x+ 1

• Input:

numer((x�2+2*x+1)/(x�2-1))

Output:

x+ 1

5.32.3 Denominator: getDenom

The getDenom command �nds the denominator of an unreduced rational function.

• getDenom takes one argument:
rat, a rational function.

• getDenom(rat) returns the denominator of rat.

Unlike denom (see Section 5.32.4 p.359), textttgetDenom does not simplify the expression before ex-
tracting the denominator.

Examples.

• Input:

getDenom((x�2-1)/(x-1))

Output:

x− 1

• Input:

getDenom((x�2+2*x+1)/(x�2-1))

Output:

x2 − 1
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5.32.4 Denominator after simpli�cation: denom

The denom command �nds the denominator of a rational function, after it has been reduced. (See also
5.7.4.)

• denom takes one argument:
rat, a rational function.

• denom(rat) returns the denominator of the irreducible representation of rat.

Examples.

• Input:

denom((x�2-1)/(x-1))

Output:

1

• Input:

denom((x�2+2*x+1)/(x�2-1))

Output:

x− 1

5.32.5 Numerator and denominator: f2nd fxnd

The f2nd command �nds the numerator and denominator of rational function, after simpli�cation.
fxnd is a synonym for f2nd.

• f2nd takes one argument:
rat, a rational function.

• f2nd(rat) returns the list of the numerator and the denominator of the irreducible representation
of rat.

Examples.

• Input:

f2nd((x�2-1)/(x-1))

Output:

[x+ 1, 1]

• Input:

f2nd((x�2+2*x+1)/(x�2-1))

Output:

[x+ 1, x− 1]
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5.32.6 Simplifying: simp2

The simp2 command removes common factors from a pair of polynomials, as if reducing the numerator
and denominator of a rational function. (See also Section 5.7.6 p.138.)

• simp2 takes two arguments:
P and Q, two polynomials (or two integers, see Section 5.7.6 p.138).

• simp2(P,Q) returns a list of two polynomials seen as the numerator and denominator of the
irreducible representation of the rational function P/Q.

Example.

Input:

simp2(x�3-1,x�2-1)

Output: [
x2 + x+ 1, x+ 1

]
5.32.7 Common denominator: comDenom

The comDenom command �nds the common denominator of a sum of rational functions and adds them.

• comDenom takes one argument:
sum, a sum of rational functions.

• comDenom(sum) returns sum with the terms combined over a common denominator.

Example.

Input:

comDenom(x-1/(x-1)-1/(x�2-1))

Output:

x3 − 2x− 2

x2 − 1

5.32.8 Polynomial and fractional part: propfrac

The propfrac command rewrites a rational function as a polynomial plus a rational function whose

numerator has smaller degree than the numberator; namely, it writes A(x)
B(x) (after reduction), as:

Q(x) +
R(x)

B(x)
where R(x) = 0 or 0 ≤ degree(R(x)) < degree(B(x))

(See also Section 5.7.2 p.136.)

• propfrac takes one argument:
rat, a rational function.

• propfrac(rat) returns the sum of a polynomial and rational function which add to rat, and with
the degree of the numerator of the rational function less that the degree of the denominator.
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Example.

Input:

propfrac((5*x+3)*(x-1)/(x+2))

Output:

5x− 12 +
21

x+ 2

5.32.9 Partial fraction expansion: partfrac cpartfrac

The partfrac and cpartfrac commands �nd the partial fraction expansion of a rational function.

• partfrac takes one argument:
rat, a rational function.

• partfrac(rat) returns the partial fraction expansion of rat.
The partfrac command is equivalent to the convert command (see Section 5.23.26 p.277) with
parfrac (or partfrac or fullparfrac) as option.

• cpartfrac(rat) behaves just like partfrac, except that it always �nds the partial fraction ex-
pansion over C.

Example.

Find the partial fraction expansion of:

x5 − 2x3 + 1

x4 − 2x3 + 2x2 − 2x+ 1

over the real numbers. Input (in real mode):

partfrac((x�5-2*x�3+1)/(x�4-2*x�3+2*x�2-2*x+1))

Output:

x+ 2− 1

2 (x− 1)
+

x− 3

2 (x2 + 1)

To �nd the partial fraction decomposition over the complex numbers, you can either put Xcas in complex
mode (see Section 2.5.5 p.55) or use cpartfrac.
Input (in complex mode):

partfrac((x�5-2*x�3+1)/(x�4-2*x�3+2*x�2-2*x+1))

or, in real or complex mode:

cpartfrac((x�5-2*x�3+1)/(x�4-2*x�3+2*x�2-2*x+1))

Output:

x+ 2− 1

2 (x− 1)
+

−1− 2i

(2− 2i) (x+ i)
+

2 + i

(2− 2i) (x− i)

5.33 Exact roots and poles

5.33.1 Roots and poles of a rational function: froot

The froot command �nds roots and poles of a rational function.

• froot takes one argument:
rat, a rational function.

• froot(rat) returns a vector whose components are the roots and the poles of rat, each one followed
by its multiplicity.
If Xcas can not �nd the exact values of the roots or poles, it tries to �nd approximate values if
rat has numeric coe�cients.
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Examples.

• Input:

froot((x�5-2*x�4+x�3)/(x-2))

Output:

[1, 2, 0, 3, 2,−1]

Hence, for F (x) =
x5 − 2x4 + x3

x− 2
:

� 1 is a root of multiplicity 2,

� 0 is a root of multiplicity 3,

� 2 is a pole of order 1.

• Input:

froot((x�3-2*x�2+1)/(x-2))

Output: [
1, 1,

√
5 + 1

2
, 1,
−
√

5 + 1

2
, 1, 2,−1

]

Remark.
To �nd the complex roots and poles, put Xcas in complex mode (check Complex in the cas con�guration,
red button giving the state line; see Section 2.5.5 p.55).

Example.

Input (in complex mode):

froot((x�2+1)/(x-2))

Output:

[−i, 1, i, 1, 2,−1]

5.33.2 Rational function given by roots and poles: fcoeff

The fcoeff command �nds a rational function given its roots and poles.

• fcoeff takes one argument:
roots, a list consisting of the roots and poles of a rational function, each one followed by its
multiplicity.

• fcoeff(roots) returns the rational function with the given roots and poles.

Example.

Input:

fcoeff([1,2,0,3,2,-1])

Output:

(x− 1)2 x3 (x− 2)−1
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5.34 Computing in Z/pZ or in Z/pZ[x]

The way to compute over Z/pZ or over Z/pZ[x] depends on the syntax mode:

• In Xcas mode, an object n over Z/pZ is written n%p.
The representation is the symmetric representation:
11%13 returns -2%13.

Examples.

� An integer n in Z/13Z
n:=12%13.

� a vector V in Z/13Z
V:=[1,2,3]%13 or V:=[1%13,2%13,3%13].

� a matrix A in Z/13Z
A:=[[1,2,3],[2,3,4]]%13 or
A:=[[1%13,2%13,3%13],[[2%13,3%13,4%13]].

� a polynomial A in Z/13Z[x] in symbolic representation
A:=(2*x�2+3*x-1)%13 or
A:=2%13*x�2+3%13*x-1%13.

� a polynomial A in Z/13Z[x] in list representation
A:=poly1[1,2,3]%13 or A:=poly1[1%13,2%13,3%13].

To recover an object o with integer coe�cients instead of modular coe�cients, input o % 0. For
example:

Input:
o:=4%7;:

o%0
Output:

−3

Remark. Most Xcas functions that work on integers or polynomials with integer coe�cients will
often work the same on Z/pZ or Z/pZ[x], with the obvious exception that the input and output
will be modular. They will be listed in the remaining subsections. For some commands in Z/pZ
or in Z/pZ[x], p must be a prime integer.

• In Maple mode, integers modulo p are represented like usual integers instead of using speci�c
modular integers. To avoid confusion with normal commands, modular commands are written
with a capital letter (inert form) and followed by the mod command.

The Maple commands will be discussed in Section 5.35 p.375.

5.34.1 Expanding and reducing: normal

The normal command expands and reduces expressions in Z/pZ[x]. (See also Section 5.12.13 p.179.)

• normal takes one argument:
expr, a modular expression.

• normal(expr) returns the expanded irreducible representation of expr.

Example.

Input:

normal(((2*x�2+12)*( 5*x-4))%13)

Output:
((−3) % 13)x3 + (5 % 13)x2 + ((−5) % 13)x+ 4 % 13
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5.34.2 Addition in Z/pZ or in Z/pZ[x]: +

The + operator adds two integers in Z/pZ or two polynomials in Z/pZ[x]. (See also Section 5.8.2 p.144.)
For polynomial expressions, use the normal command to simplify.

Examples.

• For integers in Z/pZ:
Input:

3%13+10%13

Output:

0 % 13

• For polynomials with coe�cients in Z/pZ:
Input:

normal((11*x+5 )% 13+(8*x+6)%13)

or:

normal((11% 13*x+5%13)+(8% 13*x+6%13))

Output:

(6 % 13)x+ (−2) % 13

5.34.3 Subtraction in Z/pZ or in Z/pZ[x]: -

The - operator subtracts two integers in Z/pZ or two polynomials in Z/pZ[x]. (See also Section 5.8.2
p.144.) For polynomial expressions, use the normal command to simplify.

Examples.

• For integers in Z/pZ:
Input:

31%13-10%13

Output:

(−5) % 13

• For polynomials with coe�cients in Z/pZ:
Input:

normal((11*x+5)%13-(8*x+6)%13)

or:

normal(11% 13*x+5%13-(8% 13*x+6%13))

Output:

(3 % 13)x+ (−1) % 13
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5.34.4 Multiplication in Z/pZ or in Z/pZ[x]: *

The * operator multiplies two integers in Z/pZ or two polynomials in Z/pZ[x]. (See also Section 5.8.2
p.144.) For polynomial expressions, use the normal command to simplify.

Examples.

• For integers in Z/pZ:
Input:

31%13*10%13

Output:
(−2) % 13

• For polynomials with coe�cients in Z/pZ:
Input:

normal((11*x+5)%13*(8*x+6 )% 13)

or:

normal((11% 13*x+5%13)*(8% 13*x+6%13))

Output:
((−3) % 13)x2 + ((−24) % 13)x+ 17 % 13

5.34.5 Euclidean quotient : quo

The quo command �nds the quotient of of two polynomials (see also Section 5.28.2 p.327).

• quo takes two mandatory arguments and one optional argument:

� P and Q, two polynomials with coe�cients in Z/pZ.
� Optionally x, the variable (by default x), if P and Q are given as expressions.

• quo(P,Q 〈, x〉) returns the Euclidean quotient of P divided by Q.

Example.

Input:

quo((x�3+x�2+1)%13,(2*x�2+4)%13)

Output:
((−6) % 13)x+ (−6) % 13

Indeed x3 + x2 + 1 = (2x2 + 4)(
x+ 1

2
) +

5x− 4

4
and −3 ∗ 4 = −6 ∗ 2 = 1 mod 13.

5.34.6 Euclidean remainder: rem

The rem command �nds the remainder of the Euclidean division of two polynomials (see also Sec-
tion 5.28.3 p.328).

• rem takes two mandatory arguments and one optional argument:

� P and Q, two polynomials with coe�cients in Z/pZ.
� Optionally x, the variable (by default x), if P and Q are given as expressions.

• rem(P,Q 〈, x〉) returns the remainder of the Euclidean division of P divided by Q.
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Example.

Input:

rem((x�3+x�2+1)%13,(2*x�2+4)%13)

Output:

((−2) % 13)x+ (−1) % 13

Indeed x3 + x2 + 1 = (2x2 + 4)(
x+ 1

2
) +

5x− 4

4
and −3 ∗ 4 = −6 ∗ 2 = 1 mod 13.

5.34.7 Euclidean quotient and euclidean remainder: quorem

The quorem command �nds the quotient and remainder of the Euclidean division of two polynomials
(see also Section 5.5.10 p.118 and Section 5.28.4 p.330).

• quorem takes two mandatory arguments and one optional argument:

� P and Q, two polynomials with coe�cients in Z/pZ.
� Optionally x, the variable (by default x), if P and Q are given as expressions.

• quorem(P,Q 〈, x〉) returns the list of the quotient and remainder of the Euclidean division of P
and Q.

Example.

Input:

quorem((x�3+x�2+1)%13,(2*x�2+4)%13)

Output:

[((−6) % 13)x+ (−6) % 13, ((−2) % 13)x+ (−1) % 13]

Indeed x3 + x2 + 1 = (2x2 + 4)(
x+ 1

2
) +

5x− 4

4
and −3 ∗ 4 = −6 ∗ 2 = 1 mod 13.

5.34.8 Division in Z/pZ or in Z/pZ[x]: /

The / operator divides two integers in Z/pZ or two polynomials A and B in Z/pZ[x]. (See also
Section 5.8.2 p.144.) Since Z/pZ is only a �eld if p is prime, the quotient is only guaranteed to exist if
p is prime (unless the denominator is 0 (mod p)).

• For integers in Z/pZ:

Example.

� Input:

5%13/2% 13

Since 13 is prime, you get:
Output:

(−4) % 13

� Input:

5%14/3% 14
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Since 3 (mod 1)4 is invertible in Z/14Z, you get:
Output:

(−3) % 14

� Input:

5%14/7% 14

Since 7 (mod 1)4 is not invertible in Z/14Z, you will get an error: Output:

Not invertible Error: Bad Argument Value

• For polynomials, the result of P/Q is its irreducible representation in Z/pZ[x].

Example.

Input:

(2*x�2+5)%13/(5*x�2+2*x-3)%13

Output:
(6 % 13)x+ 1 % 13

(2 % 13)x+ (2 % 13) % 13

5.34.9 Power in Z/pZ and in Z/pZ[x]: �

The � operator raises modular numbers and polynomials to powers in Z/pZ. (See also Section 5.8.2
p.144.) For polynomial expressions, use the normal command to simplify. Xcas uses the binary power
algorithm to compute this.

Examples.

• Input:

(5%13)�2

Output:
(−1) % 13

• Input:

normal(((2*x+1)%13)�5)

Output:

(6 % 13)x5 + (2 % 13)x4 + (2 % 13)x3 + (1 % 13)x2 + ((−3) % 13)x+ 1 % 13

because 10 = −3 (mod 13), 40 = 1 (mod 13), 80 = 2 (mod 13), 32 = 6 (mod 13).

5.34.10 Computing an mod p: powmod powermod

For integers a,n and p, the powmod �nds an mod p.
powermod is a synonym for powmod.

• powmod takes three arguments:
a, n and p, integers.

• powmod(a, n, p) returns an mod p in [0, p− 1].
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Examples.

• Input:

powmod(5,2,13)

Output:

12

• Input:

powmod(5,2,12)

Output:

1

5.34.11 Inverse in Z/pZ: inv inverse /

The inv command �nds the inverse of an integer in Z/pZ.
inverse is a synonym for inv.

Since Z/pZ is only a �eld if p is prime, the inverse is only guaranteed to exist if p is prime (and the
integer is non-zero).

• inv takes one argument:
n%p, an element of Z/pZ.

• inv(n%p) returns the reciprocal of n%p) in Z/pZ.

Example.

Input:

inv(3%13)

Output:

(−4) % 13

Indeed 3×−4 = −12 = 1 (mod 13).
You can also �nd the reciprocal using division: Input:

1/(3%13)

Output:

(−4) % 13

5.34.12 Rebuilding a fraction from its value modulo p: fracmod iratrecon

Given an integer n and a modulus p, the fracmod (or iratrecon, for Maple compatibility) command
�nds the rational number equal to n mod p, where both the numerator and denominator are not greater
than

√
p/2 in absolute value.

• fracmod (or iratrecon) takes two arguments:

� n, an integer (representing a fraction).

� p, an integer (the modulus).
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• fracmod(n,p) (or iratrecon(n,p)) returns, if possible, a fraction a/b such that

a = n× b (mod p)

−
√
p

2
< a ≤

√
p

2

0 ≤ b <
√
p

2

In other words, n = a/b (mod p).

Examples.

• Input:

fracmod(3,13)

Output:

−1

4

Indeed: 3 ∗ −4 = −12 = 1 (mod 13), hence 3 = −1/4%13.
Note that this means:
Input:

-1/4 % 13

Output:
3 % 13

• Input:

fracmod(13,121)

Output:

−4

9

Indeed: 13×−9 = −117 = 4 (mod 121) hence 13 = −4/9%13.

5.34.13 GCD in Z/pZ[x]: gcd

The gcd command �nds the greatest common divisor of two polynomials with coe�cients in Z/pZ (for
prime p). (See also Section 5.5.1 p.110 and Section 5.28.5 p.330.)

• gcd takes two arguments:
P and Q, two polynomials with coe�cients in Z/pZ (p must be prime).

• gcd(P,Q) returns the GCD of P and Q computed in Z/pZ[x]

Example.

Input:

gcd((2*x�2+5)%13,(5*x�2+2*x-3)%13)

Output:
(1 % 13)x+ 2 % 13
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5.34.14 Factoring over Z/pZ[x]: factor factoriser

The factor command factors polynomials with coe�cients in Z/pZ. (See also Section 5.12.10 p.176.)

• factor takes one argument:
P , a polynomial with coe�cients in Z/pZ (p must be prime).

• factor(P) returns P in factored form.

Example.

Input:

factor((-3*x�3+5*x�2-5*x+4)%13)

Output:

((−3) % 13) ((1 % 13)x+ (−6) % 13)
(
(1 % 13)x2 + 6 % 13

)
5.34.15 Determinant of a matrix in Z/pZ: det

The det command can �nd the determinant of a matrix with elements in Z/pZ. (See also Section 5.47.4
p.474.)

• det takes one argument:
A, a matrix with elements in Z/pZ.

• det(A) returns the determinant of A.
Computations are done in Z/pZ by Gaussian reduction.

Example.

Input:

det([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])

or:

det([[1,2,9],[3,10,0],[3,11,1]]%13)

Output:

5 % 13

5%13

Hence, in Z/13Z, the determinant of M = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] is 5%13 (in Z, det(M)=31).

5.34.16 Inverse of a matrix with coe�cients in Z/pZ: inv inverse

The inv command can �nd the inverse of a matrix with elements in Z/pZ. (See also Section 5.47.2
p.474.)
inverse is a synonym for inv.

• inv takes one argument:
A, a matrix in Z/pZ.

• inv(A) returns the inverse of the matrix A.
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Example.

Input:

inv([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])

or:

inverse([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])

or:

inv([[1,2,9],[3,10,0],[3,11,1]]%13)

or:

inverse([[1,2,9],[3,10,0],[3,11,1]]%13)

Output:  2 % 13 (−4) % 13 (−5) % 13
2 % 13 0 % 13 (−5) % 13

(−2) % 13 (−1) % 13 6 % 13


5.34.17 Row reduction to echelon form in Z/pZ: rref

The rref command can �nd the reduced row echelon form of a matrix with elements in Z/pZ. (See
5.56.3):

• rref takes one argument:
A, a matrix in Z/pZ.

• rref(A) returns the echelon form of A.

Example.

Input:

rref([[0, 2, 9]%15,[1,10,1]%15,[2,3,4]%15])

Output:  1 % 15 0 % 15 0 % 15
0 % 15 1 % 15 0 % 15
0 % 15 0 % 15 1 % 15


This can be used to solve a linear system of equations with coe�cients in Z/pZ by rewriting it in

matrix form

A ·X = B

rref can then take as argument the augmented matrix of the system (the matrix obtained by augmenting
matrix A to the right with the column vector B).
rref will returns a matrix [A1, B1] where A1 has 1s on its principal diagonal and zeros outside. The
solutions in Z/pZ of:

A1 ·X = B1

are the same as the solutions of:

A*X=B

A ·X = B
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Example.

Solve in Z/13Z {
x + 2 · y = 9

3 · x+ 10 · y = 0

Input:

rref([[1, 2, 9]%13,[3,10,0]%13])

or:

rref([[1, 2, 9],[3,10,0]])%13

Output: [
1 % 13 0 % 13 3 % 13
0 % 13 1 % 13 3 % 13

]
hence x = 3 % 13 and y = 3 % 13.

5.34.18 Construction of a Galois �eld: GF

A Galois �eld is a �nite �eld. A Galois �eld will have characteristic p for some prime number p, and
the order will be pn for some integer n. Any Galois �eld of order pn will be isomorphic to Z/pZ[X]/I,
where I is the ideal generated by an irreducible polynomial P (X) in Z/pZ[X]

The GF command creates Galois �elds.

• GF takes two mandatory arguments and one optional argument:

� p, a prime number.

� n, an integer greater than 1 (or an irreducible polynomial over Z/pZ[X]).
If n is an integer, the �rst two arguments can be combined and entered as a prime power pn.

� Optionally vars, either the name of a variable or a list of two or three variables. These
variables must be symbolic, so you should purge them if necessary.

• GF(p, n 〈vars〉) returns a Galois �eld of characteristic p having pn elements. The output will look
like GF(p, P (k), [k,K, g],undef) where:

� p is the characteristic.

� P (k) is an irreducible polynomial generating an ideal I in Z/pZ[X], the Galois �eld being
the quotient of Z/pZ[X] by I.

� k is the name of the polynomial variable.

� K is the name of the Galois �eld (which will be given to a free variable).

� g is a generator of the multiplicative group K∗. You can build elements of the �eld with
polynomials in g.

If the optional argument vars is given:

� vars consists of a variable name, then g is that variable name.

� If vars consists of a pair of variable names, then k will be the �rst variable and K will be
the second variable.
In this case, there is no generator given and the elements of K must be given by K(P (k))
for a polynomial P (k).

� If vars consists of three variable names, then k will be the �rst variable, K will be the second
variable and g will be the third variable.

The elements of the �eld will be 0, g, g2, . . . , gp
n−2.
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Example.

Input:

GF(2,8)

Output:

GF (2, k8 + k4 + k3 + k2 + 1, [k,K, g] , undef)

The �eld K has 28 = 256 elements and g generates the multiplicative group of this �eld ({1,g,g2, . . . ,g254}).
The elements of this �eld can be written as polynomials in g or as K(P (k)), where P (k) is a polynomial
in k. Input:

g�9

or: Input:

K(k�9)

or: Output:

(g5 + g4 + g3 + g)

indeed g8 = g4 + g3 + g2 + 1, so g9 = g5 + g4 + g3 + g.

Once a Galois �eld is created in Xcas, you can use elements of the �eld to create polynomials and
matrices, and use the usual operators on them, such as +, -, *, /, �, inv, sqrt, quo, rem, quorem, diff,
factor, gcd, egcd, etc.

Examples.

• Compute the inverse of a matrix in a Galois �eld:
Input:

GF(3,5,b):; A:= [[1,b],[b,1]]:; inv(A)

Output: [
(b3 + b2 − b) (−b4 − b3 + b2)

(−b4 − b3 + b2) (b3 + b2 − b)

]
• Factor a polynomial over a Galois �eld:
Input:

GF(5,3,c):; p:= x�2-c-1:; factor(p)

Output: (
(1 % 5)x+

(
(−2 · c2 + 2 · c)

)) (
(1 % 5)x+

(
(2 · c2 − 2 · c)

))
There are still some limitations due to an incomplete implementation of some algorithms, such as

multivariate factorization when the polynomial is not unitary.

Example:
Input:

G(x)�255

Output should be the unit, indeed:

GF(2,x�8-x�6-x�4-x�3-x�2-x-1,x,1)
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As one can see in these examples, the output contains many times the same information that you would
prefer not to see if you work many times with the same �eld. For this reason, the de�nition of a Galois
�eld may have an optional argument, a variable name which will be used thereafter to represent elements
of the �eld. Since you will also most likely want to modify the name of the indeterminate, the �eld
name is grouped with the variable name in a list passed as third argument to GF. Note that these two
variable names must be quoted.

Example.

Input:

G:=GF(2,2,['w','G']):; G(w�2)

Output:

Done, G(w+1)

Input:

G(w�3)

Output:

G(1)

Hence, the elements of GF(2,2) are G(0),G(1),G(w),G(w�2)=G(w+1).

We may also impose the irreducible primitive polynomial that we wish to use, by putting it as second
argument (instead of n), for example:

G:=GF(2,w^8+w^6+w^3+w^2+1,['w','G'])

If the polynomial is not primitive, Xcas will replace it automatically by a primitive polynomial, for
example:
Input:

G:=GF(2,w^8+w^7+w^5+w+1,['w','G'])

Output:

G:=GF(2,w^8-w^6-w^3-w^2-1,['w','G'],undef)

5.34.19 Factoring a polynomial with coe�cients in a Galois �eld: factor

The factor command can factor univariate polynomials with coe�cients in a Galois �eld.

• factor takes one mandatory argument and one optional argument:

� expr, an expression or a list of expressions.

� Optionally, α, to specify an extension �eld.

• factor(expr) returns expr factored over the �eld of its coe�cients, with the addition of i in
complex mode (see Section 2.5.5 p.55). If sqrt is enabled in the Cas con�guration (see Section 2.5.7
p.56), polynomials of order 2 are factorized in complex mode or in real mode if the discriminant
is positive.
factor(expr,α) returns expr factored over F [α], where F is the �eld of coe�cients of expr.

• cfactor factors like factor, except the �eld includes i whether in real or complex mode.
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Examples.

factor can also factorize a univariate polynomial with coe�cients in a Galois �eld.
Input (for example to have G=F4):

G:=GF(2,2,['w','G'])

Output:

GF(2,w�2+w+1,[w,G],undef)

Input (for example):

a:=G(w)

factor(a�2*x�2+1)

Output:

(G(w+1))*(x+G(w+1))�2

5.35 Computing in Z/pZ[x] using Maple syntax

You can set Xcas to work in Maple mode rather than native Xcas mode (see Section 2.5.2 p.54).

5.35.1 Euclidean quotient: Quo

In Xcas mode, Quo is simply the inert form of quo; namely, it returns the Euclidean quotient of two
polynomials without evaluation. (See section Section 5.28.2 p.327.) In Maple mode, the Quo command
can additionally be used in conjunction with mod to compute the Euclidean quotient of two polynomials
with coe�cients in Z/pZ.

• (In Maple mode.)
Quo takes two arguments:
P and Q, two polynomials with coe�cients in Z/pZ.

• Quo(P,Q) returns the Euclidean quotient of P divided by Q.

Examples.

• Input (in Xcas mode):

Quo((x�3+x�2+1) mod 13,(2*x�2+4) mod 13)

Output:
quo

(
(1 % 13)x3 + (1 % 13)x2 + 1 % 13, (2 % 13)x2 + 4 % 13

)
To get the result of the division:
Input:

eval(ans())

((−6) % 13)x+ (−6) % 13

Input (in Maple mode):

Quo(x�3+x�2+1,2*x�2+4) mod 13

Output:
−6x− 6
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• Input (in Maple mode):

Quo(x�2+2*x,x�2+6*x+5) mod 5

Output:

1

5.35.2 Euclidean remainder: Rem

In Xcas mode, Rem is simply the inert form of rem; namely, it returns the Euclidean remainder of two
polynomials without evaluation. (See section Section 5.28.3 p.328.) In Maple mode, the rem command
can additionally be used in conjunction with mod to compute the Euclidean remainder of two polynomials
with coe�cients in Z/pZ.

• (In Maple mode.)
Rem takes two arguments:
P and Q, two polynomials with coe�cients in Z/pZ.

• Rem(P,Q) returns the Euclidean remainder of P divided by Q.

Examples:

• Input (in Xcas mode):

Rem((x�3+x�2+1) mod 13,(2*x�2+4) mod 13)

Output:

rem
(
(1 % 13)x3 + (1 % 13)x2 + 1 % 13, (2 % 13)x2 + 4 % 13

)
To get the result of the division:
Input:

eval(ans())

Output:

((−2) % 13)x+ (−1) % 13

• Input (in Maple mode):

Rem(x�3+x�2+1,2*x�2+4) mod 13

Output:

−2x− 1

• Input (in Maple mode):

Rem(x�2+2*x,x�2+6*x+5) mod 5

Output:

x
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5.35.3 GCD in Z/pZ[x]: Gcd

In Xcas mode, Gcd is simply the inert form of gcd; namely, it returns the greatest common divisor
of two polynomials without evaluation. (See section Section 5.28.5 p.330.) In Maple mode, the Gcd

command can additionally be used in conjunction with mod to compute the greatest common divisor of
two polynomials with coe�cients in Z/pZ.

• (In Maple mode.)
Gcd takes an unspeci�ed number of arguments:
polys, a sequence or list of polynomials with coe�cients in Z/pZ.

• Gcd(polys) returns the greatest common divisor of the polynomials in polys.

Examples.

• Input (in Xcas mode):

Gcd(2*x�2+5%13,5*x�2+2*x-3%13)

Output:

gcd
(
2x2 + 5 % 13, 5x2 + 2x+ (−3) % 13

)
To get the actual greatest common divisor:
Input:

eval(ans())

Output:

(1 % 13)x+ 2 % 13

Input (in Maple mode):

Gcd(2*x�2+5,5*x�2+2*x-3) mod 13

Output:

x+ 2

• Input (in Maple mode):

Gcd(x�2+2*x,x�2+6*x+5) mod 5

Output:

x

5.35.4 Factoring in Z/pZ[x]: Factor

In Xcas mode, Factor is simply the inert form of factor; namely, it factors a polynomial without
evaluation. (See section Section 5.12.10 p.176.) In Maple mode, the Factor command can additionally
be used in conjunction with mod to factor a polynomials with coe�cients in Z/pZ, where p must be
prime.

• (In Maple mode.)
Factor takes one argument:
P , a polynomial with coe�cients in Z/pZ for prime p.

• Factor(P) returns the factored form of P .
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Example.

Input (in Xcas mode):

Factor((-3*x�3+5*x�2-5*x+4)%13)

Output:
factor

(
((−3) % 13)x3 + (5 % 13)x2 + ((−5) % 13)x+ 4 % 13

)
To get the actual factorization:
Input:

eval(ans())

Output:
((−3) % 13) ((1 % 13)x+ (−6) % 13)

(
(1 % 13)x2 + 6 % 13

)
Input (in Maple mode):

Factor(-3*x�3+5*x�2-5*x+4) mod 13

Output:
−3 (x− 6)

(
x2 + 6

)
5.35.5 Determinant of a matrix with coe�cients in Z/pZ: Det

In Xcas mode, Det is simply the inert form of det; namely, it gives the determinant of a matrix without
evaluating it. (See section Section 5.47.4 p.474.) In Maple mode, the Det command can additionally be
used in conjunction with mod to �nd the determinant of a matrix whose elements are in Z/pZ.

• (In Maple mode.)
Det takes one argument:
A, a matrix with elements in Z/pZ.

• Det(A) returns the determinant of A.

Example.

Input (in Xcas mode):

Det([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1] mod 13])

Output:

det

 1 % 13 2 % 13 (−4) % 13
3 % 13 (−3) % 13 0 % 13
3 % 13 (−2) % 13 1 % 13


To �nd the value of the determinant, you can enter:
Input:

eval(ans())

Output:
5 % 13

Hence, in Z/13Z, the determinant of A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] is 5%13 (in Z, det(A)=31).
Input (in Maple mode):

Det([[1,2,9],[3,10,0],[3,11,1]]) mod 13

Output:
5
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5.35.6 Inverse of a matrix in Z/pZ: Inverse

In Xcas mode, Inverse is simply the inert form of inverse; namely, it gives the inverse of a matrix
without evaluating it. (See section Section 5.47.2 p.474.) In Maple mode, the Inverse command can
additionally be used in conjunction with mod to �nd the inverse of a matrix whose elements are in Z/pZ.

• (In Maple mode.)
Inverse takes one argument:
A, a matrix with elements in Z/pZ.

• Det(A) returns the inverse of A.

Example.

Input (in Xcas mode):

Inverse([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1] mod13])

Output:

inverse

 1 % 13 2 % 13 (−4) % 13
3 % 13 (−3) % 13 0 % 13
3 % 13 (−2) % 13 1 % 13


To get the actual inverse, you can enter:
Input:

eval(ans())

Output:  2 % 13 (−4) % 13 (−5) % 13
2 % 13 0 % 13 (−5) % 13

(−2) % 13 (−1) % 13 6 % 13


which is the inverse of A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] in Z/13Z.
Input (in Maple mode):

Inverse([[1,2,9],[3,10,0],[3,11,1]]) mod 13

Output:  2 −4 −5
2 0 −5
−2 −1 6


5.35.7 Row reduction to echelon form in Z/pZ: Rref

In Xcas mode, Rref is simply the inert form of rref; namely, it returns rref without evaluating it.
(See section Section 5.56.3 p.548.) In Maple mode, the Rref command can additionally be used in
conjunction with mod to �nd the reduced row echelon form of a matrix whose elements are in Z/pZ.

• (In Maple mode.)
Rref takes one argument:
A, a matrix with elements in Z/pZ.

• Rref(A) returns the reduced row echelon form of A.
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Example.

Solve in Z/13Z: {
x + 2 · y = 9

3 · x+ 10 · y = 0

Input (in Xcas mode):

Rref([[1,2,9] mod 13,[3,10,0] mod 13])

Output:

rref

([
1 % 13 2 % 13 (−4) % 13
3 % 13 (−3) % 13 0 % 13

])
To actually get the reduced echelon form, you can enter:
Input:

eval(ans())

Output: [
1 % 13 0 % 13 3 % 13
0 % 13 1 % 13 3 % 13

]
and conclude that x=3%13 and y=3%13.
Input (in Maple mode):

Rref([[1,2,9],[3,10,0]] mod 13)

Output: [
1 0 3
0 1 3

]
and again conclude that x=3%13 and y=3%13.

5.36 Taylor and asymptotic expansions

5.36.1 Dividing by increasing power order: divpc

The divpc command �nds the truncated Taylor expansion of a quotient of polynomials.

• divpc takes three mandatory arguments and one optional argument:

� P and Q, two polynomial expressions such that Q has a nonzero constant term/

� n, an integer.

� Optionally, x, the variable name (by default x).

• divpc(P,Q, n 〈, x〉) returns the Taylor expansion of P/Q of order n about x = 0.

Note that this command does not work on polynomials written as a list of coe�cients.

Example.

Input:

divpc(1+x�2+x�3,1+x�2,5)

Output:

−x5 + x3 + 1
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5.36.2 Series expansion: taylor series

The taylor command �nds Taylor expansions.
series is a synonym for taylor.

• taylor takes one mandatory and four optional arguments:

� expr, an expression depending on a variable.

� Optionally, x, the variable (by default x).

� Optionally n, an integer, the order of the series expansion (by default 5).

� Optionally, a, the center of the Taylor expansion (by default 0). This can be combined with
the optional x by replacing x by x = a.

� dir, a direction, which can be -1 or 1, for unidirectional series expansion, or 0 (for bidirectional
series expansion) (by default 0).

• taylor(expr,x 〈, a, ndir〉) returns the Taylor expansion of expr about a or order n; consisting of
a polynomial in x− a plus a remainder of the form of the form:

(x− a)�n * order_size(x− a)

where order_size is a function such that,

∀r > 0, lim
x→0

xrorder_size(x) = 0

For regular series expansion, order_size is a bounded function, but for non regular series expansion,
it might tend slowly to in�nity, for example like a power of ln(x).

Example.

Input:

taylor(sin(x),x=1,2)

or:

series(sin(x),x=1,2)

or (be careful with the order of the arguments!):

taylor(sin(x),x,2,1)

or:

series(sin(x),x,2,1)

Output:

sin (1) + cos (1) (x− 1)− 1

2
sin (1) (x− 1)2 + (x− 1)3 order_size (x− 1)

Remark.
The order returned by taylor may be smaller than n if cancellations between numerator and denomi-
nator occur, for example consider

x3 + sin(x)3

x− sin(x)

Input:

taylor(x�3+sin(x)�3/(x-sin(x)),x=0,5)
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Output:

6− 27

10
x2 + x3 +

711

1400
x4 + x6order_size (x)

6+-27/10*x�2+x�3*order_size(x)

which is only a 2nd degree expansion. Indeed the numerator and denominator valuation is 3, hence you
lose 3 orders. To get order 4, you should use n = 7.
Input:

taylor(x�3+sin(x)�3/(x-sin(x)),x=0,7)

Output:

6− 27

10
x2 + x3 +

711

1400
x4 − 737

14000
x6 + x8order_size (x)

6+-27/10*x�2+x�3+711/1400*x�4+x�5*order_size(x)

a fourth degree expansion.

Examples.

• Find a 4th-order expansion of cos(2x)2 in the vicinity of x = π
6 .

Input:

taylor(cos(2*x)�2,x=pi/6, 4)

Output:

1

4
−
√

3
(
x− π

6

)
+ 2

(
x− π

6

)2
+

8

3

√
3
(
x− π

6

)3
− 8

3

(
x− π

6

)4
+
(
x− π

6

)5
order_size

(
x− π

6

)
• Find a 5th-order series expansion of arctan(x) in the vicinity of x = +∞.
Input:

series(atan(x),x=+infinity,5)

Output:

π

2
− 1

x
+

(
1
x

)3
3
−
(
1
x

)5
5

+

(
1

x

)6

order_size

(
1

x

)
Note that the expansion variable and the argument of the order_size function is h =

1

x
→x→+∞

0.

• Find a 2nd-order expansion of (2x− 1)e
1

x−1 in the vicinity of x=+∞.
Input:

series((2*x-1)*exp(1/(x-1)),x=+infinity,3)

Output (only a 1st-order series expansion):

2

(
1

x

)−1
+ 1 +

2

x
+

17

6

(
1

x

)2

+

(
1

x

)3

order_size

(
1

x

)
Note that this is only a 1st order expansion. To get a 2nd-order series expansion in 1/x:
Input:

series((2*x-1)*exp(1/(x-1)),x=+infinity,4)
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Output:

2

(
1

x

)−1
+ 1 +

2

x
+

17

6

(
1

x

)2

+
47

12

(
1

x

)3

+

(
1

x

)4

order_size

(
1

x

)
• Find a 2nd-order series expansion of (2x− 1)e

1
x−1 in the vicinity of x=-∞.

Input:

series((2*x-1)*exp(1/(x-1)),x=-infinity,4)

Output:

−2

(
−1

x

)−1
+ 1 +

2

x
+

17

6

(
−1

x

)2

− 47

12

(
−1

x

)3

+

(
−1

x

)4

order_size

(
−1

x

)

• Find a 2nd-order series expansion of (1+x)
1
x

x3
in the vicinity of x = 0+.

Input:

series((1+x)�(1/x)/x�3,x=0,2,1)

(Note that this is a one-sided series expansion, since dir=1.) Output:

ex−3 − 1

2
ex−2 + x−1order_size (x)

5.36.3 The inverse of a series: revert

The revert command �nds the beginning of the power series of a function given the beginning of the
series of the function.

• revert takes one mandatory and one optional argument:

� series, the beginning of a power series centered at 0 for a function f .

� Optionally x, the name of the variable (by default x).

• revert(series 〈, x〉) returns the beginning of the power series for the inverse of f ; namely the
beginning of the power series for g(f(0) + x) where the function g satis�es g(f(x)) = x.

Examples.

• Input:

revert (x + x�2 + x�4)

Output:
x− x2 + 2x3 − 6x4

Note that if the power series of a function f begins with x + x2 + x4, then f(0) = 0, f ′(0) = 1,
f ′′(0) = 2, f ′′′(0) = 0 and f (4)(0) = 24. The function g with g(f(x)) = x will then satisfy g(0) = 0,
g′(0) = 1/f ′(0) = 1, g′′(0) = −2, g′′′(0) = 12 and g(4)(0) = −144. The power series for g will then
begin x− x2 + 2x3 − 6x4.

• Input:

revert(1 + x + x�2/2 + x�3/6 + x�4/24)

Note that the argument is the beginning of the power series for exp(x), so the output is the
beginning of the power series for ln(1 + x). Output:

x− x2

2
+
x3

3
− x4

4
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5.36.4 The residue of an expression at a point: residue

The residue command �nds the residue of an expression at a point.

• residue takes three arguments:

� expr, an expression depending on a variable.

� x, a variable name.

� a, a complex number. This can be combined with the previous argument in an equality
x = a.

• residue(expr,x, a) returns the residue of expr at the point a.

Example.

Input:

residue(cos(x)/x�3,x,0)

or:

residue(cos(x)/x�3,x=0)

Output:

−1

2

5.36.5 Padé expansion: pade

The pade command �nds a rational expression which agrees with a function up to a given order.

• pade takes 4 arguments

� expr, an expression.

� x, the variable name.

� n, an integer or R, a polynomial.

� p, an integer.

• pade(expr,x, n, p) or pade(expr,x, P, p) returns a rational function P/Q such that degree(P ) < p
and P/Q =expr (mod xn+1) (meaning that P/Q and f have the same Taylor expansion at 0 up
to order n) or P/Q =exprf (mod R), respecively.

Examples.

• Input:

pade(exp(x),x,5,3)

or:

pade(exp(x),x,x�6,3)

Output:
−3x2 − 24x− 60

x3 − 9x2 + 36x− 60

To verify:
Input:
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taylor((3*x�2+24*x+60)/(-x�3+9*x�2-36*x+60))

Output:

1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+ x6order_size (x)

which is the 5th-order series expansion of exp(x) at x = 0.

• Input:

pade((x�15+x+1)/(x�12+1),x,12,3)

or:

pade((x�15+x+1)/(x�12+1),x,x�13,3)

Output:
x+ 1

• Input:

pade((x�15+x+1)/(x�12+1),x,14,4)

or:

pade((x�15+x+1)/(x�12+1),x,x�15,4)

Output:
2x3 + 1

x11 − x10 + x9 − x8 + x7 − x6 + x5 − x4 + x3 + x2 − x+ 1

To verify:
Input:

series(ans(),x=0,15)

Output:
1 + x− x12 − x13 + 2x15 + x16order_size (x)

Then:
Input:

series((x�15+x+1)/(x�12+1),x=0,15)

Output:
1 + x− x12 − x13 + x15 + x16order_size (x)

These two expressions have the same 14th-order series expansion at x = 0.

5.37 Ranges of values

5.37.1 De�nition of a range of values: ..

The .. is an in�xed operator which sets a range of values; given two real numbers a and b, the range
of values between them is denoted a..b.
Warning!
The order of the boundaries of the range is signi�cant. For example, if you input

B:=2..3; C:=3..2,

then B and C are di�erent; B==C returns 0.
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Examples.

• Input:

1..4

Output:

1 . . . 4

• Input:

1.2..sqrt(2)

Output:

1.2 . . .
√

2

Since .. is an operator, the parts of an expression can be picked out of it (see Section 5.15.3 p.200).
In particular, the left and right commands can �nd the left and right endpoints of a range (see
Section 5.3.4 p.100, Section 5.15.3 p.200, Section 5.38.2 p.388, Section 5.40.6 p.406, Section 5.55.4 p.544
and Section 5.55.5 p.544 for other uses of left and right.)

Example:
Input:

R := 2..5

Then:
Input:

sommet(R)

Output:

..

Input:

left(R)

Output:

2

Input:

right(R)

Output:

5

5.37.2 Center of a range of values: interval2center

The interval2center command �nds the midpoint of a range of values.

• interval2center takes one argument:
R, a range of values interval or a list of ranges of values.

• interval2center(R) returns the center of this range or the list of centers of these ranges.
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Examples.

• Input:

interval2center(3..5)

Output:
4

• Input:

interval2center([2..4,4..6,6..10])

Output:
[3, 5, 8]

5.37.3 Ranges of values de�ned by their center: center2interval

The center2interval command �nds ranges of values determined by their centers.

• center2interval takes one mandatory argument and one optional argument:

� L, a list of real numbers.

� Optionally, c, a real number (by default L[0]− (L[1]− L[0])/2).

• center2interval(L 〈, c〉) returns a list of ranges of values; the midpoints of the elements of the
lists are endpoints of the ranges; so, for example, the second range will go from (L[0] +L[1])/2 to
(L[1] + L[2])/2, etc. By default the �rst and last range are centered on L[0] and L[−1]. With an
argument of c, however, the �rst range will begin at c

Examples.

• Input:

center2interval([3,5,8])

Output:
2.0 . . . 4.0, 4.0 . . . 6.5, 6.5 . . . 9.5

• Input:

center2interval([3,5,8],2.5)

Output:
2.5 . . . 4.0, 4.0 . . . 6.5, 6.5 . . . 9.5

5.38 Intervals

5.38.1 De�ning intervals: i[]

An interval is a range of real numbers, whose end points will be �oats with at least 15 signi�cant digits.
The i command creates intervals, with the arguments in square brackets.

• i takes two arguments:
a and b, two real numbers.

• i[a, b] returns the interval between a and b.
If a > b, then i[a, b] returns i[evalf(b,15)-epsilon,evalf(a,15)+epsilon] (see Section 2.5.7
p.56, item 9).
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Examples.

• Input:

i[1,13/11]

Output:
[1.00000000000000..1.18181818181819]

• Input:

i[pi,sqrt(3)]

Output:
[1.73205080756886..3.14159265358980]

Intervals can also be created by following a decimal number with a question mark. If the decimal
number contains n digits, the interval will be centered at a and have width 2 · 10−n.

Examples.

• Input:

0.123?

Output:
[0.121999999999999..0.124000000000000]

Input:

789.123456?

Output:
[0.789123454999990e3..0.789123456999998e3]

5.38.2 The endpoints of an interval: left right

The left and right commands can �nd the left and right endpoints of an interval. (See Section 5.15.3
p.200, Section 5.40.6 p.406, Section 5.37.1 p.385, Section 5.55.4 p.544 and Section 5.55.5 p.544 for other
uses of left and right.)

• left and right take one argument:
I, an interval.

• left(I) returns the left endpoint of the interval I.

• right(I) returns the right endpoint of the interval I.

Examples.

• Input:

left(i[2,5])

Output:
2.00000000000000

• Input:

right(i[2,5])

Output:
5.00000000000000
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5.38.3 Interval arithmetic: + - * /

You can apply the usual arithmetic operators, such as +, -, * and /, to intervals.

The result of adding two intervals is the interval whose endpoints are the sums of the left end points
and the right end points.

Example.

Input:

i[1,4] + i[2,3]

Output:

[3.00000000000000..7.00000000000000]

The negative of an interval is the result of taking the negative of the end points of the interval. The
new end points will have to be switched.

Example.

Input:

-i[2,3]

Output:

[−3.00000000000000..− 2.00000000000000]

The product of two intervals is the interval whose endpoints are the product the left endpoints of
the two intervals and the product of the right endpoints of the two intervals. The smallest product will
be the left end point of the product interval, and the largest product will be the right end point of the
product interval.

Examples.

• Input:

i[1,4]*i[2,3]

Output:

[2.00000000000000..0.120000000000000e2]

• Input:

i[-2,4]*i[3,5]

Output:

[−0.100000000000000e2..0.200000000000000e2]

The reciprocal of an interval is the interval determined by the reciprocals of the end points.
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Examples.

• textitInput:

1/i[2,3]

Output:

[0.333333333333333..0.500000000000000]

• Input:

1/i[-6,-3]

Output:

[−0.333333333333333..− 0.166666666666667]

If the original interval has zero as an end point, then the reciprocal interval will have plus or minus
in�nity as one of the end points. If one end point is positive and the other is negative, then the reciprocal
will simply be the interval from -in�nity to in�nity.

Examples.

• Input:

1/i[0,2]

Output:

[0.500000000000000..+∞]

• Input:

1/i[-1,0]

Output:

[−∞..− 1.00000000000000]

Input:

1/i[-2,3]

Output:

[−∞..+∞]

You can also, if you want, do the usual operations such as subtraction, division, powers and roots.

5.38.4 The midpoint of an interval: midpoint

The midpoint operator �nds the midpoint of an interval.

• midpoint takes one argument:
I, an interval.

• midpoint(I) returns the midpoint of I.
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Example.

Input:

midpoint(i[2,3])

Output:

2.50000000000000

5.38.5 The union of intervals: union

In Xcas, the union of two intervals is their convex hull.

The union operator is a binary in�xed operator that can �nd the union of two intervals.

Examples.

• Input:

i[1,3] union i[2,4]

Output:

[1.00000000000000..4.00000000000000]

• Input:

i[2,4] union i[6,9]

Output:

[2.00000000000000..9.00000000000000]

5.38.6 The intersection of intervals: intersect

The intersect operator is a binary in�xed operator that �nds the intersection of two intervals.

Example.

Input:

i[1,3] intersect i[2,4]

Output:

[2.00000000000000..3.00000000000000]

5.38.7 Testing if an object is in an interval: contains

The contains command determines if an object is in an interval.

• contains takes two arguments:

� I, an interval.

� obj, an object.

• contains(I,obj) returns 1 if obj is in I; i.e., either obj is a number which is contained in I or
obj is an interval which is a subset of I. It returns 0 otherwise.
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Examples.

• Input:

contains(i[0,2],1)

Output:

1

• Input:

contains(i[0,2],3)

Output:

0

• Input:

contains(i[0,2],i[1,2])

Output:

1

5.38.8 Converting a number into an interval: convert

The convert command (see Section 5.23.26 p.277) can convert an expression which evaluates to a
number to the smallest interval which contains the number.

• convert takes two mandatory arguments and one optional argument:

� expr, a number which evaluates to a number.

� interval, a reserved word.

� Optionally, n, an integer greater than 15 giving the desired number of digits.

• convert(expr,interval 〈, n〉) returns the smallest interval containing the value of expr.

Examples.

• Input:

convert(sin(3)+1, interval)

Output:

[1.14112000805985..1.14112000805990]

• Input:

convert(sin(3)+1, interval,20)

Output:

[1.1411200080598672220..1.1411200080598672222]
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5.38.9 Converting box constraints from matrix to interval form: box_constraints

The box_constraints command can convert bounds of given variables from the matrix form to interval
form.

• box_constraints takes two mandatory arguments:

� vars, a list of variables [x1, x2, . . . , xn].

� bnds, a matrix with n rows and two columns in which the k-th row contains the lower and
upper bound lk and uk of xk, respectively.

• box_constraints(vars,bnds) returns the sequence (x1 = l1 . . . u1, x2 = l2 . . . u2, . . . , xn = ln . . . un).

Examples.

• Input:

box_constraints([x,y],[[-2,2],[-5,5]])

Output:

x = −2 . . . 2, y = −5 . . . 5

5.39 Sequences and lists

5.39.1 De�ning a sequence or a list: seq[ ] ()

Recall (see Section 4.3.1 p.77) that a sequence is represented by a sequence of elements separated by
commas, either without delimiters, with parentheses (( and )) as delimiters, or with seq[ and ] as
delimiters.

Examples.

Input:

a,b,c,d

or:

(a,b,c,d)

or:

seq[a,b,c,d]

Output:

a, b, c, d

Similarly (see Section 4.3.3 p.78) a list (or a vector) is a sequence of elements separated by commas
delimited with [ and ].
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Examples.

• Input:

[1,2,5]

Output:
[1, 2, 5]

• Input:

[]

(to create the empty list).
Output:

[]

Lists have more structure than sequences. For example, a list can contain lists (for example, a
matrix is a list of lists of the same size, see Section 5.44 p.438). Lists may be used to represent vectors
(lists of coordinates), matrices, or univariate polynomials (lists of coe�cients by decreasing order, see
Section 5.27.1 p.301).

Sequences, on the other hand, are �at. An element of a sequence cannot be a sequence.
See Section 5.40 p.403 for some commands only for lists.

5.39.2 Making a sequence or a list: seq $

The seq command or $ operator can create a sequence or a list.
To create a sequence:

• seq takes three mandatory arguments and one optional argument:

� expr, an expression depending on a parameter.

� k, the parameter.

� a..b, a range of values. The range can be combined with the parameter into one argument
of k = a..b.

� Optionally p, a step size (by default 1 or -1, depending on whether b > a or b < a). This is
only allowed if the previous two arguments are combined into one, k = a..b

This is Maple-like syntax.

• seq(expr,k, a..b) (or seq(expr,k=a..b 〈, p〉)) returns the sequence formed by the values of expr,
as k changes from a to b in steps of p.

Alternatively, a sequence can be created with the in�xed $ operator. Namely, expr$ k=a..b returns
the sequence formed by the values of expr as k changes from a to b. As a special case, expr$ n creates
a sequence consisting of n copies of expr.

There are two ways to create a list with seq.
First:

• seq takes four mandatory arguments and one optional argument:

� expr, an expression depending on a parameter.

� k, the parameter.

� a, the beginning value of the parameter.

� b, the ending value of the parameter.
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� Optionally p, a step size (by default 1 or -1, depending on whether b > a or b < a).

This is TI-like syntax.

• seq(expr,k, a, b 〈, p〉) returns the list consisting of the values of expr, as k changes from a to b in
steps of p.

• As a special case, seq(expr,n) creates a list consisting of n copies of expr.

Second:

• seq takes two arguments: argument:

� expr, an expression.

� n, a positive integer.

• seq(expr,n) returns the list consisting of n copies of expr.

Remark.

• In Xcas mode, the precedence of $ is not the same as it is, for example, in Maple. In case of
doubt, put the arguments of $ in parenthesis. For example, the equivalent of seq(j�2,j=-1..3)
is (j�2)$(j=-1..3) and returns (1,0,1,4,9).

• With Maple syntax, j,a..b,p is not valid. To specify a step p for the variation of j from a to b,
use j=a..b,p or use the TI syntax j,a,b,p and get the sequence from the list with op(...).

Examples.

• To create a sequence:
Input:

seq(j�3,j,1..4)

or:

seq(j�3,j=1..4)

or:

(j�3)$(j=1..4)

Output:
1, 8, 27, 64

• To create a list:
Input:

seq(j�3,j,1,4)

Output:
[1, 8, 27, 64]

• To create a sequence:
Input:

seq(j�3,j=-1..4,2)
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Output:
−1, 1, 27

To create a list:
Input:

seq(j�3,j,-1,4,2)

Output:
[−1, 1, 27]

• Input:

seq(j�3,j,0,5,2)

Output:
[0, 8, 64]

• Input:

seq(j�3,j,5,0,-2)

or:

seq(j�3,j,5,0,2)

Output:
[125, 27, 1]

• Input:

seq(j�3,j,1,3,0.5)

Output:
[1, 3.375, 8.0, 15.625, 27.0]

• Input:

seq(j�3,j,1,3,1/2)

Output: [
1,

27

8
, 8,

125

8
, 27

]
• To create a list with several copies of the same element:
Input:

seq(t,4)

Output:
[t, t, t, t]

• To create a sequence with several copies of the same element:
Input:

seq(t,k=1..4)

or:

t$4

Output:
t, t, t, t
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Examples of sequences being used.

• Find the third derivative of ln(t):
(See Section 5.19.4 p.233).)
Input:

diff(log(t),t$3)

Output:
2

t3

• Input:

l:=[[2,3],[5,1],[7,2]]

seq((l[k][0])$(l[k][1]),k=0 .. size(l)-1)

Output:
(2, 2, 2) , (5) , (7, 7)

then: Input:

eval(ans())

Output:
2, 2, 2, 5, 7, 7

• Transform a string into a list of its characters:
Input:

chn := "abracadbra"

seq(chn[j],j,0,size(chn)-1)

Output:

["a","b","r","a","c","a","d","a","b","r","a"]

5.39.3 Length of a sequence or list: size nops length

You can �nd the length of a sequence or list with any of the size, nops or length commands.

• size (or nops or length) takes one argument:
S, a sequence or list.

• size(S) (or nops(S) or length(S)) returns the length of L.

Examples.

• Input:

nops(a,e,i,o,u)

or:

size(a,e,i,o,u)

or:
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length(a,e,i,o,u)

Output:

5

• Input:

nops([3,4,2])

or:

size([3,4,2])

or:

length([3,4,2])

Output:

3

5.39.4 Getting the �rst element of a sequence or list: head

The head command �nds the �rst element of a sequence or list.

• head takes one argument:
S, a sequence or list.

• head(S) returns the �rst element of S.

Examples.

• Input:

head(A,B,C,D)

Output:

A

• Input:

head([0,1,2,3])

Output:

0

5.39.5 Getting a sequence or list without the �rst element: tail

The tail command removes the �rst element of a list.

• tail takes one argument:
L, a list.

• tail(L) returns L without its �rst element.
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Example.

Input:

tail([0,1,2,3])

Output:

[1, 2, 3]

5.39.6 Getting an element of a sequence or a list: [] [[]] at

The elements of a sequence have indices beginning at 0 in Xcas mode and 1 in other modes (see
Section 2.5.2 p.54).

You can get the an element of index n of a sequence or list by following the sequence or list with
[n] (see Section 4.3.4 p.78).
(Note that head(S) does the same thing as S[0].)

Examples.

• Input:

(0,3,2)[1]

Output:

3

• Input:

S := 2,3,4,5

S[2]

Output:

4

• Input:

[A,B,C,D][2]

Output:

C

For lists, the at command can also be used to get the element at a speci�c position.

• at takes two arguments:

� L, a list.

� n, an integer.

• at(L, n) returns the element of S with index n.

Note. at cannot be used for sequences, since the second argument would be merged with the sequence.
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Example.

Input:

[0,1,2][1]

or:

at([0,1,2],1)

Output:

1

5.39.7 Finding a subsequence or a sublist

The bracket notation used to �nd elements of sequences and lists can also be used to extract a range
of elements. If S is a sequence or list of size n, then S[n1..n2] returns the subsequence or sublist of S
consisting of the elements with indices from n1 to n2, where 0 ≤ n1 ≤ n2 < s (in Xcas syntax mode) or
0 < n1 ≤ n2 ≤ s in other syntax modes.

Examples.

• Input:

[0,1,2,3,4][1..3]

Output:
[1, 2, 3]

• Input:

(A,B,C,D,E)[1..3]

Output:
B,C,D

For lists, the at command can also be used to get a sublist.

• at takes two arguments:

� L, a list.

� n1..n2, a range of integers.

• at(L, n1..n2) returns the sublist of L consisting of the elements with indices from n1 to n2.

Again, at can not be used for sequences.

Example.

Input:

at([1,2,3,4,5],2..4

Output:
[3, 4, 5]

An alternative to using at for �nding a sublist is the mid command, which again cannot be used for
sequences.
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• mid takes two mandatory and one optional argument:

� L, a list.

� n, the index of the beginning of the sublist.

� Optionally, l, the length of the sublist.

• mid(L, n 〈, l〉) returns the sublist of L with index beginning at n. With the option l, the length
of the sublist will be l, otherwise it will go to the end of the list L.

Examples.

• Input:

mid([0,1,2,3,4,5],2,3)

Output:

[2, 3, 4]

• Input:

mid([0,1,2,3,4,5],2)

Output:

[2, 3, 4, 5]

5.39.8 Concatenating two sequences: ,

The , operator is an in�xed operator which concatenates two sequences. (Note that it does not con-
catenate lists.)

Example.

Input:

A:=(1,2,3,4)

B:=(5,6,3,4)

A,B

Output:

1, 2, 3, 4, 5, 6, 3, 4

5.39.9 The + operator applied on sequences and lists

The in�xed operator +, with two sequences as arguments, returns the total sum of the elements of the
two sequences. This is di�erent than with two lists as arguments, where the term by term sums of the
elements of the two lists would be returned. (See Section 5.16.1 p.202.) To use it as a pre�x, it has to
be quoted ('+').
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Examples.

• Input:

(1,2,3,4,5,6)+(4,3,5)

or:

'+'((1,2,3,4,5,6),(4,3,5))

Output:
33

• Input:

[1,2,3,4,5,6]+[4,3,5]

or:

'+'([1,2,3,4,5,6],[4,3,5])

Output:
[5, 5, 8, 4, 5, 6]

5.39.10 Transforming sequences into lists and lists into sequences: [] nop op makesuite

To transform a sequence into list, you can put square brackets ([]) around the sequence. The makevector
and nop commands have the same e�ect.

• makevector (or nop) takes one argument:
S, a sequence.

• makevector(S) (or nop(S)) returns the list with the same elements as S in the same order.

Example.

Input:

[seq(j�3,j=1..4)]

or:

[(j�3)$(j=1..4)]

or:

nop(j�3$(j=1..4))

or:

makevector(j�3$(j=1..4))

Output:
[1, 8, 27, 64]

The makesuite command transforms a list into a sequence. Note that op (see Section 5.15.3 p.200)
can do the same thing.

• makesuite takes one argument:
L, a list.

• makesuite(L) returns the sequence with the same elements as L and the same order.
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Example.

Input:

makesuite([0,1,2])

or:

op([0,1,2])

Output:
0, 1, 2

5.40 Operations on lists

5.40.1 Sizes of a list of lists: sizes

Recall that one thing that distinguishes lists from sequences is that a list can be an element of another
list. The sizes command �nds the length of elements of a list, as long as each element is a list.

• sizes takes one argument:
L, a list each of whose elements is a list.

• sizes(L) returns the list of the lengths of the elements of L.

Example.

Input:

sizes([[3,4],[2]])

Output:
[2, 1]

5.40.2 Making a list with a function: makelist

The makelist command creates lists built from values of a function.

• makelist takes three mandatory arguments and one optional argument:

� f , a function (see Section 5.15.1 p.198).

� a and b, two real numbers.

� Optionally p, a step size (by default 1 if b > a and −1 if b < a).

• makelist(f, a, b 〈, p〉) returns the list [f(a), f(a+p), . . . , f(a+kp)] with k such that: a < a+kp ≤
b < a+ (k + 1)p or a > a+ kp ≥ b > a+ (k + 1)p.

Examples.

(In these examples, purge x if x is not symbolic.)

• Input:

makelist(x->x�2,3,5)

or:

makelist(x->x�2,3,5,1)
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or: Input:

h(x):=x�2

makelist(h,3,5,1)

Output:

[9, 16, 25]

• Input:

makelist(x->x�2,3,6,2)

Output:

[9, 25]

• Input:

makelist(4,1,3)

regards 4 as the constant function, and so creates a list with entries 4, from integers 1 to 3. This
is the same as [4 $ 3].
Output:

[4, 4, 4]

5.40.3 Making a list with zeros: newList

The newList makes a list of all zeros.

• newList takes one argument:
n, a positive integer.

• newList(n) returns a list of n zeros.

Example.

Input:

newList(3)

Output:

[0, 0, 0]

5.40.4 Making a list of integers: range

The range command creates lists of equally spaced numbers. It can take one, two or three arguments.

With one argument:

• range takes one argument:
n, a positive integer.

• range(n) returns the list [0,1,...,n− 1].
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Example.

Input:

range(5)

Output:

[0, 1, 2, 3, 4]

With two or three arguments:

• range takes two mandatory and one optional argument:

� a and b, two real numbers with a < b (unless the third argument p is provided and negative).

� Optionally, p, a nonzero real number used for the step size (by default 1).
(If p < 0, then a must be larger than b.)

• range(a, b 〈p〉) returns the list [a, a+ p, . . .] up to, but not including, b.

Examples.

• Input:

range(4,10)

Output:

[4, 5, 6, 7, 8, 9]

• Input:

range(2.3,7.4)

Output:

[2.3, 3.3, 4.3, 5.3, 6.3, 7.3]

• Input:

range(4,13,2)

Output:

[4, 6, 8, 10, 12]

• Input:

range(10,4,-1)

Output:

[10, 9, 8, 7, 6, 5]

You can use the range command to create a list of values f(k), where k is an integer satisfying a
certain condition. (See Section 12.3.3 p.757 for the for loop used below.)

• You can list the values of an expression in a variable which goes over a range de�ned by range.
Input:

[k�2 + k for k in range(10)]
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Output:

[0, 2, 6, 12, 20, 30, 42, 56, 72, 90]

• You can list the values of an expression in a variable which goes over a range de�ned by range

and which satis�es a given condition.
Input:

[k for k in range (4,10) if isprime(k)]

(See Section 5.5.14 p.121 for isprime.)
Output:

[5, 7]

Input:

[k�2 + k for k in range(1,10,2) if isprime(k)]

Output:

[12, 30, 56]

5.40.5 Selecting elements of a list: select

The select command selects elements of a list meeting given conditions.

• select takes two arguments:

� f , a boolean function.

� L, a list.

• select(f, L) returns the sublist of L consisting of the elements c such that f(c)==true.

Example.

Input:

select(x->(x>=2),[0,1,2,3,1,5])

Output:

[2, 3, 5]

5.40.6 The left and right portions of a list: left right

The left and right can �nd the left and right parts of a list. (See Section 5.3.4 p.100, Section 5.15.3
p.200, Section 5.37.1 p.385, Section 5.38.2 p.388, Section 5.55.4 p.544 and Section 5.55.5 p.544 for other
uses of left and right.)

• left takes two arguments:

� L, a list.

� n, a positive integer.

• left(L, n) returns the �rst n elements of L.



5.40. OPERATIONS ON LISTS 407

Example.

Input:

left([0,1,2,3,4,5,6,7,8],3)

Output:
[0, 1, 2]

• right takes two arguments:

� L, a list.

� n, a positive integer.

• right(L, n) returns the last n elements of L.

Example.

Input:

right([0,1,2,3,4,5,6,7,8],4)

Output:
[5, 6, 7, 8]

5.40.7 Modifying the elements of a list: subsop

The subsop command can be used to modify elements in a list.

• subsop takes two arguments:

� L, a list.

� i=value, an index and a new value.

• (In all but Maple mode).
subsop(L, i=value) returns the list L with the value at index i replaced by value.

• (In Maple mode; the only di�erence is the order of the arguments).
subsop(i=value,L) returns the list L with the value at index i replaced by value.

Remark: If the second argument is i=NULL, then the element at index i is removed from L.

You can also rede�ne elements (or de�ne new elements, but not remove elements) with :=.

Examples.

• Input (in Xcas mode, the index of the �rst element is 0):

subsop([0,1,2],1=5)

or:

L:=[0,1,2];L[1]:=5

Output:
[0, 5, 2]

• Input (in Xcas mode, the index of the �rst element is 0):
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subsop([0,1,2],'1=NULL')

Output:
[0, 2]

• Input (in Mupad TI mode, the index of the �rst element is 1):

subsop([0,1,2],2=5)

or:

L:=[0,1,2];L[2]:=5

Output:
[0, 5, 2]

• When using := to insert an element in a list, the list will be padded with 0s if necessary.
Input:

L:=[]

then:

L[3]:=5

Output:
[0, 0, 0, 5]

• In Maple mode the arguments are permuted and the index of the �rst element is 1.
Input:

subsop(2=5,[0,1,2])

or:

L:=[0,1,2];L[2]:=5

Output:
[0, 5, 2]

5.40.8 Removing an element in a list: suppress

The suppress command removes elements from a list.

• suppress takes two arguments:

� L, a list.

� i, a nonnegative integer.

• suppress(L, i) returns the list L with the element at index i removed.

Example.

Input:

suppress([3,4,2],1)

Output:
[3, 2]
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5.40.9 Removing elements of a list: remove

The remove command removes elements of a list according to a given conditions.

• remove takes two arguments:

� f , a boolean function.

� L, a list.

• remove(f, L) returns the sublist of L with the elements c such that f(c)==true removed.

Example.

Input:

remove(x->(x>=2),[0,1,2,3,1,5])

Output:
[0, 1, 1]

Remark: You can use remove to remove characters from a string. For example, to remove all the "a"s
of a string (see Section 12.1.2 p.743 for writing functions):
Input:

orda := ord("a"):;

then:

f(chn):={

local l:=length(chn)-1;

return remove(x->(ord(x)==orda),seq(chn[k],k,0,l));

}

Now:
Input:

f("abracadabra")

Output:
["b", "r", "c", "d", "b", "r"]

To get a string:
Input:

char(ord(["b","r","c","d","b","r"]))

Output:
"brcdbr"

5.40.10 Inserting an element into a list or a string: insert

The insert command inserts elements into a list or string.

• insert takes three arguments:

� L, a list or a string.

� i, an integer (the index).

� x.

• insert(L, i, x) returns L with x inserted at index i and the necessary elements shifted to the right.
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Examples.

• Input:

insert([3,4,2],2,5)

Output:

[3, 4, 5, 2]

• Input:

insert("342",2,"5")

Output:

"3452"

insert returns an error if the index is too large.
Input:

insert([3,4,2],4,5)

Output:

insert([3,4,2],4,5)

Error: Invalid dimension

5.40.11 Appending an element at the end of a list: append

The append command adds an element to the end of a list.

• append takes two arguments:

� L, a list.

� x.

• append(L, x) returns a list L with the additional element x at the end.

Examples.

• Input:

append([3,4,2],1)

Output:

[3, 4, 2, 1]

• Input:

append([1,2],[3,4])

Output:

[1, 2, [3, 4]]
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5.40.12 Prepending an element at the beginning of a list: prepend

The prepend command adds an element to the beginning of a list.

• prepend takes two arguments:

� x.

� L, a list.

• prepend(x, L) returns a list containing x as the �rst element followed by the elements of L.

Examples.

• Input:

prepend([3,4,2],1)

Output:

[1, 3, 4, 2]

• Input:

prepend([1,2],[3,4])

Output:

[[3, 4] , 1, 2]

5.40.13 Concatenating two lists or a list and an element: concat augment

The concat command combines to lists or adds an element to a list.
augment is a synonym for concat.

• concat takes two arguments:
L1 and L2, two lists or a list and an element (in any order).

• concat(L1, L2) returns a list consisting of the elements of L1 (or L1 itself if it isn't a list) followed
by the elements of L2 (or L2 itself).

Examples.

• Input:

concat([3,4,2],[1,2,4])

or:

augment([3,4,2],[1,2,4])

Output:

[3, 4, 2, 1, 2, 4]

• Input:

concat([3,4,2],5)

or:
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augment([3,4,2],5)

Output:
[3, 4, 2, 5]

• Input:

concat(2,[5,4,3])

or:

augment(2,[5,4,3])

Output:
[2, 5, 4, 3]

Warning.
Input:

concat([[3,4,2]],[[1,2,4]])

or:

augment([[3,4,2]],[[1,2,4]])

results in:
Output: [

3 4 2 1 2 4
]

5.40.14 Flattening a list: flatten

The flatten command replaces any sublists of a list by their elements.

• flatten takes one argument:
L, a list.

• flatten(L) returns a list which is the result of recursively replacing any elements that are lists
by the elements, resulting in a list with no lists as elements.

Example.

Input:

flatten([[1,[2,3],4],[5,6]])

Output:
[1, 2, 3, 4, 5, 6]

If the original list is a matrix, you can also use the mat2list command for this (see Section 5.40.34
p.426).

5.40.15 Reversing order in a list: revlist

The revlist command reverses the elements of a list or sequence.

• revlist takes one argument:
L, a list or sequence.

• revlist(L) returns a list or sequence with the same elements as L in the reverse order.
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Examples.

• Input:

revlist([0,1,2,3,4])

Output:

[4, 3, 2, 1, 0]

• Input:

revlist([0,1,2,3,4],3)

Output:

3, [0, 1, 2, 3, 4]

5.40.16 Rotating a list: rotate

The rotate command rotates a list; namely it moves elements from one side and puts them on the
other.

• rotate takes one mandatory argument and one optional argument:

� L, a list.

� Optionally, n, an integer (by default n = −1).

• rotate(L) returns the list formed by rotating L n places to the left if n > 0 or −n places to the
right if n < 0. Elements leaving the list from one side come back on the other side. By default
n = −1 and the last element becomes the �rst.

Examples.

• Input:

rotate([0,1,2,3,4])

Output:

[4, 0, 1, 2, 3]

• Input:

rotate([0,1,2,3,4],2)

Output:

[2, 3, 4, 0, 1]

• Input:

rotate([0,1,2,3,4],-2)

Output:

[3, 4, 0, 1, 2]
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5.40.17 Shifting the elements of a list: shift

The shift command shifts the elements of a list.

• shift takes one mandatory argument and one optional argument:

� L, a list.

� Optionally, n, an integer (by default n = −1).

• shift(L) returns the list formed by shifting the elements of L n places to the left if n > 0 or
−n places to the right if n < 0. Elements leaving the list from one side are replaced by 0s on the
other side.

Examples.

• Input:

shift([0,1,2,3,4])

Output:

[0, 0, 1, 2, 3]

• Input:

shift([0,1,2,3,4],2)

Output:

[2, 3, 4, 0, 0]

• Input:

shift([0,1,2,3,4],-2)

Output:

[0, 0, 0, 1, 2]

5.40.18 Sorting: sort

The sort command sorts lists and expression in various ways.

• sort takes one mandatory argument and one optional argument:

� L, a list or expression.

� Optionally, f , a boolean function of two variables (by default, f if the function (x,y) ->

x<=y).

• sort(L, f) (for a list L) returns a copy of L sorted according to the order given by f . By default,
this means that it will be sorted in increasing order.

• sort(L, f) (for an expression L) returns a copy of L with the terms in sums and products collected
and sorted.

Note that using (x,y)->x>=y for f will to sort the list in decreasing order. This may also be used to
sort a list of lists (that sort with one argument does not know how to sort).
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Examples.

• Input:

sort([3,4,2])

Output:
[2, 3, 4]

• Input:

sort(exp(2*ln(x))+x*y-x+y*x+2*x)

Output:
2xy + e2 lnx + x

Input:

simplify(exp(2*ln(x))+x*y-x+y*x+2*x)

Output:
x2 + 2xy + x

• Input:

sort([3,4,2],(x,y)->x>=y)

Output:
[4, 3, 2]

5.40.19 Sorting a list by increasing order: SortA

The SortA command sorts a list or a matrix in increasing order.

• SortA takes one argument:
L, a list.

• If L is not a matrix:
SortA(L) returns a copy of L with the elements in increasing order (if L is not a matrix).
If L is a matrix:
SortA(L) returns a copy of L where the columns are sorted according to increasing order in the
�rst row.

Examples.

• Input:

SortA([3,4,2])

Output:
[2, 3, 4]

• Input:

SortA([[3,4,2],[6,4,5]])

Output: [
2 3 4
5 6 4

]
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5.40.20 Sorting a list by decreasing order: SortD

The SortD command sorts a list or a matrix in decreasing order.

• SortD takes one argument:
L, a list.

• If L is not a matrix:
SortA(L) returns a copy of L with the elements in decreasing order.
If L is a matrix:
SortA(L) returns a copy of L where the columns are sorted according to decreasing order in the
�rst row.

Examples.

• Input:

SortD([3,4,2])

Output:
[4, 3, 2]

• Input:

SortD([[3,4,2],[6,4,5]])

Output: [
4 3 2
4 6 5

]
5.40.21 Sorting by permutation: sortperm

The sortperm command returns the permutation which sorts the given list in ascending order or the
list sorted by the given permutation.

sortperm takes one or two arguments:

• V , a nonempty list.

• P , a permutation (optional).

If called with one argument, sortperm returns the permutation which sorts the list V in ascending
order. If called with two arguments, it returns a copy of V sorted according to P .

This command is useful when several lists of equal lengths need to be sorted in the same order.
Sorting by permutation is optimally e�cient.

Examples.

• Input:

V:=[30,25,40,10,20]; P:=sortperm(V)

• Output:
[3, 4, 1, 0, 2]

• Input:

S:=["ab","cd","ad","bc","de"]; sortperm(S,P)

• Output:
["bc", "de", "cd", "ab", "ad"]
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5.40.22 Number of elements equal to a given value: count_eq

The count_eq command counts the number of elements of a list equal to a given value.

• count_eq takes two arguments:

� x, a real number.

� L, a list or matrix of real numbers.

• count_eq(x, L) returns the number of elements of L which are equal to x.

Example.

Input:

count_eq(12,[2,12,45,3,7,78])

Output:

1

5.40.23 Number of elements smaller than a given value: count_inf

The count_inf command counts the number of elements of a list strictly less than a given value.

• count_inf takes two arguments:

� x, a real number.

� L, a list or matrix of real numbers.

• count_inf(x, L) returns the number of elements of L which are strictly less than x.

Example.

Input:

count_inf(12,[2,12,45,3,7,78])

Output:

3

5.40.24 Number of elements greater than a given value: count_sup

The count_sup command counts the number of elements of a list strictly greater than a given value.

• count_sup takes two arguments:

� x, a real number.

� L, a list or matrix of real numbers.

• count_sup(x, L) returns the number of elements of L which are strictly greater than x.

Example.

Input:

count_sup(12,[2,12,45,3,7,78])

Output:

2
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5.40.25 Sum of elements of a list: sum add

The sum command adds the elements of a list or sequence of numbers.
add is a synonym for sum.

• sum takes one argument:
L, a list or sequence of numbers.

• sum(L) returns the sum of the elements of L.

Example.

Input:

sum(2,3,4,5,6)

Output:

20

5.40.26 Sum of list (or matrix) elements transformed by a function: count

The count command adds the values of a function applied to the elements of a list or matrix.

• count takes two arguments:

� f , a real-valued or boolean-valued function.

� L, a list or a matrix.

• count(f, L) returns the sum of f(x) for all elements x in L.
If f is a boolean-valued function, this is just the number of elements for which the boolean is true.

Examples.

• Input:

count((x)->x,[2,12,45,3,7,78])

Output:

147

because: 2 + 12 + 45 + 3 + 7 + 78 = 147.

• Input:

count((x)->x<12,[2,12,45,3,7,78])

Output:

3

• Input:

count((x)->x==12,[2,12,45,3,7,78])

Output:

1

• Input:
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count((x)->x>12,[2,12,45,3,7,78])

Output:
2

• Input:

count(x->x�2,[3,5,1])

Output:
35

Indeed 32 + 52 + 11 = 35.

• Input:

count(id,[3,5,1])

Output:
9

Indeed, id is the identity functions and 3+5+1=9.

• Input:

count(1,[3,5,1])

Output:
3

Indeed, 1 is the constant function equal to 1 and 1+1+1=3.

5.40.27 Cumulated sum of the elements of a list: cumSum

The cumSum command �nds the partial sums of a list or sequence; namely, the kth element of the

• cumSum takes one argument:
L, a list or sequence of numbers or of strings.

• cumSum(L) returns the list or sequence with same length as L and whose kth element is the sum
or concatenation of elements 0 through k of L.

Examples.

• Input:

cumSum(sqrt(2),3,4,5,6)

Output: √
2,
√

2 + 3,
√

2 + 3 + 4,
√

2 + 3 + 4 + 5,
√

2 + 3 + 4 + 5 + 6

Input:

normal(cumSum(sqrt(2),3,4,5,6))

Output: √
2,
√

2 + 3,
√

2 + 7,
√

2 + 12,
√

2 + 18
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• Input:

cumSum(1.2,3,4.5,6)

Output:

1.2, 4.2, 8.7, 14.7

• Input:

cumSum([0,1,2,3,4])

Output:

[0, 1, 3, 6, 10]

• Input:

cumSum("a","b","c","d")

Output:

"a", "ab", "abc", "abcd"

• Input:

cumSum(["a","ab","abc","abcd"])

Output:

["a", "aab", "aababc", "aababcabcd"]

5.40.28 Product: product mul

The product command can �nd the products of elements of an expression (see Section 5.40.28 p.420), the
elements of a list (see Section 5.40.28 p.421), the elements of the columns of a matrix (see Section 5.45.6
p.461), and the term-by-term (Hadamard) product of two matrices (see Section 5.45.8 p.462).

Product of values of an expression: product

The product command can �nd the product of the values of an expression as the variable changes.
Here, mul is a synonym for product.

• product takes four mandatory arguments and one optional argument:

� expr, an expression.

� x, the name of a variable.

� a and b, real numbers.

� Optionally p, a real number representing a step size. (By default p = 1).

• product(exprx, a, b 〈p〉) returns the product of the values of expr as x goes from a to b in steps
of p.
This syntax is for compatibility with Maple.
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Examples.

• Input:

product(x�2+1,x,1,4)

or:

mul(x�2+1,x,1,4)

Output:
1700

Indeed (12 + 1) · (22 + 1) · (32 + 1) · (42 + 1) = 1700

• Input:

product(x�2+1,x,1,5,2)

or:

mul(x�2+1,x,1,5,2)

Output:
520

Indeed (12 + 1) · (32 + 1) · (52 + 1) = 520

Product of elements of a list: product

The product command can �nd the products of elements of a list.
For this, mul is a synonym for product.

• product takes one mandatory and one optional argument:

� L, a list of numbers.

� Optionally, L2, another list of numbers the same length as L.

• product(L) returns the product of the elements of L.

• product(L,L2) returns the term by term product of the elements of L and L2.

(See also Section 5.45.8 p.462.)

Examples.

• Input:

product([2,3,4])

or:

mul([2,3,4])

Output:
24

• Input:
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product([[2,3,4],[5,6,7]])

Output:

[10, 18, 28]

• Input:

product([2,3,4],[5,6,7])

or:

mul([2,3,4],[5,6,7])

Output:

[10, 18, 28]

5.40.29 Applying a function of one variable to the elements of a list: map apply

The apply and map commands can both apply a function to a list of elements, but take arguments in
di�erent orders (that is required for compatibility reasons). The apply command also works on matrices
(see Section 5.44.6 p.459) and the map command also works on polynomials in internal sparse format
(see Section 5.27.3 p.301).

• apply takes two arguments:

� f , a function.

� L, a list.

• apply(f, L) returns a list whose elements are f(x) for the elements x of L.

Note that apply returns a list ([]) even if the second argument is not a list.

Example.

Input:

apply(x->sqrt(x),[16,9,4,1])

Output:

[4, 3, 2, 1]

• map takes two arguments:

� L, a list or a polynomial in internal format (see Section 5.27.2 p.301).

� f , a function.

• map(L, f) returns a list whose elements are f(x) for the elements x of L.

subsubsection*Example.
Input:

map([16,9,4,1],x->sqrt(x))

Output:

[4, 3, 2, 1]
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Examples.

• Input:

apply(x->x�2,[3,5,1])

or:

map([3,5,1],x->x�2)

(or �rst de�ne the function h(x) = x2:)
Input:

h(x):=x�2

then:

apply(h,[3,5,1])

or:

map([3,5,1],h)

Output:
[9, 25, 1]

• De�ne the function g(x) = [x, x2, x3]:
Input:

g:=(x)->[x,x�2,x�3]

then:

apply(g,[3,5,1])

or:

map([3,5,1],g)

Output:  3 9 27
5 25 125
1 1 1


Warning!!!
First purge x if x is not symbolic.
Note that if L1, L2 and L3 are lists, then sizes([L1, L2, L3]) is equivalent to map(size,[L1, L2, L3]).

5.40.30 Applying a bivariate function to the elements of two lists: zip

The zip command applies a bivariate function to the elements of 2 lists.

• zip takes three arguments:

� f , a function of two variables.

� L1 and L2, two lists of the same size n.

• zip(f, L1, L2) returns a list of size n whose kth element is f applied to the kth elements of L1

and L2
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Examples.

• Input:

zip('sum',[a,b,c,d],[1,2,3,4])

Output:
[a+ 1, b+ 2, c+ 3, d+ 4]

• Input:

zip((x,y)->x�2+y�2,[4,2,1],[3,5,1])

or:

f:=(x,y)->x�2+y�2

zip(f,[4,2,1],[3,5,1])

Output:
[25, 29, 2]

• Input:

f:=(x,y)->[x�2+y�2,x+y]

zip(f,[4,2,1],[3,5,1])

Output:  25 7
29 7
2 2


5.40.31 Folding operators: foldl foldr

The foldl (left-fold) and foldr (right-fold) commands take an in�xed operator or function of two
variables and apply them across a sequence of inputs through left and right association.

• foldl takes an arbitrary number of arguments:

� R, an in�xed operator or function of two variables.

� I, an initial value.

� a1, a2, . . . , ak, an arbitrary number of additional arguments.

• foldl(R, I, a1, . . . , ak) returns R(. . . R(R(I, a1), a2) . . . , ak).

Example.

Input:

foldl('�',2,3,5)

Output:
32768

which is 2(35)

• foldr takes an arbitrary number of arguments:

� R, an in�xed operator or function of two variables.

� I, an initial value.

� a1, a2, . . . , aj , an arbitrary number of additional arguments.

• foldr(R, I, a1, a2, . . . , ak) returns R(a, . . . (R(a1, R(a2, . . . R(ak−1, R(ak, I))))
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Example.

Input:

foldr('�',2,3,5)

Output:
847288609443

which is 3(52)

5.40.32 List of di�erences of consecutive terms: deltalist

The deltalist command �nds lists of di�erences.

• deltalist takes one argument:
L, a list.

• deltalist(L) returns the list of the di�erence of all pairs of consecutive terms of L.

Example.

Input:

deltalist([5,8,1,9])

Output:
[3,−7, 8]

5.40.33 Making a matrix with a list: list2mat

The listmat command turns a list into a matrix by chopping up the list into separate rows.

• list2mat takes two arguments:

� L, a list.

� p, a postive integer.

• list2mat(L, p) returns the matrix whose �rst row consists of the �rst p elements of L, whose
next row consists of the next p elements of L, etc. If there are not enough elements to �ll up a
row, 0s are added.

Examples.

• Input:

list2mat([5,8,1,9,5,6],2)

Output: 5 8
1 9
5 6


• Input:

list2mat([5,8,1,9],3)

Output: (
5 8 1
9 0 0

)



426 CHAPTER 5. THE CAS FUNCTIONS

5.40.34 Making a list with a matrix: mat2list

The mat2list �attens a matrix into a list. (See also Section 5.40.14 p.412.)

• mat2list takes one argument:
A, a matrix.

• mat2list(A) returns the list of the coe�cients of A.

Example.

Input:

mat2list([[5,8],[1,9]])

Output:

[5, 8, 1, 9]

5.41 Operations on sets and lists

5.41.1 De�ning a set or list: set[ ] %{ %}

Sets and lists are both collections of elements, and so have some operations in common. But lists are
di�erent from sets, because for a list, the order is important and the same element can be repeated
in a list, while for sets order in not important and each element is unique. See Section 5.40 p.403 for
operations on lists.

Recall (see Section 4.3.2 p.77) that to de�ne a set of elements, you can put the elements, separated
by commas, within delimiters %{ and %} or set[ and ].

Example.

Input:

set[1,2,3,4]

or:

%{1,2,3,4%}

Output:

[[1, 2, 3, 4]]

Also, (see Section 4.3.3 p.78) to de�ne a list of elements, you can put the elements, separated by
commas, within delimiters [ and ]. Lists are also called vectors.

Example.

Input:

[1,2,5]

Output:

[1, 2, 5]
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5.41.2 Testing if a value is in a list or a set: member contains

The member and contains commands determine whether or not an object is in a list; the di�erence
between them is the order of the arguments (required for compatibility reasons).

• member takes two arguments:

� c, a value.

� L, a list or a set.

• member(c, L) returns 0 if c is not an element of L and otherwise returns n if c is in L and its �rst
position has index n− 1. 0 if c is not in L.

Examples.

• Input:

member(2,[0,1,2,3,4,2])

Output:

3

• Input:

member(2,%{0,1,2,3,4,2%})

Output:

3

• contains takes two arguments:

� L, a list or a set.

� c, a value.

• contains(L, c) returns 0 if c is not an element of L and otherwise returns n if c is in L and its
�rst position has index n− 1. 0 if c is not in L.

Examples.

• Input:

contains([0,1,2,3,4,2],2)

Output:

3

• Input:

contains(%{0,1,2,3,4,2%},2)

Output:

3
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5.41.3 Union of two sets or of two lists: union

The union operator is an in�xed operator that �nds the union of the elements of two sets or lists; the
result will always be a set.

Examples.

• Input:

set[1,2,3,4] union set[5,6,3,4]

or:

%{1,2,3,4%} union %{5,6,3,4%}

Output:

[[1, 2, 3, 4, 5, 6]]

• Input:

[1,2,3] union [2,5,6]

Output:

[[1, 2, 3, 5, 6]]

5.41.4 Intersection of two sets or of two lists: intersect

The intersect operator is an in�xed operator that can �nd the intersection of the elements of two sets
or lists; the result will always be a set.

Examples.

• Input:

set[1,2,3,4] intersect set[5,6,3,4]

or:

%{1,2,3,4%} intersect %{5,6,3,4%}

Output:

[[3, 4]]

• Input:

[1,2,3,4] intersect [5,6,3,4]

Output:

[[3, 4]]

5.41.5 Di�erence of two sets or of two lists: minus

The minus operator is an in�xed operator that can �nd the set di�erence of the elements of two sets or
lists; the result will always be a set.
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Examples.

• Input:

set[1,2,3,4] minus set[5,6,3,4]

or:

%{1,2,3,4%} minus %{5,6,3,4%}

Output:

[[1, 2]]

• Input:

[1,2,3,4] minus [5,6,3,4]

Output:

[[1, 2]]

Cartesian products

De�ning an n-tuple: tuple

To de�ne an n-tuple (rather than a list of n objects), you can put the elements, separated by commas,
inside the delimiters tuple[ and ].

Example.

Input:

set[tuple[1,3,4],tuple[1,3,5],tuple[2,3,4]]

Output:

[[tuple [1, 3, 4] , tuple [1, 3, 5] , tuple [2, 3, 4]]]

The Cartesian product of two sets: *

You can compute the Cartesian product of two sets with the in�xed * operator.

Examples.

• Input:

set[1,2] * set[3,4]

Output:

[[tuple[1, 3], tuple[1, 4], tuple[2, 3], tuple[2, 4]]]

• Input:

set[1,2] * set[3,4] * set[5,6]

Output:

[[tuple[1, 3, 5], tuple[1, 3, 6], tuple[1, 4, 5], tuple[1, 4, 6], tuple[2, 3, 5], tuple[2, 3, 6], tuple[2, 4, 5], tuple[2, 4, 6]]]
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5.42 Functions for vectors

5.42.1 Norms of a vector: maxnorm l1norm l2norm norm

There are di�erent norms for vectors in Rn, and Xcas has di�erent commands for them.
Given a list L = [a1, . . . , an],

• maxnorm(L) returns the l∞ norm of L, namely max (|a1|, |a2|, . . . , |an|)

Example.

Input:

maxnorm([3,-4,2])

Output:
4

Indeed, 4 = max (|3|, | − 4|, |2|).

• l1norm(L) returns the l1 norm of L, namely |a1|+ |a2|+ · · ·+ |an|. coordinates.

Example.

Input:

l1norm([3,-4,2])

Output:
9

Indeed, 9 = |3|+ | − 4|+ |2|.

• norm(L) or l2norm(L) returns the `2 norm of L; namely
√
|a1|2 + |a2|2 + · · ·+ |an|2.

Example.

Input:

norm([3,-4,2])

Output: √
29

Indeed, 29 = |3|2 + | − 4|2 + |2|2.

5.42.2 Normalizing a vector: normalize unitV

The normalize command �nds the unit vector in the direction of a given vector.
unitV is a synonym for normalize.

• normalize takes one argument:
V , a vector (list).

• normalize(V ) normalizes this vector for the l2 norm (the square root of the sum of the squares
of its coordinates).
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Example.

Input:

normalize([3,4,5])

Output: [
3

5
√

2
,

4

5
√

2
,

5

5
√

2

]
5.42.3 Term by term sum of two lists: + .+

The in�xed operators + and .+ as well as the pre�xed operator '+' return the term by term sum of two
lists. If the two lists do not have the same size, the smaller list is padded with zeros.
Note the di�erence with sequences: if the in�xed operator + or the pre�xed operator '+' is applied to
two sequences, it merges the sequences, hence return the sum of all the terms of the two sequences.

Examples.

• Input:

[1,2,3]+[4,3,5]

or:

[1,2,3] .+[4,3,5]

or:

'+'([1,2,3],[4,3,5])

Output:
[5, 5, 8]

• Input:

[1,2,3,4,5,6]+[4,3,5]

or:

[1,2,3,4,5,6].+[4,3,5]

or:

'+'([[1,2,3,4,5,6],[4,3,5]])

Output:
[5, 5, 8, 4, 5, 6]

Warning!
When the operator + is pre�xed, it should be quoted ('+').

5.42.4 Term by term di�erence of two lists: - .-

The in�xed operators - and .- as well as the pre�xed operator '-' return the term by term di�erence
of two lists. If the two lists do not have the same size, the smaller list is padded with zeros.
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Example.

Input:

[1,2,3]-[4,3,5]

or:

[1,2,3] .- [4,3,5]

or:

'-'([1,2,3],[4,3,5])

or:

'-'([[1,2,3],[4,3,5]])

Output:
[−3,−1,−2]

Warning!
When the operator - is pre�xed, it should be quoted ('-').

5.42.5 Term by term product of two lists: .*

The in�xed operator .* returns the term by term product of two lists of the same size.

Example.

Input:

[1,2,3] .* [4,3,5]

Output:
[4, 6, 15]

5.42.6 Term by term quotient of two lists: ./

The in�xed operator ./ returns the term by term quotient of two lists of the same size.

Example.

Input:

[1,2,3] ./ [4,3,5]

Output: [
1

4
,
2

3
,
3

5

]
5.42.7 Scalar product : scalar_product * dotprod dot dotP scalar_Product

The dot command �nds the dot product of two vectors.
dotP, dotprod, scalar_product, and scalarProduct are synonyms for dot. The in�xed operator *

and its pre�xed form '*' will also �nd dot products.

• dot takes two arguments:
V1 and V2, two lists (vectors) of the same size.

• dot(V1, V2) returns the dot product of V1 and V2.
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Example.

