JupyterViz

Visualization Tools for Jupyter and the
GAP REPL

1.5.1

28 March 2019
Nathan Carter

Nathan Carter
Email: ncarter@bentley.edu

Homepage: http://nathancarter.github.io

Address: 175 Forest St.
Waltham, MA 02452
USA

mailto://ncarter@bentley.edu
http://nathancarter.github.io

Contents

Introduction

1.1 Purpose
1.2 Terminology (What is a Graph?) . . .
1.3 The high-level API and the low-level API

1.4

Using the high-level API

2.1 ChartsandPlots
2.2 Options for charts and plots
23 Graphs.
2.4 Options for graphs

Using the low-level API

3.1 The CreateVisualization function
3.2 Looking beneath the high-level API .
3.3 Using JSON fromafile
3.4 Documentation for each visualization tool
3.5 Example uses of the low-level API . .

Using general tools (HTML, canvas, D3)

4.1 Why these tools are present
4.2 Post-processing visualizations
4.3 Injecting JavaScript into general tools

Adding new visualization tools

5.1 Why you might want to do this
5.2 Whatyouwillneed
5.3 Extending this package with a new tool
5.4 Installing a new tool at runtime
Limitations

Function reference

7.1 High-Level Public API
7.2 Low-Level Public API
7.3 Internal methods
7.4 Representation wrapper

Loading the package (in Jupyter or otherwise)

14
14
14
18
19
20

23
23
23
24

26
26
26
27
30

32

Index

JupyterViz

48

Chapter 1

Introduction

1.1 Purpose

Since 2017, it has been possible to use GAP in Jupyter through the JupyterKernel package. Output
was limited to the ordinary text output GAP produces; charts and graphs were not possible.

In 2018, Martins and Pfeiffer released francy (repository, article), which lets users create graphs
of a few types (vertices and edges, line chart, bar chart, scatter chart) in a Jupyter notebook. It also
allows the user to attach actions to the elements of these charts, which result in callbacks to GAP that
can update the visualization.

This visualization package has different aims in three ways. First, it can function either in a Jupyter
notebook or directly from the GAP REPL on the command line. Second, it aims to make a wider
variety of visualizations accessible to GAP users. Third, it does not provide tools for conveniently
making such visualizations interactive. Where the francy package excels at interactive visualizations,
this package instead gives a broader scope of visualization tools and does not require Jupyter.

These goals are achieved by importing several existing JavaScript visualization toolkits and ex-
posing them to GAP code, as described later in this manual.

1.2 Terminology (What is a Graph?)

There is an unfortunate ambiguity about the word "graph" in mathematics. It is used to mean both
"the graph of a function drawn on coordinate axes" and "a collection of vertices with edges connecting
them." This is particularly troublesome in a package like this one, where we will provide tools for
drawing both of these things! Consequently, we remove the ambiguity as follows.

We will say "charts and plots" to refer to the first concept (lines, curves, bars, dots, etc. on
coordinate axes) and "graphs" (or sometimes "graph drawing") to refer only to the second concept
(vertices and edges). This convention holds throughout this entire document.

http://jupyter.org/
https://github.com/mcmartins/francy
https://arxiv.org/abs/1806.08648

JupyterViz 5

Squared Integers 9 5 8
10
20 6 4
15 7
5 1 2
° 2 3 4 5 3
A plot or chart A graph

To support both of these types of visualizations, this package imports a breadth of JavaScript
visualization libraries (and you can extend it with more, as in Chapter 5). We split them into the
categories defined above.

1.2.1 Toolkits for drawing charts and plots
* AnyChart

e CanvasJS

ChartJS

Plotly (the default tool used when you call Plot (7.1.1))

1.2.2 Toolkits for drawing graphs

* Cytoscape (the default tool used when you call PlotGraph (7.1.3))

1.2.3 General purpose tools with which you can define custom visualizations

e D3
e Native HTML canvas element

e Plain HTML

1.3 The high-level API and the low-level API

This package exposes the JavaScript tools to the GAP user in two ways.

Foundationally, a low-level API gives direct access to the JSON passed to those tools and to
JavaScript code for manipulating the visualizations the tools create. This is powerful but not conve-
nient to use.

More conveniently, a high-level API gives two functions, one for creating plots and charts (Plot
(7.1.1)) and one for creating graphs (PlotGraph (7.1.3)). The high-level API should handle the vast
majority of use cases, but if an option you need is not supported by it, there is still the low-level API
on which you can fall back.

https://www.anychart.com/
https://canvasjs.com/
https://www.chartjs.org/
https://plot.ly/
http://www.cytoscape.org/
https://d3js.org/

JupyterViz 6

1.4 Loading the package (in Jupyter or otherwise)

To import this package, use the following GAP command from the command line or from a cell in a
Jupyter notebook running a GAP kernel.

Example

LoadPackage("jupyterviz");

To see how to use the package, we recommend next reading Chapter 2 on the high-level API, and if
you find it necessary, also Chapter 3 on the low-level API. Each chapter contains numerous examples
of how to use the package.

Chapter 2

Using the high-level API

2.1 Charts and Plots

This section covers the Plot (7.1.1) function in the high-level API, which is used for showing charts
and plots. If invoked in a Jupyter Notebook, it will show the resulting visualization in the appropriate
output cell of the notebook. If invoked from the GAP command line, it will use the system default
web browser to show the resulting visualization, from which the user can save a permanent copy, print
it, etc. This section covers that function through a series of examples, but you can see full details in
the function reference in Chapter 7.
To plot a list of numbers as a single data series, just pass the list to Plot (7.1.1).

Example

Plot([6.2, 0.3, 9.1, 8.8 1);

1.5 2 2.5 3 3.5 4

Notice that the default x values for the data are the sequence [1..n], where n is the length of the
data. You can specify the x values manually, like so:

Example
Plot([1 .. 41, [6.2, 0.3, 9.1, 8.81);

This is useful if you have a scatter plot of data to make, or if your x values are not numbers at all.

Example
Plot(["Mon", "Tue", "Wed", "Thu"], [6.2, 0.3, 9.1, 8.8 1]);

JupyterViz 8

Mon Tue Wed Thu

It is also permissible to send in a list of (x,y) pairs rather than placing the xs and ys in separate
lists. This would do the same as the previous:

Example
Plot([["Mon", 6.2 1, ["Tue", 0.3 1, ["Wed", 9.1 1, ["Thu", 8.81 1);

You can also pass a single-variable numeric function to have it plotted.

Example

Plot(x -> x°0.5);

1.5

-
(8]
w
&~
wn

It assumes a small domain of positive integers, which you can customize as follows. Note that
the x values are passed just as before, but in place of the y values, we pass the function that computes
them.

Example

Plot([1..50], NrSmallGroups);

JupyterViz 9

50
40
30
20

10

10 20 30 40 50

You can append a final parameter to the Plot (7.1.1) command, a record containing a set of
options. Here is an example of using that options record to choose the visualization tool, title, and axis
labels. Section 2.2 covers options in detail; this is only a preview.

Example
Plot([1..50], n -> Length(DivisorsInt(n)),
rec(
tool := "chartjs",
title := "Number of divisors of some small integers",
xaxis := "n",
yaxis := "number of divisors of n"
)
);

Number of divisors of some small integers

undefined

1
42 3 A5 6 T 8 940141 12 13 14 15 16 A7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 233 34 35 36 37 38 239 AQ A\ A2 A3 AA A5 A6 AT A8 A9 50

n

You can also put multiple data series (or functions) on the same plot. Let’s pretend you wanted
to compare the number of divisors of n with the number of groups of order n for the first 50 positive
integers n.

JupyterViz 10

To do so, take each call you would make to Plot (7.1.1) to make the separate plots, and place
those arguments in a list. Pass both lists to Plot (7.1.1) to combine the plots, as shown below. You
can put the options record in either list. Options specified earlier take precedence if there’s a conflict.

Example
We’re combining Plot([1..50], NrSmallGroups);
with Plot([1..50], n -> Length(DivisorsInt(n)));
and adding some options:
Plot (

[[1..50], NrSmallGroups,

rec(title := "Comparison", tool := "anychart")],
[[1..50], n -> Length(DivisorsInt(n))]

)

Comparison

series 0 [l Series 1
60

40

20

_reA RS A AN Y

123456789 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 50

The default plot type is "line", as you’ve been seeing in the preceding examples. You can also
choose "bar", "column", "pie", and others. Let’s use a pie chart to show the relative sizes of the
conjugacy classes in a group.

Example
G := Group((1,2,3,4,5,6,7), (1,2));;
CCs := List(ConjugacyClasses(G), Set);;
Plot (
x values are class labels; we’ll use the first element in the class
List(CCs, C -> PrintString(C[1])),
y values are class sizes; these determine the size of pie slices
List(CCs, Length),
ask for a pie chart with enough height that we can read the legend
rec(type := "pie", height := 500)

JupyterViz 11

(2,3,4,56,7)
(1,2,3,4,5,6,7)
(2,3)(4,5,6,7)
(3,4,5,6,7)
(1,2)(3,4,5,6,7)
(1,2,3)(4,5,6,7)
(3,4)(5,6,7)
(2,3,4)(5,6,7)
(4,5,6,7)
(1,2)(3,4)(5,6,7)
(4,5)(6,7)
(2,3)(4,5)(6,7)
(5,6,7)

(6,7)

Q

2.2 Options for charts and plots

The options record passed as the final parameter to P1lot (7.1.1) (or as the final element in each list
passed to Plot (7.1.1), if you are plotting multiple series on the same plot) can have the following
entries.

