{-# LANGUAGE CPP, ScopedTypeVariables #-}
module Text.Highlighting.Kate.Common where
import Data.ByteString.UTF8 (fromString, toString)
#ifdef _PCRE_LIGHT
import Text.Regex.PCRE.Light
import Data.ByteString (ByteString)
#else
import System.IO.Unsafe (unsafePerformIO)
import Text.Regex.PCRE.ByteString
#endif
import Text.Highlighting.Kate.Types
import Text.ParserCombinators.Parsec hiding (State)
import Data.Char (isDigit, toLower, isSpace)
import Data.List (tails)
import Text.Printf
import Control.Monad.State
import qualified Data.Set as Set
matchGlobs :: String -> String -> Bool
matchGlobs :: [Char] -> [Char] -> Bool
matchGlobs [Char]
fn [Char]
globs = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (forall a b c. (a -> b -> c) -> b -> a -> c
flip [Char] -> [Char] -> Bool
matchGlob [Char]
fn) ([Char] -> [[Char]]
splitBySemi forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> [a]
filter (forall a. Eq a => a -> a -> Bool
/=Char
' ') [Char]
globs)
matchGlob :: String -> String -> Bool
matchGlob :: [Char] -> [Char] -> Bool
matchGlob (Char
'*':[Char]
xs) [Char]
fn = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any ([Char] -> [Char] -> Bool
matchGlob [Char]
xs) (forall a. [a] -> [[a]]
tails [Char]
fn)
matchGlob (Char
x:[Char]
xs) (Char
y:[Char]
ys) = Char
x forall a. Eq a => a -> a -> Bool
== Char
y Bool -> Bool -> Bool
&& [Char] -> [Char] -> Bool
matchGlob [Char]
xs [Char]
ys
matchGlob [Char]
"" [Char]
"" = Bool
True
matchGlob [Char]
_ [Char]
_ = Bool
False
splitBySemi :: String -> [String]
splitBySemi :: [Char] -> [[Char]]
splitBySemi [Char]
"" = []
splitBySemi [Char]
xs =
let ([Char]
pref, [Char]
suff) = forall a. (a -> Bool) -> [a] -> ([a], [a])
break (forall a. Eq a => a -> a -> Bool
==Char
';') [Char]
xs
in case [Char]
suff of
[] -> [[Char]
pref]
(Char
';':[Char]
ys) -> [Char]
pref forall a. a -> [a] -> [a]
: [Char] -> [[Char]]
splitBySemi [Char]
ys
[Char]
_ -> forall a. HasCallStack => [Char] -> a
error forall a b. (a -> b) -> a -> b
$ [Char]
"The impossible happened (splitBySemi)"
(>>~) :: (Monad m) => m a -> m b -> m a
m a
a >>~ :: forall (m :: * -> *) a b. Monad m => m a -> m b -> m a
>>~ m b
b = m a
a forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \a
x -> m b
b forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return a
x
normalizeHighlighting :: [Token] -> [Token]
normalizeHighlighting :: [Token] -> [Token]
normalizeHighlighting [] = []
normalizeHighlighting ((TokenType
_,[Char]
""):[Token]
xs) = [Token] -> [Token]
normalizeHighlighting [Token]
xs
normalizeHighlighting ((TokenType
NormalTok,[Char]
x):[Token]
xs)
| forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
isSpace [Char]
x = (TokenType
NormalTok,[Char]
x) forall a. a -> [a] -> [a]
: [Token] -> [Token]
normalizeHighlighting [Token]
xs
normalizeHighlighting ((TokenType
a,[Char]
x):(TokenType
b,[Char]
y):[Token]
xs)
| TokenType
a forall a. Eq a => a -> a -> Bool
== TokenType
b = [Token] -> [Token]
normalizeHighlighting ((TokenType
a, [Char]
xforall a. [a] -> [a] -> [a]
++[Char]
y)forall a. a -> [a] -> [a]
:[Token]
xs)
normalizeHighlighting (Token
x:[Token]
xs) = Token
x forall a. a -> [a] -> [a]
: [Token] -> [Token]
normalizeHighlighting [Token]
xs
pushContext :: Context -> KateParser ()
pushContext :: ([Char], [Char]) -> KateParser ()
pushContext ([Char]
lang,[Char]
context) =
if [Char]
context forall a. Eq a => a -> a -> Bool
== [Char]
"#stay"
then forall (m :: * -> *) a. Monad m => a -> m a
return ()
else do SyntaxState