Input:

dot([1,2,3],[4,3,5])

or:

scalar_product([1,2,3],[4,3,5])

or:

[1,2,3]*[4,3,5]

or:

'*'([1,2,3],[4,3,5])

Output:

25

Indeed 25 = 1 · 4 + 2 · 3 + 3 · 5.
Note that *may be used to �nd the product of two polynomials represented as list of their coe�cients,

but to avoid ambiguity, the polynomial lists must be poly1[. . .].

5.42.8 Cross product: cross crossP crossproduct

The cross command �nds the cross product of two vectors.
crossP and crossproduct are synonyms for cross.

• cross takes two arguments:
V1 and V2, two vectors of length 3.

• cross(V1, V2) returns the cross product of V1 and V2.

Example.

Input:

cross([1,2,3],[4,3,2])

Output:

[−5, 10,−5]

Indeed, −5 = 2 ∗ 2− 3 ∗ 3, 10 = −1 ∗ 2 + 4 ∗ 3, −5 = 1 ∗ 3− 2 ∗ 4.

5.42.9 Statistics on lists: mean variance stddev stddevp median quantile quartiles
boxwhisker

The functions described here can be used if a statistics series is contained in a list. See also Sec-
tion 5.45.16 p.468 for statistics on matrices and Section 8 p.633 for more general statistics.

Let L be a list.

• mean(L) computes the arithmetic mean of a list.
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Examples.

� Input:

mean([3,4,2])

Output:

3

� Input:

mean([1,0,1])

Output:
2

3

• stddev(L computes the standard deviation of a population, for the population L.

Example.

Input:

stddev([3,4,2])

Output: √
6

3

• stddevp(L) computes an unbiased estimate of the standard deviation of the population for the
sample L. The following relation holds:

stddevp(L)2 =
size(L) · stddev(L)2

size(L)− 1

Example.

Input:

stddevp([3,4,2])

Output:

1

• variance(L) computes the variance of L, which is the square of stddevp(L).

Example.

Input:

variance([3,4,2])

Output:
2

3

• median(L) computes the median of L.
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Example.

Input:

median([0,1,3,4,2,5,6])

Output:

3.0

• quantile(L, d) computes the deciles of L, where d is the decile.

Examples.

� Input:

quantile([0,1,3,4,2,5,6],0.25)

Output (the �rst quartile):

1.0

� Input:

quantile([0,1,3,4,2,5,6],0.5)

Output (the median):

3.0

� Input:

quantile([0,1,3,4,2,5,6],0.75)

Output (the third quartile):

5.0

• quartiles(L) returns a list consisting of the minimum, the �rst quartile, the median, the third
quartile and the maximum of L.

Example.

Input:

quartiles([0,1,3,4,2,5,6])

Output: 
0.0
1.0
3.0
5.0
6.0


• boxwhisker(L) draws the whisker box of a statistics series stored in L.
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Example.

Input:

boxwhisker([0,1,3,4,2,5,6])

Output:

Example.

De�ne the list A by:
Input:

A:=[0,1,2,3,4,5,6,7,8,9,10,11]:;

Then:
Input:

mean(A)

Output:
11

2

Input:

stddev(A)

Output:
2

12

√
429

Input:

quantile(A,0.1)

Output:
1.0

Input:

quantile(A,0.25)

Output:
2.0

Input:
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median(A)

or:

quantile(A,0.5)

Output:

5.0

Input:

quantile(A,0.75)

Output:

8.0

Input:

quantile(A,0.9)

Output:

10.0

Input:

max(A)

Output:

11

Input:

quartiles(A)

Output: 
0.0
2.0
5.0
8.0
11.0


5.43 Tables with strings as indices: table

A table is a map (associative container) used to store information associated to indices which are much
more general than integers, such as strings or sequences. For example, you can use one to store a table
of phone numbers indexed by names.

In Xcas, the indices in a table may be any kind of Xcas objects. Access is done by a binary search
algorithm, where the sorting function �rst sorts by type then uses an order for each type (e.g. < for
numeric types, lexicographic order for strings, etc.)

The table command creates a table.

• table takes an unspeci�ed number of arguments:
seq, a list or sequence of equalities of the form index_name=element_value.

• table(seq) returns a table. The elements of the table can be retrieved using index bracket
notation; If T is the name of the table, then T (index_name) returns element_value.
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Example.

Input:

T:=table(3=-10,"a"=10,"b"=20,"c"=30,"d"=40):;

Input:

T["b"]

Output:

20

Input:

T[3]

Output:

−10

Remark.
Tables can be created and the elements of a table can be changed using the := assignment.

• If T is a symbolic variable then the assignment T(index_name:=element_value will create a table
T with one element.

• If n is an integer, then the assignment T(n):=obj will do the following:

� If the variable T was assigned to a list or a sequence, then the nth element of T is modi�ed.

� if the variable T was not assigned, a table T is created with one entry (corresponding to the
index n). Note that after the assignment T is not a list, despite the fact that n is an integer.

5.44 Matrices

5.44.1 Matrices

A matrix is represented by a list of lists, all having the same size.

Example.

Input:

[[1,2,3],[4,5,6]]

Output: [
1 2 3
4 5 6

]
You can give a matrix a name with assignment.

Input:

A:= [[1,2,6], [3,4,8], [1,0,1]]

Output:  1 2 6
3 4 8
1 0 1


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5.44.2 Special matrices

Identity matrix: idn identity

The idn command �nds identity matrices.

• idn takes one argument:
n, a positive integer or
A, a square matrix.

• idn(n) returns the n× n identity matrix.

• idn(A) returns the identity matrix the same size as A.

Examples.

• Input:

idn(3)

Output: 1 0 0
0 1 0
0 0 1


• Input:

idn([[2,3],[4,5]]

Output: (
1 0
0 1

)
Zero matrix: newMat

The newMat command creates a matrix of all 0s.

• newMat takes two arguments:
n and p, two positive integers. newMat(n, p) returns the n× p zero matrix.

Example.

Input:

newMat(4,4)

Output: 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Diagonals of matrices and diagonal matrices: BlockDiagonal diag

The diag command either creates a diagonal matrix or �nds the diagonal elements of an existing matrix.
BlockDiagonal is a synonym for diag.

• diag takes one argument:
L, a list or a square matrix.

• diag(L) (for a list L) returns the diagonal matrix with the entries of L on the diagonal.

• diag(L) (for a matrix L) returns a list consisting of the diagonal elements of L.
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Examples.

• Input:

diag([1,4])

Output: [
1 0
0 4

]
• Input:

diag([[1,2],[3,4]])

Output:

[1, 4]

Jordan block: JordanBlock

The JordanBlock command creates a Jordan Block; i.e., a square matrix with the same value for all
diagonal elements, 1s just above the diagonal, and 0s everyone else.

• JordanBlock takes two arguments:

� a, an expression.

� n, a positive integer.

JordanBlock(a, n) returns the n × n matrix with as on the principal diagonal, 1s above this
diagonal and 0s everywhere else.

Example.

Input:

JordanBlock(7,3)

Output:  7 1 0
0 7 1
0 0 7


Hilbert matrix: hilbert

A Hilbert matrix is a square matrix whose element in the ith row and jth column (recall the numbering
starting at 0) is

aj,k =
1

j + k + 1

The hilbert command �nds Hilbert matrices.

• hilbert takes one argument:
n, a positive integer.

• hilbert(n) returns the n× n Hilbert matrix.
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Example.

Input:

hilbert(4)

Output: 
1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


Vandermonde matrix: vandermonde

A Vandermonde matrix is a square matrix where each row starts with a 1 and is in geometric progression.
The vandermonde command �nds a Vandermonde matrix.

• vandermonde takes one argument:
X = [x0, . . . , xn−1], a vector.

• vandermonde(X) returns the corresponding Vandermonde matrix; namely, the k-th row of the
matrix is the vector whose components are xki for i = 0..n− 1 and k = 0..n− 1.

Warning!
The indices of the rows and columns begin at 0 with Xcas.

Example.

Input:

vandermonde([a,2,3])

Output (if a is symbolic else purge(a)): 1 a aa
1 2 4
1 3 9


5.44.3 Combining matrices

Making a matrix with a list of matrices: blockmatrix

The blockmatrix combines several matrices into one larger matrix.

• blockmatrix takes three arguments:

� m and n, two positive integers.

� L, a list of m · n matrices such that the �rst m matrices have the same number of rows; the
next m matrices have the same number of rows, etc; and the number of columns in each
group of m matrices is the same (for example, all the matrices in L could have the same
dimension), so that the n groups of m matrices can be stacked above each other to form a
larger matrix.

• blockmatrix(m,n,L) returns the larger matrix formed by the matrices in L by putting each
group of m matrices next to each other, and stacking the resulting n matrices on top of each
other.

If the matrices in L each have the same dimension p×q, the result will be a matrix with dimension
p ∗ n× q ∗m.
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Examples.

• Input:

blockmatrix(2,3,[idn(2),idn(2),idn(2), idn(2),idn(2),idn(2)])

Output: 
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1


• Input:

blockmatrix(3,2,[idn(2),idn(2), idn(2),idn(2),idn(2),idn(2)])

Output: 

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


• Input:

blockmatrix(2,2,[idn(2),newMat(2,3), newMat(3,2),idn(3)])

Output: 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


• Input:

blockmatrix(3,2,[idn(1),newMat(1,4), newMat(2,3),idn(2),newMat(1,2),[[1,1,1]]])

Output: 
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 1 1


Input:

A:=[[1,1],[1,1]];B:=[[1],[1]]:;

blockmatrix(2,3,[2*A,3*A,4*A,5*B,newMat(2,4),6*B])

Output: 
2 2 3 3 4 4
2 2 3 3 4 4
5 0 0 0 0 6
5 0 0 0 0 6


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Making a matrix from two matrices: semi_augment

The semi_augment command concatenates two matrices with the same number of columns.

• semi_augment takes two arguments:
A and B, two matrices with the same number of columns.

• semi_augment(A,B) returns the matrix which has the rows of A followed by the rows of B.

Examples.

• Input:

semi_augment([[3,4],[2,1],[0,1]],[[1,2],[4,5]])

Output: 
3 4
2 1
0 1
1 2
4 5


[[3,4],[2,1],[0,1],[1,2],[4,5]]

• Input:

semi_augment([[3,4,2]],[[1,2,4]])

Output: [
3 4 2
1 2 4

]
Note the di�erence with concat.
Input:

concat([[3,4,2]],[[1,2,4]]

Output: [
3 4 2 1 2 4

]
Indeed, when the two matrices A and B have the same dimension, concat makes a matrix with
the same number of rows as A and B by gluing them side by side.
Input:

concat([[3,4],[2,1],[0,1]],[[1,2],[4,5]]

Output: 
3 4
2 1
0 1
1 2
4 5


but input:

concat([[3,4],[2,1]],[[1,2],[4,5]]

Output: [
3 4 1 2
2 1 4 5

]
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Making a matrix from two matrices: augment concat

The augment command glues two matrices, either side by side or one on top of the other.
Here, concat can be used as a synonym for augment.

• augment has two arguments:
A and B, two matrices with the same number of rows or the same number of columns.

• augment(A,B) returns the matrix consisting of:

� if A and B have the same number of rows, then the matrix being returned consists of the
columns of A followed by the columns of B; in other words, A and B are glued side by side.

� if A and B do not have the same number of rows but have the same number of columns,
then the matrix being returned consists of the rows of A followed by the rows of B; in other
words, A and B are glued one on top of the other.

Examples.

• Input:

augment([[3,4,5],[2,1,0]],[[1,2],[4,5]])

Output: [
3 4 5 1 2
2 1 0 4 5

]
• Input:

augment([[3,4],[2,1],[0,1]],[[1,2],[4,5]])

Output: 
3 4
2 1
0 1
1 2
4 5


• Input:

augment([[3,4,2]],[[1,2,4]]

Output: [
3 4 2 1 2 4

]
Note that if A and B have the same dimension, then augment(A,B) will return a matrix with the

same number of rows as A and B by horizontal gluing. In that case, if you want to combine them by
vertical gluing, you must use semi_augment(A,B).

Appending a column to a matrix: border

The border command adds a column to a matrix.

• border takes two arguments:

� A, a matrix.

� b, a list whose length equals the number of rows of A.

• border(A,L) returns a matrix equal to A with the transpose of L forming an additional column
to the right; so

border(A, b)=tran([op(tran(A)),b])=tran(append(tran(A),b))
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Examples.

• Input:

border([[1,2,4],[3,4,5]],[6,7])

Output: [
1 2 4 6
3 4 5 7

]
• Input:

border([[1,2,3,4],[4,5,6,8],[7,8,9,10]],[1,3,5])

Output:  1 2 3 4 1
4 5 6 8 3
7 8 9 10 5


5.44.4 Creating a matrix with a formula or function: makemat matrix

You can use a function or a formula to specify the elements of a matrix with the makemat or matrix
command.

• makemat takes three arguments:

� f , a function of two variables j and k which returns the value of aj,k, the element at row
index j and column index k of the resulting matrix.

� n and p, two positive integers.

• makemat(f, n, p) returns the n× p matrix A = (aj,k) with aj,k = f(j, k) for j = 1..n and k = 1..p.

Example.

Input:

makemat((j,k)->j+k,4,3)

or:

h(j,k):=j+k

makemat(h,4,3)

Output: 
0 1 2
1 2 3
2 3 4
3 4 5


Note that the indices are counted starting from 0.

The matrix command can be used similarly, but note that the arguments are given in a di�erent
order and the indices start at 1.
(matrix can also be used to turn tables into matrices; see Section 5.46.1 p.471.)

• matrix takes two mandatory arguments and one optional argument:

� n and p, two integers.

� Optionally, f , a function of two variables j and k which should return the value of aj,k, the
element at row index j and column index k of the resulting matrix.

• matrix(n, p) returns the n× p matrix consisting of all 0s.

• matrix(n, p, f) returns the n× p matrix A = (aj,k) with aj,k = f(j, k) for j = 1..n and k = 1..p.
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Examples.

• Input:

matrix(2,3)

Output: (
0 0 0
0 0 0

)
• Input:

matrix(4,3,(j,k)->j+k)

or:

h(j,k):=j+k

matrix(4,3,h)

Output: 
0 1 2
1 2 3
2 3 4
3 4 5


5.44.5 Getting the parts of a matrix

Accessing parts of a matrix: [] at

The rows of a matrix are the elements of a list, and can be accessed with indices using the post�x [...]

or the pre�x at (see Section 5.39.6 p.399).

Example.

Input:

A:= [[1,2,6], [3,4,8], [1,0,1]]

then:

A[0]

or:

at(A,0)

Output:

[1, 2, 6]

To extract a column of a matrix, you can �rst turn the columns into rows with transpose (see
Section 5.47.1 p.473), then extract the row as above.
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Example.

Input:

tran(A)[1]

or:

at(tran(A),1)

Output:
[2, 4, 0]

Individual elements are simply elements of the rows.

Example.

Input:

A[0][1]

Output:
2

This can be abbreviated by listing the row and column separated by a comma.
Input:

A[0,1]

or:

at(A,[0,1])

Output:
2

The indexing begins with 0; you can have the indices start with 1 by enclosing them in double brackets.
Input:

A[[1,2]]

Output:
2

You can use a range (see Section 5.37.1 p.385) of indices to get submatrices.

Examples.

• Input:

A[1,0..2]

Output:
[3, 4, 8]

• Input:

A[0..2,1]

Output:
[2, 4, 0]
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• Input:

A[0..2,1..2]

Output:  2 6
4 8
0 1


• Input:

A[0..1,1..2]

Output: [
2 6
4 8

]
• This gives you another way to extract a full column, by specifying all the rows as an index interval.

A[0..2,1]

Output:

[2, 4, 0]

Recall that An index of -1 returns the last element of a list, an index of -2 the second to last element,
etc.

Examples.

• Input:

A[-1]

Output:

[1, 0, 1]

• Input:

A[1,-1]

Output:

8

Extracting rows or columns of a matrix (Maple compatibility): row col

The row (respectively col) command extracts one or several rows (respectively columns) of a matrix.

• row takes two arguments:

� A, a matrix.

� r, a row index or a range n1..n2.

• row(A, r) returns the row or sequence of rows given by r.



5.44. MATRICES 449

Examples.

• Input:

row([[1,2,3],[4,5,6],[7,8,9]],1)

Output:
[4, 5, 6]

• Input:

row([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output:
[1, 2, 3] , [4, 5, 6]

• col takes two arguments:

� A, a matrix.

� c, a column index or a range n1..n2.

• row(A, c) returns the column or sequence of columns given by c.

Examples.

• Input:

col([[1,2,3],[4,5,6],[7,8,9]],1)

Output:
[2, 5, 8]

• Input:

col([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output:
[1, 4, 7] , [2, 5, 8]

Extracting a sub-matrix of a matrix (TI compatibility): subMat

The subMat command �nds submatrices of a matrix.

• subMat takes one mandatory argument and four optional arguments:

� A, a matrix.

� Optionally, r1, an integer, the row index for the beginning of the submatrix (by default,
r1 = 0).

� Optionally, c1, an integer, the column index for the beginning of the submatrix (by default,
c1 = 0).

� Optionally, r2, an integer, the row index for the end of the submatrix (by default, r2 equals
one less than the number of rows of A).

� Optionally, c2, an integer, the column index for the end of the submatrix (by default, c1
equals one less than the number of columns of A).

• subMat(A 〈, r1, c1, r2, c2〉) returns the sub-matrix of A from position (r1, c1) to (r2, c2).
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Example.

Input:

A:=[[3,4,5],[1,2,6]]

Output: [
3 4 5
1 2 6

]
• Input:

subMat(A,0,1,1,2)

Output: [
4 5
2 6

]
• Input:

subMat(A,0,1,1,1)

Output: [
4
2

]
[[4],[2]]

• Input:

subMat(A,1)

or:

subMat(A,1,0)

or:

subMat(A,1,0,1)

or:

subMat(A,1,0,1,2)

Output: [
1 2 6

]
5.44.6 Modifying matrices

Modifying matrix elements by assignment: :=

You can change the elements of a named matrix by assignment (see Section 4.4.2 p.79).
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Example.

Input:

A:= [[1,2,6], [3,4,8], [1,0,1]]

then:

A[0,1]:= 5:;

A

Output:  1 5 6
3 4 8
1 0 1


Recall that the elements are indexed starting at 0, using double brackets allows you to use indices
starting at 1.
Input:

A[[1,2]]:=7:;

A

Output:  1 7 6
3 4 8
1 0 1


You can use assignment to change several entries of a matrix at one.

Example.

Create a diagonal matrix with a diagonal of [1,2,3]:
Input:

M:= matrix(3,3)

Output: 0 0 0
0 0 0
0 0 0


Input:

M[0..2,0..2]:= [1,2,3]

Output: 1 0 0
0 2 0
0 0 3


To make the last column [4,5,6]:
Input:

M[0..2,2]:= [4,5,6]

Output: 1 0 4
0 2 5
0 0 6


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Modifying matrix elements by reference: ::= =<

When you change an element of a matrix with the := assignment, a new copy of the matrix is created
with the modi�ed element. Particularly for large matrices, it is more e�cient to use the =< assignment
(see Section 4.4.3 p.80), which will change the element of the matrix without making a copy.

Example.

Input:

A:= [[4,5],[2,6]]

The following commands will all return the matrix A with the element in the second row, �rst column,
changed to 3.
Input:

A[1,0]:= 3

or:

A[1,0] =< 3

or:

A[[2,1]]:= 3

or:

A[[2,1]] =< 3

then:

A

Output: [
4 5
3 6

]
You can change larger parts of a matrix simultaneously.

Example.

Input:

A:= [[4,5],[2,6]]

The following commands will change the second row to [3,7]

Input:

A[1]:= [3,7]

or:

A[1] =< [3,7]

or:

A[[2]]:= [3,7]

or:

A[[2]] =< [3,7]
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Output: [
4 5
3 7

]
The =< assignment must be used carefully, since it not only modi�es a matrix A, it modi�es all objects

pointing to A. In a program, initialization should contain a line like A:= copy(B) (see Section 4.4.4 p.81)
so modi�cations done on A don't a�ect B, and modi�cations done on B don't a�ect A.

For example:
Input:

B:= [[4,5],[2,6]]

then:

A:= B

or:

A =< B

creates two matrices equal to [
4 5
2 6

]
Input:

A[1] =< [3,7]

or:

B[1] =< [3,7]

transforms both A and B to [
4 5
3 7

]
On the other hand, creating A and B with:

Input:

B:= [[4,5],[2,6]]

A:= copy(B)

will again create two matrices equal to [
4 5
2 6

]
But:
Input:

A[1] =< [3,7]

will change A to [
4 5
3 7

]
but B will still be [

4 5
2 6

]
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Modifying an element or a row of a matrix: subsop

The subsop command modi�es elements of lists (see Section 5.40.7 p.407), and so you can use it to
modify elements or rows of matrices. It is used mainly for Maple and MuPAD compatibility, and the
argument list is in a di�erent order in Maple mode. Unlike := or =<, it does not require the matrix to
be stored in a variable.

Let A be the matrix give by:
Input:

A:=[[4,5],[2,6]]

In Xcas, Mupad and TI modes: Recall that the indexing in Xcas mode begins with 0, while in Mupad

and TI modes it begins with 1.
To modify an element:

• subsop takes two arguments:

� A, a matrix.

� [r, c]=v, an equality between a matrix position (given as a list) and a value.
The two sides of the equality can also be given as separate arguments.

subsop(A,[r, c]=v) returns the matrix which is the same as A except that the element in row r,
column c is now v.

Examples.

• Input (in Xcas mode):

subsop([[4,5],[2,6]],[1,0]=3)

or:

subsop([[4,5],[2,6]],[1,0],3)

Output: [
4 5
3 6

]
• Input (in Mupad or TI mode):

subsop([[4,5],[2,6]],[2,1]=3)

or:

subsop([[4,5],[2,6]],[2,1],3)

Output: [
4 5
3 6

]
To modify a row:

• subsop takes two arguments:

� A, a matrix.

� r = L, an equality between a row index and a list with the same length as the rows of A.
The two sides of the equality can also be given as separate arguments.

• subsop(A, r = L) returns the matrix which is the same as A except that row r is now equal to
the list L.
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Examples.

• Input (in Xcas mode):

subsop([[4,5],[2,6]],1=[3,3])

or:

subsop([[4,5],[2,6]],1,[3,3])

Output: [
4 5
3 3

]
• Input (in Mupad or TI mode):

subsop([[4,5],[2,6]],2=[3,3])

or:

subsop([[4,5],[2,6]],2,[3,3])

Output: [
4 5
3 3

]

In Maple mode: Recall that the indexing in Maple mode begins with 1.

To modify an element:

• subsop takes two arguments:

� [r, c]=v, an equality between a matrix position (given as a list) and a value.
The two sides of the equality can also be given as separate arguments.

� A, a matrix.

subsop([r, c]=v,A) returns the matrix which is the same as A except that the element in row r,
column c is now v.

Example.

Input:

subsop([2,1]=3,[[4,5],[2,6]])

Output: [
4 5
3 6

]
To modify a row:

• subsop takes two arguments:

� r = L, an equality between a row index and a list with the same length as the rows of the
second argument A.

� A, a matrix.
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• subsop(r = L,A) returns the matrix which is the same as A except that row r is now equal to
the list L.

Example:
Input (in Maple mode):

subsop(2=[3,3],[[4,5],[2,6]])

Output: [
4 5
3 3

]
In all modes: If the matrix is stored in a variable, for example with the matrix A as above, it is easier
to enter A[1,0]:=3 and A[1]=[3,3] to modify A as above.

Also, note that subsop with a 'n=NULL' argument deletes row number n.

Example.

Input (in Xcas mode):

subsop([[4,5],[2,6]],'1=NULL')

Output: [
4 5

]
Removing rows or columns of a matrix: delrows delcols

The delrows (respectively delcols) command removes one or more rows (respectively columns) from
a matrix.

• delrows takes two arguments:

� A, a matrix.

� r, an integer or a range of integers.

• delrows(A, r) returns the matrix equal to A with the row(s) given by r removed.

Examples.

• Input:

delrows([[1,2,3],[4,5,6],[7,8,9]],1)

Output: [
1 2 3
7 8 9

]
• Input:

delrows([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output: [
7 8 9

]
The delcols command behaves like delrows, but for columns.

• delcols takes two arguments:

� A, a matrix.

� c, an integer or a range of integers.

• delrows(A, c) returns the matrix equal to A with the column(s) given by c removed.
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Examples.

• Input:

delcols([[1,2,3],[4,5,6],[7,8,9]],1)

Output:  1 3
4 6
7 9


• Input:

delcols([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output:  3
6
9


Resizing a matrix or vector: REDIM redim

The REDIM command resizes matrices and vectors.
redim is a synonym for REDIM.

For matrices:

• REDIM takes two arguments:

� A, a matrix.

� [m,n], a list of two positive integers.

• REDIM(A,[m,n]) returns A resized to an m×n matrix, removing elements (if necessary) to make
it smaller and adding 0s (if necessary) to make it larger.

Examples.

• Input:

REDIM([[4,1,-2],[1,2,-1],[2,1,0]],[5,4])

Output: 
4 1 −2 0
1 2 −1 0
2 1 0 0
0 0 0 0
0 0 0 0


• Input:

REDIM([[4,1,-2],[1,2,-1],[2,1,0]],[2,1])

Output: (
4
1

)
For vectors:
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• REDIM takes two arguments:

� L, a list.

� n, a positive integer.

• REDIM(L, n) returns L resized to a list of length n, removing elements (if necessary) to make it
smaller and adding 0s (if necessary) to make it larger.

Examples.

• Input:

REDIM([4,1,-2,1,2,-1],10)

Output:
[4, 1,−2, 1, 2,−1, 0, 0, 0, 0]

• Input:

REDIM([4,1,-2,1,2,-1],3)

Output:
[4, 1,−2]

Replacing part of a matrix or vector: REPLACE replace

The REPLACE command replaces part of a matrix or vector.
replace is a synonym for REPLACE.

For matrices:

• REPLACE takes three arguments:

� A, a matrix.

� [m,n], a list of two positive integers.

� B, a matrix.

REPLACE(A,[m,n],B) returns the matrix equal to A but with the upper left corner of B placed
at row m, column n, replacing the previous elements of A. The matrix B will be shrunk, if
necessary, to �t.

Examples.

• Input:

REPLACE([[1,2,3],[4,5,6]],[0,1],[[5,6],[7,8]])

Output: (
1 5 6
4 7 8

)
• Input:

REPLACE([[1,2,3],[4,5,6]],[1,2],[[7,8],[9,0]])

Output: (
1 2 3
4 5 7

)
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For lists:

• REPLACE takes three arguments:

� L, a list.

� n, a positive integer.

� M , another list.

REPLACE(L, n,M) returns the list equal to L but with the elements beginning at index n replaced
by the elements ofM , replacing the previous elements of L. The listM will be shrunk, if necessary,
to �t.

Examples.

• Input:

REPLACE([4,1,-2,1,2,-1],2,[10,11])

Output:
[4, 1, 10, 11, 2,−1]

• Input:

REPLACE([4,1,-2,1,2,-1],1,[10,11,13])

Output:
[4, 10, 11, 13, 2,−1]

Applying a function to the elements of a matrix: apply

The apply command can apply a function to the elements of a matrix. (See Section 5.40.29 p.422 for
other uses of apply.)

• apply takes three arguments:

� f , a function of one variable.

� A, a matrix.

� matrix, the symbol.

apply(f,A,matrix) returns a matrix whose elements are f(x) for the elements x of A.

Example.

Input:

apply(x->x�2,[[1,2,3],[4,5,6]],matrix)

Output: [
1 4 9
16 25 36

]

5.45 Arithmetic and matrices

5.45.1 Evaluating a matrix: evalm

The evalm command is used in Maple to evaluate a matrix. In Xcas, matrices are evaluated by default,
the command evalm is only available for compatibility, it is equivalent to eval (see Section 5.12.1 p.171).
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5.45.2 Addition and subtraction of two matrices: + - .+ .-

The in�xed operators + and .+ (resp. - and .-) are used for the addition (resp. subtraction) of two
matrices.

Examples.

• Input:

[[1,2],[3,4]] + [[5,6],[7,8]]

Output: [
6 8
10 12

]
Input:

[[1,2],[3,4]] - [[5,6],[7,8]]

Output: [
−4 −4
−4 −4

]
Remark.
+ and - can be used as pre�xed operators; in this case they must be quoted, '+' and '-' (see Sec-
tion 5.42.3 p.431 and Section 5.42.4 p.431).

Examples.

• Input:

'+'([[1,2],[3,4]],[[5,6],[7,8]],[[2,2],[3,3]])

Output: [
8 10
13 15

]
• Input:

'-'([[1,2],[3,4]],[[5,6],[7,8]])

Output: [
−4 −4
−4 −4

]
5.45.3 Multiplication of two matrices: * &*

The in�xed operator * and &* are used for the multiplication of two matrices.

Example.

Input:

[[1,2],[3,4]] * [[5,6],[7,8]]

or:

[[1,2],[3,4]] &* [[5,6],[7,8]]

Output: [
19 22
43 50

]
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5.45.4 Addition of elements of a column of a matrix: sum

The sum command (see also Section 5.20.3 p.242) can add the elements of the columns of a matrix.

• sum takes one argument:
A, a matrix.

• sum(A) returns the list whose elements are the sum of the elements of each column of the matrix
A.

Example.

Input:

sum([[1,2],[3,4]])

Output:
[4, 6]

5.45.5 Cumulated sum of elements of each column of a matrix: cumSum

The cumSum command �nds the cumulated sum of each column of a matrix (see also Section 5.40.27
p.419).

• cumSum takes one argument:
A, a matrix.

• cumSum(A) returns the matrix whose columns are the cumulated sum of the elements of the
corresponding column of the matrix A.

Example.

Input:

cumSum([[1,2],[3,4],[5,6]])

Output:  1 2
4 6
9 12


since the cumulated sums of the �rst column are: 1, 1+3=4, 1+3+5=9 and the accumulated sums of
the second column are: 2, 2+4=6, 2+4+6=12.

5.45.6 Multiplication of elements of each column of a matrix: product

The product command can multiply the elements of the columns of a matrix (see Section 5.40.28 p.420
for other things product can do).

• product takes one argument:
A, a matrix.

• product(A) returns the list whose elements are the product of the elements of each column of
the matrix A.

Example.

Input:

product([[1,2],[3,4]])

Output:
[3, 8]
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5.45.7 Power of a matrix: � &�

The in�xed operator � (or &�) is used to raise a matrix to an integral power.

Example.

Input:

[[1,2],[3,4]] � 5

or:

[[1,2],[3,4]] &� 5

Output: [
1069 1558
2337 3406

]

5.45.8 Hadamard product: hadamard product .*

The hadamard command can �nd the Hadamard product of two matrices; namely, the term-by-term
product of the two matrices.
The product command can do the same thing (see also Section 5.40.28 p.420 for other uses of product).

• hadamard takes two arguments:
A and B, two matrices of the same size.

• hadamard(A,B) returns the matrix where each element is the product of the corresponding ele-
ments of A and B.

The in�xed operator .* also �nds the Hadamard product, and also works on lists.

Examples.

• Input:

hadamard([[1, 2],[3,4]],[[5, 6],[7, 8]])

or:

hadamard([[1, 2],[3,4]],[[5, 6],[7, 8]])

or:

[[1, 2],[3,4]] .* [[5, 6],[7, 8]]

Output: (
5 12
21 32

)
• Input:

[1,2,3,4] .* [5,6,7,8]

Output:

[5, 12, 21, 32]
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5.45.9 Hadamard division: ./

The in�xed operator ./ �nds the Hadamard quotient of two matrices or lists A and B of the same
size; namely, it returns the matrix or the list where each element is the term by term quotient of the
corresponding elements of A and B.

Example.

Input:

[[1, 2],[3,4]] ./ [[5, 6],[7, 8]]

Output: [
1
5

1
3

3
7

1
2

]

5.45.10 Hadamard power: .�

The in�xed operator ./ �nds the Hadamard power of a matrix or list A to a real number b; namely, it
returns the matrix or the list where each element is the corresponding element of A raised to the bth
power.

Example.

Input:

[[1, 2],[3,4]] .� 2

Output: [
1 4
9 16

]

5.45.11 The elementary row operations

Adding a row to another row: rowAdd

The rowAdd command adds one row of a matrix to another row.

• rowAdd takes three arguments:

� A, a matrix.

� n1 and n2, two integers.

• rowAdd(A,n1, n2) returns the matrix obtained by replacing in A, the row of index n2 by the sum
of the rows of index n1 and n2.

Example.

Input:

rowAdd([[1,2],[3,4]],0,1)

Output: [
1 2
4 6

]
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Multiplying a row by an expression: mRow scale SCALE

The mRow, scale and SCALE commands multiply a row of a matrix by an expression.

• mRow takes three arguments:

� expr, an expression.

� A, a matrix.

� n, an integer.

• mRow(expr , A, n) returns the matrix obtained by replacing in A, the row of index n by the product
of the row of index n by expr.

Example.

Input:

mRow(12,[[1,2],[3,4]],1)

Output: [
1 2
36 48

]
The scale command is the same as mRow except that it takes the arguments in a di�erent order.

SCALE is a synonym for scale.

• scale takes three arguments:

� A, a matrix.

� expr, an expression.

� n, an integer.

• scale(A,expr , n) returns the matrix obtained by replacing in A, the row of index n by the product
of the row of index n by expr.

Example.

Input:

scale([[1,2],[3,4]],12,1)

Output: [
1 2
36 48

]
Adding k times a row to an another row: mRowAdd scaleadd SCALEADD

The mRowAdd, scaleadd and SCALEADD commands add a multiple of one row of a matrix to another.

• mRowAdd takes four arguments:

� k, a real number.

� A, a matrix.

� n1 and n2, two integers.

• mRowAdd(k,A, n1, n2) returns the matrix obtained by replacing in A, the row with index n2 by
the sum of the row with index n2 and k times the row with index n1.
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Example.

Input:

mRowAdd(1.1,[[5,7],[3,4],[1,2]],1,2)

Output:  5 7
3 4

4.3 6.4


The scaleadd command is the same as mRowAdd except that it takes the arguments in a di�erent

order.
SCALEADD is a synonym for scaleadd.

• scaleadd takes four arguments:

� A, a matrix.

� k, a real number.

� n1 and n2, two integers.

• scaleadd(A, k, n1, n2) returns the matrix obtained by replacing in A, the row with index n2 by
the sum of the row with index n2 and k times the row with index n1.

Example.

Input:

scaleadd([[5,7],[3,4],[1,2]],1.1,1,2)

Output:  5 7
3 4

4.3 6.4


Exchanging two rows: rowSwap rowswap swaprow

The rowSwap command switches two rows in a matrix.
rowswap and swaprow are synonyms for rowSwap.

• rowSwap takes three arguments:

� A, a matrix.

� n1 and n2, integers.

• rowSwap(A,n1, n2) returns the matrix obtained by exchanging in A, the row with index n1 with
the row with index n2.

Example.

Input:

rowSwap([[1,2],[3,4]],0,1)

Output: [
3 4
1 2

]
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Exchanging two columns: colSwap colswap swapcol

The colSwap command switches two columns in a matrix.
colswap and swapcol are synonyms for colSwap.

• colSwap takes three arguments:

� A, a matrix.

� n1 and n2, integers.

• colSwap(A,n1, n2) returns the matrix obtained by exchanging in A, the column with index n1
with the column with index n2.

Example.

Input:

colSwap([[1,2],[3,4]],0,1)

Output: [
2 1
4 3

]

5.45.12 Counting the elements of a matrix satisfying a property: count

The count applies a function to the elements of a matrix or list and adds the result. Hence, if the
function is a boolean function, then count will count the number of elements satifying the property
that the function tests for.

• count takes two arguments:

� f , a real-valued function.

� A, a matrix or a list.

• count(f,A) returns the sum of the function f applied to the elements of A.

Examples.

• Input:

count(x->x,[[2,12],[45,3],[7,78]])

Output:

147

Indeed: 2+12+45+3+7+78=147.

• Input:

count(x->x<10,[[2,12],[45,3],[7,78]])

Output:

3



5.45. ARITHMETIC AND MATRICES 467

5.45.13 Counting the elements equal to a given value: count_eq

The count_eq command counts the number of elements in a matrix equal to a given value.

• count_eq takes two arguments:

� a, a value.

� A, a matrix or a list.

• count_eq(a,A) returns the number of elements of A that are equal to a.

Example.

Input:

count_eq(12,[[2,12,45],[3,7,78]])

Output:

1

5.45.14 Counting the elements smaller than a given value: count_inf

The count_inf command counts the number of elements in a matrix less than a given value.

• count_inf takes two arguments:

� a, a real number.

� A, a matrix or a list of real numbers.

• count_inf(a,A) returns the number of elements of A that are strictly less than a.

Example.

Input:

count_inf(12,[2,12,45,3,7,78])

Output:

3

5.45.15 Counting the elements greater than a given value: count_sup

The count_sup command counts the number of elements in a matrix greater than a given value.

• count_sup takes two arguments:

� a, a real number.

� A, a matrix or a list of real numbers.

• count_sup(a,A) returns the number of elements of A that are strictly greater than a.

Example.

Input:

count_sup(12,[[2,12,45],[3,7,78]])

Output:

2



468 CHAPTER 5. THE CAS FUNCTIONS

5.45.16 Statistics functions acting on column matrices: mean stddev variance median
quantile quartiles boxwhisker

The following functions can �nd �nds statistics for the columns of a matrix. See also Section 5.42.9
p.433 for statistics on lists and Section 8 p.633 for more general statistics.

Let A be a matrix.

• mean(A) computes the arithmetic means of the columns of the matrix A.

Examples.

� Input:

mean([[3,4,2],[1,2,6]])

Output:

[2, 3, 4]

� Input:

mean([[1,0,0],[0,1,0],[0,0,1]])

Output: [
1

3
,
1

3
,
1

3

]
• stddev(A computes the standard deviations for the populations given by the columns of A.

Example.

Input:

stddev([[3,4,2],[1,2,6]])

Output:

[1, 1, 2]

• stddevp(A) computes the unbiased estimates of the standard deviations of the populations for
the samples given by the columns of A.

Example.

Input:

stddevp([[3,4,2],[1,2,6]])

Output: [√
2,
√

2, 2
√

2
]

• variance(A) computes the variances of the columns of A.
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Example.

Input:

variance([[3,4,2],[1,2,6]])

Output:

[1, 1, 4]

• median(A) computes the medians of the columns of A.

Example.

Input:

median([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],

[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]])

Output:

[2.0, 2.0, 3.0, 3.0, 2.0, 2.0, 3.0]

• quantile(A, d) computes the deciles of the columns of A, where d is the decile.

Examples.

� Input:

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],

[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.25)

Output (the �rst quartiles of the columns):

[1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 1.0]

� Input:

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],

[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.75)

Output (the third quartiles of the columns):

[4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0]

• quartiles(A) returns a matrix where each column consists of the minimum, the �rst quartile,
the median, the third quartile and the maximum of the corresponding column of A.

Example.

Input:

quartiles([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], [3,4,2,5,6,0,1],

[4,2,5,6,0,1,3], [2,5,6,0,1,3,4]])
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Output: 
0.0 0.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 2.0 2.0 1.0 1.0 1.0
2.0 2.0 3.0 3.0 2.0 2.0 3.0
4.0 4.0 5.0 5.0 5.0 5.0 5.0
6.0 5.0 6.0 6.0 6.0 6.0 6.0


The output is a matrix, its �rst row is the minima of each column, its second row is the �rst
quartiles of each column, its third row the medians of each column, its fourth row the third
quartiles of each column and its last row the maxima of each column:

• boxwhisker(L) draws the whisker box of the statistics series stored in the columns of A.

Example.

Input:

boxwhisker([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6], [1,3,4,2,5,6,0],[3,4,2,5,6,0,1],

[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]])

Output:

5.45.17 Dimension of a matrix: dim

The dim command �nds the dimension of a matrix.

• dim takes one argument:
A, a matrix

• dim(A) returns a list of the number of rows and columns of the matrix A.

Example.

Input:

dim([[1,2,3],[3,4,5]])

Output:

[2, 3]



5.46. SPARSE MATRICES 471

5.45.18 Number of rows: rowdim rowDim nrows

The rowdim command �nds the number of rows of a matrix.
rowDim and nrows are synonyms for rowdim.

• rowdim takes one argument:
A, a matrix.

• rowdim(A) returns the number of rows of the matrix A.

Example.

Input:

rowdim([[1,2,3],[3,4,5]])

Output:

2

5.45.19 Number of columns: coldim colDim ncols

The coldim command �nds the number of columns of a matrix.
colDim and ncols are synonyms for coldim.

• coldim takes one argument:
A, a matrix.

• coldim(A) returns the number of columns of the matrix A.

Example.

Input:

coldim([[1,2,3],[3,4,5]])

Output:

3

5.46 Sparse matrices

5.46.1 De�ning sparse matrices

A matrix is sparse if most of its elements are 0. To specify a sparse matrix, it is easier to de�ne the
non-zero elements. This can be done with a table (see Section 5.43 p.437). The matrix command (see
Section 5.44.4 p.445) or the convert command (see Section 5.23.26 p.277) can then turn the table into
a matrix.

Example.

First, de�ne the non-zero elements.
Input:

A:= table((0,0)=1, (1,1)=2, (2,2)=3, (3,3) = 4, (4,4) = 5)

or:

purge(A)

A[0..4,0..4]:=[1,2,3,4,5]
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Output:
Key Value

(0, 0) 1

(1, 1) 2

(2, 2) 3

(3, 3) 4

(4, 4) 5

This table can be converted to a matrix with either the convert command or the matrix command.
Input:

a:= convert(A,array)

or:

a:= matrix(A)

Output: 
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5


5.46.2 Operations on sparse matrices

All matrix operations can be done on tables that are used to de�ne sparse matrices.

Example.

Create some sparse matrices.
Input:

purge(A):;

A[0..2,0..2]:= [1,2,3]

Output:
Key Value

(0, 0) 1

(1, 1) 2

(2, 2) 3

Input:

purge(B):;

B[0..1,1..2]:= [1,2]:;

B[0..2,0]:=5

Output:
Key Value

(0, 0) 5

(0, 1) 1

(1, 0) 5

(1, 2) 2

(2, 0) 5

The usual operations will work on A and B.
Input:
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A + B

Output:

Key Value

(0, 0) 6

(0, 1) 1

(1, 0) 5

(1, 1) 2

(1, 2) 2

(2, 0) 5

(2, 2) 3

Input:

A * B

Output:

Key Value

(0, 0) 5

(0, 1) 1

(1, 0) 10

(1, 2) 4

(2, 0) 15

Input:

2*A

Output:

Key Value

(0, 0) 2

(1, 1) 4

(2, 2) 6

5.47 Linear algebra

5.47.1 Transpose of a matrix: tran transpose

The tran command �nds the transpose of a matrix.
transpose is a synonym for tran.

• tran takes one argument:
A, a matrix.

• tran(A) returns the transpose matrix of A.

Example.

Input:

tran([[1,2],[3,4]])

Output: (
1 3
2 4

)
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5.47.2 Inverse of a matrix: inv /

The inv command �nds the inverse of a matrix.

• inv takes one argument:
A, a matrix.

• inv(A) returns the inverse matrix of A.

Note that 1/A is another way to �nd the inverse of a matrix.

Example.

Input:

inv([[1,2],[3,4]])

or:

1/[[1,2],[3,4]]

or:

A:=[[1,2],[3,4]];1/A

Output: [
−2 1
3
2 −1

2

]

5.47.3 Trace of a matrix: trace

The trace of a square matrix is the sum of the diagonal elements. The trace command �nds the trace
of a matrix.

• trace takes one argument:
A, a matrix.

• trace(A) returns the trace of the matrix A.

Example.

Input:

trace([[1,2],[3,4]])

Output:

5

5.47.4 Determinant of a matrix: det

The det command �nds the determinant of a matrix.

• det takes one mandatory argument and one optional argument:

� A, a matrix.

� Optionally, method, which determines how the determinant will be computed and can be one
of:

∗ lagrange When the matrix elements are polynomials or rational functions, this method
computes the determinant by evaluating the elements and using Lagrange interpolation.
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∗ rational_det This method uses Gaussian elimination without converting to to the in-
ternal format for fractions.

∗ bareiss This uses the Gauss-Bareiss algorithm.

∗ linsolve This uses the p-adic algorithm for matrices with integer coe�cients.

∗ minor_det This uses expansion by minor determinants. This requires 2n operations, but
can stil be faster for average sized matrices (up to about n = 20).

• det(A 〈,method〉) returns the determinant of the matrix A.

Examples.

• Input:

det([[1,2],[3,4]])

Output:
−2

• Input:

det(idn(3))

Output:
1

5.47.5 Determinant of a sparse matrix: det_minor

The det_minor command �nds the determinant of a matrix by expanding the determinant using
Laplace's algorithm.

• det_minor takes one argument:
A, a matrix.

• det_minor(A) returns the determinant of the matrix A.

Examples.

• Input:

det_minor([[1,2],[3,4]])

Output:
−2

• Input:

det_minor(idn(3))

Output:
1

5.47.6 Rank of a matrix: rank

The rank command �nds the rank of a matrix.

• rank takes one argument:
A, a matrix.

• rank(A) returns the rank of the matrix A.
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Examples.

• Input:

rank([[1,2],[3,4]])

Output:
2

• Input:

rank([[1,2],[2,4]])

Output:
1

5.47.7 Transconjugate of a matrix: trn

The transconjugate of a matrix is the conjugate of the transpose of the matrix. The trn command �nds
the transconjugate of a matrix.

• trn takes one argument:
A, a matrix.

• trn(A) returns the transconjugate of A.

Example.

Input:

trn([[i, 1+i],[1, 1-i]])

Output: (
−i 1

1− i 1 + i

)
5.47.8 Equivalent matrix: changebase

The changebase command changes a matrix to represent the same linear function in a di�erent basis.

• changebase takes two arguments:

� A, a matrix.

� P , a change-of-basis matrix.

• changebase(A,P) returns the matrix P−1AP .

Examples.

• Input:

changebase([[1,2],[3,4]],[[1,0],[0,1]])

Output: [
1 2
3 4

]
• Input:
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changebase([[1,1],[0,1]],[[1,2],[3,4]])

Output: [
−5 −8
9
2 7

]
Indeed: [

1 2
3 4

]−1
·
[

1 1
0 1

]
·
[

1 2
3 4

]
=

[
−5 −8

9
2 7

]

5.47.9 Basis of a linear subspace : basis

The basis command �nds a basis of a linear subspace of Rn given a spanning set.

• basis takes one argument:
L, a list of vectors generating a linear subspace of Rn.

• basis(L) returns a list of vectors that is a basis of this linear subspace.

Example.

Input:

basis([[1,2,3],[1,1,1],[2,3,4]])

Output:

{[−1, 0, 1] , [0,−1,−2]}

5.47.10 Basis of the intersection of two subspaces: ibasis

The ibasis command �nds a basis for the intersection of two subspaces of Rn.

• ibasis takes two arguments:
L1 and L2, two lists of vectors generating two subspaces of Rn.

• ibasis(L1, L2) returns a list of vectors forming a basis for the intersection of these two subspaces.

Example.

Input:

ibasis([[1,2]],[[2,4]])

Output:

{[1, 2]}

5.47.11 Image of a linear function: image

The image command �nds a basis for the image of a linear function.

• image takes one argument:
A, a matrix representing a linear function with respect to the standard basis.

• image(A) returns a list of vectors that is a basis of the image of the linear function.
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Example.

Input:

image([[1,1,2],[2,1,3],[3,1,4]])

Output: [
−1 0 1
0 −1 −2

]

5.47.12 Kernel of a linear function: kernel nullspace ker

The ker command �nds a basis for the kernel of a linear function.
kernel and nullspace are synonyms for ker.

• ker takes one argument:
A, a matrix representing a linear function with respect to the standard basis.

• ker(A) returns a list of vectors that is a basis of the kernel of the linear function.

Example.

Input:

ker([[1,1,2],[2,1,3],[3,1,4]])

Output: [
1 1 −1

]
5.47.13 Kernel of a linear function: Nullspace

The Nullspace command is the inert form of nullspace. Warning:
The Nullspace command is only useful in Maple mode. (See Section 2.5.2 p.54; you can get into Maple

mode by hitting the state line red button then Prog style, then choosing Maple and Apply).

• Nullspace takes one argument:
A, an integer matrix representing a linear function with respect to the standard basis.

• Nullspace(A) mod p returns a list of vectors that is a basis for the kernel of the linear transfor-
mation Z/pZ[X].

Examples.

• Input:

Nullspace([[1,1,2],[2,1,3],[3,1,4]])

Output:

nullspace

 1 1 2
2 1 3
3 1 4


• Input (in Maple mode):

Nullspace([[1,2],[3,1]]) mod 5
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Output:

[2,−1]

In Xcas mode, the equivalent input is:
Input (in Xcas mode):

nullspace([[1,2],[3,1]] % 5)

Output: [
2 % 5 −1

]
5.47.14 Subspace generated by the columns of a matrix: colspace

The colspace command �nds a basis for the column space of a matrix.

• colspace takes one mandatory argument and one optional argument:

� A, a matrix.

� Optionally, var, a variable name.

• colspace(A 〈var 〉) returns a matrix whose columns are a basis of the subspace generated by the
columns of A. With the optional argument var, Xcas will store the dimension of the subspace
generated by the columns of A.

Examples.

• Input:

colspace([[1,1,2],[2,1,3],[3,1,4]])

Output:  −1 0
0 −1
1 −2


• Input:

colspace([[1,1,2],[2,1,3],[3,1,4]],dimension)

Output:  −1 0
0 −1
1 −2


then input:

dimension

Output:

2
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5.47.15 Subspace generated by the rows of a matrix: rowspace

The rowspace command �nds a basis for the row space of a matrix.

• rowspace takes one mandatory argument and one optional argument:

� A, a matrix.

� Optionally, var, a variable name.

• rowspace(A 〈var 〉) returns a list of vectors which form a basis of the subspace generated by
the rows of A. With the optional argument var, Xcas will store the dimension of the subspace
generated by the rows of A.

Examples.

• Input:

rowspace([[1,1,2],[2,1,3],[3,1,4]])

Output: [
−1 0 −1
0 −1 −1

]
• Input:

rowspace([[1,1,2],[2,1,3],[3,1,4]],dimension)

Output: [
−1 0 −1
0 −1 −1

]
then input:

dimension

Output:
2

5.47.16 Testing positive de�niteness of a symmetric matrix: isposdef

The isposdef command checks whether the given symmetric matrix A ∈ Rn×n is positive de�nite,
i.e. whether xTAx > 0 for all vectors x ∈ Rn.

isposdef takes a symmetric matrix A as its only argument and returns 1 if A is positive de�nite
and 0 otherwise. Note that this procedure does not check whether A is symmetric.

Example.

• Input:

isposdef([[1,-1,2],[-1,4,3],[2,3,-5]])

• Output:
1

• Input:

isposdef([[1,-1,2],[-1,-2,3],[2,3,-5]])

• Output:
0
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5.48 Matrix reduction

5.48.1 Eigenvalues: eigenvals

The eigenvals command �nds eigenvalues of a matrix.

• eigenvals takes one argument:
A, a square matrix.

• eigenvals(A) returns the sequence of the eigenvalues of A, including multiplicities. (If A is an
n× n matrix, then the sequence will have n values.)

Remark: Xcas may not be able to �nd the exact roots of the characteristic polynomial in some cases.
In that case, eigenvals(A) will return approximate eigenvalues of A if the coe�cients are numeric or
a subset of the eigenvalues if the coe�cients are symbolic.

Examples.

• Input:

eigenvals([[4,1,-2],[1,2,-1],[2,1,0]])

Output:

2, 2, 2

• Input:

eigenvals([[4,1,0],[1,2,-1],[2,1,0]])

Output:

rootof ([[1, 0,−20, 0, 100] , [1, 0,−24, 0, 144, 0,−148]])

18
,

rootof ([[−1, 0, 20, 18, 8] , [1, 0,−24, 0, 144, 0,−148]])

36
,

rootof ([[−1, 0, 20,−18, 8] , [1, 0,−24, 0, 144, 0,−148]])

36

Input:

evalf(eigenvals([[4,1,0],[1,2,-1],[2,1,0]]))

Output:

1.46081112719, 4.21431974338, 0.324869129433

5.48.2 Eigenvalues: egvl eigenvalues eigVl

The egvl command �nds the Jordan form of a matrix.
eigenvalues and eigVl are synonyms for egvl.

• egvl takes one argument:
A, a square matrix.

• egvl(A) returns the Jordan normal form of A.



482 CHAPTER 5. THE CAS FUNCTIONS

Examples.

• Input:

egvl([[4,1,-2],[1,2,-1],[2,1,0]])

Output:  2 1 0
0 2 1
0 0 2


• Input:

egvl([[4,1,0],[1,2,-1],[2,1,0]])

Output:
See Section 5.27.21 p.313 for a discussion of rootof. rootof([[1,0,−20,0,100],[1,0,−24,0,144,0,−148]])

18
0 0

0 rootof([[−1,0,20,18,8],[1,0,−24,0,144,0,−148]])
36

0

0 0 rootof([[−1,0,20,−18,8],[1,0,−24,0,144,0,−148]])
36


Input:

evalf(egvl([[4,1,0],[1,2,-1],[2,1,0]]))

Output:  1.46081112719 0.0 0.0
0.0 4.21431974338 0.0
0.0 0.0 0.324869129433


5.48.3 Eigenvectors: egv eigenvectors eigenvects eigVc

The egv command �nds the eigenvectors of a diagonalizable matrix.
eigenvectors, eigenvects and eigVc are synonyms for egv.

• egv takes one argument:
A, a square matrix.

• egv(A) returns a matrix whose columns are the eigenvectors of the matrix A if A is diagonalizable,
otherwise it will fail.

See also Section 5.48.5 p.484 for characteristic vectors.

Examples.

• Input:

egv([[1,1,3],[1,3,1],[3,1,1]])

Output:  1 −1 1
1 2 0
1 −1 −1


• Input:

egv([[4,1,-2],[1,2,-1],[2,1,0]])
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Output:

"Not diagonalizable at eigenvalue 2"

• Input (in complex mode):

egv([[2,0,0],[0,2,-1],[2,1,2]])

Output:  1 0 0
−2 −1 −1
0 −i i


5.48.4 Rational Jordan matrix: rat_jordan

The rat_jordan command �nds the rational Jordan form of a matrix.

• rat_jordan takes one mandatory and one optional argument:

� A, a square matrix (preferably with exact coe�cients).

� Optionally, var, a variable name.

• rat_jordan(A) (in all modes but Maple) returns a sequence [P, J ] of two matrices, where J is
the rational Jordan matrix of A (the most reduced matrix in the �eld of the coe�cients of A or
the complexi�ed �eld in complex mode) and

J = P−1AP

The coe�cients of P and J belongs to the same �eld as the coe�cients of A. If A is diagonalizable
in the �eld of its coe�cients, then the columns of P are the eigenvectors of A.

rat_jordan(A) (in Maple mode) only returns the matrix J .

• rat_jordan(A 〈var〉) returns the matrix J , as above, and assigns the matrix P to the variable
var.

Examples.

• Input (not in Maple mode):

rat_jordan([[1,0,0],[1,2,-1],[0,0,1]]) 0 1 0
1 0 1
0 1 1

 ,
 2 0 0

0 1 0
0 0 1


• Input:

rat_jordan([[1,0,0],[1,2,-1],[0,0,1]],P) 2 0 0
0 1 0
0 0 1


then input:

P
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Output:  0 1 0
1 0 1
0 1 1


• Input:

rat_jordan([[1,0,1],[0,2,-1],[1,-1,1]])

Output:  1 1 2
0 0 −1
0 1 2

 ,
 0 0 −1

1 0 −3
0 1 4


• Input:

rat_jordan([[1,0,0],[0,1,1],[1,1,-1]])

Output:  −1 0 0
1 1 1
0 0 1

 ,
 1 0 0

0 0 2
0 1 0


If A is symmetric and has eigenvalues with multiple orders, the matrix P returned by rat_jordan(A)

will contain orthogonal eigenvectors (not always of norm equal to 1); i.e., tran(P)*P will be a diagonal
matrix where the diagonal is the square norm of the eigenvectors.

Example.

Input:

rat_jordan([[4,1,1],[1,4,1],[1,1,4]])

Output:  1 2 −1
1 0 2
1 −2 −1

 ,
 6 0 0

0 3 0
0 0 3


5.48.5 Jordan normal form: jordan

The jordan command �nds the Jordan form of a matrix.

• jordan takes one mandatory and one optional argument:

� A, a square matrix.

� Optionally, var, a variable name.

• jordan(A) (in all modes but Maple) returns a sequence [P, J ] of two matrices, where the columns
of P are the eigenvectors of A, J is the Jordan form of A, and

J = P−1AP

jordan(A), in Maple mode, only returns the matrix J .

• jordan(A 〈var〉) returns the matrix J , as above, and assigns the matrix P to the variable var.
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Examples.

• Input (not in Maple mode):

jordan([[4,1,1],[1,4,1],[1,1,4]])

Output:  1 2 −1
1 0 2
1 −2 −1

 ,
 6 0 0

0 3 0
0 0 3


• Input:

jordan([[4,1,1],[1,4,1],[1,1,4]],P)

Output:  6 0 0
0 3 0
0 0 3


then input:

P

Output:  1 2 −1
1 0 2
1 −2 −1


If A is symmetric and has eigenvalues with multiple orders, the matrix P returned by jordan(A)

will contain orthogonal eigenvectors (not always of norm equal to 1); i.e., tran(P)*P will be a diagonal
matrix where the diagonal is the square norm of the eigenvectors.

Example.

Input:

jordan([[4,1,1],[1,4,1],[1,1,4]])

Output:  1 2 −1
1 0 2
1 −2 −1

 ,
 6 0 0

0 3 0
0 0 3


5.48.6 Powers of a square matrix: matpow

The matpow command �nds the power of a square matrix, computed using the Jordan form.

• matpow command takes two arguments:

� A, a square matrix.

� n, an integer.

• matpow(A,n) returns An.
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Example.

Input:

matpow([[1,2],[2,1]],n)

Output: [
3n+(−1)n

2
3n−(−1)n

2
3n−(−1)n

2
3n+(−1)n

2

]

Notice that jordan([[1,2],[2,1]]) returns[
1 −1
1 1

]
,

[
3 0
0 −1

]

5.48.7 Characteristic polynomial: charpoly

The characteristic polynomial of a square matrix A is the polynomial

P (x) = det(xI −A)

The charpoly command �nds the characteristic polynomial of a matrix.
pcar is a synonym for charpoly.

• charpoly takes one mandatory argument and one optional argument:

� A, a square matrix.

� Optionally, x, a variable name.

• charpoly(A 〈x〉) returns the characteristic polynomial of A. It is written as the list of its coe�-
cients if no variable name was provided or written as an expression with respect to x if there is a
second argument.

Examples.

• Input:

charpoly([[4,1,-2],[1,2,-1],[2,1,0]])

Output:

[1,−6, 12,−8]

Hence, the characteristic polynomial of this matrix is x3 − 6x2 + 12x− 8.

• Input:

charpoly([[4,1,-2],[1,2,-1],[2,1,0]],X)

Output:

X3 − 6X2 + 12X − 8
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5.48.8 Characteristic polynomial using Hessenberg algorithm: pcar_hessenberg

The pcar_hessenberg command �nds the characteristic polynomial of a matrix. It computes the
polynomial using the Hessenberg algorithm (see e.g. Henri Cohen, A Course in Computational Algebraic
Number Theory) which is more e�cient (O(n3) deterministic) if the coe�cients of the matrix are in a
�nite �eld or use a �nite representation like approximate numeric coe�cients. Note however that this
algorithm behaves badly if the coe�cients are, for example, in Q.

• pcar_hessenberg takes one mandatory argument and one optional argument:

� A, a square matrix.

� Optionally, x, a variable name.

• pcar_hessenberg(A 〈x〉) returns the characteristic polynomial of A. It is written as the list of
its coe�cients if no variable name was provided or written as an expression with respect to x if
there is a second argument.

Examples.

• Input:

pcar_hessenberg([[4,1,-2],[1,2,-1],[2,1,0]] % 37)

Output:
[1 % 37, (−6) % 37, 12 % 37, (−8) % 37]

• Input:

pcar_hessenberg([[4,1,-2],[1,2,-1],[2,1,0]] % 37,x)

Output:
(1 % 37)x3 + ((−6) % 37)x2 + (12 % 37)x+ (−8) % 37

Hence, the characteristic polynomial of [[4,1,-2],[1,2,-1],[2,1,0]] in Z/37Z is x3 − 6x2 + 12x− 8.

5.48.9 Minimal polynomial: pmin

The minimal polynomial of a square matrix A is the polynomial P having minimal degree such that
P (A) = 0. The pmin command �nds the minimal polynomial of a matrix.

• pmin takes one mandatory argument and one optional argument:

� A, a square matrix.

� Optionally, x, a variable name.

• pmin(A 〈x〉) returns the minimal polynomial A. It is written as the list of its coe�cients if no
variable name was provided or written as an expression with respect to x if there is a second
argument.

Examples.

• Input:

pmin([[1,0],[0,1]])

Output:
[1,−1]
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• Input:

pmin([[1,0],[0,1]],x)

Output:
x− 1

Hence the minimal polynomial of [[1,0],[0,1]] is x− 1.

• Input:

pmin([[2,1,0],[0,2,0],[0,0,2]])

Output:
[1,−4, 4]

• Input:

pmin([[2,1,0],[0,2,0],[0,0,2]],x)

Output:
x2 − 4x+ 4

Hence, the minimal polynomial of [[2,1,0],[0,2,0],[0,0,2]] is x2 − 4x+ 4.

5.48.10 Adjoint matrix: adjoint_matrix

The comatrix of a square matrix A of size n is the matrix B de�ned by A × B = det(A) × I. The
adjoint matrix Q(x) of A is the comatrix of xI − A. It is a polynomial of degree n − 1 in x having
matrix coe�cients and satis�es:

(xI −A)Q(x) = det(xI −A)I = P (x)× I

where P (x) is the characteristic polynomial of A. Since the polynomial P (x)× I − P (A) (with matrix
coe�cients) is also divisible by x× I −A (by algebraic identities), this means that P (A) = 0. We also
have Q(x) = I × xn−1 + . . .+B0 where B0 = is the comatrix of A (times -1 if n is odd).

The adjoint_matrix command �nds the characteristic polynomial and adjoint of a given matrix.

• adjoint_matrix takes one argument:
A, a square matrix.

• adjoint_matrix(A) returns the list of the coe�cients of P (x) (the characteristic polynomial of
A), and the list of the matrix coe�cients of Q(x) (the adjoint matrix of A).

Examples.

• Input:

adjoint_matrix([[4,1,-2],[1,2,-1],[2,1,0]])

Output: [1,−6, 12,−8] ,

 1 0 0
0 1 0
0 0 1

 ,
 −2 1 −2

1 −4 −1
2 1 −6

 ,
 1 −2 3
−2 4 2
−3 −2 7


Hence the characteristic polynomial is:

P (x) = x3 − 6 ∗ x2 + 12 ∗ x− 8
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The determinant of A is equal to −P (0) = 8. The comatrix of A is equal to:

B = Q(0) =

 1 −2 3
−2 4 2
−3 −2 7


Hence the inverse of A is equal to:

1

8

 1 −2 3
−2 4 2
−3 −2 7


The adjoint matrix of A is: x2 − 2x+ 1 x− 2 −2x+ 3

x− 2 x2 − 4x+ 4 −x+ 2
2x− 3 x− 2 x2 − 6x+ 7


• Input:

adjoint_matrix([[4,1],[1,2]])

Output: [
[1,−6, 7] ,

[[
1 0
0 1

]
,

[
−2 1
1 −4

]]]
Hence the characteristic polynomial P is:

P (x) = x2 − 6 ∗ x+ 7

The determinant of A is equal to +P (0) = 7. The comatrix of A is equal to

Q(0) = −
[
−2 1
1 −4

]
Hence the inverse of A is equal to:

−1

7

[
−2 1
1 −4

]
The adjoint matrix of A is:

−
[
x− 2 1

1 x− 4

]

5.48.11 Companion matrix of a polynomial: companion

The companion command �nds a matrix given its characteristic polynomial; speci�cally, if the polyno-
mial is P (x) = xn + an−1x

n−1 + . . .+ a−1x+ a0, this matrix is equal to the identity matrix of size n− 1
bordered with [0, 0.., 0,−a0] as �rst row, and with [−a0,−a1, . . . ,−an−1] as last column.

• companion takes two arguments:

� P , a unitary polynomial.

� x, the name of its variable.

• companion(P, x) returns the matrix whose characteristic polynomial is P .
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Examples.

• Input:

companion(x�2+5x-7,x)

Output: [
0 7
1 −5

]
• Input:

companion(x�4+3x�3+2x�2+4x-1,x)

Output: 
0 0 0 1
1 0 0 −4
0 1 0 −2
0 0 1 −3


5.48.12 Hessenberg matrix reduction: hessenberg SCHUR

A Hessenberg matrix is a square matrix where the coe�cients below the sub-principal diagonal are all
0s. The hessenberg command �nds a Hessenberg matrix equivalent to a given square matrix.

• hessenberg takes one mandatory argument and one optional argument:

� A, a matrix.

� n, an integer, either 0, −1, −2 or a prime number greater than 1 (by default n = 0).

• hessenberg(A 〈n〉) returns a list [P,B] with B = P−1AP and:

� if n = 0, B is a Hessenberg matrix.

� if n = −1, the calculations are approximate and B is upper triangular.

� if n = −2, the calculations are approximate, P is orthogonal and B has zero sub-subdiagonal
elements.

SCHUR(A) is equivalent to hessenberg(A,-1), which is compatible with HP calculators.

Examples.

• Input:

A:=[[3,2,2,2,2],[2,1,2,-1,-1],[2,2,1,-1,1],[2,-1,-1,3,1],[2,-1,1,1,2]];

[P,B]:=hessenberg(A)

or:

[P,B]:= hessenberg(A,0);

Output: 
1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 1

2
1
4 1

0 1 1 1 0

 ,


3 8 5 5
2 2

2 1 1
2 −5

4 −1
0 2 1 2 0
0 0 2 3

2 2
0 0 0 13

8
7
2


Indeed:
Input:
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pcar(A)

and:

pcar(B)

both return:
Output:

[1,−10, 13, 71,−50,−113]

and it is easily veri�ed that B=inv(P)*A*P.

• With A as above: Input:

B:= hessenberg(A,-1);

Output (to 2 digits): 


0.73 −0.057 −0.42 −0.17 −0.51
0.25 −0.53 0.72 −0.38 −0.048
0.35 −0.44 −0.3 0.19 0.74
0.34 0.68 0.17 −0.46 0.43
0.41 0.25 0.44 0.76 −0.063

 ,


6.7 8.7e− 15 −2e− 13 2.7e− 14 −1.4e− 13
0.0 4.6 0 0 0
0.0 0.0 −1.9 0 0
0.0 0.0 0.0 1.7 0
0.0 0.0 0.0 −0.0 −1.2




5.48.13 Hermite normal form: ihermite

The Hermite normal form of a matrix A with integer coe�cients is a sort of integer row-echelon form. It
is an upper triangular matrix B such that B = UA for a matrix U which is invertible in Z (det(U) = ±1).
The ihermite command �nds the Hermite normal form of a matrix.

• ihermite takes one argument:
A, a matrix with coe�cients in Z.

• ihermite(A) return a list [U,B] as above, and the absolute value of the elements above the
diagonal of B are less than the pivot of the column divided by 2.

The result is obtained by a Gauss-like reduction algorithm using only operations of rows with integer
coe�cients and invertible in Z.

Example.

Input:

A:=[[9,-36,30],[-36,192,-180],[30,-180,180]]:; ihermite(A)

Output:  13 9 7
6 4 3
20 15 12

 ,
 3 0 30

0 12 0
0 0 60


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Application: Compute a Z-basis of the kernel of a matrix having integer coe�cients LetM
be a matrix with integer coe�cients. To �nd the nullspace of M , you want �nd what you can multiply
M by on the right to get the zero vector, but the Hermite command returns a matrix that you multiply
on the left of M . So consider the transpose of M , MT .

Let A be the Hermite normal form of MT , and U an invertible matrix in Z such that A = UMT .
Transposing this, you'll get AT = MUT . Note that M times a column of UT equals the corresponding
column of AT . So if a column of AT is the zero vector, then M times the corresponding column of UT

will be the zero vector. In fact, these columns of UT will be a Z-basis for the nullspace of M .

Any columns of AT which are all 0s correspond to the rows of A which are all 0s. Since A is in
Hermite form, these will be at the bottom, and so the corresponding rows of U will be at the bottom,
and will be a Z-basis for the nullspace of M .

As an example, consider the matrix M:
Input:

M:=[[1,4,7],[2,5,8],[3,6,9]]

Find the Hermite decomposition:
Input:

(U,A):=ihermite(transpose(M))

Output:  −3 1 0
4 −1 0
−1 2 −1

 ,
 1 −1 −3

0 3 6
0 0 0


Only the third row of A consists of all 0s, so a Z-basis for the nullspace of M consists of only the third
row of U; namely U[2]=[-1,2,-1].

You can check that this is in the nullspace:
Input:

M*U[2]

Output:

[0, 0, 0]

5.48.14 Smith normal form in Z: ismith

A matrix B is in Smith normal form if the only non-zero entries are on the diagonal (for non-square
matrices, this simply means that bij = 0 for i 6= j) and bi,i divides bi+1,i+1. The elements bi,i are called
invariant factors and are used to describe the structure of �nite abelian groups.

For any matrix A with coe�cients in Z, there exist matrices U and V , invertible in Z, such that
B = UAV is in Smith normal form and has coe�cients in Z. The ismith command �nds the matrices
U , B and V .

• ismith takes one argument:
A, a matrix with coe�cients in Z.

• ismith(A) returns a list [U,B, V ] of three matrices such that B = UAV is in Smith normal form
and U and V are invertible in Z.

Example.

Input:

A:=[[9,-36,30],[-36,192,-180],[30,-180,180]]:;

U,B,V:=ismith(A)
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Output:  −3 0 1
6 4 3
20 15 12

 ,
 3 0 0

0 12 0
0 0 60

 ,
 1 24 −30

0 1 0
0 0 1


The invariant factors are 3, 12 and 60.

5.48.15 Smith normal form: smith

The smith command �nds the Smith normal form of a matrix with elements in a �eld K.

• smith takes one argument:
A, a square matrix with elements in a �eld K.

• smith(A) returns a list [U, V,D] of three matrices where U and V are invertible, D is diagonal,
and D = UAV .Input:

Examples.

• Input:

M:=([[5,-2,3,6],[1,-3,1,3],[7,-6,-4,7],[-2,-4,-3,0]]) % 17 :;

A:= x*idn(4) -M

Output: 
x+ (−5) % 17 2 % 17 (−3) % 17 (−6) % 17

(−1) % 17 x+ 3 % 17 (−1) % 17 (−3) % 17
(−7) % 17 6 % 17 x+ 4 % 17 (−7) % 17

2 % 17 4 % 17 3 % 17 x


Input:

U, D, V:= smith(A):;

U

Output:
0 % 17 (−1) % 17 0 % 17 0 % 17
0 % 17 0 % 17 6 % 17 4 % 17

(−2x+ 5) % 17 (−4x− 5) % 17 (−3x− 6) % 17
(
x2 − 3x+ 6

)
% 17(

2x2 + 5x+ 6
)

% 17
(
4x2 + 8x+ 2

)
% 17

(
3x2 + 4x+ 1

)
% 17

(
−x3 − 2x2 + 2x− 6

)
% 17


Input:

V

Output:
1 % 17 (x+ 3) % 17

(
−6x2 − 3x− 7

)
% 17

(
6x5 + 2x4 − 2x3 + x2 − 8x+ 6

)
% 17

0 % 17 1 % 17 (−6x− 2) % 17
(
6x4 + x3 − 6x2 + 5x− 6

)
% 17

0 % 17 0 % 17 1 % 17
(
−x3 + 3x2 + 7

)
% 17

0 % 17 0 % 17 0 % 17 1 % 17


Input:

D
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Output: 
1 % 17 0 % 17 0 % 17 0 % 17
0 % 17 1 % 17 0 % 17 0 % 17
0 % 17 0 % 17 1 % 17 0 % 17
0 % 17 0 % 17 0 % 17

(
−x4 − 2x3 + 8x2 − 3x+ 2

)
% 17


You can check this:
Input:

normal(U*A*V-D)

Output: 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


• Input:

B:=[[x�2+x-1,1,0,1],[-1,x,0,-1],[0,x�2+1,x,0],[1,0,1,x�2+x+1]] % 3:;

L:=smith(B)

Output:
0 % 3 (−1) % 3 0 % 3 0 % 3
1 % 3 0 % 3 0 % 3

(
−x2 − x+ 1

)
% 3

0 % 3
(
x2 + 1

)
% 3 (−x) % 3

(
x2 + 1

)
% 3

(−1) % 3
(
−x4 − x3 + x+ 1

)
% 3

(
x3 + x2 − x+ 1

)
% 3

(
−x4 − x3 + x2 − x

)
% 3

 ,


1 % 3 0 % 3 0 % 3 0 % 3
0 % 3 1 % 3 0 % 3 0 % 3
0 % 3 0 % 3 1 % 3 0 % 3
0 % 3 0 % 3 0 % 3

(
−x6 + x5 + x+ 1

)
% 3

 ,


1 % 3 x% 3
(
x3 + x2 − x

)
% 3

(
−x7 + x6 + x4 + x3 + x2 + x− 1

)
% 3

0 % 3 1 % 3
(
x2 + x− 1

)
% 3

(
−x6 + x5 + x3 + x2 + x+ 1

)
% 3

0 % 3 0 % 3 1 % 3
(
−x4 − x3 − x2 − x

)
% 3

0 % 3 0 % 3 0 % 3 1 % 3



5.49 Matrix factorizations

Note that most matrix factorization algorithms are implemented numerically, only a few of them will
work symbolically.

5.49.1 Cholesky decomposition: cholesky

If M is a square symmetric positive de�nite matrix, the Cholesky decomposition is M = P TP , where
P is a lower triangular matrix. The cholesky command �nds the matrix P .

• cholesky takes one argument:
M , a square symmetric positive de�nite matrix.

• cholesky(M) returns a symbolic or numeric matrix P given by the Cholesky decomposition.
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Examples.

• Input:

cholesky([[1,1],[1,5]])

Output: [
1 0
1 2

]
• Input:

cholesky([[3,1],[1,4]])

Output: [ √
3 0√
3
3

√
33
3

]

• Input:

cholesky([[1,1],[1,4]])

Output: [
1 0

1
√

3

]
Warning: If the matrix argument A is not a symmetric matrix, cholesky(A) does not return an

error, instead cholesky(A) will use the symmetric matrix B of the the quadratic form q corresponding
to the (non symmetric) bilinear form of the matrix A.

Example.

Input:

cholesky([[1,-1],[-1,4]])

or:

cholesky([[1,-3],[1,4]])

Output: [
1 0

−1
√

3

]

5.49.2 QR decomposition: qr

The QR decomposition of a square matrix A is A = QR, where Q is an orthogonal matrix (QTQ = I)
and R is upper triangular. The qr command �nds the QR decomposition of a matrix.

• qr takes one argument:
A, a numeric square matrix.

• qr(A) returns a list [Q,R] with Q and R from the QR decomposition.
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Examples.

• Input:

A := [[3,5],[4,5]]:;

qr(A)

Output: (
3
5

4
5

4
5 −3

5

)
,

[
5 7
0 1

]
• Input:

qr([[1,2],[3,4]])

Output:  1√
10

3

5
√
10
5

3√
10
− 1

5
√

10
5

 ,

[ √
10 7

5

√
10

0
√
10
5

]

5.49.3 QR decomposition (for TI compatibility): QR

The QR command �nds the QR decomposition of a matrix.

• QR takes three arguments:

� A, a square matrix.

� q and r, two variable names.

• QR(A, q, r) returns the matrix R from the QR decomposition of A, and assigns the matrices Q
and R to the variables q and r.

Example.

Input:

QR([[3,5],[4,5]],Q,R)

Output (the matrix R): [
5 7
0 1

]
Input:

Q

Output (the matrix Q): (
3
5

4
5

4
5 −3

5

)

5.49.4 LQ decomposition (HP compatible): LQ

The LQ decomposition of a matrix A is A = LQP , where L is lower triangular the same size as A (if A
is not square, then `i,j = 0 for i > j), Q is an orthogonal matrix, and P is a permutation matrix. The
LQ command �nds the LQ decomposition of a matrix.

• LQ takes one argument:
A, a matrix.

• LQ(A) returns a list [L,Q, P ] of the matrices given by the LQ decomposition.
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Examples.

• Input:

L, Q, P:= LQ([[4,0,0],[8,-4,3]])

Output: (4.0 0.0 0.0
8.0 5.0 −4.4408920985× 10−16

)
,

1.0 0.0 0.0
0.0 −0.8 0.6
0.0 −0.6 −0.8

 ,

 1 0 0
0 1 0
0 0 1


Here, L*Q is the same as P*A.

• Input:

L,Q,P:=LQ([[24,18],[30,24]])

Output: [(
−30.0 0.0
−38.4 −1.2

)
,

(
−0.8 −0.6
0.6 −0.8

)
,

[
1 0
0 1

]]
Again, L*Q = P*A.

5.49.5 LU decomposition: lu

The LU decomposition of a square matrix A is PA = LU , where P is a permutation matrix, L is
lower triangular with 1s on the diagonal, and U is upper triangular. The lu command �nds the LU
decomposition of a matrix.

• lu takes one argument:
A, a square matrix.

• lu(A) returns a list [p, L, U ] where p is a permutation that determines P , and P , L and U are
the LU decomposition of A.

The permutation matrix P is de�ned from p by:

Pi,p(i) = 1, Pi,j = 0 if j 6= p(i)

In other words, it is the identity matrix where the rows are permuted according to the permutation p.
You can get the permutation matrix from p by P:=permu2mat(p) (see Section 5.9.6 p.162).

Example.

Input:

A := [[3.,5.],[4.,5.]]:;

(p,L,U):=lu(A)

Output:

[1, 0] ,

[
1 0

0.75 1

]
,

[
4.0 5.0
0 1.25

]
Here n = 2, hence:

P [0, p(0)] = P2[0, 1] = 1, P [1, p(1)] = P2[1, 0] = 1, P = [[0, 1], [1, 0]]

Veri�cation:
Input:
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permu2mat(p)*A; L*U

Output: [
4.0 5.0
3.0 5.0

]
,

[
4.0 5.0
3.0 5.0

]
Note that the permutation is di�erent for exact input (the choice of pivot is the simplest instead of

the largest in absolute value).
Input:

lu([[1,2],[3,4]])

Output:

[0, 1] ,

[
1 0
3 1

]
,

[
1 2
0 −2

]
Input:

lu([[1.0,2],[3,4]])

Output:

[1, 0] ,

[
1 0

0.333333333333 1

]
,

[
3.0 4.0
0 0.666666666667

]

5.49.6 LU decomposition (for TI compatibility): LU

The LU command �nds the LU decomposition of a matrix.

• LU takes four arguments:

� A, a numeric square matrix.

� l, u and p, three variable names.

• LU(A) returns the matrix P from the LU decomposition of A, and assigns L, U and P to the
variables l, u and p. Namely, P is a permutation matrix, L is lower triangular with 1s on the
diagonal, and U is upper triangular with PA = LU .

Example.

Input:

LU([[3,5],[4,5]],L,U,P)

Output: [
1 0
0 1

]
[[0,1],[1,0]]

Input:

L

Output: [
1 0
4
3 1

]
Input:

U
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Output: [
3 5
0 −5

3

]
Input:

P

Output: [
1 0
0 1

]

5.49.7 Singular values (HP compatible): SVL svl

The singular values of a matrix A are the positive square roots of the eigenvalues of A · AT . So, if
A is symmetric, the singular values are the absolute values of the eigenvalues of A. The SVL (or svl)
command �nds the singular values of a matrix.
svl is a synonym for SVL.

• SVL takes one argument:
A, a matrix.

• SVL(A) returns a list of the singular values of A.

Examples.

• Input:

SVL([[1,2],[3,4]])

or:

svl([[1,2],[3,4]])

Output:
[0.365966190626, 5.46498570422]

• Input:

evalf(sqrt(eigenvals([[1,2],[3,4]]*transpose([[1,2],[3,4]]))))

Output:
5.46498570422, 0.365966190626

• Input:

SVL([[1,4],[4,1]])

or:

svl([[1,4],[4,1]])

Output:
[5.0, 3.0]

Input:

abs(eigenvals([[1,4],[4,1]]))

Output:
5, 3
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5.49.8 Singular value decomposition: svd

The singular value decomposition of a matrix A is a factorization A = USQT , where U and Q are
orthogonal and S is a diagonal matrix. The svd command �nds the singular value decomposition of a
matrix.

• svd takes one argument:
A, a numeric square matrix.

• svd(A) returns a list [U, s,Q] where U and Q are the orthogonal matrices of the singular value
decomposition and s is the diagonal of the matrix S.

You can get the diagonal matrix S from s with S=diag(s) (see Section 5.44.2 p.439).

Examples.

• Input:

svd([[1,2],[3,4]])

Output: [
−0.404553584834 −0.914514295677
−0.914514295677 0.404553584834

]
, [5.46498570422, 0.365966190626] ,[

−0.576048436766 0.81741556047
−0.81741556047 −0.576048436766

]
• Input:

(U,s,Q):=svd([[3,5],[4,5]])

Output: [
−0.672988041811 −0.739653361771
−0.739653361771 0.672988041811

]
, [8.6409011028, 0.578643354497] ,[

−0.576048436766 0.81741556047
−0.81741556047 −0.576048436766

]
Veri�cation:
Input:

U*diag(s)*tran(Q)

Output: (
3.0 5.0
4.0 5.0

)
5.49.9 LDL decomposition: ldl

The ldl command computes the LDL decomposition of the given symmetric (real or complex) or
Hermitian matrix A.

• ldl takes one mandatory argument and a sequence of optional arguments:

� A, a symmetric or Hermitian matrix.

� opts, a sequence of options, each of which is one of the following:
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∗ hermite, which must be passed alongside a Hermitian matrix A since no check is per-
formed.

∗ zip, which forces merging the output matrices L and D into matrix M .

• ldl returns the sequence p, L,D or p,M (if the option zip is passed), where p is the permutation
de�ning the permutation matrix P (using permu2mat command), L is a unit lower triangular
matrix and D is a tridiagonal matrix with 1- or 2-blocks on the diagonal. Matrix M is obtained
by merging L and D together which saves the space while allowing unambiguous reconstruction
of L and D. The following relation holds:

PAP T = LDLT .

Example.

• Input:

A:=[[1,-1,2],[-1,4,3],[2,3,-5]]

• Output:  1 −1 2
−1 4 3
2 3 −5


• Input:

ldl(A)

• Output:

[0, 2, 1] ,

 1 0 0
2 1 0
−1 −5

9 1

 ,
 1 0 0

0 −9 0
0 0 52

9


5.49.10 Computing inertia of a symmetric matrix: inertia

The inertia command computes the inertia of a real symmetric matrix, i.e. the number of positive,
negative and zero eigenvalues, by performing LDL decomposition (see Section 5.49.9). It can also use
the factorization for solving a system of linear equations if certain inertia-related conditions are satis�ed.

• inertia takes one mandatory argument and one or two optional arguments:

� A, a symmetric matrix of order n with real coe�cients.

� B (optional), a matrix of type m× n or a vector of length n.

� p0 (optional), an integer such that 0 ≤ p0 ≤ n.

• If called with a single argument A, inertia returns the triple [p, n, z] where p, n and z are the
numbers of positive, negative and zero eigenvalues of A, respectively.

• If called with arguments A and B, inertia returns the sequence containing two elements: the
triple [p, n, z] and the solution X to the equation AXT = BT in case z = 0.

• If called with three arguments, it returns the sequence containing [p, n, z] and X, but the latter is
not computed if p 6= p0.

• inertia computes the inertia of A by computing the LDL factorization of A. The matrix X can
be computed with small cost once L and D are known.

• Note that inertia does not check whether A is symmetric.
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Examples.

• Input:

A:=[[1,-1,2],[-1,4,3],[2,3,-5]]

• Output:  1 −1 2
−1 4 3
2 3 −5


• Input:

inertia(A)

• Output:

[2, 1, 0]

• Input:

inertia(A,[[1,2,3],[4,5,6]])

• Output:

[2, 1, 0] ,

[
15
13

8
13

3
13

177
52

71
52

51
52

]
• If we set p0 = 1, then X is not computed.
Input:

inertia(A,[[1,2,3],[4,5,6]],1)

• Output:

[2, 1, 0] , []

5.49.11 Short basis of a lattice: lll

The lll command �nds a short basis for the Z-modules generated by the rows of a matrix.

• lll takes one argument:
M , an invertible matrix with integer coe�cients.

• lll(M) returns the sequence (S,A,L,O) where:

� the rows of S is a short basis of the Z-module generated by the rows of M ,

� A is the change-of-basis matrix from the short basis to the basis de�ned by the rows of M
(AM = S),

� L is a lower triangular matrix, the modulus of its non diagonal coe�cients are less than 1/2,

� O is a matrix with orthogonal rows such that L ∗O = S.
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Examples.

• Input:

(S,A,L,O):=lll(M:=[[2,1],[1,2]])

Output: [
−1 1
2 1

]
,

[
−1 1
1 0

]
,

[
1 0
−1

2 1

]
,

[
−1 1
3
2

3
2

]
[[-1,1],[2,1]], [[-1,1],[1,0]], [[1,0],[1/-2,1]], [[-1,1],[3/2,3/2]]

Hence:

S =

[
−1 1
2 1

]
A =

[
−1 1
1 0

]
L =

[
1 0
−1

2 1

]
O =

[
−1 1
3
2

3
2

]
So the original basis is v1 = [2, 1], v2 = [1, 2] and the short basis is w1 = [−1, 1], w2 = [2, 1]. Since
w1 = −v1 + v2 and w2 = v1 then AM = S LO = S.

• Input:

M := [[3,2,1],[1,2,3],[2,3,1]]:;

(S,A,L,O):=lll(M)

Output:  −1 1 0
−1 −1 2
3 2 1

 ,
 −1 0 1

0 1 −1
1 0 0

 ,
 1 0 0

0 1 0
−1

2 −1
2 1

 ,
 −1 1 0
−1 −1 2
2 2 2


so

S =

 −1 1 0
−1 −1 2
3 2 1


A =

 −1 0 1
0 1 −1
1 0 0


L =

 1 0 0
0 1 0
−1

2 −1
2 1


O =

 −1 1 0
−1 −1 2
2 2 2


Properties:
AM = S and LO = S.
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5.50 Di�erent matrix norms

See Section 5.42.1 p.430 for di�erent norms on vectors.

5.50.1 The Frobenius norm: frobenius_norm

The Frobenius norm of a matrix A is
√∑

i,j a
2
i,j . The frobenius_norm command �nds the Frobenius

norm of a matrix.

• frobenius_norm takes one argument:
A, a matrix.

• frobenius_norm(A) returns the Frobenius norm of A.

Example.

Input:

frobenius_norm([[1,2,3],[3,-9,6],[4,5,6]])

Output: √
217

since
√

12 + 22 + 32 + 32 + (−9)2 + 62 + 42 + 52 + 62 =
√

217.

5.50.2 `2 matrix norm: norm l2norm

The `2 norm of a matrix is an operator norm (see Section 5.50.6 p.506) induced by the `2 norm on
vectors (see Section 5.42.1 p.430). The l2norm computes the `2 norm of a matrix.
norm is a synonym for l2norm.

• l2norm takes one argument:
A, a matrix.

• l2norm(A) returns the `2 norm of A.

Example.

Input:

l2norm([[1,2],[3,-4]])

Output:

5.11667273602

5.50.3 `∞ matrix norm: maxnorm

The `∞ norm of a matrix A is maxj,k(|aj,k|). The maxnorm command �nds the `∞ norm of a matrix.
(See also Section 5.42.1 p.430.)

• maxnorm takes one argument:
A, a matrix.

• maxnorm(A returns the `∞ norm of A.
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Example.

Input:

maxnorm([[1,2],[3,-4]])

Output:

4

5.50.4 Matrix row norm: rownorm rowNorm

The row norm of a matrix A is maxk(
∑

j |aj,k|). (This is also an operator norm; see Section 5.50.6
p.506.) The rownorm command �nds the row norm of a matrix.
rowNorm is a synonym for rownorm, and for matrices linfnorm is also a synonym.

• rownorm takes one argument:
A, a matrix

• rownorm(A) returns the row norm of A.

Example.

Input:

rownorm([[1,2],[3,-4]])

Output:

7

Indeed: max(1 + 2, 3 + 4) = 7.

5.50.5 Matrix column norm: colnorm colNorm l1norm

The column norm of a matrix A is maxj(
∑

k |aj,k|). (This is also an operator norm; see Section 5.50.6
p.506.) The colnorm command �nds the column norm of a matrix.
colNorm is a synonym for colnorm, and for matrices l1norm is also a synonym.

• colnorm takes one argument:
A, a matrix

• colnorm(A) returns the column norm of A.

Example.

Input:

colnorm([[1,2],[3,-4]])

Output:

6

Indeed: max(1 + 3, 2 + 4) = 6
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5.50.6 The operator norm of a matrix: matrix_norm l1norm l2norm norm specnorm
linfnorm

Operator norms

In mathematics, particularly functional analysis, a linear function between two normed spaces f : E → F
is continuous exactly when there is a number K such that ‖f(x)‖F ≤ K‖x‖ for all x in E. (See
Section 5.42.1 p.430 for norms on Rn.) For this reason, they are also called bounded linear functions.
The in�mum of all such K is de�ned to be the operator norm of f , and it depends on the norms of E
and F . There are other characterizations of the operator norm of f , such as the supremum of ‖f(x)‖F
over all x in E with ‖x‖E ≤ 1.

If E and F are �nite dimensional, then any linear function f : E → F will be bounded.

Any m× n matrix A = (ajk) corresponds to a linear function f : Rn → Rm de�ned by f(x) = Ax.
The operator norm of A will be the operator norm of f .

• If Rn and Rm both have the `1 norm, namely for x = (x1, x2, . . . ) the norm is ‖x‖ =
∑

j |xj |, the
operator norm of A is

max
k

(
∑
j

|ajk|.

This is the column norm given by colnorm(A) (see Section 5.50.5 p.505).

• If Rn and Rm both have the `2 norm, namely for x = (x1, x2, . . . ) the norm is ‖x‖ =
√∑

j x
2
j (the

usual Euclidean norm), the operator norm of A is the largest eigenvalue of f∗ ◦ f , where f∗ is the
transpose of f , and so the largest singular value of f . This is given by l2norm (see Section 5.50.2
p.504) or max(SVL(A)) (see Section 5.49.7 p.499).

• If Rn and Rm both have the `∞ norm, namely for x = (x1, x2, . . . ) the norm is |x| = maxj |xj |,
the operator norm of A is

max
j

(
∑
k

|ajk|.

This is given by rownorm(A) (see Section 5.50.4 p.505).

Computing operator norms

The matrix_norm command is a command which can �nd any of the above operator norms.

• matrix_norm takes two arguments:

� A, a matrix.

� arg, which can be 1, 2 or inf.

• matrix_norm(A,arg) returns an operator norm of the operator associated to the matrix, the norm
is determined by arg.

� If arg is 1, it is based on the `1 norm on Rn.
matrix_norm(A,1) is the same as colnorm(A) and l1norm(A).

� If arg is 2, it is based on the `2 norm on Rn.
matrix_norm(A,2) is the same as l2norm(A) and norm(A).

� If arg is inf, it is based on the `∞ norm on Rn.
matrix_norm(A,inf) is the same as rownorm(A) and linfnorm(A).
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Examples.

• Input:

B:= [[1,2,3],[3,-9,6],[4,5,6]]

then:

matrix_norm(B,1)

or:

l1norm(B)

or:

colnorm(B)

Output:

16

since max(1 + 3 + 4, 2 + 9 + 5, 3 + 6 + 6) = 16.

• Input:

matrix_norm(B,2)

or:

l2norm(B)

Output:

11.2449175989

• Input:

matrix_norm(B,inf)

or:

linfnorm(B)

or:

rowNorm(B)

Output:

18

since max(1 + 2 + 3, 3 + 9 + 6, 4 + 5 + 6) = 18.



508 CHAPTER 5. THE CAS FUNCTIONS

5.51 Isometries

An isometry of Rn is a distance-preserving map. In R2, the isometries are made up of:

• re�ection across a line.

• rotation about a point.

• translation.

In R3, the isometries are made up of:

• re�ection across a plane.

• rotation about a line.

• translation.

An isometry is direct if it preserves orientation (it doesn't involve a re�ection), otherwise it is indirect.

An n × n matrix A determines an isometry of the function f : Rn → Rn by f(x) = Ax) is an
isometry. Such isometries �x the origin, so they can't involve translation, can only rotate about the
origin, and the line or plane of re�ection will pass through the origin.

An isometry in R2 can be characterized by:

• The angle of rotation (for a direct isometry) or a normal to the line of re�ection (for an indirect
isometry).

• +1 or -1 to indicate whether it is direct or indirect; +1 for direct and -1 for indirect.

An isometry in R3 can be characterized by:

• The direction of an axis of rotation.

• The angle of rotation (for a direct isometry) or a normal to the plane of re�ection (for an indirect
isometry).

• +1 or -1 to indicate whether it is direct or indirect; +1 for direct and -1 for indirect.

5.51.1 Recognizing an isometry: isom

The isom command determines whether or not a 2× 2 or 3× 3 matrix determines an isometry, and if
it does, �nds a characterization.

• isom takes one argument:
A, a 2× 2 or 3× 3 matrix.

• isom(A) returns [0] is A does not determine an isometry, otherwise it returns a list [char , n],
where char is the characteristic element of a list of characteristic elements and n is 1 for a direct
isometry and -1 for an indirect isometry.

� For a 2 × 2 matrix, char is the angle of rotation about the origin for a direct isometry or a
vector determining the line (through the origin) of re�ection for an indirect symmetry.

� For a 3 × 3 matrix, char is a list consisting of the axis direction and angle of rotation for a
direct isometry or a vector normal to the plane of re�ection for an indirect isometry.
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Examples.

• Input:

isom([[0,0,1],[0,1,0],[1,0,0]])

Output:
[[1, 0,−1] ,−1]

which means that this isometry is a 3-d symmetry with respect to the plane x − z = 0.

• Input:

isom(sqrt(2)/2*[[1,-1],[1,1]])

Output: [π
4
, 1
]

Hence, this isometry is a 2-d rotation of angle
π

4
.

• Input:

isom([[0,0,1],[0,1,0],[0,0,1]])

Output:
[0]

therefore this transformation is not an isometry.

5.51.2 Finding the matrix of an isometry: mkisom

The mkisom command �nds the matrix of an isometry given the characteristic elements.

• mkisom takes two arguments:

� char, the characteristic element (for isometries of R2 or a list of characteristic elements (for
isometries of R3.

For isometries of R2, char will be the angle of rotation for direct isometries or a vector
determining the line (through the origin) of re�ection for an indirect symmetry.

For isometries of R3, char will be the list consisting of the axis direction and angle of rotation
for a direct isometry or a vector normal to the plane of re�ection for an indirect isometry.

� n, either +1 for a direct isometry or -1 an indirect isometry.

• mkisom(char,n) returns a matrix of the corresponding isometry.

Examples.

• Input:

mkisom([[-1,2,-1],pi],1)

Output (the matrix of the rotation about axis [−1, 2,−1] of angle π): −2
3 −2

3
1
3

−2
3

1
3 −2

3
1
3 −2

3 −2
3


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• Input:

mkisom([pi],-1)

Output (the matrix of the symmetry with respect to O): −1 0 0
0 −1 0
0 0 −1


• Input:

mkisom([1,1,1],-1)

Output (the matrix of the symmetry with respect to the plane x+ y + z = 0): 1
3 −2

3 −2
3

−2
3

1
3 −2

3
−2

3 −2
3

1
3


• Input:

mkisom([[1,1,1],pi/3],-1)

Output (the matrix of the product of a rotation of axis [1, 1, 1] and angle π
3 and of a symmetry with

respect to the plane x+ y + z = 0):  0 −1 0
0 0 −1
−1 0 0


• Input:

mkisom(pi/2,1)

Output (the matrix of the plane rotation of angle π
2 ):[

0 −1
1 0

]
• Input:

mkisom([1,2],-1)

Output (matrix of the plane symmetry with respect to the line of equation x+ 2y = 0):[
3
5 −4

5
−4

5 −3
5

]

5.52 Linear Programming

Linear programming problems involve maximizing a linear functionals under linear equality or inequality
constraints. The simplest case can be solved directly by the so-called simplex algorithm. Most cases
require you to solve an auxiliary linear programming problem to �nd an initial vertex for the simplex
algorithm.
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5.52.1 Simplex algorithm: simplex_reduce

The simple case

The simplest linear programming problem is to �nd the maximum of an objective function

z(x1, . . . , xn) = c1x1 + · · ·+ cnxn

under the constraints (where bi ≥ 0, i = 1, . . . ,m):

a11x1+ a12x2+· · ·+ a1nxn ≤ b1 (5.7)

...
... (5.8)

am1x1+am2x2+· · ·+amnxn ≤bm (5.9)

(5.10)

and
xi ≥ 0 i = 1, . . . , n.

This can be abbreviated
max(c · x), Ax ≤ b, x ≥ 0, b ≥ 0

(where the vector inequalities mean term-by-term inequalities). The constraints determine a simplex in
Rn, and the standard method to solve this problem is called the simplex method.

The simplex method

Xcas can do the simplex method for you, but it can still help to get a rough idea of how it works. You
can google �simplex method� for more details.

The constraint inequalities (5.7) can be turned into equalities by adding an auxiliary (surplus)
variable for each inequality. The constraints are equivalent to:

a11x1+ a12x2+· · ·+ a1nxn+s1+· · ·+ 0 = b1
...

...

am1x1+am2x2+· · ·+amnxn+ 0+· · ·+sm =bm

for some s1, . . . , sm ≥ 0. The straightforward solution to this system of equations, namely xi = 0 for
i = 1, . . . , n and sj = bj for j = 1, . . . ,m, will be the beginning solution. The objective function

z = c1x1 + · · ·+ cnxn

= c1x1 + · · ·+ cnxn + 0s1 + · · ·+ 0sm

will be zero at this solution. If one of the coe�cients of the objective function is positive, you can �nd
a larger value of xi that will also be a solution of the equations (by making one of the sj smaller) and
will give a larger value of z.

The mechanics of this process involves writing the given information in a matrix. The matrix of
the system of equalities including the surplus variables is (AImb); the simplex method begins with this
matrix above a row beginning with −c followed by zeros. The last element of the last row is the value
of the objective function at the current solution. The resulting matrix (the simplex tableau) looks like(

A Im b
−c 0 0

)
The simplex method involves doing a speci�c series of row operations that e�ectively determine a

new solution to the constraints that increase the values of the current values of the variables xi and so
increase the value of the objective function. The method ends when there are no negative values left in
the bottom row.
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simplex_reduce

The simplex_reduce command performs the simplex method on a linear programming problem of the
form, for b ≥ 0, Ax ≤ b with x ≥ 0.

• simplex_reduce takes three arguments:

� A, b and c from the problem.

• simplex_reduce(A, b, c) returns a sequence consisting of:

� The maximum value of the objective function.

� The solution of x (augmented since the algorithm works by adding auxiliary variables).

� The reduced matrix.

Alternatively, you could combine the arguments A, b, c into the matrix that begins the algorithm:(
A Im b
−c 0 0

)
which you can get with:
B := augment(A,idn(m));

C := border(B, b)
d:=append(-c,0$(m+1))

D:=augment(C,[d])
and then call simplex_reduce(D).

Example.

Find

max(X + 2Y ) where


(X,Y ) ≥ 0

−3X + 2Y ≤ 3
X + Y ≤ 4

Input:

simplex_reduce([[-3,2],[1,1]],[3,4],[1,2])

Output:

7, [1, 3, 0, 0] ,

 0 1 1
5

3
5 3

1 0 −1
5

2
5 1

0 0 1
5

8
5 7


This means that the maximum of X + 2Y under these conditions is 7, it is obtained for X = 1, Y = 3
because [1, 3, 0, 0] is the augmented solution and the reduced matrix is: 0 1 1

5
3
5 3

1 0 −1
5

2
5 1

0 0 1
5

8
5 7


Notice that the (non-zero) values of the solution have columns of the m×m identity matrix above them.

Reducing a more complicated case to the simple case

With the former call of simplex_reduce, you have to:

• rewrite constraints to the form xk ≥ 0,

• remove variables without constraints,
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• add variables such that all the constraints have positive components.

For example, �nd:

min(2x+ y − z + 4) where


x ≤ 1
y ≥ 2

x+ 3y − z = 2
2x− y + z ≤ 8
−x+ y ≤ 5

(5.11)

Let x = 1 − X, y = Y + 2, z = 5 − X + 3Y . The problem is equivalent to �nding the minimum of
(−2X + Y − (5−X + 3Y ) + 8) where:

X ≥ 0
Y ≥ 0

2(1−X)− (Y + 2) + 5−X + 3Y ≤ 8
−(1−X) + (Y + 2) ≤ 5

or to �nd the minimum of:

(−X − 2Y + 3) where


X ≥ 0
Y ≥ 0

−3X + 2Y ≤ 3
X + Y ≤ 4

i.e. to �nd the maximum of −(−X − 2Y + 3) = X + 2Y − 3 under the same conditions, hence it is the
same problem as to �nd the maximum of X + 2Y seen before. You found that the previous problem
had a maximum of 7, hence the result here is 7− 3 = 4.

The general case

A linear programming problem may not in general be directly reduced like above to the simple case.
The reason is that a starting solution must be found before applying the simplex algorithm.

The standard form of a linear programming problem is similar to the simplest case above, but with
Ax = b (instead of Ax ≤ b) for b ≥ 0 under the conditions x ≥ 0. In this case, there is no straightforward
solution. So the �rst problem is to �nd an x with x ≥ 0 and Ax = b.

Finding a starting solution Let m be the number of rows of A. Add arti�cial variables s1, . . . , sm
and maximize −

∑
si under the conditions Ax = b, x ≥ 0, s ≥ 0 starting with initial value 0 for x

variables and y = b. If a solution exists and is 0, then the si must all be 0 and so x will be solution of
Ax = b, x ≥ 0.

You can solve this with simplex_reduce by calling it with a single matrix argument:(
A Im b
0 1 0

)
For example, to �nd the minimum of 2x+ 3y − z + t with x, y, z, t ≥ 0 and:

−x−y +t =1

y−z+t =3

you would start by �nding a solution of

−x−y +t+s1 =1

y−z+t +s2 =3

as mentioned above.
Input:
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simplex_reduce([[-1,-1,0,1,1,0,1],[0,1,-1,1,0,1,3],[0,0,0,0,1,1,0]])

Output:

0, [0, 1, 0, 2, 0, 0] ,

 −1
2 0 −1

2 1 1
2

1
2 2

1
2 1 −1

2 0 −1
2

1
2 1

0 0 0 0 1 1 0


Since the solution (x, y, z, t, s1, s2) = (0, 1, 0, 2, 0, 0) has s1 = s2 = 0, a non-negative solution of the
equalities in x, y, z and t is (x, y, z, t) = (0, 1, 0, 2).

Finding a solution of the LP problem Now you can make a second call to simplex_reduce

with the reduced matrix (less the columns corresponding to the variables s1 and s2) and the usual
c. In this case, �nding the requested minimum means �nding the maximum of −2x − 3y + z − t, so
c = (−2,−3, 1,−1).
Input:

simplex_reduce([[-1/2,0,-1/2,1,2],[1/2,1,-1/2,0,1],[2,3,-1,1,0]])

Output:

−5, [0, 1, 0, 2] ,

 −1
2 0 −1

2 1 2
1
2 1 −1

2 0 1
1 0 1 0 −5


This maximum is -5, so the requested minimum is −(−5) = 5 at (0, 1, 0, 2) (x = 0, y = 1, z = 0 and
t = 2).

5.52.2 Solving general linear programming problems: lpsolve

The lpsolve command can solve linear programming problems, where a multivariate linear function
needs to be maximized or minimized subject to linear (in)equality constraints, as well as (mixed) integer
programming problems. You can either enter a problem directly (in symbolic or matrix form) or load
it from a �le in LP or (compressed) MPS format.

Solving an LP problem in symbolic form

To enter a problem symbolically:

• lpsolve takes one mandatory argument and three optional arguments:

� obj, a symbolic expression representing the objective function or a path to a �le containing
the LP problem.

� Optionally, constr, list of linear constraints which may be equalities or inequalities or doubly
bounded expressions in form a ≤ f(x) ≤ b entered as f(x)=a..b. (If obj is a �le name, this
option is omitted.)

� Optionally, bd, a sequence of expressions of type x=a..b, specifying that the variable x
is bounded below by a ∈ R ∪ {−∞} and above by b ∈ R ∪ {+∞}. If the bounds are
stored in a two-column matrix, consider using the conversion routine box_constraints (see
Section 5.38.9).

� Optionally, opts, a sequence of solver settings in form option = value, where option may be
one of:

∗ lp_assume (or assume), which speci�es a global constraint on variables and whose value
can be one of:

· lp_nonnegative (all variables are nonnegative)

· lp_integer or integer (all variables are integers)

· lp_binary (all variables are binary, i.e. 0 or 1)



5.52. LINEAR PROGRAMMING 515

· lp_nonnegint or nonnegint (all variables are nonnegative integers)

(by default, unset.)

∗ lp_integervariables, whose value should be a list of identi�ers or indices of integer
variables (empty by default).

∗ lp_binaryvariables, whose value should be a list of identi�ers or indices of binary
variables (empty by default).

∗ lp_maximize (or maximize), whose value can be true or false setting the objective
direction (by default false, meaning that the objective is minimized). You can enter
only maximize, which is equivalent to maximize=true.

∗ lp_method, setting the solver type, which can be one of:

· exact
· float
· lp_simplex
· lp_interiorpoint

(by default, lp_method=lp_simplex).

∗ lp_depthlimit, whose value can be a positive integer, which sets the maximum depth
of the branch-and-bound tree (by default, unlimited).

∗ lp_nodelimit, whose value can be a positive integer, which sets the maximum number
of nodes in the branch-and-bound tree (by default, unlimited).

∗ lp_iterationlimit, whose value can be a positive integer setting the maximum itera-
tions of the simplex algorithm (by default, unlimited).
If the maximum number of iterations is reached, the current feasible solution (not nec-
essarily an optimal one) is returned.

∗ lp_timelimit, whose value can be a positive real number, setting the maximum solving
time in milliseconds (by default, unlimited).

∗ acyclic, whose value can be either true or false, enabling/disabling the Bland rule
safeguarding (by default, true).

∗ lp_maxcuts, whose value can be a nonnegative integer setting the maximum GMI cuts
per node (by default 5).

∗ lp_gaptolerance, whose value can be a positive number, setting the relative integrality
gap threshold (by default, 0).

∗ lp_presolve, whose value can be either true or false, enabling/disabling the prepro-
cessing step (by default, true).

∗ lp_heuristic, whose value can be either true or false, enabling/disabling the rounding
heuristic (by default, true).

∗ lp_nodeselect, which sets the branching node selection strategy and whose value can
be one of:

· lp_depthfirst
· lp_breadthfirst
· lp_bestlocalbound
· lp_hybrid
· lp_bestprojection

(by default, lp_nodeselect=lp_bestlocalbound).

∗ lp_varselect, which sets the branching variable selection strategy, whose value can be
one of

· lp_firstfractional
· lp_lastfractional
· lp_mostfractional
· lp_pseudocost
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(by default, lp_varselect=lp_pseudocost).

∗ lp_verbose, whose value can be true or false (by default false). You can enter only
lp_verbose, which is equivalent to lp_verbose=true.

• lpsolve(obj, 〈constr,bd,opts〉) returns a list [optimum,soln], where optimum is the minimum/maximum
value of the objective function and soln is the list of coordinates corresponding to the point at
which the optimal value is attained, i.e. the optimal solution. If there is no feasible solution,
an empty list is returned. When the objective function is unbounded, optimum is returned as
+infinity (for maximization problems) or -infinity (for minimization problems). If an error is
experienced while solving (terminating the process), then undef is returned.

The given objective function is minimized by default. To maximize it, include the option lp_maximize=true
or lp_maximize or simply maximize. Also note that all variables are, unless speci�ed otherwise, assumed
to be continuous and unrestricted in sign.

Examples.

• Solve the problem speci�ed in (5.11):
Input :

constr:=[x<=1,y>=2,x+3y-z=2,3x-y+z<=8,-x+y<=5];

lpsolve(2x+y-z+4,constr)

Output:
[−4, [x = 0, y = 5, z = 13]]

Therefore, the minimum value of f(x, y, z) = 2x + y − z + 4 is equal to −4 under the given
constraints. The optimal value is attained at point (x, y, z) = (0, 5, 13).

• Constraints may also take the form expr=a..b for bounded linear expressions. For example,
minimize x+ 2y + 3z subject to 1 ≤ x+ y ≤ 5 and 2 ≤ y + z + 1 ≤ 4, where x, y ≥ 0.
Input:

lpsolve(x+2y+3z,[x+y=1..5,y+z+1=2..4,x>=0,y>=0])

Output:
[−2, [x = 0, y = 5, z = −4]]

• Use the assume=lp_nonnegative option to specify that all variables are nonnegative. It is easier
than entering the nonnegativity constraints explicitly. For example, minimize −x − y subject to
y ≤ 3x+ 1

2 and y ≤ −5x+ 2, where x, y ≥ 0.
Input:

lpsolve(-x-y,[y<=3x+1/2,y<=-5x+2],assume=lp_nonnegative)

Output: [
−5

4
,

[
x =

3

16
, y =

17

16

]]
• Bounds can be added separately for some variables. They should be entered after the constraints.
For example, minimize −6x+ 4y + z subject to

5x− 10y ≤ 20,

2z − 3y = 6,

−x+ 3y ≤ 3,

where 1 ≤ x ≤ 20 and y ≥ 0.
Input:
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constr:=[5x-10y<=20,2z-3y=6,-x+3y<=3];

lpsolve(-6x+4y+z,constr,x=1..20,y=0..inf)

Output: [
−133

2
,

[
x = 18, y = 7, z =

27

2

]]
Solving an LP problem in matrix form

To enter a problem in matrix form:

• lpsolve takes

� obj, a vector of coe�cients representing the objective function.

� constr, a list [A, b,Aeq, beq] such that objective function obj T ·x is to be minimized/maximized
subject to constraints Ax ≤ b and Aeqx = beq.

If the problem does not contain equality constraints, Aeq and beq may be omitted. For a
problem that does not contain inequality constraints, empty lists must be entered in place of
A and b.

� bd, a list of two vectors [bl, bu] of the same length as c such that bl ≤ x ≤ bu. These vectors
may contain +infinity or -infinity.

� opts, as before.

• lpsolve(obj, 〈constr,bd,opts〉) returns a list [optimum,soln] as before. optimum is the mini-
mum/maximum value of the objective function and soln is the list of coordinates corresponding
to the point at which the optimal value is attained, i.e. the optimal solution. If there is no fea-
sible solution, an empty list is returned. When the objective function is unbounded, optimum is
returned as +infinity (for maximization problems) or -infinity (for minimization problems).
If an error is experienced while solving (terminating the process), undef is returned.

Examples.

• Input:

c:=[-2,1];A:=[[-1,1],[1,1],[-1,0],[0,-1]];b:=[3,5,0,0];

lpsolve(c,[A,b])

Output:
[−10, [5, 0]]

• Input:

c:=[-2,5,-3];bl:=[2,3,1];bu:=[6,10,7/2];

lpsolve(c,[],[bl,bu])

Output: [
−15

2
,

[
6, 3,

7

2

]]
Input:

c:=[4,5];Aeq:=[[-1,3/2],[-3,2]];beq:=[2,3];

lpsolve(c,[[],[],Aeq,beq])

Output: [
26

5
,

[
−1

5
,
6

5

]]
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Simplex method implementation. Only the two-phase primal simplex method is implemented for
lpsolve and it uses the upper-bounding technique. Basic columns are not kept in the simplex tableau,
which therefore contains only the columns of non-basic variables. To prevent cycling, an adaptation of
Bland's rule is used. A preprocessing routine, helping to reduce the size of the problem, is available
and enabled by default (you can disable it by typing lp_presolve=false). All computation is done
by using arbitrary-precision integer arithmetic, which is always exact but slower than the �oating-point
arithmetic. Note that all problem data should be rational.

Cycling in simplex algorithm may happen, although it is rare in practice. Bland rule safeguarding is
used by default in order to prevent cycling. However, Bland's pivoting rule is known to converge slowly;
therefore it may slow down the computation in problems which would otherwise not cycle. To disable
the safeguarding, use the option acyclic=false.

Solving MIP (Mixed Integer Programming) problems

The lpsolve command allows restricting (some) variables to integer values. Such problems, called
(mixed) integer programming problems, are solved by applying the branch-and-bound method.

To solve pure integer programming problems, in which all variables are integers, use the option
assume=integer or assume=lp_integer.

Example.

Input:

lpsolve(-5x-7y,[7x+y<=35,-x+3y<=6],assume=integer)

Output:

[−41, [x = 4, y = 3]]

Use the option assume=lp_binary to specify that all variables are binary, i.e. the only allowed values
are 0 and 1. These usually represent false and true, respectively, giving the variable a certain meaning
in a logical context.

Example.

Input:

lpsolve(8x1+11x2+6x3+4x4,[5x1+7x2+4x3+3x4<=14], assume=lp_binary,maximize)

Output:

[21, [x1 = 0, x2 = 1, x3 = 1, x4 = 1]]

To solve mixed integer problems, where some variables are integers and some are continuous, use
the option keywords lp_integervariables to specify integer variables and/or lp_binaryvariables to
specify binary variables.

Input:

lpsolve(x+3y+3z,[x+3y+2z<=7,2x+2y+z<=11],

assume=lp_nonnegative,lp_maximize, lp_integervariables=[x,z])

Output:

[10,[x=1,y=0,z=3]]

Use the assume=lp_nonnegint or assume=nonnegint option to get nonnegative integer values.
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Example.

Input:

lpsolve(2x+5y,[3x-y=1,x-y<=5],assume=nonnegint)

Output:

[12, [x = 1, y = 2]]

When specifying MIP problems in matrix form, the lists corresponding to the options lp_integervariables
and lp_binaryvariables should contain indices of the variables, as in the following example.

Example.

Input:

c:=[2,-3,-5];A:=[[-5,4,-5],[2,5,7],[2,-3,4]];b:=[3,1,-2];

lpsolve(c,[A,b],lp_integervariables=[0,2])

Output: [
19

4
,

[
1,

3

4
,−1

]]
You can also specify a range of indices instead of a list when there is too much variables. Example:
lp_binaryvariables=0..99 means that all variables xi such that 0 ≤ i ≤ 99 are binary.

Branch-and-bound implementation. The branch-and-bound algorithm generates a binary tree of
subproblems, called nodes, by branching on integer variables with fractional values. Leaf nodes of the
tree, called active nodes, are stored in a list. In each iteration of the algorithm, an active node is selected,
branched on a particular variable into two new nodes, and subsequently removed from the list. A node
in which no branching is possible represents a feasible solution. The corresponding objective value is
used to fathom nodes which cannot possibly lead to a better solution. The algorithm terminates when
there is no space left for improvement.

If presolving is enabled, then basic preprocessing is done at each node of the tree, except when
lp_presolve=root is set, in which case only the root node is processed. Additionally, after a non-
integer-feasible solution with better objective value than the current incumbent is obtained by solving
the linear relaxation, a rounding heuristic is applied in attempt to achieve integral feasibility. The
heuristic is enabled by default; you can disable it by setting lp_heuristic to false.

Node-selection strategies. A node-selection strategy can be chosen by using the lp_nodeselect

option. Possible values are:

• lp_bestlocalbound, which chooses an active node having the best bound for the objective value,

• lp_depthfirst, which chooses the newest active node,

• lp_hybrid, which combines the above two strategies,

• lp_breadthfirst, which chooses the oldest active node,

• lp_bestprojection, which chooses a node with the best simple projection.

By default, the lp_bestlocalbound strategy is used. The lp_hybrid strategy works as follows: until
an incumbent solution is found, the solver uses the lp_depthfirst strategy, �diving� into the tree as an
incumbent solution is more likely to be located deeply. When an incumbent is found, the solver switches
to the lp_bestlocalbound strategy in attempt to close the integrality gap as quickly as possible.
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Variable-selection strategies. A variable-selection strategy can be chosen by using the lp_varselect
option. Possible values are:

• lp_firstfractional, which chooses the �rst fractional variable,

• lp_lastfractional, which chooses the last fractional variable,

• lp_mostfractional, which chooses a variable with fractional part closest to 0.5,

• lp_pseudocost, which chooses the variable which had the greatest impact on the objective value
in previous branchings.

By default, the lp_pseudocost strategy is used. However, since a pseudocost-based choice cannot
be made until all integer variables have been branched upon at least one time in each direction, the
lp_mostfractional strategy is used until that condition is ful�lled.

Using an appropriate combination of node/variable selection strategies may signi�cantly reduce the
number of subproblems needed to be examined when solving a particular MIP problem, as illustrated
in the following example.

Example.

Minimize z = c · x subject to Ax = b, where x ∈ Z8
+ and

A =


22 13 26 33 21 3 14 26
39 16 22 28 26 30 23 24
18 14 29 27 30 38 26 26
41 26 28 36 18 38 16 26

 , b =


7872
10466
11322
12058

 , c =



2
10
13
17
7
5
7
3


.

The optimal solution is z∗ = 1854, x∗ = (24, 15, 19, 11, 3, 99, 4, 226). In the following table, di�erent
strategies are compared according to the number of examined nodes and total solving time (in seconds).

Node selection Variable selection Nodes examined Time

Best local bound Last fractional 13102 4.8

Best projection Most fractional 26238 11.7

Hybrid First fractional 55046 19.5

Depth-�rst Pseudocost 131466 36.2

Note that the above comparison is problem-speci�c; it does not mean that lp_bestlocalbound

with lp_lastfractional is always the best strategy. Usually, one has to experiment with di�erent
combinations to �nd which one is optimal for the given problem. However, the strategies which use
larger amounts of information generally perform better. Therefore, it is reasonable to assume that
lp_bestlocalbound will be more appropriate than lp_breadthfirst, for instance.

Cutting planes. Gomory mixed integer (GMI) cuts are generated at every node of the branch-and-
bound tree to improve the objective value bound. After solving the relaxed subproblem using the simplex
method, GMI cuts are added to the subproblem which is subsequently reoptimized. This procedure is
repeated until no useful cuts can be generated or until lp_maxcuts limit is reached.

Simplex reoptimizations are fast because they start with the last feasible basis; however, applying
cuts makes the simplex tableau larger, which may slow the computation down. To limit the number of
GMI cuts that is allowed be appended to a subproblem, you can use lp_maxcuts option, setting it either
to zero (which disables the cut generation altogether) or to some positive integer. You may set it to
+infinity as well, thus allowing any number of cuts to be applied to a node. By default, lp_maxcuts
equals to 5.
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Stopping criteria. There are several ways to force the branch-and-bound algorithm to stop pre-
maturely when the execution takes too much time. You can set lp_timelimit to an integer which
de�nes the maximum number of milliseconds allowed to �nd an optimal solution. Other ways are to
set lp_nodelimit or lp_depthlimit to limit the number of nodes generated in the branch-and-bound
tree or its depth, respectively. Finally, you can set lp_gaptolerance to some positive value, say t > 0,
which terminates the algorithm after �nding an incumbent solution and proving that the corresponding
objective value di�ers from the optimum value for less than t · 100 %. This is done by monitoring the
size of the integrality gap, i.e. the di�erence between the current incumbent objective value and the
best objective value bound among active nodes.

If the branch-and-bound algorithm terminates prematurely, a warning message indicating the cause
is displayed. The incumbent solution, if any, is returned as the result, else the problem is declared to
be infeasible.

Displaying detailed output. Typing lp_verbose=true or lp_verbose when specifying options for
lpsolve causes detailed messages to be printed during and after solving a LP problem. During the
simplex algorithm, a status report in form

n obj: z

is printed every two seconds, where n is the number of simplex iterations and z is the current objective
value. If the line is pre�xed with the asterisk character (*), it means that the solver is optimizing the
given objective (Phase 2); otherwise, the solver is searching for a feasible basis (Phase 1), in which case
z is a relative value in percentages (when it reaches zero, Phase 2 is initiated). Note that values of z
reported in Phase 2 may not correspond to the actual values if presolving is enabled.

If the problem contains integrality constraints, then the simplex algorithm messages are not printed.
Instead, during the branch-and-bound algorithm, a status report in form

n: m nodes active, bound: b 〈 gap: g〉

is displayed every 5 seconds, where n is the number of already examined subproblems, b is the lower
resp. upper bound (for minimization resp. maximization), and g is the relative integrality gap. Also,
a message is printed every time the incumbent solution is found or updated, as well as when the
solver switches to pseudocost-based branching. After the algorithm is �nished, a summary is displayed
containing the total number of examined subproblems, the number of most nodes being active at the
same time, and the number of applied GMI cuts along with the respective average objective value
improvement.

In the following example, we solve the MIP given above. The solver shows all progress and summary
messages.

Example.

Input:

A:=[[22,13,26,33,21,3,14,26],[39,16,22,28,26,30,23,24],

[18,14,29,27,30,38,26,26],[41,26,28,36,18,38,16,26]]:;

b:=[7872,10466,11322,12058]:;c:=[2,10,13,17,7,5,7,3]:;

lpsolve(c,[[],[],A,b],assume=nonnegint,lp_verbose)

Output:
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Constraint matrix has 4 rows, 9 columns, and 36 nonzeros

Variables: 0 continuous, 8 integer (0 binary)

Constraints: 4 equalities, 0 inequalities

Optimizing...

Starting branch & bound...

11310: 147 nodes active, bound: 1793.43

12709: Incumbent solution found: 1854

20646: 931 nodes active, bound: 1841.81, gap: 0.657343%

23836: Tree is empty

Summary:

* 23836 subproblem(s) examined

* max. tree size: 1256 nodes

* 13 GMI cut(s) applied

[1854, [24, 15, 19, 11, 3, 99, 4, 226]]

Solving problems in �oating-point arithmetic

The lpsolve command provides, in addition to its own exact solver implementing the primal simplex
method with the upper-bounding technique, an interface to GLPK (GNU Linear Programming Kit)
library which contains sophisticated LP/MIP solvers in �oating-point arithmetic, designed to be very
fast and to handle large problems. Choosing between the available solvers is done by setting lp_method

option.
By default, lp_method is set to lp_simplex, which solves the problem by using the native solver,

but only if all problem coe�cients are exact. If at least one of them is approximative (a �oating-point
number), then the GLPK solver is used instead.

Setting lp_method to exact forces the solver to perform exact computation even when some coe�-
cients are inexact (they are converted to rational equivalents before applying the simplex method). In
this case the native solver is used.

Setting lp_method to float forces lpsolve to use the GLPK simplex solver. If a (mixed) integer
problem is given, then the branch-and-cut algorithm in GLPK is used. The parameters can be controlled
by setting the lp_timelimit, lp_iterationlimit, lp_gaptolerance, lp_maxcuts, lp_heuristic,
lp_verbose, lp_nodeselect, and lp_varselect options. If lp_varselect is not set, then the Driebeek�
Tomlin heuristic is used, and if lp_nodeselect is not set, then the best-local-bound selection method is
used. If lp_maxcuts is greater than zero, then GMI/MIR cut generation is enabled, else it is disabled. If
the problem contains binary variables, then cover/clique cut generation is enabled, else it is disabled. If
lp_heuristic=false, then the simple rounding heuristic in GLPK is disabled (by default it is enabled).
Finally, lp_verbose=true enables GLPK messages, which are useful for monitoring solver's progress.

Setting lp_method to lp_interiorpoint uses the primal-dual interior-point algorithm in GLPK.
The only optional argument that a�ects this kind of solver is lp_verbose. The interior-point algorithm
is faster than the simplex method for large and sparse LP problems. Note, however, that it does not
support integrality constraints.

For example, we solve the following LP problem using the default settings.

Minimize 1.06x1 + 0.56x2 + 3.0x3

subject to

1.06x1 + 0.015x3 ≥ 729824.87

0.56x2 + 0.649x3 ≥ 1522188.03

x3 ≥ 1680.05

Input:

lpsolve(1.06x1+0.56x2+3x3,

[1.06x1+0.015x3>=729824.87,0.56x2+0.649x3>=1522188.03,x3>=1680.05])
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Output:

[2255937.4968, [x1 = 688490.254009, x2 = 2716245.85277, x3 = 1680.05]]

If the requirement xk ∈ Z for k = 1, 2, the following result is obtained from the MIP solver in GLPK.
Input:

lpsolve(1.06x1+0.56x2+3x3,

[1.06x1+0.015x3>=729824.87,0.56x2+0.649x3>=1522188.03,x3>=1680.05],

lp_integervariables=[0,1])

Output:

[2255938.37, [x1 = 688491, x2 = 2716246, x3 = 1680.05]]

The solution of the original problem can also be obtained with the interior-point solver by using the
lp_method=lp_interiorpoint option.
Input:

lpsolve(1.06x1+0.56x2+3x3,

[1.06x1+0.015x3>=729824.87,0.56x2+0.649x3>=1522188.03,x3>=1680.05],

lp_method=lp_interiorpoint)

Output:

[2255937.50731, [x1 = 688490.256652, x2 = 2716245.85608, x3 = 1680.05195065]]

Loading a problem from a �le

Linear (integer) programming problems can be loaded from MPS1 or CPLEX LP2 format �les. The
�le name should be a string passed as the obj parameter. If the �le name has extension .lp, then
CPLEX LP format is assumed. If the extension is .mps resp. .gz, then MPS resp. gzipped MPS format
is assumed.

For example, assume that the �le somefile.lp is stored in the working directory and that it contains
the following lines of text:

Maximize

obj: 2x1 + 4x2 + 3x3

Subject To

c1: 3x1 + 5x2 + 2x3 <= 60

c2: 2x1 + x2 + 2x3 <= 40

c3: x1 + 3x2 + 2x3 <= 80

General

x1 x3

End

To �nd an optimal solution to the linear program speci�ed in this �le, enter:
Input:

lpsolve("somefile.lp")

Output:

[71.8, [x1 = 0, x2 = 5.2, x3 = 17]]

You can provide additional variable bounds, assumptions, and options alongside the �le name, as in the
examples below. Note that the original constraints (those which are read from �le) cannot be removed.
Input:

1http://web.mit.edu/lpsolve/doc/mps-format.htm
2http://web.mit.edu/lpsolve/doc/CPLEX-format.htm

http://web.mit.edu/lpsolve/doc/mps-format.htm
http://web.mit.edu/lpsolve/doc/CPLEX-format.htm
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lpsolve("somefile.lp",x2=5.4..inf,lp_method=exact)

Output: [
352

5
,

[
x1 = 0, x2 =

28

5
, x3 = 16

]]
Next we force all variables to integral values.
Input:

lpsolve("somefile.lp",x2=5.4..inf,assume=integer)

Output:

[69.0, [x1 = 0, x2 = 6, x3 = 15]]

It is advisable to use only (capital) letters, digits and underscores when naming variables in an LP
�le, although the corresponding format allows many more characters. That is because these names are
converted to giac identi�ers during the loading process.

Note that the coe�cients of a problem loaded from �le are always �oating-point values. There-
fore, to solve the problem with the native solver, you have to use the option lp_method=exact (see
Section 5.52.2).

5.52.3 Solving the transportation problems: tpsolve

The objective of a transportation problem is to minimize the cost of distributing a product from m
sources to n destinations. It is determined by three parameters:

• s = (s1, s2, . . . , sm), the supply vector, where sk ∈ Z+ is the maximum number of units that can
be delivered from the kth source for k = 1, 2, . . . ,m,

• d = (d1, d2, . . . , dn), the demand vector d = (d1, d2, . . . , dn), where dk ∈ Z+ is the minimum
number of units required by the kth destination for k = 1, 2, . . . , n

• C = [cij ]m×n, the cost matrix, where cij ∈ R+ is the cost of transporting one unit of product from
the ith source to the jth destination, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

An optimal solution is represented by the matrix X∗ = (x∗ij), where x
∗
ij is number of units that must

be transported from the ith source to the jth destination for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

The tpsolve command solves the transportation problem.

• tpsolve takes three arguments:

� s, the supply vector.

� d, the demand vector.

� C, the cost matrix.

• tpsolve(s, d, C) returns a sequence c,X∗, whereX∗ is the optimal solution and c =
∑m

i=1

∑n
j=1 cij x

∗
ij

is the total (minimal) cost of transportation.

Example.

Input:

s:=[12,17,11];d:=[10,10,10,10];

C:=[[50,75,30,45],[65,80,40,60],[40,70,50,55]];

tpsolve(s,d,C)
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Output:

2020,

 0 0 2 10
0 9 8 0
10 1 0 0


If the total supply and total demand are equal, i.e. if

∑m
i=1 si =

∑n
j=1 dj holds, the transportation

problem is said to be closed or balanced, otherwise it is said to be unbalanced. The excess supply/demand
is covered by adding a dummy demand/supply point with zero cost of �transportation� from/to that
point. The tpsolve command handles such cases automatically.

Example.

Input:

s:=[7,10,8,8,9,6];d:=[9,6,12,8,10];

C:=[[36,40,32,43,29],[28,27,29,40,38],[34,35,41,29,31],

[41,42,35,27,36],[25,28,40,34,38],[31,30,43,38,40]];

tpsolve(s,d,C)

Output:

1275,



0 0 2 0 5
0 0 10 0 0
0 0 0 0 5
0 0 0 8 0
9 0 0 0 0
0 6 0 0 0


Sometimes it is desirable to forbid transportation on certain routes. That is usually achieved by

setting a very high cost, represented by a symbol (usually M), to these routes. Hence all instances
of a symbol in the cost matrix are automatically replaced by a practically in�nite number (precisely
(mn+ 1)/ε, where ε is returned by epsilon), which forces the algorithm to avoid the associated routes.

Example.

Input:

s:=[95,70,165,165];d:=[195,150,30,45,75];

C:=[[15,M,45,M,0],[12,40,M,M,0],[0,15,25,25,0],[M,0,M,12,0]]

tpsolve(s,d,C)

Output:

2820,


20 0 0 0 75
70 0 0 0 0
105 0 30 30 0
0 150 0 15 0


5.53 Nonlinear optimization

5.53.1 Univariate global minimization on a segment: find_minimum

The find_minimum command is used for global minimization of a continuous function on a segment.
find_minimum takes between three and �ve arguments:

• f , a continuous univariate function or expression.

• a, a real number.

• b, a real number such that a < b.
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• Optionally, a sequence of one or two numbers being either:

� ε ∈ 〈0, 1〉, the optimality tolerance (by default, ε = ε
2/3
0 , where ε0 is the number returned by

the command epsilon), or

� n ∈ Z, the maximum number of iterations (n ≥ 1 is required) for Brent's method subroutine
(by default, n = 100).

find_minimum applies a modi�cation of Brent's algorithm which usually �nds a global minimum,
even when f has many local extrema. The original Brent's method is used as a subroutine which is
applied recursively by partitioning the search interval. Each instance is allowed the maximum of n
iterations.

Examples.

• We minimize a function which has several local extrema, one of which is global.
Input:

find_minimum(Airy_Ai(x+sin(x))+cos(x�2),-5,5)

• Output:
−3.96344565209

• The objective function in the example below is unimodal, with a single local (and thus global)
minimum.
Input:

find_minimum(besselJ(x,2)/Gamma(x+1)+(x+1)�sin(x),0,10)

• Output:
4.82843934915

• The following function is continuous but not di�erentiable. It has three local and only one global
minimum at x0 = −1. Note that we are passing the function itself as the �rst argument. Also,
the parameters ε and n are set to 10−5 and 30, respectively.
Input:

f:=(min(sqrt(abs(x+4))-1,sqrt(abs(x+1))-1005/1000,sqrt(abs(x-3))+1/2)

find_minimum(f,-5,5,1e-5,30)

• Output:
−0.999998230068

5.53.2 Exact global optimization: minimize maximize

minimize attempts to �nd, using analytical methods, the exact smallest value of a di�erentiable expres-
sion on a compact domain speci�ed by (in)equality constraints.

• minimize takes two mandatory arguments and two optional arguments:

� obj, a univariate or multivariate expression

� Optionally, constr, list of constraints given by equalities, inequalities, and/or expressions
assumed to be equal to 0. If there is only one constraint, it doesn't have to be a list.

� vars, list of variables. If there is only one variable, it doesn't have to be a list. A variable
can also include bounds, as in x = a..b.

Variables can also be given as x = x0, y = y0 and so on, in which case the optimum is
computed numerically by performing a local search from the speci�ed point (x0, y0, . . . ).
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� Optionally, location, a keyword which may be coordinates, locus or point.

• minimize(obj 〈, constr 〉,vars 〈,location〉) returns the minimum value of obj on the domain spec-
i�ed by constraints and/or bounding variables, or (if location is speci�ed) a list consisting of the
minimum value and the list of points where the minimum is achieved.

If the domain is not compact, the �nal result may be incorrect or meaningless. If the minimal
value could not be found, then undef is returned. In some cases, unboundeness of the objective
function can be detected.

Note that minimize respects the bound constraints set to variables by the assume command.

The maximize command takes the same parameters as minimize, but returns the global maximum
of obj on the speci�ed domain.

Examples.

• Input:

minimize(sin(x),[x=0..4])

Output:

sin (4)

• Input:

minimize(x�4-x�2,x=-3..3,locus)

Output: [
−1

4
,

[√
2

2
,−
√

2

2

]]

• minimize and maximize can handle absolute values and piecewise expressions in one or more
variables. For example, we �nd global minimum and global maximum of the function

f(x, y) =
|2 + xy − y2|+ |2x− x2 + xy + y2|

1 + x2 + y2

on the square [−1, 1]× [−1, 1].
Input:

f(x,y):=(abs(2+x*y-y�2)+abs(2x-x�2+x*y+y�2))/(1+x�2+y�2);

minimize(f(x,y),[x=-1..1,y=-1..1]);

maximize(f(x,y),[x=-1..1,y=-1..1]);

Output:
1

3
,

√
5 + 3

2

• Input:

obj:=piecewise(x<=-2,x+6,x<=1,x�2,3/2-x/2);

maximize(obj,x=-3..2)

Output:

4



528 CHAPTER 5. THE CAS FUNCTIONS

• Each constraint can be either an equality or a non-strict inequality.
Input:

obj:=sqrt(x�2+y�2)-z;

constr:=[x�2+y�2<=16,x+y+z=10];

minimize(obj,constr,[x,y,z])

Output:
−4
√

2− 6

• Input:

minimize(x�2*(y+1)-2y,[y<=2,sqrt(1+x�2)<=y],[x,y])

Output:
−4

• minimize and maximize are aware of implied constraints that restrict the natural domain of the
objective function. In the following example, the constraint x2 + y2 ≤ 1 is implied, and the
minimum corresponds to any point on the unit circle.
Input:

minimize(sqrt(1-x�2-y�2),[x,y],point)

Output: 0,


√
−y2 + 1 y

−
√
−y2 + 1 y

x
√
−x2 + 1

x −
√
−x2 + 1




• As another example, it is known that the natural domain of arc sine is the segment [−1, 1].
Input:

minimize(asin(x),x)

Output:

−π
2

• Constraints can be built from simpler ones by using logical conjunction and disjunction. The
latter is suitable for specifying disconnected domains, as in the following example.
Input:

minimize(x*y,[x�2+y�2<=1,x<=-3/4 or x>=5/6],[x,y],point)

Output: [
−3
√

7

16
,
[
−3

4

√
7
4

]]

• Symbolic constants are allowed in the objective and constraints. Note that they have to be either
implied or assumed real numbers.
Input:

assume(a>0);

maximize(x�2*y�2*z�2,x�2+y�2+z�2=a�2,[x,y,z])
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Output:
a6

27

• In the following example, we use minimize to obtain the formula for computing the distance d
between the point P = (a, b, c) and the plane π given by the equation Ax + By + Cz + D = 0.
We accomplish this by �nding a point (x0, y0, z0) ∈ π which is closest to P . Since we are going
to minimize d2 = (x − a)2 + (y − b)2 + (z − c)2, the distance is equal to the square root of the
minimum.
Input:

d:=minimize((x-a)�2+(y-b)�2+(z-c)�2,A*x+B*y+C*z+D=0,[x,y,z]):;

simplify(sqrt(d))

Output:
|Aa+Bb+ Cc+D|√

A2 +B2 + C2

Note that the coordinates x0, y0 and z0 can be obtained by passing point as the fourth argument
in minimize.

5.53.3 Exact local extrema: extrema

extrema attempts to �nd local extrema of a univariate/multivariate di�erentiable expression, possibly
subject to equality constraints, by using analytical methods.

• extrema which takes two mandatory arguments and two optional arguments:

� expr, a di�erentiable expression.

� Optionally, constr, a list of equality constraints, where each constraint is an equality or an
expression assumed to be equal to zero, and the number of constraints must be strictly less
than the number of variables. If there is only one constraint, it doesn't have to be a list.

Additionally, the Jacobian matrix of the constraints must be full rank (i.e., denoting the kth
constraint by gk(x1, x2, . . . , xn) = 0 for k = 1, 2, . . . ,m and letting g = (g1, g2, . . . , gm), the
Jacobian matrix of g must be equal to m).

� vars, a list of variables. A variable can be speci�ed with bounds, x = a..b, where a or b is
allowed to be -infinity or infinity.

If there is only one variable, it doesn't have to be a list.

The parameter vars can also be entered as a list of values of the variables; e.g. [x1 = a1, x2 =
a2, . . . , xn = an], in which case the critical point close to a = (a1, a2, . . . , an) is computed
numerically by applying an iterative method with initial point a.

� Optionally, opt, which can be order=n to make n the upper bound for the order of derivatives
examined in the process (so if n = 1 only critical points are found, by default order=5) or
lagrange to specify the method of Lagrange multipliers.

• extrema(expr 〈 constr 〉, vars 〈 opt 〉) returns a list [min,max], where min is the list of local
minima and max is the list of local maxima of expr.

Saddle and unclassi�ed points are reported in the message area. Also, information about possible
(non)strict extrema is printed out. If lagrange is passed as an optional last argument, the method
of Lagrange multipliers is used. Else, the problem is reduced to an unconstrained one by applying
implicit di�erentiation.

Note that extrema respects the bound constraints set to variables by the assume command.

If critical points are left unclassi�ed you might consider repeating the process with larger value of n,
although the success is not guaranteed.
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Examples.

• Input:

extrema(-2*cos(x)-cos(x)�2,x)

Output: [
0
π

]
• Input:

extrema(x/2-2*sin(x/2),x=-12..12)

Output: [
−10

3 π
2
3π

−2
3π

10
3 π

]
• Input:

assume(a>=0);extrema(x�2+a*x,x)

Output: [[
−1

2
a

]
, []

]
• Input:

extrema(exp(x�2-2x)*ln(x)*ln(1-x),x=0.5)

Output:
[[] , [0.277769149124]]

• Input:

extrema(x�3-2x*y+3y�4,[x,y])

Output: [[
12

1
5

3

(
12

1
5

)2

6

]
, []

]
• Input:

assume(a>0);extrema(x/a�2+a*y�2,x+y=a,[x,y])

Output: [[
2a4−1
2a3

1
2a3

]
, []
]

• Input:

extrema(x�2+y�2,x*y=1,[x=0..inf,y=0..inf])

Output: [[
1 1

]
, []
]

• Input:

extrema(x*y*z,x+y+z=1,[x,y,z],order=1)

Output: 
0 1 0
0 0 1
1 0 0
1
3

1
3

1
3


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5.53.4 Solving general nonlinear programming problems: nlpsolve

nlpsolve computes the optimum of a multivariate objective function subject to equality and/or in-
equality constraints with continuous and/or integer variables.

Input syntax. nlpsolve takes the following arguments:

• obj or fname, an expression to optimize or a string containing the path to a problem �le.

• Optionally, constr, a list of equality and inequality constraints. Double-bounded constraints
in form a ≤ f(x) ≤ b can be entered as f(x)=a..b instead of two inequalities.

• Optionally, bd, a sequence of variable boundaries x=a..b where a ∈ R ∪ {−∞} and b ∈
R ∪ {+∞}, b ≥ a. If several variables have the same upper and lower bounds, one can
enter [x,y,...]=a..b. If the bounds are stored in a two-column matrix, consider using the
conversion routine box_constraints (see Section 5.38.9).

• Optionally, opt, a sequence of options in which each option may be one of:

� maximize=bool or nlp_maximize=bool, where bool can be true or false. Just maximize
or nlp_maximize is equivalent to maximize=true. (By default, maximize=false, i.e. the
objective is minimized.)

� nlp_initialpoint=pt, where pt is a starting point for the solver or a list of starting
points, each of which is given in the form [x = x0, y = y0, . . .]. Alternatively, pt may be
an initial search rectangle speci�ed by [x = xmin..xmax, y = ymin..ymax, . . .] which serves
as a frame for automatic generation of starting points.

� nlp_method=meth, which is a string or a list specifying the method of optimization.
Available methods are:

∗ nelder-mead or nm, the simplex method of Nelder and Mead, modi�ed so that it can
handle variable bounds and (in)equality constraints; see Luersen, Riche, and Guyon
(2003).

∗ differential-evolution or de, the method of di�erential evolution, modi�ed so
it can handle bounds, (in)equalities and integrality constraints; see Lampinen and
Zelinka (2000).

∗ interior-point or ipt, the interior-point method which requires the objective and
constraint derivatives, and can handle (mixed) integer nonlinear problems. If GSL
routines are available, then unconstrained problems are solved by BGFS method
which is faster.

∗ cobyla or cbl, the (derivative-free) COBYLA algorithm.

Note that these names must be entered with double quotes, i.e. as strings. Some pa-
rameters can be set for individual methods; to do so, meth should be a list in which
the leading element is the method speci�cation, followed by one or more entries of the
form ”param” = value, where param can be one of the following (see below for detailed
explanations on values):

∗ cross-probability, which speci�es the probability of mutation in di�erential evo-
lution, where value = p ∈ 〈0, 1〉 (by default, p = 0.5).

∗ scale, which speci�es the scaling factor for di�erential evolution (by default, it is
computed automatically from cross-probability by using the formula of Zaharie
(2002)).

∗ reflect-ratio, which speci�es the simplex re�ection factor in Nelder-Mead method
(by default 1).

∗ expand-ratio, which speci�es the simplex expansion factor in Nelder-Mead method
(by default 2).

∗ contract-ratio, which speci�es the simplex contraction factor in Nelder-Mead
method (by default 0.5).
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∗ shrink-ratio, which speci�es the simplex shrinking factor in Nelder-Mead method
(by default 0.5).

∗ size, which speci�es the initial simplex size for Nelder-Mead method (by default, it
is computed automatically by using the variable bounds).

∗ step, which speci�es initial step for BGFS method or adaptive penalty step for
Nelder-Mead method (by default, it is set to 1 for BGFS and to 0.01 for Nelder &
Mead).

∗ search-points, which speci�es the number of agents in di�erential evolution (by de-
fault 10n, where n is the number of variables) or the number of points for determining
PDH clusters (by default 1000

√
n).

∗ postprocess, which speci�es whether the result obtained by di�erential evolution or
Nelder-Mead method should be re�ned by a local method, where value is a boolean
value (by default, value = true).

The optimization method is determined automatically if meth is not set (see below).

� nlp_precision=ε for some ε > 0, which sets the optimality tolerance for the solver (by
default, ε = epsilon()2/3).

� nlp_tolerance=δ for some δ > 0, which sets the feasibility tolerance for the solver (by
default, δ = 10−5).

� nlp_presolve=bool, where bool can be either true or false. This option enables/disables
the preprocessing step which attempts to reduce the number of decision variables by solv-
ing subsets of equality constraints which are all linear in certain subsets of variables, sub-
stituting the results, and repeating the process until no further reduction can be made.
(In particular, �xed variables are removed.) After solving the presolved problem, the re-
moved variables are substituted back to the solution. (By default, nlp_presolve=true.)

� border=bool, where bool is a boolean value. This enables or disables �nding variable
bounds automatically. (By default, border=true.)

� nlp_integervariables=lst, where lst is a list of problem variables that are supposed to
take integral values (empty by default).

� nlp_binaryvariables=lst, where lst is a list of problem variables that are supposed to
take binary (0-1) values (empty by default).

� nlp_iterationlimit=N for a positive integer N , which sets the maximum number of
iterations allowed for the solver (by default, N = 250).

� nlp_verbose=v, where v is an integer specifying the verbosity level: 0 � no messages, 1
� only errors, 2 � errors and warnings, 3 � all messages (by default, v = 1).

� cluster=k or bool, where k ≥ 2 is an integer and bool is either true or false, which
speci�es whether the initial points should be determined by k-means clustering a large
number of random points at which the objective Hessian is positive de�nite (this works
only if the interior-point method is used), called PDH (Positive De�nite Hessian) points.
The number of generated points can be speci�ed by setting the search-points param-
eter. If cluster=true, the number of clusters is determined automatically using the
Hartigan criterion. If k is set, then k clusters are generated. Cluster centers are subse-
quently used as the initial points. (By default, cluster=false.)

� convex or convex=bool, where bool can be either true or false. This speci�es whether
the input problem should be treated as being convex. If this option is set, then the
convexity check is not performed, speeding up the execution. (By default, convexity
of the problem is determined automatically only if it is relevant for choosing a suitable
optimization method.)

� assume=asmp, where asmp may be one of the following:

∗ nlp_nonnegative, which restricts all variables to nonnegative values (existing posi-
tive lower bounds are kept, however),
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∗ nlp_nonnegint or nonnegint, which forces all variables to take nonnegative integer
values,

∗ nlp_integer or integer, which forces all variables to take integer values,

∗ nlp_binary, which forces all variables to take 0-1 values.

Entering problems directly. nlpsolve(obj 〈,constr,bd,opt〉) returns a list [optobj,optdec], where op-
tobj is the optimal value of obj and optdec is a list of of optimal values of the decision variables.
If the optimization fails, then optobj is the error message and optdec is the last point on the path
the solver takes in attempt to �nd the optimal objective value. If the problem is infeasible or if
the solver fails to �nd a feasible point, then an error is returned.

Loading problems from �les. nlpsolve(fname 〈,opt〉) solves the problem written in the �le pointed
to by fname, which must be written in the AMPL modeling language (such �les commonly have the
extension .mod). nlpsolve contains a very basic parser for such �les and is able to read problem
variables, objective and constraints. For example, problems from https://www.minlplib.org/

instances.html can be loaded this way. Solver parameters can be provided in opt.

Automatic selection of the optimization method. If objective and constraints are twice di�er-
entiable, then interior-point method is used. If no initial point is provided and there are only
box constraints, then di�erential evolution is applied �rst to �nd a good starting point. In the
non-di�erentiable case, nlpsolve applies the Nelder-Mead method and switches to di�erential
evolution in the case of failure. In case of integrality constraints, as well as in the case of a
box-constrained problem without additional constraints and initial point(s), di�erential evolu-
tion is selected. Linear problems are solved by calling the lpsolve command, while univariate
optimization on a segment is performed by using Brent's algorithm.

Local vs. global optimization. When an initial point is provided, nlpsolve acts like a local op-
timizer. Without initial point(s), it uses a multistart technique in attempt to �nd the global
minimum: starting points are automatically generated by using the probabilistic restart tech-
nique described by Luersen, Riche, and Guyon (2003) until the maximum number of iterations is
reached. This technique avoids previously generated points and also the points of convergence,
while keeping relatively close to them; thus, the search space is examined in a probabilistic but
systematic way. An exception is the method of di�erential evolution, which is a �global� method
by design, however not a true one; the initial population is generated uniformly if the search space
is compact.

Automatic detection of variable bounds. If the constraint derivatives are available, nlpsolve de-
termines rough bounds of the decision variables, and is thus able to detect whether the search
domain is compact. In particular, this information is used by the probabilistic restart technique.

(Mixed) integer optimization. When integrality constraints are provided, nlpsolve applies a suit-
able method for �nding integer-feasible solutions. For di�erentiable input, the branch&bound
method is used, unless the problem is convex, in which case the outer-approximation method is
used. In the non-di�erentiable case, di�erential evolution is applied.

Examples.

• The continuous function f de�ned by

f(x) = min{
√
|x+ 4| − 1,

√
|x+ 1| − 1.005,

√
|x− 3|+ 0.5},

has a unique global minimum in [−5, 5] at x = −1, with f(−1) = 1.005.
Input:

nlpsolve(min(sqrt(abs(x+4))-1,sqrt(abs(x+1))-1.005,sqrt(abs(x-3))+0.5),x=-5..5)

https://www.minlplib.org/instances.html
https://www.minlplib.org/instances.html
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Output:

[−1.0049992998, [x = −1.0]]

• Minimize z = x1x4(x1 + x2 + x3) + x3 subject to

x1x2x3x4 ≥ 25,

x21 + x22 + x23 = 40,

where 1 ≤ xi ≤ 5, i = 1, 2, 3, 4.
Input:

nlpsolve(x1*x4*(x1+x2+x3)+x3,

[x1*x2*x3*x4-25>=0,x1�2+x2�2+x3�2+x4�2-40=0],

[x1,x2,x3,x4]=1..5)

Output:

[17.0140172892, [x1 = 1.0, x2 = 4.74299973362, x3 = 3.82114985829, x4 = 1.3794083106]]

• Minimize z = (x1 − 1)2 + (x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6 subject to

x21x4 + sin(x4 − x5) = 2
√

2,

x2 + x43x
2
4 = 8 +

√
2.

Input:

nlpsolve((x1-1)�2+(x1-x2)�2+(x3-1)�2+(x4-1)�4+(x5-1)�6,

[x1�2*x4+sin(x4-x5)=2*sqrt(2),x2+x3�4*x4�2=8+sqrt(2)])

Output:

[0.241505128809, [x1 = 1.16617119669, x2 = 1.18211040318, x3 = 1.3802572722,

x4 = 1.50603586392, x5 = 0.610913318325]]

• Maximize z = 3x1x2 − x1 + 6x2 subject to 5x1x2 − 4x1 − 4.5x2 ≤ 32, where 1 ≤ x1, x2 ≤ 5 are
integers.
Input:

nlpsolve(3x1*x2-x1+6x2,[5x1*x2-4x1-4.5x2<=32],

[x1,x2]=1..5,assume=integer,maximize)

Output:

[58.0, [x1 = 2.0, x2 = 5.0]]

• Maximize z = 2x1 + 3x2 + 6x3 − 2x1x2 − x1x3 − 4x2x3 where all variables are binary.
Input:

nlpsolve(2x1+3x2+6x3-2x1*x2-x1*x3-4x2*x3,

assume=nlp_binary,maximize)

Output:

[7.0, [x1 = 1.0, x2 = 0, x3 = 1.0]]
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• Minimize z = 5y − 2 ln(x+ 1) subject to

ex/2 − 1

2

√
y ≤ 1,

−2 ln(x+ 1)− y + 2.5 ≤ 0,

x+ y ≤ 4,

where x ∈ [0, 2] and y ∈ [1, 3] is integer.
Input:

nlpsolve(5y-2*ln(x+1),

[exp(x/2)-sqrt(y)/2-1<=0,-2*ln(x+1)-y+2.5<=0,x+y-4<=0],

x=0..2,y=1..3,nlp_integervariables=[y])

Output:
[8.54528930252, [x = 1.06959999348, y = 2.0]]

• Minimize z = x21 + x22 + 3x23 + 4x24 + 2x25 − 8x1 − 2x2 − 3x3 − x4 − 2x5 subject to

x1 + x2 + x3 + x4 + x5 ≤ 400,

x1 + 2x2 + 2x3 + x4 + 6x5 ≤ 800,

2x1 + x2 + 6x3 ≤ 200,

x3 + x4 + 5x5 ≤ 200,

x1 + x2 + x3 + x4 + x5 ≥ 55,

x1 + x2 + x3 + x4 ≥ 48,

x2 + x4 + x5 ≥ 34,

6x1 + 7x5 ≥ 104,

where 0 ≤ xi ≤ 99 are integers for i = 1, . . . , 5.
Input:

obj:=x1�2+x2�2+3x3�2+4x4�2+2x5�2-8x1-2x2-3x3-x4-2x5;

constr:=[x1+x2+x3+x4+x5<=400,x1+2x2+2x3+x4+6x5<=800,

2x1+x2+6x3<=200,x3+x4+5x5<=200,

x1+x2+x3+x4+x5>=55,x1+x2+x3+x4>=48,

x2+x4+x5>=34,6x1+7x5>=104];

nlpsolve(obj,constr,[x1,x2,x3,x4,x5]=0..99,assume=integer)

Output:
[807.0, [x1 = 16.0, x2 = 22.0, x3 = 5.0, x4 = 5.0, x5 = 7.0]]

• �Black box� objective example. Minimize the function

f(x1, x2) =

{∫ x2
x1

e−tta sin(t+ x1) cos(2t− x2)dt, x1 < x2,

0, otherwise

for 0 ≤ x1, x2 ≤ 10 and a = 2.
Input:

f:=proc(x1,x2,a)

local t; purge(t);

if x1<x2 then

return approx(int(exp(-t)*t�a*sin(t+x1)*cos(2t-x2),t=x1..x2));

else

return 0;

fi;

end:;

nlpsolve(quote(f(x1,x2,2)),[x1,x2]=0..10)
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• Output:
[−0.445124159544, [x1 = 2.15550857079, x2 = 5.66106529292]]

Since f is programmatic, it cannot be di�erentiated symbolically, hence di�erential evolution is
selected for minimization (note that the problem is box-constrained and we provided no initial
points). Also, observe that our procedure f has three input arguments, so we have to quote the
�rst argument in nlpsolve in order to �x the parameter a to 2. (This technique should be used
for �black box� objectives possibly requiring parameter speci�cations.) To visualize the minimum
of f , input:

plot3d(quote(f(x1,x2,2)),x1=0..5,x2=0..10,display=filled+yellow)

5.54 Quadratic forms

5.54.1 Matrix of a quadratic form: q2a

The q2a command �nds the matrix corresponding to a quadratic form.

• q2a takes two arguments:

� q, the symbolic expression of a quadratic form q.

� vars, a vector of variable names.

• q2a(q,vars) returns the matrix of the quadratic form q.

Example.

Input:

q2a(2*x*y,[x,y])

Output: [
0 1
1 0

]
5.54.2 Transforming a matrix into a quadratic form: a2q

The a2q command �nds the quadratic form corresponding to a symmetric matrix.

• a2q takes two arguments:

� A, a symmetric matrix of a quadratic form.

� vars, a vector of variable names whose size is the same as the number of rows of A.

• a2q(A,vars) returns the symbolic expression for the quadratic form.

Examples.

• Input:

a2q([[0,1],[1,0]],[x,y])

Output:
2xy

• Input:

a2q([[1,2],[2,4]],[x,y])

Output:
x2 + 4xy + 4y2
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5.54.3 Reducing a quadratic form: gauss

The gauss command uses Gauss's algorithm to write a quadratic form as a sum or di�erence of squares.

• gauss takes two arguments:

� q, a symbolic expression representing a quadratic form.

� vars, a vector of variable names.

• gauss(q,vars) returns q written as sum or di�erence of squares.

Example.

Input:

gauss(2*x*y,[x,y])

Output:
(x+ y)2

2
− (−x+ y)2

2

5.54.4 The conjugate gradient algorithm: conjugate_gradient

The conjugate_gradient command uses the conjugate gradient algorithm to solve a linear system of
equations.

• conjugate_gradient takes two mandatory arguments and two optional arguments.

� A, an n× n positive de�nite symmetric matrix.

� y, a vector of length n.

� Optionally, x0, a vector of length n, an initial approximation.

� ε, a positive number (by default epsilon, see Section 2.5.7 p.56, item 9).

• conjugate_gradient(A, y 〈x0, ε〉) returns the solution to Ax = y to within ε.

Examples.

• Input:

conjugate_gradient([[2,1],[1,5]],[1,0])

Output: [
5

9
,−1

9

]
• Input:

conjugate_gradient([[2,1],[1,5]],[1,0],[0.55,-0.11],1e-2)

Output:
[0.555,−0.11]

• Input:

conjugate_gradient([[2,1],[1,5]],[1,0],[0.55,-0.11],1e-10)

Output:
[0.555555555556,−0.111111111111]
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5.54.5 Gram-Schmidt orthonormalization: gramschmidt

The gramschmidt command uses the Gram-Schmidt procedure to �nd an orthonormal set of vectors
with the same span as a given set.

• gramschmidt takes one or two arguments.
With one argument:

� A, a matrix viewed as a list of row vectors or a list of elements that is a basis of a vector
subspace.

� f , a function that de�nes a scalar product on this vector space. If A is a matrix, then this is
optional, and by default will be the standard scalar product.

• gramschmidt(A) or gramschmidt(L, f) returns an orthonormal basis for this scalar product.

Examples.

• Input:

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]]))

or:

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]],dot))

Output: 
√
3
3

√
3
3

√
3
3

−
√
6
6 −

√
6
6

√
6
3

−
√
2
2

√
2
2 0


• De�ne a scalar product on the vector space of polynomials by:

P ·Q =

∫ 1

−1
P (x)Q(x)dx

Input:

p_scal(p,q):=integrate(p*q,x,-1,1)

gramschmidt([1,1+x],p_scal)

or:

gramschmidt([1,1+x],(p,q)->integrate(p*q,x,-1,1))

Output: [
1√
2
,
1 + x− 1
√
6
3

]

5.54.6 Graph of a conic: conic

The conic command draws a conic.

• conic takes one mandatory argument and one or two optional arguments:

� eq, the equation of a conic.

� Optionally, vars, a list of the variables (by default [x, y]). The variables can also be given as
two separate arguments.

• conic(eq 〈,vars〉) draws the conic.
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Example.

Input:

conic(2*x�2+2*x*y+2*y�2+6*x)

Output:

Ellipsis of center (-2,1)

See also the next section for the parametric equation of the conic.

5.54.7 Conic reduction: reduced_conic

The reduced_conic command �nds the reduced equation of a conic.

• reduced_conic takes two arguments:

� eq, the equation of a conic.

� vars, a list of the variable names.

• reduced_conic(eq,vars) returns a list whose elements are:

� the origin of the conic,

� the matrix of a basis in which the conic is reduced,

� 0 or 1 (0 if the conic is degenerate),

� the reduced equation of the conic

� a vector of its parametric equations.

Example.

Input:

reduced_conic(2*x�2+2*x*y+2*y�2+5*x+3,[x,y])

Output: [ [
−5

3
,
5

6

]
,

[ √
2
2 −

√
2
2√

2
2

√
2
2

]
, 1, 3x2 + y2 − 7

6
,

[
−10 + 5i

6
+

(√
2

2
+

1

2
i
√

2

)(
3

18

√
14 cos t+

1

6
i
√

42 sin t

)
,

t, 0, 2π,
2

60
π, 2x2 + 2xy + 2y2 + 5x+ 3,
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−10 + 5i

6
+

(√
2
2 + 1

2 i
√

2
) (

3
18

√
14
(
1− t2

)
+ 2

6 i
√

42t
)

1 + t2

]]
Which means that the conic is not degenerate, its reduced equation is

3x2 + y2 − 7/6 = 0

its origin is −5/3 + 5 ∗ i/6, its axes are parallel to the vectors (−1, 1) and (−1,−1), and its parametric
equation is

−10 + 5 ∗ i
6

+
(1 + i)√

2
∗ (
√

14 ∗ cos(t) + i ∗
√

42 ∗ sin(t))

6

where the suggested parameter values for drawing are t from 0 to 2π with tstep= 2π/60.

Remark:
Note that if the conic is degenerate and is made of 1 or 2 line(s), the lines are not given by their
parametric equation but by the list of two points of the line.

Example.

Input:

reduced_conic(x�2-y�2+3*x+y+2)

Output: [[
−3

2
,
1

2

]
,

[
1 0
0 1

]
, 0, x2 − y2,

[ −3+i
2

−1+3i
2

−3+i
2

−1−i
2

]]
5.54.8 Graph of a quadric: quadric

The quadric command draws a quadric.

• quadric takes one mandatory argument and one optional argument:

� q, the expression of a quadric.

� Optionally, vars, a list of three variable names (by default, [x, y, z]). These names can also
be given a separate arguments.

• quadric(q 〈vars〉) draws this quadric.

Example.

Input:

quadric(7*x�2+4*y�2+4*z�2+4*x*y-4*x*z-2*y*z-4*x+5*y+4*z-18)

Output:

Ellipsoid of center [0.407407407407,-0.962962962963,-0.537037037037]

See also the next section for the parametric equation of the quadric.
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5.54.9 Quadric reduction: reduced_quadric

The reduced_quadric command �nds the reduced equation of a quadric.

• reduced_quadric takes two arguments:

� eq, the equation of a quadric.

� vars, a vector of variable names.

• reduced_quadric(eq,vars) returns a list whose elements are:

� the origin,

� the matrix of a basis where the quadric is reduced,

� 0 or 1 (0 if the quadric is degenerate),

� the reduced equation of the quadric

� a vector with its parametric equations.

Warning ! u,v will be used as parameters of the parametric equations: these variables should not be
assigned (purge them before calling reduced_quadric).

Example.

Input:

reduced_quadric(7*x�2+4*y�2+4*z�2+ 4*x*y-4*x*z-2*y*z-4*x+5*y+4*z-18)

Output:

[ [
11

27
,−26

27
,−29

54

]
,


√
6
3

√
5
5 −

√
30
15√

6
6 0

√
30
6

−
√
6
6

2
5

√
5

√
30
30

 , [9, 3, 3] , 1, 9x2 + 3y2 + 3z2 − 602

27
,

[[
9
√

6
√

1806 sinu · cos v

3 · 243
+

9
√

5
√

602 sinu · sin v
5 · 81

− 9
√

30
√

602 cosu

15 · 81
+

11

27
,

9
√

6
√

1806 sinu · cos v

6 · 243
+

9
√

30
√

602 cosu

6 · 81
− 26

27
,

− 9
√

6
√

1806 sinu · cos v

6 · 243
+

9 · 2
√

5
√

602 sinu · sin v
5 · 81

+
9
√

30
√

602 cosu

30 · 81
− 29

54

]
,

u = 0 . . . π, v = 0 . . . 2π,ustep =
π

20
, vstep =

2

20
π

]]
The output is a list containing:

• The origin (center of symmetry) of the quadric[
11

27
,−26

27
,−29

54

]
• The matrix of the basis change: 

√
6
3

√
5
5 −

√
30
15√

6
6 0

√
30
6

−
√
6
6

2
5

√
5

√
30
30

 ,
• 1, hence the quadric is not degenerated
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• the reduced equation of the quadric:

9x2 + 3y2 + 3z2 − 602

27

• The parametric equations (in the original frame):[[
9
√

6
√

1806 sinu · cos v

3 · 243
+

9
√

5
√

602 sinu · sin v
5 · 81

− 9
√

30
√

602 cosu

15 · 81
+

11

27
,

9
√

6
√

1806 sinu · cos v

6 · 243
+

9
√

30
√

602 cosu

6 · 81
− 26

27
,

− 9
√

6
√

1806 sinu · cos v

6 · 243
+

9 · 2
√

5
√

602 sinu · sin v
5 · 81

+
9
√

30
√

602 cosu

30 · 81
− 29

54

]
,

u = 0 . . . π, v = 0 . . . 2π,ustep =
π

20
, vstep =

2

20
π

]

Hence the quadric is an ellipsoid and its reduced equation is:

9x2 + 3y2 + 3z2 + (−602)/27 = 0

after the change of origin [11/27, (−26)/27, (−29)/54], the matrix of basis change is:

√
6

3

√
5

5
−
√

30

15√
6

6
0

√
30

6

−
√

6

6

2
√

5

5

√
30

30


Its parametric equation is:

x =

√
6
√

602
243 sin(u) cos(v)

3
+

√
5
√

602
81 sin(u) sin(v)

5
−

√
30
√

602
81 cos(u)

15
+

11

27

y =

√
6
√

602
243 sin(u) cos(v)

6
+

√
30
√

602
81 cos(u))

6
− 26

27

z =
−
√

6
√

602
243 ∗ sin(u) cos(v)

6
+

2
√

5
√

602
81 sin(u) sin(v)

5
+

√
30
√

602
81 cos(u)

30
− 29

54

Remark:
Note that if the quadric is degenerate and made of 1 or 2 plane(s), each plane is not given by its
parametric equation but by the list of a point of the plane and of a normal vector to the plane.

Example.

Input:

reduced_quadric(x�2-y�2+3*x+y+2)

Output: [ [
−3

2
,
1

2
, 0

]
,

 1 0 0
0 1 0
0 0 −1

 ,
[0, 1,−1] , x2 − y2,[
hyperplan

(
[1, 1, 0] ,

[
−3

2
,
1

2
, 0

])
, hyperplan

(
[1,−1, 0] ,

[
−3

2
,
1

2
, 0

])]]
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5.55 Equations

5.55.1 De�ning an equation: equal

The equal command creates equations; it is the in�xed version of =.

• equal takes two arguments:
lhs and rhs, the two sides of the equation.

• equal(lhs,rhs) returns the equation lhs=rhs.

Example.

Input:

equal(2x-1,3)

Output:

2x− 1 = 3

You can also directly write (2*x-1)=3.

5.55.2 Transforming an equation into a di�erence: equal2diff

The equal2diff command turns an equation into the di�erence of the two sides, resulting in an ex-
pression assumed to be equal to 0.

• equal2diff takes one argument:
lhs=rhs, an equation.

• equal2diff(lhs=rhs) returns the di�erence lhs − rhs.

Example.

Input:

equal2diff(2x-1=3)

Output:

2x− 1− 3

5.55.3 Transforming an equation into a list: equal2list

The equal2list command separates the two sides of an equation.

• equal2list takes one argument:
lhs=rhs, an equation.

• equal2list(lhs=rhs) returns the sequence lhs,rhs.

Example.

Input:

equal2list(2x-1=3)

Output:

2x− 1, 3



544 CHAPTER 5. THE CAS FUNCTIONS

5.55.4 The left member of an equation: left gauche lhs

(See Section 5.3.4 p.100, Section 5.15.3 p.200, Section 5.37.1 p.385, Section 5.38.2 p.388, Section 5.40.6
p.406 and Section 5.55.5 p.544 for other uses of left and right.)

The left command �nds the left hand side of an equation.
For this, lhs is a synonym for left.

• left takes one argument:
lhs=rhs, an equation.

• left(lhs=rhs) returns lhs.

Example.

Input:

left(2x-1=3)

or:

lhs(2x-1=3)

Output:
2x− 1

5.55.5 The right member of an equation: right droit rhs

(See Section 5.3.4 p.100, Section 5.15.3 p.200, Section 5.37.1 p.385, Section 5.38.2 p.388, Section 5.40.6
p.406 and Section 5.55.4 p.544 for other uses of left and right.)

The right command �nds the right hand side of an equation.
For this, rhs is a synonym for right.

• right takes one argument:
lhs=rhs, an equation.

• right(lhs=rhs) returns rhs.

Example.

Input:

right(2x-1=3)

or:

rhs(2x-1=3)

Output:
3

5.55.6 Solving equation(s): solve cSolve

The solve command solves an equation or a system of polynomial equations. In real mode, solve
returns only real solutions; to have solve return the complex solutions, switch to complex mode (e.g.by
checking Complex in the cas con�guration, see Section 2.5.5 p.55).

The cSolve command is identical to solve, except it returns the complex solutions whether in real
mode or complex mode.

To solve an equation:

• solve takes one mandatory argument and one optional argument:
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� eqn, an equation or expression assumed to be zero.

� Optionally, x, a variable (by default, x=x).

• solve(eqn,x) returns the solution to the equation.

For trigonometric equations, solve returns by default the principal solutions. To have all the solutions
check All_trig_sol in the cas con�guration (see Section 2.5.7 p.56, item 19).

Examples:

• Solve x4 − 1 = 3
Input:

solve(x�4-1=3)

Output (in real mode): [√
2,−
√

2
]

Output (in complex mode): [√
2,−
√

2, i
√

2,−i
√

2
]

Also:
Input:

cSolve(x�4-1=3)

Output (in any mode): [
−
√

2,
√

2,−
√

2i,
√

2i
]

• Solve exp(x) = 2
Input:

solve(exp(x)=2)

Output:
[ln (2)]

• Solve cos(2 ∗ x) = 1/2
Input:

solve(cos(2*x)=1/2)

Output: [
−π

6
,
π

6

]
Output (with All_trig_sol checked):[

6πn0 + π

6
,
6πn0 − π

6

]
To solve a system of polynomial equations:

• solve takes one mandatory argument and one optional argument:

� eqns, a list of polynomial equations.

� vars, a list of variables.

• solve(eqns,vars) returns the solutions to the system of equations.
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Examples.

• Find x, y such that x+ y = 1, x− y = 0
Input:

solve([x+y=1,x-y],[x,y])

Output: [[
1

2
,
1

2

]]
• Find x, y such that x2 + y = 2, x+ y2 = 2
Input:

solve([x�2+y=2,x+y�2=2],[x,y])

Output:[1, 1] , [−2,−2] ,

√5 + 1

2
,−

(√
5 + 1

2

)2

+ 2

 ,
−√5 + 1

2
,−

(
−
√

5 + 1

2

)2

+ 2


[(sqrt(5)+1)/2,(1-sqrt(5))/2]]

• Find x, y, z such that x2 − y2 = 0, x2 − z2 = 0
Input:

solve([x�2-y�2=0,x�2-z�2=0],[x,y,z])

Output:
[[x, x, x] , [x,−x,−x] , [x, x,−x] , [x,−x, x]]

• Find the intersection of a straight line (given by a list of equations) and a plane.
For example, let D be the straight line with cartesian equations [y − z = 0, z − x = 0] and let P
the plane with equation x− 1 + y + z = 0. Find the intersection of D and P .
Input:

solve([[y-z=0,z-x=0],x-1+y+z=0],[x,y,z])

Output: [[
1

3
,
1

3
,
1

3

]]
• Input:

cSolve([-x�2+y=2,x�2+y],[x,y])

Output:
[[−i, 1] , [i, 1]]

5.56 Linear systems

The augmented matrix of the system A ·X = b is either the matrix obtained by gluing the column vector
b to the right of the matrix A (as with border(A,tran(b))), representing A · X = b, or the matrix
obtained by gluing the column vector −b to the right of the matrix A, representing A · x− b = 0.
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5.56.1 Matrix of a system: syst2mat

The syst2mat command turns a system of linear equations into its augmented matrix. (For this com-
mand, the augmented matrix of Ax = b has the column vector −b glued to the right of A.)

• syst2mat takes two as arguments:

� eqns, a list of the equations or expressions (assumed to be equal to zero) of a linear system.

� vars, a list of the variable names.

• syst2mat(eqns,vars) returns the augmented matrix of the system.

Warning !!!
The variables must be purged before syst2mat is called.

Examples.

• Input:

syst2mat([x+y,x-y-2],[x,y])

Output: (
1 1 0
1 −1 −2

)
• Input:

syst2mat([x+y=0,x-y=2],[x,y])

Output: (
1 1 0
1 −1 −2

)
5.56.2 Gauss reduction of a matrix: ref

A matrix A is in row-echelon form if the �rst non-zero element of each row is 1 and each of these leading
1s is further right than the leading 1s of the preceding rows. Gaussian elimination will transform a
matrix into row echelon form, and the row echelon form of the augmented matrix of a system of linear
equations has the same set of solutions as the original, but in a form that is simple to solve.

The ref command transforms a matrix into a row echelon form of the matrix.

• ref takes one argument:
A, a matrix.

• ref(A) returns a row echelon form of a matrix.

ref is typically used to solve a linear system of equations written in matrix form.

Example.

Solve the system: {
3x+ y = −2
3x+ 2y = 2

Input:

ref([[3,1,-2],[3,2,2]])

Output: [
1 1

3 −2
3

0 1 4

]
Hence the solution is y = 4 (from the last row) and x = −2 (substitute y in the �rst row).
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5.56.3 Gauss-Jordan reduction: rref gaussjord

The reduced row echelon form of a matrix is the row echelon form (see previous section) with 0s above
the leading 1s in each row. Gauss-Jordan reduction will turn any matrix into reduced row echelon form,
and the reduced row echelon form of a matrix is unique. If the matrix is the augmented matrix of a
system, then the reduced row echelon form of the matrix is the simplest form to solve the system. The
rref command �nds the reduced row echelon form of a matrix (see also Section 5.34.17 p.371).

• rref takes one mandatory and one optional argument:

� A, a matrix.

� Optionally, n, a positive integer.

• rref(A 〈n〉) returns the reduced row echelon form of the matrix. With a second argument of n,
Gauss-Jordan reduction will be performed on (at most) the �rst n columns.

Examples.

• Solve the system: {
3x+ y = −2
3x+ 2y = 2

Input:

rref([[3,1,-2],[3,2,2]])

Output: [
1 0 −2
0 1 4

]
Hence x = −2 and y = 4 is the solution of this system.

• rref can also solve several linear systems of equations having the same matrix of coe�cients by
augmenting the matrix of coe�cients by vectors representing the right hand side of the equations
for each equation. For example, Solve the systems:{

3x+ y = −2
3x+ 2y = 2

and {
3x+ y = 1
3x+ 2y = 2

Input:

rref([[3,1,-2,1],[3,2,2,2]])

Output: [
1 0 −2 0
0 1 4 1

]
Which means that x = −2 and y = 4 is the solution of the �rst system and x = 0 and y = 1 is
the solution of the second system.

• Input:

rref([[3,1,-2,1],[3,2,2,2]],1)

Output: [
1 1

3 −2
3

1
3

0 3 12 3

]
and Gauss-Jordan reduction has been performed only on the �rst column.
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5.56.4 Solving AX = b: simult

The simult command can solve a linear system of equations or several linear systems of equations with
the same matrix of coe�cients (see also 5.56.3).

• simult takes two arguments:

� A, a matrix (the matrix of coe�cients of a system).

� b, a column vector (representing the right hand side of the system) or a matrix (where each
column represents the right hand side of an equation).

• simult(A, b) returns a column vector of the solutions (or a matrix where each column is the
column vector of a solution).

Examples.

• Solve {
3x+ y = −2
3x+ 2y = 2

Input:

simult([[3,1],[3,2]],[[-2],[2]])

Output: [
−2
4

]

[[-2],[4]]

Hence x = −2 and y = 4 is the solution.

• Solve {
3x+ y = −2
3x+ 2y = 2

and {
3x+ y = 1
3x+ 2y = 2

Input:

simult([[3,1],[3,2]],[[-2,1],[2,2]])

Output: [
−2 0
4 1

]
So x = −2 and y = 4 is the solution of the �rst system of equations and x = 0 and y = 1 is the
solution of the second system.
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5.56.5 Step by step Gauss-Jordan reduction of a matrix: pivot

One step of Gauss-Jordan elimination involves taking a non-zero element of a matrix (the pivot) and
adding multiples of its row to the other rows to get zeros above and below the pivot. The pivot

command performs this operation.

• pivot takes three arguments:

� A, a a matrix with n rows and p columns.

� l and c, two integers such that l is the index of a row of A and c is an index of column of A,
and the element of A in row l and column c is non-zero.

• pivot(A, l, c) returns the result of performing one step of the Gauss-Jordan method using the
element of A in row l, column c as pivot.

Examples.

• Input:

pivot([[1,2],[3,4],[5,6]],1,1)

Output:  −2 0
3 4
2 0


• Input:

pivot([[1,2],[3,4],[5,6]],0,1)

Output:  1 2
2 0
4 0


5.56.6 Linear system solving: linsolve

The linsolve command solves systems of linear equations. It can take its arguments as a list of
equations or as a matrix of coe�cients followed by a vector of the right hand side. It can also take the
matrix of coe�cients after an LU factorization (see Section 5.49.5 p.497), which can be useful when you
have several systems of equations which only di�er on their right hand side. If the Step by step box
is is checked in the general con�guration (see Section 2.5.9 p.59), linsolve will show you the steps in
getting a solution.

Given a system of equations:

• linsolve takes two arguments:

� eqns, a list of linear equations or expressions (where each expression is assumed to be equal
to zero).

� vars, a list of variable names.

• linsolve(eqns,vars) returns the solution of the equations as a list.
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Examples.

• Input:

linsolve([2*x+y+z=1,x+y+2*z=1,x+2*y+z=4],[x,y,z])

Output: [
−1

2
,
5

2
,−1

2

]
Which means that

x = −1

2
, y =

5

2
, z = −1

2

is the solution of the system: 
2x+ y + z = 1
x+ y + 2z = 1
x+ 2y + z = 4

• Input:

linsolve([x+2*y+3*z=1,3*x+2*y+z=2],[x,y,z])

Output: [
z +

1

2
,−2z +

1

4
, z

]
Given the matrix of coe�cients:

• linsolve takes two arguments:

� A, the matrix of coe�cients of a linear system.

� b, a list of the values of the right hand side of the system.

• linsolve(A, b) returns the solution of the corresponding equations as a list.

Example.

Input:

linsolve ([[2,1,1], [1,1,2], [1,2,1]], [1,1,4])

Output: [
−1

2
,
5

2
,−1

2

]
If the Step by step option is checked in the general con�guration, a window will also pop up showing: 2 1 1 −1

1 1 2 −1
1 2 1 −4


Reduce column 1 with pivot 1 at row 2

Exchange row 1 and row 2

L2 < −(1) ∗ L2 − (2) ∗ L1 on

 1 1 2 −1
2 1 1 −1
1 2 1 −4


L3 < −1 ∗ L3 − (1) ∗ L1 on

 1 1 2 −1
0 −1 −3 1
1 2 1 −4


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 1 1 2 −1
0 −1 −3 1
0 1 −1 −3


Reduce column 2 with pivot 1 at row 3

Exchange row 2 and row 3

L1 < −(1) ∗ L1 − (1) ∗ L2on

 1 1 2 −1
0 1 −1 −3
0 −1 −3 1


L3 < −(1) ∗ L3 − (−1) ∗ L2 on

 1 0 3 2
0 1 −1 −3
0 −1 −3 1


 1 0 3 2

0 1 −1 −3
0 0 −4 −2


Reduce column 3 with pivot -4 at row 3

L1 < −(1) ∗ L1 − (−3/4) ∗ L3 on

 1 0 3 2
0 1 −1 −3
0 0 −4 −2


L2 < −(1) ∗ L2 − (1/4) ∗ L3 on

 1 0 0 1
2

0 1 −1 −3
0 0 −4 −2


End reduction

 1 0 0 1
2

0 1 0 −5
2

0 0 −4 −2


 2 1 1 −1

1 1 2 −1
1 2 1 −4


Reduce column 1 with pivot 1 at row 2

Exchange row 1 and row 2

L2 < −(1) ∗ L2 − (2) ∗ L1 on

 1 1 2 −1
2 1 1 −1
1 2 1 −4


L3 < −(1) ∗ L3 − (1) ∗ L1 on

 1 1 2 −1
0 −1 −3 1
1 2 1 −4


 1 1 2 −1

0 −1 −3 1
0 1 −1 −3


Reduce column 2 with pivot 1 at row 3

Exchange row 2 and row 3

L1 < −(1) ∗ L1 − (1) ∗ L2 on

 1 1 2 −1
0 1 −1 −3
0 −1 −3 1


L3 < −(1) ∗ L3 − (−1) ∗ L2 on

 1 0 3 2
0 1 −1 −3
0 −1 −3 1


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 1 0 3 2
0 1 −1 −3
0 0 −4 −2


Reduce column 3 with pivot -4 at row 3

L1 < −(1) ∗ L1 − (−3/4) ∗ L3 on

 1 0 3 2
0 1 −1 −3
0 0 −4 −2


L2 < −(1) ∗ L2 − (1/4) ∗ L3 on

 1 0 0 1
2

0 1 −1 −3
0 0 −4 −2


End reduction

 1 0 0 1
2

0 1 0 −5
2

0 0 −4 −2


Given the matrix of coe�cients in factored form:

• linsolve takes four arguments:

� P,L, U , the LU decomposition of the matrix of coe�cients.

� b, a list of the values of the right hand side of the system.

• linsolve(P,L, U, b) returns the solution of the corresponding equations as a list.

Example.

Input:

p,l,u:=lu([[2,1,1],[1,1,2],[1,2,1]])

linsolve(p,l,u,[1,1,4])

Output: [
−1

2
,
5

2
,−1

2

]
The linsolve command also solves systems with coe�cients in Z/nZ.

Example.

Input:

linsolve([2*x+y+z-1,x+y+2*z-1,x+2*y+z-4]%3,[x,y,z])

Output:

[1 % 3, 1 % 3, 1 % 3]

5.56.7 Solving a linear system using the Jacobi iteration method: jacobi_linsolve

The jacobi_linsolve command �nds the solution of a linear system of equations using the Jacobi
iteration method.

• jacobi_linsolve command takes two mandatory arguments and two optional arguments:

� A, the matrix of coe�cients of a system.

� b, the right hand side of the system as a list.
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� Optionally,m, an integer indicating the maximum number of iterations (by defaultm =maxiter,
see Section 2.5.7 p.56, item 6).

� Optionally, ε, a positive number indicating the error tolerance (by default ε =epsilon, see
Section 2.5.7 p.56, item 9).

jacobi_linsolve(A, b 〈m, ε〉) returns the solution of the system.

Examples.

• Input:

A:=[[100,2],[2,100]];

jacobi_linsolve(A,[0,1],1e-12);

Output:
[−0.000200080032, 0.0100040016006]

• Input:

evalf(linsolve(A,[0,1]))

Output:
[−0.000200080032013, 0.0100040016006]

5.56.8 Solving a linear system using the Gauss-Seidel method: gauss_seidel_linsolve

The gauss_seidel_linsolve command �nds the solution of a linear system of equations using the
Gauss-Seidel method.

• gauss_seidel_linsolve command takes two mandatory arguments and three optional arguments
(including an optional �rst argument):

� Optionally, ω, used for a general form of the Gauss-Seidel method (the successive overrelax-
ation method) (by default, ω = 1).

� A, the matrix of coe�cients of a system.

� b, the right hand side of the system as a list.

� Optionally, ε, a positive number indicating the error tolerance (by default ε =epsilon, see
Section 2.5.7 p.56, item 9).

� Optionally,m, an integer indicating the maximum number of iterations (by defaultm =maxiter,
see Section 2.5.7 p.56, item 6).

gauss_seidel_linsolve(A, b 〈ε,m〉) returns the solution of the system.

Examples.

• Input:

A:=[[100,2],[2,100]];

gauss_seidel_linsolve(A,[0,1],1e-12);

Output:
[−0.000200080032013, 0.0100040016006]

• Input:

gauss_seidel_linsolve (1.5, A, [0,1], 1e-12);

Output:
[−0.000200080032218, 0.0100040016006]
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5.56.9 The least squares solution of a linear system: LSQ lsq

The lsq command �nds the least squares solution to a matrix equation AX = b.
LSQ is a synonym for lsq.

• lsq takes two arguments:

� A, a matrix.

� b, a vector or matrix

• lsq(A, b) returns the least squares solution to the equation AX = b.

Examples.

• Input:

lsq([[1,2],[3,4]], [5,11])

Output: [
1
2

]
• Input:

lsq([[1,2], [3,4]], [[5,7], [11,9]])

Output: [
1 −5
2 6

]
• Note that:
Input:

linsolve([[1,2],[3,4],[3,6]]*[x, y] - [5,11,13],[x, y])

Output:
[]

since the linear system has no solution. You can still �nd the least squares solution:
Input:

lsq([[1,2],[3,4],[3,6]],[5,11,13])

Output: [
11
5
11
10

]
• The least squares solution:
Input:

lsq([[3,4]], [12])

Output: [
36
25
48
25

]
represents the point on the line 3x+ 4y = 12 closest to the origin;
Input:
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coordinates(projection(line(3*x+4*y=12),point(0)))

(see Section 13.13.4 p.838, Section 13.15.8 p.860, Section 7.7.1 p.598 and Section 13.6.2 p.789)
Output: [

36

25
,
48

25

]
5.56.10 Finding linear recurrences: reverse_rsolve

The reverse_rsolve command �nds a linear recurrence relation given the �rst few terms.

• reverse_rsolve takes one argument:
v = [v0, . . . , v2n−1], a vector made of the �rst 2n terms of a sequence (vn) which is supposed to
verify a linear recurrence relation of degree smaller than n

xn ∗ vn+k + . . .+ x0 ∗ vk = 0

where the xj are n+ 1 unknowns.

• reverse_rsolve(v) returns the list x = [xn, . . . , x0] of the xj coe�cients (if xn 6= 0 it is reduced
to 1).

In other words, reverse_rsolve solves the linear system of n equations:

xn ∗ vn + · · ·+ x0 ∗ v0 = 0

. . .

xn ∗ vn+k + · · ·+ x0 ∗ vk = 0

. . .

xn ∗ v2∗n−1 + · · ·+ x0 ∗ vn−1 = 0

The matrix A of the system has n rows and n+ 1 columns:

A =


vn . . . v0 0
...

...
vn+k . . . vk 0
...

...
v2n−1 v2 vn−1 0


reverse_rsolve returns the list x = [xn, . . . , x1, x0] with xn = 1 and x is the solution of the system
Ax = 0.