* tool - the visualization tool to use to make the plot, as a string. The default is "plotly". The full
list of tools is available in Section 1.2.

* type - the type of chart, as a string, the default for which is "line". Which types are available
depends on which tool you are using, though it is safe to assume that most common chart types
(line, bar, pie) are supported by all tools. Section 3.4 contains links to the documentation for
each tool, so that you might see its full list of capabilities.

* height - the height in pixels of the visualization to produce. A sensible default is provided,
which varies by tool.

* width - the width in pixels of the visualization to produce. If omitted, the tool usually fills the
width available. In a Jupyter Notebook output cell, this is the width of the cell. A visualization
shown outside of a Jupyter notebook will take up the entire width of the web page in which it is
displayed.

* title - the title to place at the top of the chart, as a string. Can be omitted.
* xaxis - the text to write below the x axis, as a string. Can be omitted.
* yaxis - the text to write to the left of the y axis, as a string. Can be omitted.

* name - this option should be specified in the options object for each separate data series, as
opposed to just once for the entire plot. It assigns a string name to that data series, typically
included in the chart’s legend.

JupyterViz 12

2.3 Graphs

This section covers the PlotGraph (7.1.3) function in the high-level API, which is used for drawing
graphs. If invoked in a Jupyter Notebook, it will show the resulting visualization in the appropriate
output cell of the notebook. If invoked from the GAP command line, it will use the system default
web browser to show the resulting visualization. This section covers that function through a series of
examples, but you can see full details in the function reference in Chapter 7.

You can make a graph by calling PlotGraph (7.1.3) on a list of edges, each of which is a pair (a
list of length two).

Example
PlotGraph([["start", "optionl"], ["start", "option2"],
["optioni", "end"], ["option2", "end"] 1);

option2 start

Vertex names can be strings, as shown above, or any GAP data; they will be converted to strings
using PrintString. As you can see, the set of vertices is assumed to be the set of things mentioned
in the edges. But you can specify the vertex set separately.

For example, if you wanted to graph the divisibility relation on a set of integers, some elements
may not be included in any edge.

01,

PlotGraph([2 1
(02 41,02, 61,
(3,61, [3,91,

o ©

[2
[4

.

JupyterViz 13

But for anything other than a small graph, specifying the vertex or edge set manually may be
inconvenient. Thus if you have a vertex set, you can create the edge set by passing a binary relation as
a GAP function. Here is an example to create a subgroup lattice.

Example
G :

S :

Group((1,2,3), (1,2));

function (H, G)
return IsSubgroup(G, H) and H <> G;
end;
PlotGraph(AllSubgroups(G), S);

But all three of the graphs just shown would be better if they had directed edges. And we might
want to organize them differently in the view, perhaps even with some colors, etc. To this end, you

can pass an options parameter as the final parameter to PlotGraph (7.1.3), just as you could for P1ot
(7.1.1).

Example

G := Group((1,2,3), (1,2));

S := function (H, G)
return IsSubgroup(G, H) and H <> G;
end;
PlotGraph(AllSubgroups(G), S,
rec(directed := true, layout := "grid", arrowscale := 3));
Group(() Group(

231 Group(‘(‘l 2)1)

Y Y

Group([(1,3)1) 2,3), 2,3)1)

The next section covers all options in detail.

24

JupyterViz 14

Options for graphs

The options record passed as the final parameter to PlotGraph (7.1.3) can have the following entries.

tool - the visualization tool to use to make the plot, as a string. The default is "cytoscape". The
full list of tools is available in Section 1.2.

layout - the name of the layout algorithm to use, as a string. Permitted values vary by tool.
Currently cytoscape supports "preset” (meaning you must have specified the nodes’ positions

manually), "cose" (virtual-spring-based automatic layout), "random", "grid", "circle", "concen-
tric" (multiple concentric circles), and "breadthfirst” (a hierarchy).

vertexwidth and vertexheight - the dimensions of each vertex.

vertexcolor - the color of the vertices in the graph. This should be a string representing an
HTML color, such as "#ccc" or "red".

edgewidth - the thickness of each edge.

edgecolor - the color of each edge and its corresponding arrow. This should be a string repre-
senting an HTML color, such as "#ccc" or "red".

directed - a boolean defaulting to false, whether to draw arrows to visually indicate that the
graph is a directed graph

arrowscale - a multiplier to increase or decrease the size of arrows in a directed graph.

height - the height in pixels of the visualization to produce. A sensible default is provided,
which varies by tool.

width - the width in pixels of the visualization to produce. If omitted, the tool usually fills the
width available. In a Jupyter Notebook output cell, this is the width of the cell. A visualization
shown outside of a Jupyter notebook will take up the entire width of the web page in which it is
displayed.

Chapter 3

Using the low-level API

3.1 The CreateVisualization function

The low-level API is accessed through just one function, CreateVisualization (7.2.5). You can
view its complete documentation in the function reference in Chapter 7, but examples are given in this
chapter.

Nearly all visualizations in this package are created by passing to the CreateVisualization
(7.2.5) function records describing what to draw. Even visualizations created by the high-level API
documented in Chapter 2 call the CreateVisualization (7.2.5) function under the hood. Those
records are converted into JSON form by the json package, and handed to whichever JavaScript toolkit
you have chosen to use for creating the visualization (or the default tool if you use a high-level function
and do not specify).

The sections below describe how to communicate with each of the visualization tools this package
makes available, using CreateVisualization (7.2.5).

3.2 Looking beneath the high-level API

There are a few techniques for taking a call to the high-level API (either to P1lot (7.1.1) or PlotGraph
(7.1.3)) and computing what data it eventally passes to CreateVisualization (7.2.5). This is a great
starting point for learning the data formats that CreateVisualization (7.2.5) expects, in preparation
for either tweaking them or creating them from scratch. We cover two examples here.

3.2.1 Looking beneath Plot

Assume that you have a plot that you’re creating with the high-level API, like the following example.

Example
Plot(x -> x70.5, rec(tool := "canvasjs"));

You can find out what kind of data is being passed, under the hood, to CreateVisualization
(7.2.5) by running the following code.

Example
dataSeries := JUPVIZMakePlotDataSeries(x -> x~0.5);;
big := ConvertDataSeriesForTool.canvasjs([dataSeries]);

The result is the following GAP record:

15

http://www.json.org/

JupyterViz 16

rec(

animationEnabled := true,

data := [

rec(

dataPoints := [

rec(x : =1,y :=1),

rec(x := 2, y := 1.4142135623730951),
rec(x := 3, y := 1.7320508075688772),
rec(x :=4, y :=2.),

rec(x := 5, y := 2.2360679774997898)
1,

type := "line"

)

1,

height := 400

)

That record is passed to CreateVisualization (7.2.5) with a call like the following.

Example
CreateVisualization(rec(tool := "canvasjs", data := big));

If you wanted to change any of the internal options, such as the default animationEnabled
:= true or the default height := 400, you could alter the record yourself before passing it on
to CreateVisualization (7.2.5).

Such options may be specific to the tool you’ve chosen, and are not guaranteed to work
with other tools. For example, you can’t change "canvasjs" to "anychart" and expect the
animationEnabled setting to work, because it is specific to CanvasJS. See Section 3.4 for links
to each tool’s documentation, which give detailed data formats.

If you had researched other options about CanvasJS and wanted to include those, you could do so
as well, as shown below.

Example
big.animationEnabled := false;; # changing an option
big.height := 500;; # changing an option
big.backgroundColor := "#FG6DEB3";; # adding an option
CreateVisualization(rec(tool := "canvasjs", data := big));

25

15

0.5

0
0.5 1 15 2 2.5 3 Bi5| 4 4.5 5 5.

CanvasJs.com

JupyterViz 17

3.2.2 Looking beneath P1otGraph

In the previous section, we saw how you could take a call to P1lot (7.1.1) and find out what data that
call would pass to CreateVisualization (7.2.5). You can do the same with P1lotGraph (7.1.3), but
it takes a few more steps.

First, we you must have a list of your graph’s vertices. Here we will assume it is in a variable
called vertices. Second, you must have a list of your graph’s edges. Similarly, we will assume it is

in a variable called edges.
Example

vertices := [1, 2, 3, 4];
edges := [[1,21, [2,31, [2,411;

You can then convert your graph into the format passed to CreateVisualization (7.2.5) as
follows. Note that at the time of this writing, there is only one graph visualization tool, cytoscape, so
we use that one directly.

Example

big := ConvertGraphForTool.cytoscape(rec(

vertices := vertices,

edges := edges,

options := rec() # or any options you like here
));
The result is the following GAP record:
rec(
elements := [
rec(data := rec(id := "1")),
rec(data := rec(id := "2")),
rec(data := rec(id := "3")),
rec(data := rec(id := "4")),
rec(data := rec(source := "1", target := "2")),
rec(data := rec(source := "2", target := "3")),
rec(data := rec(source := "2", target := "4"))
1,
layout := rec(name := "cose"),
style := [
rec(
selector := "node",
style := rec(content := "data(id)")
)
]
#)

That record is passed to CreateVisualization (7.2.5) with a call like the following. Note the

inclusion of a default height, if you don’t provide one.
Example

CreateVisualization(rec(
tool := "cytoscape", data := big, height := 400
))

If you wanted to change any of the internal options, including creating elements not supported by
the simple high-level API, you could alter or recreate the contents of the big record. We do so here,
using features we could learn from the cytoscape JSON format reference, linked to in Section 3.4.

