Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
GHC.Data.BooleanFormula
Description
Boolean formulas without quantifiers and without negation. Such a formula consists of variables, conjunctions (and), and disjunctions (or).
This module is used to represent minimal complete definitions for classes.
Documentation
data BooleanFormula a Source #
Constructors
Var a | |
And [LBooleanFormula a] | |
Or [LBooleanFormula a] | |
Parens (LBooleanFormula a) |
Instances
Foldable BooleanFormula Source # | |
Defined in GHC.Data.BooleanFormula Methods fold :: Monoid m => BooleanFormula m -> m foldMap :: Monoid m => (a -> m) -> BooleanFormula a -> m # foldMap' :: Monoid m => (a -> m) -> BooleanFormula a -> m foldr :: (a -> b -> b) -> b -> BooleanFormula a -> b # foldr' :: (a -> b -> b) -> b -> BooleanFormula a -> b foldl :: (b -> a -> b) -> b -> BooleanFormula a -> b # foldl' :: (b -> a -> b) -> b -> BooleanFormula a -> b # foldr1 :: (a -> a -> a) -> BooleanFormula a -> a # foldl1 :: (a -> a -> a) -> BooleanFormula a -> a # toList :: BooleanFormula a -> [a] null :: BooleanFormula a -> Bool # length :: BooleanFormula a -> Int # elem :: Eq a => a -> BooleanFormula a -> Bool # maximum :: Ord a => BooleanFormula a -> a # minimum :: Ord a => BooleanFormula a -> a # sum :: Num a => BooleanFormula a -> a # product :: Num a => BooleanFormula a -> a # | |
Traversable BooleanFormula Source # | |
Defined in GHC.Data.BooleanFormula Methods traverse :: Applicative f => (a -> f b) -> BooleanFormula a -> f (BooleanFormula b) # sequenceA :: Applicative f => BooleanFormula (f a) -> f (BooleanFormula a) # mapM :: Monad m => (a -> m b) -> BooleanFormula a -> m (BooleanFormula b) # sequence :: Monad m => BooleanFormula (m a) -> m (BooleanFormula a) # | |
Functor BooleanFormula Source # | |
Defined in GHC.Data.BooleanFormula Methods fmap :: (a -> b) -> BooleanFormula a -> BooleanFormula b # (<$) :: a -> BooleanFormula b -> BooleanFormula a # | |
Data a => Data (BooleanFormula a) Source # | |
Defined in GHC.Data.BooleanFormula Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BooleanFormula a -> c (BooleanFormula a) gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (BooleanFormula a) toConstr :: BooleanFormula a -> Constr dataTypeOf :: BooleanFormula a -> DataType dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (BooleanFormula a)) dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (BooleanFormula a)) gmapT :: (forall b. Data b => b -> b) -> BooleanFormula a -> BooleanFormula a gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r gmapQ :: (forall d. Data d => d -> u) -> BooleanFormula a -> [u] gmapQi :: Int -> (forall d. Data d => d -> u) -> BooleanFormula a -> u gmapM :: Monad m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) | |
Binary a => Binary (BooleanFormula a) Source # | |
Defined in GHC.Data.BooleanFormula Methods put_ :: BinHandle -> BooleanFormula a -> IO () Source # put :: BinHandle -> BooleanFormula a -> IO (Bin (BooleanFormula a)) Source # | |
OutputableBndr a => Outputable (BooleanFormula a) Source # | |
Defined in GHC.Data.BooleanFormula Methods ppr :: BooleanFormula a -> SDoc Source # | |
Eq a => Eq (BooleanFormula a) Source # | |
Defined in GHC.Data.BooleanFormula Methods (==) :: BooleanFormula a -> BooleanFormula a -> Bool # (/=) :: BooleanFormula a -> BooleanFormula a -> Bool # |
type LBooleanFormula a = LocatedL (BooleanFormula a) Source #
mkFalse :: BooleanFormula a Source #
mkTrue :: BooleanFormula a Source #
mkAnd :: Eq a => [LBooleanFormula a] -> BooleanFormula a Source #
mkOr :: Eq a => [LBooleanFormula a] -> BooleanFormula a Source #
mkVar :: a -> BooleanFormula a Source #
isFalse :: BooleanFormula a -> Bool Source #
isTrue :: BooleanFormula a -> Bool Source #
simplify :: Eq a => (a -> Maybe Bool) -> BooleanFormula a -> BooleanFormula a Source #
isUnsatisfied :: Eq a => (a -> Bool) -> BooleanFormula a -> Maybe (BooleanFormula a) Source #
implies :: Uniquable a => BooleanFormula a -> BooleanFormula a -> Bool Source #
impliesAtom :: Eq a => BooleanFormula a -> a -> Bool Source #
pprBooleanFormula :: (Rational -> a -> SDoc) -> Rational -> BooleanFormula a -> SDoc Source #
pprBooleanFormulaNice :: Outputable a => BooleanFormula a -> SDoc Source #