st <- forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState
let contexts :: ContextStack
contexts = SyntaxState -> ContextStack
synStContexts SyntaxState
st
forall (m :: * -> *) u s. Monad m => (u -> u) -> ParsecT s u m ()
updateState forall a b. (a -> b) -> a -> b
$ \SyntaxState
st -> SyntaxState
st{ synStContexts :: ContextStack
synStContexts =
([Char]
lang,[Char]
context) forall a. a -> [a] -> [a]
: ContextStack
contexts }
popContext :: KateParser ()
popContext :: KateParser ()
popContext = do SyntaxState
st <- forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState
case SyntaxState -> ContextStack
synStContexts SyntaxState
st of
[([Char], [Char])
_] -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
(([Char], [Char])
_:ContextStack
xs) -> forall (m :: * -> *) u s. Monad m => (u -> u) -> ParsecT s u m ()
updateState forall a b. (a -> b) -> a -> b
$ \SyntaxState
st -> SyntaxState
st{ synStContexts :: ContextStack
synStContexts = ContextStack
xs }
[] -> forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail [Char]
"Stack empty"
currentContext :: KateParser Context
currentContext :: KateParser ([Char], [Char])
currentContext = do SyntaxState
st <- forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState
case SyntaxState -> ContextStack
synStContexts SyntaxState
st of
(([Char], [Char])
x:ContextStack
_) -> forall (m :: * -> *) a. Monad m => a -> m a
return ([Char], [Char])
x
[] -> forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail [Char]
"Stack empty"
withChildren :: KateParser Token
-> KateParser Token
-> KateParser Token
withChildren :: KateParser Token -> KateParser Token -> KateParser Token
withChildren KateParser Token
parent KateParser Token
child = do
(TokenType
pAttr, [Char]
pResult) <- KateParser Token
parent
(TokenType
_, [Char]
cResult) <- forall s (m :: * -> *) t a u.
Stream s m t =>
a -> ParsecT s u m a -> ParsecT s u m a
option (TokenType
NormalTok,[Char]
"") KateParser Token
child
forall (m :: * -> *) a. Monad m => a -> m a
return (TokenType
pAttr, [Char]
pResult forall a. [a] -> [a] -> [a]
++ [Char]
cResult)
pFirstNonSpace :: KateParser ()
pFirstNonSpace :: KateParser ()
pFirstNonSpace = do
[Char]
rest <- forall (m :: * -> *) s u. Monad m => ParsecT s u m s
getInput
Bool
prevNonspace <- forall a. (SyntaxState -> a) -> KateParser a
fromState SyntaxState -> Bool
synStPrevNonspace
forall (f :: * -> *). Alternative f => Bool -> f ()
guard forall a b. (a -> b) -> a -> b
$ Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ Bool
prevNonspace Bool -> Bool -> Bool
|| forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Char]
rest Bool -> Bool -> Bool
|| Char -> Bool
isSpace (forall a. [a] -> a
head [Char]
rest)
currentColumn :: GenParser tok st Column
currentColumn :: forall tok st. GenParser tok st Int
currentColumn = SourcePos -> Int
sourceColumn forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` forall (m :: * -> *) s u. Monad m => ParsecT s u m SourcePos
getPosition
pColumn :: Column -> GenParser tok st ()
pColumn :: forall tok st. Int -> GenParser tok st ()
pColumn Int
col = do
Int
curCol <- forall tok st. GenParser tok st Int
currentColumn
forall (f :: * -> *). Alternative f => Bool -> f ()
guard forall a b. (a -> b) -> a -> b
$ Int
col forall a. Eq a => a -> a -> Bool
== (Int
curCol forall a. Num a => a -> a -> a
- Int
1)
pGetCapture :: Int -> KateParser String
pGetCapture :: Int -> KateParser [Char]
pGetCapture Int
capNum = do
[[Char]]