JupyterViz

Example

CreateVisualization(rec(

tool := "cytoscape",

height := 400,

data := rec(

elements := [
rec(# node 1

group := '"nodes",
data := rec(id :=
position := rec(x
selected := false,
selectable := true,

locked := false,
grabbable := true

18

"Childl", parent := "Parent"),
:= 100, y := 100),

),
rec(# node 2
data := rec(id := "Friend"),
renderedPosition := rec(x := 200, y := 200)
),
rec(# node 3
data := rec(id := "Child2", parent := "Parent"),
position := rec(x := 123, y := 234)
),
rec(# node parent
data := rec(
id := "Parent",
position := rec(x := 200, y := 100)
)
),
rec(# edge 1
data := rec(
id := "Edgel",
source := "Child1l",
target := "Friend"
)
)
1,
layout := rec(name := "preset"),
style := [
rec(
selector := "node",
style := rec(content := "data(id)")
)
]

))

JupyterViz 19

Parent
Child1

Friend
Child2

3.3 Using JSON from a file

As the documentation cited in Section 3.4 states, all of the underlying visualization tools used by this
package accept input in JSON form. You might have some data in that form generated by another
source or downloaded from the web. For example, in this package’s directory, the file example/EV
Charge Points. json contains JSON data from one of the Plotly project’s blog posts.

You can load it and use it in a visualization as follows.

Example
read file and convert JSON into a GAP record

jsonText := ReadAll(InputTextFile("EV Charge Points.json"));;
gapRecord := JsonStringToGap(jsonText);;

ensure it’s big enough to be visible:
if IsBound(gapRecord.layout) then
gapRecord.layout.height := 500;;
else
gapRecord.layout := rec(height := 500);;
fi;

show it
CreateVisualization(rec(tool := "plotly", data := gapRecord));

https://medium.com/@plotlygraphs/leading-the-charge-10-charts-on-electric-vehicles-in-plotly-d951acdc49c1

JupyterViz 20

EV Charge Points Installed in 2017

5000

4000

3000

2000

1000

3.4 Documentation for each visualization tool

This section provides links to documentation on the web for each JavaScript visualization tool sup-
ported by this package. When possible, we link directly to that portion of the tool’s documentation
that covers its JSON data format requirements.

3.4.1 Charting and plotting tools

* anychart’s JSON data format is given here:

https://docs.anychart.com/Working_with_Data/Data_From_JSON

* canvasjs’s JSON data format is given here:

https://canvasjs.com/docs/charts/chart-types/

* chartjs’s JSON data format is given here:

http://www.chartjs.org/docs/latest/getting-started/usage.html

* plotly’s JSON data format is given here:
https://plot.ly/javascript/plotlyjs-function-reference/#plotlynewplot

3.4.2 Graph drawing tools

* cytoscape’s JSON data format is given here:

http://js.cytoscape.org/#notation/elements-json

3.4.3 General-purpose tools for custom visualizations

* canvas is a regular HTML canvas element, on which you can draw using arbitrary JavaScript
included in the code parameter

https://docs.anychart.com/Working_with_Data/Data_From_JSON
https://canvasjs.com/docs/charts/chart-types/
http://www.chartjs.org/docs/latest/getting-started/usage.html
https://plot.ly/javascript/plotlyjs-function-reference/#plotlynewplot
http://js.cytoscape.org/#notation/elements-json

JupyterViz 21

* d3is loaded into an SVG element in the notebook’s output cell, and the caller can call any D3
methods on that element thereafter, using arbitrary JavaScript included in the code parameter.
It does not support creating charts from JSON input only, but its full documentation appears
here: https://github.com/d3/d3/wiki

* html fills the output element with arbitrary HTML, which the caller should provide as a string

in the html field of data, as documented below

3.5 Example uses of the low-level API

3.5.1 Example: AnyChart

Following the conventions in the AnyChart documentation linked to in the previous section, we could
give AnyChart the following JSON to produce a pie chart.

Example
{
"chart" : {
"type" : "pie",
"data" : [
{ "x" : "Subgroups of order 6", "value" : 1 },
{ "x" "Subgroups of order 3", "value" : 1 },
{ "x" : "Subgroups of order 2", "value" : 3 },
{ "x" : "Subgroups of order 1", "value" : 1 }
]
}
}

In GAP, the same data would be represented with a record, as follows.

Example
myChartData := rec(
chart := rec(
type := "pie",
data := [
rec(x := "Subgroups of order 6", value := 1),
rec(x := "Subgroups of order 3", value := 1),
rec(x := "Subgroups of order 2", value := 3),
rec(x := "Subgroups of order 1", value := 1)

)

We can pass that data directly to CreateVisualization (7.2.5). We wrap it in a record that
specifies the tool to use and optionally other details not used in this example.

Example
CreateVisualization(rec(tool := "anychart", data := myChartData));

https://github.com/d3/d3/wiki

JupyterViz 22

M subgroups of order 6 [l Subgroups of order 3 [ll Subgroups of order 2 Subgroups of order 1

3.5.2 Example: Cytoscape

Unlike AnyChart, which is for charts and plots, Cytoscape is for graph drawing. A tiny Cytoscape
graph (just A — B) is represented by the following JSON.

Example
{
elements : [
{ data : { id : "A" } },
{ data : { id : "B" } },
{ data : { id : "edge", source : "A", target : "B" } }
]s
layout : { name : "grid", rows : 1 }
}

Cytoscape graphs can also have style attributes not shown here. Refer to its documentation, linked

to in the previous section.
Rather than copy this data directly into GAP, let’s generate graph data in the same format using

GAP code. Here we make a graph of the first 50 positive integers, with n — m iff n | m (ordinary
integer divisibility).

Example

N := 50;
elements := [];
for i in [2..N] do
Add(elements, rec(data := rec(id := String(i))));
for j in [2..i-1] do
if i mod j = O then
Add(elements, rec(data := rec(
source := String(j),
target := String(i))));
fi;
od;
od;

We then need to choose a layout algorithm. The Cytoscape documentation suggests that the "cose"
layout works well as a force-directed layout. Here, we do choose a height (in pixels) for the result,

JupyterViz 23

because Cytoscape does not automaticlly resize visualizations to fit their containing HTML element.
We also set the style for each node to display its ID (which is the integer associated with it).

Example
CreateVisualization(rec(
tool := "cytoscape",
height := 600,
data := rec(
elements := elements, # computed in the code above
layout := rec(name := "cose"),
style := [
rec(selector := "node", style := rec(content := "data(id)"))
]
)
))

Chapter 4

Using general tools (HTML, canvas, D3)

4.1 Why these tools are present

These general tools can be used as building blocks to create other custom visualization tools. As a first
example, the canvas tool installs an HTML canvas element and then lets you draw arbitrary shapes on
it with JavaScript code. As a second example, some of the high-level tools this package imports were
built on top of D3, a foundational visualization toolkit, which you can access directly.

First, we cover an as-yet-unmentioned feature of CreateVisualization (7.2.5) that lets us make
use of such general tools.

4.2 Post-processing visualizations

The CreateVisualization (7.2.5) function takes an optional second parameter, a string of
JavaScript code to be run once the visualization has been rendered. For example, if the visualiza-
tion library you were using did not support adding borders around a visualization, but you wanted to
add one, you could add it by writing one line of JavaScript code to run after the visualization was
rendered.

Example

CreateVisualization(
rec(
put your data here, as in previous sections
),

"visualization.style.border = ’5px solid black’"

This holds for any visualization tool, not just AnyChart. In the code given in the second parameter,
two variables will be defined for your use: element refers to the HTML element inside of which the
visualization was built and visualization refers to the HTML element of the visualization itself,
as produced by the toolkit you chose. When used in a Jupyter Notebook, element is the output cell
itself.

Now that we know that we can run arbitrary JavaScript code on a visualization once it’s been
produced, we can call CreateVisualization (7.2.5) to produce rather empty results, then fill them
using our own JavaScript code. The next section explains how this could be done to create custom
visualizations.

24

JupyterViz 25

4.3 Injecting JavaScript into general tools

4.3.1 Example: Native HTML Canvas

You can create a blank canvas, then use the existing JavaScript canvas API to draw on it. This example
is trivial, but more complex examples are possible.

Example
CreateVisualization(

rec(tool := "canvas", height := 300),

// visualization is the canvas element

var context = visualization.getContext(’2d’);
// draw an X

context.beginPath();

context.moveTo(0, 0);

context.lineTo(100, 100);

context.moveTo(100, 0);

context.lineTo(0, 100);

context.stroke();
nnn

4.3.2 Example: Plain HTML

This is the degenerate example of a visualization. It does not create any visualization, but lets you
specify arbitrary HTML content instead. It is provided here merely as a convenient way to insert
HTML into the notebook.