Examples:

• Find a sequence satisfying a linear recurrence of degree at most 2 whose �rst elements are 1, -1,
3, 3.
Input:

reverse_rsolve([1,-1,3,3])

Output:
[1,−3,−6]

Hence x0 = −6, x1 = −3, x2 = 1 and the recurrence relation is

vk+2 − 3vk+1 − 6vk = 0
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• Find a sequence satisfying a linear recurrence of degree at most 3 whose �rst elements are 1, -1,
3, 3,-1, 1.
Input:

reverse_rsolve([1,-1,3,3,-1,1])

Output: [
1,−1

2
,
1

2
,−1

]
Hence, x0 = −1, x1 = 1/2, x2 = −1/2, x3 = 1, the recurrence relation is

vk+3 −
1

2
vk+2 +

1

2
vk+1 − vk = 0

5.57 Di�erential equations

This section is limited to symbolic (or exact) solutions of di�erential equations. For numeric solu-
tions of di�erential equations, see odesolve (Section 10.3.5 p.725). For graphic representation of so-
lutions of di�erential equations, see plotfield (Section 7.18 p.619), plotode (Section 7.19 p.621) and
interactive_plotode (Section 7.20 p.622).

5.57.1 Solving di�erential equations: desolve deSolve dsolve

The desolve (or deSolve) command can solve:

• linear di�erential equations with constant coe�cients,

• �rst order linear di�erential equations,

• �rst order di�erential equations without y,

• �rst order di�erential equations without x,

• �rst order di�erential equations with separable variables,

• �rst order homogeneous di�erential equations (y′ = F (y/x)),

• �rst order di�erential equations with integrating factor,

• �rst order Bernoulli di�erential equations (a(x)y′ + b(x)y = c(x)yn),

• �rst order Clairaut di�erential equations (y = x ∗ y′ + f(y′)).

deSolve is a synonym for desolve.

• desolve takes one mandatory arguments and two optional arguments:

� de, a di�erential equation or list of di�erential equations, including any initial conditions.

� Optionally, x, the variable (by default x).

� Optionally, y, the unknown function (by default y). The unknown function can be given in
variable form (such as y) or function form (such as y(x)), in which case the variable doesn't
have to be given as a separate argument.

• desolve(de 〈, x, y〉) returns the solution of the di�erential equation.

In the di�erential equations, the function y can be denoted by y or y(x), the derivative by y′, y′(x) or
diff(y(x), x), etc.
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Examples.

• Input:

desolve(y�+2*y'+y,y)

Output:
e−x (c0x+ c1)

• Input:

desolve([y�+2*y'+y,y(0)=1,y'(0)=0],y)

Output:
e−x (x+ 1)

• Input:

desolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t),y(t))

or:

desolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t),t,y)

Output:
e−t (c0t+ c1)

• Input:

desolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t),y(0)=1,y'(0)=0],y(t))

or:

desolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t),y(0)=1,y'(0)=0],t,y)

Output:
e−t (t+ 1)

• Solve:
y′′ + y = cos(x)

Input (typing twice prime for y�):

desolve(y�+y=cos(x),y)

or:

desolve((diff(diff(y))+y)=(cos(x)),y)

Output:

c0 cosx+ c1 sinx+
2x sinx+ cosx

4

c_0, c_1 are the constants of integration: y(0) = c_0 y′(0) = c_1.

• If the variable is not x but t:
Input:
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desolve(derive(derive(y(t),t),t)+y(t)=cos(t),t,y)

Output:

c0 cos t+ c1 sin t+
2t sin t+ cos t

4

c_0, c_1 are the constants of integration: y(0) = c_0 and y′(0) = c_1.

• Solve:

y′′ + y = cos(x), y(0) = 1

Input:

desolve([y�+y=cos(x),y(0)=1],y)

Output:
3

4
cosx+ c1 sinx+

2x sinx+ cosx

4

• Solve:

y′′ + y = cos(x) (y(0))2 = 1

Input:

desolve([y�+y=cos(x),y(0)�2=1],y)

Output: [
3 cosx

4
+ c1 sinx+

2x sinx+ cosx

4
,−5 cosx

4
+ c1 sinx+

2x sinx+ cosx

4

]
each component of this list is a solution, you have two solutions depending on the constant c_1
(y′(0) = c1) and corresponding to y(0) = 1 and to y(0) = −1.

• Solve:

y′′ + y = cos(x), (y(0))2 = 1 y′(0) = 1

Input:

desolve([y�+y=cos(x),y(0)�2=1,y'(0)=1],y)

Output: [
3 cosx

4
+ sinx+

2x sinx+ cosx

4
,−5 cosx

4
+ sinx+

2x sinx+ cosx

4

]
each component of this list is a solution (you have two solutions).

• Solve:

y′′ + 2y′ + y = 0

Input:

desolve(y�+2*y'+y=0,y)

Output:

e−x (c0x+ c1)

the solution depends on two constants of integration: c_0 and c_1 (y(0) = c_0 and y′(0) = c_1).
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• Solve:

y′′ − 6y′ + 9y = xe3x

Input:

desolve(y�-6*y'+9*y=x*exp(3*x),y)

Output:

e3x (c0x+ c1) +
1

6
x3e3x

The solution depends on 2 constants of integration: c_0, c_1 (y(0) = c_0 and y′(0) = c_1).

• Examples of �rst order linear equations.

� Solve:

xy′ + y − 3x2 = 0

Input:

desolve(x*y'+y-3*x�2,y)

Output:
c0 + x3

x

� Solve:

y′ + x ∗ y = 0, y(0) = 1

Input:

desolve([y'+x*y=0, y(0)=1]),y)

or:

desolve((y'+x*y=0) && (y(0)=1),y)

Output:

e−
x2

2

� Solve:

x(x2 − 1)y′ + 2y = 0

Input:

desolve(x*(x�2-1)*y'+2*y=0,y)

Output:
c0x

2

x2 − 1

� Solve:

x(x2 − 1)y′ + 2y = x2

Input:

desolve(x*(x�2-1)*y'+2*y=x�2,y)

Output:
c0x

2 + x2 lnx

x2 − 1
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� If the variable is t instead of x, for example, solve:

t(t2 − 1)y′(t) + 2y(t) = t2

Input:

desolve(t*(t�2-1)*diff(y(t),t)+2*y(t)=(t�2),y(t))

Output:
c0t

2 + t2 ln t

t2 − 1

� Solve:
x(x2 − 1)y′ + 2y = x2, y(2) = 0

Input:

desolve([x*(x�2-1)*y'+2*y=x�2,y(2)=0],y)

Output:
− ln (2)x2 + x2 lnx

x2 − 1

� Solve: √
1 + x2y′ − x− y =

√
1 + x2

Input:

desolve(y'*sqrt(1+x�2)-x-y-sqrt(1+x�2),y)

Output:

−c0 + ln
(√

x2 + 1− x
)

x−
√
x2 + 1

• Examples of �rst di�erential equations with separable variables.

� Solve:
y′ = 2

√
y

Input:

desolve(y'=2*sqrt(y),y)

Output: [(
−1

2
c0 + x

)2
]

� Solve:
xy′ ln(x)− y(3 ln(x) + 1) = 0

Input:

desolve(x*y'*ln(x)-(3*ln(x)+1)*y,y)

Output:
c0x

3 lnx

• Examples of Bernoulli di�erential equations a(x)y′ + b(x)y = c(x)yn where n is a real constant.
The method used is to divide the equation by yn, so that it becomes a �rst order linear di�erential
equation in u = 1/yn−1.

� Solve:
xy′ + 2y + xy2 = 0

Input:
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desolve(x*y'+2*y+x*y�2,y)

Output: [
0,− 1

c1x2 + x

]
� Solve:

xy′ − 2y = xy3

Input:

desolve(x*y'-2*y-x*y�3,y)

Output: [((
−1

5
· 2x5 + c0

)
e−4 lnx

)− 1
2

,−
((
−1

5
· 2x5 + c0

)
e−4 lnx

)− 1
2

]
� Solve:

x2y′ − 2y = xe(4/x)y3

Input:

desolve(x*y'-2*y-x*exp(4/x)*y�3,y)

Output:[((
−
∫

2x4
(

e
1
x

)4
dx+ c0

)
e−4 lnx

)− 1
2

,−
((
−
∫

2x4
(

e
1
x

)4
dx+ c0

)
e−4 lnx

)− 1
2

]

• Examples of �rst order homogeneous di�erential equations (y′ = F (y/x), the method of integration
is to search for t = y/x instead of y).

� Solve:
3x3y′ = y(3x2 − y2)

Input:

desolve(3*x�3*diff(y)=((3*x�2-y�2)*y),y)

Output: 0,−
x
√

6

√
ln
(
x
c0

)
2 ln

(
x
c0

) ,

x
√

6

√
ln
(
x
c0

)
2 ln

(
x
c0

)


Hence the solutions are y = 0 and the familiy of curves with parametric equations x =
c0 exp(3/(2t2)), y = t ∗ c0 exp(3/(2t2)) (the parameter is denoted by ` t` in the answer).

• Examples of �rst order di�erential equations with an integrating factor. By multiplying the
equation by a function of x, y, it becomes a closed di�erential form.

� Solve:
yy′ + x = 0

Input:

desolve(y*y'+x,y)

Output: [√
−x2 − 2c0,−

√
−x2 − 2c0

]
In this example, xdx+ ydy is closed, the integrating factor was 1.
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� Solve:
2xyy′ + x2 − y2 + a2 = 0

Input:

desolve(2*x*y*y'+x�2-y�2+a�2,y)

Output: [√
a2 − x2 − c1x,−

√
a2 − x2 − c1x

]
In this example, the integrating factor was 1/x2.

• Example of �rst order di�erential equations without x.
Solve:

(y + y′)4 + y′ + 3y = 0

This kind of equation cannot be solved directly by Xcas, you can use the following steps on solve
it with the help of Xcas. The idea is to �nd a parametric representation of F (u, v) = 0 where the
equation is F (y, y′) = 0. Let u = f(t), v = g(t) be such a parametrization of F = 0, then y = f(t)
and dy/dx = y′ = g(t). Hence

dy/dt = f ′(t) = y′ ∗ dx/dt = g(t) ∗ dx/dt

The solution is the curve of parametric equations x(t), y(t) = f(t), where x(t) is solution of the
di�erential equation g(t)dx = f ′(t)dt.
Back to the example, you can let y + y′ = t, hence:

y = −t− 8 ∗ t4, y′ = dy/dx = 3 ∗ t+ 8 ∗ t4 dy/dt = −1− 32 ∗ t3

therefore
(3 ∗ t+ 8 ∗ t4) ∗ dx = (−1− 32 ∗ t3)dt

Input:

desolve((3*t+8*t�4)*diff(x(t),t)=(-1-32*t�3),x(t))

Output:
9c0 − 11 ln

(
8t3 + 3

)
− ln

(
t3
)

9
The solution is the curve of parametric equation:

x(t) = −11 ∗ 1/9 ∗ ln(8 ∗ t3 + 3) + 1/− 9 ∗ ln(t3) + c0, y(t) = −t− 8 ∗ t4

• Examples of �rst order Clairaut di�erential equations (y = x ∗ y′ + f(y′)).
The solutions are the lines Dm of equation y = mx+ f(m) where m is a real constant.

� Solve:
xy′ + y′3 − y = 0

Input:

desolve(x*y'+y'�3-y,y)

Output: [
c0x+ c30

]
� Solve:

y − xy′ −
√
a2 + b2 ∗ y′2 = 0

Input:

desolve((y-x*y'-sqrt(a�2+b�2*y'�2),y)

Output: [
c0x+

√
a2 + b2c20

]
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5.57.2 Laplace transform and inverse Laplace transform: laplace ilaplace invlaplace

Denoting by L the Laplace transform, you get the following:

L(y)(x) =

∫ +∞

0
e−xuy(u)du

L−1(g)(x) =
1

2iπ

∫
C
ezxg(z)dz

where C is a closed contour enclosing the poles of g.
The laplace command �nds the Laplace transform of a function.

• laplace takes one mandatory argument and two optional arguments:

� expr, an expression involving a variable.

� Optionally, x, the variable name (by default x).

� Optionally, s, a variable for the output (by default x).

• laplace(expr 〈x, 〉) returns the Laplace transform of expr.

Examples.

• Input:

laplace(sin(x))

Output:
1

x2 + 1

• Input:

laplace(sin(t),t)

Output:
1

t2 + 1

• Input:

laplace(sin(t),t,s)

Output:
1

s2 + 1

The ilaplace command �nds the Laplace transform of a function.
invlaplace is a synonym for ilaplace.

• ilaplace takes one mandatory argument and two optional arguments:

� expr, an expression involving a variable.

� Optionally, x, the variable name (by default x).

� Optionally, s, a variable for the output (by default x).

• ilaplace(expr 〈x, 〉) returns the inverse Laplace transform of expr.
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The Laplace transform has the following properties:

L(y′)(x) = −y(0) + xL(y)(x)

L(y′′)(x) = −y′(0) + xL(y′)(x)

= −y′(0)− xy(0) + x2L(y)(x)

These properties make the Laplace transform and inverse Laplace transform useful for solving linear
di�erential equations with constant coe�cients. For example, suppose you have

y′′ + py′ + qy = f(x)

y(0) = a, y′(0) = b

then

L(f)(x) = L(y′′ + py′ + qy)(x)

= −y′(0)− xy(0) + x2L(y)(x)− py(0) + pxL(y)(x)) + qL(y)(x)

= (x2 + px+ q)L(y)(x)− y′(0)− (x+ p)y(0)

Therefore, if a = y(0) and b = y′(0), you get

L(f)(x) = (x2 + px+ q)L(y)(x)− (x+ p)a− b

and the solution of the di�erential equation is:

y(x) = L−1((L(f)(x) + (x+ p)a+ b)/(x2 + px+ q))

Example.

Solve:

y′′ − 6y′ + 9y = xe3x, y(0) = c_0, y′(0) = c_1

Here, p = −6, q = 9.
Input:

laplace(x*exp(3*x))

Output:
1

x2 − 6x+ 9

Input:

ilaplace((1/(x�2-6*x+9)+(x-6)*c_0+c_1)/(x�2-6*x+9))

Output:
1

6

(
x3 − 18xc0 + 6xc1 + 6c0

)
e3x

Note that this equation could be solved directly.
Input:

desolve(y�-6*y'+9*y=x*exp(3*x),y)

Output:

e3x (c0x+ c1) +
1

6
x3e3x

You also can use the addtable command Laplacians of unspeci�ed functions (see Section 5.26.2
p.288).
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5.57.3 Solving linear homogeneous second-order ODE with rational coe�cients:
kovacicsols

The kovacicsols command �nds Louivillian solutions of ordinary linear homogeneous second-order
di�erential equations of the form

a y′′ + b y′ + c y = 0, (5.12)

where a, b and c are rational functions of the independent variable. kovacicsols uses Kovacic's algo-
rithm.

• kovacicsols takes one mandatory argument and two optional arguments:

� kode, an equality of the form of equation (5.12), an expression for the left-hand side, or a list
of the coe�cients [a, b, c].

� Optionally, x the independent variable (by default x).

� Optionally, y, the dependent variable (by default y). This option should not be used if the
�rst argument is a list of coe�cients.

• kovacicsols(kode 〈x, y〉) returns a Liouvillian solution of equation (5.12). This can be a list or
an expression. An empty list means that there are no Liouvillian solutions to the equation. A
non-empty list will contain one or two independent solutions to the di�erential equation. If the
list contains two solutions y1 and y2, the general solution will be

y = C1 y1 + C2 y2

where C1, C2 ∈ R are arbitrary constants. However, for some equations only one solution y1 is
returned, in which case the other solution can be obtained as (using reduction of order):

y2 = y1

∫
y−21 . (5.13)

If kovacicsols returns an expression, it will give the solution of the di�erential equation implicitly.
In that case the return value is a polynomial P of order n ∈ {4, 6, 12} in the variable omega_

(denoted here by ω) with rational coe�cients rk, k = 0, 1, 2, . . . , n. If P (ω0) = 0 for some ω0, then
y = exp

(∫
ω0

)
is a solution to the di�erential equation.

Examples.

• Find the general solution to:

y′′ =

(
1

x
− 3

16x2

)
y.

Input:

kovacicsols(y''=y*(1/x-3/16x�2))

Output: [
x

1
4 e2
√
x, x

1
4 e−2

√
x
]

Therefore, the general solution is y = C1 x
1/4 e2

√
x + C2 x

1/4 e−2
√
x.

• Solve:

x′′(t) +
3 (t2 − t+ 1)

16 (t− 1)2 t2
x(t) = 0.

Input:

kovacicsols(x''+3*(t�2-t+1)/(16*(t-1)�2*t�2)*x,t,x)
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Output: [(
−t (t− 1)

(
2
√
t2 − t+ 2t− 1

)) 1
4
,
(
t (t− 1)

(
2
√
t2 − t− 2t+ 1

)) 1
4

]
so the general solution is, for C1, C2 ∈ R,

x(t) = C1
4

√
t (t− 1) (1− 2 t− 2

√
t2 − t)+

C2
4

√
t (t− 1) (1− 2 t+ 2

√
t2 − t).

• Find a particular solution to

y′′ =
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4
y.

Input:

r:=(4x�6-8x�5+12x�4+4x�3+7x�2-20x+4)/(4x�4)

kovacicsols(y''=r*y)

Output: (−1 + x2
)

e
1
2(x3−2x2−2)

x

x
√
x


Hence y = (x2 − 1)x−3/2 e

x3−2 x2−2
2 x is a solution to the given equation.

• Solve

y′′ + y′ =
6 y

x2
.

Input:

kovacicsols(y''+y'=6y/x�2)

Output: [(
12 + 6x+ x2

)
e−x

x2

]

• Solve the Titchmarsh equation
y′′ + (19− x2) y = 0

Input:

kovacicsols(y''+(19-x�2)*y=0,x,y)

Output: [(
945

16
x− 315

2
x3 +

189

2
x5 − 18x7 + x9

)
e−

x2

2

]
This is only one, particular solution.

• Find the general solution of Halm's equation

(1 + x2)2 y′′(x) + 3 y(x) = 0

Input:

sol:=kovacicsols((1+x�2)�2*y''+3y=0,x,y)
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Output: [
−1 + x2√
x2 + 1

]
The other basic solution is obtained by using (5.13).
Input:

y1:=sol[0]; y2:=normal(y1*int(y1�-2,x))

Output:

−1 + x2√
x2 + 1

,−x
√
x2 + 1

x2 + 1

Therefore, y = C1
x2−1√
x2+1

+ C2
x√
x2+1

, where C1, C2 ∈ R.

• Find the general solution of the non-homogeneous equation

y′′ − 27 y

36 (x− 1)2
= x+ 4.

First you need to �nd the general solution to the corresponding homogeneous equation y′′h −
27 yh

36 (x−1)2 = 0.

Input:

sols:=kovacicsols(y''-y*27/(36*(x-1)�2),x,y)

Output: [
−2x+ x2√

x− 1

]
Call this solution y1 and �nd the other basic independent solution by using (5.13).
Input:

y1:=sols[0]:; y2:=y1*int(1/y1�2,x)

Output:

−
√
x− 1

2x− 2

So the general solution of the homogeneous equation is

yh = C1 y1 + C2 y2 =
C1 (x2 − 2x) + C2√

x− 1
, C1, C2 ∈ R.

A particular solution yp of the non-homogeneous equation can be obtained by variation of param-
eters as

yp = −y1
∫
y2 f(x)

W
dx+ y2

∫
y1 f(x)

W
dx,

where f(x) = x+ 4 and W is the Wronskian of y1 and y2, i.e.

W = y1 y
′
2 − y2 y′1 6= 0.

Input:

W:=y1*y2'-y2*y1':; f:=x+4:;

yp:=normal(-y1*int(y2*f/W,x)+y2*int(y1*f/W,x))
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Output:

4x3 + 72x2 − 156x+ 80

21

Hence yp = 1
21 (4x3 + 72x2 − 156x + 80). Now y = yp + yh. You can checking that it is indeed

the general solution of the given equation.
Input:

purge(C1,C2):; ysol:=yp+C1*y1+C2*y2:;

normal(diff(ysol,x,2)-27/(36*(x-1)�2)*ysol)==f

Output:

true

• Solve the equation:

y′′ =

(
3

16x (x− 1)
− 2

9 (x− 1)2
− 3

16x2

)
y.

from the original Kovacic's paper:
Input:

r:=-3/(16x�2)-2/(9*(x-1)�2)+3/(16x*(x-1)):;

kovacicsols(y''=r*y)

Output:

-omega_�4*x�4*(x-1)�4+ omega_�3*x�3*(x-1)�3*(7*x-3)/3-

omega_�2*x�2*(x-1)�2*(48*x�2-41*x+9)/24+

omega_*x*(x-1)*(320*x�3-409*x�2+180*x-27)/432+

(-2048*x�4+3484*x�3-2313*x�2+702*x-81)/20736

The solution is y = exp
(∫
ω0

)
, where ω0 is a zero of the above expression, thus being a root of a

fourth-order polynomial in ω. In similar cases you can try the Ferrari method to obtain ω0.

• Solve the equation

48 t (t+ 1) (5 t− 4) y′′ + 8 (25 t+ 16) (t− 2) y′ − (5 t+ 68) y = 0.

Input:

kovacicsols([48t*(t+1)*(5t-4),8*(25t+16)*(t-2),-(5t+68)],t)

Output:

1

20736
ω_4

(
135t4 − 616t3 − 144t2 + 3072t− 4096

)
− 1

54
ω_3t (t+ 1)

(
23t2 − 92t+ 128

)
− 1

24
ω_2t2 (t+ 1)

(
15t3 − 80t2 + 80t+ 256

)
+

2

3
ω_t3 (t− 4) (t+ 1)2 (5t+ 8)− t4 (t+ 1)2 (t+ 4) (5t+ 4)
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5.58 The Z-transform

5.58.1 The Z-transform of a sequence: ztrans

The Z-transform of a sequence a0, a1, . . . , an, . . . is the function

f(z) =
∞∑
n=0

an
zn
.

For example, the Z-transform of the sequence

0, 1, 2, 3, . . .

is
f(z) = 0 + 1/z + 2/z2 + 3/z3 + . . .

which has closed form
f(z) = z/(z − 1)2.

The ztrans command �nds the Z-transform of a sequence.

• ztrans takes one mandatory and two optional arguments:

� ax, a formula with a variable for the general term of a sequence.

� Optionally, x, the variable (by default x).

� Optionally, z, a variable to be used by the resulting function.

ztrans(ax 〈x, z〉 >) returns the Z-transform of the sequence.

Examples.

• Input:

ztrans(x)

Output:
x/(x2 − 2 ∗ x+ 1)

• Input:

ztrans(n,n,z)

Output:
z

z2 − 2z + 1

• Input:

ztrans(1)

Output:
x

x− 1

since
∞∑
n=0

1/xn = 1/(1− 1/x) = x/(x− 1).

You also have
Input:
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ztrans(1,n,z)

Output:
z

z − 1

Note that di�erentiating both sides of

∞∑
n=0

1/zn = z/(z − 1)

gives you
∞∑
n=0

n/zn−1 = 1/(z − 1)2

and so, multiplying both sides by z,

∞∑
n=0

n/zn = z/(z − 1)2 = z/(z2 − 2z + 1)

as indicated above.

5.58.2 The inverse Z-transform of a rational function: invztrans

The inverse Z-transform of a rational expression is a formula for the general term of a sequence with the
given rational expression as its Z-transform. The invztrans command �nds the inverse Z-transform of
a rational expression.

• invztrans command takes one mandatory and two optional arguments:

� rat, a rational expression.

� Optionally, x the variable (by default x).

� Optionally, n, a variable to be used by the result (by default x).

• ztrans(rat 〈x, n〉) returns the inverse Z-transform of rat.

Examples.

• Input:

invztrans(x/(x-1))

Output:
1

(since ztrans(1)=x/(x-1))

• Input:

invztrans(z/(z-1),z,n)

Output:
1

• Input:

invztrans(x/(x-1)�2)
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Output:
x

• Input:

invztrans(z/(z-1)�2,z,n)

Output:
n

5.59 Other functions

5.59.1 Replacing small values by 0: epsilon2zero

The epsilon2zero command replaces small values by 0.

• epsilon2zero takes one argument:
expr, an expression in x.

• epsilon2zero(expr) returns expr where any values of modulus less than epsilon (see Sec-
tion 2.5.7 p.56, item 9, by default epsilon=1e-10) are replaced by zero. The expression is not
evaluated.

Examples.

• Input:

epsilon2zero(1e-13+x)

Output (with epsilon=1e-10):
0 + x

• Input:

epsilon2zero((1e-13+x)*100000)

Output (with epsilon=1e-10):
100000 (0 + x)

• Input:

epsilon2zero(0.001+x)

Output (with epsilon=0.0001):
0.001 + x

5.59.2 List of variables: lname indets

The lname command �nds the symbolic variable names used in an expression.
indets is a synonym for lname.

• lname takes one argument:
expr, an expression.

• lname(expr) returns the list of the symbolic variable names used in expr.
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Examples.

• Input:

lname(x*y*sin(x))

Output:
[x, y]

• Input:

a:=2;assume(b>0);assume(c=3);

lname(a*x�2+b*x+c)

Output:
[x, b, c]

5.59.3 List of variables and of expressions: lvar

The lvar command �nds the variables and non-rational that make up an expression.

• lvar takes one argument: expr, an expression.

• lvar(expr) returns a list of variable names and non-rational expressions such that expr its argu-
ment is a rational function with respect to the variables and expressions of the list.

Examples.

• Input:

lvar(x*y*sin(x)�2)

Output:
[x, y, sinx]

• Input:

lvar(x*y*sin(x)�2+ln(x)*cos(y))

Output:
[x, y, sinx, lnx, cos y]

• Input:

lvar(y+x*sqrt(z)+y*sin(x))

Output: [
y, x,
√
z, sinx

]
5.59.4 List of variables of an algebraic expressions: algvar

The algvar command �nds the symbolic variable names in an expression, but orders them.

• algvar takes one argument:
expr, an expression.

• algvar(expr) returns the list of the symbolic variable names used in expr, ordered by the algebraic
extensions required to build expr.
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Examples.

• Input:

algvar(y+x*sqrt(z))

Output:
[[y, x] , [z]]

• Input:

algvar(y*sqrt(x)*sqrt(z))

Output:  y
z
x


• Input:

algvar(y*sqrt(x*z))

Output:
[[y] , [x, z]]

• Input:

algvar(y+x*sqrt(z)+y*sin(x))

Output:
[[y, x, sinx] , [z]]

5.59.5 Testing if a variable is in an expression: has

The has command determines whether or not an expression contains a variable.

• has takes two arguments:

� expr, an expression.

� x, the name of a variable.

• has(expr,x) returns 0 if expr doesn't contain x, otherwise it returns an integer giving the position
of x on lname(expr) (where the position starts at 1).

Examples.

• Input:

has(x*y*sin(x),y)

Output:
2

• Input:

has(x*y*sin(x),z)

Output:
0
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5.59.6 Numeric evaluation: evalf

The evalf command �nds �oating point approximations to the numbers in an expression or a matrix
(see also Section 5.8.1 p.143).

• evalf takes one mandatory and one optional argument:

� expr, an expression or a matrix.

� Optionally, n, a positive integer representing the signi�cant digits (by default DIGITS, which
itself has a default value of 12; see Section 2.5.1 p.54).

• evalf(expr 〈n〉) returns expr with all the numbers replaced by �oating point approximations to
n digits.

Examples.

• Input:

evalf(sqrt(2))

Output:

1.41421356237

• Input:

evalf(sqrt(2),20)

Output:

1.4142135623730950488

• Input:

evalf([[1,sqrt(2)],[0,1]])

Output: [
1.0 1.41421356237
0.0 1.0

]

5.59.7 Rational approximation: float2rational exact

Floating point numbers are considered approximations, while integers and rational numbers are consid-
ered exact. The float2rational command �nds a rational approximation to a �oating point number.
exact is a synonym for float2rational.

• float2rational takes one argument:
expr, an expression.

• float2rational(expr) returns expr with all the �oating point numbers in expr replaced by
rational numbers; any �oating point number x is replaced by a rational r with |r − x| < ε, where
ε is given by epsilon in the cas con�guration (see Section 2.5.7 p.56, item 9).
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Examples.

• Input:

float2rational(1.5)

Output:
3

2

• Input:

float2rational(1.414)

Output:
707

500

• Input:

float2rational(0.156381102937*2)

Output:
5144

16447

• Input:

float2rational(1.41421356237)

Output:
114243

80782

Input:

float2rational(1.41421356237�2)

Output:

2

5.60 The day of the week: dayofweek

The dayofweek command �nds the day of the week for any date after 15 October, 1582.

• dayofweek takes as arguments three arguments:

� d, an integer representing the day of the month.

� m, an integer representing the month.

� y, an integer representing the year.

The date represented should be after 15 October 1582.

• dayofweek(d,m, y) returns an integer from 0 to 6; 0 representing Sunday, 1 representing Monday,
etc.
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Examples.

• Input:

dayofweek(1,10,2014)

Output:
3

This means that 1 October, 2014 was a Wednesday.

• Input:

dayofweek(15,10,1582)

Output:
5

This indicates that 15 October 1582 was on a Friday.

The Gregorian calendar, the calendar used by most of the world, was introduced on 15 October
1582. Before that, the Julian calendar was used, which had a leap year every four years and so used
years with an average of 365.25, which is slightly o� from the actual value of about 365.242 days. To
deal with this, the Gregorian calendar was introduced, where a leap year is a year which is divisible by
4, but not divisible by 100 unless it is also divisible by 400. This gives an average length of year that is
accurate to within 1 day every 3000 years.

Many countries switched from the Julian calendar to the Gregorian calendar after 4 October 1582
in the Julian calendar, and the next day was 15 October 1582.
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Chapter 6

Metric properties of curves

6.1 The center of curvature

Let Γ be a curve in space parameterized by a continuously di�erentiable function, and M0 be a point
on the curve. The curve will have an arclength parameterization; namely, it can be parameterized by a
function M(s), where M(0) = M0 and |s| is the length of the curve from M0 to M(s), in the direction
of the curve if s > 0 and the opposite direction if s < 0.

For such a Γ, the vector T (s) = M ′(s) will be the unit tangent to the curve atM(s), andN(s) = T ′(s)
will be perpendicular to the tangent. The circle through M(s) with center at M(s) +N(s) is called the
osculating circle to Γ at M(s). Informally, the osculating circle is the circle through M(s) which most
closely approximates Γ. The set of all centers of curvature is another curve, called the evolute of Γ.

The radius of the osculating circle is |N(s)| and is called the radius of curvature of Γ at M(s). The
reciprocal of this is called the curvature of Γ at M(s).

6.2 Computing the curvature and related values: curvature osculating_circle
evolute

A curve can be described in Xcas with a parametrization or with a curve object. Various curve objects
are described in chapters 13 and 14. The commands in this section can work with curves described
either way. You can get the equation of a curve object with the equation command (see Section 13.13.7
p.841).

The curvature command �nds the curvature of a curve. The curve can be given as an object or by
a parameterization.

To �nd the curvature from a parameterization:

• curvature takes two mandatory arguments and one optional argument:

� C, a curve.

� t, the parameter of the curve.

� Optionally, t0, a value of the parameter.

• curvature(C, t 〈, t0〉) returns the curvature of the curve; if t0 is given, the curvature is given at
the point it speci�es, otherwise the curvature is given as a function of the parameter.

To �nd the curvature from a curve object:

• curvature takes two arguments:

� C, a curve.

� p, a point on the curve.

• curvature(C, p) returns the curvature of C at the point p.

579
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Examples.

• Input:

trigsimplify(curvature([5*cos(t),5*sin(t)],t))

Output:
1

5

• Input:

curvature([2*cos(t),3*sin(t)],t)

Output: (
6 cos2 t+ 6 sin2 t

)√
9 cos2 t+ 4 sin2 t(

9 cos2 t+ 4 sin2 t
)2

• Input:

curvature([2*cos(t),3*sin(t)],t,pi/2)

Output:
3

4

• Input:

curvature(plot(x�2),point(1,1))

(see Section 7.5 p.595 and Section 13.6.2 p.789.) Output:

2

25

√
5

The osculating_circle command �nds and draws the osculating circle of a curve.

To �nd the osculating circle from a parameterization:

• osculating_circle takes three arguments:

� C, a curve.

� t, the parameter of the curve.

� t0, a value of the parameter.

• osculating_circle(C, t, t0) draws and returns the osculating circle of the curve at the point
speci�ed by t0.

To �nd the osculating circle from a curve object:

• osculating_circle takes two arguments:

� C, a curve.

� p, a point on the curve.

• osculating_circle(C, p) draws and returns the osculating circle of C at the point p.
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Examples.

• Input:

osculating_circle(plot(x�2),point(1,1))

Output:

• Input:

equation(osculating_circle(plot(x�2),point(1,1)))

Output:

(x+ 4)2 +

(
y − 7

2

)2

=
125

4

• Input:

equation(osculating_circle([t�2,t�3],t,1))

Output: (
x+

11

2

)2

+

(
y − 16

3

)2

=
2197

36

The evolute command �nds and draws the evolute of a curve.
To �nd the evolute from a parameterization:

• evolute takes two arguments:

� C, a curve.

� t, the parameter of the curve.

• evolute(C, t) draws and returns the evolute of the curve.

To �nd the evolute from a curve object:

• evolute takes one argument:
C, a curve.

• evolute(C) draws and returns the evolute of C.
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Examples.

• Input:

evolute(plot(x�2))

Output:

• Input:

equation(evolute(plot(x�2)))

Output:
27x2 − 16y3 + 24y2 − 12y + 2 = 0

• Input:

equation(evolute([t�2,t],t))

Output:
16x3 − 24x2 + 12x− 27y2 − 2 = 0



Chapter 7

Graphs

7.1 Generalities

Most graph instructions take expressions as arguments. A few exceptions (mostly Maple-compatibility
instructions) also accept functions. Some optional arguments, like color, thickness, can be used as
optional attributes in all graphic instructions. They are described below.

If a graph depends on a user-de�ned function, you may want to de�ne the function when the
parameter is a formal variable. For this, it can be useful to test the type of the parameter while the
function is being de�ned. (See Chapter Section 12 p.743 for information about programming in Xcas.)

For example, suppose f and g are de�ned by:

f(x):= {

if (type(x)!=DOM_FLOAT) return 'f'(x);

while(x>0){ x--;}

return x;

}

and

g(x):= {

while(x>0){ x--;}

return x;

}:;

Graphing these (see Section 7.4.1 p.588):
Input:

F:= plotfunc(f(x))

G:= plotfunc(g(x))

they will both produce the same graph. However, the graphic G won't be reusable. Entering:
Input:

F

reproduces the graph, but entering:
Input:

G

produces the error:
Output:

"Unable to eval test in loop: x>0.0

Error: Bad Argument Value Error:

Bad Argument Value"

583
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Internally, F and G contain the formal expressions f(x) and g(x), respectively. When Xcas tries
to evaluate F and G, x has no value and so the test x > 0 produces an error in g(x), but the line
if (type(x)!=DOM_FLOAT) return 'f'(x); avoids this problem in f(x).

7.2 The graphic screen

A graphic screen, either two- or three-dimensional as appropriate, automatically opens in response to
a graphic command. Alternatively, you can open a graphic screen with its own command line with
keystrokes; Alt-g for a two-dimensional screen and Alt-h for a three-dimensional screen. The graphic
screen will have an array of buttons at the top right.

• There will be red arrows for moving the image in the x direction.

• There will be green arrows for moving the image in the y direction.

• There will be blue arrows for zooming in and out in a two-dimensional screen, and moving the
image in the z direction in a three-dimensional screen.

• There will be in and out buttons for zooming in and out.

• There will be a _|_ button to orthonormalize the graphic.

• There will be a I| button to start and stop animations.

• There will be an auto button to do automatic scaling.

• There will be a cfg button which will bring up a con�guration screen (see Section 2.5.7 p.56).

• There will be an M button which brings up a menu. The menu has submenus:

� View which has entries which do the same as the buttons.

� Trace for working with traces.

� Animation for working with animations.

� 3-d for working with three-dimensional graphics.

� Export/Print to export and print the graphic.

The image can also be moved in the screen by clicking and dragging with the mouse. Scrolling with
the mouse will also zoom the images.

7.3 Graph and geometric objects attributes

There are two kinds of attributes for graphs and geometric objects: global attributes of a graphic scene
and individual attributes.

7.3.1 Individual attributes

Graphic attributes are optional arguments of the form display=value. They must be given as the last
argument of a graphic instruction. Attributes are ordered in several categories: color, point shape, point
width, line style, line thickness, legend value, position and presence. In addition, surfaces may be �lled
or not, 3-d surfaces may be �lled with a texture, 3-d objects may also have properties with respect to
the light. Attributes of di�erent categories may be combined with +, e.g.
plotfunc(x2 + y2,[x,y],display=red+line_width_3+filled)

The graphic attributes are:

• Colors, set with display=value or color=value. The values can be:
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� black, white, red, blue, green, magenta, cyan, yellow,

� a numeric value between 0 and 255,

� a numeric value between 256 and 256+7*16+14 for a color of the rainbow,

� any other numeric value smaller than 65535, the rendering is not guaranteed to be portable.

• Point shapes, set with display=value. The values can be:

� rhombus_point plus_point

� square_point cross_point

� triangle_point

� star_point

� point_point

� invisible_point

� Point width, set with display=value. The values can be:
point_width_n where n is an integer between 1 and 7.

� Line thickness, set with thickness=n or display=line_width_n where n is an integer be-
tween 1 and 7.

� Line shape, set with display=value. The values can be:

∗ dash_line

∗ solid_line

∗ dashdot_line

∗ dashdotdot_line

∗ cap_flat_line

∗ cap_square_line

∗ cap_round_line

� Legend, the text is set with legend="legendname" ; the position is set with display=value,
where the values can be:

∗ quadrant1

∗ quadrant2

∗ quadrant3

∗ quadrant4

and correspond to the position of the legend of the object (using the trigonometric plane
conventions). The legend is not displayed if the attribute display=hidden_name is added.

� display=filled speci�es that surfaces will be �lled,

� gl_texture="picture_�lename" is used to �ll a surface with a texture. Cf. the interface
manual for a more complete description and for gl_material= options.

Examples.

(See Section 13.10.3 p.822, Section 13.6.2 p.789, Section 13.3.3 p.784 and Section 13.7.3 p.802 for
information on the commands used.)

� Input:

polygon(-1,-i,1,2*i,legend="P")

Output:
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� Input:

point(1+i,legend="hello")

Output:

� Input:

color(segment(0,1+i),red)

Output:

� Input:
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segment(0,1+i,color=red)

Output:

7.3.2 Global attributes

These attributes are shared by all objects of the same scene

� title="titlename" sets the title.

� labels=["xname","yname","zname"] sets names of the x, y, z axes.

� gl_x_axis_name="xname", gl_y_axis_name="yname", gl_z_axis_name="zname" sets the
names of the axes individually.

� legend=["xunit","yunit","zunit"] sets units for the axes.

� gl_x_axis_unit="xunit", gl_y_axis_unit="yunit", gl_z_axis_unit="zunit" sets units for
the axes individually.

� axes=true or axes=false shows or hides the axis.

� gl_texture="�lename" sets the background image to "�lename".

� gl_x=xmin..xmax, gl_y=ymin..ymax, gl_z=zmin..zmax sets the graphic con�guration (do
not use for interactive scenes)

� gl_xtick=xmark, gl_ytick=ymark, gl_ztick=zmark sets the tick marks for the axes.

� gl_shownames=true or gl_shownames=false shows or hides objects names

� gl_rotation=[x, y, z]: de�nes the rotation axis for the animation rotation of 3-d scenes.

� gl_quaternion=[x, y, z, t]: de�nes the quaternion for the visualization in 3-d scenes (do not
use for interactive scenes)

� a few other OpenGL light con�guration options are available but not described here.

Examples.

� Input:

title="median_line";triangle(-1-i,1,1+i);median_line(-1-i,1,1+i);median_line(1,-1-i,1+i);median_line(1+i,1,-1-i)

Output:
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� Input:

labels=["u","v"];plotfunc(u+1,u)

Output:

7.4 Graph of a function: plotfunc funcplot DrawFunc Graph

7.4.1 2-d graph

The plotfunc command draws the graph of a function.
funcplot is a synonym for plotfunc.

plotfunc can draw the graph of a one-variable function or a two-variable function; this section
will discuss one-variable functions and the next section will discuss two-variable functions.

� plotfunc takes one mandatory argument and two optional arguments:

∗ expr, an expression de�ning a function.

∗ Optionally, var, the variable name (by default x) possibly with bounds. If the variable
is given as var=a..b, the graph will be drawn from a to b, otherwise it will be graphed
over the default interval (see Section 2.5.8 p.58).

∗ Optionally, opt, which can be xstep=n to specify the discretization step or nstep=n to
specify the number of points used to graph.

� plotfunc(expr,var 〈opt〉) draws the graph.
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Examples.

� Input:

plotfunc(x�2-2)

Output:

� Input:

plotfunc(a�2-2,a=-1..2)

Output:

� Input:

plotfunc(x�2-2,x,xstep=5)

Output:
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� Input:

plotfunc(x�2-2,x=-2..3,nstep=30)

Output:

7.4.2 3-d graph

Two variable functions

The plotfunc can draw the graphs of two-variable function.

� plotfunc takes two mandatory argument and two optional arguments:

∗ expr, an expression de�ning a function of two variables or a list of such expressions.

∗ vars, a list of the variable names, possibly with bounds. If the variable is given as
var=a..b, the graph will be drawn for that range of that variable, otherwise it will be
graphed over the default interval (see Section 2.5.8 p.58).

∗ Optionally, xstep, which can be xstep=n to specify the discretization step in the x
direction.

∗ Optionally, ystep, which can be ystep=m to specify the discretization step in the y
direction.

∗ Instead of xstep and ystep, you could use the option nstep=n to specify the number of
points used to graph.

� plotfunc(expr,vars 〈xstep,ystep〉) draws the graph.
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Examples.

� Input:

plotfunc(x�2+y�2,[x,y])

Output:

� Input:

plotfunc(x*y,[x,y])

Output:

� Input:

plotfunc([x*y-10,x*y,x*y+10],[x,y])

Output:
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� Input:

plotfunc(x*sin(y),[x=0..2,y=-pi..pi])

Output:

� As an example where you specify the x and y discretization step with xstep and ystep:
Input:

plotfunc(x*sin(y),[x=0..2,y=-pi..pi],xstep=1,ystep=0.5)

Output:

� Alternatively you can specify the number of points used for the representation of the function
with nstep instead of xstep and ystep.
Input:
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plotfunc(x*sin(y),[x=0..2,y=-pi..pi],nstep=300)

Output:

Remarks:

� Like any 3-d scene, the viewpoint may be modi�ed by rotation around the x axis, the y

axis or the z axis, either by dragging the mouse inside the graphic window (push the mouse
outside the parallelepiped used for the representation), or with the shortcuts x, X, y, Y, z and
Z.

� If you want to print a graph or get a LATEX translation, use the graph menu
MenuIprintIPrint(with Latex)

3-d graph with rainbow colors

If the expression with two variables is purely imaginary, iexpr, then plotfunc will still draw the
graph, but the color will depend on the height z =expr resulting in a rainbow colored surface.
This provides you with an easy way to �nd points having the same third coordinate.

Example.

Input:

plotfunc(i*x*sin(y),[x=0..2,y=-pi..pi])

Output:
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4-d graph

If expr is a complex valued expression whose real part is not identically zero on the discretization
mesh, then plotfunc will draw the surface z =abs(expr), where arg(expr) determines the color
from the rainbow. This gives you an easy way to see the points having the same argument. Note
that if the real part of expr is zero on the discretization mesh, then it will look purely imaginary
to plotfunc and will represented with rainbow colors, as in Section 7.4.2 p.593.

Examples.

� Input:

plotfunc((x+i*y)�2,[x,y])

Output:

� Input:

plotfunc((x+i*y)�2,[x,y], display=filled)

Output:

� You can specify the range of variation of x and y and the number of discretization points.
Input:

plotfunc((x+i*y)�2,[x=-1..1,y=-2..2], nstep=900,display=filled)

Output:
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7.5 2d graph for Maple compatibility: plot

The plot command is a Maple-compatible way to draw the graph of a one-variable function.

� plot takes one mandatory argument and two optional arguments:

∗ func, a function or an expression involving one variable.

∗ Optionally, var the name of the variable in the expression (if func is an expression), which
can also specify a range of values var=a..b (by default it is x). If func is a function, the
optional second argument can simply be a range a..b for the variable.

∗ Optionally, opt, which can be xstep=n to specify the discretization step or nstep=n to
specify the number of points used to graph.

� plot(expr 〈,var, opt〉) draws the graph.

Examples.

� Input:

plot(x�2-2,x)

Output:

� Input:

plot(x�2-2,xstep=1)

or:
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plot(x�2-2,x,xstep=1)

Output:

� Input:

plot(x�2-2,x=-2..3,nstep=30)

Output:

7.6 3d surfaces for Maple compatibility plot3d

The plot3d command is a Maple-compatible way to draw a surface. It can plot the graph of a
function of two variables or a surface given by a parameterization.

To draw the graph of a function:

� plot3d takes three arguments:

∗ func, a function or an expression involving two variables.

∗ x and y, the names of the variable in the expression (if func is an expression) which can
also specify a range of values for each variable.
If func is a function, this argument is optional, and are the ranges a..b for the variables.
If the ranges are not given, the default values are taken from the graph con�guration
(see Section 2.5.8 p.58).

� plot3d(func, x, y) draws the graph.
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Example.

Input:

plot3d(x*y,x,y)

Output:

To draw a parameterized surface:

� plot3d takes one mandatory argument and two optional arguments:

∗ funcs, a list of three functions or three expressions involving two variables.

∗ u and v, the names of the variable in the expression (if funcs is a list of expressions),
which can also specify a range of values for each variable.
If funcs is a list of functions, this argument is optional, and are the ranges a..b for the
variables.
If the ranges are not given, the default values are taken from the graph con�guration
(see Section 2.5.8 p.58).

� plot3d(funcs, u, v) draws the surface.

Examples.

� Input:

plot3d([v*cos(u),v*sin(u),v],u,v)

Output:
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� Input:

plot3d([v*cos(u),v*sin(u),v],u=0..pi,v=0..3)

Output:

7.7 Graph of a line and tangent to a graph

7.7.1 Drawing a line: line

The line command draws and �nds lines in R2 and R3.

For a line in R2:

� line takes one argument:
eqn, a linear equation in the variables x and y.

� line(eqn) draws and returns the line given by the equation.

Examples.

� Input:

line(2*y+x-1=0)

Output:

� Input:
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line(y=1)

Output:

� Input:

line(x=1)

Output:

For a line in R3:

� line takes two arguments:
eqn1 and eqn2, two linear equations in the variables x, y and z.

� line(eqn1,eqn2) draws and returns the line which is the intersection of the planes given by
the equations.

Examples.

� Input:

line(x+2*y+z-1=0,z=2)

Output:
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� Input:

line(y=1,x=1)

Output:

Remark
line de�nes an oriented line:

� When a 2D line is given by an equation, it is rewritten as lhs-rhs= ax + by + c = 0, this
determines its normal vector [a, b] and the orientation is given by the vector [b,−a].

� When a 3D line is given by two plane equations, its direction is de�ned by the cross product
of the normals to the planes.

When the plane equation is rewritten as lhs-rhs= ax+ by+ cz+ d = 0 the normal is [a, b, c].
For example, line(x=y,y=z) draws the line x− y = 0, y − z = 0 and its direction is:

[1,−1, 0]× [0, 1,−1] = [1, 1, 1]

7.7.2 Drawing a 2D horizontal line: LineHorz

The LineHorz command draws a horizontal line in R2.

� LineHorz takes one argument:
a, a number.

� LineHorz(a) draws the horizontal line y = a.
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Example.

Input:

LineHorz(1)

Output:

7.7.3 Drawing a 2D vertical line: LineVert

The LineVert command draws a vertical line in R2.

� LineVert takes one argument:
a, a number.

� LineVert(a) draws the vertical line x = a.

Example.

Input:

LineVert(1)

Output:
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7.7.4 Tangent to a 2D graph: LineTan

The LineTan command draws tangent lines to graphs.

� LineTan takes two arguments:

∗ expr, in the variable x.

∗ x0, a value of x.

� LineTan(expr , x0) draws the tangent at x= x0 to the graph of expr.

Example.

Input:

LineTan(ln(x),1)

Output:

Input:

equation(LineTan(ln(x),1))

Output:

y = (x− 1)

7.7.5 Tangent to a 2D graph: tangent

The tangent command draws tangents to surfaces.

� tangent takes two arguments:

∗ S, the graph of a two-variable function or a geometric object (see chapter 14).

∗ A, a point on S or a number (if S is a graph).

� tangent(S,A) draws tangent(s) to S passing through A.
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Example.

De�ne the function g:
Input:

g(x):=x�2

then the graph G of g and a point A on the graph:
Input:

G:=plotfunc(g(x),x):;

A:=point(1.2,g(1.2)):;

If you want to draw the tangent at the point A to the graph G, you can enter:
Input:

T:=tangent(G, A)

or:

T:=tangent(G, 1.2)

Output:

For the equation of the tangent line, you can enter:
Input:

equation(T)

Output:
y = 2.4x− 1.44

7.7.6 Plotting a line with a point and the slope: DrawSlp

The DrawSlp command can draw a line given a point and a slope.

� DrawSlp takes three arguments:
a, b and m, real numbers.

� DrawSlp(a, b,m) returns and draws the line through the point (a, b) with slope m.
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Example.

Input:

DrawSlp(2,1,-1)

Output:

7.7.7 Intersection of a 2D graph with the axis

You can �nd the intersection of the graph y = f(x) of a function with the axes using the commands
covered so far.

� Finding the intersection of the graph with the y-axis is simply evaluating

f(0),

indeed the point with coordinates (0, f(0)) is the intersection point of the graph of f with
the y-axis.

� Finding the intersection of the graph of f with the x-axis requires solving the equation
f(x) = 0.

∗ If f(x) is polynomial-like, then you can �nd the the exact values of the abscissa of these
points with solve (see Section 5.55.6 p.544).
Input:

solve(f(x), x)

returns the solution.

∗ Otherwise, you can �nd numeric approximations of these abscissa. First, look at the
graph for an initial guess x0 or a range with an intersection and then re�ne it with
fsolve (see Section 10.4 p.729).
Input:

fsolve(f(x), x, x0,method)

returns a numeric approximation of a solution.

7.8 Graphing inequalities with two variables: plotinequation inequationplot

The plotinequation command plots the region of the plane where given inequalities hold.
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� plotinequation takes two arguments:

∗ ineqs, a list of inequalities in two variables.

∗ vars, a list of variables var or variables var=a..b with their ranges of values. Note that if
the ranges are not speci�ed, Xcas takes the default values of X-,X+,Y-,Y+ de�ned in the
general graphic con�guration (CfgIGraphic configuration, see Section 2.5.8 p.58).

� plotinequation( ineqs,vars) draws the points of the plane whose coordinates satisfy the in-
equalities ineqs.

Examples.

� Input:

plotinequation(x�2-y�2<3, [x=-2..2,y=-2..2],xstep=0.1,ystep=0.1)

Output:

� Input:

plotinequation([x+y>3,x�2<y], [x-2..2,y=-1..10],xstep=0.2,ystep=0.2)

Output:

7.9 The area under a curve: area

The area command approximates the area under a graph.
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� area takes four arguments:

∗ expr, an expression f(x).

∗ var=a..b, the variable with a range.

∗ n, a positive integer.

∗ method, the approximation method to use, which can be one of:

· trapezoid
· left_rectangle
· right_rectangle
· middle_point
· simpson
· rombergt (Romberg with the trapezoid method)

· rombergm (Romberg with the midpoint method)

· gauss15 (The 15 point Gaussian quadrature)

� area(expr,var=a..b,n,method) returns an approximation to the area under the graph over
the given interval, using the speci�ed method with n subdivisions (or 2n subdivisions for
rombert, rombergm and gauss15).

Examples.

� Input:

area(x�2,x=0..1,8,trapezoid)

Output:
0.3359375

� Input:

area(x�2,x=0..1,8,rombergm)

Output:
0.333333333333

� Input:

area(x�2,x=0..1,3,gauss15)

Output:
0.333333333333

� Input:

area(x�2,x=0..1)

Output:
1

3

7.10 Graphing the area below a curve: plotarea areaplot

The plotarea command draws the area below a graph.
areaplot is a synonym for plotarea.

� plotarea takes two mandatory arguments and two optional arguments:

∗ expr, an expression representing the function to graph.

∗ var=a..b, the variable and the range of values.
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∗ Optionally, n.

∗ Optionally, method, a method to approximate the region under the graph, which can be
one of:

· trapezoid
· rectangle_left
· rectangle_right
· middle_point

� plotarea(expr,var=a..b) draws and shades the area between the graph of expr and the
y-axis for a < var < b.

� plotarea(expr,var=a..b 〈, n, method〉) draws and shades the region used by the numeric
approximation method method for area between the graph of expr and the y-axis for a < var
< b, when [a, b] is cut into n equal parts, along with the graph in red.

Examples.

� Input:

plotarea(sin(x),x=0..2*pi)

Output:

� Input:

plotarea(x�2,x=0..1,5,trapezoid)

Output:
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Input:

plotarea((x�2,x=0..1,5,middle_point)

Output:

7.11 Contour lines: plotcontour contourplot DrwCtour

The plotcontour command draws contour lines for functions of two variables.
DrwCtour and contourplot are synonyms for plotcontour.

� plotcontour takes two mandatory arguments and one optional argument:

∗ expr, an expression involving two variables.

∗ vars, a list of the two variables.

∗ Optionally, values, a list of values of the contour lines to draw; expr=value, for value in
values (by default, [−10,−8, . . . , 8, 10]).

� plotcontour(expr,vars 〈, values〉) draws the contour lines expr=value for value in values.

Examples.

� Input:

plotcontour(x�2+y�2,[x=-3..3,y=-3..3],[1,2,3],

display=[green,red,black]+[filled$3])

Output:



7.12. 2-D GRAPH OF A 2-D FUNCTION WITH COLORS: PLOTDENSITY DENSITYPLOT 609

� Input:

plotcontour(x�2-y�2,[x,y])

Output:

If you want to draw the surface in 3-d representation, you can use plotfunc (see Section 7.4.2
p.590).
Input:

plotfunc(x�2-y�2,[x,y])

Output:

7.12 2-d graph of a 2-d function with colors: plotdensity densityplot

The plotdensity command draws the graph of a function of two variables in the plane where the
values of z are represented by the rainbow colors.
densityplot is a synonym for plotdensity.

� plotdensity takes two mandatory arguments and three optional arguments:

∗ expr, an expression of two variables.

∗ vars, a list of the variables and their ranges.



610 CHAPTER 7. GRAPHS

∗ Optionally, z=a..b, the range of z to correspond to the full rainbow (by default, it is
deduced from the minimum and maximum value of expr on the discretization.

∗ Optionally, xstep, which can be xstep=n to specify the discretization step in the x
direction.

∗ Optionally, ystep, which can be ystep=m to specify the discretization step in the y
direction.

∗ Instead of xstep and ystep, you could use the option nstep=n to specify the number of
points used to graph.

� plotdensity(expr,vars 〈z=a..b,xstep,ystep〉) draws the graph of expr in the plane where the
values of z are represented by the rainbow colors.

Remark: A rectangle representing the scale of colors will be displayed below the graph.

Example.

Input:

plotdensity(x�2-y�2,[x=-2..2,y=-2..2], xstep=0.1,ystep=0.1)

Output:

7.13 Implicit graph: plotimplicit implicitplot

The plotimplicit command draws curves or surfaces de�ned by an implicit expression or equa-
tion. If the option unfactored is given as the last argument, the original expression is taken
unmodi�ed. Otherwise, the expression is normalized, then replaced by the factorization of the
numerator of its normalization.

Each factor of the expression corresponds to a component of the implicit curve or surface. For
each factor, Xcas tests if it is of total degree less or equal to 2, in which case conic or quadric is
called. Otherwise the numeric implicit solver is called.

Optional step and ranges arguments may be passed to the numeric implicit solver, note that they
are dismissed for each component that is a conic or a quadric.

implicitplot is a synonym for plotimplicit.
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7.13.1 2D implicit curve

For an implicit plot in R2:

� plotimplicit takes three mandatory arguments and three optional arguments:

∗ expr, an expression of two variables implicitly de�ning a curve by expr=0.

∗ vars, a list of the two variables, optionally with their ranges var=a..b. If a range is not
given, the ranges are determined by WX-, WX+ and WY-, WY+ in the graphical con�gura-
tion (see Section 2.5.8 p.58).

∗ Optionally, xstep, which can be xstep=n to specify the discretization step in the x
direction.

∗ Optionally, ystep, which can be ystep=m to specify the discretization step in the y
direction.

∗ Optionally, unfactored.

� plotimplicity(expr,vars 〈xstep,ystep,unfactored〉) draws the graphic representation of the
curve de�ned by the implicit equation expr=0 over the given ranges of the variables.

Examples.

� Input:

plotimplicit(x�2+y�2-1,x,y)

or:

plotimplicit(x�2+y�2-1,x,y,unfactored)

Output:

� Input:

plotimplicit(x�2+y�2-1,x,y,xstep=0.2,ystep=0.3)

or:

plotimplicit(x�2+y�2-1,[x,y],xstep=0.2,ystep=0.3)

or:

plotimplicit(x�2+y�2-1,[x,y], xstep=0.2,ystep=0.3,unfactored)

Output:
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� Input:

plotimplicit(x�2+y�2-1,x=-2..2,y=-2..2, xstep=0.2,ystep=0.3)

Output:

7.13.2 3D implicit surface

For an implicit plot in R2:

� plotimplicit takes four mandatory arguments and three optional arguments:

∗ expr, an expression of three variables implicitly de�ning a curve by expr=0.

∗ xvar, yvar and zvar, the �rst, second and third variables,optionally with their ranges
var=a..b.

∗ Optionally, xstep, which can be xstep=n to specify the discretization step in the x
direction.

∗ Optionally, ystep, which can be ystep=m to specify the discretization step in the y
direction.

∗ Optionally, zstep, which can be zstep=p to specify the discretization step in the y direc-
tion.

∗ Optionally, unfactored.

� plotimplicity(expr,xvar,yvar,zvar 〈xstep,ystep,zstepunfactored〉) draws the graphic repre-
sentation of the surface de�ned by the implicit equation expr=0 over the given ranges of the
variables.
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Examples.

� Input:

plotimplicit(x�2+y�2+z�2-1,x,y,z, xstep=0.2,ystep=0.1,zstep=0.3)

or:

plotimplicit(x�2+y�2+z�2-1,x,y,z, xstep=0.2,ystep=0.1,zstep=0.3,unfactored)

Output:

� Input:

plotimplicit(x�2+y�2+z�2-1,x=-1..1,y=-1..1,z=-1..1)

Output:

7.14 Parametric curves and surfaces: plotparam paramplot DrawParm

The plotparam command draws parametric curves and surfaces.
paramplot and DrawParm are synonyms for plotparam.
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7.14.1 2D parametric curve

To draw a parametric curve in R2:

� plotparam takes two mandatory and one optional argument:

∗ exprs, a list of two real expressions or one complex expression involving the parameter.

∗ var, the parameter, optionally with a range var=a..b. If no range is given, the values of
t- and t+ from the graphics con�guration will be used (see Section 2.5.8 p.58).

∗ Optionally, tstep=n, to set the discretization step.

� plotparam(exprs,var 〈,tstep=n〉) draws the parametric representation of the curve.

Examples.

� Input:

plotparam(cos(x)+i*sin(x),x)

or:

plotparam([cos(x),sin(x)],x)

Output:

� Input:

plotparam(sin(t)+i*cos(t),t=-4..1)

or:

plotparam(sin(x)+i*cos(x),x=-4..1)

or (with t-=4,t+=1 in the graphic con�guration):

plotparam(sin(t)+i*cos(t))

Output:
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Input:

plotparam(sin(t)+i*cos(t),t=-4..1,tstep=0.5)

or (with t-=4,t+=1 in the graphic con�guration):

plotparam(sin(t)+i*cos(t),t,tstep=0.5)

Output:

7.14.2 3D parametric surface: plotparam paramplot DrawParm

To draw a parametric surface in R3:

� plotparam takes two mandatory arguments and two optional arguments:

∗ exprs, a list of three expressions involving two parameters.

∗ vars, a list of the parameters, optionally with a range var=a..b.

∗ Optionally, ustep=n, to set the discretization step of the �rst parameter.

∗ Optionally, vstep=m, to set the discretization step of the second parameter.

� plotparam(exprs,vars 〈,ustep=n,vstep=m〉) draws the parametric representation of the sur-
face.

Examples.

� Input:

plotparam([v*cos(u),v*sin(u),v],[u,v])

Output:

� Input:
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plotparam([v*cos(u),v*sin(u),v],[u=0..pi,v=0..3])

Output:

� Input:

plotparam([v*cos(u),v*sin(u),v],[u=0..pi,v=0..3],ustep=0.5,vstep=0.5)

Output:

7.15 Bezier curves: bezier

The Bezier curve with the control points P0, P1, . . . , Pn is the curve parameterized by
∑n

j=0

(
n,j
t

)j
(1−

t)n−jPj . bezier plots Bezier curves.

� bezier takes an unspeci�ed number of arguments:

∗ controls, a sequence of control points.

∗ plot, the symbol.

� bezier(controls,plot) plots the Bezier curve with the given control points.

Examples.

� Input:

bezier(1,1+i,2+i,3-i,plot)

Output:
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� Input:

bezier(point(0,0,0),point(1,1,0),point(0,1,1),plot)

Output:

To get the parameterization of the curve, you can use the parameq command (see Section 13.13.8
p.841).

Examples.

� Input:

parameq(bezier(1,1+i,2+i,3-i))

Output:
(1− t)3 + 3t (1− t)2 (1 + i) + 3t2 (1− t) (2 + i) + t3 (3− i)

� Input:

parameq(bezier(point([0,0,0]),point([1,1,0]),point([0,1,1])))

Output: [
2t (1− t) , 2t (1− t) + t2, t2

]
7.16 De�ning curves in polar coordinates: plotpolar polarplot

DrawPol courbe_polaire

The plotpolar command draws a curve given in polar coordinates.
polarplot, DrawPol and courbe_polaire are synonyms for plotpolar.
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� polarplot takes two arguments:

∗ expr, an expression involving a variable (which will represent the angle).

∗ var, the variable. This can optionally include the range var=a..b.

∗ Optionally, tstep=n to specify the discretization.

polarplot(expr,var 〈,tstep=n〉) draws the curve de�ned by ρ =expr for θ =var ; in Carte-
sian coordinates that is the curve (expr cosvar),expr sin(var)).

Examples.

� Input

plotpolar(t,t)

Output:

� Input:

plotpolar(t,t,tstep=1)

or:

plotpolar(t,t=0..10,tstep=1)

Output:
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7.17 Graphing recurrent sequences: plotseq seqplot graphe_suite

The plotseq command draws the process of �nding the terms of a recurrent sequence.
seqplot and graphe_suite are synonyms for plotseq.

� plotseq takes :

∗ expr, an expression depending on a variable.

∗ var=a, the variable and a beginning value. (If var=x, then the variable name can be
omitted.) The a value can be replaced by a list of three elements, [a, x−, x+] where
x−..x+ will be passed as the range of the variable for the graph computation.

∗ n, the ending value of the variable.

� plotseq(expr,var=a,n) draws the line y = x, the graph of y =expr, and the n �rst terms of
the recurrent sequence de�ned by: u0 = a, un = f(un−1) where f is the function determined
by expr.

Example.

Input:

plotseq(sqrt(1+x),x=[3,0,5],5)

Output:

7.18 Tangent �eld: plotfield fieldplot

The plotfield command draws the tangent �eld of a di�erential equation or a vector �eld.
fieldplot is a synonym for plotfield.

To draw the tangent �eld of a di�erential equation:

� plotfield takes two mandatory arguments and one optional argument:

∗ expr, an expression depending on two variables, a time variable and a dependent variable.

∗ vars, a list of the two variables [t, y], where t is the time variable and y is the dependent
variable. The variables can optionally include their ranges; [t = a..b, y = c..d].

∗ Optionally, ystep=n to specify the discretization.

� plotfield(expr,vars 〈,ystep=n〉) draws the tangent �eld of the di�erential equation y′ =
f(t, y).
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Example.

Input:

plotfield(4*sin(t*y),[t=0..2,y=-3..7])

Output:

To draw a vector �eld:

� plotfield takes two mandatory arguments and two optional arguments:

∗ V , a list of two expressions involving two variables.

∗ vars, a list of the two variables. The variables can optionally include their ranges
var=a..b.

∗ Optionally, xstep=n to specify the discretization of the �rst variable.

∗ Optionally, ystep=m to specify the discretization of the second variable.

� plotfield(V ,vars 〈,xstep=n,ystep=m〉) draws the vector �eld given by V .

Example.

Input:

plotfield(5*[-y,x],[x=-1..1,y=-1..1])

Output:
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7.19 Plotting a solution of a di�erential equation: plotode odeplot

The plotode command draws solutions of di�erential equations.

� plotode takes three mandatory arguments and one optional argument:

∗ expr an expression depending on two or three variables, a time variable and one or two
dependent variables.

∗ vars, a list of the time variable and the dependent variable. The time variable can
optionally have a range of values, such as t = a..b. The dependent variable can also be
a vector of size two.

∗ init, the initial values of the variables.

∗ Optionally, for when there are two dependent variables, plane, the symbol, to draw the
solution in the plane.

� plotode(expr,vars,init) draws the solution of the di�erential equation y′ =expr (where y is
the dependent variable) passing through the initial point init.

To compute the values of the solutions, see Section 10.3.5 p.725.

Examples.

� Input:

plotode(sin(t*y),[t,y],[0,1])

Output:

� Input:

S:=plotode([h-0.3*h*p, 0.3*h*p-p], [t,h,p],[0,0.3,0.7])

Output:
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� Input (for a 2-d graph in the plane):

S:=odeplot([h-0.3*h*p, 0.3*h*p-p], [t,h,p],[0,0.3,0.7],plane)

Output:

7.20 Interactive plotting of solutions of a di�erential equation:
interactive_plotode interactive_odeplot

The interactive_plotode command draws interactive tangent �elds of di�erential equations.
interactive_odeplot is a synonym for interactive_plotode.

� interactive_plotode takes two arguments:

∗ expr an expression depending on two or three variables, a time variable and one or two
dependent variables.

∗ vars, a list of the time variable and the dependent variable.

� interactive_plotode(expr,vars) draws the tangent �eld of the di�erential equation y′ =expr
(where y is the dependent variable) in a new window. In this window, one can click on a
point to get the plot of the solution of y′ =expr passing through this point.

You can further click to display several solutions. To stop, press the Esc key.

Example.

Input:
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interactive_plotode(sin(t*y),[t,y])

Output:

Solutions of the di�erential equation can be plotted by clicking on an initial point.

7.21 Animated graphs (2D, 3D or "4D")

Xcas can display animated 2D, 3D or "4D" graphs. This is done �rst by computing a sequence
of graphic objects, then after completion, by displaying the sequence in a loop. To stop or start
again the animation, click on the button I| (to the left of Menu).

• 7.21.1 Animation of a 2D graph: animate

The animate command creates two-dimensional animations using graphs of functions depending
on a parameter. (See also Section 7.5 p.595.)

� animate takes three mandatory arguments and two optional arguments:

∗ expr, an expression involving two variables, one of which will be regarded as the param-
eter.

∗ var the name of the (non-parameter) variable in the expression, which can also specify
a range of values var=a..b.

∗ param the name of the parameter, which can also specify a range of values.

∗ Optionally, frames=n, where n is an integer specifying the number of frames.

∗ Optionally, opt, which can be xstep=n to specify the discretization step or nstep=n to
specify the number of points used to graph.

� animate(expr,var,param,frames=n 〈opt〉) draws an animation consisting of graph of the func-
tion as the parameter varies.

Examples.

� animate(sin(a*x),x=-pi..pi,a=-2..2,frames=10,color=red)

Output:
The output is an animation beginning with:
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7.21.2 Animation of a 3D graph: animate3d

The animate3d command creates three-dimensional animations using graphs of functions
depending on a parameter. (See also Section 7.4.2 p.590.)

∗ animate takes three mandatory arguments and two optional arguments:

· expr, an expression involving three variables, one of which will be regarded as the
parameter.

· vars a list of the the (non-parameter) variables in the expression, which can also
specify ranges of values var=a..b.

· param the name of the parameter, which can also specify a range of values.

· Optionally, frames=n, where n is an integer specifying the number of frames.

· Optionally, xstep, which can be xstep=n to specify the discretization step in the x
direction.

· Optionally, ystep, which can be ystep=m to specify the discretization step in the y
direction.

· Instead of xstep and ystep, you could use the option nstep=n to specify the number
of points used to graph.

∗ animate3d(expr,vars,param,frames=n 〈opt,xstep=n, ystep=m〉) draws an animation
consisting of graph of the function as the parameter varies.

Example.

Input:

animate3d(x�2+a*y�2,[x=-2..2,y=-2..2],a=-2..2, frames=10,display=red+filled)

Output:
The output is an animation beginning with:
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7.21.3 Animation of a sequence of graphic objects: animation

The animation command creates animations using sequences of graphic objects, which can
be graphs (see Section 7.4 p.588) or not (see chapters 13 and 14). The sequence of objects
depends most of the time on a parameter and is de�ned using the seq command but it is
not mandatory. To de�ne a sequence of graphic objects with seq, enter the de�nition of the
graphic object (depending on the parameter), the parameter name, its minimum value, its
maximum value maximum and optionally a step value.

∗ animation takes:

· objs, a sequence of graphic objects.

∗ animation(objs) draws an animation consisting of the sequence of objects.

Examples.

∗ Input:

animation(seq(plotfunc(cos(a*x),x),a,0,10))

Output:
The output is an animation beginning with:

∗ Input:

animation(seq(plotfunc(cos(a*x),x),a,0,10,0.5))

or:

animation(seq(plotfunc(cos(a*x),x),a=0..10,0.5))

Output:
The output is an animation beginning with:
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∗ Input:

animation(seq(plotfunc([cos(a*x),sin(a*x)],x=0..2*pi/a), a,1,10))

Output:
The output is an animation beginning with:

∗ Input:

animation(seq(plotparam([cos(a*t),sin(a*t)], t=0..2*pi),a,1,10))

Output:
The output is an animation beginning with:
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FIXME

∗ Input:

animation(seq(plotparam([sin(t),sin(a*t)], t,0,2*pi,tstep=0.01),a,1,10))

Output:
The output is an animation beginning with:

∗ Input:

animation(seq(plotpolar(1-a*0.01*t�2, t,0,5*pi,tstep=0.01),a,1,10))

Output:
The output is an animation beginning with:
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∗ Input:

plotfield(sin(x*y),[x,y]);

animation(seq(plotode(sin(x*y),[x,y],[0,a]),a,-4,4,0.5))

Output:
The output is an animation beginning with:

∗ Input:

animation(seq(display(square(0,1+i*a),filled),a,-5,5))

Output:
The output is an animation beginning with:

∗ Input:

animation(seq(line([0,0,0],[1,1,a]),a,-5,5))
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Output:
The output is an animation beginning with:

∗ Input:

animation(seq(plotfunc(x�2-y�a,[x,y]),a=1..3))

Output:
The output is an animation beginning with:

∗ Input:

animation(seq(plotfunc((x+i*y)�a,[x,y], display=filled),a=1..10)

Output:
The output is an animation beginning with:
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Remark: You can also de�ne the sequence with a program. For example if you want to
draw the segments of length 1,

√
2 . . .
√

20 constructed with a right triangle of side 1 and
the previous segment (note that there is a c:=evalf(..) statement to force approximate
evaluation otherwise the computing time would be too long):
Input:

seg(n):={

local a,b,c,j,aa,bb,L;

a:=1;

b:=1;

L:=[point(1)];

for(j:=1;j<=n;j++){

L:=append(L,point(a+i*b));

c:=evalf(sqrt(a^2+b^2));

aa:=a;

bb:=b;

a:=aa-bb/c;

b:=bb+aa/c;

}

L;

}:;

then:

L:=seg(20); s:=segment(0,L[k])$(k=0..20)

Output:
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then:

animation(s)

The output is an animation displaying the segments one at a time, beginning with:
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Chapter 8

Statistics

8.1 One variable statistics

Xcas has several functions to perform statistics; the data is typically given as a list of numbers,
such as A:= [0,1,2,3,4,5,6,7,8,9,10,11]. This particular list will be used in several
examples. Section 5.45.16 p.468 will discuss statistics on matrices.

8.1.1 The mean: mean

Recall that the mean of a list x1, . . . , xn is simply their numeric average (x1 + · · · + xn)/n.
The mean command �nds the mean of a list.

∗ mean takes one mandatory argument and one optional argument:

· L, a list or matrix of numbers.

· W , a list or matrix of weights, the same size as L.

∗ mean(L 〉W 〈) returns the mean of the list or a list with the means of the columns of the
matrix.

Examples.

∗ Input:

mean([1,2,3,4])

Output:
5

2

since (1 + 2 + 3 + 4)/4 = 5/2.

∗ Input:

mean([[1,2,3],[5,6,7]])

Output:
[3, 4, 5]

since (1 + 5)/2 = 3, (2 + 6)/2 = 4 and (3 + 7)/2 = 5.

∗ Input:

mean([2,4,6,8],[2,2,3,3])

Output:
27

5

since (2 · 2 + 4 · 2 + 6 · 3 + 8 · 3)/(2 + 2 + 3 + 3) = 27/5.

∗ Input:

mean([[1,2],[3,4]],[[1,2],[2,1]])

633



634 CHAPTER 8. STATISTICS

Output: [
7

3
,
8

3

]
since (1 · 1 + 3 · 2)/(1 + 2) = 7/3 and (2 · 2 + 4 · 1)/(2 + 1) = 8/3.

8.1.2 Variance: variance

The variance of a list of numbers measures how close the numbers are to their mean by �nding
the average of the squares of the di�erences between the numbers and the mean; speci�cally,
given a list of numbers [x1, . . . , xn] with mean µ = (x1 + · · ·+ xn)/n, the variance is

(x1 − µ)2 + · · ·+ (xn − µ)2

n
.

The squares help ensure that the numbers above the mean and those below the mean don't
cancel out. The variance command computes the variance.

∗ variance takes one mandatory argument and one optional argument:

· L, a list or matrix of numbers.

· W , a list or matrix of weights, the same size as L.

∗ variance(L 〉W 〈) returns the variance of the list or a list with the variances of the
columns of the matrix.

Examples.

∗ Input:

variance([1,2,3,4])

Output:
5

4

∗ Input:

variance([[1,2,3],[5,6,7]])

Output:
[4, 4, 4]

∗ Input:

variance([2,4,6,8],[2,2,3,3])

Output:
121

25

∗ Input:

variance([[1,2],[3,4]],[[1,2],[2,1]])

Output: [
8

9
,
8

9

]

8.1.3 Standard deviation: stdev

Standard deviation is potentially better than variance to measure how close numbers are to
their mean. The standard deviation is the square root of the variance; for example, the list
[1, 2, 3, 4] has mean 5/2, and so the standard deviation will be 2

√
5/4, since√

(1− 5/2)2 + (2− 5/2)2 + (3− 5/2)2 + (4− 5/2)2

4
=

2
√

5

4
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Note that if the list of numbers have units, then the standard deviation will have the same
unit.

The stddev command �nds the standard deviation.

∗ stddev takes one mandatory argument and one optional argument:

· L, a list or matrix of numbers.

· W , a list or matrix of weights, the same size as L.

∗ stddev(L 〉W 〈) returns the standard deviation of the list or a list with the standard
deviations of the columns of the matrix.

Examples.

∗ Input:

stddev([1,2,3,4])

Output: √
5

2

∗ Input:

stddev([1,2,3],[2,1,1])

Output:
4

16

√
11

∗ Input:

stddev([[1,2],[3,6]])

Output:
[1, 2]

8.1.4 The population standard deviation: stddevp stdDev

Given a large population, rather than collecting all of the numbers it might be more feasible
to get a smaller collection of numbers and try to extrapolate from that. For example, to get
information about the ages of a large population, you might get the ages of a sample of 100
of the people and work with that.

If a list of numbers is a sample of data from a larger population, then the mean of the
sample can be used to estimate the mean of the population. The standard deviation uses
the mean to �nd the standard deviation of the sample, but since the mean of the sample
is only an approximation to the mean of the entire population, the standard deviation of
the sample doesn't provide an optimal estimate of the standard deviation of the population.
An unbiased estimate of the standard deviation of the entire population is given by the
population standard deviation; given a list L = [x1, . . . , xn] with mean µ, the population
standard deviation is

s =

√
(x1 − µ)2 + · · ·+ (xn − µ)2

n− 1
.

Note that
s2 =

n

n− 1
σ2.

where σ is the standard deviation of the sample.

The stddevp command �nds the standard deviation.
stdDev is a synonym for stddevp, for TI compatibility. There is no population variance
function; if needed, it can be computed by squaring the stddevp function.

∗ stddevp takes one mandatory argument and one optional argument:

· L, a list or matrix of numbers.
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· W , a list or matrix of weights, the same size as L.

∗ stddevp(L 〉W 〈) returns the population standard deviation of the list or a list with the
population standard deviations of the columns of the matrix.

Examples.

∗ Input:

stddev([1,2,3,4])

Output: √
5

2

while:
Input:

stddevp([1,2,3,4])

Output: √
15

3

∗ Input:

A:= [0,1,2,3,4,5,6,7,8,9,10,11] stddevp(A,A)

Output: √
66

3

8.1.5 The median: median

Although the average of a list of numbers typically means the mean, there are other notions
of �average�. Another such notion is the median; the median of a list of numbers is the
middle number when they are listed in numeric order. For example, the median of the list
[1, 2, 5, 7, 20] is simply 5. If the length of a list of numbers is even, so there isn't a middle
number, the median is then the mean of the two middle numbers; for example, the median
of [1, 2, 5, 7, 20, 21] is (5 + 7)/2 = 6.

The median function �nds the median of a list.

∗ median takes one mandatory argument and one optional argument:

· L, a list of numbers.

· Optionally, W , a list of positive integers for weights, where the weight of number
represents how many times it is counted in a list.

∗ median(L 〈W 〉) returns the median of the list.

Examples.

∗ Input:

median([1,2,5,7,20])

Output:

5

∗ Input:

median([1,2,5,7,20],[5,3,2,1,2])

Output:

2

since the median of 1, 1, 1, 1, 1, 2, 2, 2, 5, 5, 7, 20, 20 is 2.
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8.1.6 Quartiles: quartiles quartile1 quartile3

Recall that the quartiles of a list of numbers divide it into four equal parts; the �rst quartile
is the number q1 such that one-fourth of the list numbers fall below q1; i.e., the median of
that part of the list which fall at or below the list median. The second quartiles is the number
q2 such that half of the list numbers fall at or below q2; more speci�cally, the median of the
list. And of course the third quartile is the number q3 such that three-fourths of the list
numbers fall at or below q3.

The function quartiles �nds the minimum of a list, the �rst quartile, the second quartile,
the third quartile and the maximum of the list.

∗ quartiles takes one mandatory argument and one optional argument:

· L, a list of numbers.

· Optionally, W , a list of weights.

∗ quartiles(L 〈W 〉) returns a column vector consisting of the minimum, �rst second and
third quartile, and the maximum of L.

The min, quartile1, median, quartile3 and max commands �nd the individual entries of
this list.

Example.

Input:

A:= [0,1,2,3,4,5,6,7,8,9,10,11]; quartiles(A)

Output: 
0.0
2.0
5.0
8.0
11.0


Input:

min(A),quartile1(A),median(A),quartile3(A),max(A)

Output:
0, 2.0, 5.0, 8.0, 11

� Input:

quartiles(A,A)

Output:
[0, 6, 8, 10, 11]

8.1.7 Quantiles: quantile

Similar to quartiles, a quantile of a list is the number q such that a given fraction of the list
numbers fall at or below q. The �rst quartile, for example, is the quantile with the fraction 0.25.

The quantile command �nds quantiles.

� quantile takes two mandatory arguments and one optional argument:

∗ L, a list of numbers.

∗ Optionally, W , a list of weights.

∗ p, a number between 0 and 1.

quantile(L, p) returns the pth quantile of L.



638 CHAPTER 8. STATISTICS

Examples.

� Input:

A:= [0,1,2,3,4,5,6,7,8,9,10,11]

quantile(A,0.1)

Output:

1.0

� Input:

quantile(A,A,0.25)

Output:

6

8.1.8 The boxwhisker: boxwhisker mustache

A boxwhisker is a graphical view of the quartiles of a list of numbers. The boxwhisker consists of
a line segment from the the minimum of the list to the �rst quartile, leading to a rectangle from
the �rst quartile to the third quartile, followed by a line segment from the third quartile to the
maximum of the list. The rectangle contains a vertical segment indicating the median, and the
two line segments will contain vertical lines indicating the �rst and ninth decile.

The boxwhisker command creates a boxwhisker for a list.
mustache is a synonym for boxwhisker.

� boxwhisker takes one argument:
L, a list of numbers.

� boxwhisker(L) draws the boxwhisker for L.

Example.

Input:

boxwhisker([-1,1,2,2.2,3,4,-2,5])

Output:
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8.1.9 Classes: classes

The classes command groups a collection of numbers into intervals.

� classes takes two or three arguments:

∗ L, a list or matrix of numbers.

∗ Optionally, a and b, numbers. (By default, these will be class_min and class_size

from the graphics con�guration, see Section 2.5.8 p.58, which themselves default to 0
and 1.)
or:

∗ Optionally, a and M , where a is the start of the beginning interval and M consists of
the midpoints of the intervals.
or:

∗ Optionally, I, a list of intervals to use.

� classes(L, a, b) returns the list [[a..a+b,n1],[a+b..a+2b,n2],...] where each number
in L is in one of the intervals [a+ kb, a+ (k + 1)b) and nk is how many numbers from L are
in the corresponding interval.

� classes(L, a,M) returns a similar list, but instead of [[a..a+b,n1],[a+b..a+2b,n2],...],
the intervals are determined by a and the list of midpoints M .

� classes(L, I) returns a similar list, but instead of [[a..a+b,n1],[a+b..a+2b,n2],...],
the intervals are given by I. In this case, not every element of L is necessarily in an interval.

Examples.

� Input:

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],0,2)

Output:  0.0 . . . 2.0 4
2.0 . . . 4.0 4
4.0 . . . 6.0 1


� Input:

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],-1,2)

Output:  −1.0 . . . 1.0 2
1.0 . . . 3.0 4
3.0 . . . 5.0 3


� Input:

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],1,[1,3,5])

Output:  0.0 . . . 2.0 4
2.0 . . . 4.0 4
4.0 . . . 6.0 1


� Input:

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],[1..3,3..6])

Output: [
1 . . . 3 4
3 . . . 6 3

]



640 CHAPTER 8. STATISTICS

8.1.10 Histograms: histogram histogramme

Given a list of intervals and a number of points in each interval, such as is given by the output of
the classes command (see Section 8.1.9 p.639), a histogram is a graph consisting of a box over
each interval, where the height of each box is proportional to the number of points and the total
area of the boxes is 1. The histogram command draws histograms. The data can be sorted or
unsorted.
histogramme is a synonym for histogram.

With sorted data:

� histogram takes one argument:
L, a list whose elements lists of a range a..b and a positive integer.

� histogram(L) draws a histogram for the data.

Example.

Input:

histogram([[1.5..1.65,50],[1.65..1.7,20],[1.7..1.8,30]])

Output:

With unsorted data:

� histogram takes one mandatory argument and two optional arguments.

∗ L, a list of numbers.

∗ Optionally, a and b, numbers.

� histogram(L 〈a, b〉) returns the histogram for classes(L 〈a, b〉) (see Section 8.1.9 p.639).

Example.

Input:

histogram([1,2,2.5,2.5,3],0.5,0.75)

Output:
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8.1.11 Accumulating terms: accumulate_head_tail

The accumulate_head_tail command replaces the �rst terms of a list by their sum and the last
terms of a list by their sum.

� accumulate_head_tail takes three arguments:

∗ L, a list of numbers.

∗ n, the number of initial terms to add.

∗ m, the number of end terms to add.

� accumulate_head_tail(L, n,m) returns the list with the n initial terms and m end terms
replaced by their sums.

Example.

Input:

accumulate_head_tail([1,2,3,4,5,6,7,8,9,10],3,4)

Output:

[6, 4, 5, 6, 34]

8.1.12 Frequencies: frequencies frequences

The frequency of a number in a list is the fraction of the list equal to the number. The frequencies
command �nds the frequencies of the numbers in a list.
frequences is a synonym for frequencies.

� frequencies takes one argument:
L, a list of numbers.

� frequencies(L) returns a list whose elements are the numbers in the list and their frequen-
cies.

Example.

Input:

frequencies([1,2,1,1,2,1,2,4,3,3])
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Output: 
1 0.4
2 0.3
3 0.2
4 0.1


You can use this, for example, to simulate �ipping a fair coin and seeing how many times each
side appears; to �ip a coin 1000 times, for example:
Input:

frequencies([rand(2) $ (k=1..1000)])

Output (for example): [
0 0.484
1 0.516

]
(See Section 8.3.1 p.659 for information on rand.)

8.1.13 Cumulative frequencies: cumulated_frequencies frequences_cumulees

Given a list of numbers L, the cumulated frequency at x is the fraction of numbers in the list less
than x. The cumulated_frequencies command plots the cumulated frequency of the numbers in
a list or given by a matrix.

For numbers in a list:

� cumulated_frequencies takes one argument:
L, a list of numbers.

� cumulated_frequencies(L) draws the cumulated frequency of the numbers in L, where if
L is a matrix, each number in the �rst column is repeated the number of times given in the
second column.

For numbers in a matrix:

� cumulated_frequencies takes one argument:
M , a matrix.

� cumulated_frequencies(M) (for a matrix with two columns, whose �rst column consists
of numbers and whose second column consists of positive integers) draws the cumulated
frequency of the numbers in the �rst column, where number in the �rst column is repeated
the number of times given in the second column.

� cumulated_frequencies(M) (for a matrix with more than two columns, whose �rst column
consists of numbers and whose remaining columns consist of positive integers) draws the
cumulated frequencies for the �rst column paired with each remaining column.

� cumulated_frequencies(M) (for a matrix with two columns, whose �rst column consists of
ranges a..b and whose second column consists of positive numbers), will normalize the second
column so the elements add up to 1 and draw the cumulated frequencies where the second
column gives the frequency for the intervals in the �rst column.

Examples.

� Input:

cumulated_frequencies([1,2,1,1,2,1,2,4,3,3])

or:
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cumulated_frequencies([[1,4],[2,3], [3,2], [4,1]])

Output:

� Input:

cumulated_frequencies([[1..2,30],[2..4,40],[4..5,30]])

or:

cumulated_frequencies([[1..2,0.3],[2..4,0.4],[4..5,0.3]])

Output:

� Input:

cumulated_frequencies([[1,4,1],[2,3,4], [3,2,1], [4,1,2]])

Output:

Here, both the distributions given by [[1,4],[2,3], [3,2], [4,1]] and [[1,1],[2,4],

[3,1], [4,2]] are drawn on the same axes.
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8.1.14 Bar graphs: bar_plot

The bar_plot command draws bar graphs.

∗ bar_plot takes one argument:
M , a matrix, where each row consists of a label followed by one or more values. If the
labels are followed by more than one value, then the �rst row needs to be identi�ers.

∗ bar_plot(M) draws a bar graph with a bar for each label, whose height is given by the
corresponding value. If the matrix has more than two columns, then there will be a bar
graph for each column of values.

Examples.

∗ Input:

bar_plot([["France", 6],["Germany", 12], ["Switzerland", 5]])

Output:

∗ Input:

bar_plot([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",6,6]])

Output:

8.1.15 Pie charts: camembert

You can draw pie charts using the same structure as bar graphs.

The camembert command draws pie charts.

∗ camembert takes one argument:
M , a matrix, where each row consists of a label followed by one or more values. If the
labels are followed by more than one value, then the �rst row needs to be identi�ers.

∗ camembert(M) draws a pie chart with a sector for each label, whose size is determined
by the corresponding value. If the matrix has more than two columns, then there will
be a pie chart for each column of values.
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Examples.

∗ Input:

camembert([["France", 6],["Germany", 12], ["Switzerland", 5]])

Output:

∗ Input:

camembert([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",6,6]])

Output:

8.2 Two variable statistics

8.2.1 Covariance and correlation: covariance correlation covariance_correlation

The covariance of two random variables measures their connectedness; i.e., whether they tend
to change with each other. If X and Y are two random variables, then the covariance is the
expected value of (X − X̄)(Y − Ȳ ), where X̄ and Ȳ are the means of X and Y , respectively.
The covariance command calculates covariances.

∗ covariance takes two mandatory and one optional argument:

· X and Y , two lists.

· Optionally, W , a list of weights or a matrix (wjk) where wjk is the weight of the pair
(xj , yk).

If the arguments are all lists, then can be entered as the columns of a single matrix.
If the arguments consist of two lists and a matrix, to make it simpler to enter the data
in a spreadsheet the lists X and Y and the matrix W can be combined into a single
matrix, by augmenting W with the list Y on the top and the transpose of the list X on
the left, with a �ller in the upper left hand corner:(

”XY ” Y
XT W

)
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For this, you have to give covariance a second argument of -1.

� covariance(X,Y 〈,W 〉) returns the covariance of X and Y .

Examples.

� Input:

covariance([1,2,3,4],[1,4,9,16])

or:

covariance([[1,1],[2,4],[3,9],[4,16]])

Output:
25

4

� Input:

covariance([1,2,3,4],[1,4,9,16],[3,1,5,2])

or:

covariance([1,2,3,4],[1,4,9,16],[[3,0,0,0],[0,1,0,0],[0,0,5,0],[0,0,0,2]])

or:

covariance([["XY",1,4,9,16],[1,3,0,5,0],[2,0,1,0,0],[3,0,0,5,0],[4,0,0,0,2]],-1)

Output:
662

121

covariance([["XY", 1,4,9,16],[1,3,0,5,0],[2,0,1,0,0],[3,0,0,5,0],[4,0,0,0,2]],-1)

The linear correlation coe�cient of two random variables is another way to measure their connect-
edness. Given random variables X and Y , their correlation is de�ned as cov(X,Y )/(σ(X)σ(Y )),
cov(X,Y ) is the covariance of X and Y , and σ(X) and σ(Y ) are the standard deviations of X
and Y , respectively.

The correlation command �nds the correlation of two lists and take the same types of arguments
as the covariance command.

� correlation takes two mandatory and one optional argument:

∗ X and Y , two lists.

∗ Optionally, W , a list of weights or a matrix (wjk) where wjk is the weight of the pair
(xj , yk).

If the arguments are all lists, then can be entered as the columns of a single matrix.

If the arguments consist of two lists and a matrix, to make it simpler to enter the data in a
spreadsheet the lists X and Y and the matrix W can be combined into a single matrix, by
augmenting W with the list Y on the top and the transpose of the list X on the left, with a
�ller in the upper left hand corner: (

”XY ” Y
XT W

)
For this, you have to give correlation a second argument of -1.

• correlation(X,Y 〈,W 〉) returns the correlation of X and Y .



8.2. TWO VARIABLE STATISTICS 647

Example.

Input:

correlation([1,2,3,4],[1,4,9,16])

Output:
100

4
√

645

The covariance_correlation command will compute both the covariance and correlation simul-
taneously, and return a list with both values. This command takes the same type of arguments as the
covariance and correlation commands.

• covariance_correlation takes two mandatory and one optional argument:

� X and Y , two lists.

� Optionally, W , a list of weights or a matrix (wjk) where wjk is the weight of the pair (xj , yk).

If the arguments are all lists, then can be entered as the columns of a single matrix.

If the arguments consist of two lists and a matrix, to make it simpler to enter the data in a
spreadsheet the lists X and Y and the matrix W can be combined into a single matrix, by
augmenting W with the list Y on the top and the transpose of the list X on the left, with a �ller
in the upper left hand corner: (

”XY ” Y
XT W

)
For this, you have to give covariance_correlation a second argument of -1.

• covariance_correlation(X,Y 〈,W 〉) returns a list consisting of the covariance and the correla-
tion of X and Y .

Example.

Input:

covariance_correlation([1,2,3,4],[1,4,9,16])

Output: [
25

4
,

100

4
√

645

]

8.2.2 Scatterplots: scatterplot nuaged_points batons

A scatter plot is simply a set of points plotted on axes. The scatterplot command draws scatter plots.
nuage_points is a synonym for scatterplot.

• scatterplot takes two arguments:
xcoords and ycoords, a list of x-coordinates and y-coordinates. You can also combine them into
a matrix with two columns (each list becomes a column of the matrix).

• scatterplot(xcoords,ycoords) draws the points with the given coordinates.



648 CHAPTER 8. STATISTICS

Example.

Input:

scatterplot([[0,0],[1,1],[2,4],[3,9],[4,16]])

or:

scatterplot([0,1,2,3,4],[0,1,4,9,16])

Output:

The batons command will also draw a collection of points, but each point will be connected to the
x-axis with a vertical line segment.

• batons takes two arguments:
xcoords and ycoords, a list of x-coordinates and y-coordinates. You can also combine them into
a matrix with two columns (each list becomes a column of the matrix).

• batons(xcoords,ycoords) draws the points with the given coordinates and connects them to the
x-axis with vertical line segments.

Example.

Input:

batons([[0,0],[1,1],[2,4],[3,9],[4,16]])

Output:
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8.2.3 Polygonal paths: polygonplot ligne_polygonale linear_interpolate listplot
plotlist

The polygonplot command draws a polygonal path through given points.
polygonscatterplot is a synonym for polygonplot.

• polygonplot takes one mandatory argument and one optional argument:

� Optionally, xcoords, a list of x-coordinates. By default, the x-coordinates will be a list of
integers starting at 0.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• polygonplot(〈xcoords,〉 ycoords) draws the polygonal path through the given points, from left to
right (so the points are automatically ordered by increasing x-coordinate).

Examples.

• Input:

polygonplot([0,1,2,3,4],[0,1,4,9,16])

or:

polygonplot([[0,0],[1,1],[2,4],[3,9],[4,16]])

or:

polygonplot([[2,4],[0,0],[3,9],[1,1],[4,16]])

Output:

• Input:

polygonplot([0,1,4,9,16])

Output:
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The listplot draws a polygonal path, but in an order determined by you.
plotlist is a synonym for listplot.

• plotlist takes one argument:
L, a list of points or a list of numbers (which will be taken as y-coordinates, with the x-coordinates
being the integers starting at 0).

• plotlist(L) draws a polygonal path through the points in the order given by the list.

Unlike polygonplot, the listplot command can't be given two lists of numbers as arguments.

Examples.

• Input:

listplot([[2,4],[0,0],[3,9],[1,1],[4,16]])

Output:

• Input:

listplot([0,1,4,9,16])

Output:
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If you want to get coordinates on the polygonal path, you can use the The linear_interpolate

command will �nd coordinates on the polygonal path.

• linear_interpolate takes four arguments:

� M , a two-row matrix consisting of the x-coordinates and the y-coordinates.

� xmin, the minimum value of x that you are interested in.

� xmax, the maximum value of x.

� xstep, the step size that you want.

The values of xmin and xmax must be between the smallest and largest x-coordinates of the points.

• linear_interpolate(M,xmin, xmax, xstep) returns a matrix with two rows, the �rst row will be
[xmin, xmin + xstep, xmin + 2xstep, . . . , xmax]
and the second row will be the corresponding y-coordinates of the points on the polygonal path.

Example.

Input:

linear_interpolate([[1,2,6,9],[3,4,6,12]],2,7,1)

Output: [
2.0 3.0 4.0 5.0 6.0 7.0
4.0 4.5 5.0 5.5 6.0 8.0

]
8.2.4 Linear regression: linear_regression linear_regression_plot

Given a set of points (x0, y0), . . . , (xn−1, yn−1), linear regression �nds the line y = mx + b that comes
closest to passing through all of the points; i.e., that makes√

(y0 − (mx0 + b))2 + · · ·+ (yn−1 − (mxn−1 + b))2

as small as possible. The linear_regression command �nds the linear regression of a set of points.

• linear_regression takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• linear_regression(xcoords,ycoords) returns a sequence m, b of the slope and y-intercept of the
regression line.
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Example.

Input:

linear_regression([[0,0],[1,1],[2,4],[3,9],[4,16]])

or:

linear_regression([0,1,2,3,4],[0,1,4,9,16])

Output:

4,−2

which means that the line y = 4x− 2 is the best �t line.

The linear_regression_plot command draws the best �t line.

• linear_regression_plot takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• linear_regression_plot(xcoords,ycoords) draws the line of best �t through the points. It will
also give you the equation at the top, as well as the R2 value, which is

R2 =

∑n−1
j=0 (mxj + b− ȳ)2∑n−1

j=0 (yj − ȳ)2

(The R2 value will be between 0 and 1 and is one measure of how good the line �ts the data; a
value close to 1 indicates a good �t, a value close to 0 indicates a bad �t.)

Example.

Input:

linear_regression_plot([0,1,2,3,4],[0,1,4,9,16])

Output:
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8.2.5 Exponential regression: exponential_regression exponential_regression_plot

You might expect a set of points to lie on an exponential curve y = bax. The exponential_regression
command �nds the values of a and b which give you the best �t exponential.

• exponential_regression takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• exponential_regression(xcoords,ycoords) returns a sequence a, b of the numbers in the best �t
exponential y = bax.

Example.

Input:

evalf(exponential_regression([[1,1],[2,4],[3,9],[4,16]]))

or:

evalf(exponential_regression([1,2,3,4],[1,4,9,16]))

(where the evalf is used to get a numeric approximation to an exact expression, see Section 5.8.1 p.143).
Output:

2.49146187923, 0.5

so the best �t exponential curve will be y = 0.5 ∗ (2.49146187923)x.

The exponential_regression_plot command draws the best �t exponential.

• exponential_regression_plot takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• exponential_regression_plot(xcoords,ycoords) draws the best �t exponential, and puts the
equation and R2 value above the graph.

Example.

Input:

exponential_regression_plot([1,2,3,4],[1,4,9,16])

Output:
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8.2.6 Logarithmic regression: logarithmic_regression logarithmic_regression_plot

You might expect a set of points to lie on a logarithmic curve y = m ln(x)+b. The logarithmic_regression
command �nds the logarithmic curve of best �t.

• logarithmic_regression takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• logarithmic_regression(xcoords,ycoords) returns a sequence m, b of the numbers in the best �t
logarithmic curve y = m ln(x) + b.

Example.

Input:

evalf(logarithmic_regression([[1,1],[2,4],[3,9],[4,16]]))

or:

evalf(logarithmic_regression([1,2,3,4],[1,4,9,16]))

(where the evalf is used to get a numeric approximation to an exact expression):
Output:

10.1506450002,−0.564824055818

so the best �t logarithmic curve will be y = 10.1506450002 ln(x)− 0.564824055818.

The logarithmic_regression_plot command draws the best �t logarithmic curve.

• logarithmic_regression_plot takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• logarithmic_regression_plot(xcoords,ycoords) draws the best �t logarithmic curve, and puts
the equation and R2 value above the graph.
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Example.

Input:

logarithmic_regression_plot([1,2,3,4],[1,4,9,16])

Output:

8.2.7 Power regression: power_regression power_regression_plot

The power_regression command �nds the graph y = bxm which best �ts a set of data points.

• power_regression takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• power_regression(xcoords,ycoords) returns a sequence m, b of the numbers in the best �t power
equation y = bxm.

Example.

Input:

power_regression([[1,1],[2,4],[3,9],[4,16]])

or:

power_regression([1,2,3,4],[1,4,9,16])

Output:
2.0, 1.0

so the best �t (in this case, exact �t) power curve will be y = 1.0x2.

The power_regression_plot command draws the best �t power function.

• power_regression_plot takes two arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

You can combine two arguments into a matrix with two columns (each list becomes a column of
the matrix).

• power_regression_plot(xcoords,ycoords) draws the best �t power function, and puts the equa-
tion and R2 value above the graph.
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Example.

Input:

power_regression_plot([1,2,3,4],[1,4,9,16])

Output:

Note that in this case the R2 value is 1, indicating that the data points fall directly on the curve.

8.2.8 Polynomial regression: polynomial_regression polynomial_regression_plot

The polynomial_regression command �nds a more general polynomial y = a0x
n+ · · ·+an which best

�ts a set of data points.

• polynomial_regression takes three arguments:

� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

� n, the degree of the polynomial.

You can combine the �rst two arguments into a matrix with two columns (each list becomes a
column of the matrix).

• polynomial_regression(xcoords,ycoords,n) returns the list [an, . . . , a0] of coe�cients of the best
�t polynomial.

Example.

Input:

polynomial_regression([[1,1],[2,2],[3,10],[4,20]],3)

or:

polynomial_regression([1,2,3,4],[1,2,10,20],3)

Output: [
−5

6
,
17

2
,−56

3
, 12

]
so the best �t polynomial will be y = (−5/6)x3 + (17/2)x2 − (56/3)x+ 12.

The polynomial_regression_plot command draws the best �t polynomial.

• polynomial_regression_plot takes three arguments:
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� xcoords, a list of x-coordinates.

� ycoords, a list of y-coordinates.

� n, the degree of the polynomial.

You can combine the �rst two arguments into a matrix with two columns (each list becomes a
column of the matrix).

• polynomial_regression_plot(xcoords,ycoords,n) draws the best �t polynomial of degree n, and
puts the equation and R2 value above the graph.

Example.

Input:

polynomial_regression_plot([1,2,3,4],[1,2,10,20],3)

Output:

8.2.9 Logistic regression: logistic_regression logistic_regression_plot

Di�erential equations of the form y′ = y(a ∗ y + b) come up often, particularly when studying bounded
population growth. With the initial condition y(x0) = y0, the solution is the logistic equation

y =
−b ∗ y0

a ∗ y0− (a ∗ y0 + b) exp(b(x0− x))

However, you often don't know the values of a and b. You can approximate these values given (x0, y0)
and [y′(x0), y′(x0 + 1), . . . , y′(x0 +n− 1)] by taking the initial value y(x0) = y0 and the approximation
y(t+ 1) ≈ y(t) + y′(t) to get the approximations

y(x0 + 1) ≈ y0 + y′(x0)

y(x0 + 2) ≈ y0 + y′(x0) + y′(x0 + 1)

...

y(x0 + n) ≈ y0 + y′(x0) + . . . y′(x0 + n− 1)

Since y′/y = a + by, you can take the approximate values of y′(x0 + j)/y(x0 + j) and use linear
interpolation to get the best �t values of a and b, and then solve the di�erential equation.

The logistic_regression command uses this approach to �nd the best �t logistic equation for
given data.

• logistic_regression takes three arguments:

� L, a list representing [y10, y11, . . . , y1(n−1)], where y1j represents the value of y
′(x0 + j).
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� x0, the initial x value.

� y0, the initial y value.

• logistic_regression(L, x0, y0) returns a list [y, y′, C, ymax, xmax, R, Y ] where y is the logistic
function, y′ is the derivative, C = −b/a, ymax is the maximum value of y′, xmax is where y

′ has its
maximum, R is linear correlation coe�cient R of Y = y′/y as a function of y with Y = a ∗ y + b.

Example.

Input:

logistic_regression([0.0,1.0,2.5],0,1)

Output:

Pinstant=0.132478632479*Pcumul+0.0206552706553

Correlation 0.780548607383, Estimated total P=-0.155913978495

Returning estimated Pcumul, Pinstant, Ptotal, Pinstantmax, tmax, R

[
− 0.155913978495

1 + e−0.0554152581707x+(0.140088513344+3.14159265359i)
,

− 0.00161022271237

1 + cos (−i (−0.0554152581707x+ (0.140088513344 + 3.14159265359i)))
,

− 0.155913978495,−0.000805111356186, 2.52797727501 + 56.6918346552i,

0.780548607383

]
The logistic_regression_plot command draws the best �t logistic equation.

• logistic_regression_plot takes three arguments:

� L, a list representing [y10, y11, . . . , y1(n−1)], where y1j represents the value of y
′(x0 + j).

� x0, the initial x value.

� y0, the initial y value.

• logistic_regression_plot(L, x0, y0) draws the best �t logistic equation.

Example.

Input:

logistic_regression_plot([1,2,4,6,8,7,5],0,2.0)

Output:
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8.3 Random numbers

8.3.1 Producing uniformly distributed random numbers: rand random alea hasard
sample

The rand command produces random numbers, chooses random elements from a list, or creates functions
that produce random numbers.
random and hasard are synonyms for rand.

To produce random real numbers:

• rand takes two optional arguments.

� Optionally, a and b, two real numbers. By default, a = 0 and b = 1.

• rand([a,b]) returns a number in [a, b) randomly and with equal probability.

Examples.

• Input:

rand()

(to produce a random number in [0, 1)). Output (for example):

0.528489416465

• Input:

rand(1,1.5)

(to produce a random number in [1, 1.5)). Output (for example):

1.0012010464

To produce random integers:

• rand takes one argument:
n, an integer.

• rand(n) returns a random integer in [0, n) (or (n, 0] if n is negative).

Example.

Input:

rand(5)

Output (for example):
3

You can then use rand to �nd a random integer in a speci�ed interval; if you want an random integer
between 6 and 10, inclusive, for example, you can enter:
Input:

6 + rand(11-6)

Output (for example):
7

Another way to get a random integer in a speci�ed interval is with the randint command.

• randint takes two arguments:
n1 and n2, two integers.

• randint(n1,n2) returns a random integer between n1 and n2, inclusive.
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Example.

Input:

randint(6,10)

Output (for example):
8

To make a function which produces random numbers:

• rand takes one argument:
a..b, a range with real numbers a and b.

• rand(a..b) returns a function which will generate a random number in the interval from a to b.

Example.

Input:

r:=rand(1.0..2.5):;

r()

Output (for example):
1.68151313369

To choose elements without replacement:

• rand takes two or three arguments:

� p, a positive integer.

� Either: n1 and n2, two integers.

� or: L, a list.

• rand(p, n1, n2) returns a list of p distinct random integers from n1 to n2.

• rand(L) returns p elements without replacement from the list L.

Examples.

• Input:

rand(2,1,10)

Output (for example):
[2, 9]

• Input:

rand(3,["a","b","c","d","e","f","g","h"])

Output (for example):
["e", "g", "a"]

• The list can have repeated elements.
Input:

rand(4,["r","r","r","r","v","v","v"])
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Output (for example):
["r", "v", "v", "r"]

The sample command will also randomly select items from a list without replacement.

• sample takes two arguments:

� L, a list.

� p, an integer.

• sample(L, p) returns a list of p items chosen randomly from L, without replacement.

Note that with the sample command, the list comes �rst and then the integer.

Example.

Input:

sample(["r","r","r","r","v","v","v"],4)

Output (for example):
["v", "v", "v", "r"]

8.3.2 Initializing the random number generator: srand randseed RandSeed

The srand and RandSeed commands initialize (or re-initialize) the random numbers given by rand.
randseed is a synonym for srand.

• srand takes one optional argument:
Optionally, n, an integer.

• srand(n) initializes the random numbers.

• srand (no parentheses) initializes the random numbers using the system clock.

• RandSeed takes one argument:
n, an integer.

• RandSeed(n) initializes the random numbers.

8.3.3 Producing random numbers with the binomial distribution: randbinomial

The randbinomial command �nds random numbers chosen according to the binomial distribution (see
Section 8.4.3 p.677).

• randbinomial takes two arguments:

� n, an integer.

� p, a probability (a number between 0 and 1).

• randbinomial(n, p) returns an integer from 0 to n chosen randomly according to the binomial
distribution with parameters n and p; i.e., the number of successes you might get if you did an
experiment n times, where the probability of success each time is p.

Example.

Input:

randbinomial(100,0.4)

Output:
42
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8.3.4 Producing random numbers with a multinomial distribution: randmultinomial

The randmultinomial command �nds random numbers chosen according to a multinomial distribution
(see Section 8.4.5 p.681).

• randmultinomial takes one mandatory and one optional argument:

� P , a list P = [p0, . . . , pn−1] of n probabilities which add to 1 (representing the probability
that one of several mutually exclusive events occurs).

� Optionally, K, a list of length n.

• randmultinomial(L) returns an index chosen randomly according to the corresponding multino-
mial distribution.

• randmultinomial(L,K) returns an element of K whose index is chosen randomly.

Examples.

• Input:

randmultinomial([1/2, 1/3, 1/6])

Output (for example):

1

• Input:

randmultinomial([1/2, 1/3, 1/6],["R","V","B"])

Output (for example):

"R"

8.3.5 Producing random numbers with a Poisson distribution: randpoisson

Recall that given a number λ > 0, the corresponding Poisson distribution P (λ) satis�es

Prob(X ≤ k) = exp(−λ)λk/k!

It will have mean λ and standard deviation
√
λ. (See also Section 8.4.6 p.681.)

The randpoisson command �nds a random integer according to a Poisson distribution.

• randpoisson takes one argument:
λ, a positive number.

• randpoisson(λ) returns an integer chosen randomly according to the Poisson distribution with
paramter λ.

Example.

Input:

randpoisson(10.6)

Output (for example):

16
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8.3.6 Producing random numbers with a normal distribution: randnorm randNorm

The randnorm command chooses a random number according to a normal distribution.
randNorm is a synonym for randnorm.

• randnorm takes two arguments:

� µ, a real number (the mean).

� σ, a positive real number (the standard deviation).

• randnorm(µ, σ) returns a number chosen randomly according the normal distribution with mean
µ and standard deviation σ.

Example.

Input:

randnorm(2,1)

Output (for example):
3.39283224858

8.3.7 Producing random numbers with Student's distribution: randstudent

The randstudent command �nds random numbers chosen according to Student's distribution (see
Section 8.4.8 p.685).

• randstudent takes one argument:
n, an integer (the degrees of freedom).

• randstudent(n) returns a number chosen randomly according to Student's distribution with n
degrees of freedom.

Example.

Input:

randstudent(5)

Output (for example):
0.268225314184

8.3.8 Producing random numbers with the χ2 distribution: randchisquare

The randchisquare command �nds random numbers chosen according to the χ2 distribution (see
Section 8.4.9 p.687).

• randchisquare takes one argument:
n, an integer (the degrees of freedom).

• randchisquare(n) returns a number chosen randomly according to the χ2 distribution with n
degrees of freedom.

Example.

Input:

randchisquare(5)

Output (for example):
4.53970828547
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8.3.9 Producing random numbers with the Fisher-Snédécor distribution: randfisher

The randfisher command �nds random numbers chosen according to the Fisher-Snédécor distribution
(see Section 8.4.10 p.689).

• randfisher takes two arguments:
n1 and n2, integers (degrees of freedom).

• randfisher(n1, n2) returns a number chosen randomly according to the Fisher-Snédécor distri-
bution with n1 and n2 degrees of freedom.

Example.

Input:

randfisher(2,3)

Output (for example):
2.33137725333

8.3.10 Producing random numbers with the gamma distribution: randgammad

The randgammad command �nds random numbers chosen according to the gamma distribution (see
Section 8.4.11 p.691).

• randgammad takes two arguments:
a and b, positive real numbers (the parameters).

• randgammad(a, b) returns a number chosen randomly according to the gamma distribution with
parameters a and b.

Example.

Input:

randgammad(3,1)

Output (for example):
4.91461463472

8.3.11 Producing random numbers with the beta distribution: randbetad

The randbetad command �nds random numbers chosen according to the beta distribution (see Sec-
tion 8.4.12 p.692).

• randbetad takes two arguments:
a and b, positive real numbers (the parameters).

• randbetad(a, b) returns a number chosen randomly according to the beta distribution with pa-
rameters a and b.

Example.

Input:

randbetad(2,3)

Output (for example):
0.524453873081
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8.3.12 Producing random numbers with the geometric distribution: randgeometric

The randgeometric command �nds random numbers chosen according to the geometric distribution
(see Section 8.4.13 p.694).

• randgeometric takes one argument:
p, a probability (a number between 0 and 1).

• randgeometric(p) returns a number chosen randomly according to the geometric distribution
with probability p.

Example.

Input:

randgeometric(0.2)

Output (for example):

11

8.3.13 Producing random numbers with the exponential distribution: randexp

The randexp command �nds random numbers chosen according to the exponential distribution (see
Section 8.4.15 p.697).

• randexp takes one argument:
λ, a positive real number (the parameter).

• randexp(λ) returns a number chosen randomly according to the exponential distribution with
parameter λ.

Example.

Input:

randexp(2.1)

Output (for example):

0.0288626239833

8.3.14 Random variables: random_variable randvar

The randvar command produces an object representing a random variable. The value(s) can be gener-
ated subsequently by calling sample (see Section 8.3.1 p.659), rand (see Section 8.3.1 p.659), randvector
(see Section 8.3.15 p.673) or randmatrix (see Section 8.3.16 p.674).
random_variable is a synonym for randvar.

• randvar takes a sequence of arguments:
distspec, which speci�es a probability distribution with parameters. The following distributions
are supported:

� Uniform distribution (see Section 8.4.2 p.676)
Arguments:

∗ uniform or uniformd.

∗ a and b, two numbers specifying the end points of a range.
The range can also be speci�ed by a..b or range=a..b.
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� Binomial distribution (see Section 8.4.3 p.677)
Arguments:

∗ binomial.

∗ n, a positive integer.

∗ p, a probability (a number between 0 and 1).

� Negative binomial distribution (see Section 8.4.4 p.679)
Arguments:

∗ negbinomial.

∗ n, a positive integer.

∗ p, a probability (a number between 0 and 1).

� Multinomial distribution (see Section 8.3.4 p.662)
Arguments:

∗ multinomial.

∗ [p0, p1, . . . , pj ], a list of probabilities with p0 + · · ·+ pj = 1.

∗ Optionally, [a0, a1, . . . , aj ], a list of possible return values.

� Normal distribution (see Section 8.4.7 p.683)
Arguments:

∗ normal or normald.

∗ no arguments (for the standard normal distribution) or two numbers µ and σ specifying
the mean and the standard deviation.

� Poisson distribution (see Section 8.4.6 p.681)
Arguments:

∗ poisson.

∗ λ, a positive real number.

� Student's distribution (see Section 8.4.8 p.685)
Arguments:

∗ student.

∗ n, an integer (the degrees of freedom).

� χ2 distribution (see Section 8.4.9 p.687)
Arguments:

∗ chisquare.

∗ n, an integer (the degrees of freedom).

� Fisher-Snédécor distribution (see Section 8.4.10 p.689)
Arguments:

∗ fisher, fisherd, or snedecor.

∗ n1 and n2, integers (the degrees of freedom).

� Gamma distribution (see Section 8.4.11 p.691)
Arguments:

∗ gammad.

∗ a and b, real numbers.

� Beta distribution (see Section 8.4.12 p.692)
Arguments:

∗ betad.

∗ a and b, real numbers.

� Geometric distribution (see Section 8.4.13 p.694)
Arguments:
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∗ geometric.

∗ p, a number between 0 and 1.

� Cauchy distribution (see Section 8.4.14 p.695)
Arguments:

∗ cauchy or cauchyd.

∗ a and b, real numbers.

� Exponential distribution (see Section 8.4.15 p.697)
Arguments:

∗ exp or exponential or exponentiald.

∗ λ, a positive real number.

� Weibull distribution (see Section 8.4.16 p.698)
Arguments:

∗ weibull or weibulld.

∗ k, an integer.

∗ λ, a real number.

� Discrete (categorical) distributions
Arguments:

∗ W = [w1, w2, . . . , wn], a list of nonnegative weights.

∗ Optionally, V = [v1, v2, . . . , vn], a list of values.

or:

∗ [[v1, w1], [v2, w2], . . . , [vn, wn]], a list of of object-weight pairs.

or:

∗ f , a nonnegative function.

∗ a..b or range=a..b with real numbers a and b, a range speci�cation.

∗ Optionally, N , a positive integer or V = [v0, v1, v2, . . . , vn], a list of values with n = b−a
(here a and b have to be integers).

The weights are automatically scaled by the inverse of their sum to obtain the values of
the probability mass function. If a function f is given instead of a list of weights, then
wk = f(a + k) for k = 0, 1, . . . , b − a unless N is given, in which case wk = f(xk) where
xk = a + (k − 1) b−aN and k = 1, 2, . . . , N . The resulting random variable X has values
in {0, 1, . . . , n − 1} for 0-based modes (e.g. xcas) resp. in {1, 2 . . . , n} for 1-based modes
(e.g. maple). If the list V of custom objects is given, then V [X] is returned instead of X. If
N is given, then vk = xk for k = 1, 2, . . . , N .

• The parameters of uniform, normal, Poisson, geometric, exponential, binomial, negative binomial,
beta, gamma, and Weibull distribution can be computed from the �rst and/or second moment
which can be speci�ed by the following arguments:

� mean=µ, to specify a mean of µ.

� stddev=σ, to specify a standard deviation.

� variance=σ2, to specify a variance.

If there is no distribution of the given type that �ts the given moments, an error is returned. Note
that binomial and negative binomial distributions, which depend on an integral parameter, may
not �t the moments exactly.

• randvar(distspec) returns an object representing a random variable.
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Examples.

• De�ne a random variable with a Fisher-Snedecor distribution (two degrees of freedom).
Input:

X:=random_variable(fisher,2,3)

Output:

fisherd (2, 3)

To generate one or more values of X, use the following commands.
Input:

rand(X)

or:

sample(X)

Output:

0.30584514472

Input:

randvector(5,X)

or:

sample(X,5)

Output:

[2.2652, 0.1397, 6.3320, 1.0556, 0.2995]

• De�ne a random variable with multinomial distribution.
Input:

M:=randvar(multinomial,[1/2,1/3,1/6],[a,b,c])

Output:

multinomial,

[
1

2
,
1

3
,
1

6

]
, [a, b, c]

Input:

randvector(10,M)

Output:

[b, b, b, b, b, b, a, a, b, b]

Some continuous distributions can be de�ned by specifying their �rst and/or second moment.
subsubsection*Examples.

• Input:

randvector(10,randvar(poisson,mean=5))
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Output:
[7, 2, 5, 6, 7, 9, 8, 4, 3, 4]

• Input:

randvector(5,randvar(weibull,mean=5.0,stddev=1.5))

Output:
[1.6124, 3.2720, 7.02627, 5.5360, 3.1929]

• Input:

X:=randvar(binomial,mean=18,stddev=4)

Output: (
162
1
9

)
• Input:

X:=randvar(weibull,mean=12.5,variance=1)

Output:
weibulld (3.08574940721, 13.9803128143)

Input:

mean(randvector(1000,X))

Output:
12.5728578447

• Input:

G:=randvar(geometric,stddev=2.5)

Output:
geometric (0.327921561087)

Input:

evalf(stddev(randvector(1000,G)))

Output:
2.57913473863

• Input:

randvar(gammad,mean=12,variance=4)

Output:
gammad (36, 3)

Uniformly distributed random variables can be de�ned by specifying the support as an interval.
Examples:

• Input:
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randvector(5,randvar(uniform,range=15..81))

Output:

[77.0025, 77.7644, 63.2414, 52.0707, 66.3837]

• Input:

rand(randvar(uniform,e..pi))

Output:

3.1010453504

The following examples demonstrate various ways to de�ne a discrete random variable.
Examples:

• Input:

X:=randvar([["apple",1/3],["orange",1/4], ["pear",1/5],["plum",13/60]]):;

randvector(5,X)

Output (for example):

["orange", "apple", "apple", "plum", "apple"]

• Input:

W:=[1,4,5,3,1,1,1,2]:; X:=randvar(W):;

approx(W/sum(W))

Output (for example):

[0.0556, 0.2222, 0.2778, 0.1667, 0.0556, 0.0556, 0.0556, 0.1111]

• Input:

frequencies(randvector(10000,X))

(See Section 8.1.12 p.641.)
Output: 

0 0.0527
1 0.2189
2 0.2791
3 0.1698
4 0.0546
5 0.0557
6 0.059
7 0.1102


• Input:

X:=randvar(k->1-(k/10)�2,range=-10..10):;

histogram(randvector(10000,X),-10,0.33,display=filled)

Output:
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• Input:

X:=randvar([3,1,2,5],[alpha,beta,gamma,delta]):; randmatrix(5,4,X)

Output: 
δ δ β δ
δ γ γ β
α δ α δ
α α γ α
δ δ β δ


Discrete random variables can be used to approximate custom continuous random variables. For

example, consider a probability density function f as a mixture of two normal distributions on the
support S = [−10, 10]. You can sample f in N = 10000 points in S.
Input:

F:=normald(3,2,x)+normald(-5,1,x):;

c:=integrate(F,x=-10..10):;

f:=unapply(1/c*F,x):;

X:=randvar(f,range=-10..10,10000):;

Now generate 25000 values of X and plot a histogram:
Input:

R:=sample(X,25000):;

hist:=histogram(R,-10,0.1):;

PDF:=plot(f(x),display=red+line_width_2):;

hist,PDF

Output:



672 CHAPTER 8. STATISTICS

Sampling from discrete distributions is fast: for instance, generating 25 million samples from the dis-
tribution of X which has about 10000 outcomes takes only couple of seconds. In fact, the sampling
complexity is constant. Also, observe that the process isn't slowed down by spreading it across multiple
calls of randvector.
Input:

for k from 1 to 1000 do randvector(25000,X); od:;

Evaluation time: 2.12

Independent random variables can be combined in an expression, yielding a new random variable.
In the example below, you de�ne a log-normally distributed variable Y from a variable X with standard
normal distribution.
Input:

X:=randvar(normal):; mu,sigma:=1.0,0.5:;

Y:=exp(mu+sigma*X):;

L:=randvector(10000,Y):;

histogram(L,0,0.33)

Output:

It is known that E[Y ] = eµ+σ
2/2. The mean of L should be close to that number.

Input:

mean(L); exp(mu+sigma�2/2)

Output:

3.0789, 3.0802

In case a compound random variable is de�ned as an expression containing several independent
random variables X,Y, . . . of the same type, you sometimes need to prevent its evaluation when passing
it to randvector and similar functions.

Example.

Input:

X:=randvar(normal):; Y:=randvar(normal):;

If you want to generate, for example, the random variable X/Y , you would have to forbid automatic
evaluation of the latter expression; otherwise it would reduce to 1 since X and Y are both normald(0, 1).
Input:

randvector(5,eval(X/Y,0))
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Output (for example):

[−0.358479277895, 5.03004946974,−5.5414073892,−0.885656967277,−2.63689662108]

To save typing, you can de�ne Z with eval(∗, 0) and pass eval(Z, 1) to randvector or randmatrix.
Input:

Z:=eval(X/Y,0):; randvector(5,eval(Z,1))

Output (for example):

[0.404123429613,−4.06194898981, 0.00356038536404, 1.61619003525,−2.85682173195]

Parameters of a distribution can be entered as symbols to allow (re)assigning them at any time.
Input:

purge(lambda):;

X:=randvar(exp,lambda):;

lambda:=1:;

Now execute the following command line several times in a row. The parameter λ is updated in each
iteration.
Input:

r:=rand(X); lambda:=sqrt(r)

Output (by executing the above command line three times):

8.5682, 2.9272
1.5702, 1.2531
0.53244, 0.72968

8.3.15 Make a random vector or list: randvector

The randvector command creates random vectors (see also Section 5.27.28 p.317).

• randvector takes one mandatory argument and one optional argument:

� n, an integer.

� Optionally, X, which can be an integer or a random variable. In place of a random vari-
able, the speci�cations for a distribution can be used. (See Section 8.3.14 p.665 for random
variables and their speci�cations.)

• randvector(n,X) returns a vector of size n containing random integers:

� with no second argument, distributed uniformly between -99 and +99.

� with a second argument of X, distributed uniformly between 0 and k − 1.

� with a second argument the speci�cation of a distribution, distributed according to this
distribution.

Examples.

• Input:

randvector(3)

Output (for example):
[−64,−30, 70]
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• Input:

randvector(3,5)

or:

randvector(3,'rand(5)')

Output (for example):
[2, 4, 2]

• Input:

randvector(3,'randnorm(0,1)')

Output:
[−0.361127118455,−0.018325111754, 1.11875485898]

• Input:

randvector(3,2..4)

Output:
[3.18034843914, 2.48592940345, 2.57507958449]

8.3.16 Producing random matrices: randmatrix ranm randMat

The randmatrix command produces random vectors and matrices. (See also Section 5.27.28 p.317 and
Section 8.3.15 p.673.)
ranm and randMat are synonyms for randmatrix.

• randmatrix takes one mandatory argument and three optional arguments:

� n, an integer.

� Optionally, p, an integer.

� Optionally, a, an integer.

� Optionally, a..b, a range.

� Optionally, distr, a distribution, which can be one of:

∗ 'rand(n)' (see Section 8.3.1 p.659).

∗ 'binomial(n,p)', 'binomial,n,p' or 'randbinomial(n,p)', for a binomial distribu-
tion (see Section 8.4.3 p.677 and Section 8.3.3 p.661).

∗ 'multinomial(P,K)', 'multinomial,P,K' or 'randmultinomial(P,K)' for a multi-
nomial distribution (see Section 8.4.5 p.681 and Section 8.3.4 p.662).

∗ 'poisson(λ)', 'poisson, λ' or 'randpoisson(λ)' for a Poisson distribution (see Sec-
tion 8.4.6 p.681 and Section 8.3.5 p.662).

∗ 'normald(µ,σ)', 'normald,µ,σ' or 'randnorm(µ,σ)' for a normal distribution (see
Section 8.4.7 p.683 and Section 8.3.6 p.663).

∗ 'exp(a)', 'exp,a' or 'randexp(a)' for an exponential distribution (see Section 8.4.15
p.697 and Section 8.3.13 p.665).

∗ 'fisher(n,m)', 'fisher,n,m' or 'rand�sher(n,m)' for a Fisher-Snédécor distribution
(see Section 8.4.10 p.689 and Section 8.3.9 p.664).

Note that distr is in quotes.
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• randmatrix(n) returns a vector of length n whose elements are integers chosen randomly from
[−99,−98, . . . , 98, 99] with equal probability.

• randmatrix(n,p) returns an n × p matrix whose elements are integers chosen randomly from
[−99, 99] with equal probability.

• randmatrix(n,p,a) returns an n × p matrix whose elements are integers chosen randomly from
[0, a) (or (a, 0] is a is negative) with equal probability.

• randmatrix(n,p,a..b) returns an n×p matrix whose elements are real numbers chosen randomly
from [a, b) with equal probability.

• randmatrix(n,p,distr) returns an n × p matrix whose elements are numbers chosen randomly
according to distribution distr.

Examples.

• Input:

randmatrix(5)

Output (for example):
[−48, 54, 28,−51, 63]

• Input:

randmatrix(2,3)

Output (for example): (
40 −74 −87
40 −19 20

)
• Input:

randmatrix(2,3,10)

Output (for example): (
4 2 1
4 4 0

)
• Input:

randmatrix(2,3,0..1)

Output (for example):(
0.384355471935 0.655490326229 0.924850208685
0.159429819323 0.952957109548 0.220945354551

)
• Input:

randmatrix(2,3,'randnorm(2,1)')

Output (for example): (
2.17670501195 0.653882567048 2.94543112983
2.46150672679 2.19251320854 2.44211638655

)
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8.4 Density and distribution functions

8.4.1 Distributions and inverse distributions

Let p(x) be a probability density function, so p(x) ≥ 0 for all x, and for a discrete density function,∑
x∈Z

p(x) = 1

while for a continuous density function, ∫ ∞
−∞

p(x) = 1

The corresponding cumulative distribution function

P (x) = Prob(X ≤ x)

is the probability that a randomly (according to the probability being considered) chosen value is less
than or equal to x. This can be used to �nd the probability that a randomly chosen value is between
two numbers:

Prob(x < X ≤ y) = P (y)− P (x)

Given a value h between 0 and 1, the inverse distribution function for a distribution takes h to the
value of x for which Prob(X ≤ x) = h.

8.4.2 The uniform distribution

The probability density function for the uniform distribution: uniform uniformd

Given two values a and b with a < b, the uniform distribution on [a, b] has density function 1/(b − a)
for x in [a, b]. The uniform (or uniformd) command computes this density function.

• uniform (or uniformd) takes three arguments:

� a and b, real numbers with a < b.

� x, a real number.

• uniform(a, b, x) (or uniformd(a, b, x)) returns the value of the probability density function for
the uniform distribution from a to b, namely 1/(b− a).

Example.

Input:

uniform(2.2,3.5,2.8)

Output:
0.769230769231

The cumulative distribution function for the uniform distribution: uniform_cdf uniformd_cdf

The uniform_cdf command �nds the cumulative distribution function for the uniform distribution.

• uniform_cdf takes three mandatory arguments and one optional argument:

� a and b, real numbers with a < b.

� x, a real number.

� Optionally y, a real number.

• uniform_cdf(a, b, x) returns the value of the cumulative distribution function for the uniform
distribution from a to b, which in this case will be (x− a)/(b− a).

• uniform_cdf(a, b, x, y) returns Prob(x ≤ X ≤ y), which in this case will be (y − x)/(b− a).
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Examples.

• Input:

uniform_cdf(2,4,3.2)

Output:
0.6

• Input:

uniform_cdf(2,4,3,3.2)

Output:
0.1

The inverse distribution function for the uniform distribution: uniform_icdf uniformd_icdf

The uniform_icdf command computes the inverse distribution for the uniform distribution.

• uniform_icdf takes three arguments:

� a and b, real numbers with a < b.

� h, a real number between 0 and 1.

• uniform_icdf(a, b, h) returns the value of the inverse distribution function to the uniform distri-
bution from a to b; namely the value of x for which h = Prob(X ≤ x).

Example.

Input:

uniform_icdf(2,3,.6)

Output:
2.6

8.4.3 The binomial distribution

The probability density function for the binomial distribution: binomial

If you perform an experiment n times where the probability of success each time is p, then the probability
of exactly k successes is:

binomial(n,k,p) = (nk) pk(1− p)n−k (8.1)

This determines the binomial distribution.
The binomial command computes the density function for the binomial distribution.

• binomial takes two mandatory arguments and one optional argument.

� n, a positive integer.

� k, a nonnegative integer less than or equal to n.

� Optionally, p, a probability (a real number between 0 and 1).

• binomial(n,k) returns the binomial coe�cient (nk) (see Section 5.6.2 p.133), same as comb(n,k)

• binomial(n,k,p) returns the probability given by (8.1).
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Examples.

• Input:

binomial(10,2)

or:

comb(10,2)

Output:
45

• Input:

binomial(10,2,0.4)

Output:
0.120932352

The cumulative distribution function for the binomial distribution: binomial_cdf

The binomial_cdf command computes the cumulative distribution function for the binomial distribu-
tion.

• binomial_cdf takes three mandatory arguments and one optional argument:

� n, a positive integer.

� p, a probability (a real number between 0 and 1).

� x, a real number.

� Optionally, y, a real number.

• binomial_cdf(n,p,x) returns

Prob(X ≤ x) = binomial(n, 0, p) + . . .+ binomial(n, �oor(x), p)

• binomial_cdf(n,p,x,y) returns

Prob(x ≤ X ≤ y) = binomial(n, ceil(x), p) + . . .+ binomial(n, �oor(y), p)

Examples.

• Input:

binomial_cdf(4,0.5,2)

Output:
0.6875

• Input:

binomial_cdf(2,0.3,1,2)

Output:
0.51
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The inverse distribution function for the binomial distribution: binomial_icdf

The binomial_icdf command computes the inverse distribution function for the binomial distribution.

• binomial_icdf takes three mandatory arguments and one optional argument:

� n, a positive integer.

� p, a probability (a real number between 0 and 1).

� h, a real number between 0 and 1.

• binomial_icdf(n, p, h) returns the value of the inverse distribution for the binomial distribution
with n trials and probability p; namely, the smallest value of x for which Prob(X ≤ x) ≥ h.

Example.

Input:

binomial_icdf(4,0.5,0.9)

Output:
3

Note that binomial_cdf(4, 0.5, 3)= 0.9375, which is bigger than 0.9, while binomial_cdf(4, 0.5, 2)=
0.6875, which is smaller than 0.9.

8.4.4 The negative binomial distribution

The probability density function for the negative binomial distribution: negbinomial

If you repeatedly perform an experiment with probability of success p, then, given an integer n, the
probability of k failures that occur before you have n successes is given by the negative binomial
distribution, which can be computed by (

n+k−1
k

)
pn(1− p)k. (8.2)

The negbinomial command �nds the density function for the negative binomial distribution.

• negbinomial takes three arguments:

� n and k, integers.

� p, a probability (a real number between 0 and 1).

• negbinomial(n, k, p) returns the value of the negative binomial distribution, given in (8.2).

Example.

Input:

negbinomial(4,2,0.5)

Output:
0.15625

Note that

(nk) =
n!

k!(n− k)!
=
n(n− 1) . . . (n− k + 1)

k!

The second formula makes sense even if n is negative, and you can write

negbinomial(n, k, p) =
(−n
k

)
pn(p− 1)k,

from which the name negative binomial distribution comes from. This also makes it simple to determine
the mean (n(1 − p)/p) and variance (n(1 − p)/p2). The negative binomial is also called the Pascal
distribution (after Blaise Pascal) or the Pólya distribution (after George Pólya).
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The cumulative distribution function for the negative binomial distribution: negbinomial_cdf

The negbinomial_cdf command �nds the cumulative distribution function for the negative binomial
distribution.

• negbinomial_cdf takes three mandatory arguments and two optional arguments:

� n, an integer.

� p, a probability (between 0 and 1).

� x, a number.

� Optionally, y, a number.

• negbinomial_cdf(n,p,x) returns

Prob(X ≤ x) = negbinomial(n, 0, p) + . . .+ negbinomial(n, �oor(x), p).

• negbinomial_cdf(n,p,x,y) returns

Prob(x ≤ X ≤ y) = negbinomial(n, ceil(x), p) + · · ·+ negbinomial(n, �oor(y), p)

Examples.

• Input:

negbinomial_cdf(4,0.5,2)

Output:
0.34375

• Input:

negbinomial_cdf(4,0.5,2,5)

Output:
0.40234375

The inverse distribution function for the negative binomial distribution: negbinomial_icdf

The negbinomial_icdf command gives the inverse distribution function for the negative binomial
distribution.

• negbinomial_icdf takes three arguments:

� n, a positive integer.

� p, a probability (a real number between 0 and 1).

� h, a real number between 0 and 1.

• negbinomial_icdf(n, p, h) returns the value of the inverse distribution for the negative binomial
distribution with n and probability p; namely, the smallest value of x for which Prob(X ≤ x) ≥ h.

Example.

Input:

negbinomial_icdf(4,0.5,0.9)

Output:
8
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8.4.5 The multinomial probability function: multinomial

If X follows a multinomial probability distribution with P = [p0, p1, . . . , pj ] (where p0 + · · · + pj = 1),
then for K = [k0, . . . , kj ] with k0 + · · ·+ kj = n, the probability that X = K is given by

n!

k0!k1! . . . kj !
(pk00 p

k1
1 . . . p

kj
j . (8.3)

The multinomial command computes the density function for the multinomial distribution.

• multinomial takes three arguments:

� n, an integer.

� P = [p0, p1, . . . , pj ], a probability vector (i.e., pk ≥ 0 for all k and p0 + · · ·+ pj = 1).

� K = [k0, . . . , kj ], a list of integers with k0 + · · ·+ kj = n.

• multinomial(n, P,K) returns the probability that X = K, given in (8.3).

You will get an error if k0 + · · ·+ kj is not equal to n, although you won't get one if p0 + · · ·+ pj is not
equal to 1.

Example.

Suppose you make 10 choices, where each choice is one of three items; the �rst has a 0.2 probability of
being chosen, the second a 0.3 probability and the third a 0.5 probability. The probability that you end
up with 3 of the �rst item, 2 of the second and 5 of the third will be:
Input:

multinomial(10,[0.2,0.3,0.5],[3,2,5])

Output:

0.0567

8.4.6 The Poisson distribution

The probability density function for the Poisson distribution: poisson

Recall that for the Poisson distribution with parameter λ, the probability of a non-negative integer k is
e−λλk/k!. This distribution has mean λ and variance λ.

The poisson command gives the density function for the Poisson distribution.

• poisson takes two arguments:

� λ, a real number.

� k, a non-negative integer.

• poisson(λ, k) returns the value of the Poisson density function with parameter λ at x, namely
e−λλk/k!.

Example.

Input:

poisson(10.0,9)

Output:

0.125110035721



682 CHAPTER 8. STATISTICS

The cumulative distribution function for the Poisson distribution: poisson_cdf

The poisson_cdf command computes the cumulative distribution function for the Poisson distribution.

• poisson_cdf takes two arguments:

� µ, a real number.

� x, a real number.

� Optionally, y, a real number.

• poisson_cdf(µ,x) returns

Prob(X ≤ x) = poisson(µ, 0) + . . .+ binomial(µ, �oor(x))

for the Poisson distribution with parameter µ.

• poisson_cdf(µ, x, y) returns

Prob(x ≤ X ≤ y) = poisson(µ, ceil(x)) + . . .+ poisson(µ, �oor(y))

Examples.

• Input:

poisson_cdf(10.0,3)

Output:

0.0103360506759

• Input:

poisson_cdf(10.0,3,10)

Output:

0.580270354477

The inverse distribution function for the Poisson distribution: poisson_icdf

The poisson_icdf command �nds the inverse distribution function for the Poisson distribution.

• poisson_icdf takes three arguments:

� µ, a real number.

� h, a real number between 0 and 1.

• poisson_icdf(µ,h) returns the value of the inverse distribution for the Poisson distribution with
parameter µ; namely, the value of x for which Prob(X ≤ x) = h.

Example.

Input:

poisson_icdf(10.0,0.975)

Output:

17
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8.4.7 Normal distributions

The probability density function for a normal distribution: normald loi_normal

The density function of the normal distribution with mean µ and standard deviation σ at the point x is

normald(µ, σ, x) =
1√
2πσ

e(x−µ)
2/2 (8.4)

The normald (or loi_normal) command �nds the value of this density function.

• normald (or loi_normal) command takes two optional arguments and one mandatory argument:

� Optionally, µ and σ, the mean and standard deviation. (By default, µ = 0 and σ = 1, giving
the standard normal distribution.)

� x, a real number.

• normald([µ, σ,] x) returns the value of the normal density function with parameter µ and stan-
dard deviation σ at the value x, given in (8.4).

Examples.

• Input:

normald(2,1,3)

Output:

e−
1
2

√
2π

• Input:

normald(2)

Output:
1√

2πe2

The cumulative distribution function for normal distributions: normal_cdf normald_cdf

The normal_cdf (or normald_cdf) command computes the cumulative distribution function for the
normal distribution.

• normal_cdf (or normald_cdf) takes three optional arguments and one mandatory argument:

� Optionally, µ and σ, the mean and standard deviation. (By default, µ = 0 and σ = 1, giving
the standard normal distribution.)

� x, a real number.

� Optionally, y, a real number.

• normal_cdf([µ, σ,] x) returns Prob(X ≤ x) for the normal distribution with mean µ and stan-
dard deviation σ.

• normal_cdf([µ, σ,]x,y) returns Prob(x ≤ X ≤ y).
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Examples.

• Input:

normal_cdf(1,2,1.96)

Output:

0.684386303484

• Input:

normal_cdf(1,2.1,1.2)

Output:

0.537937144066

• Input:

normal_cdf(1,2.1,1.2,9)

Output:

0.461993238584

The inverse distribution function for normal distributions: normal_icdf normald_icdf

The normal_icdf (or normald_icdf) command computes the inverse distribution for the normal dis-
tribution.

• normal_icdf (or normald_icdf) takes two optional arguments and one mandatory argument:

� Optionally, µ and σ, the mean and standard deviation. (By default, µ = 0 and σ = 1, giving
the standard normal distribution.)

� h, a real number.

• normal_icdf([µ, σ,] h) returns the inverse distribution for the normal distribution with mean
µ and standard deviation σ; namely, the value of x for which Prob(X ≤ x) = h.

Examples.

• Input:

normal_icdf(0.975)

Output:

1.95996398454

• Input:

normal_icdf(1,2,0.495)

Output:

0.974933060984



8.4. DENSITY AND DISTRIBUTION FUNCTIONS 685

The upper tail cumulative function for normal distributions: UTPN

The UTPN (the Upper Tail Probability - Normal distribution) computes Prob(X > x) for a normal
distribution.

• UTPN takes two optional arguments and one mandatory argument:

� Optionally, µ and σ2, the mean variance deviation. (By default, µ = 0 and σ2 = 1, giving
the standard normal distribution.)
Note: Unlike normald and normal_cdf, the UTPN takes the variance and not the standard
deviation.

� x, a real number.

• UTPN([µ, σ2,] x) returns Prob(X > x), for the normal distribution with mean µ and variance
σ2.

Examples.

• Input:

UTPN(1.96)

Output:
0.0249978951482

•

• Input:

UTPN(1,4,1.96)

Output:
0.315613696516

8.4.8 Student's distribution

The probability density function for Student's distribution: student studentd

Student's distribution (also called Student's t-distribution or just the t-distribution) with n degrees of
freedom has density function given by

student(n, x) =
Γ((n+ 1)/2)

Γ(n/2)
√
nπ

(
1 +

x2

n

)−n−1/2
(8.5)

where recall the Gamma function (see Section 5.8.13 p.153) is de�ned for x > 0 by

Γ(x) =

∫ ∞
0

e−ttx−1dx.

The student command �nds the density function for Student's distribution.
studentd is a synonym for student.

• student takes two arguments:

� n, an integer (the degrees of freedom).

� x, a real number.

student(n, x) returns the value of the density function for Student's distribution with n degrees
of freedom at x, given in (8.5).
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Example.

Input:

student(2,3)

Output:

2
√
π
√

11
2

−1

2
√

2π · 11

which can be numerically approximated by:
Input:

evalf(student(2,3))

Output:
0.0274101222343

The cumulative distribution function for Student's distribution: student_cdf

The student_cdf command computes the cumulative distribution function for Student's distribution.

• student_cdf takes two mandatory arguments and one optional argument.

� n, an integer (the degrees of freedom).

� x, a real number.

� Optionally, y, a real number.

• student_cdf(n, x) returns Prob(X ≤ x) for Student's distribution with n degrees of freedom.

• student_cdf(n, x, y) returns Prob(x ≤ X ≤ y).

Examples.

• Input:

student_cdf(5,2)

Input:
0.949030260585

• Input:

student_cdf(5,-2,2)

Output:
0.89806052117

The inverse distribution function for Student's distribution: student_icdf

The student_icdf command computes the inverse distribution for Student's distribution.

• student_icdf takes two arguments:

� n, an integer (the degrees of freedom).

� h, a real number between 0 and 1.

• student_icdf(n, h) returns the inverse distribution for Student's distribution with n degrees of
freedom; namely, the value of x for which Prob(X ≤ x) = h.
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Example.

Input:

student_icdf(5,0.95)

Output:
2.01504837333

The upper tail cumulative function for Student's distribution: UTPT

The UTPT (the Upper Tail Probability - T distribution) computes Prob(X > x) for Student's distribution.

• UTPT takes two arguments:

� n, an integer (the degrees of freedom).

� x, a real number.

• UTPT(n, x) returns Prob(X > x) for Student's distribution with n degrees of freedom.

Example.

Input:

UTPT(5,2)

Output:
0.0509697394149

8.4.9 The χ2 distribution

The probability density function for the χ2 distribution: chisquare

The χ2 distribution with n degrees of freedom has density function given by

χ2(n, x) =
xn/2−1e−x/2

2n/2Γ(n/2)
(8.6)

The chisquare command computes this density function.

• chisquare takes two arguments:

� n, an integer (the degrees of freedom).

� x, a real number.

• chisquare(n, x) returns the value of the χ2 density function with n degrees of freedom, given in
(8.6).

Example.

Input:

chisquare(5,2)

Output:
2
√

2

e
(
3
4

√
π
√

2 · 22
)

which can be numerically approximated by:
Input:

evalf(chisquare(5,2))

Output:
0.138369165807
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The cumulative distribution function for the χ2 distribution: chisquare_cdf

The chisquare_cdf command computes the cumulative distribution function for the χ2 distribution.

• chisquare_cdf takes two mandatory arguments and one optional argument:

� n, an integer (the degrees of freedom).

� x, a real number.

� Optionally, y, a real number.

• chisquare_cdf(n, x) returns Prob(X ≤ x) for the χ2 distribution with n degrees of freedom.

• chisquare_cdf(n, x, y) returns Prob(x ≤ X < y).

Examples.

• Input:

chisquare_cdf(5,11)

Output:
0.948620016517

• Input:

chisquare_cdf(3,1,2)

Output:
0.22884525243

The inverse distribution function for the χ2 distribution: chisquare_icdf

The chisquare_icdf command computes the inverse distribution for the χ2 distribution.

• chisquare_icdf takes two arguments:

� n, an integer (the degrees of freedom).

� h, a real number between 0 and 1.

• chisquare_icdf(n, h) returns the inverse distribution for the χ2 distribution with n degrees of
freedom; namely, the value of x for which Prob(X ≤ x) = h.

Example.

Input:

chisquare_icdf(5,0.95)

Output:
11.0704976935

The upper tail cumulative function for the χ2 distribution: UTPC

The UTPC (the Upper Tail Probability - Chi-square distribution) computes Prob(X > x) for the χ2

distribution.

• UTPC takes two arguments:

� n, an integer (the degrees of freedom).

� x, a real number.

• UTPC(n, x) returns Prob(X > x) for the χ2 distribution with n degrees of freedom.
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Example.

Input:

UTPC(5,11)

Output:

0.0513799834831

8.4.10 The Fisher-Snédécor distribution

The probability density function for the Fisher-Snédécor distribution: fisher fisherd

snedecor snedecord

The Fisher-Snédécor distribution (also called the F-distribution) with n1 and n2 degrees of freedom has
density function given by, for x ≥ 0,

fisher(n1, n2, x) =
(n1/n2)

n1/2Γ((n1 + n2)/2)

Γ(n1/2)Γ(n2/2)

x(n1−2)/2

(1 + (n1/n2)x)(n1+n2)/2
(8.7)

The fisher command computes this density function.
fisherd, snedecor and snedecord are synonyms for fisher.

• fisher takes three arguments:

� n1 and n2, integers (the degrees of freedom).

� x, a non-negative real number.

• fisher(n1, n2, x) returns the value of the Fisher-Snédécor density function with n1 and n2 degrees
of freedom, given in (8.7).

Example.

Input:

fisher(5,3,2.5)

Output:

0.10131184472

The cumulative distribution function for the Fisher-Snédécor distribution: fisher_cdf

snedecor_cdf

The fisher_cdf (or snedecor_cdf) command computes the cumulative distribution function for the
Fisher-Snédécor distribution.

• �sher_cdf takes three mandatory arguments and one optional argument:

� n1 and n2, integers (the degrees of freedom).

� x, a real number.

� Optionally, y, a real number.

• fisher_cdf(n1, n2, x) returns Prob(X ≤ x) for the Fisher-Snédécor distribution with n1 and n2
degrees of freedom

• fisher_cdf(n1, n2, x, y) returns Prob(x ≤ X < y).
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Examples.

• Input:

fisher_cdf(5,3,9)

Output:

β

(
5

2
,
3

2
,
15

16
, 1

)
(See Section 5.8.16 p.156.)
This can be numerically approximated with:
Input:

evalf(fisher_cdf(5,3,9))

Output:
0.949898927032

• Input:

evalf(fisher_cdf(5,3,9,10))

Output:
0.0066824173023

The inverse distribution function for the Fisher-Snédécor distribution: fisher_icdf snedecor_icdf

The fisher_icdf (or snedecor_icdf) command computes the inverse distribution for the Fisher-
Snédécor distribution.

• �sher_icdf takes three arguments:

� n1 and n2, integers (the degrees of freedom).

� h, a real number between 0 and 1.

• fisher_icdf(n1, n2, h) returns the inverse distribution for the Fisher-Snédécor distribution with
n1 and n2 degrees of freedom; namely, the value of x for which Prob(X ≤ x) = h.

Example.

Input:

fisher_icdf(5,3,0.95)

Output:
9.01345516752

The upper tail cumulative function for the Fisher-Snédécor distribution: UTPF

The UTPF (the Upper Tail Probability - Fisher-Snédécor distribution) computes Prob(X > x) for the
Fisher-Snédécor distribution.

• UTPF takes three arguments:

� n1 and n2, integers (the degrees of freedom).

� x, a real number.

• UTPF(n1, n2, x) returns Prob(X > x) for the Fisher-Snédécor distribution with n1 and n2 degrees
of freedom.
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Example.

Input:

UTPF(5,3,9)

Output:

0.050101072968

8.4.11 The gamma distribution

The probability density function for the gamma distribution: gammad

The gamma distribution depends on two parameters, a > 0 and b > 0; the value of the density function
at x ≥ 0 is

gammad(a, b, x) = xa−1e−bxba/Γ(a) (8.8)

The gammad command computes this density function.

• gammad takes three arguments:

� a and b, positive real numbers (the parameters).

� x, a real number.

• gammad(a, b, x) returns the value of the gamma density function with parameters a and b, given
in (8.8).

Example.

Input:

gammad(2,1,3)

Output:
3

e3

The cumulative distribution function for the gamma distribution: gammad_cdf

The gamma_cdf command computes the cumulative distribution function for the gamma distribution.

• gamma_cdf takes three mandatory arguments and one optional argument:

� a and b, real numbers (the parameters).

� x, a real number.

� Optionally, y, a real number.

• gamma_cdf(a, b, x) returns Prob(X ≤ x) for the gamma distribution with parameters a and b.

• gamma_cdf(n, x, y) returns Prob(x ≤ X ≤ y).

It turns out that

gammad_cdf(n, x) = igamma(a, bx, 1)

where igamma is the incomplete gamma function (see Section 5.8.15 p.155),

igamma(a, x, 1) =

∫ x

0
e−tta−1dt/Γ(a).
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Examples.

• Input:

gammad_cdf(2,1,0.5)

Output:

0.090204010431

• Input:

gammad_cdf(2,1,0.5,1.5)

Output:

0.351970589198

The inverse distribution function for the gamma distribution: gammad_icdf

The gammad_icdf command computes the inverse distribution for the gamma distribution.

• gamma_icdf takes three arguments:

� a and b, numbers (the parameters).

� h, a real number between 0 and 1.

• gamma_icdf(a, b, h) returns the inverse distribution for the gamma distribution with parameters
a and b; namely, the value of x for which Prob(X ≤ x) = h.

Example.

Input:

gammad_icdf(2,1,0.5)

Output:

1.67834699002

8.4.12 The beta distribution

The probability density function for the beta distribution: betad

The beta distribution depends on two parameters, a > 0 and b > 0; the value of the density function at
x in [0, 1] is

betad(a, b, x) = Γ(a+ b)xa−1(1− x)b−1/(Γ(a)Γ(b)) (8.9)

(see Section 5.8.13 p.153).
The betad command computes the density function for the beta distribution.

• betad takes three arguments:

� a and b, positive numbers, the parameters.

� x, a real number.

• betad(a, b, x) returns the value of the density function for the beta distribution with parameters
a and b, given in (8.9).
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Example.

Input:

betad(2,1,0.3)

Output:

0.6

The cumulative distribution function for the beta distribution: betad_cdf

The betad_cdf command computes the cumulative distribution function for the beta distribution.

• beta_cdf takes three mandatory arguments and one optional argument:

� a and b, real numbers (the parameters).

� x, a real number.

� Optionally, y, a real number.

• betad_cdf(a, b, x) returns Prob(X ≤ x) for the beta distribution with parameters a and b.

• beta_cdf(n, x, y) returns Prob(x ≤ X ≤ y).

It turns out that

betad_cdf(a, b, x) = β(a, b, x)Γ(a+ b)/(Γ(a)Γ(b))

where β(a, b, x) =
∫ x
0 t

a−1(1− t)b−1dt (see Section 5.8.16 p.156).

Examples.

• Input:

betad_cdf(2,3,0.2)

Output:

0.1808

• Input:

betad_cdf(2,3,0.25,0.5)

Output:

0.42578125

The inverse distribution function for the beta distribution: betad_icdf

The betad_icdf command computes the inverse distribution for the beta distribution.

• beta_icdf takes three arguments:

� a and b, real numbers (the parameters).

� h, a real number between 0 and 1.

• beta_icdf(a, b, h) returns the inverse distribution for the beta distribution with parameters a
and b; namely, the value of x for which Prob(X ≤ x) = h.
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Example.

Input:

betad_icdf(2,3,0.2)

Output:

0.212317128278

8.4.13 The geometric distribution

The probability density function for the geometric distribution: geometric

If an experiment with probability of success p is iterated, the probability that the �rst success occurs
on the kth trial is (1− p)k−1p. This gives the geometric distribution (with parameter p) on the natural
numbers. Given such a p, the geometric density function at n is given by

geometric(p, n) = (1− p)n−1p (8.10)

The geometric command computes this density function.

• geometric takes two arguments:

� p, a probability (a number between 0 and 1).

� x, a real number.

geometric(p, x) returns the value of the geometric density function with probability p, given in
(8.10).

Example.

Input:

geometric(0.2,3)

Output:

0.128

The cumulative distribution function of the geometric distribution: geometric_cdf

The geometric_cdf command computes the cumulative distribution function for the geometric distri-
bution.

• geometric_cdf takes three mandatory arguments and one optional argument:

� p, a probability (a number between 0 and 1).

� n, a natural number.

� Optionally, k, a natural number.

• betad_cdf(p, n) returns Prob(X ≤ n) for the geometric distribution with probability p.

• beta_cdf(p, n, k) returns Prob(n ≤ X ≤ k).

It turns out that geometric_cdf(p, n) = 1− (1− p)n.
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Examples.

• Input:

geometric_cdf(0.2,3)

Output:

0.488

• Input:

geometric_cdf(0.2,3,5)

Output:

0.31232

The inverse distribution function for the geometric distribution: geometric_icdf

The geometric_icdf command computes the inverse distribution for the geometric distribution.

• geometric_icdf takes two arguments:

� p, a probability (a number between 0 and 1).

� h, a real number between 0 and 1.

• geometric_icdf(a, b, h) returns the inverse distribution for the geometric distribution with prob-
ability p; namely, the smallest natural number n for which Prob(X ≤ n) ≥ h.

Example.

Input:

geometric_icdf(0.2,0.5)

Output:

4

8.4.14 The Cauchy distribution

The probability density function for the Cauchy distribution: cauchy cauchyd

The cauchy (or cauchyd) command computes the probability density function for the Cauchy distribu-
tion (sometimes called the Lorentz distribution).

• cauchy takes two optionaly arguments and one mandatory argument:

� Optionally, a and b, real numbers (the parameters; by default a = 0 and b = 1).

� x, a real number.

• cauchy([a, b, ]x) returns the value of the density function at x; namely, cauchy(a, b, x) = b/(π((x−
a)2 + b2)).
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Examples.

• Input:

cauchy(2.2,1.5,0.8)

Output:

0.113412073462

• Input:

cauchy(0.3)

Output:

0.292027418517

The cumulative distribution function for the Cauchy distribution: cauchy_cdf cauchyd_cdf

The cauchy_cdf (or cauchyd_cdf) command computes the cumulative distribution function for the
Cauchy distribution.

• cauchy_cdf (or cauchyd_cdf) takes three optional arguments and one mandatory argument:

� Optionally, a and b, the parameters (by default, a = 0 and b = 1).

� x, a real number.

� Optionally, y, a real number.

• cauchy_cdf([a, b, ]x) returns Prob(X ≤ x) for the Cauchy distribution with parameters a and b.

• cauchy_cdf([a, b, ]x, y) returns Prob(x ≤ X ≤ y).

It turns out that cauchy_cdf(a, b, x) = 1/2 + arctan((x− a)/b)/π.

Examples.

• Input:

cauchy_cdf(2,3,1.4)

Output:

0.437167041811

• Input:

cauchy_cdf(1.4)

Output:

0.802568456711

• Input:

cauchy_cdf(2,3,-1.9,1.4)

Output:

0.228452641651
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The inverse distribution function for the Cauchy distribution: cauchy_icdf cauchyd_icdf

The cauchy_icdf (or cauchyd_icdf) command computes the inverse distribution for the Cauchy dis-
tribution.

• cauchy_icdf (or cauchyd_icdf) takes two optional arguments and one mandatory argument:

� Optionally, a and b, parameters (by default, a = 0 and b = 1).

� h, a real number between 0 and 1.

• cauchy_icdf([a, b,] h) returns the inverse distribution for the Cauchy distribution with param-
eters a and b; namely, the value of x for which Prob(X ≤ x) = h.

Example.

cauchy_icdf(2,3,0.23)

Output:
−1.40283204777

8.4.15 The exponential distribution

The probability density function for the exponential distribution: exponential exponentiald

The exponential distribution depends on one parameters, λ > 0; the value of the density function at x ≥
0 is exponential(λ, x) = λe−λx. The exponential command computes the exponential distribution.
exponentiald is a synonym for exponential.

• exponential takes two arguments:

� λ, a positive number (the parameter).

� x, a positive number.

• exponential(λ, x) returns the value of the exponential density function with parameter λ at x;
namely, exponential(λ, x) = λe−λx.

Example.

exponential(2.1,3.5)

Output:
0.00134944395675

The cumulative distribution function for the exponential distribution: exponential_cdf

exponentiald_cdf

The exponential_cdf (or exponentiald_cdf) command computes the cumulative distribution function
for the exponential distribution.

• exponential_cdf (or exponentiald_cdf) takes two arguments:

� λ, a positive number (the parameter).

� x, a positive number.

• exponential_cdf(λ, x) returns Prob(X ≤ x) for the exponential distribution with parameter λ.

• exponential_cdf(λ, x, y) returns Prob(x ≤ X ≤ y).
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Examples.

• Input:

exponential_cdf(2.3,3.2)

Output:
0.99936380154

• Input:

exponential_cdf(2.3,0.9,3.2)

Output:
0.125549583246

The inverse distribution function for the exponential distribution: exponential_icdf exponentiald_icdf

The exponential_icdf (or exponentiald_icdf) command computes the inverse distribution for the
exponential distribution.

• exponential_icdf (or exponentiald_icdf) takes two arguments:

� λ, a positive number (the parameter).

� h, a positive real number.

• exponential_icdf(λ, h) returns the inverse distribution for the exponential distribution with
parameter λ; namely, the value of x for which Prob(X ≤ x) = h.

Example.

Input:

exponential_icdf(2.3,0.87)

Output:
0.887052534142

8.4.16 The Weibull distribution

The probability density function for the Weibull distribution: weibull weibulld

The Weibull distribution depends on three parameters; k > 0, λ > 0 and a real number θ. The
probability density at x is given by

k

λ
(
x− θ
λ

)2e−((x−θ)λ)
2

(8.11)

The weibull (or weibulld) command compute this density function.
weibulld is a synonym for weibull.

• weibull takes three mandatory and one optional argument:

� k, a positive integer.

� λ, a positive real number.

� Optionally θ, a real number (by default 0).

� x, a real number.

• weibull(k, λ[, θ], x) returns the value of the Weibull density function, given in (8.11).
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Example.

Input:

weibull(2,1,3)

or:

weibull(2,1,0,3)

Output:
6

e9

The cumulative distribution function for theWeibull distribution: weibull_cdf weibulld_cdf

The weibull_cdf (or weibulld_cdf) command computes the cumulative distribution function for the
Weibull distribution.

• weibull_cdf (or weibulld_cdf) takes three mandatory arguments and two optional arguments:

� k, a positive integer.

� λ, a positive real number.

� Optionally θ, a real number (by default 0).

� x, a real number.

� Optionally, y, a real number. If this optional argument is included, then θ must also be
included.

• weibull_cdf([k, ]λ[, θ], x) returns Prob(X ≤ x) for the Weibull distribution with parameters k, λ
and θ.

• weibull_cdf([k, ]λ, θ, x, y) returns Prob(x ≤ X ≤ y).

In this case, the Weibull cumulative distribution function is given by the formula weibull_cdf(k, λ, θ, x) =
1− e−((x−θ)/λ)2 .

Examples.

• Input:

weibull_cdf(2,3,5)

or:

weibull_cdf(2,3,0,5)

Output:

1− e−
25
9

• Input:

weibull_cdf(2.2,1.5,0.4,1.9)

Output:
0.632120558829

• Input:

weibull_cdf(2.2,1.5,0.4,1.2,1.9)

Output:
0.410267239944
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The inverse distribution function for the Weibull distribution: weibull_icdf weibulld_icdf

The weibull_icdf (or weibulld_icdf) command computes the inverse distribution for the Weibull
distribution.

• weibull_icdf (or weibulld_icdf) takes three mandatory arguments and one optional argument:

� k, a positive integer.

� λ, a positive real number.

� Optionally θ, a real number (by default 0).

� h, a real number between 0 and 1.

• weibull_icdf(k, λ[, θ], h) returns the inverse distribution for the Weibull distribution with pa-
rameters k, λ and θ; namely, the value of x for which Prob(X ≤ x) = h.

Example.

Input:

weibull_icdf(2.2,1.5,0.4,0.632)

Output:
1.89977657604

8.4.17 The Kolmogorov-Smirnov distribution: kolmogorovd

The density function for the Kolmogorov-Smirnov distribution is given by

kolmogorovd(x) = 1− 2

∞∑
k=1

(−1)k−1e−k
2x2 (8.12)

The kolmogorovd command computes this density function.

• kolmogorovd takes one arguments:
x, a real number.

• kolmogorovd(x) returns the density function of the Kolmogorov-Smirnov distribution at x, given
by (8.12).

Example.

Input:

kolmogorovd(1.36)

Output:
0.950514123245

8.4.18 The Wilcoxon or Mann-Whitney distribution

The Wilcoxon test polynomial: wilcoxonp

The wilcoxonp command computes the polynomial for the Wilcoxon or Mann-Whitney test.

• wilcoxonp takes one mandatory argument and one optional argument:

� n, an integer.

� Optionally, k an integer.

• wilcoxonp(n[, k] returns the polynomial for the Wilcoxon test.
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Examples.

• Input:

wilcoxonp(4)

Output:

[]
1

16
,

1

16
,

1

16
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,

1

16
,

1

16
,

1

16
[]

• Input:

wilcoxonp(4,3)

Output:

[]
1

35
,

1

35
,

2

35
,

3

35
,

4

35
,

4

35
,
1

7
,

4

35
,

4

35
,

3

35
,

2

35
,

1

35
,

1

35
[]

The Wilcoxon/Mann-Whitney statistic: wilcoxons

The wilcoxons command computes the Wilcoxon or Mann-Whitney statistic.

• wilcoxons takes two arguments:

� L, a list.

� M , either a list or a real number (a median).

• wilcoxons(L,M) returns the Wilcoxon statistic.

Examples.

• Input:

wilcoxons([1,3,4,5,7,8,8,12,15,17],10)

Output:

18

• wilcoxons([1,3,4,5,7,8,8,12,15,17],[2,6,10,11,13,14,15,18,19,20])

Output:

128.5

The Wilcoxon or Mann-Whitney test: wilcoxont

The wilcoxont command will perform the Wilcoxon or Mann-Whitney test.

• wilcoxont takes two mandatory arguments and two optional arguments:

� L, a sample (list).

� M , either another sample or a number (a median).

� Optionally, f , a function.

� Optionally, x, a real number.

• wilcoxont(L,M 〈, f, x〉) returns the results of the Wilcoxon test.
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Examples.

• Input:

wilcoxont([1,2,3,4,5,7,8,8,12,15,17],[2,6,10,11,13,14,15,18,19,20])

Output:

Mann-Whitney 2-sample test, H0 same Median, H1 <>

ranksum 93.0, shifted ranksum 27.0

u1=83 ,u2=27, u=min(u1,u2)=27

Limit value to reject H0 26

P-value 9055/176358 (0.0513444244094), alpha=0.05 H0 not rejected

1

• Input:

wilcoxont([1,3,4,5,7,8,8,12,15,17],[2,6,10,11,13,14,15,18,19,20],0.3)

Output:

Mann-Whitney 2-sample test, H0 same Median, H1 <>

ranksum 81.5, shifted ranksum 26.5

u1=73.5 ,u2=26.5, u=min(u1,u2)=26.5

Limit value to reject H0 35

P-value 316/4199 (0.0752560133365), alpha=0.3 H0 rejected

0

• Input:

wilcoxont([1,3,4,5,7,8,8,12,15,17] ,10,`>`,0.05)

Output:

Wilcoxon 1-sample test, H0 Median=10, H1 M<>10

Wilcoxon statistic: 18, p-value: 0.375, confidence level: 0.05

1

8.4.19 Moment generating functions for probability distributions: mgf

The mgf command �nds the moment generating function for a probability distribution (such as normal,
binomial, poisson, beta, gamma).

• mgf takes one or more mandatory arguments:

� distd, the name of the function that �nds the distribution's density function.

� parameters, any parameters that would normally be passed to distd.

• mgf(distd,parameters) returns an expression for the moment generating function for distd with
parameters parameters.
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Examples.

• Find the moment generating function for the standard normal distribution.
Input:

mgf(normald,1,0)

Output:

et

• Input:

mgf(binomial,n,p)

Output: (
1− p+ pet

)n
8.4.20 Cumulative distribution functions: cdf

The cdf command �nds the cumulative distribution function for a probability distribution.

• cdf takes one or more mandatory arguments and one optional argument.

� distd, the name of the function that �nds the distribution's density function.

� parameters, any parameters that would normally be passed to distd.

� x, a number.

• cdf(distd,parameters) returns an expression for the cumulative distribution function for distd
with parameters parameters.

• cdf(distd,parameters,x) returns the value of the cumulative distribution function at x. parameters.

Examples.

• Input:

cdf(normald,0,1)

Output:

erf
(
1
2x
√

2
)

+ 1

2

• Input:

cdf(binomial,10,0.5,4)

Output:

0.376953125
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8.4.21 Inverse distribution functions: icdf

The icdf command �nds the inverse cumulative distribution function for a probability distribution.

• cdf takes one or more mandatory arguments and one optional argument.

� distd, the name of the function that �nds the distribution's density function.

� parameters, any parameters that would normally be passed to distd.

� x, a number.

• icdf(distd,parameters) returns an expression for the inverse cumulative distribution function for
distd with parameters parameters.

• icdf(distd,parameters,x) returns the value of the inverse cumulative distribution function at x.
parameters.

Example.

Input:

icdf(normald,0,0.5,0.975)

Output:

0.97998199227

8.4.22 Kernel density estimation: kernel_density kde

The kernel_density command performs kernel density estimation (KDE)1 kernel_density takes a
sample, optionally restricted to an interval [a, b], and obtains an estimate f̂ of the (unknown) probability
density function f from which the samples are drawn. The function f̂ is de�ned by:

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (8.13)

where K is the Gaussian kernel

K(u) =
1√
2π

exp

(
−1

2
u2
)

and h is the positive real parameter called the bandwidth.
kde is a synonym for kernel_density.

• kernel_density takes one mandatory argument and an unspeci�ed number of optional arguments:

� L, a list of samples L = [X1, X2, . . . , Xn].

� Optionally, a sequence of options from:

∗ output=type (or Output=type to specify the form of the return value f̂ , where type can
be one of:

· exact, to return f̂ as the sum of Gaussian kernels, i.e. as the right side of (8.13),
which is usable only when the number of samples is relatively small (up to few
hundreds).

· piecewise, to return f̂ as a piecewise expression obtained by the spline interpolation
of the speci�ed degree (by default, the interpolation is linear) on the interval [a, b]
segmented to the speci�ed number of bins.

1For the details on kernel density estimation and its implementation see: Artur Gramacki, Nonparametric Kernel

Density Estimation and Its Computational Aspects, Springer, 2018.
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· list (the default), to return f̂ in discrete form, as a list of values f̂
(
a+ k b−a

M−1

)
for

k = 0, 1, . . . ,M , where M is the number of bins.

∗ bandwidth=value, to specify the bandwidth. value can be one of:

· h, a positive real number.

· select (the default), to have the bandwidth selected using a direct plug-in method,

· gauss (or normal or normald) to use Silverman's rule of thumb for selecting band-
width (this method is fast but the results are close to optimal ones only when f is
approximately normal).

∗ bins=n for a positive integer n (by default 100), the number of bins for simplifying the
input data. Only the number if samples in each bin is stored. Bins represent the elements
of an equidistant segmentation of the interval S on which KDE is performed. This allows
evaluating kernel summations using convolution when output is set to piecewise or
list, which signi�cantly lowers the computational burden for large values of n (say, few
hundreds or more). If output is set to exact, this option is ignored.

∗ a..b or range=[a, b] or x=a..b for real numbers a and b, to specify the interval [a, b] on
which KDE is performed. If an identi�er x is speci�ed, it is used as the variable of the
output. If the range endpoints are not speci�ed, they are set to a = min1≤i≤nXi − 3h
and b = max1≤i≤nXi + 3h (unless output is set to exact, in which case this option is
ignored).

∗ interp=n for an integer n (by default 1), which speci�es the degree of the spline inter-
polation, ignored unless output is set to piecewise.

∗ spline=n for an integer n, which sets option to piecewise and interp to n.

∗ eval=x0 to only return the value f̂(x0) (this cannot be used with output set to list).

∗ x, an unassigned identi�er (by default x) to use as the variable of the output.

∗ exact, the same as output=exact.

∗ piecewise, the same as output=piecewise.

• kernel_density(L[,options]) returns the function f̂ given in (8.13).

Examples.

• Input:

kernel_density([1,2,3,2],bandwidth=1/4,exact)

Output:

e−
(x−1.0)2

0.125 + e−
(x−2.0)2

0.125 + e−
(x−3.0)2

0.125 + e−
(x−2.0)2

0.125

2.50662827463

• Input:

f:=unapply(normald(4,1,x)/2+normald(7,1/2,x)/2,x); plot(f(x),x=0..10)

Output:
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Input:

X:=randvar(f,range=0..10,1000):; S:=sample(X,1000):;

F:=kernel_density(S,piecewise):; plot([F,f(x)],x=0..10,

display=[line_width_2+blue,line_width_1+black])

Output:

• Input:

kernel_density(S,bins=50,spline=3,eval=4.75)

Output:
0.14655478136

• Input:

time(kernel_density(sample(X,1e5),piecewise))

Output:
[0.17, 0.1653323]

• Input:

S:=sample(X,5000):; sqrt(int((f(x)-kde(S,piecewise))�2,x=0..10))

Output:
0.0269841239243

• Input:

S:=sample(X,25000):; sqrt(int((f(x)-kde(S,bins=150,piecewise))�2,x=0..10))

Output:
0.0144212781377
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8.4.23 Distribution �tting by maximum likelihood: fitdistr

The fitdistr command �nds the parameters for a distribution of a speci�ed type that best �ts a set
of samples.

• fitdistr takes two arguments:

� L, a list of presumably independent and identically distributed samples.

� distr, a distribution type, which can be one of:

∗ normal or normald, for a normal distribution.

∗ exp, exponential of exponentiald, for an exponential distribution.

∗ poisson, for a Poisson distribution.

∗ geometric, for a geometric distribution.

∗ gammad, for a gamma distribution.

∗ betad, for a beta distribution.

∗ cauchy or cauchyd, for a Cauchy distribution.

∗ weibull or weibulld for a Weibull distribution.

• fitdistr(L,distr) returns the name of the speci�ed type of distribution with parameters that �t
L most closely according to the method of maximum likelihood.

Examples.

• Input:

fitdistr(randvector(1000,weibulld,1/2,1),weibull)

Output:
weibulld (0.517079036032, 1.05683817484)

• Input:

X:=randvar(normal,stddev=9.5):; Y:=randvar(normal,stddev=1.5):;

S:=sample(eval(X/Y,0),1000):; Z:=fitdistr(S,cauchy)

Output:
cauchyd (0.347058460176, 6.55905486387)

• Input:

histogram(select(x->(x>-100 and x<100),S));

plot(Z(x),x=-100..100,display=red+line_width_2)

Output:



708 CHAPTER 8. STATISTICS

• Input:

kolmogorovt(S,Z)

Output:

["D=", 0.0161467485236, "K=", 0.510605021406, "1-kolmogorovd(K)=", 0.956753826255]

The Kolmogorov-Smirnov test indicates that the samples from S are drawn from Z with high
probability.

You can �t a lognormal distribution to samples x1, x2, . . . , xn by �tting a normal distribution to the
sample logarithms log x1, log x2, . . . , log xn because log-likelihood functions are the same. For example,
generate some samples according to the lognormal rule with parameters µ = 5 and σ2 = 2:
Input:

X:=randvar(normal,mean=5,variance=2):; S:=sample(eval(exp(X),0),1000):;

Then �t the normal distribution to logS:
Input:

Y:=fitdistr(log(S),normal)

Output:

normald(5.04754808715,1.42751619912)

The mean of Y is about 5.05 and the variance is about 2.04. Now the variable Z = exp(Y ) has the
sought lognormal distribution.

8.4.24 Markov chains: markov

The markov command �nds characteristic features of a Markov chain.

• markov takes one argument:
M , a transition matrix for a Markov process.

• markov(M) returns a sequence consisting of

� the list of the positive recurrent states.

� the list of corresponding invariant probabilities.

� the list of other strong connected components.

� the list of probabilities of ending up in the sequence of recurrent states.

Example.

Input:

markov([[0,0,1/2,0,1/2],[0,0,1,0,0],[1/4,1/4,0,1/4,1/4],[0,0,1/2,0,1/2],[0,0,0,0,1]])

Output:

[
4
]
,
[

0 0 0 0 1
]
,
[

3 1 2 0
]
,


1
1
1
1
1


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8.4.25 Generating a random walks: randmarkov

The randmarkov command generates random walks or creates stochastic matrices.
To generate a random walk:

• randmarkov takes two arguments:

� M , a transition matrix for a Markov chain.

� i0, an initial state.

� n, a positive integer.

• randmarkov(M, i0, n) returns a a random walk (given as a vector) starting at i0 and taking n
random steps, where each step is a transition with probabilities given by M .

Example.

Input:

randmarkov([[0,1/2,0,1/2],[0,1,0,0],[1/4,1/4,1/4,1/4],[0,0,1/2,1/2]],2,10)

Output (for example):
[2, 3, 2, 0, 3, 2, 2, 0, 3, 2, 0]

To create a stochastic matrix:

• randmarkov takes two arguments:

� v, a vector of length p.

� i0, the number of transient states.

• randmatrix(v, i0) returns a stochastic matrix with p recurrent loops (given by v) and i0 transient
states.

Example.

Input:

randmarkov([1,2],2)

Output (for example):
1.0 0.0 0.0 0.0 0.0
0.0 0.289031975209 0.710968024791 0.0 0.0
0.0 0.46230383289 0.53769616711 0.0 0.0

0.259262238137 0.149948861946 0.143448150524 0.242132758802 0.205207990592
0.231568633749 0.145429586345 0.155664673778 0.282556511895 0.184780594232


8.5 Hypothesis testing

8.5.1 General

Given a random variable X, you may want to know whether some e�ective parameter p is the same
as some expected value p0. You will then want to test the hypothesis p = p0, which will be the null
hypothesis H0. The alternative hypothesis will be H1. The tests are:

Two-tailed test This test will reject the hypothesis H0 if the relevant statistic is outside of a deter-
mined interval. This can be denoted ' !='.

Left-tailed test This test will reject the hypothesis H0 if the relevant statistic is less than a speci�c
value. This can be denoted '<'.

Right-tailed test This test will reject the hypothesis H0 if the relevant statistic is greater than a
speci�c value. This can be denoted '>'.
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8.5.2 Testing the mean with the Z test: normalt

The normalt command uses the Z test to test the mean of data.

• normalt takes three mandatory arguments and one optional argument:

� L, a list, which can be one of:

∗ L = [ns, ne] for the sample data information, where ns is the the number of successes
and ne is the number of trials ne.

∗ L = [m, t], where m is the mean and t is the sample size.

∗ L, a data list from a control sample.

� σ, the standard deviation of the population. If the data list from a control sample is provided,
then this argument is unnecessary.

� test, the type of test, one of !=,< or >.

� Optionally, c, the con�dence level (by default 0.05).

• normalt(L, σ,test 〈, c〉) returns the result of a Z test. It will return 0 if the test fails, 1 if the test
succeeds, and it will display a summary of the test.

Examples.

• Input:

normalt([10,30], 0.5, 0.02, '!=', 0.1)

Output:

*** TEST RESULT 0 ***

Summary Z-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1!=mu2.

Test returns 0 if probability to observe data is less than 0.1

(null hyp. mu1=mu2 rejected with less than alpha probability error)

Test returns 1 otherwise (can not reject null hypothesis)

Data mean mu1=10, population mean mu2=0.5

alpha level 0.1, multiplier*stddev/sqrt(sample size)= 1.64485*0.02/5.47723

0

• Input:

normalt([0.48,50],0.5,0.1,'<')

Output:

*** TEST RESULT 1 ***

Summary Z-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1<mu2.

Test returns 0 if probability to observe data is less than 0.05

(null hyp. mu1=mu2 rejected with less than alpha probability error)

Test returns 1 otherwise (can not reject null hypothesis)

Data mean mu1=0.48, population mean mu2=0.5

alpha level 0.05, multiplier*stddev/sqrt(sample size)= 1.64485*0.1/7.07107

1
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8.5.3 Testing the mean with the T test: studentt

The studentt command examines whether data conforms to Student's distribution. For small sample
sizes, the studentt test is preferable to normalt.

• studentt command takes four mandatory arguments and one optional argument:

� L, a list, which can be one of:

∗ L = [ns, ne] for the sample data information, where ns is the the number of successes
and ne is the number of trials ne.

∗ L = [m, t], where m is the mean and t is the sample size.

∗ L, a data list from a control sample.

� µ, the mean of the population to or a data list from a control sample.

� σ, the standard deviation of the population. If the data list from a control sample is provided,
then this argument is unnecessary.

� test, the type of test, one of !=,< or >.

� Optionally, c, the con�dence level (by default 0.05).

• studentt(L, σ,test 〈, c〉) returns the result of a T test. It will return 0 if the test fails, 1 if the
test succeeds, and it will display a summary of the test.

Examples:

• Input:

studentt([10,20], 0.5, 0.02, '!=', 0.1)

Output:

*** TEST RESULT 0 ***

Summary T-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1!=mu2.

Test returns 0 if probability to observe data is less than 0.1

(null hyp. mu1=mu2 rejected with less than alpha probability error)

Test returns 1 otherwise (can not reject null hypothesis)

Data mean mu1=10, population mean mu2=0.5, degrees of freedom 20

alpha level 0.1, multiplier*stddev/sqrt(sample size)= 1.32534*0.02/4.47214

0

• Input:

studentt([0.48,20],0.5,0.1,'<')

Output:

*** TEST RESULT 1 ***

Summary T-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1<mu2.

Test returns 0 if probability to observe data is less than 0.05

(null hyp. mu1=mu2 rejected with less than alpha probability error)

Test returns 1 otherwise (can not reject null hypothesis)

Data mean mu1=0.48, population mean mu2=0.5, degrees of freedom 20

alpha level 0.05, multiplier*stddev/sqrt(sample size)= 1.72472*0.1/4.47214

1
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8.5.4 Testing a distribution with the χ2 distribution: chisquaret

The chisquaret command will use the χ2 test to compare sample data to a speci�ed distribution.

• chisquaret takes one mandatory argument and an unspeci�ed number of optional arguments:

� L, a list of sample data.

� Optionally, distr. This can be one of

∗ The name of a distribution (see Section 8.3.14 p.665 for a list of distributions and their
parameters).

∗ Another list of sample data.

By default this will be the uniform distribution.

� params, the parameters of the distribution distr or the keyword classes and optionally cmin
and cdim, the minimum size and default size of a statistics class (by default, class_min and
class_size, which themselves default to 0 and 1; see Section 2.5.8 p.58).

• chisquaret(L 〈,distr〉) returns the result of the χ2 test between the sample data and the named
distribution or the two sample data.

Examples.

• Input:

chisquaret([57,54])

Output:

Guessing data is the list of number of elements in each class,

adequation to uniform distribution

Sample adequation to a finite discrete probability distribution

Chi2 test result 0.0810810810811,

reject adequation if superior to chisquare_icdf(1,0.95)=3.84145882069 or chisquare_icdf(1,1-alpha) if alpha!=5%

0.0810810810811

• Input:

chisquaret([1,1,1,1,1,0,0,1,0,1,1],[.4,.6])

Output:

Sample adequation to a finite discrete probability distribution

Chi2 test result 0.742424242424,

reject adequation if superior to chisquare_icdf(1,0.95)=3.84145882069

or chisquare_icdf(1,1-alpha) if alpha!=5%

0.742424242424

• Input:

chisquaret(ranv(1000,binomial,10,.5),binomial)

Output:
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Binomial: estimating n and p from data 10 0.5055

Sample adequation to binomial(10,0.5055,.), Chi2 test result 7.77825189838,

reject adequation if superior to chisquare_icdf(7,0.95)=14.0671404493

or chisquare_icdf(7,1-alpha) if alpha!=5%

7.77825189838

• Input:

chisquaret(ranv(1000,binomial,10,.5),binomial,11,.5)

Output:

Sample adequation to binomial(11,0.5,.), Chi2 test result 125.617374161,

reject adequation if superior to chisquare_icdf(10,0.95)=18.3070380533

or chisquare_icdf(10,1-alpha) if alpha!=5%

125.617374161

• As an example using class_min and class_size:
Input:

L:= ranv(1000,normald,0,.2)

chisquaret(L,normald,classes,-2,.25)

or (setting class_min to −2 and class_size to −0.25 in the graphical con�guration):

chisquaret(L,normald,classes)

Output:

Normal density,

estimating mean and stddev from data -0.00345919752912 0.201708100832

Sample adequation to normald_cdf(-0.00345919752912,0.201708100832,.),

Chi2 test result 2.11405080381,

reject adequation if superior to chisquare_icdf(4,0.95)=9.48772903678

or chisquare_icdf(4,1-alpha) if alpha!=5%

2.11405080381

In this last case, you are given the value of d2 of the statistic D2 =
∑k

j=1(nj − ej)/ej , where k
is the number of sample classes for classes(L,-2,0.25) (or classes(L)), nj is the size of the
jth class, and ej = npj where n is the size of L and pj is the probability of the jth class interval
assuming a normal distribution with the mean and population standard deviation of L.

8.5.5 Testing a distribution with the Kolmogorov-Smirnov distribution: kolmogorovt

The kolmogorovt command uses the Kolmogorov test to compare sample data to a speci�ed continuous
distribution.

• kolmogorovt takes two arguments and possibly additional parameters.

� L, a list of sample data.

� Optionally, distr. This can be one of

∗ The name of a distribution and the necessary parameters (see Section 8.3.14 p.665 for a
list of distributions and their parameters).
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∗ Another list of sample data.

• kolmogorovt(L,distr) returns a list of three values:

� The D statistic, which is the maximum distance between the cumulative distribution func-
tions of the samples or the sample and the given distribution.

� The K value, where K = D
√
n (for a single data set, where n is the size of the data set) or

K = D
√
n1n2/(n1 + n2) (when there are two data sets, with sizes n1 and n2). The K value

will tend towards the Kolmogorov-Smirnov distribution as the size of the data set goes to
in�nity.

� 1 - kolmogorovd(K), which will be close to 1 when the distributions look like they match.

Examples.

• Input:

kolmogorovt(randvector(100,normald,0,1),normald(0,1))

Output (for example):

[D=0.112141597243,K=1.12141597243, 1-kolmogorovd(K)=, 0.161616499536]

• Input:

kolmogorovt(randvector(100,normald,0,1),student(2))

Output (for example):

[D=0.112592987625,K=1.12592987625, 1-kolmogorovd(K)=0.158375510292]
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Data analysis

9.1 Clustering

9.1.1 Hierarchical clustering: cluster

The cluster command is used for hierarchical agglomerative clustering of custom data by using a
custom distance function.

• cluster takes one or more arguments:

� data, a list of data points.

� Optionally, opt, a sequence of options which may contain the following:

∗ k or count=k, where k is a positive integer specifying the number of clusters (unset by
default).

∗ count_inf=kl, where kl is a positive integer specifying the minimal number of clusters
(unset by default).

∗ count_sup=ku, where ku is a positive integer specifying the maximal number of clusters
(by default, ku = 16).

∗ type=linkage, where linkage is a string specifying the linkage method. Avaliable methods
are:

· single (the default),

· complete,
· average,
· weighted,
· ward.

∗ distance=dist, where dist is a distance function. By default, the squared Euclidean
distance function distance2 is used unless data is a list of strings, in which case Lev-
enshtein distance is used. For example, the taxicab distance function can be entered as
follows:

taxicab:=(p1,p2)->l1norm(p1-p2)

∗ index=ind, where ind is a string or a list of strings specifying the index function(s) used
for selecting the optimal number of clusters (unset by default). Available index functions
are: silhouette, mcclain-rao, dunn, and all. ind may also take a boolean value, in
which case no index is used (ind=false) or the silhouette index is used (ind=true).

∗ output=out, where out is one of the following:

· part, for outputting the partition of data into clusters.

· list, for outputting the list of cluster indices for data points (the default).

· plot, for outputting a colored visualization of data points with additional speci�ca-
tions given in display option (see below). Note that this is possible only with two-
and three-dimensional numerical data.

715
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Figure 9.1: Clustering in Xcas

· count, for outputting only the number of clusters.

· index, for outputting the list of values of the (�rst) used index.

· tree, for outputting a dendrogram drawing which visualizes the linking process.

∗ display=disp, where disp is a con�guration for plot output (by default, points are drawn
as dots of width 2).

∗ labels=lab, where lab is a boolean value which speci�es whether the data points are
shown in the dendrogram.

• Hierarchical clustering is slower than the k-means algorithm (see Section 9.1.2) but may produce
a better classi�cation of the data. Hierarchical clustering is also a method of choice for custom
data types and distance functions.

• If more than one index is computed in a clustering process, then the optimal number of clusters
is decided by voting: the number which was selected by most indices is used.

Examples.

• We apply cluster command to the �aggregation� shape dataset obtained from http://cs.joensuu.

fi/sipu/datasets/. The dataset is loaded from �le in a table cell in Xcas and associated with
the variable data. We use the average linkage method and silhouette index (which is used by
default if index=true). By setting output parameter to plot, we obtain a visualization of colored
clusters as shown in Figure 9.1.

• For string data, Levenshtein distance is used by default (see Section 5.3.15). Input:

cluster(["cat","mouse","rat","spouse","house","cut"],output=part)

http://cs.joensuu.fi/sipu/datasets/
http://cs.joensuu.fi/sipu/datasets/
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Output: [
"cat" "rat" "cut"

"mouse" "spouse" "house"

]
• In this example we cluster genomic sequences into �ve clusters by using average linkage and
Hamming distance function.
Input:

data:=["GTCTT","AAGCT","GGTAA","AGGCT","GTCAT","CGGCC",

"GGGAG","GTTAT","GTCAT","AGGCT","GTCAG","AGGAT"]:;

cluster(data,type="average",count=5,distance=hamdist,output=part)

Output:

[ ["GTCTT", "GTCAT", "GTTAT", "GTCAT", "GTCAG"] ,

["AAGCT", "AGGCT", "AGGCT", "AGGAT"] ,

["GGTAA"] , ["CGGCC"] , ["GGGAG"]]

9.1.2 k-means algorithm: kmeans

The kmeans command is an e�cient implementation of k-means algorithm for clustering numerical
multidimensional data.

• kmeans accepts one or more input arguments:

� data, which must be a list of 2D points or m-dimensional Euclidean points entered as vectors.
For n such points, data should be a n×m matrix.

� Optionally, opt, a sequence of options which may contain the following:

∗ k or count=k or count=kl..ku, where k is a positive integer specifying the number of
clusters and kl..ku is an interval specifying minimal and maximal number of clusters (by
default, unset).

∗ count_inf=kl, where kl is a positive integer specifying the minimal number of clusters
(by default, kl = 2).

∗ count_sup=ku, where ku is a positive integer specifying the maximal number of clusters
(by default, ku = n− 1).

∗ limit=N , where N is a positive integer specifying the maximal number of iterations for
the k-means algorithm (by default, N = 100).

∗ index=str, where str is a string or a list of strings specifying the index functions used
to �nd the optimal number of clusters automatically. Available indices are: ball-hall,
banfeld-raftery, calinski-harabasz, davies-bouldin, det, ksq-detW, log-det, log-ss,
pbm, ratkowsky-lance, ray-turi, scott-symons, trace-W, trace-WiB and all (note
that you must surround these names by double-quotes). For details, see Desgraupes
(2017)1. str may also take a boolean value, in which case either no index is used
(str=false) or the Calinski-Harabasz index is used (str=true). By default, Hartigan's
criterion is used to determine the optimal number of clusters if k is not given.

∗ output=out, where out is one of the following:

· part, for outputting the partition of the data into clusters.

· list, for outputting the list of cluster indices for data points (the default).

· plot, for outputting a colored visualization of data points with additional speci�ca-
tions given in display option (see below). Note that this is possible only with two-
and three-dimensional data.

1 https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf

https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf
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· count, for outputting only the number of clusters.

· index, for outputting the list of values of the (�rst) used index.

∗ display=disp, where disp is a con�guration for plot output (by default, points are drawn
as dots of width 2).

• kmeans applies the Hartigan-Wong implementation of k-means algorithm, which is fast and suit-
able for large datasets.

• kmeans does not support custom distance functions. If you want to cluster the data by using a
distance function other than the Euclidean distance, use the cluster command (see Section 9.1.1).

• If more than one index is computed in a clustering process, then the optimal number of clusters
is decided by voting: the number which was selected by most indices is used.

Example.

• In this example, we cluster some random gaussian data and use the Calinski-Harabasz index for
choosing the optimal number of clusters.

• Input:

d:=5:; n:=2500:; data:=[]:;

C:=[[5,6],[14,10],[27,5],[10,21],[30,-2]]:;

R:=[[2,2.5],[1.2,1],[3,3],[2,1.8],[1,0.5]]:;

for k from 1 to n do

j:=rand(d);

x:=sample(randvar(normal,C[j][0],R[j][0]));

y:=sample(randvar(normal,C[j][1],R[j][1]));

data:=append(data,[x,y]);

od:;

kmeans(data,index="calinski-harabasz",output=plot)

• Output:



Chapter 10

Numerical computations

Real numbers may have an exact representation (e.g. rationals, symbolic expressions involving square
roots or constants like π, . . . ) or approximate representation, which means that internally the real is
represented by a rational (with a denominator that is a power of the basis of the representation) close
to the real. Inside Xcas, the standard scienti�c notation is used for approximate representation; that
is a mantissa (with a point as decimal separator) optionally followed by the letter e and an integer
exponent.

Note that the real number 10−4 is an exact number but 1e− 4 is an approximate representation of
this number.

10.1 Floating point representation.

This section discusses how real numbers are represented.

10.1.1 Digits

The Digits variable (see Section 2.5.1 p.54) is used to control how real numbers are represented and
also how they are displayed. When the speci�ed number of digits is less or equal to 14 (for example
Digits:=14), then hardware �oating point numbers are used and they are displayed using the speci�ed
number of digits. When Digits is larger than 14, Xcas uses the MPFR library, the representation is
similar to hardware �oats (cf. infra) but the number of bits of the mantissa is not �xed and the range of
exponents is much larger. More precisely, the number of bits of the mantissa of a created MPFR �oat
is ceil(Digits*log(10)/log(2)).

Note that if you change the value of Digits, this will a�ect the creation of new real numbers
compiled from command lines or programs or by instructions like approx, but it will not a�ect existing
real numbers. Hence hardware �oats may coexist with MPFR �oats, and even in MPFR �oats, some
may have 100 bits of mantissa and some may have 150 bits of mantissa. If operations mix di�erent
kinds of �oats, the most precise kind of �oats are coerced to the less precise kind of �oats.

10.1.2 Representation by hardware �oats

A real is represented by a �oating number d, that is

d = 2α ∗ (1 +m), 0 < m < 1,−210 < α < 210

If α > 1− 210, then m ≥ 1/2, and d is a normalized �oating point number, otherwise d is denormalized
(α = 1 − 210). The special exponent 210 is used to represent plus or minus in�nity and NaN (Not a
Number). A hardware �oat is made of 64 bits:

• the �rst bit is for the sign of d (0 for '+' and 1 for '−')

• the 11 following bits represents the exponent, more precisely if α denotes the integer given by the
11 bits, the exponent is α+ 210 − 1,

719
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• the 52 last bits codes the mantissa m, more precisely if M denotes the integer given by the 52
bits, then m = 1/2 +M/253 for normalized �oats and m = M/253 for denormalized �oats.

Examples of representations of the exponent:

• α = 0 is coded by 011 1111 1111

• α = 1 is coded by 100 0000 0000

• α = 4 is coded by 100 0000 0011

• α = 5 is coded by 100 0000 0100

• α = −1 is coded by 011 1111 1110

• α = −4 is coded by 011 1111 1011

• α = −5 is coded by 011 1111 1010

• α = 210 is coded by 111 1111 1111

• α = 2−10 − 1 is coded by 000 0000 000

Remark: 2−52 = 0.2220446049250313e− 15

10.1.3 Examples of representations of normalized �oats

• 3.1:
We have:

3.1 = 2 ∗ (1 +
1

2
+

1

25
+

1

26
+

1

29
+

1

210
+ . . . .)

= 2 ∗ (1 +
1

2
+

∞∑
k=1

(
1

24∗k+1
+

1

24∗k+2
))

hence α = 1 andm = 1
2 +
∑∞

k=1(
1

24∗k+1 + 1
24∗k+2 ). Hence the hexadecimal and binary representation

of 3.1 is:

40 (01000000), 8 (00001000), cc (11001100), cc (11001100),

cc (11001100), cc (11001100), cc (11001100), cd (11001101),

the last octet is 1101, the last bit is 1, because the following digit is 1 (upper rounding).

• 3.:
We have 3 = 2 ∗ (1 + 1/2). Hence the hexadecimal and binary representation of 3 is:

40 (01000000), 8 (00001000), 0 (00000000), 0 (00000000),

0 (00000000), 0 (00000000), 0 (00000000), 0 (00000000)

10.1.4 Di�erence between the representation of (3.1-3) and of 0.1

For the representation of 0.1:

0.1 = 2−4 · (1 +
1

2
+

1

24
+

1

25
+

1

28
+

1

29
+ . . .)

= 2−4 ·
∞∑
k=0

(
1

24∗k
+

1

24∗k+1
)

hence α = 1 and

m =
1

2
+

∞∑
k=1

(
1

24∗k
+

1

24∗k+1
),

therefore the representation of 0.1 is
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3f (00111111), b9 (10111001), 99 (10011001), 99 (10011001),

99 (10011001), 99 (10011001), 99 (10011001), 9a (10011010),

the last octet is 1010, indeed the 2 last bits 01 became 10 because the following digit is 1 (upper
rounding).

For the representation of a := 3.1− 3:
Computing a is done by adjusting exponents (here nothing to do), then subtracting the mantissa and
adjusting the exponent of the result to have a normalized �oat. The exponent is α = −4 (that corre-
sponds at 2 · 2−5) and the bits corresponding to the mantissa begin at 1/2 = 2 · 2−6: the bits of the
mantissa are shifted to the left 5 positions and you get:

3f (00111111), b9 (10111001), 99 (10011001), 99 (10011001),

99 (10011001), 99 (10011001), 99 (10011001), a0 (10100000),

Therefore, a > 0.1 and a− 0.1 = 1/250 + 1/251 (since 100000-11010=110).

Remark:
This is the reason why:
Input:

floor(1/(3.1-3))

returns 9 and not 10 when Digits:=14.

10.2 Approximate evaluation: evalf approx Digits

The evalf command evalf or approx, if possible, evaluates to a numeric approximation (see Sec-
tion 5.8.1 p.143). The approximation is to Digits digits (see Section 2.5.1 p.54), this can be changed
with an optional second argument.

Examples.

• Input:

evalf(sqrt(2))

Output: (Assuming that in the cas con�guration (Cfg menu) Digits=7, so hardware �oats are
used, and 7 digits are displayed)

1.414214

• You can change the number of digits in a command line by assigning the variable DIGITS or
Digits.
Input:

DIGITS:=20

evalf(sqrt(2))

Output:

1.4142135623730950488

• Input:

evalf(10�-5)

Output:

1e-05
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• Input:

evalf(10�15)

Output:
1e+15

• Input:

evalf(sqrt(2))*10�-5

Output:
1.41421356237e-05

10.3 Numerical algorithms

10.3.1 Approximating solution of an equation: newton

The newton command uses Newton's method to approximate a solution to an equation.

• newton takes one mandatory argument and four optional arguments:

� ex, an expression.

� Optionally, var, the variable used in this expression (by default x).

� Optionally, a, a number (by default 0)

� Optionally, ε, a small number (by default 1e-8)

� Optionally, nbiter (by default 12).

• newton(ex, 〈,var, a, ε,nbiter〈) returns an approximate solution of the equation ex=0 using the
Newton algorithm with starting point var=a. The maximum number of iterations is nbiter and
the precision is ε.

Examples.

• Input:

newton(x�2-2,x,1)

Output:
1.41421356237

• Input:

newton(x�2-2,x,-1)

Output:
−1.41421356237

• Input:

newton(cos(x)-x,x,0)

Output:
0.739085133215
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10.3.2 Approximating computation of the derivative number: nDeriv

The nDeriv command numerically approximates the value of a derivative.

• nDeriv takes as arguments:

� expr, expression.

� Optionally, var, the variable used in the expression (by default x).

� Optionally, h (by default 0.001).

• nDeriv(ex 〈,var , h〉) returns an approximated value of the derivative of the expression ex at the
point var using the formula:

f(var + h)− f(var− h)

2h

Examples.

• Input:

nDeriv(x�2,x)

Output: (
(x+ 0.001)2 − (x− 0.001)2

)
· 500.0

• Input:

subst(nDeriv(x�2,x),x=1)

Output:

2.0

• Input:

nDeriv(exp(x�2),x,0.00001)

Output: (
e(x+1.0×10−5)

2

− e(x−1.0×10−5)
2)
· 50000.0

• Input:

subst(exp(nDeriv(x�2,x,0.00001)),x=1)

Output:

7.38905609706

which is an approximate value of e2 ≈ 7.38905609893.
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10.3.3 Approximating computation of integrals: romberg nInt

The romberg command �nds approximate values of integrals using the Romberg method.
nInt is a synonym for rombert.

• romberg takes three mandatory arguments and one optional argument:

� expr, an expression involving one variable.

� Optionally, var, the variable (by default x).

� a, b, two real numbers.

• romberg(expr 〈,var〉a, b) returns an approximated value of the integral
∫ b
a exprdvar. The integrand

must be su�ciently regular for the approximation to be accurate, otherwise, romberg returns a list
of real values that come from the application of the Romberg algorithm (the �rst list element is the
trapezoid rule approximation, the next ones come from the application of the Euler-MacLaurin
formula to remove successive even powers of the step of the trapezoid rule).

Example.

Input:

romberg(exp(x�2),x,0,1)

Output:

1.46265174591

10.3.4 Approximating integrals with an adaptive Gaussian quadrature at 15 points:
gaussquad

The gaussquad command �nds an approximate value of an integral, calculated by an adaptive method
by Ernst Hairer which uses a 15-point Gaussian quadrature.

• gaussquad takes four arguments:

� expr, an expression.

� var, the variable used by the expression.

� a, b, two numbers.

• gaussquad(expr 〈,var〉a, b) returns an approximation of the integral
∫ b
a exprdvar.

Examples.

• Input:

gaussquad(exp(x�2),x,0,1)

Output:

1.46265174591

• Input:

gaussquad(exp(-x�2),x,-1,1)

Output:

1.49364826562
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10.3.5 Approximating solutions of y'=f(t,y): odesolve

The odesolve command can solve �rst order di�erential equations or �rst order systems. This section
covers equations, systems will be discussed in the next section.

odesolve �nds values of the solution of a di�erential equation of the form y′ = f(t, y); speci�cally,
it will approximate y(t1) for a speci�ed t1.

odesolve can takes its arguments in various ways. Letting t and y be the independent and dependent
variables, t0 and y0 be the initial values, t1 the place where you want the value of y, f be the function
in the di�erential equation, f(t, y) be an expression which determines the function f (see Section 5.15.1
p.198 for the di�erence between a function and an expression):

• odesolve takes three or four mandatory arguments and two optional arguments:

� mandatory, mandatory arguments given by one of the following sequences:

∗ f(t, y), [t, y], [t0, y0], t1)

∗ f(t, y), t = t0..t1, y, y0

∗ t0..t1, f, y0
∗ t0..t1, (t, y)->f(t, y), y0

� Optionally, tstep=n, to set the initial tstep value to the numeric solver from the GSL (Gnu
Scienti�c Library). It may be modi�ed by the solver. It is also used to control the number
of iterations of the solver by 2(t1 − t0)/n (if the number of iterations exceeds this value, the
solver will stops at a time t < t1).

� Optionally, curve, the symbol.

• odesolve(mandatory 〈, tstep=n, curve 〉) returns an approximate value of y(t1) where y(t) is
the solution of:

y′(t) = f(t, y(t)), y(t0) = y0

With an optional argument of curve, the list of all the [t, [y(t)]] values that were computed are
returned.

Examples.

• Input:

odesolve(sin(t*y),[t,y],[0,1],2)

or:

odesolve(sin(t*y),t=0..2,y,1)

or:

odesolve(0..2,(t,y)->sin(t*y),1)

or:

f(t,y):=sin(t*y)

odesolve(0..2,f,1)

Output:

[1.82241255674]

• Input:
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odesolve(0..2,f,1,tstep=0.3)

Output:
[1.82241255675]

• Input:

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5)

Output:
[1.82241255674]

• Input:

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5,curve)

Output: 

0.0 [1.0]
0.0238917513909 [1.00028543504]
0.065808814858 [1.00216696089]
0.108895370376 [1.00594077449]

...
...

1.96462490594 [1.8389834135]
1.97769352646 [1.83297839039]
1.9908403154 [1.82679805346]

2.0 [1.82241255674]


10.3.6 Approximating solutions of the system v'=f(t,v): odesolve

This section covers using odesolve to solve �rst order systems of di�erential equations; using it to solve
a single �rst order di�erential equation was discussed last section.

The odesolve can be used to solve a system of the form

x′ = f(t, x)

where x = [x1, . . . , xn] is a list of unknown functions and f is a function of n+1 variables with an initial
condition.

odesolve can takes its arguments in various ways. Letting t be the independent variable and
x = [x1, . . . , xn] be a vector of dependent variables, t0 and x0 be the initial values, t1 the place where
you want the value of x, f be the function in the di�erential equation, f(t, x) be a list of expressions
which determines the function f (see Section 5.15.1 p.198 for the di�erence between a function and an
expression):

• odesolve takes three or four mandatory arguments and two optional arguments:

� mandatory, mandatory arguments given by one of the following sequences:

∗ f(t, x), t = t0..t1, x, x0
∗ t0..t1, (t, y)->f(t, y), x0
∗ t0..t1, f, x0

� Optionally, curve, the symbol.

• odesolve(mandatory 〈,curve〉) returns an approximate value of x(t1) where x(t) is the solution
of:

x′(t) = f(t, x(t)), x(t0) = x0

With an optional argument of curve, the list of all the [t, [x(t)]] values that were computed by
the solver are returned.
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Examples.

• Solve the system:

x′(t) = −y(t)

y′(t) = x(t)

Input:

odesolve([-y,x],t=0..pi,[x,y],[0,1])

Output: [
−1.79045146764× 10−15,−1

]
• Solve the system:

x′(t) = −y(t)

y′(t) = x(t)

Input:

odesolve(0..pi,(t,v)->[-v[1],v[0]],[0,1])

or:

f(t,v):=[-v[1],v[0]]

odesolve(0..pi,f,[0,1])

Output: [
−1.79045146764× 10−15,−1

]
• Input:

odesolve(0..pi/4,f,[0,1],curve)

Output: 

0.0 [0.0, 1.0]
0.0165441856471 [−0.0165434309391, 0.999863148082]
0.0325491321983 [−0.0325433851614, 0.999470323763]
0.0486049854945 [−0.0485858499906, 0.998819010222]

...
...

0.747336757246 [−0.679687679865, 0.733501641333]
0.76509544295 [−0.692605846268, 0.721316256377]
0.78286231703 [−0.705311395415, 0.708897619897]
0.785398163397 [−0.707106781186, 0.707106781186]


10.3.7 Approximating solutions of nonlinear second-order boundary value prob-

lems: bvpsolve

The bvpsolve command �nds an approximate solution of a boundary value problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β

on an interval [a, b]. The procedure uses the method of nonlinear shooting which is based on Newton and
Runge-Kutta methods. Values of y and its �rst derivative y′ are approximated at points xk = a+ k δ,
where δ = b−a

N and k = 0, 1, . . . , N . For the numeric tolerance (precision) threshold, the algorithm uses
epsilon speci�ed in the session settings in Xcas (see Section 2.5.7 p.56, item 9).
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• bvpsolve takes three mandatory arguments and four optional arguments:

� f(x, y, y′), an expression involving an independent variable x, a dependent variable y and y′.

� [x = a..b, y], a list specifying the independent variable x, its range [a, b] and the sought
function y

� [α, β], a list of the boundary values of y.

� Optionally, A, an initial guess for y′(a) (by default, (β − α)/(b− a)).

� Optionally, N , an integer greater than or equal to 2 (by default 100).

� output=type or Output=type, the type of the output, where type can be one of:

∗ list

∗ diff

∗ piecewise

∗ spline

(By default list).

� limit=M , a positive integer for a limit for the number of iterations before the procedure is
stopped (by default there is no limit).

• bvpsolve(f(x, y, y′), [x = a..b, y], [α, β] 〈, A,N, output=type,limit=M〉) returns, for the di�erent
output types:

� list, a list of pairs [xk, yk] where yk ≈ y(xk),

� diff, a list of triples [xk, yk, y
′
k], where y

′
k ≈ y′(xk),

� piecewise, a piecewise linear interpolation of the points (xk, yk),

� spline, a piecewise spline interpolation of the points (xk, yk), based on the values y′k com-
puted in the process.

Note that the shooting method is sensitive to roundo� errors and may fail to converge in some cases,
especially when y is a rapidly increasing function. In the absence of convergence or if the maximum
number of iterations is exceeded, bvpsolve returns undef. However, if the output type is list or
piecewise and if N > 2, a slower but more stable �nite-di�erence method (which approximates only
the function y) is tried �rst.

Sometimes setting an initial guess A for y′(a) to a suitable value may help the shooting algorithm
to converge or to converge faster.

Examples.

• Solve the problem

y′′ =
1

8
(32 + 2x3 − y y′), 1 ≤ x ≤ 3

with boundary conditions y(1) = 17 and y(3) = 43
3 . Use N = 20, which gives an x-step of 0.01.

Input:

bvpsolve((32+2x�3-y*y')/8,[x=1..3,y],[17,43/3],20)

The output is shown in Table 10.1 (the middle two columns) alongside with the values y(xk) of
the exact solution y = x2 + 16/x (the fourth column).

• Solve

y′′ =
x2 (y′)2 − 9 y2 + 4x6

x5
, 1 ≤ x ≤ 2,

with the boundary conditions y(1) = 0 and y(2) = ln 256. Obtain the solution as a piecewise
spline interpolation for N = 10 and estimate the absolute error err of the approximation using
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k xk yk y(xk)
0 1.0 17.0 17.0
1 1.1 15.7554961579 15.7554545455
2 1.2 14.7733911821 14.7733333333
3 1.3 13.9977543159 13.9976923077
4 1.4 13.388631813 13.3885714286
5 1.5 12.9167227424 12.9166666667
6 1.6 12.5600506483 12.56
7 1.7 12.3018096101 12.3017647059
8 1.8 12.1289281414 12.1288888889
9 1.9 12.0310865274 12.0310526316
10 2.0 12.0000289268 12.0
11 2.1 12.0290719981 12.029047619
12 2.2 12.1127475278 12.1127272727
13 2.3 12.2465382803 12.2465217391
14 2.4 12.4266798825 12.4266666667
15 2.5 12.650010254 12.65
16 2.6 12.9138537834 12.9138461538
17 2.7 13.2159312426 13.2159259259
18 2.8 13.5542890043 13.5542857143
19 2.9 13.9272429048 13.9272413793
20 3.0 14.3333333333 14.3333333333

Table 10.1: approximate and true values of the function y = x2 + 16/x on [1, 3]

the exact solution y = x3 lnx and the romberg command for numerical integration. You need to
explicitly set an initial guess A for the value y′(1) because the algorithm fails to converge with
the default guess A = ln 256 ≈ 5.545. Therefore let A = 1 instead.
Input:

f:=(x�2*diff(y(x),x)�2-9*y(x)�2+4*x�6)/x�5:;

p:=bvpsolve(f,[x=1..2,y],[0,ln(256),1],10,output=spline):;

err:=sqrt(romberg((p-x�3*ln(x))�2,x=1..2))

Output:
3.27751904973× 10−6

Note that, if the output type was set to list or piecewise, the solution would have been found
even without specifying an initial guess for y′(1) because the algorithm would automatically apply
the alternative �nite-di�erence method, which converges.

10.4 Solving equations with fsolve nSolve cfsolve

The fsolve command can solve equations or systems of equations. This section will discuss solving
equations; systems will be discussed in the next section.

The cfsolve command is the complex version of fsolve, with the same arguments. The only
di�erence is that cfsolve gives numeric solutions over the complex numbers, even if Xcas is not in
complex mode (see Section 2.5.5 p.55). fsolve will return complex roots, but only in complex mode.

fsolve solves numeric equations of the form:

f(x) = 0, x ∈ (a, b)

Unlike solve (Section 5.55.6 p.544) or proot (Section 10.6 p.735), it is not limited to polynomial
equations.
nSolve is a synonym for fsolve.

• fsolve takes one mandatory argument and three optional arguments:
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� eqn, an equation involving one variable.

� Optionally, var, the variable (by default x).

� Optionally, init, an initial approximation or range.

� Optionally, algorithm, the name of an iterative algorithm to be used by the GSL solver.

• fsolve(eqn,var,init 〈,algorithm〉) returns an approximate solution to the equation.

Examples.

• Input (in real mode):

fsolve(x�3-1,x)

Output:

1.0

• Input (in complex mode):

fsolve(x�3-1,x)

Output:

[−0.5− 0.866025403784i,−0.5 + 0.866025403784i, 1.0]

• Input (in any mode):

cfsolve(x�3-1,x)

Output:

[−0.5− 0.866025403784i,−0.5 + 0.866025403784i, 1.0]

• Input:

fsolve(sin(x)=2)

Output:

[]

• Input:

cfsolve(sin(x)=2)

Output:

[1.57079632679− 1.31695789692i, 1.57079632679 + 1.31695789692i]

The di�erent values of algorithm are explained in the rest of this section.

10.4.1 fsolve with the option bisection_solver

This algorithm of dichotomy is the simplest but also generically the slowest. It encloses the zero of
a function on an interval. Each iteration cuts the interval into two parts, the middle point value is
calculated. The function sign at this point gives you the half-interval on which the next iteration will
be performed.
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Example.

Input:

fsolve((cos(x))=x,x,-1..1,bisection_solver)

Output:
[0.739085133215]

10.4.2 fsolve with the option brent_solver

The Brent method interpolates of f at three points, �nds the intersection of the interpolation with
the x axis, computes the sign of f at this point and chooses the interval where the sign changes. It is
generically faster than bisection.

Example.

Input:

fsolve((cos(x))=x,x,-1..1,brent_solver)

Output:
[0.739085133215]

10.4.3 fsolve with the option falsepos_solver

The "false position" algorithm is an iterative algorithm based on linear interpolation: it computes the
value of f at the intersection of the line (a, f(a)), (b, f(b)) with the x axis. This value gives us the
part of the interval containing the root, and on which a new iteration is performed. The convergence is
linear but generically faster than bisection.

Example.

Input:

fsolve((cos(x))=x,x,-1..1,falsepos_solver)

Output:
[0.739085133215]

10.4.4 fsolve with the option newton_solver

newton_solver is the standard Newton method. The algorithm starts at an initial value x0, then �nds
the intersection x1 of the tangent at x0 to the graph of f , with the x axis, the next iteration is done
with x1 instead of x0. The xi sequence is de�ned by

x0 = x0, xn+1 = xn −
f(xn)

f ′(xn)

If the Newton method converges, it is a quadratic convergence for roots of multiplicity 1.

Example.

Input:

fsolve((cos(x))=x,x,0,newton_solver)

Output:
0.739085133215
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10.4.5 fsolve with the option secant_solver

The secant method is a simpli�ed version of Newton's method. The computation of x1 is done using
Newton's method, but then the computation of f ′(xn), n > 1 is done approximately. This method is
used when the computation of the derivative is expensive:

xi+1 = xi −
f(xi)

f ′est
, f ′est =

f(xi)− f(xi−1)

xi − xi−1

The convergence for roots of multiplicity 1 is of order (1 +
√

5)/2 ≈ 1.62 . . ..

Examples.

• Input:

fsolve((cos(x))=x,x,-1..1,secant_solver)

Output:
[0.739085133215]

• Input:

fsolve((cos(x))=x,x,0,secant_solver)

Output:
0.739085133215

10.4.6 fsolve with the option steffenson_solver

The Ste�enson method is generically the fastest method. It combines Newton's method with a "delta-
two" Aitken acceleration: with Newton's method, you get the sequence xi and the convergence acceler-
ation gives the Ste�enson sequence

Ri = xi −
(xi+1 − xi)2

(xi+2 − 2xi+1 + xi)

Example.

Input:

fsolve(cos(x)=x,x,0,steffenson_solver)

Output:
0.739085133215

10.5 Solving systems with fsolve and cfsolve

The previous section discussed using fsolve to solve equations. This section will discuss systems of
equations.

As before, the cfsolve command is the complex version of fsolve, with the same arguments. The
only di�erence is that cfsolve gives numeric solutions over the complex numbers, even if Xcas is not
in complex mode (see Section 2.5.5 p.55). fsolve will return complex roots, but only in complex mode.

For solving systems of equations:

• fsolve takes three mandatory arguments and one optional argument:

� eqns, a list of equations (or expressions, considered to be equal to zero) to solve.
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� vars, a list of the variables.

� init, a list initial values for the variables.

� Optionally, method, the method to use. The possible methods are:

∗ dnewton_solver

∗ hybrid_solver

∗ hybrids_solver

∗ newtonj_solver

∗ hybridj_solver

∗ hybridsj_solver

• fsolve(eqns,vars,init 〈,method〉) returns an approximate solution to eqns.

Examples.

• Input (in real mode):

fsolve([x�2+y+1,x+y�2-1],[x,y])

Output: [
0.0 −1.0

−0.453397651516 −1.2055694304

]
• Input (in complex mode):

fsolve([x�2+y+1,x+y�2-1],[x,y])

Output: 
0.0 −1.0

0.226698825758− 1.46771150871i 1.1027847152 + 0.665456951153i
0.226698825758 + 1.46771150871i 1.1027847152− 0.665456951153i

−0.453397651516 −1.2055694304


• Input (in any mode):

cfsolve([x�2+y+1,x+y�2-1],[x,y])

Output: 
0.0 −1.0

0.226698825758− 1.46771150871i 1.1027847152 + 0.665456951153i
0.226698825758 + 1.46771150871i 1.1027847152− 0.665456951153i

−0.453397651516 −1.2055694304


• Input:

cfsolve([x�2+y+2,x+y�2+2],[x,y])

Output: 
0.5 + 1.65831239518i 0.5− 1.65831239518i
0.5− 1.65831239518i 0.5 + 1.65831239518i
−0.5 + 1.32287565553i −0.5 + 1.32287565553i
−0.5− 1.32287565553i −0.5− 1.32287565553i


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The methods are inherited from the GSL. The methods whose names end with j_solver use the
jacobian matrix, the rest use approximations for the derivatives.

All methods use an iteration of Newton kind

xn+1 = xn −
f(xn)

f ′(xn)

The four methods hybrid*_solver use also a method of gradient descent when the Newton itera-
tion would make a too large of a step. The length of the step is computed without scaling for
hybrid_solver and hybridj_solver or with scaling (computed from f ′(xn)) for hybrids_solver and
hybridsj_solver.

The rest of this section will cover the various method options.

10.5.1 fsolve with the option dnewton_solver

Example.

Input:

fsolve([x�2+y-2,x+y�2-2],[x,y],[2,2],dnewton_solver)

Output:

[1.0, 1.0]

10.5.2 fsolve with the option hybrid_solver

Example.

Input:

fsolve([x�2+y-2,x+y�2-2],[x,y],[2,2],hybrid_solver)

Output:

[1.0, 1.0]

10.5.3 fsolve with the option hybrids_solver

Example.

Input:

fsolve([x�2+y-2,x+y�2-2],[x,y],[2,2],hybrids_solver)

Output:

[1.0, 1.0]

10.5.4 fsolve with the option newtonj_solver

Example.

Input:

fsolve([x�2+y-2,x+y�2-2],[x,y],[0,0],newtonj_solver)

Output:

[1.0, 1.0]
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10.5.5 fsolve with the option hybridj_solver

Example.

Input:

fsolve([x�2+y-2,x+y�2-2],[x,y],[2,2],hybridj_solver)

Output:
[1.0, 1.0]

10.5.6 fsolve with the option hybridsj_solver

Example.

Input:

fsolve([x�2+y-2,x+y�2-2],[x,y],[2,2],hybridsj_solver)

Output:
[1.0, 1.0]

10.6 Numeric roots of a polynomial: proot

The proot command numerically �nds the roots of a squarefree polynomial.

• proot takes one argument:
P , a squarefree polynomial, either in symbolic form or as a list of polynomial coe�cients (written
by decreasing order).

• proot(P) returns a list of the numeric roots of P .

Examples.

• Input: Find the numeric roots of P (x) = x3 + 1:
Input:

proot([1,0,0,1])

or:

proot(x�3+1)

Output:
[−1.0, 0.5− 0.866025403784i, 0.5 + 0.866025403784i]

• Find the numeric roots of x2 − 3:
Input:

proot([1,0,-3])

or:

proot(x�2-3)

Output:
[−1.73205080757, 1.73205080757]
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10.7 Numeric factorization of a matrix: cholesky qr lu svd

Matrix numeric factorizations of

• Cholesky,

• QR,

• LU,

• svd,

are described in Section 5.49 p.494.
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Unit objects and physical constants

11.1 Unit objects

11.1.1 Notation of unit objects

A unit object has two parts: a real number and a unit expression (a single unit or a multiplicative
combination of units). The two parts are linked by the character _ ("underscore"). For example 2_m

for 2 meters. For composite units, parenthesis must be used, e.g. 1_(m*s). See table 10.1 for a list of
the basic units.

If a pre�x is put before the unit then the unit is multiplied by a power of 10. For example, the pre�x
k or K, for kilo, indicates multiplication by 103. See table 11.2 for a list of the unit pre�xes. You cannot
use a pre�x with a built-in unit if the result gives another built-in unit.
For example: 1_a is one are, but 1_Pa is one pascal and not 10�15_a.

Examples.

• Input:

10.5_m

Output:
10.5 m

which is a unit object of value 10.5 meters.

• Input:

10.5_km

Output:
10.5 km

which is a unit object of value 10.5 kilometers.

11.1.2 Computing with units

Xcas performs usual arithmetic operations (+, -, *, /, �) on unit objects. Di�erent units may be
used, but for + and - they must be compatible. The result is an unit object

• For the multiplication and the division of two unit objects _u1 and _u2, the unit of the result is
written _(u1 ∗ u2) and _(u1/u2).

• For an addition or a subtraction of compatible unit objects, the result is expressed with the same
unit as the �rst term of the operation.

737
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Name Description Name Description
_A Ampere _ha Hectare
_Angstrom Angstrom _hp Horsepower
_Bq Becquerel _in Inch
_Btu Btu British thermal unit _inH20 Inches of water, 60 degrees Fahrenheit
_Ci Curie _inHg Inches of mercury, 0 degree Celsius
_F Farad _j Day
_Fdy Faraday _kWh Kilowatt-hour
_Gal Gal (0.01 m/s2) _kg Kilogram
_Gy Gray _kip Kilopound-force
_H Henry _km Kilometre
_Hz Hertz _knot nautical miles per hour
_J Joule _kph Kilometers per hour
_K Kelvin _l Liter
_Kcal Kilocalorie _lam Lambert
_MHz Megahertz _lb pound (1 pound = 16 oz)
_MW Megawatt _lbf Pound-force
_MeV Megaelectronvolt _lbmol Pound-mole
_N Newton _lbt Troy pound
_Ohm Ohm _lep Liter of oil equivalent
_P Poise (measures viscosity) _liqpt US liquid pint (1 US gallon = 8 US liquid pints)
_Pa Pascal _lm Lumen
_R Roentgen _lx Lux
_Rankine Degree Rankine _lyr Light year
_S Siemens _m Metre (unit)
_St Stokes _mho Mho
_Sv Sievert _miUS US statute mile
_T Tesla _mi�2 Square international mile.
_V Volt _mil Mil
_W Watt _mile International mile
_Wb Weber _mille Nautical mile
_Wh Watt-hour _ml millilitre
_a Are (100 m2) _mm Millimetre
_acre Acre _mmHg Millimeter of mercury (torr), 0 degree Celsius
_arcmin Minute of arc _mn Minute
_arcs Second of arc _mol Mole
_atm Atmosphere _mph Miles per hour
_au Astronomical unit _oz Ounce
_b Barn _ozUK UK �uid ounce
_bar Bar _ozfl US �uid ounce
_bbl Barrel _ozt Troy ounce
_bblep Barrel of oil equivalent _pc Parsec
_bu Bushel (1 bushel=8 gallons UK) _pdl Poundal (force)
_buUS American bushel _ph Phot
_cal Calorie _pk US peck
_cd Candela _psi Pounds per square inch
_chain Chain (1 chain = 66 feet or 22 yards) _ptUK UK pint (1 UK gallon=8 UK pints)
_cm Centimetre _qt Quart
_ct Carat _rad Radian
_cu US cup _rd Rad (1 rd=0.01 Gy)
_d Day _rem Rem
_dB Decibel _rod Rod 1_rod=5.029215842_m
_deg Degree (angle) _rpm Revolutions per minute
_degreeF Degree Fahrenheit _s Second
_dyn Dyne _s second
_eV Electron volt _sb Stilb
_erg Erg _slug Slug
_fath Fathom _sr Steradian
_fbm Board foot _st Stere
_fc Footcandle (1 footcandle ≈ 10.764 lux) _t Metric ton
_fermi Fermi _tbsp Tablespoon
_flam Footlambert _tec Tonne of coal equivalent
_fm Fathom _tep Tonne of oil equivalent
_ft International foot _tex tex=10−6 (kg/m)
_ftUS Survey foot _therm EEC therm
_g Gram _ton Short ton (1 short ton = 2000 pounds)
_ga Standard freefall _tonUK Long (UK) ton
_galC Canadian gallon _torr Torr (mmHg)
_galUK UK gallon _tr tour=2π rad
_galUS US gallon _tsp Teaspoon
_gf Gram-force _u Atomic mass unit
_gmol Gram-mole _yd International yard
_gon Grade _yr Year
_grad Grade _µ Micron
_grain Grain (1 grain ≈ 0,0648 grams) _Âµ Micron
_h Hour

Table 11.1: Units
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Pre�x Name (*10�) n Pre�x Name (*10�) n
Y yota 24 d deci -1
Z zeta 21 c cent -2
E exa 18 m mili -3
P peta 15 mu micro -6
T tera 12 n nano -9
G giga 9 p pico -12
M mega 6 f femto -15
k or K kilo 3 a atto -18
h or H hecto 2 z zepto -21
D deca 1 y yocto -24

Table 11.2: Unit pre�xes

Examples.

• Input:

1_m+100_cm

Output:

2.0 m

• Input:

100_cm+1_m

Output:

200.0 cm

• Input:

1_m*100_cm

Output:

100 cmm

11.1.3 Converting units into MKSA units: mksa

The MKSA units are a system of units based on the meter, kilogram, second and ampere and usually
used in scienti�c work. The mksa converts a unit object into a unit object written with the compatible
MKSA base unit.

• mksa takes one argument:
u, a unit object.

• mksa(u) returns the unit object in terms of the MKSA units.

Example.

Input:

mksa(15_C)

Output:

15.0 sA
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11.1.4 Converting units: convert =>

The convert command (see Section 5.23.26 p.277) can convert a unit object into another compatible
unit. For this:

• convert takes two arguments:

� unitobj, a unit object.

� u, a unit compatible with unitobj.

• convert(unitobj,u) returns unitobj in terms of u.

Recall that the => operator is the in�xed version of convert.

Examples.

• Input:

convert(1_h,_s)

Output:
3600.0 s

• Input:

convert(3600_s,_h)

Output:
1.0 h

11.1.5 Converting between Celsius and Fahrenheit: Celsius2Fahrenheit Fahrenheit2Celsius

The Celsius2Fahrenheit command converts a temperature in degrees Celsius to the equivalent tem-
perature in Fahrenheit.

• Celsius2Fahrenheit takes one argument:
T , a number representing representing a temperature in degrees Celsius.

• Celsius2Fahrenheit(T) returns the number representing the temperature in Fahrenheit.

Examples.

• Input:

Celsius2Fahrenheit(a)

Output:
9

5
a+ 32

• Input:

Celsius2Fahrenheit(0)

Output:
32

The Fahrenheit2Celsius command converts Fahrenheit temperatures to Celsius.

• Fahrenheit2Celcius takes one argument:
T , a number representing representing a temperature in degrees Fahrenheit.

• Fahrenheit2Celcius(T) returns the number representing the temperature in Celcius.
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Example.

Input:

Fahrenheit2Celsius(212)

Output:

100

11.1.6 Factoring a unit: ufactor

The ufactor command factors units in unit objects.

• ufactor takes two arguments:

� unitobj, a unit object.

� u, the unit to factor.

• ufactor(unitobj,u) returns a unit object multiplied by the remaining MKSA units.

Examples.

• Input:

ufactor(3_J,_W)

Output:

3.0 Ws

• Input:

ufactor(3_W,_J)

Output:

3.0 Js−1

11.1.7 Simplifying units: usimplify

The usimplify command simpli�es a unit in an unit object.

• usimplify takes one argument:
unitobj, a unit object.

• usimplify(unitobj) returns unitobj with the units simpli�ed.

Example.

Input:

usimplify(3_(W*s))

Output:

3.0 J
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_F_ Faraday constant _h_ Planck's constant
_G_ Gravitational constant _hbar_ Dirac's constant
_I0_ Reference intensity _k_ Boltzmann constant.
_NA_ Avogadro's number _kq_ k/q (Boltzmann/charge of the electron)
_PSun_ Power at the surface of the Sun _lambda0_ Photon wavelength (ch/e)
_REarth_ Radius of the Earth _lambdac_ Compton wavelength
_RSun_ Radius of the Sun _mEarth_ Mass of the Earth
_R_ Constante universelle des gaz _me_ Electron rest mass
_Rinfinity_ Rydberg constant _mp_ Proton rest mass
_StdP_ Standard pressure _mpme_ Quotient mp/me (mass of the proton/mass of the electron)
_StdT_ Standard temperature _mu0_ Permeability of vacuum
_Vm_ Molar volume _muB_ Bohr magneton
_a0_ Bohr radius _muN_ Nuclear magneton
_alpha_ Fine structure constant _phi_ Magnetic �ux quantum
_angl_ 180 degree angle _q_ Charge of an electron
_c3_ Wien displacement constant _qe_ Electron charge
_c_ Speed of light in vacuum _qepsilon0_ q*epsilon0 (charge of the electron*permittivity)
_epsilon0_ Permittivity of vacuum _qme_ Quotient q/me (charge/mass of the electron)
_epsilon0q_ epsilon0/q (permittivity/charge of the electron) _rad_ 1 radian
_epsilonox_ Dielectric constant of Silicon dioxide _sd_ Duration of a sidereal day
_epsilonsi_ Dielectric constant _sigma_ Stefan-Boltzmann constant
_f0_ Photon frequency (e/h) _syr_ Duration of a sidereal year
_g_ Acceleration of gravity _twopi_ 2π

Table 11.3: Physical constants

11.2 Constants

11.2.1 Notation of physical constants

If you want to use a physical constants inside Xcas, put its name between two characters _ ("un-
derscore"). Don't confuse physical constants with symbolic constants; for example, e, π are symbolic
constants and _c_,_NA_ are physical constants. The physical constants are in the Phys menu, Constant
sub-menu, and table 11.3 gives the Constants Library:

Examples.

• Input:

_c_

Output:
1 c

which represents the speed of light in vacuum. You can use the mksa command (see Section 11.1.3
p.739) to put this in terms of standard units:
Input:

mksa(_c_)

Output:
299792458.0 ms−1

• Input:

_NA_

Output:
1 NA

which represents Avogadro's number:
Input:

mksa(_NA_)

Output:

6.0221367× 1023 mol−1
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Programming

A program that you write for Xcas might be longer than one line; the �rst section discusses how you
can enter it.

12.1 Functions, programs and scripts

12.1.1 The program editor

Xcas provides you with a program editor, which you can open with Alt+P. This can be useful for writing
small programs, but for writing larger programs you may want to use your usual editor. (Note that this
requires an editor, such as emacs, and not a word processor.) If you use your own editor, then you will
need to save the program to a �le, such as myprog.cxx, and then load it into Xcas with the command
line command load:
Input:

load("myprog.cxx")

12.1.2 Functions: function endfunction { } local return

You have already seen functions de�ned with :=. For example, to de�ne a function sumprod which takes
two inputs and returns a list with the sum and the product of the inputs, you can enter:
Input:

sumprod(a,b):= [a+b,a*b]

Afterwards, you can use this new function. Input:

sumprod(3,5)

Output:
[8, 15]

You can de�ne functions that are computed with a sequence of instructions by putting the instruc-
tions between braces, where each command ends with a semicolon. To use local variables, you can
declare them with the local keyword, followed by the variable names. The value returned by the func-
tion will be indicated with the return keyword. For example, the above function sumprod could also
be de�ned by:

sumprod(a,b):= {

local s, p;

s:= a + b;

p:= a*b;

return [s,p];

}

743
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Another way to use a sequence of instructions to de�ne a function is with the function . . . endfunction
construction. With this approach, the function name and parameters follow the function keyword. This
is otherwise like the previous approach. The sumprod function could be de�ned by:
Input:

function sumprod(a,b)

local s, p;

s:= a + b;

p:= a*b;

return [s,p];

endfunction

12.1.3 Local variables

Local variables in a function de�nition can be given initial values in the line they are declared in by
putting their initialization in parentheses; for example,

local a,b;

a:= 1;

is the same as

local (a:= 1), b;

Local variables should be given values within the function de�nition. If you want to use a local
variable as a symbolic variable, then you can indicate that with the assume command (see Section 4.4.8
p.83). For example, if you de�ne a function myroots by

myroots (a):= {

local x;

return solve(x^2=a,x);

}

then calling

myroots(4)

will simply return the empty list. You could leave x undeclared, but that would make x a global variable
and could interact with other functions in unexpected ways. You can get the behavior you probably
expected by explicitly assuming x to be a symbol;

myroots (a):= {

local x;

assume(x,symbol);

return solve(x^2=a,x);

}

(Alternatively, you could use purge(x) instead of assume(x,symbol).) Now if you enter

myroots(4)

you will get

[−2, 2]
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12.1.4 Default values of the parameters

You can give the parameters of a function default values by putting parameter=value in the parameter
list of the function. For example, if you de�ne a function:
Input:

f(x,y=5,z):= {

return x*y*z;

}

then:
Input:

f(1,2,3)

Output:

6

since the product 1 ∗ 2 ∗ 3 = 6. If you give f only two values as input:
Input:

f(3,4)

Output:

60

since the values 3 and 4 will be given to the parameters which don't have default values; in this case,
y will get its default value 5 while 3 and 4 will be assigned to x and z, respectively. The result is
x*y*z= 3 ∗ 5 ∗ 4 = 60.

12.1.5 Programs

A program is similar to a function, and is written like a function without a return value. Programs are
used to display results or to create drawings. It is a good idea to turn a program into a function by
putting return 0 at the end; this way you will get a response of 0 when the program executes.

12.1.6 Scripts

A script is a �le containing a sequence of instructions, each ending with a semicolon.

12.1.7 Code blocks

A code block, such as used in de�ning functions, is a sequence of statements delimited by braces or by
begin and end. Each statement must end with a semicolon. If the block makes up a function, you can
step through it one statement at a time by using the debugger (see Section 12.5 p.773).

12.2 Basic instructions

12.2.1 Comments: //

The characters // indicate that you are writing a comment; any text between // and the end of the
line will be ignored by Xcas.



746 CHAPTER 12. PROGRAMMING

12.2.2 Input: input Input InputStr textinput output Output

The input command prompts the user for the value of a variable.
Input is a synonym for input.

• input takes an unspeci�ed number of commands:
vars, a sequence of variable names, each one optionally preceded by a string.

• input(vars) brings up a box where the user can enter a value for each variable.
If a variable is preceded with a string, then that string will be the prompt for the variable, otherwise
the variable name will be the prompt.

Examples.

• Input:

input(a)

Output:

• Input:

input("Set a to the value: ",a)

Output:

• Input:

input(a,bee,c)

Output:

• Input:

input("Set a to the value: ",a,bee,"Set c to this value: ",c)

Output:

If the value that you enter for input is a string, it should be between quotes. If you want the user
to enter a string without having to use the quotes, you can use the InputStr command, which is just
like input except that it will assume any input is a string and so the user won't need to use quotes.
textinput is a synonym for InputStr.

The output command creates message windows:
Output is a synonym for output.

• output takes one argument:
strs, a sequence of strings or variables which represent strings.

• output(strs) creates a message window displaying the concatentation of the strings.
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Example.

Input:

s := "message"

output("This is a ",s)

Output:

You can use output to add information to the input window.

Example.

Input:

input(output("Calculate p(a)"),"polynomial",p,"value",a)

Output:

12.2.3 Reading a single keystroke: getKey

The getKey command gets the next keystroke.

• getKey takes no arguments.

• getKey() returns the ASCII code of the next keystroke.

For example, if you enter

asciicode:= getKey()

and hit the A key, then the variable asciicode will have the value 65, which is the ASCII code of capital
A.

12.2.4 Checking conditions: assert

The assert command breaks out of a function with an error.

• assert takes one argument:
bool, a boolean.

• assert(bool) does nothing if bool is true, it returns from the function with an error if bool is false.
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Example.

De�ne the function:
Input:

sqofpos(x):= {assert(x > 0); return x�2;}

then:

sqofpos(4)

Output:
16

Input:

sqofpos(-4)

Output:

assert failure: x>0 Error: Bad Argument Value

since -4 > 0 is false.

12.2.5 Checking the type of the argument: type subtype compare getType

The type command �nds the type of its input.

• type takes one argument: arg.

• type(arg) returns an integer indicating the type of arg.
The integer is given as a constant symbol which is equal to the integer. The possible values are:

� 1, equivalently real, double or DOM_FLOAT.

� 2, equivalently integer or DOM_INT.

� 4, equivalently complex or DOM_COMPLEX.

� 6, equivalently identifier or DOM_IDENT.

� 7, equivalently vector or DOM_LIST.

� 8, equivalently expression or DOM_SYMBOLIC.

� 10, equivalently rational or DOM_RAT.

� 12, equivalently string or DOM_STRING.

� 13, equivalently func or DOM_FUNC.

Examples.

• Input:

type(4)

Output:

integer

• Input:

type(3.1) == DOM_FLOAT
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Output:

true

Xcas has various types of lists; the subtype command can determine what kind of list it is.

• subtype takes one argument:
L, a list (in DOM_LIST).

• subtype(L) returns an integer indicating what type of list L is.
The possible values are:

� 1 is L is a sequence.

� 2 if L is a set.

� 10 if L is a polynomial represented by a list (see Section 5.27 p.301).

� 0 if L isn't one of the above types of list.

Example.

Input:

subtype(1,2,3)

Output:
1

The compare operator compares two objects taking their type into account.

• compare takes two arguments:
a, b, two objects.

• compare(a, b) returns

� 1 (true) if type(a)<type(b) or if type(a)=type(b) and a is less than b in the ordering of
their type.

� 0 (false) otherwise.

Examples.

• Input:

compare("a","b")

Output:
1

since "a" and "b" have the same type (string) and "a" is less than "b" in the string ordering.

• If b is a formal variable:
Input:

compare("a",b)

Output:
0

since the type of "a" is string (the integer 12) while the type of b is identifier (the integer 6)
and 12 is not less than 6.
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The getType command is similar to type in that it takes an object and returns the type, but it has
di�erent possible return values. It is included for compatibility reasons.

• getType takes one argument:
obj, an object.

• getType(obj) returns the type of obj, which in this case means one of:
NUM, VAR, STR, EXPR, NONE, PIC, MAT or FUNC.

Examples.

• Input:

getType(3.14)

Output:

NUM

• Input:

getType(x)

Output:

VAR

12.2.6 Printing: print Disp ClrIO

The print command prints in a special pane.
Disp is a synonym for print.

• print takes one argument:
seq, a sequence of objects.

• print(seq) returns 1 and prints the seq in a special pane just above the output line.

Examples.

• Input:

print("Hello")

Output:

Hello

1

• Input:

a:= 12

print("a =",a)

Output:

a =,12

1

The ClrIO command erases printing on the level it was typed.

• ClrIO takes no arguments and no parentheses.

• ClrIO returns 1 and erases any printing on the special pane above the output line on the level it
was typed.
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Example.

Input:

print("Hello"); ClrIO

Output:

(1, 1)

12.2.7 Displaying exponents: printpow

The printpow command determines how the print command will print exponents in the special pane
above the output line.

• printpow takes on argument:
n, either -1,0 or 1 (by default 1).

• printpow(n) sets the style for printing exponents with the print command.

� If n = −1, print(a�b) will subsequently print a**b). ab.

� If n = 0, print(a�b) will subsequently print pow(a, b).

� If n = 1, print(a�b) will subsequently print a�b.

Example.

Input:

print(x�3)

Above the output line:

x�3

Input:

printpow(-1)

print(x�3)

Above the output line:

a**b

Input:

printpow(0)

print(x�3)

Above the output line:

pow(a,b)

Input:

printpow(1)

print(x�3)

Above the output line:

print(x�3)
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12.2.8 In�xed assignments: => := =<

The in�xed operators =>, :=, and =< can all store a value in a variable, but their arguments are in
di�erent order. (See Section 4.4.2 p.79 and Section 4.4.3 p.80.) Also, := and =< have di�erent e�ects
when the �rst argument is an element of a list stored in a variable, since =< modi�es list elements by
reference (see section 12.2.10).

• => is the in�xed version of sto, it stores the value in the �rst argument in the variable in the
second argument. Both

4 => a

and:

sto(4,a)

store the value 4 in the variable a.

• := and =< both have a variable as the �rst argument and the value to store in the variable as the
second argument. Both

a:= 4

and:

a =< 4

store the value 4 in the variable a.

However, suppose you have entered:

A:= [0,1,2,3,4]

B:= A

and you want to change A[3].

A[3] =< 33

will change both A and B:
Input:

A, B

Output:
[0, 1, 2, 33, 4] , [0, 1, 2, 33, 4]

Here, A pointed to the list [0,1,2,3,4] and after setting B to A, B also pointed to [0,1,2,3,4].
Changing an element of A by reference changes the list that A points to, which B also points to.

Note that multiple assigments can be made using sequences or lists. Both

[a, b, c]:= [1, 2, 3]

and:

(a, b, c):= (1, 2, 3)

assign a the value 1, b the value 2, and c the value 3. If multiple assignments are made this way and
variables are on the right hand side, they will be replaced by their values before the assignment. If a
contains 5 and you enter:

(a,b):= (2,a)

then b will get the previous value of a, 5, and not the new value of a, 2.
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12.2.9 Assignment by copying: copy

The copy command creates a copy of its argument, which is typically a list of some type. If B is a list
and A := B, then A and B point to the same list, and so changing one will change the other. But if
A:= copy(B), then A and B will point to di�erent lists with the same values, and so can be changed
individually.

Example.

Input:

B:= [[4,5],[2,6]]

A:= B

C:= copy(B)

A, B, C

Output: [
4 5
2 6

]
,

[
4 5
2 6

]
,

[
4 5
2 6

]
Input:

B[1] =< [0,0]

A, B, C

Output: [
4 5
0 0

]
,

[
4 5
0 0

]
,

[
4 5
2 6

]
12.2.10 The di�erence between := and =<

The := and =< assignment operators have di�erent e�ects when they are used to modify an element of
a list contained in a variable, since =< modi�es the element by reference. Otherwise, they will have the
same e�ect.

Example.

Input:

A:= [1,2,3]

Here:

A[1]:= 5

and

A[1] =< 5

both change A[1] to 5:
Input:

A

Output:
[1, 5, 3]

but they do it in di�erent ways. The command A[1] =< 5 changes the middle value in the list that A
originally pointed to, and so any other variable pointing to the list will be changed, but A[1]:= 5 will
create a duplicate list with the middle element of 5, and so any other variable pointing to the original
list won't be a�ected.
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Examples.

• Input:

A:=[0,1,2,3,4]

B:=A

B[3]=<33

A,B

Output:
[0, 1, 2, 33, 4] , [0, 1, 2, 33, 4]

• Input:

A:=[0,1,2,3,4] B:=A B[3]:=33 A,B

Output:
[0, 1, 2, 3, 4] , [0, 1, 2, 33, 4]

If B is set equal to a copy of A instead of A, then changing B won't a�ect A.

Example.

Input:

A:=[0,1,2,3,4] B:=copy(A) B[3]=<33 A,B

Output:
[0, 1, 2, 3, 4] , [0, 1, 2, 33, 4]

12.3 Control structures

12.3.1 if statements: if then else end elif

The Xcas language has di�erent ways of writing if...then statements (see Section 5.1.3 p.91). The
standard version of the if...then statement consists of the if keyword, followed by a boolean expression
(see Section 5.1 p.91) in parentheses, followed by a statement block (see Section 12.1.7 p.745) which will
be executed if the boolean is true. You can optionally add an else keyword followed by a statement
block which will be executed if the boolean is false:

if (boolean) true-block 〈else false-block〉

(where recall the blocks need to be delimited by braces or by begin and end).

Examples.

• Input:

a:=3; b:=2:;

if (a > b) { a:= a + 5; b:= a - b;}:;

a,b

Output:
8, 6

since a > b will evaluate to true, and so the variable a will be reset to 8 and b will be reset to the
value 6.
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• Input:

a:=3; b:=2:; if (a < b) { a:= a + 5; b:= a - b;} else { a:=a - 5; b:= a + b;}:; a,b

Output:
−2, 0

since a > b will evaluate to false, and so the variable a will be reset to -2 and b will be reset to
the value 0.

An alternate way to write an if statement is to enclose the code block in then and end instead of
braces:

if (boolean) then true-block 〈else false-block〉 end

Examples.

• Input:

a := 3

if (a > 1) then a:= a + 5; end

Output:
8

• Input:

a:=8

if (a > 10) then a:= a + 10; else a:= a - 5; end

Output:
3

This input can also be written:

si (a > 10) alors a:= a + 10; sinon a:= a - 5; fsi

Several if statements can be nested; for example, the statement

if (a > 1) then a:= 1; else if (a < 0) then a:= 0; else a:= 0.5; end; end

A simpler way is to replace the else if by elif and combine the ends; the above statement can be
written

if (a > 1) then a:= 1; elif (a < 0) then a:= 0; else a:= 0.5; end

In general, such a combination can be written

if (boolean 1) then

block 1;
elif (boolean 2) then

block 2;
. . .
elif (boolean n) then

block n;
else

last block;
end
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(where the last else is optional.) For example, if you want to de�ne a function f by

f(x) =



8 if x > 8

4 if 4 < x ≤ 8

2 if 2 < x ≤ 4

1 if 0 < x ≤ 2

0 if x ≤ 0

you can enter

f(x):= {

if (x > 8) then

return 8;

elif (x > 4) then

return 4;

elif (x > 2) then

return 2;

elif (x > 0) then

return 1;

else

return 0;

end;

}

12.3.2 The switch statement: switch case default

The switch statement can be used when you want the value of a block to depend on an integer. It
takes one argument, an expression which evaluates to an integer. It should be followed by a sequence of
case statements, which takes the form case followed by an integer and then a colon, which is followed
by a code block to be executed if the expression equals the integer. At the end is an optional default:
statement, which is followed by a code block to be executed if the expression doesn't equal any of the
given integers:

switch(n) {

case n1: block n1
case n2: block n2
. . .
case nk: block nk
default: default_block

(where recall the blocks need to be delimited by braces or by begin and end).

Example.

As an example of a program which performs an operation on the �rst two variables depending on the
third, you could enter (see Section 12.1.1 p.743):

oper(a,b,c):= {

switch (c) {

case 1: {a:= a + b; break;}

case 2: {a:= a - b; break;}

case 3: {a:= a * b; break;}

default: {a:= a � b;}

}

return a;

}



12.3. CONTROL STRUCTURES 757

Then:
Input:

oper(2,3,1)

Output:

5

since the third argument is 1, and so oper(a,b,c) will return a+ b, and:
Input:

oper(2,3,2)

Output:

−1

since the third argument is 2 and so oper(a,b,c) will return a-b.

12.3.3 The for loop: for from to step do end_for

The for loop has three di�erent forms, each of which uses an index variable. If the for loop is used
in a program, the index variable should be declared as a local variable. (Recall that i represents the
imaginary unit, and so cannot be used as the index.)

The �rst form: For the �rst form, the for is followed by the starting value for the index, the end
condition, and the increment step, separated by semicolons and in parentheses. Afterwards is a block
of code to be executed for each iteration:

for (j:=j0; end_cond; increment_step) block

where j is the index and j0 is the starting value of j.

Example.

To add the even numbers less than 100, you can start by setting the running total to 0:
Input:

S:= 0

then use a for loop to do the summing:
Input:

for (j:= 0; j < 100; j:= j + 2) {S:= S + j}

Output:

2450

The second form: The second form of a for loop has a �xed increment for the index. It is written
out with for followed by the index, followed by from, the initial value, to, the ending value, step, the
size of the increment, and �nally the statements to be executed between do and end_for:

for j from j0 to jmax step k do statements end_for

where j is the index, j0 is the initial value of j, jmax is the ending value of j, k is the step size of j, and
statements are executed for each value of j.
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Example.

Again, to add the even numbers less than 100, you can start by setting the running total to 0:
Input:

S:= 0

then use the second form of the for loop to do the summing:
Input:

for j from 2 to 98 step 2 do S:= S + j; end_for

or (a French version of this syntax):

pour j de 2 jusque 98 pas 2 faire S:= S + j; fpour

Output:

2450

The third form: The third form of the for loop lets you iterate over the values in a list (or a set
or a range). In this form, the for is followed by the index, then in, the list, and then the instructions
between do and end_for:

for j in L do statements end_for

where j is the index and L is the list to iterate over.

Example.

To add all integers from 1 to 100, you can again set the running total S to 0:
Input:

S:=0

then use the third form of the for loop to add the integers:
Input:

for j in 1..100 do S:= S + j; end_for

or:

pour j in 1..100 faire S:= S + j; fpour

Output:

5050

12.3.4 The repeat loop: repeat until

The repeat loop allows you to repeat statements until a given condition is met. To use it, enter repeat,
the statements, the keyword until followed by the condition, a boolean:

repeat statements until bool
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Example.

If you want the user to enter a value for a variable x which is greater than 4, you could use:

repeat

input("Enter a value for x (greater than 4)",x);

until (x > 4);

This can also be written

repeter

input("Enter a value for x (greater than 4)",x);

jusqua (x > 4);

12.3.5 The while loop: while

The while loop is used to repeat a code block as long as a given condition holds. To use it, enter while,
the condition in parentheses, and then a code block.

while (bool) block

Example.

Add the terms of the harmonic series 1 + 1/2 + 1/3 + 1/4 + . . . until a term is less than 0.05.
You can initialize the sum S to 0 and let j be the �rst term 1.
Input:

S:=0

j:=1

Then use a while loop:
Input:

while (1/j >= 0.05) {S:= S + 1/j; j:= j+1;}

or:

tantque (1/j >= 0.05) faire S:= S + 1/j; j:= j+1; ftantque

then:

S

Output:
55835135

15519504

Note that a while loop can also be written as a for loop. For example, as long as S is set to 0 and j is
set to 1 , the above loop can be written as

for (;1/j >= 0.05;) {S:= S + 1/j; j:= j+1;}

or, with only S set to 0,

for (j:= 1; 1/j >= 0.05; j++) {S:= S + 1/j;}

12.3.6 Breaking out a loop: break

The break command exits a loop without �nishing it.

• break takes no arguments or parentheses.

• break exits the current loop.
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Example.

De�ne a program:

testbreak(a,b):= {

local r;

while (true) {

if (b == 0) {break;}

r:= irem(a,b);

a:= b;

b:= r;

}

return a;

}

Then:
Input:

testbreak(4,0)

Output:

4

since the while loop is interrupted when b is 0 and a is 4.

12.3.7 Going to the next iteration of a loop: continue

The continue command will skip the rest of the current iteration of a loop and go to the next iteration.

• continue takes no arguments or parentheses.

• continue goes to the next iteration of the current loop without �nishing the current iteration.

Example.

If you enter:

S:= 0

for (j:= 1, j <= 10; j++) {

if (j == 5) {continue;}

S:= S + j;

}

then S will be 50, which is the sum of the integers from 1 to 10 except for 5, since the loop never gets
to S:= S + j when j is equal to 5.

12.3.8 Changing the order of execution: goto label

The goto command will tell a program to jump to a di�erent spot in a program, where the spot needs
to have been marked with label. They both must have the same argument, which is simply a sequence
of characters.

• label takes one argument:
mark, a sequence of characters.

• label(mark) labels the position in the program with mark.

• goto takes one argument:
mark, a sequence of characters.

• goto(mark) goes to the part of the program labeled with mark.
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Example.

The following program will add the terms of the harmonic series until the term is less than some speci�ed
value eps and print the result.

harmsum(eps):= {

local S, j;

S:= 0;

j:= 0;

label(spot);

j:= j + 1;

S:= S + 1/j;

if (1/j >= eps) goto (spot);

print(S);

return 0;

}

12.4 Other useful instructions

12.4.1 De�ning a function with a variable number of arguments: args

The args command returns the list of arguments of a function.

• args takes no arguments.

• args (or args(NULL)) returns a list of the arguments of the current function, starting with the
name of the function at index 0.

Note that args() will not work, the command must be called as args or args(NULL). You can also
use (args)[0] to get the name of the function and (args)[1] to get the �rst argument, etc., but the
parentheses about args is mandatory.

Examples.

• Input:

testargs():= {local y; y:= args; return y[1];}

testargs(12,5)

Output:
12

• Enter the function:

total():={

local s,a;}

a:=args;

s:=0;

for (k:=1;k<size(a);k++){

s:=s+a[k];

}

return s;

}

then:

total(1,2,3,4)

Output:
10



762 CHAPTER 12. PROGRAMMING

12.4.2 Assignments in a program

Recall that the =< operator will change the value of a single entry in a list or matrix by reference (see
Section 4.4.3 p.80). This make it e�cient when changing many values, one at a time, in a list, as might
be done by a program.

You must be careful when doing this, since your intent might be changed when a program is compiled.
For example, if a program contains

local a;

a:= [0,1,2,3,4];

...

a[3] =< 33;

then in the compiled program, a:= [0,1,2,3,4] will be replaced by a:= [0,1,2,33,4]. To avoid this,
you can assign a copy of the list to a; you could write:

local a;

a:= copy([0,1,2,3,4]);

...

a[3] =< 33;

Alternately, you could use a command which recreates a list every time the program is run, such as
makelist or $, instead of copying a list; a:= makelist(n,n,0,4) or a:= [n$(n=0..4)] can also be
used in place of a:= [0,1,2,3,4].

12.4.3 Writing variable values to a �le: write

The write command saves variable values to a �le, to be read later.

• write takes two arguments:

� �lename, a string.

� vars, a sequence of variables.

• write(�lename,vars) writes the variables in vars assigned to their values in a �le named �lename.

Example.

Input:

a:=3.14

b:=7

write("foo",a,b)

creates a �le named �foo� containing:

a:=(3.14);

b:=7;

If you wanted to store the �rst million digits of π to a �le, you could set it equal to a variable and store
it in a �le: Input:

pidec:= evalf(pi,10�6):;

write("pi1million",pidec)

The �le is written so that it can be loaded with the read command (Section 4.6.2 p.89), which
simply takes a �le name as a string. This allows you to restore the values of variables saved this way,
for example in a di�erent session or if you have purged the variables.
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Example.

If, in a di�erent session, you want to use the values of a and b above, you can enter:
Input:

read("foo")

This will reassign the values 3.14 and 7 to a and b. Be careful, this will silently overwrite any values
that a and b might have had.

12.4.4 Writing output to a �le: fopen fclose fprint

You can use the fopen, fprint and fclose commands to write output to a �le instead of the screen.

The fopen command creates and opens a �le to write into.

• fopen takes one argument:
�lename, a string.

• fopen(�lename) creates a �le named �lename (and erases it if it already exists).

To use this, you need to associate it with a variable var:=fopen(�lename) which you can use to refer
to the �le when printing to it.

The fprint command writes to a �le.

• fprint takes two mandatory arguments and one optional argument:

� var, a variable name associated with a �le through fopen.

� Optionally, Unquoted, the symbol.

� info, a list of what you want to write to the �le.

• fprint(var 〈 Unquote 〉,info) writes info into the �le given by var. By default, strings in info
are written with their quotation marks, with the option Unquoted, fprint will print them with
the quotation marks.

The fclose command closes a �le.

• fclose takes one argument:
var, a variable assigned to a �le with fopen.

• fclose(var) closes the �le given by var to further writing.

Example.

To write contents to a �le, you �rst need to open the �le and associate it with a variable.
Input:

f:= fopen("bar")

This creates a �le named �bar� (and so erase it if it already exists). To write to the �le:
Input:

x:=9

fprint(f,"x + 1 is ", x+1)

will put

"x + 1 is "10

in the �le. Note that the quotation marks are inserted with the Unquoted argument:
Input:
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x:=9

fprint(f,Unquoted,"x + 1 is ", x+1)

will put

x + 1 is 10

in the �le. Finally, after you have �nished writing what you want into the �le, you close the �le with
the fclose command:
Input:

fclose(f)

12.4.5 Using strings as names: make_symbol

Variable and function names are symbols, namely sequences of characters, which are di�erent from
strings. For example, you can have a variable named abc, but not "abc". The make_symbol command
turns a string into a symbol; for example make_symbol("abc") is the symbol abc.

Examples.

• Input:

a:= "abc";

make_symbol(a):= 3

or:

make_symbol("abc"):= 3

then:

abc

Output:

3

The variable abc will have the value 3.

• Similarly for functions.
Input:

b:= "sin";

make_symbol(b)(pi/4)

or:

make_symbol("sin")(pi/4)

Output: √
2

2

which is sin(pi/4).
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12.4.6 Creating array of symbols: symbol_array

The symbol_array command is used for creating multidimensional arrays of symbols. It takes two
arguments:

• str, a template string for symbol names.

• dim = n1, n2, . . . , nm, a sequence of m positive integers.

The return value is an array with m dimensions n1, n2, . . . , nm with indexed symbols as elements.
Symbols are created from the template string str by appending indices. Template string may contain
m instances of the character '%', k-th of which serves as the placeholder for the k-th dimension index.
If placeholders are omitted, indices are simply appended in case m = 1, while in case m > 1 they are
separated from str and each other by the underscore ('_').

The indices start from 0 in 0-based modes (such as the default mode in Xcas) resp. from 1 in 1-based
modes (such as the Maple mode).

Examples.

• Input:

symbol_array("x",5)

• Output:
[x0, x1, x2, x3, x4]

• Input:

symbol_array("a",2,3)

• Output: [
a0,0 a0,1 a0,2
a1,0 a1,1 a1,2

]
• Input:

maple_mode(1):; symbol_array("a%%",2,3)

• Output:
[[a11, a12, a13], [a21, a22, a23]]

• Input:

maple_mode(0):; s:=symbol_array("a%b%c%",2,3,4)

• Output: a0b0c0 a0b0c1 a0b0c2 a0b0c3
a0b1c0 a0b1c1 a0b1c2 a0b1c3
a0b2c0 a0b2c1 a0b2c2 a0b2c3

 ,
 a1b0c0 a1b0c1 a1b0c2 a1b0c3

a1b1c0 a1b1c1 a1b1c2 a1b1c3
a1b2c0 a1b2c1 a1b2c2 a1b2c3


• Input:

s[1][2][3]

• Output:
a1b2c3
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12.4.7 Using strings as commands: expr

The expr command lets you use a string as a command.

• expr takes one argument:
str, a string which expresses a valid command.

• expr(str) converts str to the command and evaluates it.

Examples.

• Input:

expr("c:= 1")

c

Output:
1

• Input:

a:= "ifactor(54)"

expr(a)

Output:
2 · 33

which is the same thing as entering ifactor(54) directly.

You can also use expr to convert a string to a number. If a string is simply a number enclosed by
quotation marks, then expr will return the number.

Example.

Input:

expr("123")

Output:
123

In particular, the following strings will be converted to the appropriate number.

• A string consisting of the digits 0 through 9 which doesn't start with 0 will be converted to an
integer.

Example.

Input:

expr("2133")

Output:
2133

• A string consisting of the digits 0 through 9 which contains a single decimal point will be converted
to a decimal.
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Example.

Input:

expr("123.4")

Output:

123.4

• A string consisting of the digits 0 through 9, possibly containing a single decimal point, followed
by e and then more digits 0 through 9, will be read as a decimal in exponential notation.

Example.

Input:

expr("1.23e4")

Output:

12300.0

• A string consisting of the digits 0 through 7 which starts with 0 will be read as an integer base 8.

Example.

Input:

expr("0176")

Output:

126

since 176 base 8 equals 126 base 10.

• A string starting with 0x followed by digits 0 through 9 and letters a through f will be read as an
integer base 16.

Example.

Input:

expr("0x2a3f")

Output:

10815

since 2a3f base 16 equals 10815 base 10.

• A string starting with 0b followed by digits 0 and 1 will be read as a binary integer.
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Example.

Input:

expr("0b1101")

Output:

13

since 1101 base 2 equals 13 base 10.

12.4.8 Converting an expression to a string: string

The string command converts an expression to a string.

• string takes one argument:
expr, an expression.

• string(expr) evaluates expr then converts it to a string.

Example.

Input:

string(ifactor(6))

Output:

"2 * 3"

This is the same thing as adding the empty string to the expression:

ifactor(6) + ""

If you want to convert an unevaluated expression to a string, you can quote the expression (see
Section 5.12.4 p.173).

Example.

Input:

string(quote(ifactor(6)))

"ifactor(6)"

12.4.9 Converting a real number into a string: format

The format command converts real numbers into strings.

• format takes two arguments:

� r, a real number.

� str, a string used for formatting.

• format(str) returns r as a string with the requested formatting.

The formatting string can be one of the following:

• f (for �oating format) followed by the number of digits to put after the decimal point.
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Example.

Input:

format(sqrt(2)*10�10,"f13")

Output:

"14142135623.7308959960938"

• s (for scienti�c format) followed by the number of signi�cant digits.

Example.

Input:

format(sqrt(2)*10�10,"s13")

Output:

"14142135623.73"

• e (for engineering format) followed by the number of digits to put after the decimal point, with
one digit before the decimal points.

Example.

Input:

format(sqrt(2)*10�10,"e13")

Output:

"1.4142135623731e+10"

12.4.10 Working with the graphics screen: DispG DispHome ClrGraph ClrDraw

Recall that the DispG screen contains the graphical output of Xcas. The DispG command opens the
DispG screen.

• Disp takes no arguments and no parentheses.

• Disp brings up the Disp screen.

Example.

Input:

DispG;

opens the graphics screen.

The ClrGraph command clears the screen.
ClrDraw is a synonym for ClrGraph.

• ClrGraph takes no arguments.

• ClrGraph clears the Disp screen.
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Example.

Input:

ClrGraph

or:

ClrGraph()

erases the DispG screen.

The DispHome command closes the DispG screen.

• DispHome takes no arguments and no parentheses.

• DispHome closes the DispG screen.

Example.

Input:

DispHome;

makes the graphics screen go away.

12.4.11 Pausing a program: Pause WAIT

The Pause command pauses Xcas.

• Pause takes one optional argument (with no parentheses).
Optionally, r, a positive number.

• Pause r pauses Xcas for r seconds.

• Pause brings up a Pause informational window and pauses Xcas until you click Close in the Pause
window.

Example.

Input:

Pause 10

pauses Xcas for 10 seconds.

The WAIT command also pauses Xcas. It acts just like Pause, but uses parentheses for its argument.

Example.

Input:

WAIT(10)

pauses Xcas for 10 seconds.
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12.4.12 Dealing with errors: try catch throw error ERROR

Some commands produce errors, and if your program tries to run such a command it will halt with an
error. The try and catch commands help you avoid this. They to use them, put potentially problematic
statements in a block following try, and immediately after the block put catch with an argument of
an unused symbol, and follow that with a block of statements that can deal with the error.

try tryblock catch symbol catchblock

If tryblock doesn't produce an error, then

catch symbol catchblock

If tryblock does produce an error, then a string describing the error is assigned to symbol, and catchblock
is evaluated.

Examples.

• The command

[[1,1]]*[[2,2]]

produces an error saying Error: Invalid dimension. However,

try {[[1,1]]*[[2,2]]}

catch (err) {

print("The error is " + err)

}

will not produce an error:
Output:

The error is Error: Invalid dimension

• With the following program:

test(x):= {

local y, str, err; try { y:= [[1,1]]*x; str:= "This produced a product.";}

catch (err)

{y:= x;

str:= "This produced an error " + err + " The input is returned.";}

print(str);

return y;

}

Input:

test([[2],[2]])

Output:

This produced a product.

[4]

with the text in the pane above the output line.
Input:
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test([[2,2]])

Output:

This produced an error Error: Invalid dimension The input is returned.

[[2, 2]]

with the text in the pane above the output line.

You can produce your own string to describe an error message with the throw command.
error and ERROR are synonyms for throw.

� throw takes one argument:
str, a string describing an error.

� throw(str) generates an error with error string str, possibly to be caught by catch.

Example.

With the program:

f(x):= {

if (type(x) != DOM_INT)

throw("Not an integer");

else

return x;

}

Input:

f(12)

Output:
12

since 12 is an integer.
Input:

f(1.2)

will signal an error

Not an integer Error: Bad Argument Value

since 1.2 in not an integer.

You can catch this error in other programs. Consider the program:

g(x):= {

try(f(x)) catch(err) {x:= 0;}

return x;

}

then:
Input:

g(12)
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Output:

12

since 12 is an integer.
Input:

g(1.2)

Output:

0

since 1.2 is not an integer, f(x) will give an error and so g(x) will return 0.

12.5 Debugging

12.5.1 Starting the debugger: debug sst in sst_in cont kill break breakpoint
halt rmbrk rmbreakpoint watch rmwtch

The debug command starts the Xcas debugger.

� debug takes one argument:
fn(arg), a function and its argument.

� debug(fn(arg)) brings up a debug window which contains a pane with the program with
the current line highlighted, an eval entry box, a pane with the program including the
breakpoints, a row of buttons, and a pane keeping track of the values of variables.

By default, the value of all variables in the program are in this pane. The buttons are shortcuts
for entering commands in the eval box, but you can enter other commands in the eval box to
change the values of variables or to run a command in the context of the program.

Example.

With the sumprod program:

sumprod(a,b):= {

local s, p;

s:= a + b;

p:= a*b;

return [s,p];

}

Input:

debug(sumprod(2,3))

Output:
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The debug window has the following buttons:

sst This button will run the sst command, which takes no arguments and runs the highlighted
line in the program before moving to the next line.

in This button will run the sst_in command, which takes no argument and runs one step in the
program or a user de�ned function used in the program.

cont This button will run the cont command, which takes no arguments and runs the commands
from the highlighted line to a breakpoint.

kill This button will run the kill command, which exits the debugger.

break This button will put the command breakpoint in the eval box, with default arguments
of the current program and the current line. It sets a breakpoint at the given line of the
given program. Alternatively, if you click on a line in the program in the top pane, you will
get the breakpoint command with that program and the line you clicked on.

You can set a breakpoint when you write a program with the halt() command. When a
program has a halt command, then running the program will bring up the debugger. If you
want to debug the program, though, it is still better to use the debug command. Also, you
should remove any halt commands when you are done debugging.

rmbrk This button will put the command rmbreakpoint in the eval box , with default arguments
of the current program and the current line. It removes a breakpoint at the given line of the
given program. Alternatively, you can click on the line in the program in the top pane with
the bookmark you want to remove.

watch This button will put the command watch in the eval box, without the arguments �lled in.
It takes a list of variables as arguments, and will keep track of the values of these variables
in the variable pane.

rmwtch This button will put the command rmwatch in the eval box without the arguments
�lled in. The arguments are the variables you want to remove from the watch list.
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Two-dimensional Graphics

13.1 Introduction

13.1.1 Points, vectors and complex numbers

A point in the Cartesian plane is described with an ordered pair (a, b). It has x-coordinate
(abscissa) a and y-coordinate (ordinate) b.

A vector from one point (a1, b1) to another (a2, b2) has associated ordered pair (a2 − a1, b2 − b1);
so the abscissa is a2 − a1 and the ordinate is b2 − b1.

A complex number a + bi can be associated with the point (a, b) in the Cartesian plane. The
complex number is called the a�x of the point.

A point in Xcas is speci�ed with the point command (see Section 13.6.2 p.789), which takes
as argument either two real numbers a, b or a complex number a + bi. In this chapter, when a
command take a point as an argument, the point can either be the result of the point command
or simply a complex number.

An interactive graphic screen opens whenever a geometric object is drawn, or with the command
Alt+G. The objects on the screen can also be created and manipulated with the mouse.

As an example (to be explained in more detail later), the triangle command draws a triangle;
the result will be a graphics screen containing axes, the triangle and a control panel on the right.
Input:

triangle(0,1,1+i)

Output:

775
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13.2 Basic commands

13.2.1 Clearing the DispG screen: erase

The DispG screen records all graphic commands since the beginning of the session or the screen
was last erased. The Alt-D command (or the menu command Cfg I Show I DispG) brings up
this screen.

The erase command clears the DispG screen without restarting the session.
Input:

erase

or:

erase()

clears the DispG screen. This can be useful for commands such as graph2tex, which only takes
into account the objects on the DispG screen.

13.2.2 Toggling the axes: switch_axes

The switch_axes command shows, hides or toggles the coordinate axes on the graphics screen.
This can also be controlled by a show axes checkbox in the con�guration panel brought up with
the cfg button on the graphic screen control panel.

� switch_axes takes one optional argument:
n, either 0 or 1.

� switch_axes() toggles whether or not the coordinate axes are show in subsequent graphics
screens.

� switch_axes(0) causes all later graphic screens to omit the axes.

� switch_axes(1) causes all later graphic screens to have the axes.

When the axes are visible, they have tick marks whose separation is determined by the X-tick and
Y-tick values on the graphic con�guration screen. Setting these values to 0 also removes the axes.

13.2.3 Drawing unit vectors in the plane: Ox_2d_unit_vector Oy_2d_unit_vector
frame_2d

The Ox_2d_unit_vector command takes no arguments and draws the unit vector in the x-
direction on a plane.

Example.

Input:

Ox_2d_unit_vector()

Output:
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Similarly, the Oy_2d_unit_vector command draws the unit vector in the y direction. The
frame_2d command simultaneously draws both unit vectors.

13.2.4 Drawing dotted paper: dot_paper

The dot_paper command draws dotted paper.

� dot_paper takes three mandatory arguments and two optional arguments.

∗ xspacing, the spacing in the x direction.

∗ θ, the angle from the horizontal to draw the dots.

∗ yspacing, the spacing in the y direction.

∗ Optionally, x=xmin..xmax, to determine how far the dots extend in the x direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

∗ Optionally, y=ymin..ymax, to determine how far the dots extend in the y direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

� dot_paper(xspacing,θ,yspacing 〈x=xmin..xmax,y=ymin..ymax〉) draws the dotted paper.

Example.

Input:

dot_paper(0.6,pi/2,0.6)

Output:

Unchecking Show Axes on the cfg screen removes the axes.
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13.2.5 Drawing lined paper: line_paper

The line_paper command draws lined paper.

� line_paper takes two mandatory arguments and two optional arguments.

∗ xspacing, the spacing in the x direction.

∗ θ, the angle from the horizontal to draw the lines.

∗ Optionally, x=xmin..xmax, to determine how far the lines extend in the x direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

∗ Optionally, y=ymin..ymax, to determine how far the lines extend in the y direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

� line_paper(xspacing,θ 〈x=xmin..xmax,y=ymin..ymax〉) draws the lined paper.

Example.

Input:

line_paper(0.6,pi/3)

Output:

Unchecking Show Axes on the cfg screen removes the axes.

13.2.6 Drawing grid paper: grid_paper

The grid_paper command draws grid paper.

� grid_paper takes three mandatory arguments and two optional arguments.

∗ xspacing, the spacing in the x direction.

∗ θ, the angle from the horizontal to draw the grid.

∗ yspacing, the spacing in the y direction.

∗ Optionally, x=xmin..xmax, to determine how far the grid extends in the x direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

∗ Optionally, y=ymin..ymax, to determine how far the grid extends in the y direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

� grid_paper(xspacing,θ,yspacing 〈x=xmin..xmax,y=ymin..ymax〉) draws the grid paper.
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Example.

Input:

grid_paper(1,pi/2,1)

Output:

Unchecking Show Axes on the cfg screen removes the axes.

13.2.7 Drawing triangular paper: triangle_paper

The triangle_paper command draws triangular paper.

� triangle_paper takes three mandatory arguments and two optional arguments.

∗ xspacing, the spacing in the x direction.

∗ θ, the angle from the horizontal.

∗ yspacing, the spacing in the y direction.

∗ Optionally, x=xmin..xmax, to determine how far the grid extends in the x direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

∗ Optionally, y=ymin..ymax, to determine how far the grid extends in the y direction (by
default, the distances given in the graphic con�guration page accessible from the main
menu).

� triangle_paper(xspacing,θ,yspacing 〈x=xmin..xmax,y=ymin..ymax〉) draws the triangle pa-
per.

Example.

Input:

triangle_paper(1,pi/2,1)

Output:
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Unchecking Show Axes on the cfg screen removes the axes.

13.3 Display features of graphics

13.3.1 Graphic features

Graphic objects and graphic screens can have features, such as labels and colors, that are only
included when requested, and other features, such as line width, which are con�gurable. Some
features will be global, meaning that they will apply to the entire graphic screen, and some will
be local, meaning that they will only apply to individual objects.

13.3.2 Parameters for changing features

Graphical features are changed by giving appropriate values to certain parameters. Several values
can be given at once with an expression of the form feature = value1 + value2 + .... Some
values can be set using optional arguments to graphic commands, which will set the feature locally;
namely, it will only apply to that particular graphic object. Some values can be speci�ed at the
beginning of a line, which will set the feature globally; it will apply to all the graphic objects
created on that line. For some features, both options are available.

Parameters for local features

Commands which create graphic objects, such as triangle, can have optional arguments to change
a features of the object. For example, the argument color = red will make an object red.
Input:

triangle(0,1,1+i,color=red)

Output:
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The features and their possible values are:

display or color These two parameter names have the same e�ect. They control the following
features.

Color The following values will change the color:

� An integer from 0 to 381.
Integers from 0 to 255 correspond to the color palette, integers from 256 to 381 will
be the spectrum of colors. The program below will demonstrate the colors and their
numbers.

� The names black, white, red, blue, green, magenta, cyan or yellow.

Fill The filled value creates a solid object.

Point markers By default, points are drawn with a small cross. The following (self-
explanatory) values change the marker.

rhombus_point

square_point

cross_point

star_point

plus_point

point_point

triangle_point

invisible_point

Point width The values point_width_1,. . . ,point_width_8 change the thickness of the
lines in the point markers.

Line style The following (self-explanatory) values change the style of lines.

solid_line

dash_line

dashdot_line

dashdotdot_line

cap_flat_line

cap_round_line

cap_square_line

Line widths The values line_width_1,. . . ,line_width_8 change the thickness of the lines.

thickness This controls line thickness, it can be an integer from 1 to 7.

nstep This sets the number of sampling points for three-dimensional objects.

tstep This sets the step size of the parameter when drawing a one parameter parametric plot.

ustep This sets the step size of the �rst parameter when drawing a two-parameter parametric
plot.

vstep This sets the step size of the second parameter when drawing a two-parameter parametric
plot.

xstep This sets the step size of the x variable.

ystep This sets the step size of the y variable.

zstep This sets the step size of the z variable.

frames This sets the number of graphs computed when an animated graph is created with the
animate or animate3d command.

legend This adds a legend to a graphic object and should be a string. It is probably most useful
when that object is a point or a polygon. If the object is a polygon, the legend will be placed
in the middle of the last side. Other parameters for the graphic object will specify the color
or position of the legend.

gl_texture This sets an image �le to be put on the graphic object; it should be the name of the
�le.
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Example (of the filled option).

Input:

triangle(0,1,1+i,display=filled)

Output:

To see the colors the numbers can represent, you can run the program:

rainbow():= {

local j, C;

C:= [];

for (j:= 256; j < 382; j++) {

C:= append(C,square(j,j+1,color=j+filled));

}

}

Input:

rainbow();

Output:

The number of a color is its x-coordinate. To see just one color, say the color corresponding to n
for 256 ≤ n ≤ 381, enter:
Input:

rainbow()[n-256]
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Parameters for global features

Parameters set at the beginning of a line change features on the entire graphic screen. It only
takes e�ect when the line ends with a graphic command. For example, starting the line with
title=title string will give the graphic screen a title.

Example.

Input:

title = "Some triangles"; triangle(0,1,1+i); triangle(2,3,3+i);

Output:

The parameters for global features and their possible values are:

axes This determines whether axes are shown or hidden; a value of 0 or false hides the axes, a
value of 1 or true shows the axes.

labels This sets labels for the axes; it should be a list of two strings ["x axis label ","y axis

label "].

label This puts labels on the graphic screen in the following ways.

� To set the units on the axes, it can be a list of two or three strings, ["x units ","y

units "] or ["x units ","y units ","z units"].

� To place a string at a particular point, it can be a list of two integers followed by a string.
The integers determine the point, starting from [0,0] in the top left of the screen.

title This sets the title for the graphic window, it should be a string.

gl_texture This sets the wallpaper of the graphic window to be an image �le, it should be the
name of the �le.

gl_x_axis_name,gl_x_axis_name,gl_x_axis_name These set the names of the axes.

gl_x_axis_unit,gl_x_axis_unit,gl_x_axis_unit These set the units of the axes.

gl_x_axis_color,gl_x_axis_color,gl_x_axis_color These set the colors of the axes labels;
they take the same color options as the local parameter color.

gl_ortho This ensures that the graph is orthonormal when it is set to 1.

gl_x,gl_y,gl_z These de�ne the framing of the graph; they should be ranges min..max. (They
are not compatible with interactive graphs.)

gl_xtick,gl_ytick,gl_ztick These determine the spacing of the ticks on the axes.

gl_shownames This shows or hides object names, it can be true or false.
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gl_rotation This sets the axis of rotation for three-dimensional scene animations; it should be
a direction vector [x,y,z].

gl_quaternion This sets the quaternion for viewing three-dimensional scenes; it should be a
fourtuple [x,y,z,t]. (This is not compatible with interactive graphs.)

13.3.3 Commands for global display features

Adding a legend: legend

The legend command creates a legend on the screen.

� legend takes two mandatory arguments and one optional argument:

∗ pos, either be a point or a list of two integers giving the number of pixels from the upper
left hand corner, specifying the position to put the legend.

∗ legend, a string or a variable.

∗ Optionally, quad, which can be one of quadrant1, quadrant2, quadrant3 or quadrant4.
This indicates where to put the legend relative to the point (by default, it is quadrant1).

� legend(pos,legend 〈quad〉) draws the legend at the requested position.

Example.

To put "hello" to the upper left of the point (1, 1):
Input:

legend(1+i,"hello",quadrant3)

or:

legend(1+i,quadrant3,"hello")

Output:

Changing various features:display color

The display command changes the properties of graphics; the same properties that can also be
changed with the display and color parameters (see Section 13.3.2 p.780). The color command
a synonym for the display command.

The display command draws objects with speci�ed properties.

� display takes one mandatory arguments and one optional argument:
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∗ Optionally, command, a command to draw an object.

∗ arg, which can be a possible value of the display parameter (see Section 13.3.2 p.780)
or hidden_name.

� display(command,arg) draws the object given by command with the property given by arg,
or draws the object without a label if arg=hidden_name.

� display(arg) applies the property given by arg to all subsequent objects; display(0) resets
the display parameters.

Examples.

� Input:

display(triangle(0,1,1+i),red)

or:

triangle(0,1,1+i,display=red)

Output:

� Input:

triangle(0,1,1+i,display=filled)

or:

display(triangle(0,1,1+i),filled)

Output:

� By default, if a geometric object is named, the drawing is labeled.
Input:

A:= triangle(0,1,1+i)
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Output:

Creating the object with the display command and the hidden_name argument will draw it
without the label.
Input:

display(A:= triangle(0,1,1+i),hidden_name)

Output:

13.4 De�ning geometric objects without drawing them: nodisp

The nodisp command de�nes an object without displaying it.

� nodisp takes one argument:
command, a command to create an object.

� nodisp(command) creates the object withouth drawing it.

Setting a variable to a graphic object draws the object.

Examples.

� Input:

C:= point(1+i)

Output:
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Input:

nodisp(C:= point(1+i))

Here, the point C is de�ned but not displayed. It is equivalent to following the command
with :;,
Input:

C:= point(1+i):;

To de�ne a point as above and display it without the label, enter the point's name;
Input:

C

Output:

Alternatively, you can get the same e�ect by de�ning the point within an eval statement:
Input:

eval(C:= point(1+i))

To later display the point with a label, use the legend command:
Input:

legend(C,"C")

or:

point(affix(C),legend="C")

Output:
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In this case, the string "C" can be replaced with any other string as a label. Alternatively,
rede�ne the variable as itself:
Input:

C:= C

prints C with its label.

13.5 Geometric demonstrations: assume

Variables should be unspeci�ed to demonstrate a general geometric result, but need to have speci�c
values when drawing. There are a couple of di�erent approaches to deal with this.

