
An Interface for
using polymake in

GAP

(Version 0.8.1)

Marc Roeder

Marc Roeder Email: marc_roeder(at)web.de

Address: Marc Roeder, Department of Mathematics, NUI

Galway, Irleland

mailto://marc_roeder(at)web.de

An Interface for using polymake in GAP 2

Abstract

This package provides a very basic interface to the polymake program by Ewgenij Gawrilow, Michael Joswig

et al. [GJ]. The polymake program itself is not included.

Copyright

© 2007�2013 Marc Roeder.

This package is distributed under the terms of the GNU General Public License version 2 or later (at your

convenience). See the �le "LICENSE.txt" or http://www.gnu.org/copyleft/gpl.html

Acknowledgements

This work has been supported by Marie Curie Grant No. MTKD-CT-2006-042685

 http://www.gnu.org/copyleft/gpl.html

Contents

1 Installation and Preface 4

1.1 A few words about the installation of polymake . 4

1.2 Setting variables for external programs . 4

2 Polymake interaction 6

2.1 Creating Polymake Objects . 6

2.2 Accessing Properties of Polymake Objects . 7

2.3 Example: Creating and Accessing Polymake Objects 8

2.4 Writing to Polymake Objects . 9

2.5 Calling Polymake and converting its output . 10

2.6 An Example . 11

3 Global Variables 13

3.1 Getting information about polymake output . 13

3.2 Variables for system interaction . 13

4 Converting Polymake Output 15

4.1 The General Method . 15

4.2 Conversion Functions . 16

References 19

Index 20

3

Chapter 1

Installation and Preface

To install the package, just unpack it in your packages directory (usually ~/gap/pkg for lo-

cal installation). To use polymaking, you need a working installation of the program polymake

http://www.math.tu-berlin.de/polymake/. The package has been tested on linux and Mac OS

X (10.4, 10.5 and 10.6). But it should be as platform independent as GAP and polymake.

The interaction with polymake is restricted to writing �les and carrying out simple operations

looking like

polymake file KEYWORD1 KEYWORD2 KEYWORD3

on the command line. Scripts are not supported. Every call to polymake will re-start the program

anew. This causes considerable overhead. The number of calls to polymake is reduced by caching

the results in the so-called PolymakeObject in GAP. As of polymaking version 0.8.0, old versions of

polymake (i.e. versions before 2.7.9) are not supported anymore.

1.1 A few words about the installation of polymake

polymaking will try to guess the location of polymake. If this fails, a warning is issued at load time

(InfoWarning level 1). Note that the guessing procedure is suppressed when POLYMAKE_COMMAND

(3.2.1) is set manually (see 1.2.3).

setenv PATH ${PATH}:<your polymakepath>

The general rule is: If polymaking �nds polymake by itself, there is nothing to worry about.

1.2 Setting variables for external programs

As polymaking uses the program polymake, it needs to know where this program lives. The commu-

nication with polymake is done by writing �les for polymake and reading its output (as returned to

standard output "the prompt"). Note that the interface does not read any polymake �le.

1.2.1 SetPolymakeDataDirectory

. SetPolymakeDataDirectory(dir) (method)

Sets the directory in which all polymake �les are created to dir . The standard place for

these �les is a temporary directory generated when the package is loaded. This manipulates

POLYMAKE_DATA_DIR (3.2.2).

4

http://www.math.tu-berlin.de/polymake/

An Interface for using polymake in GAP 5

1.2.2 SetPolymakeCommand

. SetPolymakeCommand(command) (method)

Sets the name for the polymake program to command . This manipulates POLYMAKE_COMMAND

(3.2.1).

1.2.3 Setting variables permanently

To permanently set the values of POLYMAKE_COMMAND (3.2.1), and POLYMAKE_DATA_DIR (3.2.2), add

the lines

POLYMAKE_DATA_DIR:=Directory("/home/mypolymakedatadir");

POLYMAKE_COMMAND:=Filename(Directory("/home/mypolymakebindir/"),"polymake");

to your .gaprc �le (see The .gaprc �le???). Note that these have to be before the

LoadPackage("polymaking"); line. Or you can change the values of the above variables by editing

lib/environment.gi

Chapter 2

Polymake interaction

2.1 Creating Polymake Objects

The interaction with the polymake program is done via �les. A PolymakeObject is mainly a pointer

to a �le and a list of known properties of the object. These properties need not be stored in the

�le. Whenever polymake is called, the returned value is read from standard output and stored in the

PolymakeObject corresponding to the �le for which polymake is called. The �les for polymake

are written in the old (non-xml) format. The �rst run of polymake converts them into the new (xml)

format. This means that changes to the �le by means of the methods outlined below after the �rst run

of polymake will probably lead to corrupted �les.