Example
CreateVisualiation(
rec(
tool := "html",
data := rec(
html := "<i>Any</i> HTML can go here. Tables, buttons, whatever."
)
),

// Here you could install event handlers on tools created above.
// For example, if you had created a button with id="myButton":
var button = document.getElementById("myButton");
button.addEventListener("click", function () {

alert("My button was clicked.");
1)

JupyterViz 26

)

When writing such JavaScript code, note that the Jupyter Notebook has access to a useful function
that this package has installed, runGAP. Its signature is runGAP (stringToEvaluate, callback) and
the following code shows an example of how you could call it from JavaScript in the notebook.
Example
runGAP("2-100;", function (result, error) {

if (result)
alert("2°100 = " + result);
else
alert("GAP gave this error: " + error);

} s

This function is not available if running this package outside of a Jupyter Notebook.

4.3.3 Example: D3

While D3 is one of the most famous and powerful JavaScript visualization libraries, it does not have
a JSON interface. Consequently, we can interact with D3 only through the JavaScript code passed in
the second parameter to CreateVisualization (7.2.5). This makes it much less convenient, but we
include it in this package for those who need it.

Example
CreateVisualization(
rec(tool := "d3"),
// arbitrary JavaScript code can go here to interact with D3, like so:
d3.select(visualization).append("circle")
.attr("r", 50).attr("cx", 55).attr("cy", 55)
.style("stroke", "red").style("fill", "pink");

Chapter 5

Adding new visualization tools

5.1 Why you might want to do this

The visualization tools made available by this package (Plotly, D3, CanvasJS, etc.) provide many
visualization options. However, you may come across a situation that they do not cover. Or a new and
better tool may be invented after this package is created, and you wish to add it to the package.

There are two supported way to do this. First, for tools that you wish to be available to all users
of this package, you can alter the package code itself to include the tool. (Then please create a pull
request so that your work might be shared with other GAP users in a subsequent release of this
package.) Second, for tools that you need for just one project or just one other package, there is
support for installing such tools at runtime. This chapter documents both approaches, each in its own
section. But first, we begin with the list of what you will need to have on hand before you begin, which
is the same for both approaches.

5.2 What you will need

Begin by gathering the following information.

* A URL on the internet that serves the JavaScript code defining the new visualization
tool you wish to add. For instance, the ChartJS library is imported from CloudFlare, at
https://cdnjs.cloudflare.com/ajax/libs/Chart. js/2.7.2/Chart.bundle.min. js.
It is best if you have this URL from a Content Delivery Network (CDN) to ensure very high
availability. This URL may not be necessary in all cases. For instance, perhaps the new
visualization tool you wish to install can be defined using the basic JavaScript features in all
browsers, or is imported via an iframe rather than as a script in the page itself. If you choose
to use such a URL, it will be imported using RequireJS, which expects you to omit the final
. js suffix at the end.

* Knowledge of how to write a short JavaScript function that can embed the given tool into any
given DOM Element. For many tools, this is just a single call to the main class’s contructor or
the library’s initialization function. Or, if you haven’t imported any library that constructs the vi-
sualization for you, then this function may be more extensive, as you construct the visualization
yourself.

27

https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.2/Chart.bundle.min.js

JupyterViz 28

* While not necessary, it makes things easy if you know a function to call in your chosen library
that converts JSON data into a visualization. This makes it easier for users to pass all the
required data and options from GAP code, which is the typical user’s preferred way of defining
a visualization.

With this information available, proceed to either of the next two sections, depending on whether
you intend to upgrade this package itself with a new visualization, or just install one into it at runtime.

5.3 Extending this package with a new tool

This section explains how to enhance this package itself. If you follow these instructions, you should
submit a pull request to have your work added to the main repository for the package, and thus even-
tually included in the next release of GAP.

If instead you wish to install a new visualization at runtime for just your own use in a particular
project (or in a package that depends on this one), refer to the instructions in the Section 5.4 instead.

Throughout these steps, I will assume that the name of the new tool you wish to install is NEWTOOL.
I choose all capital letters to make it stand out, so that you can tell where you need to fill in blanks in
the examples, but you should probably use lower-case letters, to match the convention used by all of
the built-in tools.

1. Clone the repository for this package.
2. Enter the 1ib/js/ folder in the repository.

3. Duplicate the file viz-tool-chartjs. js and rename it suitably for the tool you wish to import,
such as viz-tool-NEWTOOL. js. It must begin with viz-tool-.

4. Edit that file. At the top, you will notice the installation of the CDN URL mentioned in the
previous section. Replace it with the URL for your toolkit, and replace the identifier chartjs

with NEWTOOL.
Example

window.requirejs.config({
paths : {
NEWTOOL : ’https://cdn.example.com/NEWTOOL.min. js’
}
s

5. In the middle of the same file, feel free to update the comments to reflect your toolkit rather than
ChartJS.

6. At the end of the same file, you will notice code that installs chartjs as a new function in the
window.VisualizationTools object. Replace it with code that installs your tool instead. See

the comments below for some guidance.
Example
window.VisualizationTools.NEWTOOL = function (element, json, callback) {
// The variable "element" is the HTML element in the page into
// which you should place your visualization. For example, perhaps
// your new toolkit does its work in an SVG element, so you need one:
var result = document.createElement(’SVG’);
element.append(result);

JupyterViz 29

// The variable "json" is all the data, in JSON form, passed from
// GAP to tell you how to create a visualization. The data format
// convention is up to you to explain and document with your new
// tool. Two attributes in particular are important here, "width"
// and "height" -- if you ignore everything else, at least respect
// those in whatever way makes sense for your visualization. Here
// is an example for an SVG:
if (json.width) result.width = json.width;
if (json.height) result.width = json.height;
// Then use RequireJS to import your toolkit (which will use the CDN
// URL you registered above) and use it to fill the element with the
// desired visualization. You may or may not need to modify "json"
// before passing it to your toolkit; this is up to the conventions
// you choose to establish.
require([’NEWTOOL’], function (NEWTOOL) {
// Use your library to set up a visualization. Example:
var viz = NEWTOOL.setUpVisualizationInElement(result);
// Tell your library what to draw. Example:
viz.buildVisualizationFromJSON(json);
// Call the callback when you’re done. Pass the element you were
// given, plus the visualization you created.
callback(element, result);

} s

};

7. Optionally, in the 1ib/js/ folder, run the minify-all-scripts.sh script, which compresses
your JavaScript code to save on data transfer, memory allocation, and parsing time. Rerun that
script each time you change your file as well.

8. You should now be able to use your new visualization tool in GAP. Verify that your changes
worked, and debug as necessary. If you are testing in a Jupyter Notebook, you may be able to
notice the change only if you refresh in your browser the page containing notebook and also
restart the GAP kernel in that same page. Then try code like the following to test what you’ve
done.

Example
CreateVisualization(rec(

tool := "NEWTOOL",

any other data you need goes here as a GAP record,

which the GAP json package will convert into JSON
))

At this point, you have added support in CreateVisualization (7.2.5) for the new tool but have
not extended that support to include the high-level functions Plot (7.1.1) or PlotGraph (7.1.3). If
possible, you should add that support as well, by following the steps below.

1. Read the documentation for either ConvertDataSeriesForTool (7.1.2) or
ConvertGraphForTool (7.1.4), depending on whether the new tool you have installed
supports plots or graphs. If it supports both, read both. That documentation explains the
new function you would need to install in one or both of those records in order to convert the
type of data users provide to Plot (7.1.1) or PlotGraph (7.1.3) into the type of data used by
CreateVisualization (7.2.5).

2.

3.

4.

JupyterViz 30

Edit the main.gi file in this package. Find the section in which new elements are added to the
ConvertDataSeriesForTool (7.1.2) or ConvertGraphForTool (7.1.4) records. Add a new
section of code that installs a new field for your tool. It will look like one of the following two
blocks (or both if your tool supports both types of visualization).
Example
ConvertDataSeriesForTool .NEWTOOL := function (series)

local result;

Write the code here that builds the components of the

GAP record you need, stored in result.

You can leverage series.x, series.y, and series.options.

return result;
end;
ConvertGraphForTool .NEWTOOL := function (graph)

local result;

Write the code here that builds the components of the

GAP record you need, stored in result.

You can leverage graph.vertices, graph.edges, and graph.options.

return result;
end;

Test your work by loading the updated package into GAP and making a call to P1lot (7.1.1) or
PlotGraph (7.1.3) that specifically requests the use of your newly-supported visualization tool.

Example
for plots:
Plot(x -> x~2, rec(tool := "NEWTOOL"));
or for graphs:
PlotGraph(RandomMat(5, 5), rec(tool := "NEWTOOL"));

Verify that it produces the desired results.

Once your changes work, commit them to the repository and submit a pull request back to the
original repository, to have your work included in the default distribution.

A complete and working (but silly) example follows. It is a tiny enough visualization tool that it cannot
support either plotting data nor drawing graphs, so we don’t have to install high-level API support.
This portion would go in 1ib/js/viz-tool-color. js:

};

// No need to import any library from a CDN for this little example.
window.VisualizationTools.color = function (element, json, callback) {

Example

// just writes json.text in json.color, that’s all
var span = document.createElement(’span’);
span.textContent = json.text;

span.style.color = json.color;

callback(element, span);

This is an example usage of that simple tool from GAP in a Jupyter notebook:

Example

CreateVisualization(rec(

tool := "color",
text := "Happy St. Patrick’s Day.",

JupyterViz 31

color := "green"

))

5.4 Installing a new tool at runtime

This section explains how to add a new visualization tool to this package at runtime, by calling func-
tions built into the package. This is most useful when the visualization tool you wish to install is useful
in only a narrow context, such as one of your projects or packages.