One approach is to use the assume command (see Section 4.4.8 p.83). If a variable is assumed to
have a value, then that value will be used in graphics but the variable will still be unspeci�ed for
calculations. For example: Input:

assume(a = 2.1)

A:= point(a + i)

Output:

but the variable a will still be treated as a variable in calculations:
Input:

distance(0,A)

Output: √
(−a)2 + 1



13.6. POINTS IN THE PLANE 789

Another approach would be to use the point or pointer mode in a geometry screen. If there
isn't a geometry screen showing, the command Alt-G or the GeoINew figure 2d menu will open
a screen. Clicking on the Mode button right above the graphic screen and choosing pointer or
point will put the screen in pointer or point mode. If a point is de�ned and displayed, such
as with A:= point(2.1 + i), then clicking on the name of the point (A in this case) with the
right mouse button will bring up a con�guration screen. As long as there is a point de�ned with
non-symbolic values, there will be a symb box on the con�guration screen. Selecting the symb box
and choosing OK will be equivalent to the commands:

assume(Ax=[2.1,-8.16901408451,8.16901408451])

assume(Ay = [1, -5.0, 5.0]

This will bring up two lines beneath the arrows to the right of the screen which can be used to
change the assumed values of Ax and Ay. Also, the point A will be rede�ned as point(Ax,Ay).

13.6 Points in the plane

13.6.1 Points and complex numbers

The a�x of a point (a, b) in the plane is the complex number a + bi. In this section, when a
command take points as arguments, the points can be speci�ed by a pair or by a complex number.

13.6.2 The point in the plane: point

See Section 14.4.1 p.887 for points in space.

In the 2-d geometry screen in point mode, clicking on a point with the left mouse button will
choose that point. Points chosen this way are automatically named, �rst with A, then B, etc.

Alternatively, the point command chooses a point.

� point takes one or two arguments:
coords, where coords can be one of:

∗ a, b, a sequence of two coordinates.

∗ [a, b], a list of two coordinates.

∗ a+ bi, the a�x of the point.

� point(coords) returns and draws the point with the given coordinates.
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Example.

Input:

A:= point(2,1)

or:

A:= point([2,1])

or:

A:= point(2 + i)

Output:

The marker used to indicate the point can be changed; see Section 13.3.2 p.780.

If the point command has two numbers for arguments, at least one of which is complex but not
real, then it will choose two points.

Example.

Input:

A:= point(1,2*i)

or:

A:= point([1,2*i])

Output:
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There are two points named A; one with a�x 1 and one with a�x 2i.

13.6.3 The di�erence and sum of two points in the plane:+ -

Let A and B be two points in the plane, with a�xes a1 + ia2 and b1 + ib2 respectively.
Input:

A:= point(1 + 2*i); B:= point(3+4*i)

Then:

� The di�erence B−A returns the a�x (b1− a1) + i(b2− a2), which represents the vector AB.
Input:

vector(A,B); vector(point(0),point(B-A))

Output:

� The sum B +A returns the a�x (b1 + a1) + i(b2 + a2). If D:= point(B+A), then BD = OA.
Input:

D:= point(B + A);

segment(B,D); segment(point(0),A)

Output:

Note that −A is the point symmetrical to A with respect to the origin.

The sum of three points A+B +C can be viewed as the translate of C by the vector A+B. So
if A or B contains parameters, you should write this as C + (A+B) or evalc(A+B) + C.
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13.6.4 De�ning random points in the plane: point2d

The point2d command de�nes a random point whose coordinates are integers between -5 and 5.

� point2d takes an unspeci�ed number of arguments:
names, a sequence of names for the points.

� point2d(names) assigns a random point whose coordinates are integers between -5 and 5 to
each name.

Examples.

� Input:

point2d(A))

This assigns A to a random point. Once assigned, the point is �xed.

� Input:

point2d(A,B,C)

triangle(A,B,C)

generates three random points and uses them to create a triangle; i.e., it creates a random
triangle.

13.6.5 Points in polar coordinates: polar_point point_polar

You can use the point command to specify a point in polar coordinates by using the polar
representation of complex numbers.

Example.

Input:

point(2*exp(i*pi/4))

Output:

which is the point with polar coordinates r = 2, θ = π/4.

The polar_point command is an easier way to specify a point in polar coordinates.
point_polar is a synonym for polar_point.
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� polar_point takes two arguments:

∗ r, a number.

∗ θ, a number.

� polar_plot(r, θ) returns and draws the point with polar coordinates r, θ.

Example.

Input:

polar_point(2,pi/4)

Output:

which is the same point as before.

13.6.6 Finding a point of intersection of two objects in the plane: single_inter
line_inter

See Section 14.4.3 p.889 for single points of intersection of objects in space.

The single_inter command �nds an intersection point of two geometric objects.
line_inter is a synonym for single_inter

� single_inter takes two mandatory arguments and one optional argument.

∗ obj1, obj2, two geometric objects.

∗ Optionally, pt, a point or list of points.

line_inter(obj1,obj2 〈pt〉) returns one of the points of intersection of obj1 and obj2.
If pt is a single point, then the command returns the point of intersection closest to pt.
If pt is a list of points, then the command tries to return a point not in pt.

Example.

The command circle(0,1) creates the unit circle and line(-1,i) creates a line, these two objects
intersect at the points (−1, 0) and (0, 1).
Input:

single_inter(circle(0,1),line(-1,i))
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Output:

which is the point (−1, 0).
Input:

single_inter(circle(0,1),line(-1,i),[-1])

Output:

which is the point (0, 1). Similarly, since this second point of intersection is closest to (0, 1/2),
entering:
Input:

single_inter(circle(0,1),line(-1,i),i/2)

also draws the second point.

13.6.7 Finding the points of intersection of two geometric objects in the plane:
inter

See Section 14.4.4 p.890 for points of intersection of objects in space.

The inter command �nds the intersection of two geometric objects in the plane.

� inter takes two mandatory arguments and one optional argument.
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∗ obj1, obj2, two geometric objects.

∗ Optionally, P , a point.

inter(obj1,obj2 〈P 〉) returns a list of points of intersection of obj1 and obj2.
With the argument P , the command returns the point of intersection closest to P .

Examples.

� Input:

inter(circle(0,1),line(1,i))

Output:

which are the points at (1, 0) and (0, 1). To get just one of the points, use the usual list
indices.
Input:

inter(circle(0,1),line(1,i))[0]

Output:

just one of the points. To get the point closest to (0, 1/2):
Input:

inter(circle(0,1),line(1,i),i/2)

Output:
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13.6.8 Finding the orthocenter of a triangle in the plane: orthocenter

The orthocenter command �nds the orthocenter of a triangle.

� orthocenter takes one argument:
T , a triangle. The triange can also be speci�ed with three points.

� orthocenter(T) returns the orthocenter of T .

Example.

Input:

orthocenter(triangle(0,1+i,-1+i))

or:

orthocenter(0,1+i,-1+i)

Output:

which is the point (0, 0), the orthocenter of the triangle.
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13.6.9 Finding the midpoint of a segment in the plane: midpoint

See Section 14.4.5 p.891 for midpoints in space.

The midpoint command �nds the midpoint of two points.

� midpoint takes two arguments:
P , Q, two points (which can also be given as a list).

� midpoint(P,Q) draws and returns the midpoint of the segment determined by these points.

13.6.10 The barycenter in the plane: barycenter

See Section 14.4.6 p.891 for barycenters of objects in space.

The barycenter command returns and draws the barycenter of a set of weighted points.

� barycenter takes an unspeci�ed number of arguments:
L1, L2, . . . , Ln, a sequence of lists of length two, where each list consists of a point and a
weight. This information can also be given as a matrix with two columns (the �rst column
the points and the second column the weights) or a matrix with two rows and more than two
columns.

� barycenter(L1, L2, . . . , Ln) draws and returns the barycenter of the weighted points.

Example.

The following commands will draw the barycenter of the points (1, 1) with weight 1, (1,−1) with
weight 1 and (1, 4) with weight 2.
Input:

barycenter([1 + i,1],[1 - i,1],[1 + 4*i, 2])

or:

barycenter([[1 + i,1],[1 - i,1],[1 + 4*i, 2]])

or:

barycenter([[1 + i, 1 - i, 1 + 4*i],[1,1,2]])

Output:
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13.6.11 The isobarycenter of n points in the plane: isobarycenter

See Section 14.4.7 p.892 for isobarycenters of objects in space.

The isobarycenter command �nds the isobarycenter of a list of points; the isobarycenter is the
barycenter when all points are equally weighted.

� isobarycenter takes one argument:
L, a list of points. (The points can also be given by a sequence).

� isobarycenter(L) draws and returns the isobarycenter of the points.

13.6.12 The center of a circle in the plane: center

The center command �nds the center of a circle.

� center takes one arguments:
C, a circle.

� center(C) draws and returns the center of C.

Example.

Input:

C:= center(circle(point(1+i),1))

Output:

13.6.13 The vertices of a polygon in the plane: vertices vertices_abc

The vertices command �nds the vertices of a polygon.
vertices_abc is a synonym for vertices.

� vertices takes one argument:
P , a polygon.

� vertices(P) returns a list of the vertices of P and draws them.
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Examples.

� Input:

vertices(equilateral_triangle(0,2))

Output:

� Input:

C:= vertices(equilateral_triangle(0,2))[2]

Output:

13.6.14 The vertices of a polygon in the plane, closed: vertices_abca

The vertices_abca command �nds the �closed� list of vertices (it repeats the beginning vertex).

� vertices_abca takes one argument:
P , a polygon.

� vertices_abca(P) returns a closed list of the vertices of P and draws them.

13.6.15 A point on a geometric object in the plane: element

The element command is most useful in a two-dimensional geometry screen; it creates objects
that are restricted to a geometric �gure.

element takes di�erent types of arguments:

� element can take one mandatory argument and one optional argument:

∗ a..b, a range of values.
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∗ Optionally, init and step, an initial value (by default (a+ b)/2) and step size (by default
(b− a)/100).

� element(a..b 〈init,step〉) creates a parameter restricted to the interval from a to b, with the
given initial value and whose value can be changed in the given step sizes.

For example, the command t:= element(0..pi) creates a parameter t which can take on values
between 0 and π and has initial value π/2. It also creates a slider labeled t which can be used to
change the values. The values of any later formulas involving t will change with t.

� element can take one mandatory argument and one optional argument:

∗ C, a curve.

∗ Optionally, init, an initial value (by default 1/2).

� element(C 〈,init〉) creates a point which will be restricted to the curve, the initial position
of the point is determined by setting the parameter (in the default parameterization of the
object) to the initial value. If the point can be moved by the mouse (as it can when the
geometry screen is in Pointer mode), then the motion will be restricted to the geometric
object.

For example, the command A:= element(circle(0,2)) creates a point labeled A whose posi-
tion is restricted to the circle of radius 2 centered at the origin. Since the circle has default
parameterization 2 exp(it), A starts out at 2 exp(i/2).

� element can take two mandatory arguments:

∗ P , a polygon or polygonal line with n sides.

∗ [floor(t),frac(t)], where t is a variable previously de�ned by t = element(0..n).

� element(P,[floor(t),frac(t)]) creates a point restricted to the polygonal line. With the
sides numbered starting at 0, the value of floor(t) determines which side the point is on,
and the value of frac(t) determines how far along the side the point is.

13.7 Lines in plane geometry

13.7.1 Lines and directed lines in the plane: line

See Section 14.5.1 p.892 for lines in space.

The line command returns and draws a directed line. It can take its arguments in di�erent ways.

Two points:

� line can take two arguments:
P,Q, two points (which can also be given as a list).

� line(P,Q) returns and draws the line whose direction is from the P to Q.

A point and a slope.

� line can take two arguments:

∗ p, a point.

∗ slope=m

� line(p,slope=m) returns and draws the line through the given point with the given slope,
where direction of the line is determined by the slope.

A point and a direction vector.
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� line can take two arguments:

∗ P , a point.

∗ [u1,u2], a direction vector.

� line(P,[u1,u2]) returns and draws the line through the given point with the direction
given by the direction vector.

An equation.

� line can take one argument:
a*x+b*y+c=0.

� line(a*x+b*y+c=0) returns and draws the line given by the equation. The direction of the
line is given by [b,−a].

Example.

Input:

line(0,1+i)

or:

line(1+i,slope=1)

or:

line(1+i,[3,3])

or:

line(y - x = 0)

Output:

Warning: To draw a line with an additional argument for color (such as color=blue), this
argument must be the third argument. In particular, for a list of two points to specify a line in
this command, the list must be turned into a sequence, such as with op. For example, given a list
L of two points (possibly the result of a di�erent command) which determines a line, to draw the
line blue enter line(op(L),color=blue); entering line(L,color=blue) will result in an error.
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13.7.2 Half-lines in the plane: half_line

See Section 14.5.2 p.895 for half-lines in space.

The half_line command �nds rays.

� half_line take two arguments:
P,Q, two points (which can also be given as a list).

� half_line(P,Q) returns and draws the ray from P through Q

Example.

Input:

half_line(0,-1+i)

Output:

13.7.3 Line segments in the plane: segment Line

See Section 14.5.3 p.895 for segments in space.

The segment command draws line segments. (The segment command can also draw vectors (see
Section 13.7.4 p.803.)

� segment takes two arguments:
P,Q, two points (which can also be given as a list).

� segment(P,Q) returns the corresponding line segment and draws it.

The Line command also draws line segments, with a slightly di�erent syntax.

� Line takes four arguments:
a, b, c, d, four real numbers.

� Line(a, b, c, d) returns and draws the line segment from (a, b) to (c, d).

Example.

Input:

segment(-1,1+i)

or:
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segment(point(-1),point(1,1))

or:

Line(-1,0,1,1)

Output:

13.7.4 Vectors in the plane: segment vector

See Section 14.5.4 p.896 for vectors in space.

The segment commands returns and draws vectors. (The segment command can also draw line
segments, see section 13.7.3.)

� segment takes two arguments:

∗ p, a point.

∗ v, a vector.

� segment(p, v) returns the corresponding vector and draws it as a line segment from p to
p+ v.

Example.

Input:

segment([-1,0],[1,1])

Output:



804 CHAPTER 13. TWO-DIMENSIONAL GRAPHICS

The vector command also makes vectors, with a di�erent syntax. It can take its arguments in
di�erent ways.

The coordinates of the vector.

� vector takes one argument:
L, a list of the coordinates of the vector.

� vector(L) returns and draws the vector with the given coordinates, starting from the origin.

Example.

Input:

vector([1,2])

Output:

Two points or a point and a vector.

� vector takes two arguments:

∗ P , a point.

∗ Q, a point or a vector. If Q is a point, it can be combined with P in a list.

� vector(P,Q) returns and draws the corresponding vector. If the arguments are two points,
the vector goes from P to Q. If the arguments are a point and a vector, then the vector
starts at P .

Example.

Input:

vector([-1,0],[1,i])

or:

vector(-1,i)

or:

V:= vector(1,2+i):; vector(-1,V)

Output:
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13.7.5 Parallel lines in the plane: parallel

See Section 14.5.5 p.898 for parallel lines in space.

The parallel command �nds a line parallel to a given line.

� parallel takes two arguments:

∗ p, a point.

∗ `, a line.

� parallel(p, `) returns and draws the line parallel to ` passing through p.

Example.

Input:

parallel(0,line(1,i))

Output:

13.7.6 Perpendicular lines in the plane: perpendicular

See Section 14.5.6 p.901 for perpendicular lines in space.

The perpendicular command �nds a line perpendicular to a given line.

� perpendicular takes two arguments:

∗ p, a point.

∗ `, a line. The line can also be speci�ed by giving a sequence of two points on it.

� perpendicular(p, `) returns and draws the line perpendicular to ` passing through p.
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Example.

Input:

perpendicular(0,line(1,i))

or:

perpendicular(0,1,i)

Output:

13.7.7 Tangents to curves in the plane: tangent

See Section 14.6.3 p.906 for tangents in space.

The tangent command �nds tangents to curves.

� tangent takes one or two arguments:

∗ C, a curve.

∗ p, a point.

or

∗ e, a point de�ned with element (see Section 13.6.15 p.799) using a curve and parameter
value.

• tangent(C, p) (or tangent(e)) returns and draws the list of lines tangent to the curve passing
through the given point.

Examples.

• Input:

tangent(circle(0,1),1+i)

Output:
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• Input:

t:= element(0..pi,pi/4):; A:= element(circle(0,1),t):; tangent(A)

Output:

When tangent is called with an element, the tangent will change along with the point on the element.

13.7.8 The median of a triangle in the plane: median_line

The median_line command �nds a median line to a triangle.

• median_line takes three arguments:
a, b, c, points.

• median_line(a, b, c) returns and draws the median line to the triangle with vertices a, b, c; through
a and bisecting the segment from b to c.

Example.

Input:

median_line(0,1,i)

Output:
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13.7.9 The altitude of a triangle: altitude

The altitude command �nds the altitude line of a triangle.

• altitude takes three arguments:
a, b, c, three points.

• altitude(a, b, c) returns and draws the altitude line to the triangle with vertices a, b, c, through
a and perpedicular to the segment from b to c.

Example.

Input:

altitude(0,1,i)

Output:

13.7.10 The perpendicular bisector of a segment in the plane: perpen_bisector

See Section 14.6.2 p.905 for perpendicular bisectors in space.

The perpen_bisector command �nds the perpendicular bisector of a line segment.

• perpen_bisector takes one argument:
seg, a line segment (or the end points of the segment).

• perpen_bisector(seg) returns and draws the perpendicular bisector of seg.
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Example.

Input:

perpen_bisector(1,i)

or:

perpen_bisector(segment(1,i))

Output:

The perpen_bisector command can also take two lines as segments, in which case it returns and
draws the perpendicular bisector of the segment from the �rst point de�ning the �rst line and the second
point de�ning the second line.

13.7.11 The angle bisector: bisector

The bisector command �nds angle bisectors.

• bisector takes three arguments:
a, b, c, three points (which can also be given as a list).

• bisector(a, b, c) returns and draws the bisector of ∠bac.

Example.

Input:

bisector(0,1,i)

Output:
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13.7.12 The exterior angle bisector: exbisector

The exbisector command �nds exterior angle bisectors.

• exbisector takes three arguments:
a, b, c, three points (which can also be given as a list).

• exbisector(a, b, c) returns and draws the bisector of the exterior angle of the triangle determined
by a, b and c; a is the vertex of the angle, the opposite of the ray through a and b determine one
side of the angle and a and c determine the second side.

Example.

Input:

exbisector(0,1,i)

Output:

13.8 Triangles in the plane

See Section 14.7 p.907 for triangles in space.

13.8.1 Arbitrary triangles in the plane: triangle

See Section 14.7.1 p.907 for the triangle command in space.

The triangle command creates triangles.

• triangle takes three arguments:
a, b, c, three points (which can be given as a list).

• triangle(a, b, c) returns and draws the triangle with vertices a, b and c.

Example.

Input:

triangle(-1,i,1+i)

Output:
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13.8.2 Isosceles triangles in the plane: isosceles_triangle

See Section 14.7.2 p.908 for isosceles triangles in space.

The isosceles_triangle command creates isosceles triangles.

• isosceles_triangle takes three mandatory arguments and one optional argument:

� a, b, two points.

� θ, an angle.

� Optionally, var, a variable name.

• isosceles_triangle(a, b, θ 〈var〉) returns and draws the isosceles triangle abc, where ab and ac are
equal sides and θ is the angle between ab and ac.
With the argument var, c will be assigned to var.

Examples.

• Input:

isosceles_triangle(i, 1, -3*pi/4)

Output:

• Input:

isosceles_triangle(i, 1, -3*pi/4,C)

Output:
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Input:

normal(affix(C))

Output:
−
√

2 + i

13.8.3 Right triangles in the plane: right_triangle

See Section 14.7.3 p.910 for right triangles in space.
The right_triangle command creates right triangles.

• right_triangle takes three mandatory arguments and one optional argument:

� A,B, two points.

� k, a nonzero real number.

� Optionally var, a variable name.

• right_triangle(A,B, k 〈var〉) returns and draws the right triangle ABC, with the right angle at A
and with length(AC) = |k| · length(AB). If k > 0, then AB to AC is counterclockwise; if k < 0
then AB to AC is clockwise.
With the argument var, c will be assigned to var.

Examples.

• Input:

right_triangle(i,-i,2)

Output:



13.8. TRIANGLES IN THE PLANE 813

• Input:

right_triangle(i,-i,-2)

Output:

• Input:

right_triangle(i, -i, 2, C)

Output:

Input:

affix(C)

Output:
4 + i

13.8.4 Equilateral triangles in the plane: equilateral_triangle

See Section 14.7.4 p.912 for equilateral triangles in space.
The equilateral_triangle command creates equilateral triangles.

• equilateral_triangle takes two mandatory arguments and one optional argument:

� A,B, two points.

� Optionally, var, a variable name.

• equilateral_triangle(A,B 〈var〉) returns and draws the equilateral ABC, where AB to AC is
counterclockwise.
With the argument var, C will be assigned to var.
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Examples.

• Input:

equilateral_triangle(0,2)

Output:

• Input:

equilateral_triangle(0, 2, C)

Output:

Input:

affix(C)

Output: (√
3i + 1

)

13.9 Quadrilaterals in the plane

See Section 14.8 p.913 for quadrilaterals in space.
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13.9.1 Squares in the plane: square

See Section 14.8.1 p.914 for squares in space.
The square command creates squares.

• square takes two mandatory arguments and two optional arguments.

� A,B, two points.

� Optionally, varc, vard, two variable names.

• square(A,B 〈varc,vard〉) returns and draws the square ABCD, where the square is traversed
counterclockwise.
If the arguments varc and vard are given, then C and D will be assigned to them.

Examples.

• Input:

square(0,1+i)

Output:

• Input:

square(0,1+i,C,D)

Output:

Input:

affix(C), affix(D)

Output:
2i,−1 + i
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13.9.2 Rhombuses in the plane: rhombus

See Section 14.8.2 p.915 for rhombuses in space.
The rhombus command creates rhombuses.

• rhombus takes three mandatory arguments and two optional arguments.

� A,B, two points.

� a, a real number.

� Optionally, varc, vard, two variable names.

• rhombus(A,B, a 〈varc,vard〉) returns and draws the rhombus ABCD, where a is the counter-
clockwise angle from AB to AC. If the arguments varc and vard are given, then C and D will be
assigned to them.

Examples.

• Input:

rhombus(-2*i, sqrt(3) - i, pi/3)

Output:

• Input:

rhombus(-2*i, sqrt(3) - i, pi/3, C, D)

Output:

Input:

affix(C), affix(D)

Output: √
3 + i, 0
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13.9.3 Rectangles in the plane: rectangle

See Section 14.8.3 p.916 for rectangles in space.
The rectangle creates rectangles.

• rectangle takes three mandatory arguments and two optional arguments:

� A,B, two points.

� k, a nonzero real number.

� Optionally, varc, vard, two variable names.

• rectangle(A,B, k 〈varc,vard〉) returns and draws the rectangle ABCD, where AD = |k| · AB
and the angle from AB to AD is counterclockwise if k > 0, clockwise if k < 0.
If the arguments varc and vard are given, then C and D will be assigned to them.

Examples.

• Input:

rectangle(0, 1+i, 1/2)

Output:

• Input:

rectangle(0, 1+i, -1/2)

Output:

• Input:
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rectangle(0, 1+i, -1/2, C, D)

Output:

Input:

affix(C), affix(D)

Output:
3 + i

2
,
1− i

2

Given rectangle(A,B, k), Xcas computes D by affix(D) = affix(A) + k exp(iπ/2)(affix(B)−
affix(A)). If k is complex, then rectangle draws a parallelogram.

Example.

Input:

rectangle(0,1,1+i)

Output:

13.9.4 Parallelograms in the plane: parallelogram

See Section 14.8.4 p.918 for parallelograms in space.
The parallelogram command creates parallelogram.

• parallelogram takes three mandatory arguments and one optional argument:

� A,B,C, three points.

� Optionally, var, a variable name.

• parallelogram(A,B,C 〈var〉) returns and draws the parallelogram ABCD for the appropriate
D.
If the argument var is given, then D will be assigned to it.
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Examples.

• Input:

parallelogram(0, 1, 2 + i)

Output:

• Input:

parallelogram(0, 1, 2 + i, D)

Output:

Input:

affix(D)

Output:

1 + i

13.9.5 Arbitrary quadrilaterals in the plane: quadrilateral

See Section 14.8.5 p.919 for quadrilaterals in space.
The quadrilateral creates arbitrary quadrilaterals.

• quadrilateral takes four arguments:
A,B,C,D, four points.

• quadrilateral(A,B,C,D) returns and draws the quadrilateral ABCD.
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Example.

Input:

quadrilateral(0, 1, 1 + i, -1 + 2*i)

Output:

13.10 Other polygons in the plane

See Section 14.9 p.919 for polygons in space.

13.10.1 Regular hexagons in the plane: hexagon

See Section 14.9.1 p.920 for hexagons in space.
The hexagon command creates hexagons.

• hexagon takes two mandatory arguments and four optional arguments:

� A,B, two points.

� Optionally, varc, vard, vare, varf, variable names.

• hexagon(A,B,C 〈varc,vard,vare〉) returns and draws the regular hexagon ABCDEF , where the
vertices are counterclockwise.
If the arguments varc,vard,vare,varf are given, then the points C,D,E and F will be assigned to
them.

Examples.

• Input:

hexagon(0,1)

Output:
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• Input:

hexagon(0, 1, C, D, E, F)

Output:

Input:

affix(C), affix(D), affix(E), affix(F)

Output: √
3i + 1

2
+ 1,

2

2

(√
3i + 1

)
,
2

2

(√
3i + 1

)
− 1,

√
3i + 1

2
− 1

13.10.2 Regular polygons in the plane: isopolygon

See Section 14.9.2 p.920 for regular polygons in space.
The isopolygon command creates regular polygons.

• isopolygon takes three arguments:

� A,B, two points.

� k, a nonzero integer.

• isopolygon(A,B, k returns and draws the regular |k|-sided polygon with one side AB. If k > 0,
then the polygon will continue counterclockwise; if k < 0, then it will be clockwise.

Examples.

• Input:

isopolygon(0,1,4)

Output:
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Input:

isopolygon(0,1,-4)

Output:

13.10.3 General polygons in the plane: polygon

See Section 14.9.3 p.922 for general polygons in space.

The polygon command draws general polygons.

• polygon takes an unspeci�ed number of arguments:
points, a sequence or list of points.

• polygon(points) returns and draws the polygon with vertices given by the points.

Examples.

• Input:

polygon(-1,-1+i/2,i,1+i,-i)

Output:

• Input:

polygon(makelist(x->exp(i*pi*x/3),0,5,1))

Output:
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13.10.4 Polygonal lines in the plane: open_polygon

See Section 14.9.4 p.923 for polygonal lines in space.

The open_polygon command draws a polygonal path.

• open_polygon takes an unspeci�ed number of points:
points, a sequence or list of points.

• open_polygon(points) returns and draws the polygon line with the vertices given by the points.

Examples.

• Input:

open_polygon(-1,-1+i/2,i,1+i,-i)

Output:

• Input:

open_polygon(makelist(x->exp(i*pi*x/3),0,5,1))

Output:
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13.10.5 Convex hulls: convexhull

The convexhull command uses the Graham scanning algorithm to �nd the convex hull of a set of
points.

• convexhull takes an unspeci�ed number of arguments:
points, a sequence or list of points.

• convexhull(points) returns the vertices of the convex hull of the points.

Example.

Input:

convexhull(0,1,1+i,1+2i,-1-i,1-3i,-2+i)

Output:

1− 3i, 1 + 2i,−2 + i,−1− i

To draw the hull, you can use the polygon command with the output of convexhull (see Sec-
tion 13.10.3 p.822).

Example.

Input:

polygon(convexhull(0,1,1+i,1+2i,-1-i,1-3i,-2+i))

Output:
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13.11 Circles

13.11.1 Circles and arcs in the plane: circle

See also Section 13.11.2 p.827.

See Section 14.10 p.924 for circles in space.

The circle command creates circles and arcs. You can specify the circle in di�erent ways.

• � circle can take one argument:
eqn, the equation of a circle with variables x and y (or an expression assumed to be set to 0).

� circle(eqn) returns and draws the circle.

Example.

Input:

circle(x�2 + y�2 - 2*x - 2*y)

Output:

• � circle can take two arguments:

∗ P , a point.

∗ α, a complex number.

� circle(P, α) returns and draws the circle centered at P and whose radius is |α|.

Example.

Input:

circle(-1,i)

Output :
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• � circle can take two arguments:
A,B, two points (where B must be the value of point and not simply the a�x).

� circle(A,B) returns and draws the circle whose diameter is AB.

Example.

Input:

circle(-1,point(i))

Output:

• � circle can take four mandatory arguments and two optional arguments:

∗ C, a point.

∗ r, a complex number.

∗ a, b, two real numbers.

∗ Optionally, var1,var2, variable names.

� circle(C, r, a, b) returns and draws an arc of the circle with center C and radius |r|, with
central angles a and b. The angles start on the axis de�ned by C and C + r.
If the arguments var1 and var2 are given, they will be assigned to the ends of the arc.

Examples.

� Input:

circle(-1,1,0,pi/4)

Output:
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� Input:

circle(-1,point(i),0,pi/4)

Output:

13.11.2 Circular arcs: arc

See also Section 13.11.1 p.825

The arc command creates circular arcs.

• arc takes three mandatory arguments and two optional arguments:

� A,B, two points.

� a, a real number between −2π and 2π.

� Optionally, varc, varr, two variable names.

• arc(A,B, a 〈〉) returns and draws the circular arc from A to B that represents and angle of a.
(Note that the center of the circle will be (A+B)/2 + i ∗ (B −A)/(2 tan(a/2)).)
If the arguments varc,varr are given, they will be assigned the center and radius of the circle.

Examples.

• Input:

arc(1,i,pi/2)

Output:
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• Input:

arc(1,i,-pi/2)

Output:

13.11.3 Circles (TI compatibility): Circle

The Circle command creates a circle.

• Circle takes three mandatory arguments and one optional argument:

� x, y, r, three real numbers.

� Optionally, n, either 0 or 1 (by default, 1).

• Circle(x, y, r, n) returns the circle centered at (x, y) with radius r. If n = 1, it also draws the
circle; if n = 0, it erases it.

Example.

Input:

Circle(-1,0,2)

Output:
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13.11.4 Inscribed circles: incircle

The incircle command creates the inscribed circle of a triangle.

• incircle takes three arguments:
A,B,C, three points.

• incircle(A,B,C) returns and draws the circle inscribed in triangle ABC.

Example.

Input:

incircle(-1,i,1+i)

Output:

13.11.5 Circumscribed circles: circumcircle

The circumcircle command creates the circumscribed circle of a triangle.

• circumcircle takes three arguments:
A,B,C, three points.

• circumcircle(A,B,C) returns and draws the circle circumscribed about triangle ABC.

Example.

Input:

circumcircle(-1,i,1+i)

Output:
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13.11.6 Excircles: excircle

The excircle draws an excircle of a triangle.

• excircle takes three arguments:
A,B,C, three points.

• excircle(A,B,C) returns and draws the excircle of the triangle ABC in the interior angle of A.

Example.

Input:

excircle(-1,i,1+i)

Output:

13.11.7 The power of a point relative to a circle: powerpc

Given a circle C of radius r and a point A at a distance of d from the center of C, the power of A
relative to C is d2 − r2.

The powerpc command �nds the power of a point relative to a circle.

• powerpc takes two arguments:

� C, a circle.

� P , a point.

• powerpc(C,P) returns the power of P relative to C.
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Example.

Input:

powerpc(circle(0, 1+i), 3+i)

Output:

8

13.11.8 The radical axis of two circles: radical_axis

The radical axis of two circles is the set of points which have the same power with respect to each circle.

The radical_axis command �nds the radical axis of two circles.

• radical_axis takes two arguments:
C1, C2, two circles.

• radical_axis(C1, C2) returns and draws the radical axis of C1 and C2.

Example.

Input:

radical_axis(circle(0,1+i),circle(1,1+i))

Output:

13.12 Other conic sections

13.12.1 The ellipse in the plane: ellipse

See Section 14.11.1 p.925 for ellipses in space.

The ellipse command draws ellipses and other conic sections.

ellipse can take parameters in di�erent forms.

• � ellipse can take one parameter:
eqn, a second degree equation in the variables x and y (or an expression which will be set to
zero).

� ellipse(eqn) returns and draws the conic section given by eqn.
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Example.

Input:

ellipse(x�2 + 2*y�2 - 1)

Output:

• � ellipse can take three arguments:

∗ A,B, two points.

∗ C, a point or a real number.

• ellipse(A,B,C) returns and draws the ellipse with foci A and B and passing through C (if C
is a point) or whose semi-major axis has length C (if C is a real number).

Note that if the third argument is a point on the real axis, the real a�x of the point won't work, it
needs to be speci�ed with the point command.

Examples.

• Input:

ellipse(-i,i,i+1)

Output:

• Input:

ellipse(-i,i,sqrt(5) - 1)

Output:
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13.12.2 The hyperbola in the plane: hyperbola

See Section 14.11.2 p.926 for hyperbolas in space.

The hyperbola command draws hyperbolas and other conic sections.

hyperbola can take parameters in di�erent forms.

• � hyperbola can take one argument:
eqn, a second degree equation in the variables x and y (or an expression which will be set to
zero).

� hyperbola(eqn) returns and draws the conic section given by the equation eqn.

Example.

Input:

hyperbola(x�2 - 2*y�2 - 1)

Output:

• � hyperbola can take three arguments:

∗ A,B, two points.

∗ C, a point or a real number.

� hyperbola(A,B,C) returns and draws the hyperbola with foci A and B and passing through
C (if C is a point) or whose semi-major axis has length C (if C is a real number).

Note that if the third argument is a point on the real axis, the real a�x of the point won't work,
it needs to be speci�ed with the point command.
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Examples.

� Input:

hyperbola(-i,i,i+1)

Output:

� Input:

hyperbola(-i,i,1/2)

Output:

13.12.3 The parabola in the plane: parabola

See Section 14.11.3 p.927 for parabolas in space.

The parabola command draws parabolas and other conic sections. parabola can take parameters
in di�erent forms.

• � parabola can take one argument:
eqn, a second degree equation in the variables x and y (or an expression which will be set to
zero).

� parabola(eqn) returns and draws the conic section given by the equation eqn.

Example.

Input:

parabola(x�2 - y - 1)

Output:



13.12. OTHER CONIC SECTIONS 835

• � parabola can take two arguments:
F, V , two points.

� parabola(F, V ) returns and draws the parabola with focus F and vertex V .

Example.

Input:

parabola(0,i)

Output:

• � parabola can take two parameters:

∗ A = (a, b), a point.

∗ c, a real number.

� parabola(A, c) returns and draws the parabola y = b+ c(x− a)2.

Examples.

� Input:

parabola(-i,1)

Output:
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� Input:

parabola(-i,i,1/2)

Output:

13.13 Coordinates in the plane

13.13.1 The a�x of a point or vector: affix

The affix command �nds the a�x of a point or vector; namely, the complex number corresponding to
the point or vector.

• affix takes one arguments:
P , a point or vector.

• affix(P) returns the a�x of P .

Examples.

• Input:

affix(point(2,3))

Output:
2 + 3i

• Input:

affix(vector(-1,i))

Output:
1 + i
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13.13.2 The abscissa of a point or vector in the plane: abscissa

See Section 14.12.1 p.928 for abscissas in three-dimensional geometry.

The abscissa command �nds the abscissa (x-coordinate) of a point.

• abscissa takes one argument:
P , a point.

• abscissa(P) returns the abscissa of P .

Examples.

• Input:

abscissa(point(1 + 2*i))

Output:

1

• Input:

abscissa(point(i) - point(1 + 2*i))

Output:

−1

• Input:

abscissa(1 + 2*i)

Output:

1

• Input:

abscissa([1,2])

Output:

1

13.13.3 The ordinate of a point or vector in the plane: ordinate

See Section 14.12.2 p.928 for ordinates in three-dimensional geometry.

The ordinate command �nds the ordinate (y coordinate) of a point.

• ordinate takes one argument:
P , a point.

• ordinate(P) returns the ordinate of P .
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Examples.

• Input:

ordinate(point(1 + 2*i))

Output:
2

• Input:

ordinate(point(i) - point(1 + 2*i))

Output:
−1

• Input:

ordinate(1 + 2*i)

Output:
2

• Input:

ordinate([1,2])

Output:
2

13.13.4 The coordinates of a point, vector or line in the plane: coordinates

See Section 14.12.4 p.929 for coordinates in three-dimensional geometry.
The coordinates �nds the coordinates of a point or two points that determine a line.

• coordinates takes one argument:
X, either a point, a sequence or list of points, or a line.

• coordinates(X) returns:

� a list consisting of the abscissa and ordinate of X, if X is a point or a vector, or a sequence
or list of such lists, if X is a sequence or list of points.

� a list of two points on the line X, in the order determined by the direction of the line, if X
is a line.

Examples.

• Input:

coordinates(1+2*i)

or:

coordinates(point(1+2*i))

or:
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coordinates(vector(1+2*i))

Output:
[1, 2]

• Input:

coordinates(point(1+2*i) - point(i))

or:

coordinates(vector(i,1+2*i))

or:

coordinates(vector(point(i),point(1+2*i)))

or:

coordinates(vector([0,1],[1,2]))

Output:
[1, 1]

• Input:

d:= line(-1+i,1+2*i)

or:

d:= line(point(-1,1),point(1,2))

then:

coordinates(d)

Output:
[−1 + i, 1 + 2i]

• Input:

coordinates(line(y = (1/2 * x + 3/2)))

Output: [
3i

2
, 1 + 2i

]
• Input:

coordinates(line(x - 2*y + 3 = 0))

Output: [
3i

2
,
−4 + i

2

]
• Input:
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coordinates(i,1+2*i)

or:

coordinates(point(i),point(1+2*i))

Output:

[0, 1] , [1, 2]

• Note that if the argument is a list of real numbers, it is interpreted as a list of points on the real
axis.
Input:

coordinates([1,2])

Output: [
1 0
2 0

]

13.13.5 The rectangular coordinates of a point: rectangular_coordinates

The rectangular_coordinates command �nds the rectangular coordinates of a point given its polar
coordinates.

• rectangular_coordinates takes two arguments:
r, θ, two real numbers.

• rectangular_coordinates(r, θ) returns a list of the rectangular coordinates of the point with
polar coordinates r and θ.

Example.

Input:

rectangular_coordinates(2, pi/4)

or:

rectangular_coordinates(polar_point(2, pi/4))

Output: [
2

2

√
2,

2

2

√
2

]

13.13.6 The polar coordinates of a point: polar_coordinates

The polar_coordinates command �nds the polar coordinates of a point.

• polar_coordinates takes one argument:
P , a point.

• polar_coordinates(P) returns a list of the polar coordinates of P .
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Example.

Input:

polar_coordinates(1 + i)

or:

polar_coordinates(point(1 + i))

or:

polar_coordinates([1,1])

Output: [√
2,
π

4

]

13.13.7 The Cartesian equation of a geometric object in the plane: equation

See Section 14.12.5 p.930 for Cartesian equations of three-dimensional objects.

The equation command �nds the Cartesian equation for a geometric object.

• equation takes one argument:
G, a geometric object.

• equation(G) returns the Cartesian equation in the variables x and y for G.

Note that x and y must be formal variables, you might need to purge them with with purge(x) and
purge(y), see Section 4.4.8 p.83.

Example.

Input:

equation(line(-1,i))

Output:

y = x+ 1

13.13.8 The parametric equation of a geometric object in the plane: parameq

See Section 14.12.6 p.931 for parametric equations in three-dimensional geometry.

The parameq command �nds a parametric equation for a curve.

• parameq takes one argument:
C, a curve.

• parameq(G) returns a parametric equation for G, in the form x(t) + iy(t).

Note that t must be a formal variable, it may be necessary to purge it with purge(t).
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Examples.

• Input:

parameq(line(-1,i))

Output:
(1 + i) t− 1

• Input:

parameq(circle(-1,i))

Output:
−1 + ieit

• Input:

normal(parameq(ellipse(-1,1,i)))

Output:
−2it2 − 4t+ i

2t2 + 1

13.14 Measurements

13.14.1 Measurement and display: distanceat distanceatraw angleat angleatraw
areaat areaatraw perimeterat perimeteratraw slopeat slopeatraw extract_measure

Many commands to �nd measures have a version ending in at (or atraw) which are used to interactively
�nd and display the appropriate measure in a two-dimensional geometry screen. To use them, open a
geometry screen with Alt-G and then select the appropriate measure from the Mode I Measure menu.
Once the mode is selected, then clicking on the names of the appropriate objects (or, if a point is being
selected, a name will be automatically generated if clicking on an open point) with the mouse, and
then clicking on another point will put the measurement at the point; if the mode is the version ending
in at, then the measurement will have a label, if the mode is the version ending in atraw, then the
measurement will appear without a label.

The commands with at and atraw versions are:

distance,distanceat,distanceatraw This �nds the distance between two points or other geometric
objects (see Section 13.14.2 p.844).

angle,angleat,angleatraw This �nds the measure of an angle BAC given points A, B and C (see
Section 13.14.4 p.845).

area,areaat,areaatraw This �nds the area of a circle or a polygon which is star-shaped with respect
to its �rst vertex (see Section 13.14.6 p.848).

perimeter,perimeterat,perimeteratraw This �nds the perimeter of a circle, circular arc or a polygon
(see Section 13.14.7 p.849).

slope,slopeat,slopeatraw This �nds the slope of a line, segment, or two points which determine a
line (see Section 13.14.8 p.850).

These commands can also be used from the command line. They are like the measurement command
but take an extra argument, the point to display the measurement. When using the version ending in
at, use names for the objects rather create the objects within the measurement command.
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Examples.

• Input:

S1:= square(0,1); areaat(S1,1+i)

Output:

• Input:

S2:= square(0,1); areaatraw(S2,1+i)

Output:

• More sophisticated legends are created with the legend command (see Section 13.3.3 p.784).
Input:

S:= square(0,1); a:= area(S); legend(1+i,"Area(S) = " + string(a),blue)

Output:
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The extract_measure command displays a measurement.

• extract_measure takes one argument:
atcommand, one of the at or atraw commands (which displays a measurement).

• extract_measure(atcommand) returns the measurement.

Example.

Input:

A:= point(-1); B:= point(1+i); C:= point(i);

extract_measure(angleat(A,B,C,0.2i))

Output:

arctan

(
1

3

)

13.14.2 The distance between objects in the plane: distance

See Section 14.12.7 p.931 for distances in three-dimensional geometry.

The distance command �nds the distance between two geometric objects (a point is considered a
geometric object).

• distance two arguments:
G1, G2, two geometric objects.

• distance(G1, G2) returns the distance between G1 and G2.

Examples.

• Input:

distance(-1, 1+i)

Output: √
5

• Input:

distance(0, line(-1,1+i))

Output: √
5

5

• Input:

distance(circle(0,1),line(-2,1+3*i))

Output: √
2− 1

Note that when the distance calculation uses parameters, Xcas must be in real mode.
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Example.

In real mode:
Input:

assumes(a=[4,0,5,0.1]); A:= point(0); B:= point(a);

simplify(distance(A,B)); simplify(distance(B,A))

Output:

|a| , |a|

In complex mode:
Input:

assumes(a=[4,0,5,0.1]); A:= point(0); B:= point(a);

simplify(distance(A,B)); simplify(distance(B,A))

Output:

−a, a

The distance command has distanceat and distanceatraw versions (see Section 13.14.1 p.842).

13.14.3 The length squared of a segment in the plane: distance2

See Section 14.12.8 p.932 for squares of lengths in three-dimensional geometry.

The distance2 command �nds the square of the distance between two points.

• distance2 takes two arguments:
P,Q, two points.

• distance2(P,Q) returns the square of the distance between P and Q.

Example.

Input:

distance2(-1, 1+i)

Output:

5

13.14.4 The measure of an angle in the plane: angle

See Section 14.12.9 p.932 for angle measures in three-dimensional geometry.

The angle command �nds the measure of an angle.

• angle takes three mandatory arguments and one optional argument:

� A,B,C, three points.

� str, a string.

• angle(A,B,C 〈str〉) returns the measure of angle ABC (in the units that Xcas is con�gured for).
With the argument str, the angle will be drawn indicated by a small arc and labeled with the
string. If the angle is a right angle, the indicator will be a corner rather than an arc.
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Examples.

• Input:

angle(0,1,1+i)

Output:
1

4
π

• Input:

angle(0,1,1+i,"a")

Output:

• Input:

angle(0,1,1+i,"")

Output:

• Input:

angle(0,1,i,"A")

Output:
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• Input:

angle(0,1,i,"A")[0]

Output:
1

2
π

The angle command has angleat and angleatraw versions (see Section 13.14.1 p.842). For the
command line versions of these commands, the optional fourth argument for angle is replaced by a
mandatory fourth argument for the point to put the measurement.

13.14.5 The graphical representation of the area of a polygon: plotarea areaplot

The plotarea �nds the (signed) area of a polygon.
areaplot is a synonym for plotarea.

• plotarea takes one argument:
P , a polygon.

• plotarea(P) draws the �lled polygon, with the signed area. (The area is positive if the polygon
is counterclockwise, negative if it is clockwise.)

Examples.

• Input:

plotarea(polygon(1,(1+i)/2,1+i)

Output:
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• Input:

plotarea(polygon(1,1+i,(1+i)/2)

Output:

• The �ll color can be changed as a local feature (see 13.3.2) and the position of the legend can be
changed (see 13.3.3).
Input:

plotarea(polygon(1,1+i,(1+i)/2),display=red+quadrant2)

Output:

13.14.6 The area of a polygon: area

The area command �nds the area of a circle or star-shaped polygon.

• area takes one argument:
P , a circle or polygon which is star-shaped with respect to its �rst vertex (i.e., the line segment
from the �rst vertex to any point in the polygon lies within the polygon).

• area(P) returns the area of P .

Examples.

• Input:

area(triangle(0,1,i))
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Output:
1

2

• Input:

area(square(0,2))

Output:
4

The area command has areaat and areaatraw versions (see Section 13.14.1 p.842).

13.14.7 The perimeter of a polygon: perimeter

See also arcLen, Section 5.19.2 p.230.
The perimeter command �nds the length of a circle, circular arc or polygon.

• perimeter takes one argument:
C, a circle, circular arc or a polygon.

• perimeter(C) returns the perimeter of the object.

Examples.

• Input:

perimeter(circle(0,1))

Output:
2π

• Input:

perimeter(circle(0,1,pi/4,pi))

Output:
3

4
π

• Input:

perimeter(arc(0,pi/4,pi))

Output:
1

8
π2

• Input:

perimeter(triangle(0,1,i))

Output: √
2 + 2

• Input:

perimeter(square(0,2))

Output:
8

The perimeter command has perimeterat and perimeteratraw versions (see Section 13.14.1
p.842).



850 CHAPTER 13. TWO-DIMENSIONAL GRAPHICS

13.14.8 The slope of a line: slope

The slope command �nds the slope of a line.

• slope takes one or two arguments:
L, a line, a line segment, or two points determining a line.

• slope(L) returns the slope of the line.

Examples.

• Input:

slope(line(1,2i))

or:

slope(segment(1,2i))

or:

slope(1,2i)

Output:

−2

• Input:

slope(line(x - 2y = 3))

Output:
1

2

• Input:

slope(tangent(plotfunc(sin(x)),pi/4))

or:

slope(LineTan(sin(x),pi/4))

Output: √
2

2

The slope command has slopeat and slopeatraw versions (see Section 13.14.1 p.842).

13.14.9 The radius of a circle: radius

The radius command �nds the radius of a circle.

• radius takes one argument:
C, a circle.

• radius(C) returns the radius of C.
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Example.

Input:

radius(circle(-1,point(i)))

Output:
1√
2

13.14.10 The length of a vector: abs

The abs command �nds the absolute value of a number or the length of a vector (see also Section 5.16.2
p.208 and Section 5.10.4 p.168).

• abs takes one argument:
v, a number or a vector de�ned by two points.

• abs(v) returns the absolute value of v if v is a complex number or the length of v if v is a vector.

Example.

Input:

abs(1+i)

or:

abs(point(1+2*i) - point(i))

Output: √
2

13.14.11 The angle of a vector: arg

The arg command �nds the angle of a complex number (the argument) or the angle of a vector de�ned
by two points.

• arg takes one argument:
v, a number or a vector de�ned by two points.

• arg(v) returns the argument of v if v is a complex number or the angle between the positive x
direction and v if v is a vector.

Example.

Input:

arg(1+i)

Output:
π

4

13.14.12 Normalize a complex number: normalize

The normalize command normalizes a non-zero complex number; i.e., it �nds a complex number with
the same argument and absolute value 1.

• normalize takes one argument:
c, a non-zero complex number.

• normalize(c) returns the normalized version of c; namely, c/|c|.
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Example.

Input:

normalize(3+4*i)

Output:
3 + 4i

5

13.15 Transformations

13.15.1 General remarks

The transformations in this section operate on any geometric object. As arguments, they can take the
parameters which specify the transformation. With those arguments, they will return a new command
which performs the transformation. If they are given a geometric object as the �nal argument, they will
return the transformed object.

13.15.2 Translations in the plane: translation

See Section 14.14.2 p.942 for translations in space.

The translation command creates a translation.

• translation takes one mandatory argument and one optional argument:

� v, the translation vector, which can be given as a vector, a list of coordinates, a di�erence of
points or a complex number.

� Optionally, G, a geometric object.

• translation(v) returns a new command which translates by v.

• translation(v,G) returns and draws the translation G by the vector v.

Examples.

• Input:

t:= translation(1+i)

t(-2)

Output:

• Input:
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translation([1,1],line(-2,-i))

Output:

13.15.3 Re�ections in the plane: reflection

See Section 14.14.3 p.943 for re�ections in space.
The reflection command creates a re�ection.

• reflection takes one mandatory argument and one optional argument:

� P , a point or a line.

� Optionally, G, a geometric object.

• reflection(P) returns a new command which re�ects about P .

• reflection(P,G) returns and draws the re�ection of G about P .

Examples.

• Input:

rf:= reflection(-1)

rf(1+i)

Output:

• Input:

reflection(-1, 1+i)

Output:
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Input:

reflection(line(-1,i),1+i)

Output:

13.15.4 Rotation in the plane: rotation

See Section 14.14.4 p.945 for rotations in space.

The rotation command creates a rotation.

• rotation takes two mandatory arguments and one optional argument:

� P , a point (the center of rotation).

� θ, the angle of rotation.

� Optionally, G, a geometric object.

• rotation(P, θ) returns a new command which rotations about P through an angle of θ.

• reflection(P, θ,G) returns and draws the rotation of G about P through an angle of θ.

Examples.

• Input:

r:= rotation(i, -pi/2)

r(1+i)

Output:
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• Input:

rotation(i, -pi/2, 1+i)

Output:

Input:

rotation(i, -pi/2, line(1+i,-1))

Output:

13.15.5 Homothety in the plane: homothety

See Section 14.14.5 p.946 for homotheties in space.
A homothety is a dilation about a given point. The homothety command creates a homothety.

• homothety takes two mandatory arguments and one optional argument:
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� P , a point (the center of the homothety).

� r, a number (the scaling ratio).

� Optionally, G, a geometric object.

• homothety(P, r) returns a new command which dilates about P by a factor of r. If r is complex,
this will rotate as well as scale.

• homothety(P, r,G) returns and draws the dilation of G about P by a factor or r.

Examples.

• Input:

h:= homothety(i, 2)

h(1+i)

Output:

• Input:

homothety(i, 2, 1+i)

Output:

• Input:

homothety(i, 2, circle(1+i,1))

Output:
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13.15.6 Similarity in the plane: similarity

See Section 14.14.6 p.947 for similarities in space.
The similarity command creates a command to rotate and scale about a given point.

• similarity takes three mandatory arguments and one optional argument:

� P , a point (the center of the rotation).

� r, a real number (the scaling ratio).

� θ, a real number (the angle of rotation).

� Optionally, G, a geometric object.

• similarity(P, r, θ) returns a new command which rotates about P through an angle of θ and
scales about P by a factor of r.

• similarity(P, r, θ,G) returns and draws the transformation of G.

Examples.

• Input:

s:= similarity(i, 2, -pi/2)

s(1+i)

Output:

then:

s(circle(1+i,1))

Output:
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• Input:

similarity(i, 2, -pi/2, 1 + i)

Output:

• Input:

similarity(i, 2, -pi/2, circle(1+i,1))

Output:

Note that for a point P and real numbers r and θ, the command similarity(P, r, θ) is the same
as homothety(P, k*exp(i*a)).
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13.15.7 Inversion in the plane: inversion

See Section 14.14.7 p.948 for inversions in space.
Given a circle C with center P and radius r, the inversion of a point A with respect to C is the

point A′ on the ray
−→
PA satisfying PA · PA′ = r2.

The inversion command creates an inversion.

• inversion takes two mandatory arguments and one optional argument:

� P , a point (the center of the inversion).

� r, a real number (the radius).

� Optionally, G, a geometric object.

• inversion(P, r) returns a new command which performs the inversion.

• inversion(P, r,G) returns and draws the inversion of G.

Examples.

• Input:

inver:= inversion(i, 2)

inver(circle(1+i,1))

Output:

then:

inver(circle(1+i,1/2))

Output:
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• Input:

inversion(i, 2, circle(1+i,1))

Output:

Input:

inversion(i, 2, circle(1+i,1/2))

Output:

13.15.8 Orthogonal projection in the plane: projection

See Section 14.14.8 p.950 for projections in space.

The projection command creates a projection.

• projection takes one mandatory argument and one optional argument:

� O, a geometric object.

� Optionally, G, a geometric object.

• projection(O) returns a new command which projects points onto O.

• projection(O,G) returns and draws the projection of G onto O.
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Examples.

• Input:

p1:= projection(line(-1,i))

p1(i+1)

Output:

• Input:

p2:= projection(circle(-1,1))

p2(i)

Output:

• Input:

projection(line(-1, i), 1+i)

Output:
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• Input:

projection(circle(-1,1), i)

Output:

13.16 Properties

13.16.1 Checking if a point is on an object in the plane: is_element

See Section 14.13.1 p.933 for checking elements in three-dimensional geometry.
The is_element command determines whether or not a point is on a geometric object.

• is_element takes two arguments:

� P , a point.

� G, a geometric object.

• is_element(P,G) returns 1 if P is an element of G and returns 0 otherwise.

Examples.

• Input:

is_element(-1-i, line(0,1+i))

Output:
1

• Input:

is_element(i, line(0,1+i))

Output:
0

13.16.2 Checking if three points are collinear in the plane: is_collinear

See Section 14.13.6 p.937 for checking for collinearity in three-dimensional geometry.
The is_collinear command determines whether or not three points are collinear.

• is_collinear takes three arguments:
A,B,C, three points.

• is_collinear(A,B,C) returns 1 if A,B and C are collinear and returns 0 otherwise.
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Examples.

• Input:

is_collinear(0,1+i,-1-i)

Output:

1

• Input:

is_collinear(i/100, 1+i, -1-i)

Output:

0

13.16.3 Checking if four points are concyclic in the plane: is_concyclic

See Section 14.13.7 p.937 for checking for concyclicity in three-dimensional geometry.

The is_concyclic command determines whether or not points are cyclic.

• is_concyclic takes one argument:
L, a list or sequence of points.

• is_concyclic(L) returns 1 if the points in L all lie on the same circle, and returns 0 otherwise.

Examples.

• Input:

is_concyclic(1+i, -1+i, -1-i, 1-i)

Output:

1

• Input:

is_concyclic(i, -1+i, -1-i, 1-i)

Output:

0

13.16.4 Checking if a point is in a polygon or circle: is_inside

The is_inside command determines whether or not a point is in a polygon or a circle.

• is_inside takes two arguments:

� P , a point.

� C, a polygon or a circle.

• is_inside(P,C) returns 1 if P is inside C (including the boundary) and returns 0 otherwise.
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Examples.

• Input:

is_inside(0,circle(-1,1))

Output:
1

• Input:

is_inside(2,polygon([1,2-i,3+i]))

Output:
1

• Input:

is_inside(1-i, triangle([1,2-i,3+i]))

Output:
0

13.16.5 Checking if an object is an equilateral triangle in the plane: is_equilateral

See Section 14.13.9 p.938 for checking for equilateral triangles in three-dimensional geometry.
The is_equilateral command determines whether or not a geometric object is an equilateral

triangle.

• is_equilateral takes one argument:
G, a geometric object or a sequence of three points assumed to be the vertices of a triangle.

• is_equilateral(G) returns 1 if the object is an equilateral triangle and returns 0 otherwise.

Examples.

• Input:

is_equilateral(0,2,1+i*sqrt(3))

Output:
1

• Input:

T:= equilateral_triangle(0,2,C)

is_equilateral(T[0])

Output:
1

Note that T[0] is a triangle since T is a list made of a triangle and the vertex C.
Input:

affix(C)



13.16. PROPERTIES 865

Output: √
3i + 1

• Input:

is_equilateral(1+i, -1+i, -1-i)

Output:
0

13.16.6 Checking if an object in the plane is an isosceles triangle: is_isosceles

See Section 14.13.10 p.939 for checking for isosceles triangles in three-dimensional geometry.
The is_isosceles command determines whether or not a geometric object is an isoceles triangle.

• is_isosceles takes one argument:
G, a geometric object or a sequence of three points assumed to be the vertices of a triangle.

• is_isosceles(G) returns 1, 2 or 3 if the object is an isoceles triangle (the number indicates
which vertex is on two equal sides), returns 4 if the object is an equilateral triangle, and returns
0 otherwise.

Examples.

• Input:

is_isosceles(0, 1+i,i)

Output:
2

• Input:

T:= isosceles_triangle(0,1,pi/4)

is_isosceles(T)

Output:
1

• Input:

T:= isosceles_triangle(0,1,pi/4,C)

is_isosceles(T[0])

Output:
1

Note that T[0] is a triangle since T is a list made of a triangle and the vertex C.
Input:

affix(C)

Output: √
2

2
+

√
2

2
i

• Input:
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is_isosceles(1+i, -1+i, -i)

Output:
3

• Input:

is_isosceles(0,2,1+i*sqrt(3))

Output:
4

13.16.7 Checking if an object in the plane is a right triangle or a rectangle:
is_rectangle

See Section 14.13.11 p.939 for checking for right triangles and rectangles in three-dimensional geometry.
The is_rectangle command determines whether or not a geometric object is an rectangle or a right

triangle.

• is_rectangle takes one argument:
G, a geometric object or a sequence of three or four points assumed to be the vertices of a triangle
or a quadrilateral.

• is_rectangle(G) returns:

� (for triangle G) 1, 2 or 3 if G is a right triangle (the number indicates which vertex is has the
right angle).

� (for quadrilaterals G) 1 if G is a rectangle but not a square.

� (for quadrilaterals G) 2 if G is square.

� 0 otherwise.

Example.

Input:

is_rectangle(1,1+i,i)

Output:
2

• Input:

is_rectangle(1+i, -2+i, -2-i, 1-i)

Output:
1

• Input:

R:= rectangle(-2-i,1-i, 3, C, D)

is_rectangle(R[0])

Output:
1

Note that R[0] is a rectangle since R is a list made of a rectangle and vertices C and D.
Input:
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affix(C,D)

Output:

−2 + 8i, 1 + 8i

13.16.8 Checking if an object in the plane is a square: is_square

See Section 14.13.12 p.940 for checking for squares in three-dimensional geometry.

The is_square command determines whether or not a geometric object is a square.

• is_square takes one argument:
G, a geometric object or a sequence of four points assumed to be the vertices of a quadrilateral.

• is_square(G) returns 1 if the object is a square and returns 0 otherwise.

Examples.

• Input:

is_square(1+i, -1+i, -1-i, 1-i)

Output:

1

• Input:

K:= square(1+i, -1+i)

is_square(K)

Output:

1

• Input:

K:= square(1+i, -1+i, C, D)

is_square(K[0])

Output:

1

Note that K[0] is a square since K is a list made of a square and vertices C and D.
Input:

affix(C,D)

Output:

−1− i, 1− i

• Input:

is_square(i, -1+i, -1-i, 1-i)

Output:

0
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13.16.9 Checking if an object in the plane is a rhombus: is_rhombus

See Section 14.13.13 p.940 for checking for rhombuses in three-dimensional geometry.
The is_rhombus command determines whether or not a geometric object is a rhombus.

• is_rhombus takes one argument:
G, a geometric object or a sequence of four points assumed to be the vertices of a quadrilateral.

• is_square(G) returns 1 if G is a rhombus but not a square, returns 2 if G is a square and returns
0 otherwise.

Examples.

• Input:

is_rhombus(1+i, -1+i, -1-i, 1-i)

Output:
1

• Input:

K:= rhombus(1+i, -1+i, pi/4)

is_rhombus(K)

Output:
1

• Input:

K:= rhombus(1+i, -1+i, pi/4, C, D)

is_rhombus(K[0])

Output:
1

Note that K[0] is a rhombus since K is a list made of a rhombus and vertices C and D.
Input:

affix(C,D)

Output:
−
√

2− i,−
√

2 + i

• Input:

is_rhombus(i, -1+i, -1-i, 1-i)

Output:
0

13.16.10 Checking if an object in the plane is a parallelogram: is_parallelogram

See Section 14.13.14 p.941 for checking for parallelograms in three-dimensional geometry.
The is_parallelogram command determines whether or not an object is a parallelogram.

• is_parallelogram takes one argument:
G, a geometric object or a sequence of four points assumed to be the vertices of a quadrilateral.

• is_parallelogram(G) returns 1 if G is a parallelogram, but not a rhombus or a rectangle, returns
2 if G is a rhombus but not a rectangle, returns 3 if G is a rectangle but not a square, returns 4
is G is a square, and returns 0 otherwise.



13.16. PROPERTIES 869

Examples.

• Input:

is_parallelogram(i, -1+i, -1-i, 1-i)

Output:

0

• Input:

is_parallelogram(1+i, -1+i, -1-i, 1-i)

Output:

1

• Input:

Q:= quadrilateral(1+i, -1+i, -1-i, 1-i)

is_parallelogram(Q)

Output:

4

• Input:

P:= parallelogram(-1-i, 1-i, i, D)

is_parallelogram(P[0])

Output:

1

Note that P[0] is a parallelogram since P is a list made of a parallelogram and vertex D.
Input:

affix(D)

Output:

−2 + i

13.16.11 Checking if two lines in the plane are parallel: is_parallel

See Section 14.13.3 p.934 for checking for parallels in three-dimensional geometry.

The is_parallel command determines whether or not two lines are parallel.

• is_parallel takes two arguments:
L1, L2, two lines.

• is_parallel(L1, L2) returns 1 if L1 and L2 are parallel and otherwise returns 0.
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Examples.

• Input:

is_parallel(line(0,1+i),line(i,-1))

Output:

1

• Input:

is_parallel(line(0,1+i),line(i,-1-i))

Output:

0

13.16.12 Checking if two lines in the plane are perpendicular: is_perpendicular

See Section 14.13.4 p.935 for checking for perpendicularity in three-dimensional geometry.

The is_perpendicular command determines whether or not two lines are perpendicular.

• is_perpendicular takes two arguments:
L1, L2, two lines.

• is_perpendicular(L1, L2) returns 1 if L1 and L2 are perpendicular and otherwise returns 0.

Examples.

• Input:

is_perpendicular(line(0,1+i),line(i,1))

Output:

1

• Input:

is_parallel(line(0,1+i),line(1+i,1))

Output:

0

13.16.13 Checking if two circles in the plane are orthogonal: is_orthogonal

See Section 14.13.5 p.936 for checking for orthogonality in three-dimensional geometry.

The is_orthogonal command determines whether or not two lines or circles are orthogonal.

• is_orthogonal takes two arguments:
C1, C2, two objects, both lines or both circles.

• is_orthogonal(C1, C2) returns 1 if C1 and C2 are orthogonal and returns 0 otherwise.
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Examples.

• Input:

is_orthogonal(line(0,1+i),line(i,1))

Output:

1

• Input:

is_orthogonal(line(2,i),line(0,1+i))

Output:

0

• Input:

is_orthogonal(circle(0,1+i),circle(2,1+i))

Output:

1

• Input:

is_orthogonal(circle(0,1),circle(2,1))

Output:

0

13.16.14 Checking if elements are conjugates: is_conjugate

The is_conjugate command determines whether or not two objects are conjugates.
To check for conjugates with respect to a circle:

• is_conjugate takes three arguments:

� C, a circle.

� P,Q, each of which is a point or a line.

• is_conjugate(C,P,Q) returns 1 if P and Q are conjugate with respect to C, otherwise it returns
0.

Examples.

• Input:

is_conjugate(circle(0,1+i),point(1-i), point(3+i))

Output:

1

• Input:

is_conjugate(circle(0,1),point((1+i)/2), line(1+i,2))
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Output:
1

• Input:

is_conjugate(circle(0,1), line(1+i,2), line((1+i)/2,0))

Output:
1

To check for conjugates with respect to two points or two lines:

• is_conjugate takes three arguments:

� L1, L2, two lines or two points.

� P,Q, each of which is a point or a line.

• is_conjugate(L1, L2, P,Q) returns 1 if P and Q are conjugate with respect to L1 and L2, oth-
erwise it returns 0.

Examples.

• Input:

is_conjugate(point(1+i),point(3+i),point(i),point(3/2+i))

Output:
1

• Input:

is_conjugate(line(0,1+i),line(2,3+i),line(3,4+i),line(3/2,5/2+i))

Output:
1

13.16.15 Checking if four points form a harmonic division: is_harmonic

The is_harmonic command determines whether or not four points form a harmonic division.

• is_harmonic takes four arguments:
P,Q,R, S, four points.

• is_harmonic(P,Q,R, S) returns 1 if P,Q,R and S form a harmonic range and returns 0 otherwise.

Examples.

• Input:

is_harmonic(0,2,3/2,3)

Output:
1

• Input:

is_harmonic(0,1+i,1,i)

Output:
0
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13.16.16 Checking if lines are in a bundle: is_harmonic_line_bundle

The is_harmonic_line_bundle command determines how lines are related.

• is_harmonic_line_bundle takes one argument:
L, a list or sequence of lines.

• is_harmonic_line_bundle(L) returns:

� 1 if the lines pass through a common point

� 2 if the lines are parallel

� 3 if the lines are the same

� 0 otherwise

Example.

Input:

is_harmonic_line_bundle([line(0,1+i),line(0,2+i),line(0,3+i),line(0,1)])

Output:
1

13.16.17 Checking if circles are in a bundle: is_harmonic_circle_bundle

The is_harmonic_circle_bundle command determines how circles are related.

• is_harmonic_circle_bundle takes one argument:
L, a list or sequence of circles.

• is_harmonic_circle_bundle(L) returns:

� 1 if the circles pass through a common point.

� 2 if the circles are concentric.

� 3 if the circles are the same.

� 0 otherwise.

Example.

Input:

is_harmonic_circle_bundle([circle(0,i),circle(4,i),circle(0,1/2)])

Output:
1

13.17 Harmonic division

13.17.1 Finding a point dividing a segment in the harminic ratio k: division_point

The division_point command �nds a point dividing a segment is a given ratio.

• division_point takes three arguments:

� a, b, two complex numbers or points.

� k, a complex number.

• division_point(a, b, k) returns and draws z where (z − a)/(z − b) = k.
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Examples.

• Input:

division_point(i,2+i,3+i)

Output:

• Input:

affix(division_point(i,2+i,3))

Output:

3 + i

13.17.2 The cross ratio of four collinear points: cross_ratio

The cross ratio of four numbers a, b, c, d is [(c− a)/(c− b)]/[(d− a)/(d− b)].
The cross_ratio command �nds the cross ratio.

• cross_ratio takes for arguments:
a, b, c, d, complex numbers.

• cross_ratio(a, b, c, d) returns the cross ratio, [(c− a)/(c− b)]/[(d− a)/(d− b)].

Examples.

• Input:

cross_ratio(0,1,2,3)

Output:
4

3

• Input:

cross_ratio(i,2+i,3/2 + i, 3+i)

Output:

−1
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13.17.3 Harmonic division: harmonic_division

Four collinear points A,B,C and D are in harmonic division if CA/CB = DA/DB. In this case, D is
called the harmonic conjugate of A, B and C.

Four concurrent lines or four parallel lines are in harmonic division if the intersection of any �fth
line with these four lines consists of four points in harmonic division. The lines are also said to form a
harmonic pencil. The fourth line is called the harmonic conjugate of the �rst three.

The harmonic_division command �nds harmonic conjugates.

• harmonic_division takes four arguments:

� P1, P2, P3, three collinear points or three concurrent lines.

� var, a variable name.

• harmonic_division(P1, P2, P3,var) returns and draws the three points or lines P1, P2 and P3

with a fourth so the four objects are in harmonic division, and assigns the fourth point or line to
var.

Examples.

• Input:

harmonic_division(0,2,3/2,D)

Output:

• Input:

harmonic_division(point(0),point(2),point(3/2),D)

Output:
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Input:

affix(D)

Output:

3

13.17.4 The harmonic conjugate: harmonic_conjugate

The harmonic_conjugate command �nds harmonic conjugates.

• harmonic_conjugate takes three arguments:

• P1, P2, P3, three collinear points or three concurrent lines, or three parallel lines.

• harmonic_conjugate(P1, P2, P3) returns and draws the harmonic conjugate of P1, P2 and P3.

Examples.

• Input:

harmonic_conjugate(0,2,3/2)

Output:

• Input:

affix(harmonic_conjugate(0,2,3/2))

Output:

3

• Input:

harmonic_conjugate(line(0,1+i),line(0,3+i),line(0,i))

Output:
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13.17.5 Pole and polar: pole polar

Given a circle centered at O, a point A is a pole and a line L is the corresponding polar if L is the line
passing through the inversion of A with respect to the circle (see Section 13.15.7 p.859) passing through

the line
←→
OA.

The polar command �nds the polar of a point.

• polar takes two arguments:

� C, a circle.

� A, a point.

• polar(C,A) returns and draws the polar of the point A with respect to C.

Example.

Input:

polar(circle(0,1),(i+1)/2)

Output:

The pole command �nds the pole of a line.

• pole takes two arguments:

� C, a circle.

� L, a line

• pole(C,L) returns and draws the pole of the line L with respect to C.
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Examples.

• Input:

pole(circle(0,1),line(i,1))

Output:

• Input:

affix(pole(circle(0,1),line(i,1)))

Output:
1 + i

13.17.6 The polar reciprocal: reciprocation

The reciprocation command �nds poles and polars.

• reciprocation takes two arguments:

� C, a circle.

� L, a list of points and lines.

• reciprocation(C,L) returns the list formed by replaced each point or line in L by its polar or
pole with respect to the circle C.

Example.

Input:

reciprocation(circle(0,1),[point((1+i)/2),line(1,-1+i)])

Output:
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13.18 Loci and envelopes

13.18.1 Loci: locus

The locus command draws the locus of points determined by geometric objects moving in the plane,
where the object depends on a point moving along a curve. It can draw a locus of points which depends
on points on a curve, or the envelope of a family of lines depending on points on a curve.

The locus of points depending on points on a curve.

For drawing the locus of points depending on points on a curve:

• locus takes two mandatory arguments and two optional arguments:

� var1, a variable name which has already been assigned to a point, which itself is a function
of var2, the second argument.

� var2, a variable name which is assigned to element(C) for some curve C (see Section 13.6.15
p.799).

� Optionally, t = a..b, where t is the parameter of the curve C. (You can double check the
name of the parameter for a curve C with the command parameq(C).)

� Optionally, tstep=s, to set the step size for the parameter t.

• locus(var1,var2 〈tstep=c〉) draws the locus of points formed by var1, as var2 traces over the curve
C.
With the optional arguments, C is limited to the part parameterized from a to b, with a step size
of c.

Examples.

• Input:

P:= element(line(i, i+1))

G:= isobarycenter(-1,1,P)

locus(G,P)

This will draw the set of isobarycenters of the triangles with vertices -1, 1 and P, where P ranges
over the line through i and i+1. Output:

• Input:

locus(G,P,t=-3..3,tstep=0.1)

Output:
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The envelope of a family of lines which depend on points on a curve.

For drawing the envelope of a family of lines which depend on points on a curve:

• locus takes two mandatory arguments and two optional arguments.

� var1, a variable name which has already been assigned to a line, which itself is a function of
var2, the second argument.

� var2, a variable name which has already been assigned to element(C) for some curve C (see
Section 13.6.15 p.799).

� Optionally, t = a..b, where t is the parameter of the curve C. (You can double check the
name of the parameter for a curve C with the command parameq(C).)

� Optionally, tstep=s, to set the step size for the parameter t.

• locus(var1,var2 〈tstep=c〉) draws the envelope of lines formed by var1, as var2 traces over the
curve C.
With the optional arguments, C is limited to the part parameterized from a to b, with a step size
of c.

Examples.

• Input:

F:= point(1)

H:= element(line(x=0))

d:= perpen_bisector(F,H)

locus(d,H)

This will draw the envelope of the family of perpendicular bisectors of the segments from the point
1 to the points on the line x=0.
Output:
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• To draw the envelope of a family of lines which depend on a parameter, such as the lines given by
the equations

y + x tan(t)− 2 sin(t) = 0

over the parameter t, the parameter can be regarded as the a�xes of points on the line y = 0.
Input:

H:= element(line(y=0))

D:= line(y + x*tan(affix(H)) - 2*sin(affix(H)))

locus(D,H)

Output:

• Input:

locus(D,H,t=0..pi)

Output:

13.18.2 Envelopes: envelope

The envelope command draws the envelope of a family of curves.

• envelope takes two arguments:

� expr, an expression of two variables and one parameter.

� L, a list of the names of the variables and the parameters. If the variables are x and y, then
L only need to be the name of the parameter.

• envelope(expr,L) draws the envelope of the family of curves given by expr = 0 over the parameter.
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Examples.

• Input:

envelope(y + x*tan(t) - 2*sin(t),t)

Output:

• Input:

envelope(v + u*tan(s) - 2*sin(s),[u,v,s])

Output:

13.18.3 The trace of a geometric object: trace

The trace command draws the trace of an object.

• trace takes one argument:
G, a geometric object which depends on a parameter.

• trace(G) draws the trace of G as the parameter is changed or the object is moved in Pointer

mode.

Example.

For example, to �nd the locus of points equidistant from a line D and a point F, you can create a point
H on the line D. To do this, open a graphic window (Alt-G) and type in the following commands, one
per line.

First, create a line D (using sample points) and a sample point F.
Input:
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A:= point(-3-i)

B:= point(1/2 + 2*i)

D:= line(A,B,color=0)

F:= point(4/3,1/2,color=0)

Then create a point H on the line D which you can move around.
Input:

assume(a=[0.7,-5,5,0.1])

H:= element(D,a)

To �nd a point equidistant from D and F, �nd the point M where the perpendicular to D (at H) intersects
the perpendicular bisector to HF, and trace that point.
Input:

T:= perpendicular(H,D)

M:= single_inter(perpen_bisector(H,F),T))

trace(M)

Then as the point H on the line moves (by changing the value of a with the slider), you will get the
trace of M.

To erase traces, add traces, activate or deactivate them, use the Trace menu of the M button located
on the right side of the geometry screen.
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Chapter 14

Three-dimensional Graphics

14.1 Introduction

The Alt+H command brings up a display screen for three-dimensional graphics. This screen has its own
menu and command lines.

This screen also automatically appears whenever there is a three-dimensional graphic command.
The plane of vision for a three-dimensional graphic screen is perpendicular to the observer's line

of vision. The plane of vision is also indicated by dotted lines showing its intersection with the paral-
lelepiped. The axis of vision for a three-dimensional graphic screen is

The three-dimensional graphic screen starts with the image of a parallelepiped bounding the graphics
and vectors in the x, y and z directions. At the top of the screen is the equation of the plane of vision,
which is a plane perpendicular to the observer's line of vision. The plane of vision is shown graphically
with dotted lines indicating where it intersects the plane of vision.

Clicking in the graphic screen outside of the parallelepiped and dragging the mouse moves the x, y
and z directions relative to the observer; these directions are also changed with the x, X, y, Y, z and
Z keys. Scrolling the mouse wheel moves the plane of vision along the line of vision. The in and out

buttons on the graphic screen menu zoom in and out of the picture.
The graphical features available for two-dimensional graphics (see Section 13.3 p.780) are also avail-

able for three-dimensional graphics, but to see the points the markers must be squares with width
(point_width) at least 3.

The graphic screen menu has a cfg button which brings up a con�guration screen. Among other
things, this screen has

• An Ortho proj button, which determines whether the drawing uses orthogonal projection or
perspective projection.

• A Lights button, which determines whether the objects are lit or not; the locations of eight points
for lighting are set using the buttons L1, . . . , L7, which specify the points with homogeneous
coordinates.

• A Show axis button, which determines whether or not the outlining parallelepiped is visible.

885
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14.2 Changing the view

The depictions of three-dimensional objects are made with a coordinate system Oxyz, where the x axis
is horizontal and directed right, the y axis is vertical and directed up, and the z axis is perpendicular to
the screen and directed out of the screen. The depictions can be transformed by changing to a di�erent
coordinate system by setting a quaternion (see Section 13.3.2 p.783).

14.3 The axes

14.3.1 Drawing unit vectors: Ox_3d_unit_vector Oy_3d_unit_vector Oz_3d_unit_vector
frame_3d

The Ox_3d_unit_vector command takes no arguments and draws the unit vector in the x-direction on
a three-dimensional graphic screen.

Example.

Input:

Ox_3d_unit_vector()

Output:

Similarly, the Oy_3d_unit_vector and Oz_3d_unit_vector commands draw the unit vector in the
y and z directions, respectively.

These commands have no parameters, but can be decorated with the legend command.

Example.

Input:

Ox_3d_unit_vector(), legend(point([1,0,0]),"unit x vector",blue)

Output:
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The frame_3d command draws all three vectors simultaneously.

Example.

Input:

frame_3d()

Output: Output:

14.4 Points in space

14.4.1 De�ning a point in three-dimensions: point

See Section 13.6.2 p.789 for points in the plane.

With the 3-d geometry screen in point mode, clicking on a point with the left mouse button will
choose that point. Points chosen this way are automatically named, �rst with A, then B, etc.

Alternatively, the point command chooses a point.

• point takes one or three arguments:
coords, where coords can be one of:

� a, b, c, a sequence of three coordinates.

� [a, b, c], a list of three coordinates.

• point(coords) returns and draws the point with the given coordinates.

Many commands which takes points as arguments can either take them as point(a,b,c) or the list of
coordinates [a,b,c].
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Example.

Input:

point(1,2,5)

or:

point([1,2,5])

Output:

(The marker used to indicate the point can be changed; see Section 13.3.2 p.780.)

14.4.2 De�ning a random point in three-dimensions: point3d

The point3d command de�nes a random point whose coordinates are integers between -5 and 5.

• point3d takes an unspeci�ed number of arguments:
names, a sequence of names for the points.

• point3d(names) assigns a random point whose coordinates are integers between -5 and 5 to each
name.

Example.

Input:

point3d(A,B,C)

then:

plane(A,B,C)

Output:
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14.4.3 Finding an intersection point of two objects in space: single_inter line_inter

See Section 13.6.6 p.793 for single points of intersection of objects in the plane.
The single_inter command �nds an intersection point of two geometric objects.

line_inter is a synonym for single_inter

• single_inter takes two mandatory arguments and one optional argument.

� obj1, obj2, two geometric objects.

� Optionally, pt, a point or list of points.

line_inter(obj1,obj2 〈pt〉) returns one of the points of intersection of obj1 and obj2.
If pt is a single point, then the command returns the point of intersection closest to pt.
If pt is a list of points, then the command tries to return a point not in pt.

Examples.

• Input:

A:=single_inter(plane(point(0,1,1),point(1,0,1),point(1,1,0))

,line(point(0,0,0),point(1,1,1))):;

coordinates(A)

Output: [
2

3
,
2

3
,
2

3

]
• Input:

B:= single_inter(sphere(point(0,0,0),1),

line(point(0,0,0),point(1,1,1))):;

coordinates(B)

Output: [√
3

3
,

√
3

3
,

√
3

3

]
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• Input:

B1:=single_inter(sphere(point(0,0,0),1),line(point(0,0,0),point(1,1,1)),

point(-1,0,0)):;

coordinates(B1)

Output: [
−
√

3

3
,−
√

3

3
,−
√

3

3

]

• Input:

C:= single_inter(sphere(point(0,0,0),1),line(point(1,0,0),point(1,1,1))):;

coordinates(C)

Output:

[1, 0, 0]

• Input:

C1:=single_inter(sphere(point(0,0,0),1),line(point(1,0,0),point(1,1,1)),

[point(1,0,0)]):;

coordinates(C1)

Output: [
1

3
,
2

3
,
2

3

]

14.4.4 Finding the intersection points of two objects in space: inter

See Section 13.6.7 p.794 for points of intersection of objects in the plane.

The inter command �nds the intersection of two geometric objects in R3.

• inter takes two mandatory arguments and one optional argument.

� obj1, obj2, two geometric objects.

� Optionally, P , a point.

inter(obj1,obj2 〈P 〉) returns a list of points of intersection of obj1 and obj2 or the curve of inter-
section of the two objects.
With the argument P , the command returns the point of intersection closest to P .

Examples.

• Input:

LA:=inter(plane(point(0,1,1),point(1,0,1),point(1,1,0)),line(point(0,0,0),point(1,1,1))):;

coordinates(LA)

Output: [[
2

3
,
2

3
,
2

3

]]
• Input:
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LB:=inter(sphere(point(0,0,0),1),line(point(0,0,0),point(1,1,1))):;

coordinates(LB)

Output: [[√
3

3
,

√
3

3
,

√
3

3

]
,

[
−
√

3

3
,−
√

3

3
,−
√

3

3

]]
To get just one of the points, use the usual list indices.
Input:

coordinates(LB[0])

Output: [√
3

3
,

√
3

3
,

√
3

3

]
To get the point closest to (1/2, 1/2, 1/2):
Input:

LB1:=inter(sphere(point(0,0,0),1),line(point(0,0,0),point(1,1,1)),point(1/2,1/2,1/2))

coordinates(LB1)

Output: [√
3

3
,

√
3

3
,

√
3

3

]

14.4.5 Finding the midpoint of a segment in space: midpoint

See Section 13.6.9 p.797 for midpoints in the plane.
The midpoint command �nds the midpoint of two points.

• midpoint takes two arguments:
P , Q, two points (which can also be given as a list).

• midpoint(P,Q) draws and returns the midpoint of the segment determined by these points.

Example.

Input:

MP:= midpoint(point(1,4,0),point(1,-2,0)):;

coordinates(MP)

Output:
[1, 1, 0]

14.4.6 Finding the barycenter of a set of points in space: barycenter

See Section 13.6.10 p.797 for barycenters of objects in the plane.
The barycenter command returns and draws the barycenter of a set of weighted points.

• barycenter takes an unspeci�ed number of arguments:
L1, L2, . . . , Ln, a sequence of lists of length two, where each list consists of a point and a weight.
This information can also be given as a matrix with two columns (the �rst column the points and
the second column the weights) or a matrix with two rows and more than two columns.

• barycenter(L1, L2, . . . , Ln) draws and returns the barycenter of the weighted points.

If the sum of the weights is zero, then this command returns an error.
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Examples.

• Input:

BC:= barycenter([point(1,4,0),1],[point(1,-2,0),1])

or:

BC:= barycenter([[point(1,4,0),1],[point(1,-2,0),1]])

then:

coordinates(BC)

Output:

[1, 1, 0]

14.4.7 Finding the isobarycenter of a set of points in space: isobarycenter

See Section 13.6.11 p.798 for isobarycenters of objects in the plane.

The isobarycenter command �nds the isobarycenter of a list of points; the isobarycenter is the
barycenter when all points are equally weighted.

• isobarycenter takes one argument:
L, a list of points. (The points can also be given by a sequence).

• isobarycenter(L) draws and returns the isobarycenter of the points.

Example.

Input:

IB:= isobarycenter(point(1,4,0),point(1,-2,0)):;

coordinates(IB)

Output:

[1, 1, 0]

14.5 Lines in space

14.5.1 Lines and directed lines in space: line

See Section 13.7.1 p.800 for lines in the plane.

The line command returns and draws a directed line. It can take its arguments in di�erent ways.

Two points:

• line can take two arguments:
P,Q, two points (which can also be given as a list).

• line(P,Q) returns and draws the line whose direction is from the P to Q.
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Example.

Input:

line([0,3,0],point(3,0,3))

Output:

A point and a direction vector.

• line can take two arguments:

� P , a point.

� [u1, u2, u3], a direction vector.

• line(P,[u1, u2, u3]) returns and draws the line through the given point with the direction given
by the direction vector.

Example.

Input:

line([0,3,0],[3,0,3])

Output:
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Two planes.

• line can take two arguments:
eqn1,eqn2, the equations of two planes.

• line(eqn1,eqn2) returns and draws the line which is the intersection of the planes.

The direction of this line is given by the cross-product of the normals for the planes. For example, the
intersection of the planes x = y (normal (1,−1, 0)) and y = z (normal (0, 1,−1)) will be (1,−1, 0) ×
(0, 1,−1) = (1, 1, 1).

Example.

Input:

line(x=y, y=z)

Output:
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14.5.2 Half lines in space: half_line

See Section 13.7.2 p.802 for half-lines in the plane.

The half_line command �nds rays.

• half_line take two arguments:
P,Q, two points (which can also be given as a list).

• half_line(P,Q) returns and draws the ray from P through Q

Example.

Input:

half_line(point(0,0,0),point(1,1,1))

Output:

14.5.3 Segments in space: segment

See Section 13.7.3 p.802 for segments in the plane.

The segment command draws line segments.

• segment takes two arguments:
P,Q, two points (which can also be given as a list).

• segment(P,Q) returns the corresponding line segment and draws it.

Example.

Input:

segment(point(0,0,0),point(1,1,1))

Output:
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14.5.4 Vectors in space: vector

See Section 13.7.4 p.803 for vectors in the plane.
The vector command returns and draws vectors. It can takes its arguments in di�erent ways.
The coordinates of the vector.

• vector takes one argument:
L, a list of the coordinates of the vector.

• vector(L) returns and draws the vector with the given coordinates, starting from the origin.

Example.

Input:

vector([1,2,3])

Output:

Two points or a point and a vector.
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• vector takes two arguments:

� P , a point.

� Q, a point or a vector.

• vector(P,Q) returns and draws the corresponding vector. If the arguments are two points, the
vector goes from P to Q. If the arguments are a point and a vector, then the vector starts at P .

Examples.

• Input:

vector(point(-1,0,0),point(0,1,2))

or:

vector([-1,0,0],[0,1,2])

Output:

• Input:

V:= vector([-1,0,0],[0,1,2])

vector(point(-1,2,0),V)

Output:
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14.5.5 Parallel lines and planes in space: parallel

See Section 13.7.5 p.805 for parallel lines in the plane.
The parallel command can take its arguments in di�erent ways. It returns and draws a line or

plane depending on the arguments.
A point and a line.

• parallel takes two arguments:

� P , a point.

� L, a line.

• parallel(P,L)returns and draws the line through P parallel to L.

Example.

Input:

parallel(point(1,1,1),line(point(0,0,0),point(0,0,1)))

Output:
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Two non-parallel lines.

• parallel takes two arguments:
L,M , two lines which aren't parallel.

• parallel(L,M)returns and draws the plane containing L which is parallel to M .

Example.

Input:

parallel(line(point(1,0,0),point(0,1,0)),line(point(0,0,0),point(0,0,1)))

Output:

A point and a plane.

• parallel takes two arguments:

� P , a point.

� PL, a plane.

• parallel(P, PL) returns and draws the plane through P that is parallel to PL.

Example.

Input:

parallel(point(0,0,0),plane(point(1,0,0),point(0,1,0),point(0,0,1)))

Output:
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A point and two non-parallel lines.

• parallel takes three arguments:

� P , a point.

� L,M , two non-parallel lines.

• parallel(P,L,M) returns and draws the plane through P that is parallel to L and M .

Example.

Input:

parallel(point(1,1,1),line(point(0,0,0),point(0,0,1)),line(point(1,0,0),point(0,1,0)))

Output:
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14.5.6 Perpendicular lines and planes in space: perpendicular

See Section 13.7.6 p.805 for perpendicular lines in the plane.
The perpendicular command can take its arguments in di�erent ways. It returns and draws a line

or plane, depending on the arguments.
A point and a line.

• perpendicular takes two arguments:

� P , a point.

� L, a line.

• perpendicular(P,L) returns and draws the line through P that is perpendicular to L.

Example.

Input:

perpendicular(point(0,0,0),line(point(1,0,0),point(0,1,0)))

Output:

A line and a plane.

• perpendicular takes two arguments:

� L, a line.

� P , a plane.

• perpendicular(L,P) returns and draws the plane containing L that is perpendicular to P .

Example.

Input:

perpendicular(line(point(0,0,0),point(1,1,0)),plane(point(1,0,0),

point(0,1,0),point(0,0,1)))

Output:
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14.5.7 Planes orthogonal to lines and lines orthogonal to planes in space: orthogonal

The orthogonal command �nds orthogonal objects. It takes its arguments in di�erent ways, and returns
and draws a line or plane, depending on the arguments.

A point and a line.

• orthogonal takes two arguments:

� P , a point.

� L, a line.

• orthogonal(P,L) returns and draws the plane through P orthogonal to L.

Example.

Input:

orthogonal(point(0,0,0),line(point(1,0,0),point(0,1,0)))

Output:
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A line and a plane.

• orthogonal takes two arguments:

� L, a line.

� P , a plane.

• orthogonal(L,P) returns and draws the plane containing L that is perpendicular to P .

Example.

Input:

perpendicular(line(point(0,0,0),point(1,1,0)),

plane(point(1,0,0),point(0,1,0),point(0,0,1)))

Output:
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14.5.8 Common perpendiculars to lines in space: common_perpendicular

The common_perpendicular command �nds the common perpendicular to two lines.

• common_perpendicular takes two arguments:
L,M , two lines.

• common_perpendicular(L,M) returns and draws the common perpendicular to L and M .

Example.

Input:

L1:= line(point(1,1,0),point(0,1,1)):;

L2:= line(point(0,-1,0),point(1,-1,1)):;

common_perpendicular(L1,L2)

Output:

14.6 Planes in space

See also sections 14.5.6 and 14.5.7 for planes perpendicular and orthogonal to lines and planes.

14.6.1 Planes in space: plane

The plane command draws and returns a plane. It can take its arguments in di�erent ways.

• plane can take three arguments:
P,Q,R, three points.

• plane(P,Q,R) returns and draws the plane through P,Q and R.

• plane can take two arguments:

� P , a point.

� L, a line.
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• plane(P,L) returns and draws the plane through P and L.

• plane can take one argument:
eqn, the equation of a plane.

• plane(eqn) returns and draws the plane with the given equation.

Example.

Input:

plane(point(0,0,5),point(0,5,0),point(0,0,5))

or:

plane(point(0,0,5),line(point(0,5,0),point(0,0,5)))

or:

plane(x + y + z = 5)

Output:

14.6.2 The bisector plane in space: perpen_bisector

See Section 13.7.10 p.808 for perpendicular bisectors in the plane.

The perpen_bisector command �nds the perpendicular bisector plane of a line segment.

• perpen_bisector takes one argument:
seg, a line segment (or the end points of the segment).

• perpen_bisector(seg) returns and draws the perpendicular bisector plane of seg.
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Example.

Input:

perpen_bisector(point(0,0,0),point(4,4,4))

or:

perpen_bisector(segment([0,0,0],[4,4,4])

Output:

14.6.3 Tangent planes in space: tangent

See Section 13.7.7 p.806 for tangents in the plane.
The tangent command �nds tangent planes to surfaces.

• tangent takes two arguments:

� obj, an object in space.

� P , a point in space.
If obj is the graph of a function, then P can be a point in the domain of the function, and
the point on the graph will be used.

or

� e, a point de�ned with element (see Section 13.6.15 p.799) using a curve and parameter
value.

• tangent(objP) returns and draws the plane through P that's perpendicular to obj.

Examples.

• Input:

S: = sphere([0,0,0],3)

tangent(S,[2,2,1])

Output:
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• Input:

G:=plotfunc(x�2 + y�2, [x,y])

tangent(G,[2,2])

Output:

14.7 Triangles in space

14.7.1 Drawing triangles in space: triangle

See Section 13.8.1 p.810 for the triangle command in the plane.
The triangle command creates triangles.

• triangle takes three arguments:
A,B,C, three points.

• triangle(P,Q,R) returns and draws the triangle with vertices A,B and C.
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Example.

Input:

A:= point(0,0,0); B:= point(3,3,3); C:= point(0,3,0)

triangle(A,B,C)

Output:

14.7.2 Isosceles triangles in space: isosceles_triangle

See Section 13.8.2 p.811 for isosceles triangles in the plane.

The isosceles_triangle command returns and draws an isosceles triangle. It can take its argu-
ments in di�erent ways.

Three points.

• isosceles_triangle takes three mandatory arguments and one optional argument:

� A,B, P , three points.

� Optionally, var, a variable name.

• isosceles_triangle(A,B, P 〈,var〉) returns and draws the isosceles triangle ABC in the plane
ABP , oriented so that angle BAC is positive and the equal interior angles of the isosceles triangle
are determined by angle ABP .
If the variable name var is given, it will be given the value of C, the third vertex of the triangle.