2.1.1 CreateEmptyFile

. CreateEmptyFile(filename) (method)

Returns: nothing

Creates an empty �le with name filename . Note that filename has to include the full path and

the directory for the �le must exist.

2.1.2 CreatePolymakeObject

. CreatePolymakeObject() (method)

. CreatePolymakeObject(appvertyp) (method)

. CreatePolymakeObject(dir) (method)

. CreatePolymakeObject(dir, appvertyp) (method)

. CreatePolymakeObject(prefix, dir) (method)

. CreatePolymakeObject(prefix, dir, appvertyp) (method)

Returns: PolymakeObject

If called without arguments, this method generates an empty �le in the directory de�ned by

POLYMAKE_DATA_DIR (3.2.2). If a directory dir is given (this directory must exist), an empty �le

is generated in this directory. If prefix is not given, the �le is called polyN where N is the current

runtime. If a �le of this name already exists, a number is appended separated by a dot (example:

"poly1340" and "poly1340.1"). If prefix is given, the �lename starts with this pre�x. Option-

ally, the �le can be generated with a header specifying application, version and type of the object.

This is done by passing the triple of strings appvertyp to CreatePolymakeObject. A valid triple

6

An Interface for using polymake in GAP 7

is ["polytope","2.3","RationalPolytope"]. Validity is checked by CheckAppVerTypList

(2.1.3).

2.1.3 CheckAppVerTypList

. CheckAppVerTypList(appvertyp) (method)

Returns: bool

Checks if the triple arppvertyp of strings speci�es an application and type of

polymake version 2.3. More speci�cally, the �rst entry has to be an application from

["polytope","surface","topaz"] and the third entry has to be a type corresponding to

the application given in the �rst entry. The second entry is not checked.

2.1.4 CreatePolymakeObjectFromFile

. CreatePolymakeObjectFromFile(filename) (method)

. CreatePolymakeObjectFromFile(dir, filename) (method)

Returns: PolymakeObject

This method generates a PolymakeObject corresponding to the �le filename in the directory

dir . If dir is not given, the POLYMAKE_DATA_DIR is used.If no �le with name filename exists in

dir (or POLYMAKE_DATA_DIR, respectively), an empty �le is created. Note that the contents of the

�le do not matter for the generation of the object. In particular, the object does not know any of

the properties that might be encoded in the �le. The only way to transfer information from �les to

PolymakeObjects is via Polymake (2.5.1).

2.2 Accessing Properties of Polymake Objects

A PolymakeObject contains information about the directory of its �le, the name of its �le and about

properties calculated by calling Polymake (2.5.1). The properties returned by the polymake pro-

gram are stored under the name polymake assigns to them (that is, the name of the data block in

the corresponding �le). The following methods can be used to access the information stored in a

PolymakeObject. But be careful! All functions return the actual object. No copies are made. So if

you change one of the returned objects, you change the PolymakeObject itself.

2.2.1 DirectoryOfPolymakeObject

. DirectoryOfPolymakeObject(poly) (method)

Returns: Directory

Returns the directory of the �le associated with poly .

2.2.2 FilenameOfPolymakeObject

. FilenameOfPolymakeObject(poly) (method)

Returns: String

Returns the name of the �le associated with poly . This does only mean the name of the �le, not

the full path. For the full path and �le name see FullFilenameOfPolymakeObject (2.2.3)

An Interface for using polymake in GAP 8

2.2.3 FullFilenameOfPolymakeObject

. FullFilenameOfPolymakeObject(poly) (method)

Returns: String

Returns the �le associated with the PolymakeObject poly with its complete path.

2.2.4 NamesKnownPropertiesOfPolymakeObject

. NamesKnownPropertiesOfPolymakeObject(poly) (method)

Returns: List of Strings

Returns a list of the names of all known properties. This does only include the properties returned

by Polymake (2.5.1), "dir" and "filename" are not included. If no properties are known, fail is

returned.

2.2.5 KnownPropertiesOfPolymakeObject

. KnownPropertiesOfPolymakeObject(poly) (method)

Returns: Record

Returns the record of all known properties. If no properties are known, fail is returned.