If you have a visualization tool that might be of use to anyone who uses this package, consider
instead adding it to the package itself and submitting a pull request to have it included in the next
release. The previous section explains how to do that.

To install a new visualization tool at runtime, you have two methods available. You can either
provide all the JavaScript code yourself or you can provide the necessary ingredients that will be
automatically filled into a pre-existing JavaScript code template. We will examine both methods in
this section.

The previous section thoroughly documents the two types of code that are likely to show up in the
definition of a new tool: the installation into Require]S of the tool’s CDN URL and the installation
into window.VisualizationTool of a function that uses that tool to create a visualization from a
given JSON object.

If you have all of this JavaScript code already stored in a single GAP string (or in a file that you
can load into a string), call it S, then you can install it into this package with a single function call, like

So:
Example

InstallVisualizationTool("TOOL_NAME_HERE", S);

Here is a trivial working example. It is sufficiently small that it does not install any new JavaScript
libraries into RequireJS.

Example
GAP code to install a new visualization tool:

InstallVisualizationTool("smallExample",
nnn

window.VisualizationTool.smallExample =

function (element, json, callback) {
element.innerHTML = ’’ + json.text + ’’;
callback(element, element.childNodes[0]);

}

))

GAP code to use that new visualization tool:
CreateVisualization(rec(

tool := "smallExample",

text := "This text will show up red."
));

Because the assignment of a function to create visualizations from JSON is the essential compo-
nent of installing a new visualization, we have made that step easier by creating a template into which
you can just fill in the function body. So the above call to InstallVisualizationTool (7.2.3) is
equivalent to the following call to InstallVisualizationToolFromTemplate (7.2.4).

JupyterViz 32

Example

InstallVisualizationToolFromTemplate("smallExample",
nnn

element.innerHTML = ’’ + json.text + ’’;
callback(element, element.childNodes[0]);

nnn

))

If you provide a third parametr to InstallVisualizationToolFromTemplate (7.2.4), it is
treated as the CDN URL for an external library, and code is automatically inserted that installs that
external library into RequireJS and wraps the tool’s function body in a require call. For instance,

the CanvasJS library (which is built into this package) could have been installed with code like the
following.

Example

InstallVisualizationToolFromTemplate("canvasjs",

(new window.CanvasJS.Chart(element, json.data)).render();
window.resizeToShowContents(element);
callback(element, element.childNodes[0]);

nnn
H

"https://cdnjs.cloudflare.com/ajax/libs/canvasjs/1.7.0/canvasjs.min. js"

))

While RequireJS demands that you omit the .js suffix from such an URL,
InstallVisualizationToolFromTemplate (7.2.4) will automatically remove it for you if
you forget to remove it.

After using either of those two methods, if the new visualization tool is capable of drawing either
plots or graphs, and you wish to expose it to the high-level API, you should follow the steps for doing
so documented in the second half of Section 5.3.

Chapter 6

Limitations

When this package is being used in a Jupyter Notebook, it has the following limitations.

» If this package is used in PlotDisplayMethod_Jupyter mode in a Jupyter notebook, and visu-
alizations are created by this package, then the notebook is saved and later reloaded, the visual-
izations will not persist. They will be replaced by an error message instructing the user to re-run
the cell that created the visualization. You can get around this by setting PlotDisplayMethod
:= PlotDisplayMethod_JupyterSimple, but this increases the size of your notebook by
embedding all the JavaScript needed by the visualizations in the notebook itself. Note that
PlotDisplayMethod_Jupyter is the default mode in the notebook.

* The nbconvert tool, which converts .ipynb files into other formats, will not include the vi-
sualizations, because nbconvert is not a browser that can evaluate the JavaScript code that
generates the visualizations.

* When using the PlotDisplayMethod_Jupyter mode, most visualizations load a JavaScript
library from a CDN, which thus requires a working Internet connection to function.

When it is being used from the command line, it has the following limitations.

* The JavaScript function runGAP introduced in Section 4.3 is not available. That function de-
pends upon the ability to ask the Jupyter Kernel to run GAP code, and thus when there is no
Jupyter Kernel, that function cannot work.

* Each new call to Plot (7.1.1), PlotGraph (7.1.3), or CreateVisualization (7.2.5) will be
stored in a new temporary file on the user’s filesystem and thus shown in a new tab or window in
the user’s browser. That is, one does not iteratively improve a single visualization, but is forced
to open a new window or tab for each call.

33

Chapter 7

Function reference

7.1 High-Level Public API

7.1.1 Plot

> Plot(various) (function)

Returns: one of two things, documented below

If evaluated in a Jupyter Notebook, the result of this function, when rendered by that notebook,
will run JavaScript code that generates and shows a plot in the output cell, which could be any of
a wide variety of data visualizations, including bar charts, pie charts, scatterplots, etc. (To draw a
vertex-and-edge graph, see PlotGraph (7.1.3) instead.)

If evaluated outside of a Jupyter Notebook, the result of this function is the name of a temporary
file stored on disk in which HTML code for such a visualization has been written, and on which GAP
has already invoked the user’s default web browser. The user should see the visualization appear in
the browser immediately before the return value is shown.

This function can take data in a wide variety of input formats. Here is the current list of acceptable
formats:

e If X is alist of x values and Y is a list of y values then Plot (X,Y) plots them as ordered pairs.

o If X is a list of x values and f is a GAP function that can be applied to each x to yield a
corresponding y, then Plot (X,f) computes those corresponding y values and plots everything
as ordered pairs.

* If P is alist of (x,y) pairs then Plot (P) plots those ordered pairs.

» If Yis alist of y values then P1ot (Y) assumes the corresponding x values are 1, 2, 3, and so on
up to the length of Y. It then plots the corresponding set of ordered pairs.

o If £ is a GAP function then Plot (f) assumes that f requiers integer inputs and evaluates it on
a small domain (1 through 5) of x values and plots the resulting (x,y) pairs.

* In any of the cases above, a new, last argument may be added that is a GAP record (call it R)
containing options for how to draw the plot, including the plot type, title, axes options, and
more. Thus the forms Plot (X,Y,R), Plot(X,f,R), Plot(P,R), Plot(Y,R), and Plot (f,R)
are all acceptable. (For details, see ConvertDataSeriesForTool (7.1.2).)

34

JupyterViz 35

 If Al is a list of arguments fitting any of the cases documented above (such as [X,f]) and A2 is
as well, and so on through An, then P1ot (A1,A2,...,An) creates a combination plot with all
of the data from each of the arguments treated as a separate data series. If the arguments contain
conflicting plot options (e.g., the first requests a line plot and the second a bar chart) then the
earliest option specified takes precedence.

Example

Plot the number of small groups of order n, from n=1 to n=50:
Plot([1..50], NrSmallGroups);

50

40

30

20

10

10 20 30 40 50

Example
Plot how much Andrea has been jogging lately:
Plot(["Jan","Feb","Mar"], [46,59,61],

rec(title := "Andrea’s Jogging", yaxis := "miles per month"));

Andrea's Jogging

miles per month

Jan Feb Mar

7.1.2 ConvertDataSeriesForTool
> ConvertDataSeriesForTool (global variable)
The JupyterViz Package has a high-level API and a low-level API. The high-level API involves

functions like Plot, which take data in a variety of convenient formats, and produce visualizations
from them. The low-level API can be used to pass JSON data structures to JavaScript visualization

JupyterViz 36

tools in their own native formats for rendering. The high-level API is built on the low-level API, using
key functions to do the conversion.

The conversion functions for plots are stored in a global dictionary in this variable. It is a GAP
record mapping visualization tool names (such as plotly, etc., a complete list of which appears in
Section 1.1) to conversion functions. Only those tools that support plotting data in the form of (x,y)
pairs should be included. (For example, tools that specialize in drawing vertex-and-edge graphs are
not relevant here.)

Each conversion function must behave as follows. It expects its input object to be a single data
series, which will be a GAP record with three fields:

* x - alist of x values for the plot
* v - the corresponding list of y values for the same plot

* options - another (inner) GAP record containing any of the options documented in Section
2.2.

The output of the conversion function should be a GAP record amenable to conversion (using
GapToJsonString from the json package) into JSON. The format of the JSON is governed entirely
by the tool that will be used to visualize it, each of which has a different data format it expects.

Those who wish to install new visualization tools for plots (as discussed in Chapter 5) will want
to install a new function in this object corresponding to the new tool. If you plan to do so, consider the
source code for the existing conversion functions, which makes use of two useful convenince meth-
ods, JUPVIZFetchWithDefault (7.3.12) and JUPVIZFetchIfPresent (7.3.13). Following those
examples will help keep your code consistent with existing code and as concise as possible.

7.1.3 PlotGraph

> PlotGraph(various) (function)

Returns: one of two things, documented below

If evaluated in a Jupyter Notebook, the result of this function, when rendered by that notebook, will
run JavaScript code that generates and shows a graph in the output cell, not in the sense of coordinate
axes, but in the sense of vertices and edges. (To graph a function or data set on coordinate axes, use
Plot (7.1.1) instead.)

If evaluated outside of a Jupyter Notebook, the result of this function is the name of a temporary
file stored on disk in which HTML code for such a visualization has been written, and on which GAP
has already invoked the user’s default web browser. The user should see the visualization appear in
the browser immediately before the return value is shown.