captures <- forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. SyntaxState -> [[Char]]
synStCaptures
if forall (t :: * -> *) a. Foldable t => t a -> Int
length [[Char]]
captures forall a. Ord a => a -> a -> Bool
< Int
capNum
then forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail [Char]
"Not enough captures"
else forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ [[Char]]
captures forall a. [a] -> Int -> a
!! (Int
capNum forall a. Num a => a -> a -> a
- Int
1)
pDetectChar :: Bool -> Char -> KateParser String
pDetectChar :: Bool -> Char -> KateParser [Char]
pDetectChar Bool
dynamic Char
ch = do
if Bool
dynamic Bool -> Bool -> Bool
&& Char -> Bool
isDigit Char
ch
then Int -> KateParser [Char]
pGetCapture (forall a. Read a => [Char] -> a
read [Char
ch]) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall tok st a. GenParser tok st a -> GenParser tok st a
try forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s (m :: * -> *) u.
Stream s m Char =>
[Char] -> ParsecT s u m [Char]
string
else forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
ch forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. a -> [a] -> [a]
:[])
pDetect2Chars :: Bool -> Char -> Char -> KateParser [Char]
pDetect2Chars :: Bool -> Char -> Char -> KateParser [Char]
pDetect2Chars Bool
dynamic Char
ch1 Char
ch2 = forall tok st a. GenParser tok st a -> GenParser tok st a
try forall a b. (a -> b) -> a -> b
$ do
[Char
c1] <- Bool -> Char -> KateParser [Char]
pDetectChar Bool
dynamic Char
ch1
[Char
c2] <- Bool -> Char -> KateParser [Char]
pDetectChar Bool
dynamic Char
ch2
forall (m :: * -> *) a. Monad m => a -> m a
return [Char
c1, Char
c2]
pKeyword :: [Char] -> Set.Set [Char] -> KateParser [Char]
pKeyword :: [Char] -> Set [Char] -> KateParser [Char]
pKeyword [Char]
delims Set [Char]
kws = forall tok st a. GenParser tok st a -> GenParser tok st a
try forall a b. (a -> b) -> a -> b
$ do
forall s (m :: * -> *) t a u.
(Stream s m t, Show a) =>
ParsecT s u m a -> ParsecT s u m ()
notFollowedBy (forall s (m :: * -> *) u.
Stream s m Char =>
[Char] -> ParsecT s u m Char
oneOf [Char]
delims)
Char
prevChar <- forall a. (SyntaxState -> a) -> KateParser a
fromState SyntaxState -> Char
synStPrevChar
Bool
caseSensitive <- forall a. (SyntaxState -> a) -> KateParser a
fromState SyntaxState -> Bool
synStKeywordCaseSensitive
forall (f :: * -> *). Alternative f => Bool -> f ()
guard forall a b. (a -> b) -> a -> b
$ Char
prevChar forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Char]
delims
[Char]
word <- forall s (m :: * -> *) t u a.
Stream s m t =>
ParsecT s u m a -> ParsecT s u m [a]
many1 (forall s (m :: * -> *) u.
Stream s m Char =>
[Char] -> ParsecT s u m Char
noneOf [Char]
delims)
let word' :: [Char]
word' = if Bool
caseSensitive
then [Char]
word
else forall a b. (a -> b) -> [a] -> [b]
map Char -> Char
toLower [Char]
word
if [Char]
word' forall a. Ord a => a -> Set a -> Bool
`Set.member` Set [Char]
kws
then forall (m :: * -> *) a. Monad m => a -> m a
return [Char]
word
else forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail [Char]
"Keyword not in list"
pString :: Bool -> [Char] -> KateParser String
pString :: Bool -> [Char] -> KateParser [Char]
pString Bool
dynamic [Char]
str =
if Bool
dynamic
then [Char] -> KateParser [Char]
subDynamic [Char]
str forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall tok st a. GenParser tok st a -> GenParser tok st a
try forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s (m :: * -> *) u.
Stream s m Char =>
[Char] -> ParsecT s u m [Char]
string
else forall tok st a. GenParser tok st a -> GenParser tok st a
try forall a b. (a -> b) -> a -> b
$ forall s (m :: * -> *) u.
Stream s m Char =>
[Char] -> ParsecT s u m [Char]
string [Char]
str
pAnyChar :: [Char] -> KateParser [Char]
pAnyChar :: [Char] -> KateParser [Char]
pAnyChar [Char]
chars = forall s (m :: * -> *) u.
Stream s m Char =>
[Char] -> ParsecT s u m Char
oneOf [Char]
chars forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. a -> [a] -> [a]
:[])
pDefault :: KateParser [Char]
pDefault :: KateParser [Char]
pDefault = (forall a. a -> [a] -> [a]
:[]) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` forall s (m :: * -> *) u. Stream s m Char => ParsecT s u m Char
anyChar
subDynamic :: [Char] -> KateParser [Char]
subDynamic :: [Char] -> KateParser [Char]
subDynamic (Char
'%':Char
x:[Char]
xs) | Char -> Bool
isDigit Char
x = do
[[Char]]
captures <- forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. SyntaxState -> [[Char]]
synStCaptures
let capNum :: Int
capNum = forall a. Read a => [Char] -> a
read [Char
x]
let escapeRegexChar :: Char -> [Char]
escapeRegexChar Char
c | Char
c forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Char]
"^$\\[](){}*+.?" = [Char
'\\',Char
c]
| Bool
otherwise = [Char
c]
let escapeRegex :: [Char] -> [Char]
escapeRegex = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Char -> [Char]
escapeRegexChar
let replacement :: [Char]
replacement = if forall (t :: * -> *) a. Foldable t => t a -> Int
length [[Char]]
captures forall a. Ord a => a -> a -> Bool
< Int
capNum
then [Char
'%',Char
x]
else [[Char]]
captures forall a. [a] -> Int -> a
!! (Int
capNum forall a. Num a => a -> a -> a
- Int
1)
[Char] -> KateParser [Char]
subDynamic [Char]
xs forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. ([Char] -> [Char]
escapeRegex [Char]
replacement forall a. [a] -> [a] -> [a]
++)
subDynamic (Char
x:[Char]
xs) = [Char] -> KateParser [Char]
subDynamic [Char]
xs forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Char
xforall a. a -> [a] -> [a]
:)
subDynamic [Char]
"" = forall (m :: * -> *) a. Monad m => a -> m a
return [Char]
""
convertOctal :: String -> String
convertOctal :: [Char] -> [Char]
convertOctal [] = [Char]
""
convertOctal (Char
'\\':Char
'0':Char
x:Char
y:Char
z:[Char]
rest)
| forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
isOctalDigit [Char
x,Char
y,Char
z] = Char
'\\'forall a. a -> [a] -> [a]
:Char
xforall a. a -> [a] -> [a]
:Char
yforall a. a -> [a] -> [a]
:Char
zforall a. a -> [a] -> [a]
: [Char] -> [Char]
convertOctal [Char]
rest
convertOctal (Char
'\\':Char
x:Char
y:Char
z:[Char]
rest)
| forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
isOctalDigit [Char
x,Char
y,Char
z] =Char
'\\'forall a. a -> [a] -> [a]
:Char
xforall a. a -> [a] -> [a]
:Char
yforall a. a -> [a] -> [a]
:Char
zforall a. a -> [a] -> [a]
: [Char] -> [Char]
convertOctal [Char]
rest
convertOctal (Char
'\\':Char
'o':Char
'{':[Char]
zs) =
case forall a. (a -> Bool) -> [a] -> ([a], [a])
break (forall a. Eq a => a -> a -> Bool
==Char
'}') [Char]
zs of
([Char]
ds, Char
'}':[Char]
rest) | forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
isOctalDigit [Char]
ds Bool -> Bool -> Bool
&& Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Char]
ds) ->
case forall a. Read a => ReadS a
reads (Char
'0'forall a. a -> [a] -> [a]
:Char
'o'forall a. a -> [a] -> [a]
:[Char]
ds) of
((Int
n :: Int,[]):[(Int, [Char])]
_) -> forall r. PrintfType r => [Char] -> r
printf [Char]
"\\x{%x}" Int
n forall a. [a] -> [a] -> [a]
++ [Char] -> [Char]
convertOctal [Char]
rest
[(Int, [Char])]
_ -> forall a. HasCallStack => [Char] -> a
error forall a b. (a -> b) -> a -> b
$ [Char]
"Unable to read octal number: " forall a. [a] -> [a] -> [a]
++ [Char]
ds
([Char], [Char])
_ -> Char
'\\'forall a. a -> [a] -> [a]
:Char
'o'forall a. a -> [a] -> [a]
:Char
'{'forall a. a -> [a] -> [a]
: [Char] -> [Char]
convertOctal [Char]
zs
convertOctal (Char
x:[Char]
xs) = Char
x forall a. a -> [a] -> [a]
: [Char] -> [Char]
convertOctal [Char]
xs
isOctalDigit :: Char -> Bool
isOctalDigit :: Char -> Bool
isOctalDigit Char
c = Char
c forall a. Eq a => a -> a -> Bool
== Char
'0' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'1' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'2' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'3'
Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'4' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'5' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'6' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'7'
compileRegex :: Bool -> String -> Regex
compileRegex :: Bool -> [Char] -> Regex
compileRegex Bool
caseSensitive [Char]
regexpStr =
#ifdef _PCRE_LIGHT
let opts :: [PCREOption]
opts = [PCREOption
anchored, PCREOption
utf8] forall a. [a] -> [a] -> [a]
++ [PCREOption
caseless | Bool -> Bool
not Bool
caseSensitive]
in ByteString -> [PCREOption] -> Regex
compile ([Char] -> ByteString
fromString (Char
'.' forall a. a -> [a] -> [a]
: [Char] -> [Char]
convertOctal [Char]
regexpStr)) [PCREOption]
opts
#else
let opts = compAnchored + compUTF8 +
if caseSensitive then 0 else compCaseless
in case unsafePerformIO $ compile opts (execNotEmpty)
(fromString ('.' : convertOctal regexpStr)) of
Left e -> error $ "Error compiling regex: " ++ show regexpStr ++
"\n" ++ show e
Right r -> r
#endif
matchRegex :: Regex -> String -> KateParser (Maybe [String])
#ifdef _PCRE_LIGHT
matchRegex :: Regex -> [Char] -> KateParser (Maybe [[Char]])
matchRegex Regex
r [Char]
s = forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Maybe [ByteString] -> Maybe [[Char]]
toString' forall a b. (a -> b) -> a -> b
$ Regex -> ByteString -> [PCREExecOption] -> Maybe [ByteString]
match Regex
r ([Char] -> ByteString
fromString [Char]
s) [PCREExecOption
exec_notempty]
where toString' :: Maybe [ByteString] -> Maybe [String]
toString' :: Maybe [ByteString] -> Maybe [[Char]]
toString' (Just [ByteString]
xs) = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ByteString -> [Char]
toString [ByteString]
xs
toString' Maybe [ByteString]
Nothing = forall a. Maybe a
Nothing
#else
matchRegex r s = case unsafePerformIO (regexec r (fromString s)) of
Right (Just (_, mat, _ , capts)) -> return $
Just $ map toString (mat : capts)
Right Nothing -> return Nothing
Left matchError -> fail $ show matchError
#endif
pRegExpr :: Regex -> KateParser String
pRegExpr :: Regex -> KateParser [Char]
pRegExpr Regex
regex = do
[Char]
rest <- forall (m :: * -> *) s u. Monad m => ParsecT s u m s
getInput
Char
prevChar <- forall a. (SyntaxState -> a) -> KateParser a
fromState SyntaxState -> Char
synStPrevChar
let target :: [Char]
target = if Char
prevChar forall a. Eq a => a -> a -> Bool
== Char
'\n'
then Char
' 'forall a. a -> [a] -> [a]
:[Char]
rest
else Char
prevCharforall a. a -> [a] -> [a]
:[Char]
rest
Maybe [[Char]]
matches <- Regex -> [Char] -> KateParser (Maybe [[Char]])
matchRegex Regex
regex [Char]
target
case Maybe [[Char]]
matches of
Just ([Char]
x:[[Char]]
xs) | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Char]
x -> forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail [Char]
"Regex matched null string!"
| Bool
otherwise -> do
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [[Char]]
xs) forall a b. (a -> b) -> a -> b
$
forall (m :: * -> *) u s. Monad m => (u -> u) -> ParsecT s u m ()
updateState (\SyntaxState
st -> SyntaxState
st {synStCaptures :: [[Char]]
synStCaptures = [[Char]]
xs})
forall s (m :: * -> *) t u a.
Stream s m t =>
Int -> ParsecT s u m a -> ParsecT s u m [a]
count (forall (t :: * -> *) a. Foldable t => t a -> Int
length [Char]
x forall a. Num a => a -> a -> a
- Int
1) forall s (m :: * -> *) u. Stream s m Char => ParsecT s u m Char
anyChar
Maybe [[Char]]
_ -> forall tok st a. GenParser tok st a
pzero
pRegExprDynamic :: [Char] -> KateParser String
pRegExprDynamic :: [Char] -> KateParser [Char]
pRegExprDynamic [Char]
regexpStr = do
[Char]
regexpStr' <- [Char] -> KateParser [Char]
subDynamic [Char]
regexpStr
Bool
caseSensitive <- SyntaxState -> Bool
synStCaseSensitive forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState
Regex -> KateParser [Char]
pRegExpr forall a b. (a -> b) -> a -> b
$ Bool -> [Char] -> Regex
compileRegex Bool
caseSensitive [Char]
regexpStr'
integerRegex :: Regex
integerRegex :: Regex
integerRegex =
Bool -> [Char] -> Regex
compileRegex Bool
True [Char]
"\\b[-+]?(0[Xx][0-9A-Fa-f]+|0[Oo][0-7]+|[0-9]+)\\b"
pInt :: KateParser String
pInt :: KateParser [Char]
pInt = Regex -> KateParser [Char]
pRegExpr Regex
integerRegex
floatRegex :: Regex
floatRegex :: Regex
floatRegex = Bool -> [Char] -> Regex
compileRegex Bool
True [Char]
"\\b[-+]?(([0-9]+\\.[0-9]*|[0-9]*\\.[0-9]+)([Ee][-+]?[0-9]+)?|[0-9]+[Ee][-+]?[0-9]+)\\b"
pFloat :: KateParser String
pFloat :: KateParser [Char]
pFloat = Regex -> KateParser [Char]
pRegExpr Regex
floatRegex
octRegex :: Regex
octRegex :: Regex
octRegex = Bool -> [Char] -> Regex
compileRegex Bool
True [Char]
"\\b[-+]?0[Oo][0-7]+\\b"
pHlCOct :: KateParser String
pHlCOct :: KateParser [Char]
pHlCOct = Regex -> KateParser [Char]
pRegExpr Regex
octRegex
hexRegex :: Regex
hexRegex :: Regex
hexRegex = Bool -> [Char] -> Regex
compileRegex Bool
True [Char]
"\\b[-+]?0[Xx][0-9A-Fa-f]+\\b"
pHlCHex :: KateParser String
pHlCHex :: KateParser [Char]
pHlCHex = Regex -> KateParser [Char]
pRegExpr Regex
hexRegex
pHlCStringChar :: KateParser [Char]
pHlCStringChar :: KateParser [Char]
pHlCStringChar = forall tok st a. GenParser tok st a -> GenParser tok st a
try forall a b. (a -> b) -> a -> b
$ do
forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
'\\'
(forall s (m :: * -> *) u.