2.2.6 PropertyOfPolymakeObject

. PropertyOfPolymakeObject(poly, name) (method)

Returns the value of the property name if it is known. If the value is not known, fail is returned.

name must be a String.

2.3 Example: Creating and Accessing Polymake Objects

Suppose the �le /tmp/threecube.poly contains the three dimensional cube in polymake form. Now

generate a PolymakeObject from this �le and call Polymake (2.5.1) to make the vertices of the cube

known to the object.
Example

suppose we have a polymake file /tmp/threecube.poly

containing a cube in three dimensions

gap> cube:=CreatePolymakeObjectFromFile(Directory("/tmp"),"threecube.poly");

<polymake object. No properties known>

gap> FilenameOfPolymakeObject(cube);

"threecube.poly"

gap> FullFilenameOfPolymakeObject(cube);

"/tmp/threecube.poly"

#nothing is known about the cube:

gap> NamesKnownPropertiesOfPolymakeObject(cube);

fail

gap> Polymake(cube,"VERTICES");

[[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1], [-1, -1, 1],

[1, -1, 1], [-1, 1, 1], [1, 1, 1]]

Now <cube> knows its vertices:

gap> Print(cube);

An Interface for using polymake in GAP 9

<polymake object threecube.poly. Properties known: ["VERTICES"]>

gap> PropertyOfPolymakeObject(cube,"VERTICES");

[[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1], [-1, -1, 1],

[1, -1, 1], [-1, 1, 1], [1, 1, 1]]

gap> KnownPropertiesOfPolymakeObject(cube);

rec(

VERTICES := [[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],

[-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]])

2.4 Writing to Polymake Objects

To transfer data from GAP to polymake, the following methods can be used. But bear in mind that

none of these functions test if the resulting polymake �le is still consistent.

2.4.1 AppendToPolymakeObject

. AppendToPolymakeObject(poly, string) (method)

Returns: nothing

This appends the string string to the �le associated to the PolymakeObject poly . It is not

tested if the string is syntactically correct as a part of a polymake �le. It is also not tested if the string

is compatible with the data already contained in the �le.

INEQUALITIES, POINTS and VERTICES can be appended to a polymake object using the fol-

lowing functions:

2.4.2 AppendPointlistToPolymakeObject

. AppendPointlistToPolymakeObject(poly, pointlist) (method)

Returns: nothing

Takes a list pointlist of vectors and converts it into a string which represents a polymake block

labeled "POINTS". This string is then added to the �le associated with poly . The "POINTS" block of

the �le associated with poly then contains points with leading ones, as polymake uses af�ne notation.

2.4.3 AppendVertexlistToPolymakeObject

. AppendVertexlistToPolymakeObject(poly, pointlist) (method)

Returns: nothing

Does the same as AppendPointlistToPolymakeObject, but with "VERTICES" instead of

"POINTS".

2.4.4 AppendInequalitiesToPolymakeObject

. AppendInequalitiesToPolymakeObject(poly, ineqlist) (method)

Returns: nothing

Just appends the inequalities given in ineqlist to the polymake object poly (with caption "IN-

EQUALITIES"). Note that this does not check if an "INEQUALITIES" section does already exist in

the �le associated with poly .

An Interface for using polymake in GAP 10

2.4.5 ConvertMatrixToPolymakeString

. ConvertMatrixToPolymakeString(name, matrix) (method)

Returns: String

This function takes a matrix matrix and converts it to a string. This string can then be appended

to a polymake �le via AppendToPolymakeObject (2.4.1) to form a block of data labeled name . This

may be used to write blocks like INEQUALITIES or FACETS.

2.4.6 ClearPolymakeObject

. ClearPolymakeObject(poly) (method)

. ClearPolymakeObject(poly, appvertyp) (method)

Returns: nothing

Deletes all known properties of the PolymakeObject poly and replaces its �le with an empty

one.

If the triple of strings appvertyp specifying application, version and type (see CheckAppVerTypList

(2.1.3)) is given, the �le is replaced with a �le that contains only a header specifying application,

version and type of the polymake object.

There are also methods to manipulate the known values without touching the �le of the

PolymakeObject:

2.4.7 WriteKnownPropertyToPolymakeObject

. WriteKnownPropertyToPolymakeObject(poly, name, data) (method)

Takes the object data and writes it to the known properties section of the PolymakeObject poly .