This function can take data in a wide variety of input formats. Here is the current list of acceptable
formats:

» If Vis alist and E is a list of pairs of items from V then PlotGraph(V,E) treats them as vertex
and edge sets, respectively.

e If Vis alist and R is a GAP function then PlotGraph(V,R) treats V as the vertex set and calls
R(v1,v2) for every pair of vertices (in both orders) to test whether there is an edge between
them. It exepcts R to return boolean values.

» If Eis a list of pairs then PlotGraph(E) treats E as a list of edges, inferring the vertex set to be
any vertex mentioned in any of the edges.

JupyterViz 37

» If M is a square matrix then PlotGraph (M) treats M as an adjacency matrix whose vertices are
the integers 1 through n (the height of the matrix) and where two vertices are connected by an
edge if and only if that matrix entry is positive.

* In any of the cases above, a new, last argument may be added that is a GAP record containing
options for how to draw the graph, such as the tool to use. For details on the supported options,
see ConvertGraphForTool (7.1.4).

Example

Plot the subgroup lattice for a small group:

G := Group((1,2),(2,3));

PlotGraph(AllSubgroups(G), IsSubgroup);

Example

Plot a random graph on 5 vertices:
(The results change from one run to the next, of course.)
PlotGraph(RandomMat(5,5));

7.1.4 ConvertGraphForTool

> ConvertGraphForTool (global variable)

JupyterViz 38

The JupyterViz Package has a high-level API and a low-level API. The high-level API involves
functions like PlotGraph, which take data in a variety of convenient formats, and produce visualiza-
tions from them. The low-level API can be used to pass JSON data structures to JavaScript visualiza-
tion tools in their own native formats for rendering. The high-level API is built on the low-level API,
using key functions to do the conversion.

The conversion functions for graphs are stored in a global dictionary in this variable. It is a
GAP record mapping visualization tool names (such as cytoscape, a complete list of which appears
in Section 1.1) to conversion functions. Only those tools that support graphing vertex and edge sets
should be included. (For example, tools that specialize in drawing plots of data stored as (x,y) pairs
are not relevant here.)

Each conversion function must behave as follows. It expects its input object to be a single graph,
which will be a GAP record with three fields:

* vertices - a list of vertex names for the graph. These can be any GAP data structure and they
will be converted to strings with PrintString. The one exception is that you can give each
vertex a position by making it a record with three entries: name, x, and y. In this way, you can
manually lay out a graph.

* edges - a list of pairs from the vertices list, each of which represents an edge
* options - a GAP record containing any of the options documented in Section 2.4.

The output of the conversion function should be a GAP record amenable to conversion (using
GapToJsonString from the json package) into JSON. The format of the JSON is governed entirely
by the tool that will be used to visualize it, each of which has a different data format it expects.

Those who wish to install new visualization tools for graphs (as discussed in Chapter 5) will want
to install a new function in this object corresponding to the new tool. If you plan to do so, consider the
source code for the existing conversion functions, which makes use of two useful convenince meth-
ods, JUPVIZFetchWithDefault (7.3.12) and JUPVIZFetchIfPresent (7.3.13). Following those
examples will help keep your code consistent with existing code and as concise as possible.

7.1.5 PlotDisplayMethod

> PlotDisplayMethod (global variable)

The JupyterViz Package can display visualizations in three different ways, and this global variable

is used to switch among those ways.
Example
PlotDisplayMethod := PlotDisplayMethod_HTML;

Users of this package almost never need to alter the value of this variable because a sen-
sible default is chosen at package loading time. If the JupyterViz Package is loaded after the
JupyterKernel Package, it notices the presence of that package and leverage its tools to set up sup-
port for plotting in a Jupyter environment. Furthermore, it will initialize PlotDisplayMethod to
PlotDisplayMethod_Jupyter (7.1.6), which is probably what the user wants. Note that if one calls
LoadPackage (" JupyterViz") ; from a cell in a Jupyter notebook, this is the case that applies, be-
cause clearly in such a case, the JupyterKernel Package was already loaded.

If the JupyterViz Package is loaded without the JupyterKernel Package already loaded,
then it will initialize PlotDisplayMethod to PlotDisplayMethod_HTML (7.1.8), which is what

JupyterViz 39

the user probably wants if using GAP from a terminal, for example. You may later assign
PlotDisplayMethod to another value, but doing so has little purpose from the REPL. You would
need to first load the JupyterKernel Package, and even then, all that would be produced by this pack-
age would be data structures that would, if evaluated in a Jupyter notebook, produce visualizations.

7.1.6 PlotDisplayMethod_Jupyter

> PlotDisplayMethod_Jupyter (global variable)

This global constant can be assigned to the global variable PlotDisplayMethod (7.1.5) as docu-
mented above. Doing so produces the following results.

* Functions such as Plot (7.1.1), PlotGraph (7.1.3), and CreateVisualization (7.2.5) will
return objects of type JupyterRenderable, which is defined in the JupyterKernel Package.

* Such objects, when rendered in a Jupyter cell, will run a block of JavaScript contained within
them, which will create the desired visualization.

* Such scripts tend to request additional information from GAP as they are running, by using
calls to the JavaScript function Jupyter.kernel.execute defined in the notebook. Such calls
are typically to fetch JavaScript libraries needed to create the requested visualization.

* Visualizations produced this way will not be visible if one later closes and then reopens the
Jupyter notebook in which they are stored. To see the visualizations again, one must re-evaluate
the cells that created them, so that the required libraries are re-fetched from the GAP Jupyter
kernel.

7.1.7 PlotDisplayMethod_JupyterSimple

> PlotDisplayMethod_JupyterSimple (global variable)

This global constant can be assigned to the global variable PlotDisplayMethod (7.1.5) as docu-
mented above. Doing so produces the following results.

* Functions such as Plot (7.1.1), PlotGraph (7.1.3), and CreateVisualization (7.2.5) will
return objects of type JupyterRenderable, which is defined in the JupyterKernel Package.

* Such objects, when rendered in a Jupyter cell, will run a block of JavaScript contained within
them, which will create the desired visualization.

* Such scripts will be entirely self-contained, and thus will not make any additional requests
from the GAP Jupyter kernel. This makes such objects larger because they must contain all
the required JavaScript visualization libraries, rather than being able to request them as needed
later.

* Visualizations produced this way will be visible even if one later closes and then reopens the
Jupyter notebook in which they are stored, because all the code needed to create them is included
in the output cell itself, and is re-run upon re-opening the notebook.

JupyterViz 40

7.1.8 PlotDisplayMethod_HTML

> PlOtDiSplayMethOd_HTML (global variable)

This global constant can be assigned to the global variable PlotDisplayMethod (7.1.5) as docu-
mented above. Doing so produces the following results.

* Functions such as Plot (7.1.1), PlotGraph (7.1.3), and CreateVisualization (7.2.5) will
return no value, but will instead store HTML (and JavaScript) code for the visualization in a
temporary file on the filesystem, then launch the operating system’s default web browser to
view that file.

* Such files are entirely self-contained, and require no GAP session to be running to continue
viewing them. They can be saved anywhere the user likes for later viewing, printing, or sharing
without GAP.

* Visualizations produced this way will not be visible if one later closes and then reopens the
Jupyter notebook in which they are stored. To see the visualizations again, one must re-evaluate
the cells that created them, so that the required libraries are re-fetched from the GAP Jupyter
kernel.

7.2 Low-Level Public API

7.2.1 RunJavaScript

> RunJavaScript(script[, returnHTML]) (function)

Returns: one of two things, documented below

If run in a Jupyter Notebook, this function returns an object that, when rendered by that notebook,
will run the JavaScript code given in script.

If run outside of a Jupyter Notebook, this function creates an HTML page containing the given
script, an HTML element on which that script can act, and the Require]JS library for importing other
script tools. It then opens the page in the system default web browser (thus running the script) and
returns the path to the temporary file in which the script is stored.

In this second case only, the optional second parameter (which defaults to false) can be set to true
if the caller does not wish the function to open a web browser, but just wants the HTML content that
would have been displayed in such a browser returned as a string instead.

When the given code is run, the varible element will be defined in its environment, and will
contain either the output element in the Jupyter notebook corresponding to the code that was just
evaluated or, in the case outside of Jupyter, the HTML element mentioned above. The script is free to
write to that element in both cases.

7.2.2 LoadJavaScriptFile

> LoadJavaScriptFile(filename) (function)
Returns: the string contents of the file whose name is given
Interprets the given filename relative to the 1ib/js/ path in the JupyterViz package’s installa-
tion folder, because that is where this package stores its JavaScript libraries. A . js extension will be
added to filename iff needed. A .min. js extension will be added iff such a file exists, to prioritize
minified versions of files.

JupyterViz 41

If the file has been loaded before in this GAP session, it will not be reloaded, but will be returned
from a cache in memory, for efficiency.
If no such file exists, returns fail and caches nothing.

7.2.3 InstallVisualizationTool

> InstallVisualizationTool(toolName, script) (function)

Returns: boolean indicating success (true) or failure (false)

This function permits extending, at runtime, the set of JavaScript visualization tools beyond those
that are built into the JupyterViz package.

The first argument must be the name of the visualization tool (a string, which you will later
use in the tool field when calling CreateVisualization (7.2.5)). The second must be a string
of JavaScript code that installs into window.VisualizationTools.TOOL_NAME_HERE the function
for creating visualizations using that tool. It can also define other helper functions or make calls to
window.requirejs.config. For examples of how to write such JavaScript code, see the chapter on
extending this package in its manual.

This function returns false and does nothing if a tool of that name has already been installed.
Otherwise, it installs the tool and returns true.

There is also a convenience method that calls this one on your behalf; see
InstallVisualizationToolFromTemplate (7.2.4).

7.2.4 InstallVisualizationToolFromTemplate

> InstallVisualizationToolFromTemplate(toolName, functionBody[, CDNURL]) (func-
tion)

Returns: boolean indicating success (true) or failure (false)

This function is a convenience function that makes it easier to use InstallVisualizationTool
(7.2.3); see the documentation for that function, then read on below for how this function makes it
easier.

Most visualization tools do two things: First, they install a CDN URL into
window.requirejs.config for some external JavaScript library that must be loaded in
the client to support the given type of visualization. Second, they install a function as
window.VisualizationTools.TOOL_NAME_HERE accepting parameters element, json, and
callback, and building the desired visualization inside the given DOM element. Such code often
begins with a call to require([’...’],function(library}{/*...*/})), but not always.

This function will write for you the boiler plate code for calling window.requirejs.config and
the declaration and installation of a function into window.VisualizationTools.TOOL_NAME_HERE.
You provide the function body and optionally the CDN URL. (If you provide no CDN URL, then no
external CDN will be installed into requirejs.)

7.2.5 CreateVisualization

> CreateVisualization(datal, code]) (function)
Returns: one of two things, documented below
If run in a Jupyter Notebook, this function returns an object that, when rendered by that notebook,
will produce the visualization specified by data in the corresponding output cell, and will also run
any given code on that visualization.

JupyterViz 42

If run outside of a Jupyter Notebook, this function creates an HTML page containing the visual-
ization specified by data and then opens the page in the system default web browser. It will also run
any given code as soon as the page opens. The data must be a record that will be converted to JSON
using GAP’s json package.

The second argument is optional, a string containing JavaScript code to run once the visualization
has been created. When that code is run, the variables element and visualization will be in its
environment, the former holding the output element in the notebook containing the visualization, and
the latter holding the visualization element itself.

The data should have the following attributes.

* tool (required) - the name of the visualization tool to use. Currently supported tools are listed
in Section 1.2 and links to their documentation are given in Section 3.4.

* data (required) - subobject containing all options specific to the content of the visualization,
often passed intact to the external JavaScript visualization library. You should prepare this data
in the format required by the library specified in the tool field, following the documentation
for that library, linked to in Section 3.4.

* width (optional) - width to set on the output element being created

* height (optional) - similar, but height

Example
CreateVisualization(rec(
tool := "html",
data := rec(html := "I am <i>S0</i> excited about this.")
), "console.log(’Visualization created.’);");

7.3 Internal methods

Using the convention common to GAP packages, we prefix all methods not intended for public use
with a sequence of characters that indicate our particular package. In this case, we use the JUPVIZ
prefix. This is a sort of "poor man’s namespacing."

None of these methods should need to be called by a client of this package. We provide this
documentation here for completeness, not out of necessity.

7.3.1 JUPVIZAbsoluteJavaScriptFilename

> JUPVIZAbsoluteJavaScriptFilename (filename) (function)

Returns: a JavaScript filename to an absolute path in the package dir

Given a relative filename, convert it into an absolute filename by prepending the path to the
1lib/js/ folder within the JupyterViz package’s installation folder. This is used by functions that
need to find JavaScript files stored there.

A . js extension is appended if none is included in the given filename.

7.3.2 JUPVIZLoadedJavaScriptCache

> JUPVIZLoadedJavaScriptCache (global variable)

JupyterViz 43

A cache of the contents of any JavaScript files that have been loaded from this package’s folder.
The existence of this cache means needing to go to the filesystem for these files only once per GAP
session. This cache is used by LoadJavaScriptFile (7.2.2).

7.3.3 JUPVIZFilllnJavaScriptTemplate

> JUPVIZFillInJavaScriptTemplate(filename, dictionary) (function)

Returns: a string containing the contents of the given template file, filled in using the given
dictionary

A template file is one containing identifiers that begin with a dollar sign ($). For example, $one
and $two are both identifiers. One "fills in" the template by replacing such identifiers with whatever
text the caller associates with them.

This function loads the file specified by filename by passing that argument directly to
LoadJavaScriptFile (7.2.2). If no such file exists, returns fail. Otherwise, it proceed as follows.

For each key-value pair in the given dictionary, prefix a $ onto the key, suffix a newline charac-
ter onto the value, and then replace all occurrences of the new key with the new value. The resulting
string is the result.

The newline character is included so that if any of the values in the dictionary contains single-
line JavaScript comment characters (//) then they will not inadvertently affect later code in the tem-
plate.

7.3.4 JUPVIZRunJavaScriptFromTemplate

> JUPVIZRunJavaScriptFromTemplate(filename, dictionary[, returnHTML]) (function)
Returns: the composition of RunJavaScript (7.2.1) with
JUPVIZFillInJavaScriptTemplate (7.3.3)
This function is quite simple, and is just a convenience function. The optional third argument is
passed on to RunJavaScript internally.

7.3.5 JUPVIZRunJavaScriptUsingRunGAP

> JUPVIZRunJavaScriptUsingRunGAP (jsCode[, returnHTML]) (function)

Returns: an object that, if rendered in a Jupyter notebook, will run jsCode as JavaScript after
runGAP has been defined

There is a JavaScript function called runGAP, defined in the using-runGAP. js file distributed
with this package. That function makes it easy to make callbacks from JavaScript in a Jupyter note-
book to the GAP kernel underneath that notebook. This GAP function runs the given jsCode in the
notebook, but only after ensuring that runGAP is defined globally in that notebook, so that jsCode
can call runGAP as needed.

The optional third argument is passed on to RunJavaScript internally.

An example use, from JavaScript, of the runGAP function appears at the end of Section 4.3.

7.3.6 JUPVIZRunJavaScriptUsingLibraries

> JUPVIZRunJavaScriptUsingLibraries(libraries, jsCodel[, returnHTML]) (function)
Returns: one of two things, documented below

JupyterViz 44

If run in a Jupyter Notebook, this function returns an object that, when rendered by that note-
book, will run jsCode as JavaScript after all 1ibraries have been loaded (which typically happens
asynchronously).
If run outside of a Jupyter Notebook, this function loads all the code for the given 1ibraries from
disk and concatenates them (with checks to be sure no library is loaded twice) followed by jsCode.
It then calls RunJavaScript (7.2.1) on the result, to form a web page and display it to the user.
There are a set of JavaScript libraries stored in the 1ib/js/ subfolder of this package’s installation
folder. Neither the Jupyter notebook nor the temporary HTML files created from the command line
know, by default, about any of those libraries. Thus this function is necessary so that jsCode can
assume the existence of the tools it needs to do its job.
If the first parameter is given as a string instead of a list of strings, it is treated as a list of just one
string.
The optional third argument is passed on to RunJavaScript internally.
Example
JUPVIZRunJavaScriptUsingLibraries(["mylib.js" 1],

"alert(’My Lib defines foo to be: ’ + window.foo);");
Equivalently:
JUPVIZRunJavaScriptUsingLibraries("mylib.js",

"alert(’My Lib defines foo to be: ’ + window.foo);");

7.3.7 JUPVIZMakePlotDataSeries

> JUPVIZMakePlotDataSeries(series) (function)

Returns: a record with the appropriate fields (x, y, options) that can be passed to one of the
functions in ConvertDataSeriesForTool (7.1.2)

This function is called by P1ot (7.1.1) to convert any of the wide variety of inputs that P1ot (7.1.1)
might receive into a single internal format. Then that internal format can be converted to the JSON
format needed by any of the visualization tools supported by this package.

See the documentation for ConvertDataSeriesForTool (7.1.2) for more information on how
that latter conversion takes place, and the format it expects.

7.3.8 JUPVIZMakePlotGraphRecord

> JUPVIZMakePlotGraphRecord(various) (function)

Returns: arecord with the appropriate fields (vertices, edges, options) that can be passed to
one of the functions in ConvertGraphForTool (7.1.4)

This function is called by PlotGraph (7.1.3) to convert any of the wide variety of inputs that
PlotGraph (7.1.3) might receive into a single internal format. Then that internal format can be con-
verted to the JSON format needed by any of the visualization tools supported by this package.

See the documentation for ConvertGraphForTool (7.1.4) for more information on how that latter
conversion takes place, and the format it expects.

7.3.9 JUPVIZPlotDataSeriesList

> JUPVIZPlotDataSeriesList(seriesl, series2, series3...) (function)
Returns: a JupyterRenderable object ready to be displayed in the Jupyter Notebook

JupyterViz 45

Because the P1lot (7.1.1) function can take a single data series or many data series as input, it
detects which it received, then passes the resulting data series (as an array containing one or more
series) to this function for collecting into a single plot.

It is not expected that clients of this package will need to call this internal function.

7.3.10 JUPVIZRecordKeychainLookup

> JUPVIZRecordKeychainLookup(record, keychain, default) (function)

Returns: the result of looking up the chain of keys in the given record

In nested records, such as myRec:=rec(a:=rec(b:=5)), it is common to write code such as
myRec.a.b to access the internal values. However when records are passed as parameters, and may
not contain every key (as in the case when some default values should be filled in automatically), code
like myRec.a.b could cause an error. Thus we wish to first check before indexing a record that the
key we’re looking up exists. If not, we wish to return the value given as the default instead.