Stream s m Char =>
[Char] -> ParsecT s u m Char
oneOf [Char]
"abefnrtv\"'?\\" forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. (\Char
x -> [Char
'\\',Char
x]))
forall s u (m :: * -> *) a.
ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
<|> (do Char
a <- forall s (m :: * -> *) u.
Stream s m Char =>
(Char -> Bool) -> ParsecT s u m Char
satisfy (\Char
c -> Char
c forall a. Eq a => a -> a -> Bool
== Char
'x' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'X')
[Char]
b <- forall s (m :: * -> *) t u a.
Stream s m t =>
ParsecT s u m a -> ParsecT s u m [a]
many1 forall s (m :: * -> *) u. Stream s m Char => ParsecT s u m Char
hexDigit
forall (m :: * -> *) a. Monad m => a -> m a
return (Char
'\\'forall a. a -> [a] -> [a]
:Char
aforall a. a -> [a] -> [a]
:[Char]
b))
forall s u (m :: * -> *) a.
ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
<|> (do Char
a <- forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
'0'
[Char]
b <- forall s (m :: * -> *) t u a.
Stream s m t =>
ParsecT s u m a -> ParsecT s u m [a]
many1 forall s (m :: * -> *) u. Stream s m Char => ParsecT s u m Char
octDigit
forall (m :: * -> *) a. Monad m => a -> m a
return (Char
'\\'forall a. a -> [a] -> [a]
:Char
aforall a. a -> [a] -> [a]
:[Char]
b))
pHlCChar :: KateParser [Char]
pHlCChar :: KateParser [Char]
pHlCChar = forall tok st a. GenParser tok st a -> GenParser tok st a
try forall a b. (a -> b) -> a -> b
$ do
forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
'\''
[Char]
c <- KateParser [Char]
pHlCStringChar
forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
'\''
forall (m :: * -> *) a. Monad m => a -> m a
return (Char
'\'' forall a. a -> [a] -> [a]
: [Char]
c forall a. [a] -> [a] -> [a]
++ [Char]
"'")
pRangeDetect :: Char -> Char -> KateParser [Char]
pRangeDetect :: Char -> Char -> KateParser [Char]
pRangeDetect Char
startChar Char
endChar = forall tok st a. GenParser tok st a -> GenParser tok st a
try forall a b. (a -> b) -> a -> b
$ do
forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
startChar
[Char]
body <- forall s (m :: * -> *) t u a end.
Stream s m t =>
ParsecT s u m a -> ParsecT s u m end -> ParsecT s u m [a]
manyTill (forall s (m :: * -> *) u.
Stream s m Char =>
(Char -> Bool) -> ParsecT s u m Char
satisfy (forall a. Eq a => a -> a -> Bool
/= Char
endChar)) (forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
endChar)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Char
startChar forall a. a -> [a] -> [a]
: ([Char]
body forall a. [a] -> [a] -> [a]
++ [Char
endChar])
pLineContinue :: KateParser String
pLineContinue :: KateParser [Char]
pLineContinue = forall tok st a. GenParser tok st a -> GenParser tok st a
try forall a b. (a -> b) -> a -> b
$ do
forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
'\\'
forall s (m :: * -> *) t u.
(Stream s m t, Show t) =>
ParsecT s u m ()
eof
forall (m :: * -> *) u s. Monad m => (u -> u) -> ParsecT s u m ()
updateState forall a b. (a -> b) -> a -> b
$ \SyntaxState
st -> SyntaxState
st{ synStContinuation :: Bool
synStContinuation = Bool
True }
forall (m :: * -> *) a. Monad m => a -> m a
return [Char]
"\\"
pDetectSpaces :: KateParser [Char]
pDetectSpaces :: KateParser [Char]
pDetectSpaces = forall s (m :: * -> *) t u a.