The string name is used as the name of the property. If a property with that name already exists, it is

overwritten. Again, there is no check if data is consistent, correct or meaningful.

2.4.8 UnbindKnownPropertyOfPolymakeObject

. UnbindKnownPropertyOfPolymakeObject(poly, name) (method)

If the PolymakeObject poly has a property with name name , that property is unbound. If there

is no such property, fail is returned.

2.5 Calling Polymake and converting its output

2.5.1 Polymake

. Polymake(poly, option[, PolymakeNolookup]) (method)

This method calls the polymake program (see POLYMAKE_COMMAND (3.2.1)) with the option

option . You may use several keywords such as "FACETS VERTICES" as an option. The returned

value is cut into blocks starting with keywords (which are taken from output and not looked up in

option). Each block is then interpreted and translated into GAP readable form. This translation is

done using the functions given in ObjectConverters (4.1.4). The �rst line of each block of poly-

make output is taken as a keyword and the according entry in ObjectConverters (4.1.4) is called

An Interface for using polymake in GAP 11

to convert the block into GAP readable form. If no conversion function is known, an info string is

printed and fail is returned. If only one keyword has been given as option , Polymake returns the

result of the conversion operation. If more than one keyword has been given or the output consists of

more than one block, Polymake returns fail. In any case, the calculated values for each block are

stored as known properties of the PolymakeObject poly as long as they are not fail. If Polymake

is called with an option that corresponds to a name of a known property of poly , the known property

is returned. In this case, there is no call of the external program. (see below for suppression of this

feature).

Note that the command Polymake returns fail if nothing is returned by the program

polymake or more than one block of data is returned. For example, the returned value of

Polymake(poly,"VISUAL") is always fail. Likewise, Polymake(poly,"POINTS VERTICES")

will return fail (but may add new known properties to poly). For a description of the conversion

functions, see chapter 4.

If the option PolymakeNolookup is set to anything else than false, the polymake program is called

even if poly already has a known property with name option .

Note that whenever Polymake (2.5.1) returns fail, a description of the problem is stored in

POLYMAKE_LAST_FAIL_REASON (3.1.2). If you call Polymake (2.5.1) with more than one keyword,

POLYMAKE_LAST_FAIL_REASON (3.1.2) is changed before polymake is called. So any further reason

to return fail will overwrite it.

2.6 An Example

Let's generate a three dimensional permutahedron.

Example

gap> S:=SymmetricGroup(3);

Sym([1 .. 3])

gap> v:=[1,2,3];

[1, 2, 3]

gap> points:=Orbit(S,v,Permuted);;

gap> permutahedron:=CreatePolymakeObject();

<polymake object. No properties known>

gap> AppendPointlistToPolymakeObject(permutahedron,points);

gap> Polymake(permutahedron,"VOLUME");

3

gap> Polymake(permutahedron,"N_VERTICES");

6

#Now <permutahedron> knows its number of vertices, but not the vertices:

gap> PropertyOfPolymakeObject(permutahedron,"VERTICES");

fail

gap> NamesKnownPropertiesOfPolymakeObject(permutahedron);

["VOLUME", "N_VERTICES"]

#Let's look at the object!

gap> Polymake(permutahedron,"VISUAL");

#I There was no or wrong polymake output

fail

gap> Polymake(permutahedron,"DIM");

2

An Interface for using polymake in GAP 12

Chapter 3

Global Variables

3.1 Getting information about polymake output

3.1.1 InfoPolymaking

. InfoPolymaking (info class)

If set to at least 2, the output of polymake is shown. At level 1, warnings are shown. This is the

default. And at level 0, the polymake package remains silent.

3.1.2 POLYMAKE_LAST_FAIL_REASON

. POLYMAKE_LAST_FAIL_REASON (global variable)

Contains a string that explains the last occurence of fail as a return value of Polymake (2.5.1).

3.2 Variables for system interaction

The variables for interaction with the system are contained in the �le environment.gi. Each of

these variables has a function to set it, see 1.2. If POLYMAKE_COMMAND or POLYMAKE_DATA_DIR are

set at startup, they are not overwritten. So if you don't want (or don't have the rights) to modify

environment.gi, you can set the variables in your .gaprc �le.

3.2.1 POLYMAKE_COMMAND

. POLYMAKE_COMMAND (global variable)

This variable should contain the name of the polymake program in the form as returned by

Filename So a probable value is Filename(Directory("/usr/local/bin"),"polymake").