This function accepts a record (which may have other records inside it as values), an array of
strings that describe a chain of keys to follow inward (["a","b"] in the example just given), and a
default value to return if any of the keys do not exist.

It is not expected that clients of this package will need to call this internal function. It is used
primarily to implement the JUPVIZFetchWithDefault (7.3.12) function, which is useful to those
who wish to extend the ConvertDataSeriesForTool (7.1.2) and ConvertGraphForTool (7.1.4)
objects.

Example

myRec := rec(height := 50, width := 50, title := rec(

text := "GAP", fontSize := 20
));
JUPVIZRecordKeychainLookup(myRec, ["height"], 10); # = 50
JUPVIZRecordKeychainLookup(myRec, ["width" 1, 10); # = 50
JUPVIZRecordKeychainLookup(myRec, ["depth" 1, 10); # =10
JUPVIZRecordKeychainLookup(myRec, ["title", "text"], "Title"); # = "GAP"
JUPVIZRecordKeychainLookup(myRec, ["title", "color"], "black"); # = "black"
JUPVIZRecordKeychainLookup(myRec, ["one", "two", "three"], fail); # = fail

7.3.11 JUPVIZRecordsKeychainLookup

> JUPVIZRecordsKeychainLookup(records, keychain, default) (function)

Returns: the result of looking up the chain of keys in each of the given records until a lookup
succeeds

This function is extremely similar to JUPVIZRecordKeychainLookup (7.3.10) with the following
difference: The first parameter is a list of records, and JUPVIZRecordKeychainLookup (7.3.10) is
called on each in succession with the same keychain. If any of the lookups succeeds, then its value
is returned and no further searching through the list is done. If all of the lookups fail, the default is
returned.

It is not expected that clients of this package will need to call this internal function. It is used
primarily to implement the JUPVIZFetchWithDefault (7.3.12) function, which is useful to those
who wish to extend the ConvertDataSeriesForTool (7.1.2) and ConvertGraphForTool (7.1.4)
objects.

JupyterViz 46

Example
myRecs := [
rec(height := 50, width := 50, title := rec(
text := "GAP", fontSize := 20
)),
rec(width := 10, depth := 10, color := "blue")
1;
JUPVIZRecordsKeychainLookup(myRecs, ["height"], 0); # = 50
JUPVIZRecordsKeychainLookup(myRecs, ["width"], 0); # = 50
JUPVIZRecordsKeychainLookup(myRecs, ["depth" 1, 0); # =10
JUPVIZRecordsKeychainLookup(myRecs, ["title", "text"], "Title"); # = "GAP"
JUPVIZRecordsKeychainLookup(myRecs, ["color" 1, ""); # = "blue"
JUPVIZRecordsKeychainLookup(myRecs, ["flavor"], fail); # = fail
7.3.12 JUPVIZFetchWithDefault
> JUPVIZFetchWithDefault (record, others, chain, default, action) (function)

Returns: nothing

This function 1is designed to make it easier to write new entries in the
ConvertDataSeriesForTool (7.1.2) and ConvertGraphForTool (7.1.4) functions. Those
functions are often processing a list of records (here called others) sometimes with one record the
most important one (here called record) and looking up a chain of keys (using default just as in
JUPVIZRecordKeychainLookup (7.3.10)) and then taking some action based on the result. This
function just allows all of that to be done with a single call.

Specifically, it considers the array of records formed by Concatenation([record] ,others)
and calls JUPVIZRecordsKeychainLookup (7.3.11) on it with the given chain and default. (If the
chain is a string, it is automatically converted to a length-one list with the string inside.) Whatever
the result, the function action is called on it, even if it is the default.

Example
Trivial examples:
myRec := rec(a := 5);
myRecs := [rec(b :=3), rec(Ca :=6) 1;
f := function (x) Print(x, "\n"); end;
JUPVIZFetchWithDefault(myRec, myRecs, "a", 0, f); # prints 5
JUPVIZFetchWithDefault (myRec, myRecs, "b", 0, f); # prints 3
JUPVIZFetchWithDefault(myRec, myRecs, "c", 0, f); # prints O
JUPVIZFetchWithDefault(myRec, myRecs, ["a","b"], O, £); # prints O

Useful example:

JUPVIZFetchWithDefault(primaryRecord, secondaryRecordsList,
["options", "height"], 400,
function (h) myGraphJSON.height := h; end

)3

See also JUPVIZFetchIfPresent (7.3.13).

7.3.13 JUPVIZFetchIfPresent

> JUPVIZFetchIfPresent(record, others, chain, action) (function)
Returns: nothing

JupyterViz 47

This function is extremely similar to JUPVIZFetchWithDefault (7.3.12) with the following ex-
ception: No default value is provided, and thus if the lookup fails for all the records (including record
and everything in others) then the action is not called.

Examples:

Example
myRec := rec(a := 5);
myRecs := [rec(b :=3), rec(a :=6)];
f := function (x) Print(x, "\n"); end;
JUPVIZFetchIfPresent(myRec, myRecs, "a", 0, f); # prints 5
JUPVIZFetchIfPresent(myRec, myRecs, "b", 0, f); # prints 3
JUPVIZFetchIfPresent(myRec, myRecs, "c", 0, f); # does nothing
JUPVIZFetchIfPresent(myRec, myRecs, ["a","b"], O, f); # does nothing

7.4 Representation wrapper

This code is documented for completeness’s sake only. It is not needed for clients of this package.
Package maintainers may be interested in it in the future.

The JupyterKernel package defines a method JupyterRender that determines how GAP data
will be shown to the user in the Jupyter notebook interface. When there is no method implemented for
a specific data type, the fallback method uses the built-in GAP method ViewString.

This presents a problem, because we are often transmitting string data (the contents of JavaScript
files) from the GAP kernel to the notebook, and ViewString is not careful about how it escapes
characters such as quotation marks, which can seriously mangle code. Thus we must define our own
type and JupyterRender method for that type, to prevent the use of ViewString.

The declarations documented below do just that. In the event that ViewString were upgraded to
more useful behavior, this workaround could probably be removed. Note that it is used explicitly in
the using-library. js file in this package.

If this package is loaded without the JupyterKernel package having already been loaded, then
the following functions and tools are not defined, because their definitions rely on global data made
available by the JupyterKernel package.

7.4.1 JUPVIZIsFileContents (for IsObject)

> JUPVIZIsFileContents (arg) (filter)
Returns: true or false
The type we create is called FileContents, because that is our purpose for it (to preserve, unal-
tered, the contents of a text file).

7.4.2 JUPVIZIsFileContentsRep (for IsComponentObjectRep and JUPVIZIsFile-
Contents)

> JUPVIZIsFileContentsRep(arg) (filter)
Returns: true or false
The representation for the FileContents type

JupyterViz 48

7.4.3 JUPVIZFileContents (for IsString)
> JUPVIZFileContents(arg) (operation)
A constructor for FileContents objects

Elsewhere, the JupyterViz package also installs a JupyterRender method for FileContents
objects that just returns their text content untouched.

Index

ConvertDataSeriesForTool, 34
ConvertGraphForTool, 36
CreateVisualization, 40

InstallVisualizationTool, 40
InstallVisualizationToolFromTemplate,

40

JUPVIZAbsoluteJavaScriptFilename, 41
JUPVIZFetchIfPresent, 45
JUPVIZFetchWithDefault, 45
JUPVIZFileContents

for IsString, 47
JUPVIZFillInJavaScriptTemplate, 42
JUPVIZIsFileContents

for IsObject, 46
JUPVIZIsFileContentsRep

for IsComponentObjectRep and JUPVIZIs-

FileContents, 46

JUPVIZLoadedJavaScriptCache, 41
JUPVIZMakePlotDataSeries, 43
JUPVIZMakePlotGraphRecord, 43
JUPVIZPlotDataSeriesList, 43
JUPVIZRecordKeychainLookup, 44
JUPVIZRecordsKeychainLookup, 44
JUPVIZRunJavaScriptFromTemplate, 42
JUPVIZRunJavaScriptUsingLibraries, 42
JUPVIZRunJavaScriptUsingRunGAP, 42

LoadJavaScriptFile, 39

Plot, 33

PlotDisplayMethod, 37
PlotDisplayMethod_HTML, 39
PlotDisplayMethod_Jupyter, 38
PlotDisplayMethod_JupyterSimple, 38
PlotGraph, 35

RunJavaScript, 39

49

	Introduction
	Purpose
	Terminology (What is a Graph?)
	The high-level API and the low-level API
	Loading the package (in Jupyter or otherwise)

	Using the high-level API
	Charts and Plots
	Options for charts and plots
	Graphs
	Options for graphs

	Using the low-level API
	The CreateVisualization function
	Looking beneath the high-level API
	Using JSON from a file
	Documentation for each visualization tool
	Example uses of the low-level API

	Using general tools (HTML, canvas, D3)
	Why these tools are present
	Post-processing visualizations
	Injecting JavaScript into general tools

	Adding new visualization tools
	Why you might want to do this
	What you will need
	Extending this package with a new tool
	Installing a new tool at runtime

	Limitations
	Function reference
	High-Level Public API
	Low-Level Public API
	Internal methods
	Representation wrapper

	Index