Stream s m t =>
ParsecT s u m a -> ParsecT s u m [a]
many1 (forall s (m :: * -> *) u.
Stream s m Char =>
(Char -> Bool) -> ParsecT s u m Char
satisfy forall a b. (a -> b) -> a -> b
$ \Char
c -> Char
c forall a. Eq a => a -> a -> Bool
== Char
' ' Bool -> Bool -> Bool
|| Char
c forall a. Eq a => a -> a -> Bool
== Char
'\t')
pDetectIdentifier :: KateParser [Char]
pDetectIdentifier :: KateParser [Char]
pDetectIdentifier = do
Char
first <- forall s (m :: * -> *) u. Stream s m Char => ParsecT s u m Char
letter forall s u (m :: * -> *) a.
ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
<|> forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
'_'
[Char]
rest <- forall s u (m :: * -> *) a. ParsecT s u m a -> ParsecT s u m [a]
many (forall s (m :: * -> *) u. Stream s m Char => ParsecT s u m Char
alphaNum forall s u (m :: * -> *) a.
ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
<|> forall s (m :: * -> *) u.
Stream s m Char =>
Char -> ParsecT s u m Char
char Char
'_')
forall (m :: * -> *) a. Monad m => a -> m a
return (Char
firstforall a. a -> [a] -> [a]
:[Char]
rest)
fromState :: (SyntaxState -> a) -> KateParser a
fromState :: forall a. (SyntaxState -> a) -> KateParser a
fromState SyntaxState -> a
f = SyntaxState -> a
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState
mkParseSourceLine :: KateParser Token
-> String
-> State SyntaxState SourceLine
mkParseSourceLine :: KateParser Token -> [Char] -> State SyntaxState [Token]
mkParseSourceLine KateParser Token
parseExpression [Char]
ln = do
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify forall a b. (a -> b) -> a -> b
$ \SyntaxState
st -> SyntaxState
st{ synStLineNumber :: Int
synStLineNumber = SyntaxState -> Int
synStLineNumber SyntaxState
st forall a. Num a => a -> a -> a
+ Int
1 }
SyntaxState
st <- forall s (m :: * -> *). MonadState s m => m s
get
let lineName :: [Char]
lineName = [Char]
"line " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> [Char]
show (SyntaxState -> Int
synStLineNumber SyntaxState
st)
let pline :: ParsecT [Char] SyntaxState Identity (SyntaxState, [Token])
pline = do [Token]
ts <- forall s (m :: * -> *) t u a end.
Stream s m t =>
ParsecT s u m a -> ParsecT s u m end -> ParsecT s u m [a]
manyTill KateParser Token
parseExpression forall s (m :: * -> *) t u.
(Stream s m t, Show t) =>
ParsecT s u m ()
eof
SyntaxState
s <- forall (m :: * -> *) s u. Monad m => ParsecT s u m u
getState
forall (m :: * -> *) a. Monad m => a -> m a
return (SyntaxState
s, [Token]
ts)
let (SyntaxState
newst, [Token]
result) = case forall tok st a.
GenParser tok st a -> st -> [Char] -> [tok] -> Either ParseError a
runParser ParsecT [Char] SyntaxState Identity (SyntaxState, [Token])
pline SyntaxState
st [Char]
lineName [Char]
ln of
Left ParseError
_ -> (SyntaxState
st, [(TokenType
ErrorTok,[Char]
ln)])
Right (SyntaxState
s,[Token]
r) -> (SyntaxState
s,[Token]
r)
forall s (m :: * -> *). MonadState s m => s -> m ()
put forall a b. (a -> b) -> a -> b
$! SyntaxState
newst
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! [Token] -> [Token]
normalizeHighlighting [Token]
result