3.2.2 POLYMAKE_DATA_DIR

. POLYMAKE_DATA_DIR (global variable)

13

An Interface for using polymake in GAP 14

In this directory the �les for polymake will be created. By default, this generates a temporary

directory using DirectoryTemporary

Chapter 4

Converting Polymake Output

4.1 The General Method

When polymake is called, its output is read as a string and then processed as follows:

1. the lines containing upper case letters are found. These are treated as lines containing the

keywords. Each of those lines marks the beginning of a block of data.

2. The string is then cut into a list of blocks (also strings). Each block starts with a line containing

the keyword and continues with some lines of data.

3. for each of the blocks, the appropriate function of ObjectConverters is called. Here "appro-

priate" just means, that the keyword of the block coincides with the name of the function.

4. The output of the conversion function is then added to the known properties of the

PolymakeObject for which Polymake was called.

4.1.1 Converter- Philosopy

The converter functions should take meaningful polymake data into meaningful GAP data. This

sometimes means that the (mathematical) representation is changed. Here is an example: polymake

writes vectors as augmented af�ne vectors of the form 1 a1 a2 a3... which does not go very

well with the usual GAP conventions of column vectors and multiplying matrices from the right. So

polymaking converts such a vector to [a1,a2,a3,...] and the user is left with the problem of

augmentation and left or right multiplication.

Another area where the GAP object isn't a literal translation from the polymake world is combi-

natorics. In Polymake, list elements are enumerated starting from 0. GAP enumerates lists starting

at 1. So the conversion process adds 1 to the numbers corresponding to vertices in facet lists, for

example.

The conversion process is done by the following methods:

4.1.2 ConvertPolymakeOutputToGapNotation

. ConvertPolymakeOutputToGapNotation(string) (method)

Returns: Record having polymake keywords as entry names and the respective converted poly-

make output as entries.

15

An Interface for using polymake in GAP 16

Given a the output of the polymake program as a string string , this method �rst calls

SplitPolymakeOutputStringIntoBlocks (4.1.3). For each of the returned blocks, the name

(=�rst line) of the block is read and the record ObjectConverters (4.1.4) is looked up for an

entry with that name. If such an entry exists, it (being a function!) is called and passed the

block. The returned value is then given the name of the block and added to the record returned

by ConvertPolymakeOutputToGapNotation.

4.1.3 SplitPolymakeOutputStringIntoBlocks

. SplitPolymakeOutputStringIntoBlocks(string) (method)

Returns: List of strings � "blocks"�

The string string is cut at the lines starting with an upper case character and consisting only of

upper case letters, numbers and underscore (_) characters. The parts are returned as a list of strings.

The initial string string remains unchanged.

4.1.4 ObjectConverters

. ObjectConverters (global variable)

The entries of this record are labeled by polymake keywords. Each of the entries is a function

which converts a string returned by polymake to GAP format. So far, only a few converters are

implemented. To see which, try RecNames(ObjectConverters);

You can de�ne new converters using the basic functions described in section 4.2.

4.2 Conversion Functions

The following functions are used for the functions in ObjectConverters (4.1.4).

4.2.1 ConvertPolymakeNumber

. ConvertPolymakeNumber(string) (method)

The string string is converted to a rational number. Unlike Rat, it tests, if the number repre-

sented by string is a �oating point number an converts it correctly. If this is the case, a waring is

issued.

4.2.2 ConvertPolymakeScalarToGAP

. ConvertPolymakeScalarToGAP(list) (method)

If list contains a single string, this string is converted into a number using

ConvertPolymakeNumber (4.2.1).

4.2.3 ConvertPolymakeMatrixOrListOfSetsToGAP

. ConvertPolymakeMatrixOrListOfSetsToGAP(list) (method)

. ConvertPolymakeMatrixOrListOfSetsToGAPPlusOne(list) (method)

An Interface for using polymake in GAP 17

Tries to decide if the list list of strings represents a matrix or a list of sets

by testing if they start with "{". It then calls either ConvertPolymakeMatrixToGAP

(4.2.4) or ConvertPolymakeListOfSetsToGAP (4.2.8). The "PlusOne" version calls

ConvertPolymakeListOfSetsToGAPPlusOne (4.2.8) if list represents a list of sets.

4.2.4 ConvertPolymakeMatrixToGAP

. ConvertPolymakeMatrixToGAP(list) (method)

. ConvertPolymakeMatrixToGAPKillOnes(list) (method)

The list list of strings is interpreted as a list of row vectors and converted into a matrix. The

"KillOnes" version removes the leading ones.

4.2.5 ConvertPolymakeVectorToGAP

. ConvertPolymakeVectorToGAP(list) (method)

. ConvertPolymakeVectorToGAPKillOne(list) (method)

. ConvertPolymakeIntVectorToGAPPlusOne(list) (method)

As the corresponding "Matrix" version. Just for vectors.

ConvertPolymakeIntVectorToGAPPlusOne requires the vector to contain integers. It also

adds 1 to every entry.

4.2.6 ConvertPolymakeBoolToGAP

. ConvertPolymakeBoolToGAP(list) (method)

If list contains a single string, which is either 0,false,1, or true this function returns false or

true, respectively.

4.2.7 ConvertPolymakeSetToGAP

. ConvertPolymakeSetToGAP(list) (method)

Let list be a list containing a single string, which is a list of numbers separated by whitespaces

and enclosed by { and } . The returned value is then a set of rational numbers (in the GAP sense).

4.2.8 ConvertPolymakeListOfSetsToGAP

. ConvertPolymakeListOfSetsToGAP(list) (method)

. ConvertPolymakeListOfSetsToGAPPlusOne(list) (method)

Let list be a list containing several strings representing sets. Then each of these strings is

converted to a set of rational numbers and the returned value is the list of all those sets. The "PlusOne"

version adds 1 to every entry.

An Interface for using polymake in GAP 18

4.2.9 ConvertPolymakeGraphToGAP

. ConvertPolymakeGraphToGAP(list) (method)

Let list be a list of strings representing sets (that is, a list of integers enclosed by { and }). Then

a record is returned containing two sets named .vertices and .edges.

References

[GJ] Ewgenij Gawrilow and Michael Joswig. polymake. http://polymake.org/. 2

19

Index

AppendInequalitiesToPolymakeObject, 9

AppendPointlistToPolymakeObject, 9

AppendToPolymakeObject, 9

AppendVertexlistToPolymakeObject, 9

CheckAppVerTypList, 7

ClearPolymakeObject, 10

ConvertMatrixToPolymakeString, 10

ConvertPolymakeBoolToGAP, 17

ConvertPolymakeGraphToGAP, 18

ConvertPolymakeIntVectorToGAPPlusOne,

17

ConvertPolymakeListOfSetsToGAP, 17

ConvertPolymakeListOfSetsToGAPPlusOne,

17

ConvertPolymakeMatrixOrListOfSets-

ToGAP, 16

ConvertPolymakeMatrixOrListOfSetsToGA-

PPlusOne, 16

ConvertPolymakeMatrixToGAP, 17

ConvertPolymakeMatrixToGAPKillOnes, 17

ConvertPolymakeNumber, 16

ConvertPolymakeOutputToGapNotation, 15

ConvertPolymakeScalarToGAP, 16

ConvertPolymakeSetToGAP, 17

ConvertPolymakeVectorToGAP, 17

ConvertPolymakeVectorToGAPKillOne, 17

CreateEmptyFile, 6

CreatePolymakeObject, 6

CreatePolymakeObjectFromFile, 7

DirectoryOfPolymakeObject, 7

FilenameOfPolymakeObject, 7

FullFilenameOfPolymakeObject, 8

InfoPolymaking, 13

KnownPropertiesOfPolymakeObject, 8

NamesKnownPropertiesOfPolymakeObject, 8

ObjectConverters, 16

Polymake, 10

POLYMAKE_COMMAND, 13

POLYMAKE_DATA_DIR, 13

POLYMAKE_LAST_FAIL_REASON, 13

PropertyOfPolymakeObject, 8

SetPolymakeCommand, 5

SetPolymakeDataDirectory, 4

SplitPolymakeOutputStringIntoBlocks, 16

UnbindKnownPropertyOfPolymakeObject, 10

WriteKnownPropertyToPolymakeObject, 10

20

	Installation and Preface
	A few words about the installation of polymake
	Setting variables for external programs

	Polymake interaction
	Creating Polymake Objects
	Accessing Properties of Polymake Objects
	Example: Creating and Accessing Polymake Objects
	Writing to Polymake Objects
	Calling Polymake and converting its output
	An Example

	Global Variables
	Getting information about polymake output
	Variables for system interaction

	Converting Polymake Output
	The General Method
	Conversion Functions

	References
	Index