Example.

Input:

A:= point(0,0,0); B:= point(3,3,3); P:= point(0,0,3)

isosceles_triangle(A,B,P);

Output:
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Three points and a real number.

• isosceles_triangle takes three mandatory arguments and one optional argument:

� A,B, two points.

� [P, c], a list consisting of a point R and a real number c.

� Optionally, var, a variable name.

• isosceles_triangle(A,B, [P, c] 〈,var〉) returns and draws the triangle ABC in plane ABP , ori-
ented so that angle BAC is positive. The measure of the equal interior angles is c.
If the variable name var is given, it will be given the value of the third vertex of the triangle.

Examples.

• Input:

A:= point(0,0,0); B:= point(3,3,3); P:= point(0,0,3)

isosceles_triangle(A,B,[P,3*pi/4])

Output:
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• Input:

A:= point(0,0,0); B:= point(3,3,3); P:= point(0,0,3)

isosceles_triangle(A,B,[P,3*pi/4],C)

coordinates(C)

Output: [
−3
√

2− 3

2
,
−3
√

2− 3

2
,
−3
√

2 + 6

2

]

14.7.3 Right triangles in space: right_triangle

See Section 13.8.3 p.812 for right triangles in the plane.

The right_triangle command returns and draws a right triangle. It can take its arguments in
di�erent ways.

Three points.

• right_triangle takes three mandatory arguments and one optional argument:

� A,B, P , three points.

� Optionally, var, a variable name.

� right_triangle(A,B, P 〈,var〉) returns and draws the right triangle BAC in plane ABP
with the right angle at vertex A. The triangle is oriented so that the angle BAC is positive.
The length of AC equals the length of AP .
If the variable name var is given, it will be assigned to the vertex C.

Example.

Input:

A:= point(0,0,0); B:= point(3,3,3);

P:= point(0,0,3)

right_triangle(A,B,P);
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Output:

Three points and a real number.

� right_triangle takes mandatory three arguments and one optional argument:

∗ A,B, two points.

∗ [P, k], a list consisting of a point P and a real number k.

∗ Optionally, var, a variable name.

� right_triangle(A,B, [P, k] 〈,var〉) returns and draws the right triangle BAC in plane ABP
with the right angle at vertex A, and the length of AC equals |k| times the length of AP .
Angles BAC and BAP have the same orientation if k is positive; they have opposite orien-
tation if k is negative. So, if β is the angle ABC, then tan(β) = k.
If the variable name var is given, it will be assigned to the vertex C.

Examples.

� Input:

right_triangle(A,B,[P,2])

Output:
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� Input:

right_triangle(A,B,[P,-2])

Output:

� Input:

right_triangle(A,B,[P,2],C)

coordinates(C)

Output: [
−3
√

2,−3
√

2, 6
√

2
]

14.7.4 Equilateral triangles in space: equilateral_triangle

See Section 13.8.4 p.813 for equilateral triangles in the plane.

The equilateral_triangle command returns and draws equilateral triangles.
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� equilateral_triangle takes three mandatory arguments and one optional argument:

∗ A,B, P , three points.
∗ Optionally, var, a variable name.

� equilateral_triangle(A,B, P 〈,var〉) returns and draws equilateral triangle ABC, where C
and P are on the same side of line AB in plane ABP .
If the argument var is given, it will be assigned the value of C.

Examples.

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3)

equilateral_triangle(A,B,P)

Output:

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3)

equilateral_triangle(A,B,P,C)

simplify(coordinates(C))

Output: [
−3
√

6 + 6

4
,
−3
√

6 + 6

4
,
3
√

6 + 3

2

]

14.8 Quadrilaterals in space

See Section 13.9 p.814 for quadrilaterals in the plane.
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14.8.1 Squares in space: square

See Section 13.9.1 p.815 for squares in the plane.

The square command creates squares.

� square takes three mandatory arguments and two optional arguments:

∗ A,B, P , three points.
∗ Optionally, var1,var2, two variable names.

� square(A,B, P 〈,var1,var2 〉) returns and draws the square with one side AB and the re-
maining sides in the same half-plane as P .
If the arguments var1 and var2 are given, they will be assigned to the new vertices.

Examples.

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3);

square(A,B,P)

Output:

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3);

square(A,B,P,C,D)

coordinates(C), coordinates(D)

Output: [
−3
√

2 + 6

2
,
−3
√

2 + 6

2
, 3
√

2 + 3

]
,

[
−3

2

√
2,−3

2

√
2, 3
√

2

]
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14.8.2 Rhombuses in space: rhombus

See Section 13.9.2 p.816 for rhombuses in the plane.

The rhombus command returns and draws a rhombus. It takes it arguments in di�erent ways.

Three points:

� rhombus takes three mandatory arguments and two optional arguments:

∗ A,B, P , three points.
∗ Optionally, var1,var2, two variable names.

� rhombus(A,B, P 〈var1,var2 〉) returns and draws the rhombus ABCD, which is in the plane
ABP , oriented so that angle BAP is positive, and D is on the ray AP .
If the arguments var1 and var2 are given, they will be assigned to the vertices C and D.

Example.

Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3)

rhombus(A,B,P)

Output:

Three points and a real number.

� rhombus takes three mandatory arguments and two optional argument:

∗ A,B, two points.

∗ [P, a], a list consisting of a point P and a real number a.

∗ Optionally, var1,var2, two variable names.

� rhombus(A,B, [P, a] 〈var1,var2 〉) returns and draws the rhombus ABCD, which is in the
plane ABP , oriented so that angle BAP is positive, and angle BAD equals a.
If the arguments var1 and var2 are given, they will be assigned to the vertices C and D.
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Examples.

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3)

rhombus(A,B,[P,pi/3])

Output:

� Input:

rhombus(A,B,[P,pi/3],C,D)

simplify(coordinates(C)), simplify(coordinates(D))

Output: [
−3
√

6 + 18

4
,
−3
√

6 + 18

4
,
3
√

6 + 9

2

]
,

[
−3
√

6 + 6

4
,
−3
√

6 + 6

4
,
3
√

6 + 3

2

]

14.8.3 Rectangles in space: rectangle

See Section 13.9.3 p.817 for rectangles in the plane.

The rectangle command returns and draws a rectangle. It can take its arguments in di�erent
ways.

Three points.

� rectangle takes three mandatory arguments and two optional arguments:

∗ A,B, P , three points.
∗ Optionally, var1,var2, two variable names.

� rectangle(A,B, P 〈var1,var2 〉) returns and draws the rectangle ABCD, in the plane ABP ,
oriented to that angle BAP is positive, and with the length of side AD equals AP .
If the arguments var1 and var2 are given, they will be assigned to the vertices C and D.
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Example.

Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3)

rectangle(A,B,P)

Output:

Three points and a real number.

� rectangle takes three mandatory arguments and two optional argument:

∗ A,B, two points.

∗ [P, k], a list consisting of a point P and a real number k.

∗ Optionally, var1,var2, two variable names.

� rectangle(A,B, [P, k] 〈var1,var2 〉) returns and draws the rectangle ABCD, which is in the
plane ABP , and with the length of AD equal to |k| times the length of AB. Angle BAD
and angle BAP have the same orientation if k is positive and opposite orientation if k is
negative.
If the arguments var1 and var2 are given, they will be assigned to the vertices C and D.

Examples.

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3)

rectangle(A,B,[P,1/2])

Output:
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� Input:

rectangle(A,B,P,C,D)

simplify(coordinates(C)), simplify(coordinates(D))

Output: [
−
√

6

2
,−
√

6

2
,
√

6

]
,

[
−
√

6 + 6

2
,
−
√

6 + 6

2
,
√

6 + 3

]

14.8.4 Parallelograms in space: parallelogram

See Section 13.9.4 p.818 for parallelograms in the plane.

The parallelogram command creates parallelograms in space.

� parallelogram takes three mandatory arguments and one optional argument:

∗ A,B,C, three points.
∗ var, a variable name.

� parallelogram(A,B,C 〈,var〉) returns and draws the parallelogram ABCD determined by
A,B and C.
If the option var is given, the point D will be assigned to it.

Examples.

� Input

A:= point(0,0,0);

B:= point(3,3,3);

C:= point(0,0,3)

parallelogram(A,B,C)

Output:
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� Input:

parallelogram(A,B,C,D)

coordinates(D)

Output:
[−3,−3, 0]

14.8.5 Arbitrary quadrilaterals in space: quadrilateral

See Section 13.9.5 p.819 for quadrilaterals in the plane.

The quadrilateral command creates arbitrary quadrilaterals.

� quadrilateral takes four arguments:
A,B,C,D, four points.

� quadrilateral(A,B,C,D) returns and draws quadrilateral ABCD.

Example.

Input:

quadrilateral(point(0,0,0),point(0,1,0),point(0,2,2),point(1,0,2))

Output:

14.9 Polygons in space

See Section 13.10 p.820 for polygons in the plane.
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14.9.1 Hexagons in space: hexagon

See Section 13.10.1 p.820 for hexagons in the plane.

The hexagon command creates hexagons in space.

� hexagon takes three mandatory arguments and four optional arguments:

∗ A,B, P , four points.
∗ Optionally, var1,var2,var3,var4, four variable names.

� hexagon(A,B, P 〈,var1,var2,var3,var4 〉) returns and draws the regular hexagon ABCDEF
in the plane ABP , oriented so that angle ABC is positive.

Examples.

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3);

hexagon(A,B,P)

Output:

� Input:

hexagon(A,B,P,C,D,E,F)

simplify(coordinates(C))

Output: [
−3
√

6 + 18

4
,
−3
√

6 + 18

4
,
3
√

6 + 9

2

]

14.9.2 Regular polygons in space: isopolygon

See Section 13.10.2 p.821 for regular polygons in the plane.

The isopolygon command creates regular polygons in space.

� isopolygon takes four arguments:
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∗ A,B, P , three points.

∗ k, an integer.

� isopolygon(A,B, P, k) returns and draws a regular polygon with one edge AB in the plane
ABP with |k| sides. If |k| is positive, then the polygon is positively oriented, otherwise it is
negatively oriented.

Examples.

� Input:

A:= point(0,0,0);

B:= point(3,3,3);

P:= point(0,0,3);

isopolygon(A,B,P,5)

Output:

� Input:

isopolygon(A,B,P,-5)

Output:
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14.9.3 General polygons in space: polygon

See Section 13.10.3 p.822 for general polygons in the plane.

The polygon command creates general polygons in space.

� polygon takes one argument:
S, a sequence of points.

� polygon(S)returns and draws the polygon whose vertices are the given points.

Example.

Input:

A:= point(0,0,0);

B:= point(3,3,3);

C:= point(0,0,3);

D:= point(-3,-3,0);

E:= point(-3,-3,-3)

polygon(A,B,C,D,E)

Output:
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14.9.4 Polygonal lines in space: open_polygon

See Section 13.10.4 p.823 for polygonal lines in the plane.

The open_polygon command creates polygonal lines in space.

� open_polygon takes one argument:
S, a sequence of points.

� open_polygon(S)returns and draws the polygon line whose vertices are the given points.

Example.

Input:

open_polygon(point(0,0,0),point(0,1,0),point(0,2,2),point(1,0,2))

Output:



924 CHAPTER 14. THREE-DIMENSIONAL GRAPHICS

14.10 Circles in space: circle

See Section 13.11.1 p.825 for circles in the plane.

The circle command returns and draws a circle. It can take its arguments in various ways.

Three points.

� circle takes three arguments:
A,B,C, three points.

� circle(A,B,C) returns and draws the circle in plane ABC with a diameter AB.

Example.

Input:

circle(point(0,0,1),point(0,1,0),point(0,2,2))

Output:

Two points and a vector.

� circle takes three points:

∗ C, a point (which can be given by its coordinates).

∗ v, a vector.

∗ A, a point (which can be given by its coordinates).

� circle(C, v,A) returns and draws the circle in plane C(C+v)C with center C and containing
C + v.

Example.

Input:

circle(point(0,0,1),vector(0,1,0),point(0,2,2))
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Output:

14.11 Conics in space

14.11.1 Ellipses in space: ellipse

See Section 13.12.1 p.831 for ellipses in the plane.

The ellipse command creates ellipses in space.

� ellipse takes three arguments:
A,B,C three non-collinear points.

� ellipse(A,B,C) returns and draws the ellipse with foci A and B passing through C.

Example.

Input:

ellipse(point(-1,0,0),point(1,0,0),point(1,1,1))

Output:
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14.11.2 Hyperbolas in space: hyperbola

See Section 13.12.2 p.833 for hyperbolas in the plane.

The hyperbola command creates hyperbolas in space.

� hyperbola takes three arguments:
A,B,C three non-collinear points.

� hyperbola(A,B,C) returns and draws the hyperbola with foci A and B passing through C.

Example.

Input:

hyperbola(point(-1,0,0),point(1,0,0),point(1,1,1))

Output:
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14.11.3 Parabolas in space: parabola

See Section 13.12.3 p.834 for parabolas in the plane.

The parabola command creates parabolas in space.

� parabola takes three arguments:
A,B,C three non-collinear points.

� parabola(A,B,C) returns and draws the parabola in plane ABC with focus A and vertex
B.

Example.

Input:

parabola(point(0,0,0),point(-1,0,0),point(1,1,1))

Output:
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14.12 Three-dimensional coordinates

14.12.1 The abscissa of a three-dimensional point: abscissa

See Section 13.13.2 p.837 for abscissas in two-dimensional geometry.

The abscissa command �nds the abscissa (x-coordinate) of a point.

� abscissa takes one argument:
P , a point.

� abscissa(P) returns the abscissa of P .

Example.

Input:

abscissa(point(1,2,3))

Output:

1

14.12.2 The ordinate of a three-dimensional point: ordinate

See Section 13.13.3 p.837 for ordinates in two-dimensional geometry.

The ordinate command �nds the ordinate (y-coordinate) of a point.

� ordinate takes one argument:
P , a point.

� ordinate(P) returns the ordinate of P .
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Example.

Input:

ordinate(point(1,2,3))

Output:
2

14.12.3 The cote of a three-dimensional point: cote

The cote command �nds the cote (z-coordinate) of a point.

� cote takes one argument:
P , a point.

� cote(P) returns the cote of P .

Example.

Input:

cote(point(1,2,3))

Output:
3

14.12.4 The coordinates of a point, vector or line in space: coordinates

See Section 13.13.4 p.838 for coordinates in two-dimensional geometry.

The coordinates command takes �nds the coordinates of a point.

� coordinates takes one argument:
P , which can be a point (or a sequence or list of points), a vector, or a line.

� If P is a point, then coordinates(P) returns a list consisting of the abscissa, ordinate and
cote. If P is a list or sequence of points, then the command returns a list or sequence of such
lists.

� If P is a vector, for example from A to B, then coordinates(P) returns a list of the
coordinates of B −A.

� If P is a line, then coordinates(P) returns a list of two points on the line, in the order
determined by the direction of the line.

Examples.

� Input:

coordinates(point(1,2,3))

Output:
[1, 2, 3]

� Input:

coordinates(point(0,1,2),point(1,2,4))
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Output:
[0, 1, 2] , [1, 2, 4]

� Note that if the argument is a list of real numbers, it is interpreted as a list of points on the
real axis of the plane.
Input:

coordinates([1,2,4])

Output:  1 0
2 0
4 0


� Input:

coordinates(vector(point(1,2,3),point(2,4,7)))

Output:
[1, 2, 4]

� Input:

coordinates(line(point(-1,1,0),point(1,2,3)))

Output:
[[−1, 1, 0] , [1, 2, 3]]

� Input:

coordinates(line(x-2*y+3=0, 6*x + 3*y - 5*z + 3 = 0))

Output:
[[−1, 1, 0] , [9, 6, 15]]

14.12.5 The Cartesian equation of an object in space: equation

See Section 13.13.7 p.841 for Cartesian equations of two-dimensional objects.

The equation command �nds equations for geometric objects.

� equation takes one argument:
G, a geometric object.

� equation(G) returns Cartesian equations in x, y and z which specify the object G.
The variables x, y and zmust be unassigned. If they have assignments, they can be unassigned
with purge(x,y,z).

Examples.

� Input:

equation(line(point(0,1,0),point(1,2,3)))

Output:
x− y + 1 = 0, 3x+ 3y − 2z − 3 = 0

� Input:

equation(sphere(point(0,1,0),2))

Output:
x2 + y2 − 2y + z2 − 3 = 0
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14.12.6 The parametric equation of an object in space: parameq

See Section 13.13.8 p.841 for parametric equations in two-dimensional geometry.

The parameq command �nds parameterizations for geometric objects.

� parameq takes one argument:
G, a geometric object.

� parameq(G) returns a parameterization for the object G.
For a curve, the parameter is t, for a surface, the parameters are u and v. These variables
must be unassigned. If they have assignments, they can be unassigned with purge(t) and
purge(u,v).

Examples.

� Input:

parameq(line(point(0,1,0),point(1,2,3)))

Output:
[t, t+ 1, 3t]

� Input:

parameq(sphere(point(0,1,0),2))

Output:
[2 cosu · cos v, 1 + 2 cosu · sin v, 2 sinu]

� Input:

normal(parameq(ellipse(point(-1,1,1),point(1,1,1),point(0,1,2))))

Output: [√
2 cos t, 1, sin t+ 1

]
14.12.7 The length of a segment in space: distance

See Section 13.14.2 p.844 for distances in two-dimensional geometry.

The distance command �nds the distance between two points.

� distance takes two arguments:
P,Q, two points or two lists with the coordinates of the points.

� distance(P,Q) returns the distance between P and Q.

Example.

Input:

distance(point(-1,1,1),point(1,1,1))

or:

distance([-1,1,1],[1,1,1])

Output:
2
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14.12.8 The length squared of a segment in space: distance2

See Section 13.14.3 p.845 for squares of lengths in two-dimensional geometry.

The distance2 command �nds the square of the distance between two points.

� distance2 takes two arguments:
P,Q, two points or two lists with the coordinates of the points.

� distance2(P,Q) returns the square of the distance between P and Q.

Example.

Input:

distance2(point(-1,1,1),point(1,1,1))

or:

distance2([-1,1,1],[1,1,1])

Output:

4

14.12.9 The measure of an angle in space: angle

See Section 13.14.4 p.845 for angle measures in two-dimensional geometry.

The angle command �nds the measures of angles in space. It can take its arguments in di�erent
ways.

Three points.

� angle takes three arguments:
A,B,C, three points.

� angle(A,B,C) returns the measure of the undirected angle BAC.

Example.

Input:

angle(point(0,0,0),point(1,0,0),point(0,0,1))

Output:
1

2
π

Two intersecting lines.

� angle takes two arguments:
L,M , two lines which intersect.

� angle(L,M) returns the measure of the angle between the lines L and M .
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Example.

Input:

angle(line([0,0,0],[1,1,0]),line([0,0,0],[1,1,1]))

Output:

arccos

(√
6

3

)
A line and a plane.

� angle takes two arguments:

∗ L, a line.

∗ P , a plane.

� angle(L,P) returns the measure of the angle between L and P .

Example.

Input:

angle(line([0,0,0],[1,1,0]),plane(x+y+z=0))

Output:

arccos

(√
6

3

)

14.13 Properties

14.13.1 Checking if an object in space is on another object: is_element

See Section 13.16.1 p.862 for checking elements in two-dimensional geometry.

The is_element command determines whether or not a geometric object is contained in another.

� is_element takes two arguments:
G,H, two geometric objects.

• is_element(G,H) returns 1 if G is contained in H and returns 0 otherwise.

Examples.

• Input:

P:= plane([0,0,0],[1,2,-3],[1,1,-2])

is_element(point(2,3,-5),P)

Output:
1

• Input:

L:= line([2,3,-2],[-1,-1,-1]);

P:= plane([-1,-1,-1],[1,2,-3],[1,1,-2]);

is_element(L,P)

Output:
0
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14.13.2 Checking if points and/or lines in space are coplanar: is_coplanar

The is_coplanar command determines whether or not several points or several lines are coplanar.

• is_coplanar takes one argument:
S, a sequence where each element is a point or a line.

• is_coplanar(S) returns 1 is the elements of S are coplanar and returns 0 otherwise.

Examples.

• Input:

is_coplanar([0,0,0],[1,2,-3],[1,1,-2],[2,1,-3])

Output:

1

• Input:

is_coplanar([-1,2,0],[1,2,-3],[1,1,-2],[2,1,-3])

Output:

0

• Input:

is_coplanar([0,0,0],[1,2,-3],line([1,1,-2],[2,1,-3]))

Output:

1

• Input:

is_coplanar(line([-1,2,0],[1,2,-3]),line([1,1,-2],[2,1,-3]))

Output:

0

14.13.3 Checking if lines and/or planes in space are parallel: is_parallel

See Section 13.16.11 p.869 for checking for parallels in two-dimensional geometry.

The is_parallel command determines if two objects are parallel.

• is_parallel takes two arguments:
L,P , each one either a line or a plane.

• is_parallel(L,P) returns 1 if L and P are parallel and returns 0 otherwise.
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Examples.

• Input:

L1:= line([0,0,0],[-1,-1,-1])

L2:= line([2,3,-2],[-1,-1,-1])

is_parallel(L1,L2)

Output:

0

• Input:

P:= plane([-1,-1,-1],[1,2,-3],[0,0,0])

is_parallel(P,L2)

Output:

1

• Input:

P1:= plane([0,0,0],[1,2,-3],[1,1,-2])

P2:= plane([1,1,0],[2,3,-3],[2,2,-2])

is_parallel(P1,P2)

Output:

1

14.13.4 Checking if lines and/or planes in space are perpendicular: is_perpendicular

See Section 13.16.12 p.870 for checking for perpendicularity in two-dimensional geometry.

The is_perpendicular command determines if two objects are perpendicular.

• is_perpendicular takes two arguments:
L,P , each one either a line or a plane.

• is_perpendicular(L,P) returns 1 if L and P are perpendicular and returns 0 otherwise.

Note that two lines must be coplanar to be perpendicular.

Examples.

• Input:

is_perpendicular(line([2,3,-2],[-1,-1,-1]),line([1,0,0],[1,2,8]))

Output:

0

• Input:

P1:= plane([0,0,0],[1,2,-3],[1,1,-2])

P2:= plane([-1,-1,-1],1,2,-3],[0,0,0])

is_perpendicular(P1,P2)
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Output:

1

• Input:

L:= plane([2,3,-2],[-1,-1,-1])

is_perpendicular(L,P1)

Output:

0

14.13.5 Checking if two lines or two spheres in space are orthogonal: is_orthogonal

See Section 13.16.13 p.870 for checking for orthogonality in two-dimensional geometry.

The is_orthogonal command determines whether or not two objects are orthogonal.

• is_orthogonal takes two arguments:
L,P , which can be two lines, two spheres, two planes or a line and a plane.

• is_orthogonal(L,P) returns 1 is the objects are orthogonal; it returns 0 otherwise.

Examples.

• Input:

is_orthogonal(line([2,3,-2],[-1,-1,-1]),line([1,0,0],[1,2,8]))

Output:

1

• Input:

is_orthogonal(line([2,3,-2],[-1,-1,-1]),plane([-1,-1,-1],[-1,0,3],[-2,0,0]))

Output:

1

• Input:

is_orthogonal(plane([0,0,0],[1,2,-3],[1,1,-2]),

plane([-1,-1,-1],[1,2,-3],[0,0,0]))

Output:

1

• Input:

is_orthogonal(sphere([0,0,0],sqrt(2)),sphere([2,0,0],sqrt(2)))

Output:

1
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14.13.6 Checking if points in space are collinear: is_collinear

See Section 13.16.2 p.862 for checking for collinearity in two-dimensional geometry.

The is_collinear command determines whether or not points in space are collinear.

• is_collinear takes one argument:
L, a list or sequence of points.

• is_collinear(L) returns 1 if the points in L are collinear, it returns 0 otherwise.

Examples.

• Input:

is_collinear([2,0,0],[0,2,0],[1,1,0])

Output:

1

• Input:

is_collinear([2,0,0],[0,2,0],[0,1,1])

Output:

0

14.13.7 Checking if points in space are concyclic: is_concyclic

See Section 13.16.3 p.863 for checking for concyclicity in two-dimensional geometry.

The is_concyclic command determines whether or not points are cyclic.

• is_concyclic takes one argument:
L, a list or sequence of points.

• is_concyclic(L) returns 1 if the points in L all lie on the same circle, and returns 0 otherwise.

Examples.

• Input:

is_concyclic([2,0,0],[0,2,0],[sqrt(2),sqrt(2),0],

[0,0,2],[2/sqrt(3),2/sqrt(3),2/sqrt(3)])

Output:

1

• Input:

is_concyclic([2,0,0],[0,2,0],[1,1,0],[0,0,2],[1,1,1])

Output:

0
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14.13.8 Checking if points in space are cospherical: is_cospherical

The is_cospherical command determines whether or not points are cospherical.

• is_cospherical takes one argument:
L, a list or sequence of points.

• is_cospherical(L) returns 1 if the points in L all lie on the same sphere, and returns 0 otherwise.

Examples.

• Input:

is_cospherical([2,0,0],[0,2,0],[sqrt(2),sqrt(2),0],

[0,0,2],[2/sqrt(3),2/sqrt(3),2/sqrt(3)])

Output:
1

• Input:

is_cospherical([2,0,0],[0,2,0],[1,1,0],[0,0,2],[1,1,1])

Output:
0

14.13.9 Checking if an object in space is an equilateral triangle: is_equilateral

See Section 13.16.5 p.864 for checking for equilateral triangles in two-dimensional geometry.
The is_equilateral command determines whether or not a geometric object is an equilateral

triangle.

• is_equilateral takes one argument:
G, a geometric object or a sequence of three points assumed to be the vertices of a triangle.

• is_equilateral(G) returns 1 if the object is an equilateral triangle and returns 0 otherwise.

Examples.

• Input:

is_equilateral([2,0,0],[0,0,0],[1,sqrt(3),0])

Output:
1

• Input:

T:= triangle_equilateral([2,0,0],[0,0,0],[1,sqrt(3),0])

is_equilateral(T)

Output:
1

• Input:

is_equilateral([2,0,0],[0,2,0],[1,1,0])

Output:
0
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14.13.10 Checking if an object in space is an isosceles triangle: is_isosceles

See Section 13.16.6 p.865 for checking for isosceles triangles in two-dimensional geometry.

The is_isosceles command determines whether or not a geometric object is an isoceles triangle.

• is_isosceles takes one argument:
G, a geometric object or a sequence of three points assumed to be the vertices of a triangle.

• is_isosceles(G) returns 1, 2 or 3 if the object is an isoceles triangle (the number indicates
which vertex is on two equal sides), returns 4 if the object is an equilateral triangle, and returns
0 otherwise.

Examples.

• Input:

is_isosceles([2,0,0],[0,0,0],[0,2,0])

Output:

2

• Input:

T:= triangle_isosceles([0,0,0],[2,2,0],[2,2,2])

is_isosceles(T)

Output:

1

• Input:

is_isosceles([1,1,0],[-1,1,0],[-1,0,0])

Output:

0

14.13.11 Checking if an object in space is a right triangle or a rectangle: is_rectangle

See Section 13.16.7 p.866 for checking for right triangles and rectangles in two-dimensional geometry.

The is_rectangle command determines whether or not a geometric object is an rectangle or a right
triangle.

• is_rectangle takes one argument:
G, a geometric object or a sequence of three or four points assumed to be the vertices of a triangle
or a quadrilateral.

• is_rectangle(G) returns:

� (for triangle G) 1, 2 or 3 if G is a right triangle (the number indicates which vertex is has the
right angle).

� (for quadrilaterals G) 1 if G is a rectangle but not a square.

� (for quadrilaterals G) 2 if G is square.

� 0 otherwise.
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Examples.

• Input:

is_rectangle([2,0,0],[2,2,0],[0,2,0])

Output:
2

• Input:

is_rectangle([2,2,0],[-2,2,0],[-2,-1,0],[2,-1,0])

Output:
1

14.13.12 Checking if an object in space is a square: is_square

See Section 13.16.8 p.867 for checking for squares in two-dimensional geometry.
The is_square command determines whether or not a geometric object is a square.

• is_square takes one argument:
G, a geometric object or a sequence of four points assumed to be the vertices of a quadrilateral.

• is_square(G) returns 1 if the object is a square and returns 0 otherwise.

Examples.

• Input:

is_square([2,2,0],[-2,2,0],[-2,-2,0],[2,-2,0])

Output:
1

• Input:

S:= square([0,0,0],[2,0,0],[0,0,1])

is_square(S)

Output:
1

• Input:

is_square([2,2,0],[-2,2,0],[-2,-1,0],[2,-1,0])

Output:
0

14.13.13 Checking if an object in space is a rhombus: is_rhombus

See Section 13.16.9 p.868 for checking for rhombuses in two-dimensional geometry.
The is_rhombus command determines whether or not a geometric object is a rhombus.

• is_rhombus takes one argument:
G, a geometric object or a sequence of four points assumed to be the vertices of a quadrilateral.

• is_square(G) returns 1 if G is a rhombus but not a square, returns 2 if G is a square and returns
0 otherwise.
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Examples.

• Input:

is_rhombus([2,0,0],[0,1,0],[-2,0,0],[0,-1,0])

Output:
1

• Input:

R:= rhombus([0,0,0],[2,0,0],[[0,0,1],pi/4])

is_rhombus(S)

Output:
1

• Input:

is_rhombus([2,2,0],[-2,2,0],[-2,-1,0],[2,-1,0])

Output:
0

14.13.14 Checking if an object in space is a parallelogram: is_parallelogram

See Section 13.16.10 p.868 for checking for parallelograms in two-dimensional geometry.
The is_parallelogram command determines whether or not an object is a parallelogram.

• is_parallelogram takes one argument:
G, a geometric object or a sequence of four points assumed to be the vertices of a quadrilateral.

• is_parallelogram(G) returns 1 if G is a parallelogram, but not a rhombus or a rectangle, returns
2 if G is a rhombus but not a rectangle, returns 3 if G is a rectangle but not a square, returns 4
is G is a square, and returns 0 otherwise.

Examples.

• Input:

is_parallelogram([0,0,0],[2,0,0],[3,1,0],[1,1,0])

Output:
1

• Input:

is_parallelogram([-1,0,0],[0,1,0],[2,0,0],[0,-1,0])

Output:
0

• Input:

P:= parallelogram([0,0,0],[2,0,0],[1,1,0])

is_parallelogram(P)
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Output:

1

• Note that
Input:

P:= parallelogram([0,0,0],[2,0,0],[1,1,0],D)

de�nes P to be a list consisting of the parallelogram and the point D; to test if the object is a
parallelogram, the �rst component of P needs to be tested.
Input:

is_parallelogram(P[0])

Output:

1

• Input:

is_parallelogram([-1,0,0],[0,1,0],[2,0,0],[0,-1,0])

Output:

0

14.14 Transformations in space

14.14.1 General remarks

The transformations in this section operate on any geometric object. They take as arguments parameters
to specify the transformation. They can optionally take a geometric object as the last argument, in
which case the transformed object is returned. Without the geometric object as an argument, these
transformations will return a new command which performs the transformation. For example, to move
an object P 3 units up, either

translation([0,0,3],P)

or

t:= translation([0,0,3])

t(P)

works.

14.14.2 Translation in space: translation

See Section 13.15.2 p.852 for translations in the plane.
The translation command creates a translation.

• translation takes one mandatory argument and one optional argument:

� v, the translation vector, which can be given as a vector or a list of coordinates.

� Optionally, G, a geometric object.

• translation(v) returns a new command which translates by v.

• translation(v,G) returns and draws the translation G by the vector v.
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Examples.

• Input:

t:= translation([1,1,1])

S:= sphere([0,0,0],0.5)

color(S,blue),t(S)

Output:

• Input:

translation([1,1,1],S)

Output:

14.14.3 Re�ection in space with respect to a plane, line or point: reflection
symmetry

See Section 13.15.3 p.853 for re�ections in the plane.
The reflection command creates a re�ection.

• reflection takes one mandatory argument and one optional argument:
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� P , a point, line or plane.

� Optionally, G, a geometric object.

• reflection(P) returns a new command which re�ects about P .

• reflection(P,G) returns and draws the re�ection of G about P .

Examples.

• Input:

S:=sphere([0,0,0],0.5)

r:= reflection([1,1,1])

color(S,blue),r(S)

Output:

• Input:

reflection(line([1,1,0],[-1,-3,0]),point(-1,2,4))

Output:
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14.14.4 Rotation in space: rotation

See Section 13.15.4 p.854 for rotations in the plane.

The rotation command creates a rotation.

• rotation takes two mandatory arguments and one optional argument:

� L, a line (to rotate about).

� θ, the angle of rotation.

� Optionally, G, a geometric object.

• rotation(L, θ) returns a new command which rotations about L through an angle of θ.

• reflection(L, θ,G) returns and draws the rotation of G about L through an angle of θ.

Examples.

• Input:

S:= sphere([1,0,0],0.5) r:= rotation(line(point(0,0,0),point(0,0,1)), 2*pi/3)

color(S,blue),r(S)

Output:

• Input:

rotation(line(point(0,0,0),point(0,0,1)), 2*pi/3,S)

Output:



946 CHAPTER 14. THREE-DIMENSIONAL GRAPHICS

14.14.5 Homothety in space: homothety

See Section 13.15.5 p.855 for homotheties in the plane.

A homothety is a dilation about a given point. The homothety command creates a homothety.

• homothety takes two mandatory arguments and one optional argument:

� P , a point (the center of the homothety).

� r, a number (the scaling ratio).

� Optionally, G, a geometric object.

• homothety(P, r) returns a new command which dilates about P by a factor of r. If r is complex,
this will rotate as well as scale.

• homothety(P, r,G) returns and draws the dilation of G about P by a factor or r.

Examples.

• Input:

h:= homothety(point(0,0,0), 2) S:=sphere([0,0,0],0.5) color(S,blue),h(S)

Output:
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• Input:

homothety(point(0,0,0), 2, S)

Output:

14.14.6 Similarity in space: similarity

See Section 13.15.6 p.857 for similarities in the plane.
The similarity command creates a command to rotate and scale about a given line.

• similarity takes three mandatory arguments and one optional argument:

� L, a line (the axis of the rotation).

� r, a real number (the scaling ratio).

� θ, a real number (the angle of rotation).

� Optionally, G, a geometric object.

• similarity(L, r, θ) returns a new command which rotates about L through an angle of θ and
scales about L by a factor of r. If r is negative, the direction of rotation is reversed.

• similarity(L, r, θ,G) returns and draws the transformation of G.
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Examples.

• Input:

S:=sphere([0,0,0],0.5)

s:= similarity(line(point(0,1,0),point(0,1,1)), 2, 2*pi/3)

color(S,blue),s(S)

Output:

• Input:

similarity(line(point(0,1,0),point(1,1,1)), 2, 2*pi/3, S))

Output:

14.14.7 Inversion in space: inversion

See Section 13.15.7 p.859 for inversions in the plane.
Given a point P and a real number k, the corresponding inversion of a point A is the point A′ on

the ray
−→
PA satisfying PA · PA′ = k2. The inversion command creates inversions.
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• inversion takes two mandatory and one optional argument:

� P , a point.

� k, the inversion ratio.

� Optionally, G, a geometric object.

• inversion(P, k) returns a new command which does an inversion about P with a ratio k.

• inversion(P, k,G) returns and draws the inversion of G.

Examples.

• Input:

S := sphere([0,1,0],0.5)

inver:= inversion(point(0,0,0), 2)

color(S,blue),inver(S)

Output:

• Input:

inversion(point(0,0,0),2,S)

Output:
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14.14.8 Orthogonal projection in space: projection

See Section 13.15.8 p.860 for projections in the plane.

The projection command creates a projection.

• projection takes one mandatory argument and one optional argument:

� O, a geometrix object.

� Optionally, P , a point.

• projection(O) returns a new command which projects points onto O.

• projection(O,P) returns and draws the projection of P onto O.

Examples.

• Input:

P:=point(0,0,1); p1:= projection(line(point(0,0,0), point(1,1,1)))

coordinates(p1(P))

Output: [
1

3
,
1

3
,
1

3

]
which is the projection of (0, 0, 1) onto the line.

• Input:

coordinates(projection(plane(point(1,0,0),point(0,0,0),point(1,1,1)),point(0,0,1)))

Output: [
0,

1

2
,
1

2

]
which is the projection of the point (0, 0, 1) onto the plane.

14.15 Surfaces

14.15.1 Cones: cone

The cone command creates cones.

• cone takes three arguments:

� A, a point.

� v, a direction vector.

� θ, a real number.

• cone(A, v, θ) returns and draws the cone with vertex A, opening in the direction v with an
aperture of 2θ.
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Example.

Input:

cone([0,1,0],[0,0,1],pi/3)

Output:

14.15.2 Half-cones: half_cone

The half_cone command creates half cones.

• half_cone takes three arguments:

� A, a point.

� v, a direction vector.

� θ, a real number.

• half_cone(A, v, θ) returns and draws the half cone with vertex A, opening in the direction v with
an aperture of 2θ.

Example.

Input:

half_cone([0,1,0],[0,0,1],pi/3)

Output:
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14.15.3 Cylinders: cylinder

The cylinder command creates cylinders.

• cylinder takes three arguments:

� A, a point.

� v, a direction vector.

� r, a real number.

• cylinder(A, v, r) returns and draws the cylinder with axis through A in the direction v with a
radius of r. 2θ.

Example.

Input:

cylinder([0,1,0],[0,0,1],3)

Output:

14.15.4 Spheres: sphere

The sphere command creates spheres.

• sphere takes two arguments:
P,R, either two points or a point and a real number.

• sphere(P,R) returns:

� a sphere with diameter PR, if R is a point.

� a sphere with center P and radius R, if R is a number.

Examples.

• Input:

sphere([-2,0,0],[2,0,0])

Output:
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• Input:

sphere([0,0,0],2)

Output:

14.15.5 The graph of a function of two variables: funcplot

The funcplot can draw the graphs of two variable functions (see Section 7.4.2 p.590 for a full descrip-
tion).
plotfunc is a synonym for funcplot.

funcplot can take two arguments, an expression with two variables and a list of the two variables
(possibly with bounds) and it returns and draws the graph of the expression.

Example.

Input:

funcplot(x�2 + y�2, [x,y])
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Output:

14.15.6 The graph of parametric equations in space: paramplot

The paramplot command can draw a parametric surface in R3 (see Section 7.14.2 p.615 for a full
description).

paramplot can take two arguments; a list of three expressions involving two parameters and a list
of the parameters (possibly with bounds), and it returns and draws the parameterized surface.

Example.

Input:

paramplot([u*cos(v),u*sin(v),u],[u,v])

Output:
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14.16 Solids

14.16.1 Cubes: cube

The cube command creates cubes.

• cube takes three arguments:
A,B,C, three points.

• cube(A,B,C) returns and draws the following cube:

� One edge is AB.

� One face is in the plane ABC, on the same side of line AB as is C.

� The cube is on the side of plane ABC that makes the points A, B and C counterclockwise.

Examples.

• Input:

C1:= cube([0,0,0],[0,4,0],[0,0,1])

Output:

Input:

c1,c2,c3,c4,c5,c6,c7,c8:= vertices(C1)

Output:
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Input:

faces(C1)

Output:

[ [[0, 0, 0] , [0, 4, 0] , [0, 4, 4] , [0, 0, 4]] ,

[[4, 0, 0] , [4, 4, 0] , [4, 4, 4] , [4, 0, 4]] ,

[[0, 0, 0] , [4, 0, 0] , [4, 0, 4] , [0, 0, 4]] ,

[[0, 0, 0] , [0, 4, 0] , [4, 4, 0] , [4, 0, 0]] ,

[[0, 4, 0] , [0, 4, 4] , [4, 4, 4] , [4, 4, 0]] ,

[[0, 0, 4] , [4, 0, 4] , [4, 4, 4] , [0, 4, 4]]]

• Input:

C2:= cube([0,0,0],[0,4,0],[0,0,-1])

Output:
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Input:

a1,a2,a3,a4,a5,a6,a7,a8:= vertices(C2)

Output:

14.16.2 Tetrahedrons: tetrahedron pyramid

The tetrahedron creates tetrahedra.
pyramid is a synonym for tetrahedron.

• tetrahedron command takes three or four arguments:

� A,B,C, three points.

� Optionally D, another point.

• tetrahedron(A,B,C) returns and draws the regular tetrahedron given by:

� One edge is AB.

� One face is in the plane ABC, on the same side of line AB as is C.

� The tetrahedron is on the side of plane ABC that makes the points A, B and C counter-
clockwise.

• tetrahedron(A,B,C,D) returns and draws the tetrahedron ABCD.

Examples.

• Input:

tetrahedron([-2,0,0],[2,0,0],[0,2,0])

or:

pyramid([-2,0,0],[2,0,0],[0,2,0])
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Output:

• Input:

tetrahedron([-2,0,0],[2,0,0],[0,2,0],[0,0,2])

Output:

14.16.3 Parallelepipeds: parallelepiped

The parallelepiped command creates parallelepipeds.

• parallelepiped takes four arguments:
A,B,C,D, four points.

• parallelepiped(A,B,C,D) returns and draws the parallelepiped determined by the edges AB,
AC and AD.
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Examples.

• Input:

parallelepiped([0,0,0],[5,0,0],[0,5,0],[0,0,5])

Output:

• Input:

p:= parallelepiped([0,0,0],[5,0,0],[0,3,0],[0,0,2]):;

c1, c2, c3, c4, c5, c6, c7, c8:= vertices(p);

Output:

14.16.4 Prisms: prism

The prism command takes two arguments, a list of coplanar points [A,B,...] and an additional point
A1.
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prism returns and draws the prism whose base is the polygon determined by the points A, B, . . . ,
and with edges parallel to AA1.
Input:

prism([[0,0,0],[5,0,0],[0,5,0],[-5,5,0]],[0,0,5])

Output:

14.16.5 Polyhedra: polyhedron

The polyhedron command takes as argument a sequence of points.
polyhedron returns and draws the convex polygon whose vertices are from the list of points such

that the remaining points are inside or on the surface of the polyhedron.
Input:

polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2])

Output:
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14.16.6 Vertices: vertices

The vertices command takes as argument a polyhedron.

vertices returns and draws a list of the vertices of the polyhedron.
Input:

V:= vertices(polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]))

then:

coordinates(V)

Output:

[[0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]]

14.16.7 Faces: faces

The faces command takes as argument a polyhedron.

faces returns a list of the faces of the polyhedron.
Input:

faces(polyhedron([1,-1,0],[1,1,0],[0,0,2],[0,0,-2],[-1,1,0],[-1,-1,0]))

Output:

[[[1,-1,0],[1,1,0],[0,0,2]],[[1,-1,0],[1,1,0],[0,0,-2]],

[[1,-1,0],[0,0,2],[-1,-1,0]],[[1,-1,0],[0,0,-2],[-1,-1,0]],
[[1,1,0],[0,0,2],[-1,1,0]],[[1,1,0],[0,0,-2],[-1,1,0]],

[[0,0,2],[-1,1,0],[-1,-1,0]],[[0,0,-2],[-1,1,0],[-1,-1,0]]]

14.16.8 Edges: line_segments

The line_segments command takes as argument a polyhedron.

line_segments returns and draws a list of the edges of the polyhedron.
Input:

line_segments(polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]))

Output:

Input:

line_segments(polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]))[1]

Output:
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14.17 Platonic solids

To specify a Platonic solid, Xcas works with the center, a vertex and a third point to specify a plane
of symmetry. To speed up calculations, it may be useful to use approximate calculations, which can be
ensured with the evalf command. For example, instead of:
Input:

centered_cube([0,0,0],[3,2,1],[1,1,0])

it would typically be better to use:
Input:

centered_cube(evalf([0,0,0],[3,2,1],[1,1,0]))

14.17.1 Centered tetrahedra: centered_tetrahedron

The centered_tetrahedron command creates a regular tetrahedron.

• centered_tetrahedron command takes three arguments:
A,B,C, three points.

• centered_tetrahedron(A,B,C) returns and draws the tetrahedron centered at A, with a vertex
at B and another vertex on the plane ABC.

Example.

Input:

centered_tetrahedron([0,0,0],[0,0,6],[0,1,0])

Output:
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14.17.2 Centered cubes: centered_cube

The centered_cube command draws a cube.

• centered_cube takes three arguments:
A,B,C, three points.

• centered_cube(A,B,C) returns and draws the cube centered at A with a vertex at B and plane
of symmetry ABC. This plane of symmetry has an edge of the cube containing B, the other
endpoint of this edge is on the same side of line AB as C.

Examples.

• Input:

centered_cube([0,0,0],[3,3,3],[0,1,0])

Output:

• Input:
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centered_cube([0,0,0],[3,3,3],[0,-1,0])

Output:

Note that there are two cubes centered at A with a vertex at B and with a plane of symmetry ABC.
Each cube has an edge containing B that's contained in plane of symmetry, these edges are on opposite
sides of the line AB. The cube that cube(A,B,C) returns is the cube whose edge is on the same side
of AB as the point C.

14.17.3 Octahedra: octahedron

The octahedron command creates regular octahedra.

• octahedron takes three arguments:
A,B,C, three points.

• octahedron(A,B,C) returns and draws the octahedron centered at A which has a vertex at B
and with four vertices in the plane ABC.

Example.

Input:

octahedron([0,0,0],[0,0,5],[0,1,0])

or:

octahedron([0,0,0],[0,5,0],[0,0,1])

or:

octahedron([0,0,0],[5,0,0],[0,0,1])

Output:
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14.17.4 Dodecahedra: dodecahedron

The dodecahedron command creates a regular dodecahedron.

• dodecahedron takes three arguments:
A,B,C, three points.

• dodecahedron(A,B,C) returns and draws the dodecahedron centered at A with a vertex at B
and with an axis of symmetry in the plane ABC. (Note that each face is a pentagon, but will be
drawn with one of its diagonals and so will show up as a trapezoid and a triangle.)

Examples.

• Input:

dodecahedron([0,0,0],[0,0,5],[0,1,0])

Output:
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• Input:

dodecahedron([0,0,0],[0,2,sqrt(5)/2 + 3/2], [0,0,1])

Output:

14.17.5 Icosahedra: icosahedron

The icosahedron command creates regular icosahedra.

• icosahedron takes three arguments:
A,B,C, three points.

• icosahedron(A,B,C) returns and draws the icosahedron centered at A with a vertex at B and
such that the plane ABC contains one of the vertices closest to B.

Examples.

• Input:

icosahedron([0,0,0],[0,0,5],[0,1,0])

Output:
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• Input:

icosahedron([0,0,0],[0,0,sqrt(5)], [2,1,0])

Output:
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Chapter 15

Multimedia

15.1 Audio Tools

Xcas has commands for working with audio objects. An audio object is a vector consisting of:

• The �rst element is itself a list consisting of:

� The number of channels (generally 1 for mono and 2 for stereo).

� The number of bits (generally 16).

� The sampling frequency (44100 for a CD quality sound).

� The number of bytes (excluding the header); i.e., the number of seconds times the sampling
frequency times the number of bits/8 times the number of channels.

• The second element is another list of digital sound data for each channel.

Xcas can read and write audio objects as �les on your computer; these �les will be in the wav (Waveform
Audio File) format.

For creating and playing audio objects, there are:

• createwav, for creating audio objects (see Section 15.1.1 p.970).

• playsnd, for playing audio objects (see Section 15.1.4 p.971).

For reading and writing audio �les, there are:

• readwav, for reading audio �les from disk and creating audio objects (see Section 15.1.2 p.970).

• writewav, for writing audio �les to disk from audio objects (see Section 15.1.3 p.971).

For manipulating audio objects, there are:

• stereo2mono, to convert a multichannel audio clip to a single channel (see Section 15.1.5 p.972).

• resample, to change the sample rate (see Section 15.1.8 p.973).

For getting information from an audio object, there are:

• channels, to �nd the number of channels (see Section 15.1.6 p.972).

• bit_depth, to �nd the number of bits in each sample value (see Section 15.1.6 p.972).

• samplerate, to �nd the number of samples per second (see Section 15.1.6 p.972).

• duration, to �nd the duration of the audio in seconds (see Section 15.1.6 p.972).

• channel_data, to extract a sample from an audio (see Section 15.1.7 p.972).

• plotwav, to visualize a waveform (see Section 15.1.9 p.974).

• plotspectrum, to visualize the power spectra (see Section 15.1.10 p.975).

969
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15.1.1 Creating audio clips: createwav

The createwav command creates an audio object with speci�ed parameters.

• createwav takes its arguments as key=value pairs, in no particular order. The following arguments
are all optional:

� size=n resp. duration=T , where n resp. T is the total number of samples resp. the length
in seconds.

� bit_depth=b, where b is the number of bits reserved for each sample value and may be 8 or
16 (by default 16).

� samplerate=r, where r is the number of samples per second (by default 44100).

� channels=c where c is the number of channels (by default 1).

� D or channel_data=D, where D is a list or a matrix.
If D is a matrix, it should contain the k-th sample in the j-th channel at position (j, k).
The value of each sample must be a real number in range [−1.0, 1.0]. Any value outside this
interval is clamped to it (the resulting e�ect is called clipping).
If D is a single list, it is copied across channels.
D may be truncated or padded with zeros to match the appropriate number of samples or
seconds.

� normalize=db, where db ≤ 0 is a real number representing the amplitude peak level in dB FS
(decibel "full scale") units. If this option is given, audio data is normalized to the speci�ed
level prior to conversion. This can be used to avoid clipping.

• createwav(〈keys=values〉) returns an audio object with the requested parameters.

Examples.

(See Section 15.1.4 p.971 for a description of playsnd and Section 15.1.14 p.977 for a description of
soundsec):

• Input:

wave:=sin(2*pi*440*soundsec(2))

s:=createwav(channel_data=wave,samplerate=48000)

playsnd(s)

Output:
Two seconds of the 440 Hz sine wave at rate 48000.

• Input:

t:=soundsec(3)

L,R:=sin(2*pi*440*t),sin(2*pi*445*t)

s:=createwav([L,R])

playsnd(s)

Output:
Three seconds of a vibrato e�ect on a sine wave (stereo).

15.1.2 Reading wav �les from disk: readwav

The readwav command loads a wav �le.

• readwav takes one argument:
�le, a string containing the name of a wav �le.

• readwav(�le) loads �le and returns an audio clip object.
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Example.

(Assuming that the �le example.wav is stored in the directory sounds)
Input:

s:=readwav("/path/to/sounds/example.wav")

You can now play the audio clip object s:
Input:

playsnd(s)

Output:
The sound of the audio �le example.wav.

15.1.3 Writing wav �les to disk: writewav

The writewav command writes wav �les to disk.

• writewav takes two arguments:

� �lename, a string containing a �le name.

� A, an audio clip object.

• writewav(�lename,A) writes the clip A as a wav �le named �lename.
It returns 1 on success and 0 on failure.

Example.

Input:

s:=createwav(sin(2*pi*440*soundsec(1))):;

writewav("sounds/sine.wav",s)

Output:

1

The sounds directory will contain the �le sine.wav.

15.1.4 Audio playback: playsnd

The playsnd command plays audio clips.

• playsnd takes one argument:
A, an audio clip.

• playsnd(A) plays the audio clip A.

Example.

Input:

playsnd(createwav(sin(2*pi*440*soundsec(3))))

Output: The sound of the sine wave will be played.
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15.1.5 Averaging channel data: stereo2mono

The stereo2mono command converts a multichannel audio clip to a single channel audio clip.

• stereo2mono takes one argument:
A, a multichannel audio clip.

• stereo2mono(A) returns an audio clip with the input channels in A mixed down to a single
channel.
Every sample in the output is the arithmetic mean of the samples at the same position in the
input channels.

Example.

Input:

t:=soundsec(3):;

L,R:=sin(2*pi*440*t),sin(2*pi*445*t):;

s:=stereo2mono(createwav([L,R])):;

playsnd(s)

Output: The sound of the single channel of the combination of L and R is played.

15.1.6 Audio clip properties: channels bit_depth samplerate duration

The channels, bit_depth, samplerate and duration commands �nd properties of an audio clip.

• channels, bit_depth, samplerate and duration each take one argument:
A, an audio clip.

• channels(A) returns the number of channels in A.

• bit_depth(A) returns the number of bits reserved for each sample value (8 or 16) in A.

• samplerate(A) returns the number of samples per second in A.

• duration(A) returns the duration of A in seconds.

15.1.7 Extracting samples from audio clips: channel_data

The channel_data command gets samples from an audio clip.

• channel_data takes one mandatory argument and up to two optional argument:

� A, an audio clip.

� Optionally options, which can be the following (the order is unimportant):

∗ One of:

· n, a postive integer (channel number).

· matrix, the symbol.
∗ One of:

· range=[m,n] or range=m..n for nonnegative integers m and n.

· range=a..b for �oating point numbers a and b.

• channel_data(A 〈,options〉) returns data from the channels as a sequence of lists. The returned
sample values are all within the interval [−1.0, 1.0], i.e. the amplitude of the returned signal is
relative. The maximum possible amplitude is represented by the value 1.0.

� With no options, data from all channels are returned as a sequence of lists.
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� With the option n (the channel number) or if there is only one channel, only the data from
this channel is returned in a single list.

� With the option matrix, the lists representing the channel data are returned as the rows of
a matrix.

� With the option range=[m,n] or range=m..n, with m and n integers, only the samples from
n-th to m-th (inclusive) are extracted.

� With the option range=a..b, with �oating point numbers a and b, then a and b are bounds
in seconds.

Example.

Assuming that the directory sounds contains example.wav, a wav �le with three seconds of stereo sound:
Input:

s:=readwav("/path/to/sounds/example.wav"):;

L,R:=channel_data(s,range=1.2..1.5)

Output:
A list L resp. R containing the data between 1.2 and 1.5 seconds in the left resp. right channel of the
original �le.

15.1.8 Changing the sampling rate: resample

The resample command resamples a clip to a desired rate.

• resample takes one mandatory argument and two optional arguments:

� A, an audio clip.

� Optionally, r, the target sample rate in Hz (by default 44100).

� Optionally, n, an integer specifying the quality level, from 0 (poor) to 4 (best) (by default,
2).

• resample(A 〈r, n〉) returns the audio clip A resampled to rate r.

giac does resampling by using the libsamplerate library http://www.mega-nerd.com/libsamplerate/
written by Erik de Castro Lopo. For more information see the library documentation.

Example.

Assuming that the directory sounds contains example.wav, a wav �le with a sample rate of 44100:
Input:

clip:=readwav("/path/to/sounds/example.wav"):; samplerate(clip)

Output:

44100

Input:

res:=resample(clip,48000):; samplerate(res)

Output:

48000

http://www.mega-nerd.com/libsamplerate/
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15.1.9 Visualizing waveforms: plotwav

The plotwav command displays the waveform of an audio clip.

• plotwav takes one mandatory argument and one optional argument:

� A, an audio clip.

� Optionally, range; one of:

∗ range=[m,n] for integers m and n (representing sample units).

∗ range=a..b for �oating point numbers a and b (representing seconds).

• plotwav(A 〈range〉) displays the waveform A, in its entirety or over the optional speci�ed range.

Examples.

Assuming that the directory sounds contains two wav �les, example1.wav (a man speaking, stereo) and
example2.wav (guitar playing, mono):

• Input:

clip1:=readwav("/path/to/sounds/example1.wav"):;

plotwav(clip1)

Output:

• Input:

clip2:=readwav("/path/to/sounds/example2.wav"):;

plotwav(clip2)

Output:
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• Input:

plotwav(clip2,range=0.5..0.52)

Output:

15.1.10 Visualizing power spectra: plotspectrum

The plotspectrum command displays the power spectrum of an audio clip.

• plotspectrum takes one mandatory and one optional argument:

� A, an audio clip.

� Optionally, range, which can be in the form range=[lf, uf] or range=lf..uf , where lf is the
lower bound and uf the upper bound of the desired frequency band (by default, range=[0, s/2]
where s is the sampling rate).

• plotspectrum(A 〈range〉) displays the power spectrum of the audio data on the speci�ed fre-
quency range.
If the audio clip has more than one channel, the channels are mixed down to a single channel
before computing the spectrum.

Example.

Assuming that a male voice is recorded in the �le example1.wav:
Input:

clip:=readwav("/path/to/sounds/example1.wav"):;

plotspectrum(clip,range=[0,1500])

Output:

You can see that the dominant frequency is around 220 Hz, which is the middle of tenor range. This is
consistent with the fact that a male is speaking in the clip.



976 CHAPTER 15. MULTIMEDIA

15.1.11 Reading a wav �le: readwav

The readwav command retrieves information about a wav �le.

• readwav takes one argument:
�lename, a sound �le (with extension .wav) stored in wav format given as a string.

• readwav(�lename) returns a vector consisting of:

� A list consisting of:

∗ The number of channels (generally 1 for mono and 2 for stereo).

∗ The number of bits (generally 16).

∗ The sampling frequency (44100 for a CD quality sound).

∗ The number of bytes (excluding the header); i.e., the number of seconds times the sam-
pling frequency times the number of bits/8 times the number of channels.

� A list of digital sound data for each channel.

The result of readwav is typically stored in a variable.

Example.

Assuming that sound.wav is a sound �le for a one-second sound in CD quality on a 16-bit channel:
Input:

s:= readwav("sound.wav"):;

s[0]

Output:

[1,16,44100,88200]

Input:

size(s)

Output:

2

which is the number of channels plus 1.
Input:

size(s[1])

Output:

44100

15.1.12 Writing a wav �le: writewav

The writewav command writes sound data to a wav �le.

• writewav takes two arguments:

� �lename, the name of a �le.

� s, the sound data. This can either be in the same format as that returned by the readwav

command or (for a mono sound) a list of the digital data of the sound which will use the
default parameters (16 bits, 44100 Hz).

• writewav(�lename,s) writes the sound to the �le �lename.
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Example.

Input:

writewav("la.wav",2�14*sin(2*pi*440*soundsec(1)))

Output: There will be a �le la.wav containing a sound of frequency 440 Hz sampled 44100 times per
second.

15.1.13 Listening to a digital sound: playsnd

The playsnd command plays digitized sound data.

• playsnd takes one argument:
s, digitized sound data, such as that which can be read with the readwav command or generated
with the help of soundsec. s should be either in the format of the output of the readwav command
or a list of sampled data for mono sound with the default settings of 1 channel, 16 bits and 44100
Hz.

• playsnd(s) plays the given sound.

15.1.14 Preparing digital sound data: soundsec

The soundsec command prepares sound data in the form of a vector.

• soundsec takes one mandatory argument and one optional argument:

� d, a real number (the duration).

� Optionally, f , a real number (the sampling frequency, by default 44100).

• soundsec(d 〈f〉) returns sound data with duration d seconds, and with sampling frequency f .
The sound data is returned as a vector, whose ith element is the time corresponding to index i.

Examples.

• Input:

soundsec(2.5)

Output:
Sound data 2.5 seconds long sampled at the default frequency of 44100 Hz.

• Input:

soundsec(1,22050)

Output: Sound data 1 second long sampled at the frequency of 22050 Hz.

• Input:

sin(2*pi*440*soundsec(1.3))

Output: A sinusoid with frequency 440 Hz sampled 44100 times per second for 1.3 seconds.
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15.2 Signal Processing

15.2.1 Boxcar function: boxcar

The boxcar command creates a function which is 0 everywhere except in a given interval, where it is 1.

• boxcar takes three arguments:

� a, b, two real numbers.

� x, an identi�er or expression.

• boxcar(a, b, x) returns θ(x − a) − θ(x − b), where θ is the Heaviside function (see Section 5.8.9
p.150). The resulting expression de�nes a function which is zero everywhere except within the
segment [a, b], where its value is equal to 1.

Examples.

• Input:

boxcar(1,2,x)

Output:

θ (x− 1)− θ (x− 2)

• Input:

boxcar(1,2,3/2)

Output:

1

• Input:

boxcar(1,2,0)

Output:

0

15.2.2 Rectangle function: rect

The rectangle function Π is 0 everywhere except on [−1/2, 1/2], where it is 1; namely, Π(x) = θ(x +
1/2)− θ(x− 1/2) where θ is the Heaviside function. The rectangle function is a special case of boxcar
function (see section 15.2.1) for a = −1

2 and b = 1
2 .

• rect takes one argument:
x, an identi�er or an expression.

• rect(x) returns the value of the rectangle function at x.
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Example.

Input:

rect(x/2)

Output:

θ

(
x

2
+

1

2

)
− θ

(
x

2
− 1

2

)
To compute the convolution of the rectangle function with itself, you can use the convolution theo-

rem.
Input:

R:=fourier(rect(x),x,s):; ifourier(R�2,s,x)

Output:

−2x θ (x) + x θ (x+ 1) + x θ (x− 1) + θ (x+ 1)− θ (x− 1)

This result is the triangle function tri(x) (see section 15.2.3).

15.2.3 Triangle function: tri

The triangle function is de�ned by

Λ(x) =

{
1− |x|, |x| < 1,

0, otherwise.

This is equal to the convolution of rectangle function with itself (see Section 15.2.2).
The tri command computes the triangle function.

• tri takes one argument:
x, an expression.

• tri(x) returns the value of triangle function at x.

Example.

Input:

tri(x-1)

Output:

(−x+ 1 + 1) (θ (x− 1)− θ (x− 1− 1)) + (1 + x− 1) (θ (−x+ 1)− θ (−x+ 1− 1))

15.2.4 Cardinal sine function: sinc

The sinc function is de�ned by

sinc(x) =

{
sin(x)
x , x 6= 0,

1, x = 0.

The sinc command computes the sinc function.

• sinc takes one argument:
x, an expression.

• sinc(x) returns the value of the sinc function at x.
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Examples.

• Input:

sinc(pi*x)

Output:
sin (πx)

πx

• Input:

sinc(0)

Output:
1

15.2.5 Root mean square: rms

The rms command �nds the room mean square of a list of numbers X = [x1, x2, . . . , xn], which is de�ned
by

RMS(X) =

√∑n
k=1 |xk|2
n

.

• rms takes one argument:
X, a list of real or complex numbers [x1, x2, . . . , xn].

• rms(X) returns the root mean square of X.

Examples.

• Input:

rms([1,2,5,8,3,6,7,9,-1])

Output: √
30

• Input:

rms([1,1-i,2+3i,5-2i])

Output:
3

2

√
5

15.2.6 Cross-correlation of two signals: cross_correlation

The cross correlation of two complex vectors v = [v1, . . . , vn] and w = [w1, . . . , wm] is the complex vector
z = v ? w of length n+m− 1 given by

zk =
N−1∑
i=k

v∗i−k w
∗
i , k = 0, 1, . . . , N − 1,

where
v∗ = [v0, v1, . . . , vn−1, 0, 0, . . . , 0︸ ︷︷ ︸

m−1

] and w∗ = [0, 0, . . . , 0︸ ︷︷ ︸
n−1

, w0, w1, . . . , wm−1].

Cross-correlation is typically used for measuring similarity between signals.
The cross_correlation command computes the cross correlation of two vectors.
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• cross_correlation takes two arguments:
v, w, two vectors (not necessarily the same length).

• cross_correlation(v, w) returns the cross correlation v ? w.

Examples.

• Input:

cross_correlation([1,2],[3,4,5])

Output:

[6.0, 11.0, 14.0, 5.0]

• Input:

v:=[2,1,3,2]:; w:=[1,-1,1,2,2,1,3,2,1]:;

round(cross_correlation(v,w))

Output:

[2, 1, 0, 8, 9, 12, 15, 18, 13, 11, 5, 2]

Observe that the cross-correlation of v and w is peaking at position 8 with the value 18, indicating
that the two signals are best correlated when the last sample in v is aligned with the eighth sample
in w. Indeed, there is an occurrence of v in w precisely at that point.

15.2.7 Auto-correlation of a signal: auto_correlation

The auto correlation of a vector is its cross correlation with itself (see Section 15.2.6 p.980). The
auto_correlation command computes the auto correlation of a vector.

• auto_correlation takes one argument:
v, a complex vector.

• auto_correlation(v) returns the cross-correlation of v with itself, v ? v.

Example.

Input:

auto_correlation([2,3,4,3,1,4,5,1,3,1])

Output:

[2.0, 9.0, 15.0, 28.0, 37.0, 44.0, 58.0, 58.0, 68.0, 91.0, 68.0, 58.0, 58.0, 44.0, 37.0, 28.0, 15.0, 9.0, 2.0]

15.2.8 Convolution of two signals or functions: convolution

The convolution of two real vectors v = [v1, . . . , vn] and w = [w1, . . . , wm] is the complex vector z = v∗w
of length n+m− 1 given by

zk =

k∑
i=0

viwk−i, k = 0, 1, . . . , N − 1,

such that vj = 0 for j ≥ n and wj = 0 for j ≥ m.
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The convolution of two real functions f(x) and g(x) is the integral∫ +∞

−∞
f(t) g(x− t) dt

variable x as an optional third argument, in which case the convolution takes two arguments, a
real vector v of length n and a real vector w of length m, and returns their convolution z = v ∗w which
is the vector of length N = n+m− 1 de�ned as:

The convolution command �nds the convolution of two vectors or two functions.
For the convolution of two vectors:

• convolution takes two arguments:
v, w, two vectors (not necessarily the same length).

• convolution(v, w) returns the convolution correlation v ∗ w.

Example.

Input:

convolution([1,2,3],[1,-1,1,-1])

Output:

[1.0, 1.0, 2.0,−2.0, 1.0,−3.0]

For the convolution of two functions:

• convolution takes two mandatory arguments and one optional argument:

� f, g, two expressions of a variable.

� Optionally, x, the variable name.

• convolution(f, g 〈x〉) returns the convolution of f and g.

The functions f and g are causal functions, i.e. f(x) = g(x) = 0 for x < 0. Therefore both f and
g are multiplied by Heaviside function prior to integration.

Examples.

• Compute the convolution of f(x) = 25 e2x u(x) and g(x) = x e−3x θ(x), where θ is the Heaviside
function:
Input:

convolution(25*exp(2x),x*exp(-3x))

Output: (
−5xe−3x − e−3x + e2x

)
θ (x)

• Compute the convolution of f(t) = ln(1 + t)u(t) and g(t) = 1√
t
.

Input:

convolution(ln(1+t),1/sqrt(t),t)

Output:

−

(
2t ln

(
|2√t−2√t+1|
2
√
t+2
√
t+1

)
+ 4
√
t
√
t+ 1 + 2 ln

(
|2√t−2√t+1|
2
√
t+2
√
t+1

))
θ (t)

√
t+ 1
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• In this example, convolution is used for reverberation. Assume that the directory sounds contains
two �les, a dry, mono recording of a guitar stored in guitar.wav and a two-channel impulse
response recorded in a French 18th century salon and stored in salon-ir.wav.
Load the �les:
Input:

clip:=readwav("/path/to/sounds/guitar.wav"):;

ir:=readwav("/path/to/sounds/salon-ir.wav"):;

Then: Input:

plotwav(clip)

Output:

Input:

plotwav(ir)

Output:

Convolving the data from clip with both channels in ir produces a reverberated variant of the
recording, in stereo.
Input:

data:=channel_data(clip):;

L:=convolution(data,channel_data(ir,1)):;

R:=convolution(data,channel_data(ir,2)):;
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The convolved signals L and R now become the left and right channel of a new audio clip, respec-
tively. The normalize option is used because convolution usually results in a huge increase of
sample values (which is clear from the de�nition).

• Input:

spatial:=createwav([L,R],normalize=-3):; playsnd(spatial)

Output: A sound that sounds as if it was recorded in the same salon as the impulse response.
Moreover, it is a true stereo sound. To visualize it:
Input:

plotwav(spatial)

Output:

Note that the resulting audio is longer than the input (for the length of the impulse response).

15.2.9 Low-pass �ltering: lowpass

The lowpass command applies a simple �rst-order lowpass RC �lter to an audio clip.

• lowpass takes two mandatory arguments and one optional argument:

� A, an audio clip or a real vector representing the sampled signal.

� c, a real number specifying the cuto� frequency.

� Optionally, r, a samplerate (by default 44100).

• lowpass(A, c 〈r〉) returns the input data after applying a simple �rst-order lowpass RC �lter.

Example.

Input:

f:=unapply(periodic(sign(x),x,-1/880,1/880),x);

s:=apply(f,soundsec(3)):;

playsnd(lowpass(createwav(s),1000))

Output:
The sound of the periodic signal after a simple �rst-order lowpass RC �lter has been applied.
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15.2.10 High-pass �ltering: highpass

The highpass command applies a simple �rst-order lowpass RC �lter to an audio clip.

• highpass takes two mandatory arguments and one optional argument:

� A, an audio clip or a real vector representing the sampled signal.

� c, a real number specifying the cuto� frequency.

� Optionally, r, a samplerate (by default 44100).

• highpass(A, c 〈r〉) returns the input data after applying a simple �rst-order highpass RC �lter.

Example.

Input:

f:=unapply(periodic(sign(x),x,-1/880,1/880),x);

s:=apply(f,soundsec(3)):;

playsnd(highpass(createwav(s),5000))

Output:
The sound of the periodic signal after a simple �rst-order highpass RC �lter has been applied.

15.2.11 Apply a moving average �lter to a signal: moving_average

The moving_average command applies a moving average to a sample.

• moving_average takes two arguments:

� A, an array of numeric values representing a sampled signal.

� n, a positive integer n.

• moving_average(A,n) returns an array B obtained by applying a moving average �lter of length
n to A. The elements of B are de�ned by

B[i] =
1

n

n−1∑
j=0

A[i+ j]

for i = 0, 1, . . . , L− n, where L is the length of A.

Moving average �lters are fast and useful for smoothing time-encoded signals.

Examples.

• Input:

snd:=soundsec(2):

noise:=randvector(length(snd),normald,0,0.05):;

data:=0.5*threshold(3*sin(2*pi*220*snd),[-1.0,1.0])+noise:;

plotwav(createwav(data),range=[1000,1500])

Output:
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• Input:

fdata:=moving_average(data,25):;

plotwav(createwav(fdata),range=[1000,1500])

Output:

15.2.12 Performing thresholding operations on an array: threshold

The threshold command changes data in an array by raising (or lower) the values to meet a given
threshold.

• threshold takes two mandatory arguments and two optional arguments:

� v, a vector of real or complex numbers.

� a bound speci�cation, which can be one of: This can be either:

∗ b = b0 for real numbers b and b0.

∗ b, a real number (equivalent to b = b).

∗ [l = l0, u = u0], for real numbers l, l0, u, u0.

∗ [l, u], a list of two real numbers (equivalent to [l = l, u = u]).

� Optionally '≺', a quoted comparison operator, one of '<', '<=', '>', '>=' (by default '<').

� Optionally, abs=bool, where bool is either true or false (by default abs=false). If abs=true,
then the components of v must be real.

• threshold(v, b = b0 〈,′≺′〉) returns the vector w whose kth component is:

wk =

{
b0, vk ≺ b,
vk, otherwise
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when vk is real and

wk =

{
b0

vk
|vk| , |vk| ≺ b,

vk, otherwise

when vk is complex; for k = 0, 1, . . . ,size(v)− 1

• threshold(v, b = b0 〈,≺〉,abs=true) returns the vector w whose kth component is:

wk =


b0, |vk| ≺ b and vk > 0,

−b0, |vk| ≺ b and vk < 0

vk, otherwise

• threshold(v, [l = l0, u = u0] 〈,≺〉) returns the vector w whose kth component is:

wk =


u0, u ≺ vk,
l0, vk ≺ l
vk, otherwise

when vk is real and

wk =


u0

vk
|vk| , u ≺ |vk|,

l0
vk
|vk| , |vk| ≺ l,

vk, otherwise

when vk is complex; for k = 0, 1, . . . ,size(v)− 1.

Examples.

• Input:

threshold([2,3,1,2,5,4,3,7],3)

Output:
[3, 3, 3, 3, 5, 4, 3, 7]

• Input:

threshold([2,3,1,2,5,4,3,7],3=a,'>=')

Output:
[2, a, 1, 2, a, a, a, a]

• Input:

threshold([-2,-3,1,2,5,-4,3,-1],3=0,abs=true)

Output:
[0,−3, 0, 0, 5,−4, 3, 0]

• Input:

threshold([-2,-3,1,2,5,-4,3,-1],3=0,'<=',abs=true)

Output:
[0, 0, 0, 0, 5,−4, 0, 0]
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• Input:

threshold([-120,-11,-3,0,7,27,111,234],[-100,100])

Output:
[−100,−11,−3, 0, 7, 27, 100, 100]

• Input:

threshold([-120,-11,-3,0,7,27,111,234],[-100=-inf,100=inf])

Output:
[−∞,−11,−3, 0, 7, 27,+∞,+∞]

• In this example, a square-like wave is created from a single sine wave by clipping sample values.
Input:

data:=threshold(3*sin(2*pi*440*soundsec(2)),[-1.0,1.0]):;

s:=createwav(data):;

playsnd(s)

Output:

1

Input:

plotwav(s,range=[1000,2000])

Output:

15.2.13 Bartlett-Hann window function: bartlett_hann_window

The bartlett_hann_window command �nds a Bartlett-Hahn window of a sequence, which can be used
to examine a short segment when analyzing a long.

• bartlett_hann_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• bartlett_hann_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the
vector w of length N = n2 − n1 + 1 de�ned by

wk = a0 + a1

∣∣∣∣ k

N − 1
− 1

2

∣∣∣∣− a2 cos

(
2 k π

N − 1

)
for k = 0, 1, . . . , N − 1, where a0 = 0.62, a1 = 0.48 and a2 = 0.38.
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Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=bartlett_hann_window(L0):;

scatterplot(L);

Output:

15.2.14 Blackman-Harris window function: blackman_harris_window

The blackman_harris_window command �nds a Blackman-Harris window of a sequence.

• blackman_harris_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• blackman_harris_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the
vector w of length N = n2 − n1 + 1 de�ned by

wk = a0 − a1 cos

(
2 k π

N − 1

)
+ a2 cos

(
4 k π

N − 1

)
− a3 cos

(
6 k π

N − 1

)
for k = 0, 1, . . . , N − 1, where a0 = 0.35875, a1 = 0.48829, a2 = 0.14128 and a3 = 0.01168.
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Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=blackman_harris_window(L0):;

scatterplot(L);

Output:

15.2.15 Blackman window function: blackman_window

The blackman_window command �nds a Blackman window of a sequence.

• blackman_window takes one mandatory argument and two optional arguments:

� v, a real vector with length n.

� Optionally, α, a real number (by default 0.16).

� Optionally, an interval n0..n1 (by default 0..(n− 1)).
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• blackman_harris_window(v 〈, α, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and
the vector w of length N = n2 − n1 + 1 de�ned by

wk =
1− α

2
− 1

2
cos

(
2 k π

N − 1

)
+
α

2
cos

(
4 k π

N − 1

)
for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=blackman_window(L0):;

scatterplot(L);

Output:
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15.2.16 Bohman window function: bohman_window

The bohman_window command �nds a Bohman window of a sequence.

• bohman_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• bohman_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w of
length N = n2 − n1 + 1 de�ned by

wk = (1− xk) cos (π xk) +
1

π
sin (π xk) ,

where xk =
∣∣∣ 2 k
N−1 − 1

∣∣∣ for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=bohman_window(L0):;

scatterplot(L);

Output:
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15.2.17 Cosine window function: cosine_window

The cosine_window command �nds a cosine window of a sequence.

• cosine_window takes one mandatory argument and two optional arguments:

� v, a real vector with length n.

� Optionally, α, a real number (by default 1).

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• cosine_window(v 〈, α, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w
of length N = n2 − n1 + 1 de�ned by

wk = sinα
(

k π

N − 1

)

for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=cosine_window(L0,1.5):;

scatterplot(L);

Output:
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15.2.18 Gaussian window function: gaussian_window

The gaussian_window command �nds a Gaussian window of a sequence.

• gaussian_window takes one mandatory argument and two optional arguments:

� v, a real vector with length n.

� Optionally, α, a real number less than or equal to 0.5 (by default 0.1).

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• gaussian_window(v 〈, α, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector
w of length N = n2 − n1 + 1 de�ned by

wk = exp

(
−1

2

(
k − (N − 1)/2

α (N − 1)/2

)2
)

for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:



15.2. SIGNAL PROCESSING 995

Input:

L:=gaussian_window(L0,0.4):;

scatterplot(L);

Output:

15.2.19 Hamming window function: hamming_window

The hamming_window command �nds a Hamming window of a sequence.

• hamming_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• hamming_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w
of length N = n2 − n1 + 1 de�ned by

wk = α− β cos

(
2 k π

N − 1

)
for k = 0, 1, . . . , N − 1, where α = 0.54 and β = 1− α = 0.46.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:
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Input:

L:=hamming_window(L0):;

scatterplot(L);

Output:

15.2.20 Hann-Poisson window function: hann_poisson_window

The hann_poisson_window command �nds a Hann-Poisson window of a sequence.

• hann_poisson_window takes one mandatory argument and two optional arguments:

� v, a real vector with length n.

� Optionally, α, a real number (by default 1).

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• hann_poisson_window(v 〈, α, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the
vector w of length N = n2 − n1 + 1 de�ned by

wk =
1

2

(
1− cos

2 k π

N − 1

)
exp

(
−α |N − 1− 2 k|

N − 1

)

for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:
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Input:

L:=hann_poisson_window(L0,2):;

scatterplot(L);

Output:

15.2.21 Hann window function: hann_window

The hann_window command �nds a Hann window of a sequence.

• hann_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• hann_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w of
length N = n2 − n1 + 1 de�ned by

wk = sin2

(
k π

N − 1

)
for k = 0, 1, . . . , N − 1.



998 CHAPTER 15. MULTIMEDIA

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=hann_window(L0,2):;

scatterplot(L);

Output:

15.2.22 Parzen window function: parzen_window

The parzen_window command �nds a Parzen window of a sequence.

• parzen_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).
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• parzen_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w of
length N = n2 − n1 + 1 de�ned by

wk =

{(
1− 6x2k (1− xk)

)
,
∣∣N−1

2 − k
∣∣ ≤ N−1

4 ,

2 (1− xk)3 , otherwise,

where xk =
∣∣∣1− 2 k

N−1

∣∣∣ for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=parzen_window(L0):;

scatterplot(L);

Output:
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15.2.23 Poisson window function: poisson_window

The poisson_window command �nds a Poisson window of a sequence.

• poisson_window takes one mandatory argument and two optional arguments:

� v, a real vector with length n.

� Optionally, α, a real number (by default 1).

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• poisson_window(v 〈, α, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector
w of length N = n2 − n1 + 1 de�ned by

wk = exp

(
−α

∣∣∣∣ 2 k

N − 1
− 1

∣∣∣∣)

for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=poisson_window(L0,2):;

scatterplot(L);

Output:
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15.2.24 Riemann window function: riemann_window

The riemann_window command �nds a Riemann window of a sequence.

• riemann_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• riemann_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w
of length N = n2 − n1 + 1 de�ned by

wk =

{
1, k = N−1

2 ,
sin(π xk)
π xk

, otherwise,

where xk = 2 k
N−1 − 1 for k = 0, 1, . . . , N − 1.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:
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L:=riemann_window(L0):;

scatterplot(L);

Output:

15.2.25 Triangular window function: triangle_window

The triangle_window command �nds a triangle window of a sequence.

• triangle_window takes one mandatory argument and two optional arguments:

� v, a real vector with length n.

� Optionally, d, either -1,0 or 1 (by default 0).

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• triangle_window(v 〈, d, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector
w of length N = n2 − n1 + 1 de�ned by

wk = 1−

∣∣∣∣∣n− N−1
2

N+d
2

∣∣∣∣∣
for k = 0, 1, . . . , N − 1.

The case d = −1 is called the Bartlett window function.

Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:
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Input:

L:=triangle_window(L0,1):;

scatterplot(L);

Output:

15.2.26 Tukey window function: tukey_window

The tukey_window command �nds a Tukey window of a sequence.

• tukey_window takes one mandatory argument and two optional arguments:

� v, a real vector with length n.

� Optionally, α, a real number in [0, 1] (by default 0.5).

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• tukey_window(v 〈, α, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w
of length N = n2 − n1 + 1 de�ned by

wk =


1
2

(
1 + cos

(
π
(
k
β − 1

)))
, k < β,

1, β ≤ k ≤ (N − 1)
(
1− α

2

)
,

1
2

(
1 + cos

(
π
(
k
β −

2
α + 1

)))
, otherwise,

where β = α (N−1)
2 , for k = 0, 1, . . . , N − 1.
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Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=tukey_window(L0,0.4):;

scatterplot(L);

Output:

15.2.27 Welch window function: welch_window

The welch_window command �nds a Welch window of a sequence.

• welch_window takes one mandatory argument and one optional argument:

� v, a real vector with length n.

� Optionally, an interval n0..n1 (by default 0..(n− 1)).

• welch_window(v 〈, n1..n2〉) returns the elementwise product of [vn1 , . . . , vn2 ] and the vector w of
length N = n2 − n1 + 1 de�ned by

wk = 1−

(
k − N−1

2
N−1
2

)2

for k = 0, 1, . . . , N − 1.
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Example.

Input:

L0:=randvector(1000,0..1):;

scatterplot(L0);

Output:

Input:

L:=welch_window(L0):;

scatterplot(L);

Output:

15.2.28 An example: static noise removal by spectral subtraction

In this section, you use Xcas to implement a simple algorithm for static noise removal based on the
spectral subtraction method. For a theoretical overview see the paper "Noise Reduction Based on Mod-
i�ed Spectral Subtraction Method" by Ekaterina Verteletskaya and Boris Simak (2011), International
Journal of Computer Science, 38:1 (PDF).

E�ciency of the spectral subtraction method largely depends on a good noise spectrum estimate.
Below is the code for a function noiseprof that takes data and wlen as its arguments. These are,
respectively, a signal chunk containing only noise and the window length for signal segmentation (the
best values are powers of two, such as 256, 512 or 1024). The function returns an estimate of the noise
power spectrum obtained by averaging the power spectra of a (not too large) number of distinct chunks
of data of length wlen. The Hamming window function is applied prior to FFT.

https://pdfs.semanticscholar.org/c212/84207dcf8e95b8b44d0ce703f9fe23b28f2a.pdf
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noiseprof(data,wlen):={

local N,h,dx,x,v,cnt;

N:=length(data);

h:=wlen/2;

dx:=min(h,max(1,(N-wlen)/100));

v:=[0$wlen];

cnt:=0;

for (x:=h;x<N-h;x+=dx) \{

v+=abs(fft(hamming_window(

mid(data,floor(x)-h,wlen)))).^2;

cnt++;

\};

return 1.0/cnt*v;

\}:;

The main function is noisered, which takes three arguments: the input signal data, the noise power
spectrum np and the "spectral �oor" parameter beta (β, the minimum power level). The function per-
forms subtraction of the noise spectrum in chunks of length wlen (the length of list np) using the overlap-
and-add approach with Hamming window function. For details see Section 3A of the paper "Speech
Enhancement using Spectral Subtraction-type Algorithms: A Comparison and Simulation Study" by
Navneet Upadhyay and Abhijit Karmakar (2015), Procedia Computer Science, vol. 54, pp. 574�584
(PDF).

noisered(data,np,beta):={

local wlen,h,N,L,padded,out,j,k,s,ds,r,alpha;

wlen:=length(np);

N:=length(data);

h:=wlen/2;

L:=0;

repeat L+=wlen; until L>=N;

padded:=concat(data,[0$(L-N)]);

out:=[0$L];

for (k:=0;k<L-wlen;k+=h) {

s:=fft(hamming_window(mid(padded,k,wlen)));

alpha:=max(1,4-3*sum(abs(s).^2)/(20*sum(np)));

r:=ifft(zip(max,abs(s).^2-alpha*np,beta*np).^(1/2)

.*exp(i*arg(s)));

for (j:=0;j<wlen;j++) {

out[k+j]+=re(r[j]);

};

};

return mid(out,0,N);

}:;

To demonstrate the e�ciency of the algorithm, you can test it on a small speech sample with an
audible amount of static noise. Assume that the corresponding wav �le noised.wav is stored in the
directory sounds.
Input:

clip:=readwav("/path/to/sounds/noised.wav"):; plotwav(clip)

Output:

https://core.ac.uk/download/pdf/81218023.pdf
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Speech starts after approximately 0.2 seconds of pure noise. You can use that part of the clip for
obtaining an estimate of the noise power spectrum with wlen set to 256.
Input:

noise:=channel_data(clip,range=0.0..0.15):; np:=noiseprof(noise,256):;

Now call the noisered function with β = 0.03:
Input:

c:=noisered(channel_data(clip),np,0.03):; cleaned:=createwav(c):; plotwav(cleaned)

Output:

You can clearly see that the noise level is signi�cantly lower than in the original clip. One can also use
the playsnd command to compare the input with the output by hearing, which reveals that the noise
is still present but in a lesser degree (the parameter β controls how much noise is "left in").

The algorithm implemented in this section is not particularly fast (removing the noise from a two
and a half seconds long recording took 20 seconds of computation time), but serves as a proof of concept
and demonstrates the e�ciency of noise removal.

15.3 Images

15.3.1 Image structure in Xcas

An image in Xcas is a list with the following elements.

• The �rst element is itself a list of three integers; the number of channels (which will be 3 or 4),
the number n of rows and the number p of columns used for the dimension of the image. Each
channel will be an n×p matrix of integers between 0 and 255.

• A red channel.

• A green channel.
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• A transparency channel.

• A blue channel.

The color of the point at line i and column j is determined by the values of the i,jth entry of the
matrices.

Note that the number of points in the structure isn't necessarily the same as the number of pixels
on the screen when it is drawn. It is possible that a single point in the structure is represented by a
small rectangle of pixels when it is displayed on the screen.

15.3.2 Reading images: readrgb

The readrgb command reads an Xcas image structure (see Section 15.3.1 p.1007).

• readrgb command takes one argument:
�lename, the name of an image �le (it can be .jpg, .png or .gif).

• readrgb(�lename) returns an Xcas image structure for the image in �lename.

15.3.3 Viewing images

Xcas can display images in rectangles in two-dimensions or on surfaces in three-dimensions with the
gl_texture property of the object (see Section 7.3.1 p.584).

Examples.

Assume that xcaslogo.png is a picture of the Xcas logo.

• Input:

rectangle(0,200,1/2,gl_texture="xcaslogo.png")

Output:

• Input:

sphere([0,0,0],1,gl_material=[gl_texture,"xcaslogo.png"])

Output:
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15.3.4 Creating or recreating images: writergb

The writergb command writes images to png �les; the image can be given by the Xcas image structure
(see Section 15.3.1 p.1007, this is what is read in with readrgb) or a simpli�ed version of this structure.

To write an image given by the Xcas image structure to a �le:

• writergb takes two arguments:

� �lename, a �le name.

� image, an image in Xcas format.

• writergb(�lename,image) writes the image image to the �le �lename.

Examples.

• Assume the the following image is stored in �le image1234.jpg.

After reading it into a variable name with readrgb:
Input:

a:= readrgb("image1234.jpg")

the variable a will contain a list,
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� a[0] will be [4,250,500], the number of channels, the height and the width of the image.

� a[1], the red channel,

� a[2], the green channel,

� a[3], the transparency channel,

� a[4], the blue channel.

Then:
Input:

writergb("image2134.png",[a[0],a[2],a[1],a[3],a[4]])

Output:

and the image �le image2134.png will be created. This image is simply image1234.png with the
green and red colors switched.

• For simple cases, you can type the Xcas image format in by hand.
Input:

writergb("image1.png",[[4,2,2],[[255,0],[0,0]],[[0,255],[0,0]],

[[255,125],[255,255]],[[0,0],[255,0]]])

Output:
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The transparency value of 125 for the upper right point makes it partially transparent and mutes
the color.

• For larger images, in some cases the matrix operations of Xcas can be used to create the channels.
Input:

writergb("image2.png",[[4,300,300],makemat(0,300,300),makemat(0,300,300),

makemat(255,300,300),makemat(0,300,300)+idn(300)*255])

Output:

The simpli�ed version of the Xcas image description doesn't involve stating the number of channels,
the size of the image, or the transparency. There is a full color version of this simpli�ed form and a
grayscale version.

To create a full color image using the simple description:

• writergb command takes four arguments:

� filename, the name of the �le to store the image.

� R, a matrix for the red channel.

� G, a matrix for the green channel.

� B, a matrix for the blue channel.

• writergb(�lename, R,G,B) draws the image given by the matrices to the �le filename.

Example.

Input:

writergb("image2.png",[[255,250],[0,120]],[[0,255],[0,0]],[[0,0],[255,100]])

Output:
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This image will be in the �le image2.png.

To create a grayscale image using the simple description:

• writergb command takes two arguments:

� �lename, the name of the �le to store the image.

� M , a matrix representing how dark each point is (where 0 is black and 255 is white).

• writergb(�lename,M) draws the image given by M to the �le filename.

Example.

Input:

writergb("image3.png",[[65,125],[185,200]])

Output:

This image will be in the �le image3.png.
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Using giac inside a program

16.1 Using giac inside a C++ program

To use giac inside of a C++ program, put

#include <giac/giac.h>

at the beginning of the �le. To compile the �le, use

c++ -g progname.cc -lgiac -lgmp

After compiling, there will be a �le a.out which can be run with the command

./a.out

For example, put the following program in a �le named pgcd.cc.

// -*- compile-command: "g++ -g pgcd.cc -lgiac -lgmp" -*-

#include <giac/config.h>

#include <giac/giac.h>

using namespace std; using namespace giac;

gen pgcd(gen a,gen b){ gen q,r; for (;b!=0;){ r=irem(a,b,q); a=b; b=r;

} return a; }

int main(){ cout << "Enter 2 integers "; gen a,b; cin >> a >> b; cout

<< pgcd(a,b) << endl; return 0; }

After compiling this with

c++ -g pgcd.cc -lgiac -lgmp

and running it with

./a.out

there will be a prompt

Enter 2 integers

After entering two integers, such as with

Enter 2 integers 30 36

the result will appear:

6

1013
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16.2 De�ning new giac functions

New giac functions can be de�ned with a C++ program. All data in the program used in formal
calculations needs to be gen type. A variable g can be declared to be gen type with

gen g;

In this case, g.type can have di�erent values.

• If g.val is an integer type int, then g.type will be _INT_.

• If g._DOUBLE_val is a real double, g.type will be _DOUBLE_.

• If g._SYMBptr is type symbolic, then g.type will be _SYMB.

• If g._VECTptr is a vector, type vector, then g.type will be _VECT.

• If g._ZINTptr is an integer type zint, then g.type will be _ZINT.

• If g._IDNTptr is an identi�er, type idnt, then g.type will be _IDNT.

• If g._CPLXptr is a complex type complex, then g.type will be _CPLX.

As an example, put the following program in a �le called pgcd.cpp.

// -*- mode:C++ ; compile-command: "g++ -I.. -fPIC -DPIC -g -c pgcd.cpp -o pgcd.lo && \

// ln -sf pgcd.lo pgcd.o && \

// gcc -shared pgcd.lo -lc -lgiac -Wl,-soname -Wl,libpgcd.so.0 -o \

// libpgcd.so.0.0.0 && ln -sf libpgcd.so.0.0.0 libpgcd.so.0 && \

// ln -sf libpgcd.so.0.0.0 libpgcd.so" -*-

using namespace std;

#include <stdexcept>

#include <cmath>

#include <cstdlib>

#include <giac/config.h>

#include <giac/giac.h>

//#include "pgcd.h"

#ifndef NO_NAMESPACE_GIAC namespace giac { #endif // ndef

NO_NAMESPACE_GIAC

gen monpgcd(const gen & a0,const gen & b0){ gen q,r,a=a0,b=b0; for

(;b!=0;){ r=irem(a,b,q); a=b; b=r; } return a; } gen _monpgcd(const

gen & args,GIAC_CONTEXT){ if ( (args.type!=_VECT) ||

(args._VECTptr->size()!=2)) setsizeerr(); vecteur &v=*args._VECTptr;

return monpgcd(v[0],v[1]); } const string _monpgcd_s("monpgcd");

unary_function_eval __monpgcd(0,&_monpgcd,_monpgcd_s);

unary_function_ptr at_monpgcd (&__monpgcd,0,true);

#ifndef NO_NAMESPACE_GIAC } // namespace giac #endif // ndef

NO_NAMESPACE_GIAC

After compiling this with the commands after the compile-command in the header, namely

g++ -I.. -fPIC -DPIC -g -c pgcd.cpp -o pgcd.lo && \

ln -sf pgcd.lo pgcd.o && \

gcc -shared pgcd.lo -lc -lgiac -Wl,-soname -Wl,libpgcd.so.0 -o \

libpgcd.so.0.0.0 && ln -sf libpgcd.so.0.0.0 libpgcd.so.0 && \

ln -sf libpgcd.so.0.0.0 libpgcd.so
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the new command can be inserted with the insmod command in giac, where insmod takes the full
absolute path of the libpgcd.so �le as argument.
Input:

insmod("/path/to/file/libpgcd.so")

Afterwords, the monpgcd command will be another giac command.
Input:

monpgcd(30,36)

Output:
6
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