-
Find, for n>2, the limit as x approaches 0 of:
| ntan(x)−tan(nx) |
|
sin(nx)−nsin(x) |
|
Input:
limit((n*tan(x)-tan(n*x))/(sin(n*x)-n*sin(x)),x=0)
Output:
- Find the limit as x approaches +∞ of
Input:
limit(sqrt(x+sqrt(x+sqrt(x)))-sqrt(x),x=+infinity)
Output:
- Find the limit as x approaches 0 of
Input:
limit((sqrt(1+x+x^2/2)-exp(x/2))/((1-cos(x))*sin(x)),x,0)
Output: