FreeFEM Documentation
Release 4.13

Frederic Hecht

Dec 05, 2024

In collaboration with:

J)!

By SORBONNE
UNIVERSITE

inventors for the digital world

UPMC

1RAI SORBONNE UNIVERSITES

AGENCE NATIONALE DE LA RECHERCHE

CONTENTS

1 Introduction 3
1.1 Newfeatures o e e e 4
1.2 Installation guide L. e e e e e e e e e 14
1.3 Download e e 27
R = 10 28
IS Gitation o e e e e e e e e 29
1.6 Authors L e e e e 30
1.7 Contributing e 31
1.8 Git& Githubusage e e 31

2 Learning by Examples 33
2.1 Gettingstarted L. e 35
2.2 Classification of partial differential equations 41
23 Membrane e e e e e e e e e e 43
24 Heat Exchanger. e e e e e e 49
2.5 ACOUSHCS . . . o v ot e e e e 52
2.6 Thermal Conduction 0 . . i e e e e e e e e 54
2.7 Irrotational Fan Blade Flow and Thermal effects 58
2.8 Pure Convection : The Rotating Hill 61
2.9 The System of elasticity e e e e e e e 65
2.10 The System of Stokes for Fluids e 67
2.11 A projection algorithm for the Navier-Stokes equations 68
2.12 Newton Method for the Steady Navier-Stokes equations 73
2.13 ALargeFluid Problem e 76
2.14 An Example with Complex Numbers 83
2.15 Optimal Control e e e e e e e e e e e e e 85
2.16 AFlowwith Shocks e 88
2.17 Time dependent schema optimization for heat equations 91
2.18 Tutorial to write a transient Stokes solver in matrix form00, 93
2.19 Wifi Propagation e e e e e e e e e e e 95
2.20 Plotting in Matlaband Octave o e e e e e e e e e e 100

3 Documentation 107
3.1 NOtations o o v o e e e e e e e e e 108
32 MeshGeneration e e e e e e e e 110
3.3 Finiteelement L e e 193
34 Visualization e e e e e e e e e 236
3.5 Algorithms & Optimization e 244
3.6 Parallelization e 271
3.7 PETScand SLEPC e 305

3.8 The Boundary Element Method e 308
3.9 Composite finite element spaces NEW! o 321
310 Plugins L e e e e e e e e e e e e 327
3.11 Developers L e e e e 333
302 ffddm e e 350
4 Language references 383
41 TTYPES o o i e e e e e e e e e e e e e e e e e 384
4.2 Global variables e e e e e e e e e 399
4.3 Quadrature formulae e e e e e e 403
44 OPETAOTS . o v v v v v e 407
45 LOODPS « v v e e e e e e e e e e e e e e e 411
4.6 T/O . . e 412
477 FunctionsS e e e e e e e e e e 415
4.8 External libraries e e e e e e e e 453
5 Mathematical Models 525
5.1 Staticproblems e e e e 525
52 Elasticity L e e e 547
5.3 Non-linear static problems L e e e e e e e e e e 557
5.4 Eigenvalue problemso e e e e e e e e e 558
5.5 Evolutionproblems e e e e e e 562
5.6 Navier-Stokes equations L. e e 572
5.7 Variational Inequality L. e 582
5.8 Domain decomposition e e e e e e e e e e e e e e e 585
5.9 Fluid-structure coupled problem L e e e 592
5.10 Transmission problem oL e 596
5.11 Freeboundary problems L e 599
5.12 Non-linear elasticity e e e 602
5.13 Compressible Neo-Hookean materials i it 607
5.14 Whispering gallery modes e e e e e e e e 616
6 Examples 621
6.1 MISC e 621
6.2 MeshGeneration e e e e e e 628
6.3 FiniteElement 640
6.4 Visualization L e e e e e e e 643
6.5 Algorithms & Optimizations e e e 646
6.6 Parallelization L e e 661
6.7 Developers i e e e e e e e e e e e 676
Bibliography 705

FreeFEM Documentation, Release 4.13

CONTENTS 1

FreeFEM Documentation, Release 4.13

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

FreeFEM is a partial differential equation solver for non-linear multi-physics systems in 1D, 2D, 3D and 3D border

domains (surface and curve).

Problems involving partial differential equations from several branches of physics, such as fluid-structure interactions,
require interpolations of data on several meshes and their manipulation within one program. FreeFEM includes a fast

interpolation algorithm and a language for the manipulation of data on multiple meshes.

FreeFEM is written in C++ and its language is a C++ idiom.

FreeFEM currently interfaces to the following libraries:

ARPACK ParMETIS SuperLU
BLAS Mmg TetGen
OpenBLAS mshmet PETSc
FFTW 3.3.8 MUMPS HTool
Ipopt 3.12.4 NLopt 2.2.4 HPDDM
Gmm++ 4.2 ScaLAPACK BemTool
freeYams Scotch ParMmg
METIS SuiteSparse

https://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/blas/
http://www.openblas.net/
http://www.fftw.org
https://github.com/coin-or/Ipopt
http://getfem.org/gmm.html
https://www.ljll.math.upmc.fr/frey/software.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://www.mmgtools.org/
https://www.ljll.math.upmc.fr/frey/software.html
http://mumps-solver.org/
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://www.netlib.org/scalapack/
https://gforge.inria.fr/projects/scotch/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://www.tetgen.org/
https://petsc.org/
https://pierremarchand.netlify.com/project/htool/
https://github.com/hpddm/hpddm
https://github.com/PierreMarchand20/BemTool
https://github.com/MmgTools/ParMmg

FreeFEM Documentation, Release 4.13

@

wd SCIENCES
SORBONNE
UNIVERSITE

1.1 New features

The notable changes of each FreeFEM release are listed below.

4 Chapter 1. Introduction

FreeFEM Documentation, Release 4.13

1.1.1 Version 4.13 (30 June 2023)
e Added
— Composite FE spaces and variational forms for coupled problems (see Composite finite element spaces):

% can now define composite FE spaces with different meshes/mesh types as

i | fespace Uh(Thi, [P2,P2]);
. | fespace Ph(Th2,P1);
s | fespace Vh=Uh*Ph;

% can define coupled problems using composite FE spaces, or directly with < > syntax:

! rfespace Uh(Th1, [P2,P2]);
. | fespace Ph(Th2,P1);

3 |Uh [ul,u2],[vl,v2];

+ |Ph p,q;

¢ |solve Pb (<[ul,u2],[pl>, <[vl,v2],[ql>) = ...

see examples/examples/stokes_composite.edp and examples/examples/stokes_periodic_composite.edp

this new type of composite problem can be used for FEM-BEM coupling and also benefits from au-
tomatic parallel assembly (in test) and can be easily solved using the distributed solver MUMPS, see
examples/bem/Helmholtz-2d-FEM-BEM-coupling-MUMPS-composite.edp

% composite problems can also be solved using PETSc (in test), see examples/hpddm/Helmholtz-2d-
FEM-BEM-coupling-PETSc-composite.edp

— remove spurious cout in Curve/Line DG definition.

— add New Finite element 2d on mesh : RTOdc (discontinuous RTO) in plugin Element_Mixte
see example plugin/RTO0dc.edp
and Plnc (Crouziex-Raviat) + bulle : name Plbnc in plugin Element_P1ncdc
and Plnc totally discontinous + bulle ; name P1bdcnc in plugin Element_Plncdc
see example plugin/example testpldcnc.edp
for akram.beni-hamad @inria.fr
— add New finite element: PAS P4 on meshS , P3pnc3d in Element_P3pnc_3d (Couziex-Raviart with P3)
see loic.balaziatchynillama@cea.fr for more information.

— add new interface for metis (see examples/plugin/metis.edp)

— Correct jump, mean, otherside of finite element function on mesh3, meshS, meshL
(add missing code in method: MeshPoint::SetAdj() thanks to zuqi.tang @univ-lille.fr)

— try to build dmg install mac version

— add file script to build meshS from boundary meshLL TL if the boundary is the graph of function from
mean plane.
see example in examples/3dSurf/buildmeshS.edp

i |meshS Ts=buildmeshSminsurf(TL,1);// minimal surface
» |meshS Tsl=buildmeshSLap(TL,1);// Laplace Surface ..
3 |meshS Tsl=buildmesh(TL,1,0p);// op = 0 Lap and op =1 => minsurf.

— add sparse block to sparse matrix

1.1. New features 5

mailto:akram.beni-hamad@inria.fr
mailto:loic.balaziatchynillama@cea.fr
mailto:zuqi.tang@univ-lille.fr

FreeFEM Documentation, Release 4.13

i |matrix A = va(Vh,Vh);

. |matrix B(A.n*5,A.n*5);

3 |int i=2;

+ |B.add(1.+10%i,A,i*ndof,i*ndof);

¢ Changed

change isoline to do the job for meshS, see example plugin/isoline.edp

change Curve function to be with 3 components to use the isoline data.

change Curvature plugin to compatible with new isoline data for 3 d case.

change some sprintf in snprint to remove warning
* Fixed

— bug in all POface, POedge, POVF on mesh3,meshS, MeshL and also discontinous version (missing initiali-
sation)

— bug in plot function and ffglut with parameter pdf="file.pdf” , because shift in plot named parameter not
change in ffglut.

— genere a bug if zero size element in read MeshL from file.
— remove mistake when the border is badly defined , remove empty element in buildmeshL function.

— bug in array quadrature FE.

1.1.2 Version 4.12
o Added

— add new finite Element P2pnc3d of Stokes problem like Crouzeix-Raviard in 3d of P2 pylynome
see G. Allaire or loic.balaziatchynillama@cea.fr for details

— add pdfPLOT from fujiwara@acs.i.kyoto-u.ac.jp
(http://www-an.acs.i.kyoto-u.ac.jp/~fujiwara/ff++-programs/)
usage: plot(..., pdf="filename.pdf", svg="filename.svg");

— add missing code for Discontinous Galerkin in 3d for RHS
see problem-in-3d-discontinuous-galerkin-computation

— add in examples/mpi/chamonix.edp : radiative transfer

uses new plugin plugin/mpi/RadiativeTransfer_htool.cpp, illustrates the use of htool for compression of
user defined matrix operator

— transform a surface meshS in 2d mesh (warning with overlapping, no test) with movemesh:

. |meshS Ths = square3 (10,10, [x,y,square(2*x-1)+square(2*y-1)]1);

» |real[int] gzz;

s |mesh Th2 = movemesh(Ths,transfo=[x,y,z],getZ=gzz);// get flat 2d mesh form.
—meshS

— New 1d finite element P3 hermite (C1) finite element in plugin Element_P3

| [meshL Th=segment (1, [x*L,0,0]); fespace Vh(Th,P3HL);

see example end of example plugin/testFE-P3

— missing new 1d finite element P4 in plugin Element_P4

6 Chapter 1. Introduction

mailto:loic.balaziatchynillama@cea.fr
mailto:fujiwara@acs.i.kyoto-u.ac.jp
http://www-an.acs.i.kyoto-u.ac.jp/~fujiwara/ff++-programs/
https://community.freefem.org/t/problem-in-3d-discontinuous-galerkin-computation/2015/6

FreeFEM Documentation, Release 4.13

— plugin plugin/seq/MatrixMarket.cpp to read and save matrix in MatrixMarket and add also a binary form

see examples/plugin/MatrixMarket.edp test

— add ILU on complex matrix in plugin IncompleteCholesky

remark : the IncompleteCholesky is written but not tested
— add test of functional interface of complex eigen value problem in exam-
ples/eigen/LapEigenValueFuncComplex.edp
* Changed
— correct some old code with old version of K.facePermutation() function in plu-
gin/seq/Element_Mixte3d.cpp and plugin/seq/Element_P2bulle3.cpp (not tested)
* Fixed
- fix in A.RemoveHalf (alway return a new matrix)
1.1.3 Version 4.11
e Added
— add computation scalar product of R3 example : (N’*TI)
— add tools to do compution with R3 vector see tutorial/calculus.edp
— add an example tutorial/tgv-test.edp see see what tgv do on matrix build.
— add R3 Th.be(k).N to get the normal of boundary element (in all mesh type)
— add R3 Th.be(k)[i].P to get the point (R3) of boundary vertices
— add R3 Th.be(k).measure to get the measure of the boundary elment
— add projection function to a mesh , meshL, MeshS or mesh3 with return a R3 point
— see new example dist-projection.edp example in exemples
— add dxx, dyy, dzz, dxy, .. on P2L finite element
— add tools to compute solid angle
[let R3 O; a given point, Th3 a mesh3 and ThS a meshS.]
% solidangle(O,Th3.be(ke)) // triangular face is the boundary face
% solidangle(O,Th3[k],nuface) // triangular face is face nuface of tet Th3[k]
solidangle(O,ThS[k]) // triangular face is ThS[k]
% solidangle(O,A,B,C) // triangular face i (A,B,C)
Volume(O,Th3.be(ke)) // O, triangular face is the boundary face
* Volume(O,Th3[k],nuface) // O, triangular face is face nuface of tet Th3[k]
% Volume(O,ThS[k]) // O, triangular face is ThS[k]
% Volume(O,A,B,C) // (O,A,B,C) tet ..
— in bem pluging add array of HMatrix
— examples/3d/Connectivite-3d.edp or /3dSurf/Connectivite-S.edp of test.
— 3 function mapk, mapkk, mapkk to set a function in fourier space with k parametre
1.1. New features 7

FreeFEM Documentation, Release 4.13

R3 K; // le fourier variable allway 3d (sorry)
int nl=16,n2=8, n3=4;

real[int] tabl(nx,tab2(nx*ny),tab3(nx*ny*nz);
mapk (tabl,K,sqr(K.x));

mapkk (tab2,ny,K,K.norm2) ;

mapkkk (tab3,ny,nz,K,K.norm2) ;

// Remark you can change K by P (current point)

in SurfaceMesh.ipd fonction to build a Isocaedron and a Sphere from this Isocaedron

new finite element on MeshS this finite element is the ortogonal of RTO on surface, or Nelelec Finite
Element on triangle with one DoF per mesh edge and where the DoF is the current on Edge in orientate
edge by number of vertices.

plugin Element_P3pnc for new 2d finite element P3pnc (P3 + 2 bulles) noncoforming (continuite of

P2 mod)
and add 2 examples with this new finite element examples/plugin/cavityNewtowP3pnc.edp

examples/plugin/testFE-P3pnc.edp

function to set dirichlet Boundary conditon on matrix A (real ou compex) trought an real[int]
(if none zero => set BC)

setBC(A,aul[],-2); and the example
examples/3d/Elasticity-simple-support-BC.edp

* Changed

the beaviour of linear solver UMFPACK, CHOLMOD in case of error , now FreeFEm exit on ExecError
like in MUMPS

PETSc 3.17.0

¢ Removed

-map function in plugin dfft

¢ Fixed

pow(int,int) now call int version not complex version..

correct the normal the N implicite variable on meshL case

correct version dump in banner FreeFem++ - version 4.10 (V ...

correct in CPU time on big mesh due to do bad HCode in HashTable.hpp

bug in array of finite element on meshhS, meshL (ie. fespace Vh(ThS,[P1,P1]);)

1.1.4 Version 4.10
+ Added

ridgeangle named parameter in ExtractMeshL in msh3 plugin

DG formulation in 1d : add integral of all border of element : intallBE(ThL) and unified the notation
by adding intallBE(ThS) , intallBE(Th2), intallBE(Th3) nuVertex of now the vertex number
of element in intallBE®d integral BoundaryBE, InternalBE to know if border element (BE) is on true
boundary of not. update nElementonB in case on no manifold data (value greater > 2) in meshL, MeshS
case .. add code to use jump, mean of test functuon on MeshL case. (not in mesh3) to compute RHS.

add getcwd () function in shell plugin to get the current working dir

add nuVertex to get the vextex on element in some int?

Chapter 1. Introduction

FreeFEM Documentation, Release 4.13

e Changed

PETSc 3.16.1

* Deprecated

SLEPc and SLEPc-complex have been part of PETSc and PETSc-complex for multiple releases and are
now deprecated

¢ Fixed

examples/potential.edp correct problem in times loops and BC
tutorial/mortar-DN-4.edp correct problem of region number in meshL
fix problem in Curve mesh and intallBE , vertex number is wrong
portability issue on arm64-apple with make petsc-slepc

fix assertion failure with transfer and transferMat with some finite elements

1.1.5 Version 4.9
o Added

add P3 lagrange finite element on meshS and meshS

add new plugin meshtool to add tool to compute the number of connected components of a all kind of
mesh (mesh,mesh3,meshS,meshL) with 2 kind of connected components ones on interior part of the mesh
(default) ans secondly on the closure of the mesh (see examples/hpddm/bConnectedComponents.edp)
add functions int[int] In=iminP1K(Th,u) or int[int] Ix=imaxP1K(Th,u) get the array min/max of value u[i]
where i is vertex number on each element k, so we have u[Im[k]] = min u[i]/ i in k;

add in plugin bfstream to to read binary int (4 bytes) to read fortran file and try to pull tools to share the
endiannes in progress

add gluemesh of array of MeshL and MeshS type
interface to PC_MG_GALERKIN_BOTH
Kronecker product of two sparse matrices matrix C = kron(A, B)

add lot of finite element on Mesh3, MeshS, MeshL of Discontinous Galerling Element in 3d : P1dc3d,
P2dc3d, P3dc3d, P4dc3d , POedge3d ,POedgedc3d , POface3d ,POfacedc3d , POVF3d ,POVFdc3d , on Sur-
face : P1dcS, P2dcS, P3dcS, P4dcS , POedgeS ,POedgedcS , POVFS ,POVFdcS, on Curve : P1dcL, P2dcL,
P3dcL, P4dcL , POVFL ,POVFdcL remark; the associated generic name existe of P1dc, P2dc, POedge, POVF
and all dc finite element corresponding to no continuity across element.

add code of intallfaces to do Discontinous Galerkin formulation in 3d (in test FH.)
add dist function to a mesh , meshL, MeshS or mesh3
signeddistfunction to a meshL. or meshS

add buildmesh functon to build a 2d mesh from a meshl. (same as buildmesh see exam-
ples/3dCurve/border.edp)

¢ Changed

Now the order to find MPI in configure is first if you have PETSC then take MPI from PETSc otherwise
use previous method

— on MeshL defined with buildmeshL now the default label are 2*k-1 (resp. 2*k) for the begin (resp. end)

of curve where k is the order of curve use in buildmeshL. So if you have one curve the labels are 1 and 2.
And new the element label are te region number not the label. This element are not really test so be carfull.

1.1.

New features 9

FreeFEM Documentation, Release 4.13

— PETSc 3.15.0
¢ Fixed

— bug in Find triangle contening point in 2d (border case), int Mesh: :DataFindBoundary: :Find(R2
PP,R *1,int & outside) const the parameter | not correclty return due to local variable.

— set CFLAGS=-Wno-implicit-function-declaration to complie with Apple clang version 12.0.0
(clang-1200.0.32.29) to remove following error: implicit declaration of function correct
:freefem:*3dCurve/basicGlue.edp”and add missing test

— bugs in SLEPc SVDSolve () with a rectangular Mat

— bugs in nElementonB for DG 3d formulation.

1.1.6 Version 4.8
o Added

Bilaplacian example using Morley FE with PETSc, see examples/hpddm/bilaplacian-2d-PETSc.edp

Oseen problem preconditioned by PCD, see examples/hpddm/oseen-2d-PETSc.edp

SLEPc polynomial eigenvalue solver PEPSolve()

add trivial example to check periodic boundary condition on meshS , meshL , mesh3 exam-
ples/3d/periodic3.edp examples/3dSurf/periodicS.edp examples/3dCurve/periodicL.edp

¢ Changed
— PETSc version 3.14.2
— Mmg version 5.5.2

— link of ffglut so change in configure.ac and Makefile.am LIBS -> FF_LIBS and LIBS become empty to
remove default libs

— change number of save plot in ffglut from 10 to 20 for O. Pironneau
* Fixed
— some memory leaks

— the periodic boundary condition have wrong before first a sementic level of MeshS and MeshL case.
the new syntexe is for example: meshL Tl=segment(10); fespace VI(T1,P1,periodic=[[1],[2]]); meshS
Th=square3(10,10,[x*2*pi,y*2*pi]); fespace Vh2(Th,P1,periodic=[[1,x],[3.x].[2,y].[4.y]]);

— fixed “*’ keyboard trick, to keep the viewpoint in ffglut or not.

1.1.7 Version 4.7-1
¢ Changed

change the language definition to use type as a construction function with named arguments for bem plugin
PETSc version 3.14.0
ARPACK compiled by SLEPc

Mmg version 5.5.0

-std=c++14 instead of -std=c++11 when possible
* Removed

— plugins thresholdings, symmetrizeCSR, and fHapack and associed example

10 Chapter 1. Introduction

FreeFEM Documentation, Release 4.13

¢ Fixed

— problem compilation with gfortran-10 of arpack and mumps (add -fallow-argument-mismatch flags)

1.1.8 Version 4.7
+ Added

— new way to build matrix between 2d Finite element 2d and Curve finite element to do mortar (Thank to
Axel) , see first example examples/tutorial/mortar-DN-4-v4.5.edp

— add Ns normal vector in R"3 on meshS (normal of the surface) of current point (to day Ns of [x,y,0] plan
is [0,0,-1]) no be compatible to exterior normal.

— add T1 tangent vector in R"3 on meshL (tangent vector of the line/curve) of current point
— compile ffmaster / ffslave example under windows (thanks to johann @ifado.de)

— Boolean parameter spiltpbedge in buildmesh to split in to edge with two boundary vertices
— interface to PETSc DMPlex, see examples/hpddm/DMPlex-PETSc.edp

— function MatDestroy

— function MatPtAP and transferMat for parallel interpolation between non-matching grids, see
examples/hpddm/PtAP-2d-PETSc.edp or examples/hpddm/diffusion-mg-2d-PETSc.edp

— preliminary interface to SVDSolve from SLEPc to compute singular value decompositions, see
examples/hpddm/mf-2d-SLEPc.edp or examples/hpddm/helmholtz-2d-SLEPc-complex.edp

— preliminary interface to NEPSolve from SLEPc to solve nonlinear eigenvalue problems, see
examples/hpddm/nonlinear-2d-SLEPc-complex.edp

— transpose parameter when constructing a Mat for defining a matrix-free transposed operation
— interface to PetscMemoryGetCurrentUsage

— add P2b, RTO, RT1 surface FE (P2bS, RT0S, RT1S))

— add operator interpolate (2d->3d surface)

— add operator x = A’*b; where X, b are array and A 2 dim array (full matrix) and generate an error in case
of b’*A or b’*A expression

— function MatLoad to load a PETSc Mat from disk, see examples/hpddm/MatLoad-PETSc.edp

— possibility to assemble a symmetric HMatrix<complex> and to densify a HMatrix<complex> into a
Mat<complex>

e Changed

moved Htool to its new GitHub location

ScaLAPACK and MUMPS are not compiled by PETSc anymore if there is no Fortran compiler

MPICH is compiled by PETSc if no MPI is detected during configure, see https://community.freefem.org/
t/feature-request-use-download-mpich-on-ubuntu/407

— PETSc version 3.13.5

force —with-cudac=0 in make petsc-slepc, see https://github.com/FreeFem/FreeFem-sources/issues/141

change DSL keyword P1dc3dL->P1dcL and P1dc3dS->P1dcS

rename view, hasType, changeSchur to respectively ObjectView, HasType, and ChangeSchur

* Deprecated

1.1. New features 11

mailto:johann@ifado.de
https://community.freefem.org/t/feature-request-use-download-mpich-on-ubuntu/407
https://community.freefem.org/t/feature-request-use-download-mpich-on-ubuntu/407
https://github.com/FreeFem/FreeFem-sources/issues/141

FreeFEM Documentation, Release 4.13

rename changeNumbering, globalNumbering, originalNumbering, changeOperator, destroyRecycling,
and attachCoarseOperator to respectively ChangeNumbering, GlobalNumbering, OriginalNumbering,
ChangeOperator, DestroyRecycling, and AttachCoarseOperator

Nt the normal vector of the current (wrong on meshL) use Ns or 7/

¢ Removed

augmentation routine from the PETSc plugin

MPIF77 variable

¢ Fixed

lot of mistake in MeshL element add a example o check lot of thing rutomeshlid.edp

fixed problem of change of mesh when rebuild 2d mesh with buildmesh, (Thank to P. Jovilet to points
this problem)

missing METIS library when using SuiteSparse compiled by PETSc

missing -fno-stack-protector when building PETSc on Windows, see https://community.freefem.org/t/
error-loading-complex-petsc-slepc-library/370

fixed ffglut for the plotting of FE array solution
fixed ffglut bug on MacOS Catalina , draw inn only half windows screen (Apple Bug ???)
correct POVF finite element

abs function of array

1.1.9 Version 4.6
 Added

new search algorithm for the element containing a point (more safe) in mesh of type mesh3, meshS, or
meshL.

new function hasType to know if a PETSc component has been installed, e.g., hasType ("PC", "hypre™)

eigenvalue problems on linear elements, -cf. examples/eigen/LapEigenlDBeltrami.edp or
examples/hpddm/laplace-beltrami-3d-line-SLEPc.edp

—download-cmake in PETSc configure if there is no CMake available

flags —with-[slepc|slepccomplex]-include and —with-[slepc|slepccomplex]-ldflags for when SLEPc has
been built outside of FreeFEM or PETSc

interface to KSPSetResidualHistory and KSPGetlterationNumber
interface to mpiWaitAll

new function extract, allows to build a curve mesh from a 2d mesh (can extract a labeled boundary, apply
a geometric transformation)

ffglut can plot a vectorial FE function in surface 3d

distributed ParMmg interface, cf. examples/hpddm/distributed-parmmg.edp or examples/hpddm/
laplace-adapt-dist-3d-PETSc.edp

new parallel interpolator on non-matching meshes, cf. examples/hpddm/transfer.edp
ability to solve problems in single precision or with 64 bit integers

tool to read data form vtk file only in 3d (cf. plugin iovtk a first example examples/plugin/iovtk.edp)

12

Chapter 1. Introduction

https://community.freefem.org/t/error-loading-complex-petsc-slepc-library/370
https://community.freefem.org/t/error-loading-complex-petsc-slepc-library/370

FreeFEM Documentation, Release 4.13

tool to read/wrile ply file of meshL, mesh3, MeshS
[Polygon File Format / Stanford Triangle Format do load “ioply”] see examples//3dSurf/
operatorsOnMeshS. edp

* Changed

new tgv values: -10 => zero row, -20 => zero row/column
Windows binary now shipped with PETSc/SLEPc

BEM examples are now in examples/mpi

plot border type is now in 3d (border 2d and 3d)

PETSc version 3.13.0

¢ Fixed

—enable-download_package may now be used to download a single package, e.g., —enable-download_metis
compilation of PETSc under Windows

compilation of plugins when using static libraries

correct detection problem in FE type when use a vectorial FE

macro concatenation with spaces in arguments

correct bug in plugin/seq/Schur-Complement.cpp

correct ambiguity bug in plugin/seq/bfstream.cpp (reading real or integer)

compilation of plugin libff-mmap-semaphore.c under windows

1.1.10 Version 4.5

Release, binaries packages

» Since the version 4.5, the FreeFEM binary packages provides with a compiled PETSc library.

* FreeFEM is now interfaced with ParMmg.

New meshes and FEM border

After Surface FEM, Line FEM is possible with a new mesh type meshL, PO P1 P2 P1dc FE, basic FEM, mesh generation.
This new development allows to treat a 1d problem, such as a problem described on a 3d curve.

Abstract about Line FEM in FreeFEM.

* new meshL type, refer to the section The type meshL in 3 dimension

new type of surface mesh: meshL
the functionalities on the meshL type, it is necessary to load the plugin “msh3”.
generator of meshL segment, define multi border and buildmesh function.

basic transformation are avalaible: movemesh, trunc, extract, checkmesh, change, AddLayers, glue
of meshL.

It is possible to build the underlying meshL from a meshS with the function buildBdMesh:
ThS=buildBdMesh(ThS) builds the boundary domain associated to the meshS ThS and extract it by the
command meshL ThL=ThS. Gamma.

* new finite element space with curve finite element type

1.1. New features 13

FreeFEM Documentation, Release 4.13

* FESpace PO P1, P2, Pldc Lagrange finite elements and possible to add a custumed finite element with the
classical method (like a plugin).

* as in the standard 2d, 3d, surface 3d case, the variational problem associated to surface PDE can be defined by
using the keywords

— problem

— varf to access to matrix and RHS vector

— available operators are int1d, on and the operator int®d to define a Neumann boundary condition
* visualisation tools

— plot with plot of ffglut, medit meshes meshL and solutions

— 2d or 3d view, with in 3d the option to visualize the elememt Normals at element (touch ‘T’) and the
deformed domain according to it (touch 2’).

— loading, saving of meshes and solution at FreeFEM’s format
% “.mesh” mesh format file of Medit (P. Frey LJLL)
* “.msh” for mesh and “.sol” data solution at freefem format
* “.msh” data file of Gmsh (Mesh generator) (load “gmsh”)

* vtk format for meshes and solutions (load “iovtk” and use the “.vtu” extension)

Boundary Element Method

Allows to define and solve a 2d/3d BEM formulation and rebuild the associated potential. The document is in con-
struction.

1.2 Installation guide

To use FreeFEM, two installation methods are available: user access (binary package) and access developers (from the
source code). Follow the section corresponding to your type of installation.

Note

Since the version 4.5, FreeFEM relese provides with the last version of PETSc.

1.2.1 Using binary package

First, open the following web page download page and choose your platform: Linux, MacOS or Windows.

Note

Binary packages are available for Microsoft Windows, MacOS and some Linux distributions. Since the release 4.5,
FreeFEM binaries provide with the current version of PETSc.

14 Chapter 1. Introduction

FreeFEM Documentation, Release 4.13

Install FreeFEM by double-clicking on the appropriate file. Under Linux and MacOS the install directory is one of
the following /usr/local/bin, /usr/local/share/freefem++, /usr/local/lib/ff++

Windows installation

Note

The windows package is build for Window 7 64bits. The support ended for all releases under Windows 32 bits
since the V4.

First download the windows installation executable, then double click to install FreeFEM. Install MSMPI for parallel
version under window64 MS MPI V10.1.2, and install both msmpisdk.msi and MSMpiSetup.exe.

In most cases just answer yes (or type return) to all questions.

Otherwise in the Additional Task windows, check the box “Add application directory to your system path.” This is
required otherwise the program ffglut.exe will not be found.

By now you should have two new icons on your desktop:

e FreeFem++ (VERSION).exe, the freefem++ application.

e FreeFem++ (VERSION) Examples, a link to the freefem++ examples folder.
where (VERSION) is the version of the files (for example 4.5).

By default, the installed files are in C:\Programs Files\FreeFem++. In this directory, you have all the .d11 files
and other applications: FreeFem++-nw.exe, ffglut.exe, ... The syntax for the command-line tools are the same
as those of FreeFem. exe.

To use FreeFEM binaries under Windows, two methods are possible:
¢ Use the FreeFEM launcher (launchff++.exe)

Warning: if you launch FreeFEM without filename script by double-clicking, your get a error due (it is bug of usage
GetOpenFileName in win64).

¢ In shell terminal (cmd, powershell, bash, ...):

— To launch sequential version:

i [C:\>"Program Files (x86)\FreeFem++\FreeFem++.exe" <mySequentialScript.edp>

— To launch parallel version:

i | C:\>"Program Files\Microsoft MPI\Bin\mpiexec.exe" -n <nbProcs> C:\>"Program Files,.
< (x86) \FreeFem++\FreeFem++-mpi.exe" <myParallelScript.edp>

macOS X installation

Download the macOS X binary version file, extract all the files by double clicking on the icon of the file, go the the
directory and put the FreeFem++. app application in the /Applications directory. And read the README.md file.
If you want terminal access to FreeFEM just copy the file FreeFem++ in a directory of your $PATH shell environment
variable.

We make a small move to explain how to by pass the security problem see FreeFEM install movie
<https://www.ljll fr/hecht/pkg/Install-FreeFEM-MacOS.mov> "

1.2. Installation guide 15

1

1

1

FreeFEM Documentation, Release 4.13

Ubuntu installation

Note

The Debian package is built for Ubuntu 16.04

Beforehand, install the following dependances libraries using the apt tool:

sudo apt-get install libgsl-dev libhdf5-dev
liblapack-dev libopenmpi-dev freeglut3-dev

Download the package FreeFEM .deb, install it by the command

[dpkg -i FreeFEM_VERSION_Ubuntu_withPETSc_amd64.deb

FreeFEM is directly available in your terminal by the command “FreeFem++”.

Arch AUR package

An up-to-date package of FreeFEM for Arch is available on the Archlinux user repository.

To install it:

git clone https://aur.archlinux.org/freefem++-git.git
cd freefem++-git
makepkg -si

Note

Thanks to Stephan Husmann

Fedora installation

Packages are available in the Fedora Repositories, and they are managed by the Fedora SciTech special interest group.

The packages are usually recent builds, but may not be the latest released version.

You can install them using the dnf tool, for both the serial and parallel (MPI) versions. :

sudo dnf install freefem++
sudo dnf install freefem++-openmpi
sudo dnf install freefem++-mpich

FreeFEM is directly available in your terminal by the command “FreeFem++”. To use the OpenMPI version, in your

terminal first load the OpenMPI module, for example using

[module load mpi/openmpi-x86_64

]

and then the command “FreeFem-++-mpi_openmpi” will be available in your terminal. To use the MPICH version, in

your terminal first load the MPICH module using

[module load mpi/mpich-x86_64

and then the command “FreeFem++-mpi_mpich” will be available in your terminal.

16

Chapter 1. Introduction

https://aur.archlinux.org/packages/freefem%2B%2B-git/
https://github.com/stefanhusmann
https://src.fedoraproject.org/rpms/freefem++
https://fedoraproject.org/wiki/SIGs/SciTech/PackageList

FreeFEM Documentation, Release 4.13

1.2.2 Compiling source code
Various versions of FreeFEM are possible:
* sequential and without plugins (contains in 3rdparty)

e parallel with plugins (and with PETSc).

Note

We advise you to use the package manager for macOS Homebrew to get the different packages
required avalaible here

Compilation on OSX (>=10.13)
1. Install Xcode, Xcode Command Line tools and Xcode Additional Tools from the Apple website

2. Install gfortran from Homebrew

1 [brew --cask install gfortran }

Note

If you have installed gcc via brew, gfortran comes with it and you do not need this line

3. To use FreeFEM parallel version, install openmpi or mpich

-

1 # to install openmpi

2 curl -L https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz --
—output openmpi-4.0.1.tar.gz

3 tar xf openmpi-4.0.1

4 cd openmpi-4.0.1/

5 # to install mpich

6 curl -L https://www.mpich.org/static/downloads/4.0.2/mpich-4.0.2.tar.gz --output.
—mpich-4.0.2.tar.gz

7 tar xf mpich-4.0.2.tar.gz

8 cd mpich-4.0.2

4 # with brew gcc gfortran compilers

5 FFLAGS=-fallow-argument-mismatch FCFLAGS=-fallow-argument-mismatch ./configure..
—.CC=clang CXX=clang++ FC=gfortran-11 F77=gfortran-11 --prefix=/where/you/want/to/
—have/files/installed

7 # with LLVM gcc and brew gfortran compilers

8 FFLAGS=-fallow-argument-mismatch FCFLAGS=-fallow-argument-mismatch ./configure..
—,CC=gcc-11 CXX=g++-11 FC=gfortran-11 F77=gfortran-11 --prefix=/where/you/want/to/
—have/files/installed

s | make -j<nbProcs>
6 make install

4. Install the minimal libraries for FreeFEM

1.2. Installation guide 17

https://brew.sh
https://developer.apple.com/download/more/
https://www.open-mpi.org/software/ompi/v4.0/
http://www.mpich.org/downloads/

FreeFEM Documentation, Release 4.13

1 [brew install m4 git flex bison J

5. If you want build your own configure according your system, install autoconf and automake from Homebrew
(optional, see note in step 10)

i [brew install autoconf automake]

6. To use FreeFEM with its plugins, install from Homebrew suitesparse, hdf5, cmake, wget

1 [brew install suitesparse hdf5 cmake wget J

7. Install gsl

i |curl -0 https://mirror.ibcp.fr/pub/gnu/gsl/gsl-2.7.tar.gz

» |tar zxvf gsl-2.7.tar.gz

3 |cd gsl-2.7

+ | ./configure

s |make -j<nbProcs>

¢ |make install --prefix=/where/you/want/to/have/files/installed

8. Download the latest Git for Mac installer git and the FreeFEM source from the repository

1 [git clone https://github.com/FreeFem/FreeFem-sources.git]

9. Configure your source code

autoreconf -i

i { cd FreeFem-sources
2

Note

if your autoreconf version is too old, do tar zxvf AutoGeneratedFile.tar.gz

* following your compilers

3 | // with brew gcc gfortran compilers
+ | ./configure --enable-download -enable-optim CC=clang CXX=clang++ F77=gfortran-11
5 FC=gfortran-11 --prefix=/where/you/want/to/have/files/installed

7 |// with LLVM gcc and brew gfortran compilers
s | ./configure --enable-download -enable-optim CC=gcc CXX=g++ F77=gfortran-11
9 FC=gfortran-11 --prefix=/where/you/want/to/have/files/installed

10. Download the 3rd party packages to use FreeFEM plugins

i1 | ./3rdparty/getall -a

Note

All the third party packages have their own licence

11. If you want use PETSc/SLEPc and HPDDM (High Performance Domain Decomposition Methods)

18 Chapter 1. Introduction

https://www.gnu.org/software/gsl
https://git-scm.com/download/mac
https://github.com/hpddm/hpddm

FreeFEM Documentation, Release 4.13

1 | cd 3rdparty/ff-petsc

> |make petsc-slepc // add SUDO=sudo if your installation directory is the,
—.default /usr/local

3 cd -

+ | ./reconfigure

12. Build your FreeFEM library and executable

1 |make -j<nbProcs>
» |make -j<nbProcs> check

Note

make check is optional, but advised to check the validity of your FreeFEM build

13. Install the FreeFEM apllication
make install // add SUDO=sudo might be necessary

Note

it isn’t necessary to execute this last command, FreeFEM executable is avalaible here
your_installation/src/nw/FreeFem++ and mpi executable here your_installation/src/mpi/ff-mpirun.

Compilation on Ubuntu

1. Install the following packages on your system

1 |sudo apt-get update && sudo apt-get upgrade
» | sudo apt-get install cpp freeglut3-dev g++ gcc gfortran \

3 m4 make patch pkg-config wget python unzip \
4 liblapack-dev libhdf5-dev libgsl-dev \
5 autoconf automake autotools-dev bison flex gdb git cmake

7 |# mpich is required for the FreeFEM parallel computing version
¢ |sudo apt-get install mpich

Warning

In the oldest distribution of Ubuntu, 1ibgsl-dev does not exist, use 1ibgsl2-dev instead

2. Download FreeFEM source from the repository

| [git clone https://github.com/FreeFem/FreeFem-sources.git

3. Autoconf

autoreconf -i

2

1 {cd FreeFem-sources

1.2. Installation guide 19

FreeFEM Documentation, Release 4.13

Note

if your autoreconf version is too old, do tar zxvf AutoGeneratedFile.tar.gz

4. Configure

1 | ./configure --enable-download --enable-optim

2 --prefix=/where/you/want/to/have/files/installed
Note

To see all the options, type ./configure --help

5. Download the 3rd party packages

I [./3rdparty/geta11 -a

Note

All the third party packages have their own licence

6. If you want use PETSc/SLEPc and HPDDM (High Performance Domain Decomposition Methods) for massively
parallel computing

| (cd 3rdparty/ff-petsc

> |make petsc-slepc // add SUDO=sudo if your installation directory is the default /
—usr/local

3 cd -

+ | ./reconfigure

7. Build your FreeFEM library and executable

1 |make -j<nbProcs>
» |make -j<nbProcs> check

Note

make check is optional, but advised to check the validity of your FreeFEM build

8. Install the executable

1 |make install

Note

it isn’t necessary to execute this last command, FreeFEM executable is avalaible here
your_installation/src/nw/FreeFem++ and mpi executable here your_installation/src/mpi/ff-mpirun

20 Chapter 1. Introduction

https://github.com/hpddm/hpddm

FreeFEM Documentation, Release 4.13

Compilation on Arch Linux

Warning

As Arch is in rolling release, the following information can be quickly outdated !

Warning

FreeFEM fails to compile using the newest version of gcc 8.1.0, use an older one instead.

1. Install the following dependencies:

1 |pacman -Syu
» |pacman -S git openmpi gcc-fortran wget python

3 freeglut m4 make patch gmm

4 blas lapack hdf5 gsl fftw arpack suitesparse
5 gnuplot autoconf automake bison flex gdb

6 valgrind cmake texlive-most

2. Download the FreeFEM source from the repository

| [git clone https://github.com/FreeFem/FreeFem-sources.git

3. Autoconf

i {cd FreeFem-sources

» |autoreconf -i

4. Configure

1 [./configure --enable-download --enable-optim

Note

To see all the options, type ./configure --help

5. Download the packages

i [./Brdparty/getall -a

Note

All the third party packages have their own licence

6. If you want use HPDDM (High Performance Domain Decomposition Methods) for massively parallel computing,
install PETSc/SLEPc

1 |cd 3rdparty/ff-petsc
» |make petsc-slepc SUDO=sudo

(continues on next page)

1.2. Installation guide 21

https://github.com/hpddm/hpddm

FreeFEM Documentation, Release 4.13

(continued from previous page)

3 cd -
+ | ./reconfigure

7. Compile the FreeFEM source

: [make]

Note

If your computer has many threads, you can run make in parallel using make -3j16 for 16 threads, for example.

Note

Optionally, check the compilation with make check

8. Install the FreeFEM application

i [sudo make install J

Compilation on Fedora

1. Install the following packages on your system

-

i | sudo dnf update
» |sudo dnf install freeglut-devel gcc-gfortran gcc-c++ gcc \

3 m4 make wget python2 python3 unzip \
4 lapack-devel hdf5-devel gsl gsl-devel \
5 autoconf automake bison flex gdb git cmake

7 | # MPICH or OpenMPI is required for the FreeFEM parallel computing version
s |sudo dnf install mpich-devel
o |sudo dnf install openmpi-devel

u |# Then load one of the modules, for example
2 |module load mpi/mpich-x86_64

3 | # or

14+ |module load mpi/openmpi-x86_64

2. Download FreeFEM source from the repository

| [git clone https://github.com/FreeFem/FreeFem-sources.git]

3. Autoconf

autoreconf -i

I {cd FreeFem-sources
2

(Note ’

22 Chapter 1. Introduction

FreeFEM Documentation, Release 4.13

if your autoreconf version is too old, do tar zxvf AutoGeneratedFile.tar.gz

4. Configure

i | ./configure --enable-download --enable-optim

2 --prefix=/where/you/want/to/have/files/installed
Note

To see all the options, type ./configure --help

5. Download the 3rd party packages

| [./3rdparty/geta11 -a

Note

All the third party packages have their own licence

6. If you want use PETSc/SLEPc and HPDDM (High Performance Domain Decomposition Methods) for massively
parallel computing

1 |cd 3rdparty/ff-petsc

» |make petsc-slepc // add SUDO=sudo if your installation directory is the default /
—usr/local

3 cd -

+ | ./reconfigure

L

7. Build your FreeFEM library and executable

1 |make -j<nbProcs>
> |make -j<nbProcs> check

Note

make check is optional, but advised to check the validity of your FreeFEM build

8. Install the executable

i [make install

Note

it isn’t necessary to execute this last command, FreeFEM executable is avalaible here
your_installation/src/nw/FreeFem++ and mpi executable here your_installation/src/mpi/ff-mpirun

1.2. Installation guide 23

https://github.com/hpddm/hpddm

FreeFEM Documentation, Release 4.13

Compilation on Linux with Intel software tools

Follow the guide

Compilation on Windows

Warning

64-bit, and you want your compiler to target 64-bit windows by default.

The support ended for all releases under Windows 32 bits since the V4. We assume your development machine is

1. Install the Microsoft MPI v10.1.2 (archived) (msmpisdk.msi and MSMpiSetup.exe)
2. Download msys2-x86_64-latest.exe (x86_64 version) and run it.

3. Install the version control system Git for Windows

4. In the MSYS2 shell, execute the following. Hint: if you right click the title bar, go to Options -> Keys and tick

“Ctrl+Shift+letter shortcuts” you can use Ctrl+Shift+V to paste in the MSYS shell.

i [pacman -Syuu

Close the MSYS2 shell once you're asked to. There are now 3 MSYS subsystems installed: MSYS2, MinGW32
and MinGW64. They can respectively be launched from C:devmsys64msys2.exe, C:devmsys64mingw32.exe and
C:devmsys64mingw64.exe Reopen MSYS2 (doesn’t matter which version, since we’re merely installing packages).
Repeatedly run the following command until it says there are no further updates. You might have to restart your shell

again.

1 [pacman -Syuu

5. Now that MSYS?2 is fully up-to-date, install the following dependancies

* for 64 bit systems:

1 |pacman -S autoconf make automake-wrapper bison git \
2 mingw-w64-x86_64-freeglut mingw-w64-x86_64-toolchain \
3 mingw-w64-x86_64-openblas patch python perl pkg-config pkgfile \

4 rebase tar time tzcode unzip which mingw-w64-x86_64-gsl \
5 --ignore mingw-w64-x86_64-gcc-ada --ignore mingw-w64-x86_64-gcc-objc \
6 --ignore mingw-w64-x86_64-gdb mingw-w64-x86_64-cmake --noconfirm

* for 32 bit systems (FreeFEM lower than version 4):

| |pacman -S autoconf automake-wrapper bash bash-completion \

2 bison bsdcpio bsdtar bzip2 coreutils curl dash file filesystem \
3 findutils flex gawk gcc gcc-fortran gcc-libs grep gzip inetutils \
4 info less 1lndir make man-db git mingw-w64-i686-freeglut \

5 mingw-w64-i1686-toolchain mingw-w64-i686-gsl mingw-w64-i686-hdf5 \

6 mingw-w64-i686-openblas mintty msys2-keyring msys2-launcher-git \

7 msys2-runtime ncurses pacman pacman-mirrors pactoys-git patch pax-git \
8 perl pkg-config pkgfile rebase sed tar tftp-hpa time tzcode unzip \

9 util-linux which

6. Open a MingW64 terminal (or MingW32 for old 32 bit FreeFEM version) and compile the FreeFEM source

24 Chapter 1. Introduction

https://software.intel.com/en-us/articles/building-freefem-with-intel-software-tools-for-developers
https://www.microsoft.com/en-us/download/details.aspx?id=100593
http://repo.msys2.org/distrib/msys2-x86_64-latest.exe
https://git-scm.com/download/win

FreeFEM Documentation, Release 4.13

1 |git clone https://github.com/FreeFem/FreeFem-sources
» | cd FreeFem-sources

3 |autoreconf -i

+ | ./configure --enable-generic --enable-optim \

5 --enable-download --enable-maintainer-mode \

6 CXXFLAGS=-mtune=generic CFLAGS=-mtune=generic \

7 FFLAGS=-mtune=generic --enable-download --disable-hips

8 --prefix=/where/you/want/to/have/files/installed

.

7. If you want use HPDDM (High Performance Domain Decomposition Methods) for massively parallel computing,
install PETSc/SLEPc

1 | cd 3rdparty/ff-petsc

» |make petsc-slepc SUDO=sudo
3 cd -

+ | ./reconfigure

.

8. Download the 3rd party packages and build your FreeFEM library and executable

i1 | ./3rdparty/getall -a
> |make

; |make check

4+ |make install

.

Note

The FreeFEM executable (and some other like ffmedit, ...) are in C:\msys64\mingw64\bin (or C:\
msys32\mingw32\bin).

1.2.3 Environment variables and init file

FreeFEM reads a user’s init file named freefem++.pref to initialize global variables: verbosity, includepath,
loadpath.

Note

The variable verbosity changes the level of internal printing (0: nothing unless there are syntax errors, 1: few,
10: lots, etc. ...), the default value is 2.

The included files are found in the includepath list and the load files are found in the loadpath list.

The syntax of the file is:

verbosity = 5

loadpath += "/Library/FreeFem++/1ib"

loadpath += "/Users/hecht/Library/FreeFem++/1ib"
includepath += "/Library/FreeFem++/edp"

includepath += "/Users/hecht/Library/FreeFem++/edp"
This is a comment

load += "funcTemplate"

load += "myfunction"

load += "MUMPS_seq"

1.2. Installation guide 25

https://github.com/hpddm/hpddm

1

FreeFEM Documentation, Release 4.13

The possible paths for this file are

¢ under Unix and MacOs

/etc/freefem++.pref
$(HOME) /. freefem++.pref
freefem++.pref

¢ under windows

[freefem++ .pref]

We can also use shell environment variables to change verbosity and the search rule before the init files.

export FF_VERBOSITY=50
export FF_INCLUDEPATH="dir; ;dir2"
export FF_LOADPATH="dir;;dir3"

Note

[T 1} [T 1}

The separator between directories must be *;” and not “:” because ““:” is used under Windows.

Note

To show the list of init of FreeFEM , do

export FF_VERBOSITY=100;
./FreeFem++-nw

1.2.4 Coloring Syntax FreeFem++

Atom
In order to get the syntax highlighting in Atom, you have to install the FreeFEM language support.
You can do it directly in Atom: Edit -> Preferences -> Install, and search for language-freefem-offical.

To launch scripts directly from Atom, you have to install the atom-runner package. Once installed, modify the Atom
configuration file (Edit -> Config...) to have something like that:

runner:
extensions:
edp: "FreeFem++"
scopes:

"Freefem++": "FreeFem++'

26 Chapter 1. Introduction

https://atom.io/
https://atom.io/packages/language-freefem-official

FreeFEM Documentation, Release 4.13

Reboot Atom, and use Alt+R to run a FreeFem++ script.

Gedit

In order to get the syntax highlighting in Gedit, you have to downlaod the Gedit parser and copy it in /usr/share/
gtksourceview-3.0/language-specs/.

Textmate 2, an editor under macOS

To use the coloring FreeFEM syntax with the Textmate 2 editor on Mac 10.7 or better, download from macromates.com
and download the textmate freefem++ syntax here (version june 2107). To install this parser, unzip Textmate2-ff++.zip
and follow the explanation given in file How_To.rtf.

rom www.freefem.org/ff++/Textmate2-ff++.zip (version june 2107) unzip Textmate?2-

Notepad++,an editor under windows

Read and follow the instruction, FREEFEM++ COLOR SYNTAX OF WINDOWS .

Emacs editor

For emacs editor you can download ff++-mode.el .

1.3 Download

1.3.1 Latest binary packages
FreeFEM v4.6 runs under macOS, Ubuntu, and 64-bit Windows.

Operating System FreeFEM Version Size Date

macOS 10.10.5 or higher 4.5 412 MB Feb 11, 2020
Ubuntu 16.04 or higher 4.6 212 MB Mar 02, 2020
64-bit Windows | 4.6 | 185 MB Mar 02, 2020
Docker image 4.6 487 MB Mar 02, 2020
Source 4.6 4.6 12.4 MB Mar 02, 2020

previous releases - - -

The source code is available on the FreeFEM GitHub Repository.

Note

The support ended for all releases under Windows 32 bits.

1.3. Download 27

https://github.com/FreeFem/FreeFem-parser-gedit
http://www3.freefem.org/ff++/Textmate2-ff++.zip
http://www3.freefem.org/ff++/color-syntax-win.pdf
https://github.com/rrgalvan/freefem-mode/
https://github.com/FreeFem/FreeFem-sources/releases/download/v4.5/FreeFem++-4.5-full-MacOS_10.11.pkg
https://github.com/FreeFem/FreeFem-sources/releases/download/v4.6/FreeFEM_4.6_Ubuntu_withPETSc_amd64.deb
https://github.com/FreeFem/FreeFem-sources/releases/download/v4.6/FreeFEM-4.6-win7-64.exe
https://hub.docker.com/r/freefem/freefem
https://github.com/FreeFem/FreeFem-sources/archive/v4.6.tar.gz
http://www3.freefem.org/ff++/ftp/
https://github.com/FreeFem/FreeFem-sources

FreeFEM Documentation, Release 4.13

1.3.2 Syntax highlighters

Lexer type Version Description

Emacs 0.3 freefem-mode.el

Textmate 2 1.0 FreeFem.tmbundle

Gedit 1.0 ftpp.lang

Atom 0.3 language-freefem or via the Atom package manager
Pygments 1.0 freefem.py

Vim 0.1 edp.vim

1.4 History

The project has evolved from MacFem, PCfem, written in Pascal. The first C version lead to freefem
3.4; it offered mesh adaptivity on a single mesh only.

A thorough rewriting in C++ led to freefem+ (freefem+ 1.2.10 was its last release), which included
interpolation over multiple meshes (functions defined on one mesh can be used on any other mesh); this
software is no longer maintained but is still in use because it handles a problem description using the strong
form of the PDEs. Implementing the interpolation from one unstructured mesh to another was not easy
because it had to be fast and non-diffusive; for each point, one had to find the containing triangle. This
is one of the basic problems of computational geometry (see [PREPARATA1985] for example). Doing it
in a minimum number of operations was the challenge. Our implementation is O(nlogn) and based on a
quadtree. This version also grew out of hand because of the evolution of the template syntax in C++.

We have been working for a few years now on FreeFEM , entirely re-written again in C++ with a thorough
usage of template and generic programming for coupled systems of unknown size at compile time. Like
all versions of freefem, it has a high level user friendly input language which is not too far from the
mathematical writing of the problems.

The freefem language allows for a quick specification of any partial differential system of equa-
tions. The language syntax of FreeFEM is the result of a new design which makes use of the
STL [STROUSTRUP2000], templates, and bison for its implementation; more details can be found in
[HECHT2002]. The outcome is a versatile software in which any new finite elements can be included
in a few hours; but a recompilation is then necessary. Therefore the library of finite elements available
in FreeFEM will grow with the version number and with the number of users who program more new
elements. So far we have discontinuous Py elements,linear P; and quadratic P, Lagrangian elements,
discontinuous P; and Raviart-Thomas elements and a few others like bubble elements.

The development of FreeFEM through more than 30 years

1987

MacFem/PCFem the old ones (O. Pironneau in Pascal) no free.

28 Chapter 1. Introduction

https://github.com/FreeFem/freefem-parser-emacs
https://github.com/FreeFem/FreeFem-parser-textmate
https://github.com/FreeFem/Freefem-parser-gedit
https://github.com/FreeFem/FreeFem-parser-atom
https://github.com/FreeFem/FreeFem-parser-pygments
https://github.com/FreeFem/FreeFem-parser-vim

FreeFEM Documentation, Release 4.13

1992

FreeFem rewrite in C++ (P1,PO one mesh) O. Pironneau, D. Bernardi, F.Hecht (mesh adaptation , bamg)
, C. Prudhomme .

1996
FreeFem+ rewrite in C++ (P1,PO more mesh) O. Pironneau, D. Bernardi, F.Hecht (algebra of function).
1998

FreeFem++ rewrite with an other finite element kernel and an new language F. Hecht, O. Pironneau,
K.Ohtsuka.

1999

FreeFem 3d (S. Del Pino), a fist 3d version base on fictitious domaine method.
2008

FreeFem++ v3 use a new finite element kernel multidimensionnels: 1d,2d,3d...
2014

FreeFem-++ v3.34 parallel version
2017

FreeFem-++ v3.57 parallel version
2018

FreeFem++ v4: New matrix type, Surface element, New Parallel tools ...

1.5 Citation

1.5.1 If you use FreeFEM, please cite the following reference in your work:

BibTeX

@article{MR3043640,
AUTHOR = {Hecht, F.},
TITLE = {New development in FreeFem++},
JOURNAL = {J. Numer. Math.},
FJOURNAL = {Journal of Numerical Mathematics},
VOLUME = {20}, YEAR = {2012},
NUMBER = {3-4}, PAGES = {251--265},
ISSN = {1570-2820},
MRCLASS = {65Y15},
MRNUMBER = {3043640},
URL = {https://freefem.org/}

APA

Hecht, F. (2012). New development in FreeFem++. Journal of numerical mathematics, 20(3-
—4), 251-266.

1.5. Citation 29

http://www3.freefem.org/ff++/freefem/fraold.htm
http://www3.freefem.org/ff++/freefem/index.html

FreeFEM Documentation, Release 4.13

1ISO690

1 |HECHT, Frédéric. New development in FreeFem++. Journal of numerical mathematics, 2012,.
—vol. 20, no 3-4, p. 251-266.

MLA

Hecht, Frédéric. "New development in FreeFem++." Journal of numerical mathematics 20.3-4.

—(2012): 251-266.

1

1.6 Authors

Frédéric Hecht

Professor at Laboratoire Jacques Louis Lions (LJLL), Sorbonne University, Paris
frederic.hecht@sorbonne-universite.fr
https://www.ljll.math.upmc.fr/hecht/

Sylvain Auliac

Former PhD student at LJLL, optimization interface with nlopt, ipopt, cmaes, ...
https://www.ljll.math.upmc.fr/auliac/

Olivier Pironneau

Professor of numerical analysis at the Paris VI university and at LJLL, numerical methods in fluid
Member of the Institut Universitaire de France and Academie des Sciences
https://www.ljll.math.upmc.fr/pironneau/

Jacques Morice

Former Post-Doc at LJLL, three dimensions mesh generation and coupling with medit

Antoine Le Hyaric

CNRS research engineer at Laboratoire Jacques Louis Lions, expert in software engineering for scientific applica-
tions, electromagnetics simulations, parallel computing and three-dimensionsal visualization
https://www.ljll.math.upmc.fr/lehyaric/

Kohji Ohtsuka

Professor at Hiroshima Kokusai Gakuin University, Japan and chairman of the World Scientific and Engineering
Academy and Society, Japan. Fracture dynamic, modeling and computing
https://sites.google.com/a/comfos.org/comfos/

Pierre-Henri Tournier

CNRS research engineer at Laboratoire Jacques Louis Lions (LJLL), Sorbonne University, Paris

30 Chapter 1. Introduction

https://www.ljll.math.upmc.fr/
mailto:frederic.hecht@sorbonne-universite.fr
https://www.ljll.math.upmc.fr/hecht/
https://nlopt.readthedocs.io/en/latest/
https://projects.coin-or.org/Ipopt
https://en.wikipedia.org/wiki/CMA-ES
https://www.ljll.math.upmc.fr/auliac/
http://www.iufrance.fr/
http://www.academie-sciences.fr/fr/
https://www.ljll.math.upmc.fr/pironneau/
https://www.ljll.math.upmc.fr/frey/logiciels/Docmedit.dir/index.html
http://www.cnrs.fr
https://www.ljll.math.upmc.fr/
https://www.ljll.math.upmc.fr/lehyaric/
http://www.hkg.ac.jp/html/
http://www.wseas.org
http://www.wseas.org
https://sites.google.com/a/comfos.org/comfos/
http://www.cnrs.fr
https://www.ljll.math.upmc.fr/

FreeFEM Documentation, Release 4.13

Pierre Jolivet

CNRS researcher, MPI interface with PETSc, HPDDM, ...
http://joliv.et/

Frédéric Nataf

CNRS senior researcher at Laboratoire Jacques Louis Lions (LJLL), Sorbonne University, Paris
https://www.ljll.math.upmc.fr/nataf/

Simon Garnotel

Reasearch engineer at Airthium
https://github.com/sgarnotel

Karla Pérez

Developer, Airthium internship
https://github.com/karlaprzbr

Loan Cannard

Web designer, Airthium internship
https://www.linkedin.com/in/loancannard

And all the dedicated GitHub contributors

1.7 Contributing

1.7.1 Bug report

Concerning the FreeFEM documentation

Open an Issue on FreeFem-doc repository.

Concerning the FreeFEM compilation or usage

Open an Issue on FreeFem-sources repository.

1.7.2 Improve content

Ask one of the contributors for Collaborator Access or make a Pull Request.

1.8 Git & Github usage

FreeFEM sources are publicly available on https://github.com/FreeFem/FreeFem-sources.
In order to contribute, you need to know how to use git (add, commit, push) and Github (Fork, Pull Requests).

The FreeFEM source code is organized in branches:

1.7. Contributing 31

http://www.cnrs.fr
https://petsc.org/
https://github.com/hpddm/hpddm
http://joliv.et/
http://www.cnrs.fr
https://www.ljll.math.upmc.fr/
https://www.ljll.math.upmc.fr/nataf/
https://www.airthium.com
https://github.com/sgarnotel
https://www.airthium.com
https://github.com/karlaprzbr
https://www.airthium.com
https://www.linkedin.com/in/loancannard
https://github.com/FreeFem/FreeFem-doc/graphs/contributors
https://github.com/FreeFem/FreeFem-doc/issues
https://github.com/FreeFem/FreeFem-sources/issues
https://github.com/FreeFem/FreeFem-doc/pulls
https://github.com/FreeFem/FreeFem-sources

FreeFEM Documentation, Release 4.13

» master. The master branch, represent the current stable version, used to build a new release

¢ develop. The developement branch, where all modifications take place
Should be almost always usable

« features branches, where specific long-term developments take place
Do not use one of this branch

1.8.1 Contribution timeline

¢ Create a fork of the FreeFem-sources repository on your Github account
Doc:

Direct fork link:

* Clone the fork (the FreeFem-sources repository on your account) on your computer.
Change the branch to develop

git checkout develop

* Modify the code and use git commands to push your modifications to the fork, i.e.:
git add somefile.cpp

git commit -m"my modification"
git push
Please, provide commit descriptions correctly describe your modifications

* Create a pull request on FreeFem/FreeFem-sources, describing your modifications
Doc:

Warning

All code modifications, even in a pull request, must be done in the develop branch

Note

Please make sure your code modification is well writen and formatted (you can use clang-format if necessary)

32 Chapter 1. Introduction

1

CHAPTER
TWO

LEARNING BY EXAMPLES

The FreeFEM language is fyped, polymorphic and reentrant with macro generation.
Every variable must be typed and declared in a statement, that is separated from the next by a semicolon ;.
The FreeFEM language is a C++ idiom with something that is more akin to LaTeX.

For the specialist, one key guideline is that FreeFEM rarely generates an internal finite element array, this was adopted
for speed and consequently FreeFEM could be hard to beat in terms of execution speed, except for the time lost in the
interpretation of the language (which can be reduced by a systematic usage of varf and matrix instead of problem).

The Development Cycle: Edit-Run/Visualize—Revise

Many examples and tutorials are given there after and in the examples section. It is better to study them and learn by
example.

If you are a beginner in the finite element method, you may also have to read a book on variational formulations.
The development cycle includes the following steps:

Modeling: From strong forms of PDE to weak forms, one must know the variational formulation to use FreeFEM;
one should also have an eye on the reusability of the variational formulation so as to keep the same internal matrices; a
typical example is the time dependent heat equation with an implicit time scheme: the internal matrix can be factorized
only once and FreeFEM can be taught to do so.

Programming: Write the code in FreeFEM language using a text editor such as the one provided in your integrated
environment.

Run: Run the code (here written in file mycode . edp). That can also be done in terminal mode by :

[FreeFem++ mycode. edp

)

Visualization: Use the keyword plot directly in mycode. edp to display functions while FreeFEM is running. Use
the plot-parameter wait=1 to stop the program at each plot.

Debugging: A global variable debug (for example) can help as in wait=true to wait=false.

bool debug = true;

border a(t=0, 2.*pi){x=cos(t); y=sin(t); label=1;};
border b(t=0, 2.*pi){x=0.8+0.3*cos(t); y=0.3*sin(t); label=2;};

plot(a(50) + b(-30), wait=debug); //plot the borders to see the intersection
(continues on next page)

33

FreeFEM Documentation, Release 4.13

(continued from previous page)

//so change (0.8 in 0.3 in b)
//if debug == true, press Enter to continue

mesh Th = buildmesh(a(50) + b(-30));
plot(Th, wait=debug); //plot Th then press Enter

fespace Vh(Th,P2);
Vh £ = sin(pi*x)*cos(pi*y);
Vh g = sin(pi*x + cos(pi*y));

plot(f, wait=debug); //plot the function f
plot(g, wait=debug); //plot the function g

Changing debug to false will make the plots flow continuously. Watching the flow of graphs on the screen (while
drinking coffee) can then become a pleasant experience.

Error management

Error messages are displayed in the console window. They are not always very explicit because of the template structure
of the C++ code (we did our best!). Nevertheless they are displayed at the right place. For example, if you forget
parenthesis as in:

bool debug = true;
mesh Th = square(10,10;
plot(Th);

then you will get the following message from FreeFEM:

2 : mesh Th = square(10,10;

Error line number 2, in file bb.edp, before token ;
parse error

current line = 2

syntax error

current line 2

Compile error : syntax error

line number :2, ;

error Compile error : syntax error
line number :2, ;

code = 1 mpirank: 0

If you use the same symbol twice as in:

real aaa = 1;
real aaa;

then you will get the message:

2 : real aaa; The identifier aaa exists
the existing type is <Pd>
the new type is <Pd>

If you find that the program isn’t doing what you want you may also use cout to display in text format on the console
window the value of variables, just as you would do in C++.

The following example works:

34 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

fespace Vh(Th, P1);
Vh u;

cout << u;

matrix A = a(Vh, Vh);
cout << A;

Another trick is to comment in and out by using // as in C++. For example:

real aaa =1;
// real aaa;

2.1 Getting started

For a given function f(z,y), find a function u(z, y) satisfying :

—Au(z,y) = f(z,y) forall (z,y)inQ

u(z,y) =0 for all (z,y) on 99 (2.1

Here 012 is the boundary of the bounded open set C R? and Au = % + 22772‘.

We will compute u with f(x,y) = zy and Q) the unit disk. The boundary C' = 9} is defined as:

C ={(z,y)| x = cos(t), y =sin(t), 0 <t < 27}

Note

In FreeFEM, the domain) is assumed to be described by the left side of its boundary.

The following is the FreeFEM program which computes u:

// Define mesh boundary
border C(t=0, 2*pi){x=cos(t); y=sin(t);}

// The triangulated domain Th is on the left side of its boundary
mesh Th = buildmesh(C(50));

// The finite element space defined over Th is called here Vh
fespace Vh(Th, P1);
Vh u, v;// Define u and v as piecewise-P1 continuous functions

// Define a function f
func f= x*y;

// Get the clock in second
real cpu=clock();

// Define the PDE
solve Poisson(u, v, solver=LU)
= int2d(Th) (// The bilinear part
dx (u) *dx (v)

(continues on next page)

2.1. Getting started 35

21

22

23

24

25

26

27

28

29

30

32

FreeFEM Documentation, Release 4.13

(continued from previous page)

+ dy(w) *dy(v)
)
- int2d(Th) (// The right hand side
f*v
)
+ on(C, u=0); // The Dirichlet boundary condition

// Plot the result
plot(w;

// Display the total computational time
cout << "CPU time = " << (clock()-cpu) << endl;

As illustrated in Fig. 2.1b, we can see the isovalue of u by using FreeFEM plot command (see line 29 above).

(a) Mesh Th by buildmesh(C(50))

(b) Isovalue by plot (u)

Fig. 2.1: Poisson’s equation

Note

The qualifier solver=LU (line 18) is not required and by default a multi-frontal LU is used.

The lines containing clock are equally not required.

Tip
Note how close to the mathematics FreeFEM language is.

Lines 19 to 24 correspond to the mathematical variational equation:

Ooudv Oudv
4 T dady = dad
/Th((?xax + 6y8y) e T, fedzdy

36 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

for all v which are in the finite element space V}, and zero on the boundary C.

Tip

Change P1 into P2 and run the program.

This first example shows how FreeFEM executes with no effort all the usual steps required by the finite element method
(FEM). Let’s go through them one by one.

On the line 2:

The boundary I is described analytically by a parametric equation for x and for y. When I' = Z}]:o I'; then each
curve I'; must be specified and crossings of I'; are not allowed except at end points.

The keyword label can be added to define a group of boundaries for later use (boundary conditions for instance).
Hence the circle could also have been described as two half circle with the same label:

1 |border Gammal(t=0, pi){x=cos(t); y=sin(t); label=C};
» |border Gamma2(t=pi, 2.*pi){x=cos(t); y=sin(t); label=C};

Boundaries can be referred to either by name (Gammal for example) or by label (C here) or even by its internal number
here 1 for the first half circle and 2 for the second (more examples are in Meshing Examples).

On the line 5
The triangulation 7j, of 2 is automatically generated by buildmesh(C(50)) using 50 points on C as in Fig. 2.1a.

The domain is assumed to be on the left side of the boundary which is implicitly oriented by the parametrization. So
an elliptic hole can be added by typing:

| [border C(t=2.*pi, 0){x=0.1+0.3*cos(t); y=0.5*sin(t);};

If by mistake one had written:

I [border C(t=0, 2.*pi){x=0.1+0.3*cos(t); y=0.5%sin(t);};

then the inside of the ellipse would be triangulated as well as the outside.

Note

Automatic mesh generation is based on the Delaunay-Voronoi algorithm. Refinement of the mesh are done by
increasing the number of points on I', for example buildmesh(C(100)), because inner vertices are determined
by the density of points on the boundary.

Mesh adaptation can be performed also against a given function f by calling adaptmesh(Th, f).

Now the name 7, (Th in FreeFEM) refers to the family {Tk}k:L.._ .n, of triangles shown in Fig. 2.1a.

Traditionally h refers to the mesh size, n; to the number of triangles in 7, and n, to the number of vertices, but it is
seldom that we will have to use them explicitly.

If is not a polygonal domain, a “skin” remains between the exact domain €2 and its approximation), = U}", Tj.
However, we notice that all corners of I';, = 0€;, are on I

On line 8:

2.1. Getting started 37

FreeFEM Documentation, Release 4.13

A finite element space is, usually, a space of polynomial functions on elements, triangles here only, with certain match-
ing properties at edges, vertices etc. Here fespace Vh(Th, P1) defines V}, to be the space of continuous functions
which are affine in x, y on each triangle of T},.

As it is a linear vector space of finite dimension, basis can be found. The canonical basis is made of functions, called
the hat function ¢y, which are continuous piecewise affine and are equal to 1 on one vertex and O on all others. A
typical hat function is shown on Fig. 2.2b.

1

3
2 8
2 ® @ > 3 ;
3 4
® i
@ 8 (b) Graph of ¢, (left) and ¢¢ (right)
3 @
’ ®
7
4
(a) mesh Th
Fig. 2.2: Hat functions
Note
The easiest way to define ¢y, is by making use of the barycentric coordinates \;(x,y), i = 1,2,3 of a point

q=(z,y) € T,definedby >, \; =1, >, \;q" = ¢ where ¢, i = 1,2, 3 are the 3 vertices of T'. Then it is easy
to see that the restriction of ¢, on 7" is precisely \.

Then:

Vi(Th, P1) = {w(m,y)

M
w(z,y) = Z wi Pk (z,y), wy are real numbers} 2.2)
k=1

where M is the dimension of V},, i.e. the number of vertices. The wy, are called the degrees of freedom of w and M
the number of degree of freedom.

It is said also that the nodes of this finite element method are the vertices.
Setting the problem
On line 9, Vh u, v declares that u and v are approximated as above, namely:

M-1

u(@,y) ~un(z,y) = > uki(x,y) (2.3)

k=0

On the line 12, the right hand side £ is defined analytically using the keyword func.

38 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

Line 18 to 26 define the bilinear form of equation (2.1) and its Dirichlet boundary conditions.

This variational formulation is derived by multiplying (2.1) by v(z, y) and integrating the result over 2

—/vAudacdy:/vfdxdy
Q Q

Then, by Green’s formula, the problem is converted into finding u such that
a(u,v) —L(f,v) =0 Yuv satisfying v = 0 on 9.

with:

a(u,v) =[5 Vu-Vuvdzdy
Uf,v) = fovda:dy

In FreeFEM the Poisson problem can be declared only as in:

(2.4)

| [Vh u,v; problem Poisson(u,v) = ...

and solved later as in:

1 [Poisson; //the problem is solved here J

or declared and solved at the same time as in:

| [Vh u,v; solve Poisson(u,v) = ...

and (2.4) is written with dx(u) = du/dx, dy (w) = du/dy and:

/ Vu - Vudrdy — int2d(Th) (dx(u)*dx(v) + dy(u)*dy(v))
Q

/ fvdxdy — int2d(Th) (£*v) (Notice here, u is unused)
Q

Warning

In FreeFEM bilinear terms and linear terms should not be under the same integral indeed to construct the
linear systems FreeFEM finds out which integral contributes to the bilinear form by checking if both terms, the
unknown (here u) and test functions (here v) are present.

Solution and visualization

On line 15, the current time in seconds is stored into the real-valued variable cpu.
Line 18, the problem is solved.

Line 29, the visualization is done as illustrated in Fig. 2.1b.

(see Plot for zoom, postscript and other commands).

Line 32, the computing time (not counting graphics) is written on the console. Notice the C++-like syntax; the user
needs not study C++ for using FreeFEM, but it helps to guess what is allowed in the language.

Access to matrices and vectors

Internally FreeFEM will solve a linear system of the type

M-1
Jj=0 &

2.1. Getting started 39

1

2

FreeFEM Documentation, Release 4.13

which is found by using (2.3) and replacing v by ¢; in (2.4). The Dirichlet conditions are implemented by penalty,
namely by setting A;; = 103° and F; = 1030 0 if 7 is a boundary degree of freedom.

Note

The number 103° is called tgv (trés grande valeur or very high value in english) and it is generally possible to

change this value, see the item :freefem’solve, tgv="

The matrix A = (A;;) is called stiffness matrix. If the user wants to access A directly he can do so by using (see section
Variational form, Sparse matrix, PDE data vector for details).

varf aCu,v)
= int2d(Th) (
dx(u) *dx(v)
+ dy () *dy(v)
)
+ on(C, u=0)

matrix A = a(Vh, Vh); //stiffness matrix

The vector F'in (2.5) can also be constructed manually:

varf 1(unused,v)
= int2d(Th) (
f*v
)

+ on(C, unused=0)

Vh F;
F[] = 1@®,Vh); //F[] is the vector associated to the function F

The problem can then be solved by:

[u[] = Ar-1*F[]; //u[] is the vector associated to the function u

Note

Here u and F are finite element function, and u[] and F[] give the array of value associated (u[]1 = (;)i=0,....m—1
and F[] = (Fi)i=o,...,M—1)-

So we have:

M-—1 M-—1
uf][i]pi(x, y), F[|[i]¢i(x, y)
i=0 1=0

where ¢;,7 = 0...,, M — 1 are the basis functions of Vh like in equation :eq: equation3, and M = Vh.ndof is the
number of degree of freedom (i.e. the dimension of the space Vh).

The linear system (2.5) is solved by UMFPACK unless another option is mentioned specifically as in:

Vh u, v;
problem Poisson(u, v, solver=CG) = int2d(...

40 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

meaning that Poisson is declared only here and when it is called (by simply writing Poisson;) then (2.5) will be
solved by the Conjugate Gradient method.

2.2 Classification of partial differential equations
Summary : [t is usually not easy to determine the type of a system. Yet the approximations and algorithms suited to
the problem depend on its type:

e Finite Elements compatible (LBB conditions) for elliptic systems

e Finite difference on the parabolic variable and a time loop on each elliptic subsystem of parabolic systems; better
stability diagrams when the schemes are implicit in time.

» Upwinding, Petrov-Galerkin, Characteristics-Galerkin, Discontinuous-Galerkin, Finite Volumes for hyperbolic
systems plus, possibly, a time loop.

When the system changes type, then expect difficulties (like shock discontinuities) !
Elliptic, parabolic and hyperbolic equations
A partial differential equation (PDE) is a relation between a function of several variables and its derivatives.

827@(95) A
Tzt 9

F<<p(x),§Z(x),~- ,%(x) (z)> =0, VzeQcR?

The range of x over which the equation is taken, here €2, is called the domain of the PDE. The highest derivation index,
here m, is called the order. If F' and ¢ are vector valued functions, then the PDE is actually a system of PDEs.

Unless indicated otherwise, here by convention one PDE corresponds to one scalar valued F' and . If F' is linear with
respect to its arguments, then the PDE is said to be linear.

The general form of a second order, linear scalar PDE is

ap+a-Vo+B:V(Vp)=f in QcCR?

where 8:?-2{;'91- and A : B means ijzl aijbij. f(z),a(z) € R, a(z) € RY, B(z) € R¥4 are the PDE coefficients.
10z :

If the coefficients are independent of x, the PDE is said to have constant coefficients.
To a PDE we associate a quadratic form, by replacing ¢ by 1, d¢/0z; by z; and 9*¢/0z;0x; by z;z;, where z is a
vector in R%:

a+A-z+:2'Bz=f.
If it is the equation of an ellipse (ellipsoid if d > 2), the PDE is said to be elliptic; if it is the equation of a parabola or
a hyperbola, the PDE is said to be parabolic or hyperbolic.

If B = 0, the degree is no longer 2 but 1, and for reasons that will appear more clearly later, the PDE is still said to be
hyperbolic.

These concepts can be generalized to systems, by studying whether or not the polynomial system P(z) associated with
the PDE system has branches at infinity (ellipsoids have no branches at infinity, paraboloids have one, and hyperboloids
have several).

If the PDE is not linear, it is said to be non-linear. These are said to be locally elliptic, parabolic, or hyperbolic according
to the type of the linearized equation.

For example, for the non-linear equation

0%p Op 0% B

o2 Ox Ox2

2.2. Classification of partial differential equations 41

FreeFEM Documentation, Release 4.13

we have d = 2, 1 = ¢, x2 = x and its linearized form is:

%u Oud?p Opdiu

which for the unknown wu is locally elliptic if ‘g—“’ < 0 and locally hyperbolic if g—“’ > 0.

X X

Tip

Laplace’s equation is elliptic:

0o B%p 0?
Ap=—Lt 4+~ —~ =f,VeeQcR?
® ax%+ax%+ +a§ f,VreQc

Tip
The heat equation is parabolic in Q = Qx]0, T[C R4+

%_MA@:fochRd, vt €]0,T]

Tip
If 1 > 0, the wave equation is hyperbolic:

O
o2

—plAp = f in Q.
Tip

The convection diffusion equation is parabolic if 1 # 0 and hyperbolic otherwise:

dyp
Eﬂtavw—/&sﬁ—f

Tip
The biharmonic equation is elliptic:

A(Ag) = f in Q.

Boundary conditions

A relation between a function and its derivatives is not sufficient to define the function. Additional information on the
boundary I' = 92 of €2, or on part of I is necessary. Such information is called a boundary condition.

For example:

p(x) given, Vo € T,

42 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

is called a Dirichlet boundary condition. The Neumann condition is

0
—w(aj) givenon I (or n - BV, given on T for a general second order PDE)

on

where n is the normal at € T directed towards the exterior of {2 (by definition g—;'i =V n).

Another classical condition, called a Robin (or Fourier) condition is written as:

p(z) + 5(@%’;(@ given on I

Finding a set of boundary conditions that defines a unique ¢ is a difficult art.

In general, an elliptic equation is well posed (i.e. ¢ is unique) with one Dirichlet, Neumann or Robin condition on the
whole boundary.

Thus, Laplace’s equation is well posed with a Dirichlet or Neumann condition but also with :
. dp . . .
@ givenon I'y, In givenonT'y, Ty Uy =T, Ty NIy = 0.

Parabolic and hyperbolic equations rarely require boundary conditions on all of I'x]0, T'[. For instance, the heat equa-
tion is well posed with :

@ given at t = 0 and Dirichlet or Neumann or mixed conditions on 0f2.

Here ¢ is time so the first condition is called an initial condition. The whole set of conditions is also called Cauchy
condition.

The wave equation is well posed with :

0
@ and a—f given at t = 0 and Dirichlet or Neumann or mixed conditions on 0f).

2.3 Membrane

Summary : Here we shall learn how to solve a Dirichlet and/or mixed Dirichlet Neumann problem for the Laplace
operator with application to the equilibrium of a membrane under load. We shall also check the accuracy of the method
and interface with other graphics packages

An elastic membrane €2 is attached to a planar rigid support I, and a force f(z)dx is exerted on each surface element
dx = dx1dxs. The vertical membrane displacement, (), is obtained by solving Laplace’s equation:

—Ap=finQ
As the membrane is fixed to its planar support, one has:
elr=0

If the support wasn’t planar but had an elevation z(z1, z2) then the boundary conditions would be of non-homogeneous
Dirichlet type.

plr=2

If a part I'5 of the membrane border I is not fixed to the support but is left hanging, then due to the membrane’s rigidity
the angle with the normal vector m is zero; thus the boundary conditions are:

dp
‘P|F1 =z, %‘FQ =0

2.3. Membrane 43

FreeFEM Documentation, Release 4.13

where I'y = I" — I'y; recall that g—n = V¢ - n Let us recall also that the Laplace operator A is defined by:
N
or? 0x3

Todo

Check references

With such “mixed boundary conditions” the problem has a unique solution (see Dautray-Lions (1988), Strang (1986)
and Raviart-Thomas (1983)). The easiest proof is to notice that ¢ is the state of least energy, i.e.

B(0) = min, E(), with B()= [GIVof = fo)

and where V is the subspace of the Sobolev space H!({2) of functions which have zero trace on I';. Recall that
(x € R%, d = 2 here):

HY Q) ={ue L*Q) : Vue (L*(Q)%}

Calculus of variation shows that the minimum must satisfy, what is known as the weak form of the PDE or its variational
formulation (also known here as the theorem of virtual work)

/V@-sz/fw YweV
Q Q

Next an integration by parts (Green’s formula) will show that this is equivalent to the PDE when second derivatives
exist.

Warning

Unlike the previous version Freefem+ which had both weak and strong forms, FreeFEM implements only weak
formulations. It is not possible to go further in using this software if you don’t know the weak form (i.e. variational
formulation) of your problem: either you read a book, or ask help form a colleague or drop the matter. Now if you
want to solve a system of PDE like A(u,v) = 0, B(u,v) = 0 don’t close this manual, because in weak form it is

/(A(u,v)wl + B(u,v)ws) = 0 Ywy, ws...
Q

Example

Let an ellipse have the length of the semimajor axis a = 2, and unitary the semiminor axis. Let the surface force be
f = 1. Programming this case with FreeFEM gives:

// Parameters

real theta = 4.%pi/3.;

real a = 2.; //The length of the semimajor axis
real b = 1.; //The length of the semiminor axis
func z = x;

// Mesh

(continues on next page)

44 Chapter 2. Learning by Examples

22

23

24

25

26

27

28

29

FreeFEM Documentation, Release 4.13

border Gammal(t=0., theta){x=a*cos(t); y=b*sin(t);}

border Gamma2(t=theta, 2.*pi){x=a*cos(t); y=b*sin(t);}

mesh Th = buildmesh(Gammal(100) + Gamma2(50));

// Fespace
fespace Vh(Th, P2); //P2 conforming triangular FEM
Vh phi, w, f=1;

// Solve
solve Laplace(phi, w)
int2d(Th) (
dx (phi) *dx (w)
+ dy(phi)*dy(w)

- int2d(Th) (
f*w
)
+ on(Gammal, phi=z)

// Plot
plot(phi, wait=true, ps="membrane.eps"); //Plot phi
plot(Th, wait=true, ps="membraneTh.eps"); //Plot Th

// Save mesh
savemesh(Th, "Th.msh");

(continued from previous page)

A triangulation is built by the keyword buildmesh. This keyword calls a triangulation subroutine based on the De-
launay test, which first triangulates with only the boundary points, then adds internal points by subdividing the edges.
How fine the triangulation becomes is controlled by the size of the closest boundary edges.

The PDE is then discretized using the triangular second order finite element method on the triangulation; as was briefly
indicated in the previous chapter, a linear system is derived from the discrete formulation whose size is the number of

vertices plus the number of mid-edges in the triangulation.

The system is solved by a multi-frontal Gauss LU factorization implemented in the package UMFPACK.

The keyword plot will display both T}, and ¢ (remove Th if ¢ only is desired) and the qualifier fill=true replaces

the default option (colored level lines) by a full color display.

| [plot(phi,wait:true,fillztrue); //Plot phi with full color display

Results are on Fig. 2.3a and Fig. 2.3b.

2.3. Membrane

45

FreeFEM Documentation, Release 4.13

KR
XK

XA

R
o
SRR
IR
RIS

A

5
KL
K

)
iy
5

S

DX
O
%

K

)

K

4

2

E
)

PSR

S

N

2

%

121

K]

K7

R

g‘
R

X

K]

X

Kk

Vi N
P NN AN SN AV 00
DR KON DRORRS
e AV NV AVATVAVAN NS STANY

<SS wqumvggmﬂﬂ‘wu

(a) Mesh of the ellipse (b) Level lines of the membrane deformation

Fig. 2.3: Membrane

Next we would like to check the results !

One simple way is to adjust the parameters so as to know the solutions. For instance on the unit circle a=1, ¢, =
sin(z2 4+ y? — 1) solves the problem when:

2= 0,f = —d(cos(a® + 4 — 1) — (¢ +) sin(a? + ¢ — 1))

except that on 'y 0,0 = 2 instead of zero. So we will consider a non-homogeneous Neumann condition and solve:

/V@-Vw:/fw—k/ 2w YweV
Q Q 2

We will do that with two triangulations, compute the L? error:

sz/\w—%ﬁ
Q

and print the error in both cases as well as the log of their ratio an indication of the rate of convergence.

// Parameters

verbosity = 0; //to remove all default output

real theta = 4.*pi/3.;

real a=1.; //the length of the semimajor axis

real b=1.; //the length of the semiminor axis

func f = -4*(cos(xA2+yA2-1) - (XA2+yA2)*sin(xA2+yr2-1));
func phiexact = sin(x*2 + y*2 - 1);

// Mesh
border Gammal(t=0., theta){x=a*cos(t); y=b*sin(t);}
border Gamma2(t=theta, 2.*pi){x=a*cos(t); y=b*sin(t);}

// Error loop
real[int] L2error(2); //an array of two values
(continues on next page)

46 Chapter 2. Learning by Examples

40

41

42

43

44

45

46

47

48

49

FreeFEM Documentation, Release 4.13

(continued from previous page)
for(int n = 0; n < 2; n++){
// Mesh
mesh Th = buildmesh(Gammal(20*(n+1)) + Gamma2(10*(M+1)));

// Fespace
fespace Vh(Th, P2);
Vh phi, w;

// Solve
solve Laplace(phi, w)
int2d(Th) (
dx (phi) *dx (w)
+ dy(phi)*dy(w)

- int2d(Th) (
f*w

- int1d(Th, Gamma2) (
2%W

)

+ on(Gammal,phi=0)

// Plot
plot(Th, phi, wait=true, ps="membrane.eps");

// Error
L2error[n] = sqrt(int2d(Th) ((phi-phiexact)*2));
}

// Display loop
for(int n = 0; n < 2; n++)
cout << "L2error " << n << " = " << L2error[n] << endl;

// Convergence rate
cout << "convergence rate = "<< log(L2error[0]/L2error[1])/log(2.) << endl;

The output is:

L2error 0 = 0.00462991

L2error 1 = 0.00117128

convergence rate = 1.9829

times: compile 0.02s, execution 6.94s

We find a rate of 1.98 , which is not close enough to the 3 predicted by the theory.
The Geometry is always a polygon so we lose one order due to the geometry approximation in O(h?).

Now if you are not satisfied with the .eps plot generated by FreeFEM and you want to use other graphic facilities,
then you must store the solution in a file very much like in C++. It will be useless if you don’t save the triangulation as
well, consequently you must do

[

(continues on next page)

2.3. Membrane 47

FreeFEM Documentation, Release 4.13

ofstream ff("phi.txt");
ff << phi[];

}
savemesh(Th, "Th.msh");

(continued from previous page)

For the triangulation the name is important: the extension determines the format.

"phi.txt"

2r 2
15 | 15
1 F <
AV
o
05 L =53 1
' 25 05
0 S22 .
r 25 e
S AV TANS 0
-05 1:;&%2&74
ARSI AR 05
-1k RSN -U.
eERERIARIRSIHK)
=
- L < -
1.5 =
2+ b -1.5
!
DR 2
IRRIEPRIK
BRI
SRISRK]
SRR)
RS
RRRSRT
RIS

Fig. 2.4: The 3D version drawn by gnuplot from a file generated by FreeFEM

Still that may not take you where you want. Here
2.4.

is an interface with gnuplot (see : web site link) to produce the Fig.

//to build a gnuplot data file
{
ofstream ff("graph.txt");
for (int i = 0; i < Th.nt; i++)
{
for (int j = 0; j < 3; j++)
ff << Th[i][j].x << " "<<

Th[i][§].y << " " << phi[1[Vh(i,j)] << endl;

ff << Th[i][0].x << " " << Th[i][0].y << " " << phi[][Vh(i,0)] << "\n\n\n"

We use the finite element numbering, where Wh (i
7.

Then open gnuplot and do:

,j) is the global index of 57" degrees of freedom of triangle number

set palette rgbformulae 30,31,32
splot "graph.txt" w 1 pal

48

Chapter 2. Learning by Examples

http://www.gnuplot.info

FreeFEM Documentation, Release 4.13

This works with P2 and P1, but not with P1nc because the three first degrees of freedom of P1 or P2 are on vertices
and not with P1nc.

2.4 Heat Exchanger

Summary: Here we shall learn more about geometry input and triangulation files, as well as read and write operations.

The problem Let {C;}; 2, be 2 thermal conductors within an enclosure Cy (see Fig. 2.5).

Fig. 2.5: Heat exchanger geometry

The first one is held at a constant temperature u; the other one has a given thermal conductivity o 3 times larger than
the one of C.

We assume that the border of enclosure Cj is held at temperature 20°C' and that we have waited long enough for thermal
equilibrium.

In order to know u(x) at any point = of the domain (2, we must solve:
V- (kVu)=0inQ, ur=g

where (2 is the interior of Cy minus the conductor C; and I is the boundary of €2, that is Cy U C}.
Here g is any function of = equal to u; on C;.

The second equation is a reduced form for:
u=u;onC;, i=0,1.

The variational formulation for this problem is in the subspace H{(2) C H'(Q) of functions which have zero traces
onT"

u—g€ HH Q) : / VuVv = 0Vv € H}(Q)
Q

Let us assume that Cj, is a circle of radius 5 centered at the origin, C; are rectangles, C being at the constant temperature
u1 = 60°C' (so we can only consider its boundary).

2.4. Heat Exchanger 49

21

22

23

24

25

26

42

43

44

45

46

47

FreeFEM Documentation, Release 4.13

// Parameters
int C1=99;
int C2=98; //could be anything such that !=0 and C1!=C2

// Mesh
border CO(t=0., 2.*pi){x=5.%cos(t); y=5.%sin(t);}

border C11(t=0.,
border C12(t=0.,
border C13(t=0.,
border C14(t=0.,

O{x=1.+t; y=3.; label=C1;}
D{x=2.; y=3.-6.%t; label=C1;}
D{x=2.-t; y=-3.; label=C1;}
D{x=1.; y=-3.+6.%t; label=C1;}

[T T G

border C21(t=0.,
border C22(t=0.,
border C23(t=0.,
border C24(t=0.,

D{x=-2.+t; y=3.; label=C2;}
D{x=-1.; y=3.-6.*t; label=C2;}
D{x=-1.-t; y=-3.; label=C2;}
D{x=-2.; y=-3.+6.%t; label=C2;}

[T

plot(CO(50) //to see the border of the domain
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20),
wait=true, ps="heatexb.eps");

mesh Th=buildmesh(CO(50)
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20));

plot(Th,wait=1);

// Fespace

fespace Vh(Th, P1);

Vh u, v;

Vh kappa=1 + 2*(x<-1)*(x>-2)*(y<3)*(y>-3);

// Solve
solve a(u, v)
= int2d(Th)
kappa*(
dx (u) *dx(v)
+ dy(u)*dy (v)
)
)
+on(CO, u=20)
+on(C1l, u=60)

// Plot
plot(u, wait=true, value=true, fill-true, ps="HeatExchanger.eps");

Note the following:

* (O is oriented counterclockwise by t, while C1 is oriented clockwise and C2 is oriented counterclockwise. This
is why C1 is viewed as a hole by buildmesh.

* C1 and C2 are built by joining pieces of straight lines. To group them in the same logical unit to input the

50 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

boundary conditions in a readable way we assigned a label on the boundaries. As said earlier, borders have an
internal number corresponding to their order in the program (check it by adding a cout << C22; above). This
is essential to understand how a mesh can be output to a file and re-read (see below).

¢ As usual the mesh density is controlled by the number of vertices assigned to each boundary. It is not possible
to change the (uniform) distribution of vertices but a piece of boundary can always be cut in two or more parts,

for instance C12 could be replaced by C121+C122:

1 | // border C12(t=0.,1.){x=2.; y=3.-6.%t; label=Cl;}
> |border C121(t=0.,0.7){x=2.; y=3.-6.*t; label=C1;}
3 |border C122(t=0.7,1.){x=2.; y=3.-6.*t; label=C1;}

s |buildmesh(.../*+ C12(20) */ + C121(12) + C122(8) + ..

0) 8

A\

COTAAVAYY A
SSNNAAAKE

NN,

@VAVA /\
Ly

N
avad

AVAV/SS

}VAV

\VAVAVAVAVAVAVAN
X/
%

o
Kk

4
KA
NV

4

(a) Heat exchanger mesh

Fig. 2.6: Heat exchanger

(b) Heat exchanger solution

Tip

Exercise :

-

Use the symmetry of the problem with respect to the x axes.

Triangulate only one half of the domain, and set homogeneous Neumann conditions on the horizontal axis.

Writing and reading triangulation files Suppose that at the end of the previous program we added the line

| [savemesh(Th, "condensor.msh");

)

and then later on we write a similar program but we wish to read the mesh from that file. Then this is how the condenser

should be computed:

// Mesh
mesh Sh = readmesh("condensor.msh");

1

2

(continues on next page)

2.4. Heat Exchanger

51

FreeFEM Documentation, Release 4.13

(continued from previous page)

// Fespace
fespace Wh(Sh, P1);
Wh us, vs;

// Solve
solve b(us, vs)
= int2d(Sh) (
dx (us) *dx(vs)
+ dy(us) *dy (vs)
)
+on(l, us=0)
+on(99, us=1)
+on(98, us=-1)

// Plot
plot(us);

Note that the names of the boundaries are lost but either their internal number (in the case of C0) or their label number
(for C1 and C2) are kept.

2.5 Acoustics

Summary : Here we go to grip with ill posed problems and eigenvalue problems

Pressure variations in air at rest are governed by the wave equation:

% —Au=0
When the solution wave is monochromatic (and that depends on the boundary and initial conditions), u is of the form
u(z,t) = Re(v(z)e'™) where v is a solution of Helmholtz’s equation:
Kv+ctAv =0 inQ
3—2 Ir =g
where g is the source.

Note the “+” sign in front of the Laplace operator and that k£ > 0 is real. This sign may make the problem ill posed for
some values of 7, a phenomenon called “resonance”.

At resonance there are non-zero solutions even when g = 0. So the following program may or may not work:

// Parameters
real kc2 = 1.;
func g = y*(1.-y);

// Mesh

border a®(t=0.,
border al(t=0.,
border a2(t=0.,
border a3(t=0.,
border a4(t=0.,

D{x=5.; y=1.+2.%t;
O{x=5.-2.%t; y=3.;
O{x=3.-2.%t; y=3.-2.%t;
If{x=1.-t; y=1.;}
D{x=0.; y=1.-t;

= = = R

(continues on next page)

52 Chapter 2. Learning by Examples

21

22

23

24

25

26

27

FreeFEM Documentation, Release 4.13

(continued from previous page)

border a5(t=0., 1.){x=t; y=0.;}
border a6(t=0., 1.){x=1.+4.*t; y=t;}

mesh Th = buildmesh(a®(20) + al(20) + a2(20)
+ a3(20) + a4(20) + a5(20) + a6(20));

// Fespace
fespace Vh(Th, P1);
Vh u, v;
// Solve
solve sound(u, v)
= int2d(Th)
u*v * kc2

- dx(u)*dx(v)
- dy(w)*dy(v)

)
- int1d(Th, a4)(
g * v
)
// Plot

plot(u, wait=1, ps="Sound.eps");

Results are on Fig. 2.7a. But when kc2 is an eigenvalue of the problem, then the solution is not unique:
* if u. # 0 is an eigen state, then for any given solution v + u. is another solution.

To find all the u, one can do the following :

// Parameters
real sigma = 20; //value of the shift

// Problem
// OP = A - sigma B ; // The shifted matrix
varf op(ul, u2)
= int2d(Th)
dx (ul) *dx(u2)
+ dy(ul) *dy(u2)
- sigma* ul*u2

)

varf b([ul]l, [u2])
= int2d(Th)
ul*u2
)
; // No Boundary condition see note \ref{note BC EV}

matrix OP = op(Vh, Vh, solver=Crout, factorize-=1);
matrix B = b(Vh, Vh, solver=CG, eps=1e-20);

(continues on next page)

2.5. Acoustics 53

23

24

25

26

27

28

29

30

FreeFEM Documentation, Release 4.13

(continued from previous page)

// Eigen values
int nev=2; // Number of requested eigenvalues near sigma

real[int] ev(nev); // To store the nev eigenvalue
Vh[int] eV(nev); // To store the nev eigenvector

int k=EigenValue(OP, B, sym=true, sigma=sigma, value=ev, vector=eV,
tol=1e-10, maxit=0, ncv=0);

cout << ev(0®) << " 2 eigen values << ev(l) << endl;
v = eV[0];

plot(v, wait=true, ps="eigen.eps");

(a) Amplitude of an acoustic signal coming from the left ver- (b) First eigen state (A = (k/ ¢)? = 14.695) close to 15 of
tical wall. eigenvalue problem: —Ap = Ap and g—:’; =0onl}

Fig. 2.7: Acoustics

2.6 Thermal Conduction

Summary : Here we shall learn how to deal with a time dependent parabolic problem. We shall also show how to
treat an axisymmetric problem and show also how to deal with a nonlinear problem

How air cools a plate

We seek the temperature distribution in a plate (0, Lz) x (0, Ly) x (0, Lz) of rectangular cross section 2 = (0, 6) x
(0,1); the plate is surrounded by air at temperature u,. and initially at temperature u = wuo + Fu;. In the plane
perpendicular to the plate at z = Lz/2, the temperature varies little with the coordinate z; as a first approximation the
problem is 2D.

We must solve the temperature equation in €2 in a time interval (0,T).

0w — V - (kVu) =0 inQ x (0,7)
u(z,y,0) =wug+ xuy
KO+ a(u — ue) =0 onT x (0,7)

Here the diffusion x will take two values, one below the middle horizontal line and ten times less above, so as to
simulate a thermostat.

The term «(u — u,) accounts for the loss of temperature by convection in air. Mathematically this boundary condition
is of Fourier (or Robin, or mixed) type.

The variational formulation is in L2(0,7; H'(£2)); in loose terms and after applying an implicit Euler finite difference

54 Chapter 2. Learning by Examples

22

23

24

25

26

27

28

29

38

39

40

41

42

43

44

FreeFEM Documentation, Release 4.13

approximation in time; we shall seek u" (z, y) satisfying for all w € H'(Q):

ut — un—l
/ (—————w+kVu"Vuw) + / au” —uye)w =0
Q ot r

// Parameters

func u® = 10. + 90.*x/6.;
func k = 1.8%(y<0.5) + 0.2;
real ue = 25.;

real alpha=0.25;

real T=5.;

real dt=0.1 ;

// Mesh
mesh Th = square(30, 5, [6.%Xx,y]);

// Fespace
fespace Vh(Th, P1);
Vh u=u®, v, uold;

// Problem
problem thermic(u, v)
int2d(Th) (
u*v/dt
+ k*(

dx(u) * dx(v)
+ dy(uw) * dy(v)
)

+ int1d(Th, 1, 3)(
alpha*u*v

- intld(Th, 1, 3)(
alpha*ue*v

- int2d(Th) (
uold*v/dt

+ on(2, 4, u=ul)

// Time iterations

ofstream ff("thermic.dat");

for(real t = 0; t < T; t += dt){
uwold = u; //equivalent to ur{n-1} = u’n
thermic; //here the thermic problem is solved
ff << u(3., 0.5) << endl;
plot(u);

Note

We must separate by hand the bilinear part from the linear one.

2.6. Thermal Conduction 55

FreeFEM Documentation, Release 4.13

Note

The way we store the temperature at point (3, 0.5) for all times in file thermic.dat. Should a one dimensional
plot be required (you can use gnuplot tools), the same procedure can be used. For instance to print x — g—Z (z,0.9)
one would do:

for(int i = 0; 1 < 20; i++)
cout << dy(u)(6.0%i/20.0,0.9) << endl;

Results are shown on Fig. 2.8a and Fig. 2.8b.

“thermic.dat’ -

a8
a6
a4t

az b

AV of
EEy
[1] sl
]

36 |

34

L L L L L L L L
0 05 1 15 2 25 3 35 4 45

(b) Decay of temperature versus time at z = 3,y = 0.5

(a) Temperature at ¢ = 4.9.

Fig. 2.8: Thermal conduction

2.6.1 Axisymmetry: 3D Rod with circular section

Let us now deal with a cylindrical rod instead of a flat plate. For simplicity we take x = 1.

In cylindrical coordinates, the Laplace operator becomes (7 is the distance to the axis, z is the distance along the axis,
@ polar angle in a fixed plane perpendicular to the axis):

1 1 9 5
Au = ;&(r@ru) + ﬁaggu + azz-

Symmetry implies that we loose the dependence with respect to 6; so the domain (2 is again a rectangle |0, R[X]0, |[
. We take the convention of numbering of the edges as in square() (1 for the bottom horizontal ...); the problem is
now:

royu — Op(rdpu) — 0,(rd,u) =0 in Q
u(t=0) =uo+ £ (w1 —u)
ulr, = ug
U|F2 = U1
Oz(u — ue) + %|F1UF3 =0

Note that the PDE has been multiplied by 7.

After discretization in time with an implicit scheme, with time steps dt, in the FreeFEM syntax r becomes x and 2
becomes y and the problem is:

56 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

problem thermaxi(u, v)
= int2d(Th) (
(u*v/dt + dx(u)*dx(v) + dy(u)*dy(v))*x

+ int1d(Th, 3)(
alpha*x*u*v

- int1d(Th, 3)(
alpha*x*ue*v

- int2d(Th)(
uold*v*x/dt

+ on(2, 4, u=u®);

Note

The bilinear form degenerates at x = 0. Still one can prove existence and uniqueness for u and because of this
degeneracy no boundary conditions need to be imposed on I';.

2.6.2 A Nonlinear Problem : Radiation

Heat loss through radiation is a loss proportional to the absolute temperature to the fourth power (Stefan’s Law). This
adds to the loss by convection and gives the following boundary condition:

KS—Z + au —ue) + cf(u+273)* — (u. +273)* =0

The problem is nonlinear, and must be solved iteratively with fixed-point iteration where m denotes the iteration index,
a semi-linearization of the radiation condition gives

umtl
on

+a(u™ ! —ue) + e(u™ = ue) (W™ + ue + 546) ((u™ + 273)% + (ue + 273)%) = 0,

because we have the identity a* — b* = (a — b)(a + b)(a® + b?).

The iterative process will work with v = u — u..

// Mesh
fespace Vh(Th, P1);
Vh vold, w, v=u®-ue, b,vp;

// Problem
problem thermradia(v, w)
= int2d(Th)
viw/dt
+ k*(dx(v) * dx(w) + dy(v) * dy(w))
)
+ int1d(Th, 1, 3)(
b*v*w

int2d(Th) (

(continues on next page)

2.6. Thermal Conduction 57

21

22

23

24

25

26

FreeFEM Documentation, Release 4.13

(continued from previous page)
vold*w/dt
)
+ on(2, 4, v=u®-ue)

verbosity=0; // to remove spurious FREEfem print
for (real t=0;t<T;t+=dt){
vold[] = v[];// just copy DoF's, faster than interpolation pv=v;
for (intm = 0; m < 5; m++) {
vp[l=v[];// save previous state of commute error
b = alpha + rad * (v + 2*uek) * ((v+uek)*2 + uek”2);

thermradia;

vp[1-=v[]1;

real err = vp[].linfty;// error value

cout << " time " << t << " iter " << m << " err = "<< vp[].linfty << endl;

if(err < le-5) break; // if error is enough small break fixed-point loop
}

}
v[] += ue;// add a constant to all DoF's of v

plot(v);

2.7 Irrotational Fan Blade Flow and Thermal effects

Summary : Here we will learn how to deal with a multi-physics system of PDEs on a complex geometry, with multiple
meshes within one problem. We also learn how to manipulate the region indicator and see how smooth is the projection
operator from one mesh to another.

Incompressible flow

Without viscosity and vorticity incompressible flows have a velocity given by:
o
u= _%ﬁp , where % is solution of A =0
oy
This equation expresses both incompressibility (V - « = 0) and absence of vortex (V x u = 0).
As the fluid slips along the walls, normal velocity is zero, which means that v satisfies:

1) constant on the walls.

One can also prescribe the normal velocity at an artificial boundary, and this translates into non constant Dirichlet data
for .
Airfoil

Let us consider a wing profile .S in a uniform flow. Infinity will be represented by a large circle C' where the flow is
assumed to be of uniform velocity; one way to model this problem is to write:

A/l/}:Oln Q? ¢|S :717 17/}|C:u00'$J_

where 92 = C U S and [is the lift force.
The NACA0012 Airfoil

58 Chapter 2. Learning by Examples

22

23

24

25

26

27

FreeFEM Documentation, Release 4.13

An equation for the upper surface of a NACAO0012 (this is a classical wing profile in aerodynamics) is:

y = 0.17735v/x — 0.0755972 — 0.21283622 + 0.17363z> — 0.062542*.

// Parameters

int S = 99;// wing label

// u infty

real theta = 8*pi/180;// // 1 degree on incidence => 1lift

real lift = theta*0.151952/0.0872665; // 1lift approximation formula
real uinftyl= cos(theta), uinfty2= sin(theta);

// Mesh

func nacal2 = 0.17735*sqrt(x) - 0.075597*x - 0.212836*(x*2) + 0.17363*(x*3) - 0.06254*(x*
—4);

border C(t=0., 2.*pi){x=5.%*cos(t); y=5.%sin(t);}

border Splus(t=0., 1.){x=t; y=nacal2; label=S;}

border Sminus(t=1., 0.){x=t; y=-nacal2; label=S;}

mesh Th = buildmesh(C(50) + Splus(70) + Sminus(70));

// Fespace
fespace Xh(Th, P2);
Xh psi, w;
macro grad(u) [dx(uw),dy(u)]// def of grad operator
// Solve
solve potential (psi, w)

= int2d(Th)

grad(psi) '*grad(w) // scalar product

)

+ on(C, psi = [uinftyl,uinfty2]'*[y,-x])

+ on(S, psi=-1lift) // to get a correct value

plot(psi, wait=1);

A zoom of the streamlines are shown on Fig. 2.9a.

(a) Zoom around the NACAO0012 airfoil showing the stream- (b) Temperature distribution at time T=25 (now the maxi-
lines (curve 1) = constant). To obtain such a plot use the mum is at 90 instead of 120).
interactive graphic command: “+” and p.

Fig. 2.9: The NACAO0012 Airfoil

2.7. Irrotational Fan Blade Flow and Thermal effects 59

20

21

22

23

24

25

26

27

28

29

30

31

FreeFEM Documentation, Release 4.13

2.7.1 Heat Convection around the airfoil

Now let us assume that the airfoil is hot and that air is there to cool it. Much like in the previous section the heat
equation for the temperature v is

0
v —V - (kVv) +u-Vo =0, v(t=0)=uv, 8—:;|c,u.n>0 =0,v|cun<o =0

But now the domain is outside AND inside S and k takes a different value in air and in steel. Furthermore there is
convection of heat by the flow, hence the term u - Vv above.

Consider the following, to be plugged at the end of the previous program:

// Corrected by F. Hecht may 2021
// Parameters
real S = 99;

border C(t=0, 2*pi){x=3*cos(t); y=3*sin(t);} // Label 1,2

border Splus(t=0, 1){x=t; y=0.17735*sqrt(t) - 0.075597*t - 0.212836*(t*2) + 0.17363*(tA
—3) - 0.06254%(t*4); label=S;}

border Sminus(t=1, 0){x=t; y=-(0.17735%sqrt(t) - 0.075597*t - 0.212836%(t*2) + 0.
—17363*(t*3) - 0.06254*(t*4)); label=S;}

mesh Th = buildmesh(C(50) + Splus(70) + Sminus(70));

// Fespace

fespace Vh(Th, P2);

Vh psi, w;

// Problem

solve potential(psi, w)

= int2d(Th) (dx(psi) *dx(w)+dy (psi) “dy (w))
+ on(C, psi =vy)
+ on(S, psi=0);

// Plot
plot(psi, wait=1);

/// Thermic
// Parameters
real dt = 0.005, nbT = 50;

// Mesh

border D(t=0, 2){x=1+t; y=0;}

mesh Sh = buildmesh(C(25) + Splus(-90) + Sminus(-90) + D(200));
int steel = Sh(0.5, 0).region, air = Sh(-1, 0).region;

// Change label to put BC on In flow

// Fespace

fespace Wh(Sh, P1);

Wh vv;

fespace WO(Sh, PO);

WO k = 0.01*(region == air) + 0.1*(region == steel);

WO ul = dy(psi)*(region == air), u2 = -dx(psi)*(region == air);

Wh v = 120*(region == steel), vold;

// set the label to 10 on inflow boundary to inforce the temperature.
Sh = change(Sh, flabel = (label == C && [ul,u2]'*N<®) ? 10 : label);

(continues on next page)

60 Chapter 2. Learning by Examples

41

o)

43

44

45

46

47

48

49

50

51

FreeFEM Documentation, Release 4.13

(continued from previous page)
int i;
problem thermic(v, vv, init=i, solver=LU)
= int2d(Sh) (
vivv/dt + k*(dx(v)*dx(vv) + dy(v)*dy(vv))

+ 10*(ul*dx(v) + u2*dy(v))*vv

)
- int2d(Sh) (vold*vv/dt)
+ on(10, v= 0);

for(i = 0; i < nbT; i++) {
vold[]= v[I;
thermic;
plot(v);

}

Note

How steel and air are identified by the mesh parameter region which is defined when buildmesh is called and takes
an integer value corresponding to each connected component of €2;

Note

We use the change function to put label 10 on inflow boundary, remark the trick to chanhe only label C flabel =
(label == C && [ul,u2]'*N<Q) ? 10 : 1label

How the convection terms are added without upwinding. Upwinding is necessary when the Pecley number |u|L/x
is large (here is a typical length scale), The factor 10 in front of the convection terms is a quick way of multiplying
the velocity by 10 (else it is too slow to see something).

The solver is Gauss’ LU factorization and when init # 0 the LU decomposition is reused so it is much faster after
the first iteration.

2.8 Pure Convection : The Rotating Hill

Summary: Here we will present two methods for upwinding for the simplest convection problem. We will learn about
Characteristics-Galerkin and Discontinuous-Galerkin Finite Element Methods.

Let €2 be the unit disk centered at (0, 0); consider the rotation vector field
u = [ul, u2], U=y, us=-—2a

Pure convection by u is

Oc+uVe =0 inQx(0,7)
ct=0) =c inQ.

The exact solution ¢(x;, t) at time ¢ en point x; is given by:

c(xg,t) = P(x,0)

2.8. Pure Convection : The Rotating Hill 61

FreeFEM Documentation, Release 4.13

where z; is the particle path in the flow starting at point x at time 0. So z; are solutions of

d(It

2y = u(xy), Xm0 =, Where 2= T

The ODE are reversible and we want the solution at point x at time ¢ (not at point x;) the initial point is x_;, and we
have

c(w,t) = (2-¢,0)
The game consists in solving the equation until 7" = 27, that is for a full revolution and to compare the final solution
with the initial one; they should be equal.
2.8.1 Solution by a Characteristics-Galerkin Method

In FreeFEM there is an operator called convect([ul,u2], dt, c) which compute c o X with X is the convect
field defined by X (z) = x4 and where x is particule path in the steady state velocity field u = [ul, u2| starting at
point x at time 7 = 0, so x is solution of the following ODE:

Tr =u(Tr), Tr=p = T.

When u is piecewise constant; this is possible because x, is then a polygonal curve which can be computed exactly
and the solution exists always when u is divergence free; convect returns c(zq) = C o X.

// Parameters
real dt = 0.17;

// Mesh
border C(t=0., 2.*pi) {x=cos(t); y=sin(t);};
mesh Th = buildmesh(C(100));

// Fespace

fespace Uh(Th, P1);

Uh cold, c = exp(-10%((x-0.3)42 +(y-0.3)42));
Uh ul =y, u2 = -x;

// Time loop
real t = 0;
for (intm = 0; m < 2.%pi/dt; m++){
t += dt;
cold = c;
¢ = convect([ul, u2], -dt, cold);
plot(c, cmm=" t="+t +", min="+c[].min+", max="+c[].max);

Note

3D plots can be done by adding the qualifyer dim=3 to the plot instruction.

The method is very powerful but has two limitations:
* itis not conservative

* it may diverge in rare cases when |u| is too small due to quadrature error.

62 Chapter 2. Learning by Examples

20

21

22

23

24

25

FreeFEM Documentation, Release 4.13

2.8.2 Solution by Discontinuous-Galerkin FEM

Discontinuous Galerkin methods take advantage of the discontinuities of ¢ at the edges to build upwinding. There are
may formulations possible. We shall implement here the so-called dual-P¢ formulation (see [ERN2006]):

Tl — e 1
/(7+U-Vc)w+/(a|n~u|—fn-u)[c]w:/ |n - ujew Yw
Q ot E 2 By

where F is the set of inner edges and E is the set of boundary edges where u - n < 0 (in our case there is no such
edges). Finally [c] is the jump of ¢ across an edge with the convention that ¢ refers to the value on the right of the
oriented edge.

// Parameters
real al=0.5;
real dt = 0.05;

// Mesh
border C(t=0., 2.*pi) {x=cos(t); y=sin(t);};
mesh Th = buildmesh(C(100));

// Fespace
fespace Vh(Th,P1ldc);
Vh w, ccold, vl =y, v2 = -X, cc = exp(-10%((x-0.3)42 +(y-0.3)42));

// Macro
macro n() (N.x*vl + N.y*v2) // Macro without parameter

// Problem
problem Adual(cc, w)
= int2d(Th) (
(cc/dt+(vi*dx(cc)+v2*dy(cc)))*w
)
+ intalledges(Th) (
(1-nTonEdge) *w* (al*abs(n)-n/2)*jump(cc)
)
- int2d(Th)(
ccold*w/dt
)

// Time iterations
for (real t = 0.; t < 2.%pi; t += dt){
ccold = cc;
Adual;
plot(cc, fill=1, cmm="+t="+t+

, min="+cc[].min+", max="+ cc[].max);

}

// Plot

real [int] viso = [-0.2, -0.1, 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1];
plot(cc, wait=1, £fill=1, ps="ConvectCG.eps", viso=viso);

plot(cc, wait=1, £ill=1, ps="ConvectDG.eps", viso=viso);

Note

2.8. Pure Convection : The Rotating Hill 63

FreeFEM Documentation, Release 4.13

New keywords: intalledges to integrate on all edges of all triangles

intalledges(Th) = Z/
aT

TETh

(so all internal edges are see two times), nTonEdge which is one if the triangle has a boundary edge and two otherwise,

jump to implement [c].

Results of both methods are shown on Fig. 2.10a nad Fig. 2.10b with identical levels for the level line; this is done with

the plot-modifier viso.

Notice also the macro where the parameter u is not used (but the syntax needs one) and which ends with a //; it simply
replaces the name n by (N.x*v1+N.y*v2). As easily guessed N.x,N.y is the normal to the edge.

\\\\\\\\

kovabe

// //
// // \\
/ / \
i i
| \
\ /
\ / \ X /,/
N\ S / \ //
\\ /// \ ////
(a) The rotating hill after one revolution with (b) The rotating hill after one revolution with Discontinuous
Characteristics-Galerkin P, Galerkin

Fig. 2.10: Rotating hill

Now if you think that DG is too slow try this:

// Mesh
border C(t=0., 2.*pi) {x=cos(t); y=sin(t);};
mesh Th = buildmesh(C(100));

fespace Vh(Th,Pl1);//P1,P2,P0,Pldc,P2dc, uncond stable

Vh vh,vo,ul =y, u2 = -x, v = exp(-10*((x-0.3)42 +(y-0.3)42));
real dt = 0.03,t=0, tmax=2*pi, al=0.5, alp=200;

problem A(v,vh) = int2d(Th) (v*vh/dt-v*(ul*dx(vh)+u2*dy(vh)))
+ intalledges(Th) (vh* (mean(v)*(N.x*ul+N.y*u2)
+alp*jump (v) *abs(N.x*ul+N.y*u2)))
+ int1d(Th, 1) (((N.x*ul+N.y*u2)>0) * (N.x*ul+N.y*u2) *v*vh)
- int2d(Th) (vo*vh/dt);

(continues on next page)

64 Chapter 2.

Learning by Examples

20

21

22

23

24

25

26

27

28

29

30

FreeFEM Documentation, Release 4.13

(continued from previous page)

varf Adual(v,vh) = int2d(Th) ((v/dt+(ul*dx(v)+u2*dy(v)))*vh)
+ intalledges(Th) ((1-nTonEdge) *vh*(al*abs(N.x*ul+N.y*u2)
-(N.x*ul+N.y*u2) /2) *jump (v));
varf rhs(vo,vh)= int2d(Th) (vo*vh/dt);
real[int] viso=[-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1];

matrix AA=Adual (Vh,Vh,solver=GMRES);
matrix BB=rhs(Vh,Vh);

for (t=0; t< tmax ; t+=dt)

{

vo[]=v[];

vh[]=BB*vo[];

v[]=AAr-1*vh[];

plot(v,fill=0,viso=viso,cm=" t="+t + ", min=" + v[].min + ", max=" + v[].max);
b

2.9 The System of elasticity

Elasticity
Solid objects deform under the action of applied forces:

a point in the solid, originally at (z,y, z) will come to (X,Y, Z) after some time; the vector u = (u1, ug,usz) =
(X —2,Y —y, Z — 2) is called the displacement. When the displacement is small and the solid is elastic, Hooke’s law
gives a relationship between the stress tensor o(u) = (0;;()) and the strain tensor e(u) = €;;(u)

aij(u) =)\57]Vu =+ 2,UJ€Z‘j (u),
where the Kronecker symbol d;; = 1if 7 = j, 0 otherwise, with

o 1(8112 + a’u,j
o 2 8xj 6331

);

€ij(u)
and where \, p are two constants that describe the mechanical properties of the solid, and are themselves related to the
better known constants £, Young’s modulus, and v, Poisson’s ratio:

FE FEv

A i M (=T

Lamé’s system

Let us consider a beam with axis Oz and with perpendicular section (2. The components along x and y of the strain
u(z) in a section € subject to forces f perpendicular to the axis are governed by:

—pAu— (p+AN)V(V.au) =f in Q,

where A ,u are the Lamé coefficients introduced above.

Remark, we do not use this equation because the associated variational form does not give the right boundary condition,
we simply use:

—div(e) =f in Q

2.9. The System of elasticity 65

23

24

25

26

27

28

FreeFEM Documentation, Release 4.13

where the corresponding variational form is:

/Qa(u):e(v) dx—/gvf dx = 0;

where : denotes the tensor scalar product, i.e.a: b=}, - a;;b;;.

So the variational form can be written as :

/ AV.uV.o +2ue(u) : e(v) de — / vfdx =0;
Q Q

Tip
Consider an elastic plate with the undeformed rectangle shape [0, 20] x [—1, 1].

The body force is the gravity force f and the boundary force g is zero on lower, upper and right sides. The left
vertical side of the beam is fixed. The boundary conditions are:

g g =0 on Flar4ar3a
0

on FQ

.n
u

Here u = (u, v) has two components.

The above two equations are strongly coupled by their mixed derivatives, and thus any iterative solution on each of the
components is risky. One should rather use FreeFEM’s system approach and write:

// Parameters
real E = 21e5;
real nu = 0.28;

real f = -1;

// Mesh
mesh Th = square(10, 10, [20%x,2*y-1]);

// Fespace

fespace Vh(Th, P2);
Vh u, v;

Vh uu, vv;

// Macro

real sqrt2=sqrt(2.);

macro epsilon(ul,u2) [dx(ul),dy(u2), (dy(ul)+dx(u2))/sqrt2] //

// The sqrt2 is because we want: epsilon(ul,u2)'* epsilon(vl,v2) = epsilon(u): epsilon(v)
macro div(u,v) (dx(w+dy(v)) //

// Problem
real mu= E/(2*(1l+nu));
real lambda = E*nu/((1+nu)*(1-2*nu));

solve lame([u, v], [uu, vv])

= int2d(Th) (
lambda * div(u, v) * div(uu, vv)
+ 2.*mu * (epsilon(u,v)' * epsilon(uu,vv))

(continues on next page)

66 Chapter 2. Learning by Examples

40

41

42

43

44

45

46

47

48

49

FreeFEM Documentation, Release 4.13

(continued from previous page)
)
- int2d(Th) (
f*vv
)
+ on(4, u=0, v=0)

// Plot
real coef=100;
plot([u, v], wait=1, ps="lamevect.eps", coef=coef);

// Move mesh
mesh thl = movemesh(Th, [x+u*coef, y+v*coef]);
plot(thl,wait=1,ps="1amedeform.eps");

// Output

real dxmin = u[].min;

real dymin = v[].min;

cout << " - dep. max x = "<< dxmin << " y=" << dymin << endl;

cout << " dep. (20, 0) = " << u(20, 0 << " " << v(20, 0) << endl;

The output is:

-- square mesh : nb vertices =121 , nb triangles = 200 , nb boundary edges 40
-- Solve : min -0.00174137 max 0.00174105

min -0.0263154 max 1.47016e-29
- dep. max x = -0.00174137 y=-0.0263154
dep. (20,0) = -1.8096e-07 -0.0263154
times: compile 0.010219s, execution 1.5827s

Solution of Lamé’s equations for elasticity for a 2D beam deflected by its own weight and clamped by its left vertical
side is shown Fig. 2.11a and Fig. 2.11b. Result are shown with a amplification factor equal to 100. The size of the
arrow is automatically bound, but the color gives the real length.

,,,,,,

il I
ARARR

Fig. 2.11: Elasticity

2.10 The System of Stokes for Fluids

In the case of a flow invariant with respect to the third coordinate (two-dimensional flow), flows at low Reynolds number
(for instance micro-organisms) satisfy,

—Au+Vp = 0
Vu = 0

where u = (u1, ug) is the fluid velocity and p its pressure.

2.10. The System of Stokes for Fluids 67

22

23

24

25

26

27

28

29

FreeFEM Documentation, Release 4.13

The driven cavity is a standard test. It is a box full of liquid with its lid moving horizontally at speed one. The pressure
and the velocity must be discretized in compatible fintie element spaces for the LBB conditions to be satisfied:

sup (u. Vp) > Blu| YueU,
pEP, |p|

// Parameters
int nn = 30;

// Mesh
mesh Th = square(nn, nn);

// Fespace

fespace Uh(Th, Plb);
Uh u, v;

Uh uu, vv;

fespace Ph(Th, P1);
Ph p, pp;

// Problem

solve stokes ([u, v, pl, [uu, vv, ppl)
= int2d(Th) (

dx (u) *dx (uu)

dy (u) *dy (uu)

dx (v) “dx (vv)

dy (v) *dy (vv)

dx(p) *uu

dy (p) *vv

pp*(dx(u) + dy(v))

- le-10*p*pp

+ + 4+ + + +

)
+ on(l, 2, 4, u=0, v=0)
+ on(3, u=1, v=0)

// Plot
plot([u, v], p, wait=1);

Note

We add a stabilization term —10e — 10 * p * pp to fix the constant part of the pressure.

Results are shown on Fig. 2.12.

2.11 A projection algorithm for the Navier-Stokes equations

Summary : Fluid flows require good algorithms and good triangultions. We show here an example of a complex
algorithm and or first example of mesh adaptation.

68 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

D

\
NN
N S

AN
SN
NN
NN \\\'\\\'\'\\\'\\\

- el el el —

/%/%/////
77
77
(\(
!
N\

NN
4-——:;-“"/;’/

-
f f
L
\
N
N
NN

NN DT //
N NN T e . '—*——3'-‘—*”‘.««*;"’4/?

N T TR T T T e e e

T e e e

R T e
- - e o A o — —

\'\'\\

O R Y e e g g

-+ AT T T & & W

T T et T 4 A — — — — — 4 4 4 4 4

Fig. 2.12: Solution of Stokes’ equations for the driven cavity problem, showing the velocity field and the pressure level
lines.

2.11. A projection algorithm for the Navier-Stokes equations 69

FreeFEM Documentation, Release 4.13

An incompressible viscous fluid satisfies:

du+u-Vu+Vp—vAu =0 inQx]0,T
V-u =0 inQx]0,T]

ufi—g =u’

ur =ur

A possible algorithm, proposed by Chorin, is:

Lt —umoX™] + Vp™ —vAu™ = 0
ur = ur
vopulr,,, = 0
—Apmtl = _V.umoX™
Opp™ Tt =0 onTl
pmtl =0 onIpys

where uoX(z) = u(x — u(x)dt) since dyu + u - Vu is approximated by the method of characteristics, as in the
previous section.

We use the Chorin’s algorithm with free boundary condition at outlet (i.e. p = 0, v0,u = 0), to compute a correction,
g, to the pressure.

—-Agq =V-u
g =0on Cout
and define
u™tt = a+ PVt
m—+1 _ m
p = p—9q

m—+1
)

where u is the (u v™*1) of Chorin’s algorithm, and where P is the L? projection with mass lumping (a sparse

matrix).
The backward facing step

The geometry is that of a channel with a backward facing step so that the inflow section is smaller than the outflow
section. This geometry produces a fluid recirculation zone that must be captured correctly.

This can only be done if the triangulation is sufficiently fine, or well adapted to the flow.

Note

There is a technical difficulty in the example: the output B.C. Here we put p = 0 and v9,,u = 0.

// Parameters
verbosity = 0;
int nn = 1;

real nu = 0.0025;
real dt = 0.2;
real epsv = le-6;
real epsu = le-6;
real epsp = le-6;
// Mesh

border a®0(t=1, 0){x=-2; y=t; label=1;}

(continues on next page)

70 Chapter 2. Learning by Examples

21

22

23

24

25

26

27

42

43

44

45

46

47

48

FreeFEM Documentation, Release 4.13

border al(t=-2, 0){x=t; y=0; label=2;}

border a2(t=0, -0.5){x=0; y=t; label=2;}
border a3(t=0, 1){x=18*%t*1.2; y=-0.5; label=2;}
border a4(t=-0.5, 1){x=18; y=t; label=3;}
border a5(t=1, 0){x=-2+20*t; y=1; label=4;}

(continued from previous page)

mesh Th = buildmesh(a®(3*nn) + al(20*nn) + a2(10*nn) + a3(150*nn) + a4(5*nn) +.

—a5(100*nn));
plot(Th);

// Fespace

fespace Vh(Th, P1);
Vh w;

Vh u=0, v=0;

Vh p=0;

Vh q=0;

// Definition of Matrix dtMx and dtMy
matrix dtMlx, dtMly;

// Macro

macro BuildMat()

{ /* for memory managenemt */
varf vM(unused, v) = int2d(Th) (v);
varf vdx(u, v) = int2d(Th) (v¥dx(u)*dt);
varf vdy(u, v) = int2d(Th) (v*dy(u)*dt);

real[int] Mlump = vM(O, Vh);
real[int] one(Vh.ndof); one = 1;
real[int] M1 = one ./ Mlump;
matrix dM1 = M1;
matrix Mdx = vdx(Vh, Vh);
matrix Mdy = vdy(Vh, Vh);
dtMlx = dM1*Mdx;
dtMly = dM1*Mdy;

Y

// Build matrices
BuildMat

// Time iterations

real err = 1.;

real outflux = 1.;

for(int n = 0; n < 300; n++){
// Update
Vh uold=u, vold=v, pold=p;

// Solve
solve pb4u (u, w, init=n, solver=CG, eps=epsu)
= int2d(Th) (

u*w/dt
+ nu* (dx(u) *dx(w) + dy(w)*dy(w))

(continues on next page)

2.11. A projection algorithm for the Navier-Stokes equations

71

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

FreeFEM Documentation, Release 4.13

)
-int2d(Th) (
convect([uold, vold], -dt, uold)/dt*w
- dx(p)*w
)

+ on(l, u=4*y*(1-y))
+ on(2, 4, u=0)

plot(w);

solve pb4v (v, w, init=n, solver=CG, eps=epsv)
= int2d(Th)
viw/dt
+ nu*(dx(v)*dx(w) + dy(v)*dy(w))
)
-int2d(Th) (
convect([uold,vold],-dt,vold) /dt*w
- dy(p)*w
)
+on(l, 2, 3, 4, v=0)

solve pb4p (g, w, solver=CG, init=n, eps=epsp)

int2d(Th) (
dx (q) *dx(w)+dy (q) *dy (w)

- int2d(Th)(
(dx(w+ dy(v))*w/dt

+ on(3, g=0)

//to have absolute epsilon in CG algorithm.
epsv = -abs(epsv);
epsu = -abs(epsu);
epsp = -abs(epsp);

p = pold-q;
ull += dtMix*ql[];
v[] += dtMly*q[];

// Mesh adaptation

if (%50 == 49){
Th = adaptmesh(Th, [u, v], q, err=0.04, nbvx=100000);
plot(Th, wait=true);
BuildMat // Rebuild mat.

}

// Error & Outflux
err = sqrt(int2d(Th) (square(u-uold)+square(v-vold))/Th.area);
outflux = int1d(Th) ([u,v] '*[N.x,N.y]);

(continued from previous page)

(continues on next page)

72 Chapter 2.

Learning by Examples

115

116

117

118

119

120

121

122

123

124

FreeFEM Documentation, Release 4.13

(continued from previous page)

cout << iter << n<< " Err L2 = " << err << outflux =
if(err < le-3) break;

<< outflux << endl;

}

// Verification
assert(abs(outflux)< 2e-3);

// Plot
plot(p, wait=1, ps="NSprojP.eps");
plot(u, wait=1, ps="NSprojU.eps");

Rannacher’s projection algorithm: result on an adapted mesh, Fig. 2.13a, showing the pressure, Fig. 2.13b, and the
horizontal velocity Fig. 2.13c for a Reynolds number of 400 where mesh adaptation is done after 50 iterations on the
first mesh.

(a) Adapted mesh
T L P P f oh Ty J = poes § [ER
| f y PR S P I (| 1 ¢ 7

s T ¢ b | |
: 7 -2 . £ Y { | %

(b) Pressure

|
|
In

(c) Velocity

Fig. 2.13: Navier-Stokes projection

2.12 Newton Method for the Steady Navier-Stokes equations
The problem is find the velocity field u = (u;)2_, and the pressure p of a Flow satisfying in the domain Q C R%(d =
2,3):
(u-Vij3u—vAu+Vp = 0
Vu = 0
where v is the viscosity of the fluid, V = (8i)§l:1, the dot product is -, and A = V - V with the same boundary
conditions (u is given on I").

The weak form is find u, p such that for Vv (zero on I''), and Vq:
/((u~V)u).V+1/Vu:VV—pV~V—qV~u:0
Q

The Newton Algorithm to solve nonlinear problem is:
Find v € V such that F'(u) =0 where F': V — V.
1. choose ug € R™, ;
2. for(i=0;7<niter; s =7+ 1)
1. solve DF (u;)w; = F(u;);

2.12. Newton Method for the Steady Navier-Stokes equations 73

FreeFEM Documentation, Release 4.13

2. Ujpr = Up — Wy
break ||w;|| < e.
Where DF(u) is the differential of F at point w, this is a linear application such that:
F(u+9) = F(u) + DF(u)d + o(9)
For Navier Stokes, F' and D F' are:

Fu,p) = [,((u-V)u)v+vVu:Vv—pV.-v—¢V-u
DF(u,p)(du,ép) = [((6u-V)u).v+ ((u-V)du).v
+ vVéu:Vv—4pV-v—g¢V:du

So the Newton algorithm become:

// Parameters
real R = 5.;
real L = 15.;

real nu = 1./50.;
real nufinal = 1/200.;
real cnu = 0.5;

real eps = le-6;
verbosity = 0;

// Mesh

border cc(t=0, 2*pi){x=cos(t)/2.; y=sin(t)/2.; label=1;}

border ce(t=pi/2, 3*pi/2){x=cos(t)*R; y=sin(t)*R; label=1;}

border beb(tt=0, 1){real t=tt*1.2; x=t*L; y=-R; label=1;}

border beu(tt=1, 0){real t=tt*1.2; x=t*L; y=R; label=1;}

border beo(t=-R, R){x=L; y=t; label=0;}

border bei(t=-R/4, R/4){x=L/2; y=t; label=0;}

mesh Th = buildmesh(cc(-50) + ce(30) + beb(20) + beu(20) + beo(10) + bei(10));
plot(Th);

//bounding box for the plot
func bb = [[-1,-21,[4,2]1];

// Fespace

fespace Xh(Th, P2);
Xh ul, u2;

Xh vi1,v2;

Xh dul,du2;

Xh ulp,u2p;

fespace Mh(Th,P1);
Mh p;
Mh q;
Mh dp;
Mh pp;

// Macro

(continues on next page)

74 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

(continued from previous page)

macro Grad(ul,u2) [dx(ul), dyCul), dx(u2),dy(u2)] //
macro UgradV(ul,u2,vl,v2) [[ul,u2] *[dx(vl),dy(vl)],

[ul,u2] ' *[dx(v2),dy(v2)]1] //
macro div(ul,u2) (dx(ul) + dy(u2)) //

// Initialization
ul = (xA2+y22) > 2;
u2 = 0;

// Viscosity loop
while(1){
int n;
real err-=0;
// Newton loop
for (n = 0; n < 15; n++){
// Newton
solve Oseen ([dul, du2, dp]l, [vl, v2, ql)
= int2d(Th)
nu * (Grad(dul,du2)' * Grad(vl,v2))
+ UgradvV(dul,du2, ul, u2)' * [vl,v2]
+ Ugradv(ul, u2,dul,du2)' * [vl,v2]
div(dul,du2) * q
- div(vl,v2) * dp
le-8*dp*q //stabilization term

)
- int2d(Th) (
nu * (Grad(ul,u2)' * Grad(vl,v2))
+ Ugradv(ul,u2, ul, u2)' * [vl,v2]
- div(ul,u2) * q
- div(vl,v2) * p
)
+ on(l, dul=0, du2=0)

ul[] -= dull[];
u2[] -= du2([]l;
pl] -= dp[];

real Lul=ul[].linfty, Lu2=u2[].linfty, Lp=p[].linfty;

err = dul[].linfty/Lul + du2[].linfty/Lu2 + dp[].linfty/Lp;
cout << n << " err = " << err <<
if(err < eps) break; //converge
if(n>3 && err > 10.) break; //blowup

<< @ps << " rey = " << 1./nu << endl;

}
if(err < eps){ //converge: decrease ν (more difficult)
// Plot
plot([ul, u2], p, wait=1, com=" rey = " + 1./nu , coef=0.3, bb=bb);

// Change nu
if(nu == nufinal) break;

(continues on next page)

2.12. Newton Method for the Steady Navier-Stokes equations

75

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

FreeFEM Documentation, Release 4.13

if(n < 4) cnu = cnu?l.5; //fast converge => change faster

nu = max(nufinal, nu* cnu); //new viscosity

(continued from previous page)

// Update
ulp = ul;
u2p = u2;
bp = p;

}

else{ //blowup: increase ν (more simple)
assert(cnu< 0.95); //the method finally blowup
// Recover nu
nu = nu/cnu;
cnu= cnur(1./1.5); //no conv. => change lower
nu = nu* cnu; //new viscosity
cout << " restart nu = " << nu << " Rey = " << 1./nu << " (cnu = " << cnu << "),

-\n";

// Recover a correct solution
ul = ulp;
u2 = u2p;
b = pp;

}

}
Note

We use a trick to make continuation on the viscosity v, because the Newton method blowup owe start with the final

viscosity v.

v is gradually increased to the desired value.

(a) Mesh

Fig. 2.14: Naver-Stokes newton

(b) Velocity and pressure

76

Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

2.13 A Large Fluid Problem

A friend of one of us in Auroville-India was building a ramp to access an air conditioned room. As I was visiting the
construction site he told me that he expected to cool air escaping by the door to the room to slide down the ramp and
refrigerate the feet of the coming visitors. I told him “no way” and decided to check numerically.

The fluid velocity and pressure are solution of the Navier-Stokes equations with varying density function of the tem-
perature.

The geometry is trapezoidal with prescribed inflow made of cool air at the bottom and warm air above and so are the
initial conditions; there is free outflow, slip velocity at the top (artificial) boundary and no-slip at the bottom. However
the Navier-Stokes cum temperature equations have a RANS k& — e model and a Boussinesq approximation for the
buoyancy. This comes to :

0 +uvVe—V-(kPV0) = 0
Owu+uVu—V - (urVu) + Vp+e(@ —bp)és = 0
Veu = 0
HT = Cu%
R = RKUT
ok +uVk+e—V-(urVk) = EL|Vu+ Vul|?

Ore + uVe+ 02% - C—“V (urVe) = $k|Vu+ VuT|?

C

We use a time discretization which preserves positivity and uses the method of characteristics (X™ (x) ~ x —u™(x)dt)

L+l —gm o X™) — V. (kY™ = 0
LWnt —um o X™) = V- (up Vum) + Vpr it 4 e(amﬂvf 00)% = 8
L™ =
Lkl —km o X + kML — VL (upVETY) = VU + VT
L(emHt — Mo X™) 4 cpem L — Z—;V(u%Vem‘H) = 2km|Vum + Va2
N?H = C#%
R;n+1 _ Hu;n,+1

In variational form and with appropriated boundary conditions the problem is :

load "iovtk"
verbosity=0;
// Parameters

int nn = 15;
int nnPlus = 5;

real 1 = 1.;
real L = 15.;
real hSlope = 0.1;
real H = 6.;
real h = 0.5;

real reylnods =500;
real beta = 0.01;

real eps = 9.81/303.;

real nu = 1;

real numu = nu/sqrt(0.09);
real nuep = pow(nu,1.5)/4.1;

(continues on next page)

2.13. A Large Fluid Problem 77

21

22

23

24

25

26

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

FreeFEM Documentation, Release 4.13

real dt = 0.;
real Penalty = 1.e-6;

// Mesh
border b1(t=0, 1){x=t; y=0;}

border b2(t=0, L-1){x=1.+t; y=-hSlope*t;}
border b3 (t=-hSlope*(L-1), H){x=L; y=t;}

border b4(t=L, 0){x=t; y=H;}
border b5(t=H, h){x=0; y=t;}
border b6(t=h, 0){x=0; y=t;}

(continued from previous page)

mesh Th=buildmesh(bl(nnPlus*nn*1) + b2(nn*sqrt((L-1)42+ChSlope*(L-1))42)) + b3(nn*(H +.
—hSlope*(L-1))) + b4(nn*L) + b5(nn*(H-h)) + b6(nnPlus*nn*h));

plot(Th);

// Fespaces

fespace Vh2(Th, P1lb);
Vh2 Ux, Uy;

Vh2 Vx, Vy;

Vh2 Upx, Upy;

fespace Vh(Th,P1);
Vh p=0, q;

Vh Tp, T=35;

Vh k=0.0001, kp=k;
Vh ep=0.0001, epp=ep;

fespace VOh(Th,P0);

VOh muT=1;

VOh prodk, prode;

Vh kappa=0.25e-4, stress;

// Macro

macro grad(u) [dx(w), dy(w)] //

macro Grad(U) [grad(U#x), grad(U#y)] //
macro Div(U) (dx(U#x) + dy(U#y)) //

// Functions
func g = (x) * (1-x) * 4;

// Problem
real alpha = 0.;

problem Temperature(T, q)
= int2d(Th)
alpha * T * ¢
+ kappa® grad(T)' * grad(q)
)
+ int2d(Th)(

- alpha®*convect([Upx, Upy]l, -dt, Tp)*

)

(continues on next page)

78

Chapter 2. Learning by Examples

72

73

74

75

76

77

78

79

89

90

91

92

93

9%

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

FreeFEM Documentation, Release 4.13

+ on(b6, T=25)
+ on(bl, b2, T=30)

problem KineticTurbulence(k, q)
= int2d(Th)
(epp/kp + alpha) * k * ¢
+ muT* grad(k)' * grad(q)

)
+ int2d(Th) C
prodk * q
- alpha*convect([Upx, Upy], -dt, kp)*q
)

+ on(b5, b6, k=0.00001)
+ on(bl, b2, k=beta*numu*stress)

problem ViscosityTurbulence(ep, q)
= int2d(Th) (
(1.92*epp/kp + alpha) * ep * q
+ muT * grad(ep)' * grad(q)

+ int1d(Th, bl, b2)(
T *q * 0.001

)
+ int2d(Th) (
prode * ¢
- alpha*convect([Upx, Upy], -dt, epp)*q
)
+ on(b5, b6, ep=0.00001)
+ on(bl, b2, ep=beta*nuep*pow(stress,1.5))

// Initialization with stationary solution
solve NavierStokes ([Ux, Uy, pl, [Vx, Vy, ql)
= int2d(Th) (
alpha * [Ux, Uy]' * [Vx, Vy]

+ muT * (Grad(U) : Grad(V))

+ p * q * Penalty
p * Div(V)
- Div(U) * q

+ int1d(Th, bl, b2, b4)(
Ux * Vx * 0.1

+ int2d(Th) (
eps * (T-35) * Vx
- alpha*convect([Upx, Upy], -dt, Upx)*Vx
- alpha*convect([Upx, Upyl, -dt, Upy)*Vy

+ on(b6, Ux=3, Uy=0)
+ on(b5, Ux=0, Uy=0)

(continued from previous page)

(continues on next page)

2.13. A Large Fluid Problem

79

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

FreeFEM Documentation, Release 4.13

(continued from previous page)
+ on(bl, b4, Uy=0)
+ on(b2, Uy=-Upx*N.x/N.y)
+ on(b3, Uy=0)

plot([Ux, Uy], p, value-true, coef=0.2, cmm="[Ux, Uy] - p");

{
real[int] xx(21), yy(21), pp(21);
for (int i =0 ; i < 21; i++){
yy[i]l = i/20.;
xx[i] = Ux(0.5,i/20.);
ppli] = p(i/20.,0.999);
}
cout << " " << yy << endl;
plot([xx, yy], wait=true, cmm="Ux x=0.5 cup");
plot([yy, ppl, wait=true, cmm="p y=0.999 cup");
}

// Initialization

dt = 0.1; //probably too big
int nbiter = 3;

real coefdt = 0.25A(1./nbiter);
real coefcut = 0.254(1./nbiter);
real cut = 0.01;

real tol = 0.5;

real coeftol = 0.5A(1./nbiter);
nu = 1./reylnods;

T =T - 10*((x<1)*(y<0.5) + (x>=1)*(y+0.1*(x-1)<0.5));
// Convergence loop

real TO® = clock();
for (int iter = 1; iter <= nbiter; iter++){

cout << "Iteration " << iter << " - dt = " << dt << endl;
alpha = 1/dt;
// Time loop
real t = 0.;
for (dnt i = 0; i <= 500; i++){
t += dt;
cout << "Time step " << i << " - t = " << t << endl;
// Update
Upx = Ux;
Upy = Uy;
kp = k;
epp = ep;
Tp = max(T, 25); //for beauty only should be removed
Tp = min(Tp, 35); //for security only should be removed
kp = max(k, 0.0001); epp = max(ep, 0.0001); // to be secure: should not be active

muT = 0.09*kp*kp/epp;

(continues on next page)

80 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

(continued from previous page)

176

177 // Solve NS

178 NavierStokes;

179

180 // Update

181 prode = -0.126%kp* (pow(2*dx (Ux),2)+pow(2*dy (Uy), 2)+2*pow(dx (Uy)+dy (Ux),2))/2;

182 prodk = -prode*kp/epp*0.09/0.126;

183 kappa = muT/0.41;

184 stress = abs(dy(Ux));

185

186 // Solve k-eps-T

187 KineticTurbulence;

188 ViscosityTurbulence;

189 Temperature;

190

191 // Plot

192 plot(T, value=true, fill-true);

193 plot([Ux, Uy], p, coef=0.2, cmm=" [Ux, Uy] - p", WindowIndex=1);

194

195 // Time

19 cout << "\tTime = " << clock()-TO® << endl;

197 }

198

199 // Check

200 if (iter >= nbiter) break;

201

202 // Adaptmesh

203 Th = adaptmesh(Th, [dx(Ux), dy(Ux), dx(Ux), dy(Uy)], splitpbedge=1, abserror=0,.
—cutoff=cut, err=tol, inquire-=0, ratio=1.5, hmin-=1./1000);

204 plot(Th);

205

206 // Update

207 dt = dt * coefdt;

208 tol = tol * coeftol;

209 cut = cut * coefcut;

210 }

a1 |cout << "Total Time = " << clock()-T® << endl;

2.13. A Large Fluid Problem 81

FreeFEM Documentation, Release 4.13

|

(a) Temperature at time step 100

(¢) Temperature at time step 200

(e) Temperature at time step 300

l?

(g) Temperature at time step 400

ool m N 2 ea

—— w—

(i) Temperature at time step 500

(b) Velocity at time step 100

bomas 1 153 25 3 e
— e —

(d) Velocity at time step 200

1
B

sogrmce
o 1 H a
— — —

(f) Velocity at time step 300

(h) Velocity at time step 400

(j) Velocity at time step 500

Fig. 2.15: A large fluid problem

82

Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

2.14 An Example with Complex Numbers

In a microwave oven heat comes from molecular excitation by an electromagnetic field. For a plane monochromatic
wave, amplitude is given by Helmholtz’s equation:

Bv + Av = 0.

We consider a rectangular oven where the wave is emitted by part of the upper wall. So the boundary of the domain is

made up of a part I'; where v = 0 and of another part I'y = [¢, d] where for instance v = sin <7Ty - ;)
c—

Within an object to be cooked, denoted by B, the heat source is proportional to v2. At equilibrium, one has :

Al = UQIB
b = 0

where I is 1 in the object and 0 elsewhere.

In the program below 5 = 1/(1 — i/2) in the air and 2/(1 — 4/2) in the object (i = v/—1):

// Parameters

int nn = 2;
real a = 20.;
real b = 20.;
real c = 15.;
real d = 8.;
real e = 2.;
real 1 = 12.;
real f = 2.;
real g = 2.;
// Mesh

border a®(t=0, 1){x=a*t; y=0; label=1;}

border al(t=1, 2){x=a; y=b*(t-1); label=1;}
border a2(t=2, 3){ x=a*(3-t); y=b; label=1;}
border a3(t=3, 4){x=0; y=b-(b-c)*(t-3); label=1;}
border a4(t=4, 5){x=0; y=c-(c-d)*(t-4); label=2;}
border a5(t=5, 6){x=0; y=d*(6-t); label=1;}

border b0O(t=0, 1){x=a-f+e*(t-1); y=g; label=3;}
border b1(t=1, 4){x=a-f; y=g+1*(t-1)/3; label=3;}
border b2(t=4, 5){x=a-f-e*(t-4); y=1+g; label=3;}
border b3(t=5, 8){x=a-e-f; y=1+g-1*(t-5)/3; label=3;}

mesh Th = buildmesh(a®(10*nn) + al(10*nn) + a2(10*nn) + a3(10*nn) +a4(10*nn) + a5(10*nn)
+ bO(5*nn) + b1l(10*nn) + b2(5*nn) + b3(10*nn));

real meat = Th(a-f-e/2, g+1/2).region;

real air= Th(0.01,0.01).region;

plot(Th, wait=1);

// Fespace
fespace Vh(Th, P1);
Vh R=(region-air)/(meat-air);
Vh<complex> v, w;
Vh vr, vi;
(continues on next page)

2.14. An Example with Complex Numbers 83

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

FreeFEM Documentation, Release 4.13

fespace Uh(Th, P1);
Uh u, uu, ff;

// Problem
solve muwave(v, w)
= int2d(Th)
v*w* (14R)
- dx(v)*dx(w) + dy(v)*dy(w))*(1 - 0.51i)

on(l, v=0)
on(2, v=sin(pi*(y-c)/(c-d)))

+ o+~

vr = real(v);
vi = imag(v);
// Plot

plot(vr, wait=1, ps="rmuonde.ps", fill=true);
plot(vi, wait=1, ps="imuonde.ps", fill=true);

// Problem (temperature)
ff=1e5*(vr22 + vir2)*R;

solve temperature(u, uu)
int2d(Th) (
dx(u)* dx(uu)+ dy(u)* dy(uu)

int2d(Th) (
ff*uu

)

+ on(l, 2, u=0)

// Plot
plot(u, wait=1, ps="tempmuonde.ps", fill=true);

(continued from previous page)

Results are shown on Fig. 2.16a, Fig. 2.16b and Fig. 2.16c.

84 Chapter 2.

Learning by Examples

FreeFEM Documentation, Release 4.13

(a) Real part (b) Imaginary part

(c¢) Temperature

Fig. 2.16: Microwave

2.15 Optimal Control

Thanks to the function BFGS it is possible to solve complex nonlinear optimization problem within FreeFEM. For
example consider the following inverse problem

ming e gerJ = [p(u—ua)?
—V(k(b,c,d)-Vu) = 0
u|r = ur

where the desired state w4, the boundary data ur and the observation set £ C () are all given. Furthermore let us
assume that:

k(x) =1+ blg(z) + cle(z) + dIp(z) Yz € Q

2.15. Optimal Control 85

FreeFEM Documentation, Release 4.13

where B, C, D are separated subsets of €).

To solve this problem by the quasi-Newton BFGS method we need the derivatives of .J with respect to b, ¢, d. We self

explanatory notations, if 0b, dc, dd are variations of b, ¢, d we have:

0 = 2[,(u—uq)du
—V(k-Véu) =~ V(dk-Vu)
5u|p = 0

Obviously J; is equal to 0.J when 6b = 1, ¢ = 0, dd = 0, and so on for J/ and J.

All this is implemented in the following program:

// Mesh

border aa(t=0, 2*pi){x=5%*cos(t); y=5*sin(t);};
border bb(t=0, 2*pi){x=cos(t); y=sin(t);};
border cc(t=0, 2*pi){x=-3+cos(t); y=sin(t);};
border dd(t=0, 2*pi){x=cos(t); y =-3+sin(t);};

mesh th = buildmesh(aa(70) + bb(35) + cc(35) + dd(35));

// Fespace

fespace Vh(th, P1);

Vh Ib=((x*2+y*2)<1.0001),
Ic=(((x+3)42+ y*2)<1.0001),
Id=((x*2+(y+3)42)<1.0001),
Te=(((x-1)42+ yr2)<=4),
ud, u, uh, du;

// Problem
real[int] z(3);
problem A(u, uh)
= int2d(th)
(1+z[0]*Ib+z[1]*Ic+z[2]*Id)* (dx(u) *dx(uh) + dy(u)*dy(uh))
)
+ on(aa, u=x"3-y*3)

// Solve

z[0]=2; z[1]=3; z[2]=4;
A;
ud = u;

ofstream f("J.txt");
func real J(real[int] & Z){
for (dint i = 0; i < z.n; i++)
z[i] =Z[i];
A;
real s = int2d(th) (Ie*(u-ud)*2);
f<<s<<"";
return s;

¥

// Problem BFGS
real[int] dz(3), dJdz(3);

(continues on next page)

86 Chapter 2.

Learning by Examples

43

44

45

46

47

48

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

FreeFEM Documentation, Release 4.13

(continued from previous page)

problem B (du, uh)
= int2d(th)(
(1+z[0]*Ib+z[1]*Ic+z[2]*Id)* (dx(du) “dx(uh) + dy(du)“dy(uh))

)
+ int2d(th) (

(dz[0]*Ib+dz[1]*Ic+dz[2]*Id)*(dx(u)“dx(uh) + dy(u)*dy(uh))
)

+on(aa, du=0)

func real[int] DJ(real[int] &Z){
for(int i = 0; i < z.n; i++){
for(int j = 0; j < dz.n; j++)
dz[j]l = 0;
dz[i] = 1;
B;
dJldz[i] = 2*int2d(th) (Ie* (u-ud)*du);
}
return dldz;

}

real[int] Z(3);
for(int j = 0; j < z.n; j++)
Z[j1=1;

BFGS(J, DJ, Z, eps=1.e-6, nbiter=15, nbiterline=20);
cout << "BFGS: J(z) = " << J(Z) << endl;
for(int j = 0; j < z.n; j++)

cout << z[j] << endl;

// Plot
plot(ud, value=1, ps="u.eps");

In this example the sets B, C, D, E are circles of boundaries bb, cc, dd, ee and the domain 2 is the circle of boundary
aa.

The desired state uy is the solution of the PDE for b = 2, ¢ = 3, d = 4. The unknowns are packed into array z.

Note

It is necessary to recopy Z into z because one is a local variable while the other one is global.

The program found b = 2.00125, ¢ = 3.00109, d = 4.00551.

Fig. 2.17a and Fig. 2.17b show u at convergence and the successive function evaluations of J.

2.15. Optimal Control 87

FreeFEM Documentation, Release 4.13

45

o vl T,
_— T a0 1”
A N
y > s | .
//
// 30|
// L}
/ 25 - w
‘j‘ \ 20 +
/ | 15 ¢
J |
x | 10t -
\ o | AT .
\ 0 i i H i HL AL S .
\\ // 0 5 10 15 20 25 30 35 40
X
X / (b) Successive evaluations of J by BFGS (5 values above
/f ~— 500 have been removed for readability)

(a) Level line of wu.

Fig. 2.17: Optimal control

Note that an adjoint state could have been used. Define p by:
-V (mVp) = 2IE(U — ud)
pp = 0
Consequently:

6 = — [o(V-(kVD))du
= [o(kVp - Viu)
— Jo(0kVp - Vu)

Then the derivatives are found by setting db = 1, ¢ = éd = 0 and so on:

Jy = —J3Vp-Vu
J. = —J,Vp-Vu
J, = — [vp-vu

Note

As BFGS stores an M x M matrix where M is the number of unknowns, it is dangerously expensive to use this
method when the unknown z is a Finite Element Function. One should use another optimizer such as the NonLinear
Conjugate Gradient NLCG (also a key word of FreeFEM).

2.16 A Flow with Shocks

Compressible Euler equations should be discretized with Finite Volumes or FEM with flux up-winding scheme but these
are not implemented in FreeFEM. Nevertheless acceptable results can be obtained with the method of characteristics

- 1
provided that the mean values f = 5 (fT+f *) are used at shocks in the scheme, and finally mesh adaptation. As an

example, consider the simplified system:

Op+uVp+V.-u = 0
ou+uaVu+Vp = 0

88 Chapter 2. Learning by Examples

20

21

22

23

24

25

26

27

28

29

30

31

42

43

44

45

46

47

FreeFEM Documentation, Release 4.13

One possibility is to couple u, p and then update p, i.e.:

%(pm—i-l —pWOX’”)—i—V-um"‘l = 0

%(uerl —u™o Xm) + vperl = 0

A numerical result is given on Fig. 2.18 and the FreeFEM script is

// Parameters
verbosity = 1;
int anew = 1;

int m = 5;

real x0 = 0.5;

real y0 = 0.;

real rr = 0.2;

real dt = 0.01;

real u® = 2.;

real err® = 0.00625;
real pena = 2.;

// Mesh

border ccc(t=0, 2){x=2-t; y=1;};

border ddd(t=0, 1){x=0; y=1-t;};

border aaal(t=0, x0-rr){x=t; y=0;};

border cercle(t=pi, 0){x=x0+rr*cos(t); y=yO0+rr*sin(t);}
border aaa2(t=x0+rr, 2){x=t; y=0;};

border bbb(t=0, 1){x=2; y=t;};

mesh Th;
if(anew)

Th = buildmesh (ccc(5*m) + ddd(3*m) + aaal(2*m) + cercle(5*m) + aaa2(5*m) + bbb(2*m));
else

Th = readmesh("Th_circle.mesh"); plot(Th);

// fespace

fespace Wh(Th, P1);
Wh u, v;

Wh ul, vil;

Wh uh, vh;

fespace Vh(Th, P1);
Vh r, rh, rl;

// Macro
macro dn(u) (N.x*dx(u)+N.y*dy(u)) //

// Initialization

if(anew){
ul = u@;
vl = 0;
rl = 1;

}

else{

ifstream g("u.txt"); g >> ull];
ifstream gg("v.txt"); gg >> v1[];
(continues on next page)

2.16. A Flow with Shocks 89

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

FreeFEM Documentation, Release 4.13

(continued from previous page)

ifstream ggg('r.txt"); ggg >> ri[];
plot(ul, ps="eta.eps", value=1, wait=1);
err® = err®/10;
dt = dt/10;

}

// Problem
problem euler(u, v, r, uh, vh, rh)
= int2d(Th)
(u*uh + v*vh + r*rh)/dt
+ ((dx(r)*uh + dy(r)*vh) - (dx(rh)*u + dy(rh)*v))
)
+ int2d(Th)
- (
rh*convect([ul,vl],-dt,rl)
+ uh*convect([ul,vl],-dt,ul)
+ vh*convect([ul,vl],-dt,vl)
)/dt
)
+int1d(Th, 6)(
rh*u

on(2, r=0)
on(2, u=ul®)
on(2, v=0)

S

// Iterations
int j = 80;
for(int k = 0; k < 3; k++){
if(k==20){
err® = err0/10;
dt = dt/10;
J=5;
}

// Solve
for(int i = 0; i < j; i++){
euler;
ul=u;
vl=v;
rl=abs(r);
cout << "k = " << k << " E = " << int2d(Th) (uA2+vA2+r) << endl;
plot(r, value=1);
}

// Mesh adaptation
Th = adaptmesh (Th, r, nbvx=40000, err=err®, abserror=1, nbjacoby=2, omega=1.8,..
—ratio=1.8, nbsmooth=3, splitpbedge=1, maxsubdiv=5, rescaling=1);

plot(Th);
u=u;
vV = V;

(continues on next page)

90 Chapter 2. Learning by Examples

99

100

101

102

103

104

105

106

107

108

109

FreeFEM Documentation, Release 4.13

(continued from previous page)

r =r;

// Save

savemesh(Th, "Th_circle.mesh");
ofstream f("u.txt"); f << ul]l;
ofstream ff("v.txt"); ff << v[];
ofstream fff('"r.txt"); fff << r[];
rl = sqrt(u*u+v+*v);

plot(rl, ps="mach.eps", value=1);
rl = r;

Fig. 2.18: Pressure for a Euler flow around a disk at Mach 2 computed by (2.6)

2.17 Time dependent schema optimization for heat equations

First, it is possible to define variational forms, and use this forms to build matrix and vector to make very fast script (4
times faster here).

For example solve the ThermalConduction problem, we must solve the temperature equation in € in a time interval

2.17. Time dependent schema optimization for heat equations 91

FreeFEM Documentation, Release 4.13

0.T).
Oou—V-(kVu) = 0 inQ x (0,7)
u(z,y,0) = wug+aug
u = 30 onT'yy x (0,7T)
KL +a(u—u) = 0 onT x (0,7)

The variational formulation is in L2(0,T; H'(£2)); we shall seek u™ satisfying:

n—1

Yw € Vp; / Lt w + kVu"Vw) + / a(u" — uye)w =0
Q

5t .

where Vy = {w € Hl(Q)/w\Fm =0}

So, to code the method with the matrices A = (A;;), M = (M;;), and the vectors u™, b™, b, b”, b (notation if w is a

vector then w; is a component of the vector).

1
W= AT Y = by £ MUt b = b, b = {

b/ if i€ Toy

b, else
Where with 1 = tgv = 10%:
% ifi6F24,and j:Z
Ay = / w;w; /dt + k(Vw;.Vw;) +/ awjw; else
Q s
1 ifi € Tog,and j =14
My = n/ w;w;/dt else
Q
boi = nfp Qugew;
by = u° the initial data

The Fast version script:

Vh u®=ful®, u=ul;

Create three variational formulation, and build the matrices A,M.

varf vthermic (u, v)

= int2d(Th) (
u*v/dt
+ k*(dx(u)*dx(v) + dy(u)*dy(v))
)
+ int1d(Th, 1, 3)(
alpha:‘ru:':v
)

+ on(2,4,u=1)

varf vthermic® (u, v)
= int1d(Th, 1, 3)(
alpha*ue*v
)
varf vMass (u,v)
= int2d(Th)

(continues on next page)

92 Chapter 2.

Learning by Examples

20

21

22

23

24

25

26

FreeFEM Documentation, Release 4.13

(continued from previous page)
u*v/dt

)
+ on(2, 4, u=1)

real tgv = 1e30;
matrix A vthermic(Vh, Vh, tgv=tgv, solver=CG);
matrix M = vMass(Vh, Vh);

Now, to build the right hand size; we need 4 vectors.

real[int] b® = vthermic®(®,Vh); //constant part of RHS
real[int] bcn = vthermic(0,Vh); //tgv on Dirichlet part
real[int] bcl = tgv*u®[]; //the Dirichlet B.C. part

// The fast loop
for(real t = 0; t < T; t += dt){
real[int] b = bO; //the RHS
b += M*u[]; //add the the time dependent part
b =bcn ? bcl : b; //do $\forall i$: b[i] = ben[i] ? bcl[i] : b[i];
u[] = A*-1%b; //solve linear problem
plot(w;

2.18 Tutorial to write a transient Stokes solver in matrix form

Consider the following script to solve a time dependent Stokes problem in a cavity

// Parameters
real nu = 0.1;
real T=1.;

real dt = 0.1;

// Mesh
mesh Th = square(10, 10);

// Fespace
fespace Vh(Th, P2)
Vh u, v;

Vh uu, vv;

Vh uold=0, vold=0;

fespace Qh(Th, P1);
Qh p;
Qh pp;

// Problem
problem stokes (u, v, p, uu, vv, pp)
= int2d(Th)
(u*uu+v*vv) /dt
+ nu* (dx(u)“dx(uu) + dy(w)*dy(uu) + dx(v)*dx(vv) + dy(v)*dy(vv))

(continues on next page)

2.18. Tutorial to write a transient Stokes solver in matrix form 93

24

25

26

27

28

29

39

40

41

42

43

44

23

24

25

26

27

FreeFEM Documentation, Release 4.13

- p*pp*l.e-6
- p*ldx(uuw) + dy(vv))
- pp*(dx(u) + dy(v))

- int2d(Th)(
(uold*uu+vold*vv) /dt

)

+ on(l, 2, 4, u=0, v=0)

+ on(3, u=1, v=0)

// Time loop
int m, M = T/dt;
for(m = 0; m < M; m++){

stokes;
uold = u;
vold = v;
}
// Plot

plot(p, [u, v], value=true, wait=true, cnm="t="+m*dt);

(continued from previous page)

Every iteration is in fact of the form A[u, v, p] = Bluold, vold, pold] + b where A, B are matrices and b is a vector

containing the boundary conditions. A, B, b are constructed by:

fespace Xh(Th, [P2, P2, P1]);
varf aa ([u, v, p], [uu, vv, ppl)
int2d(Th) (

(u*uu+v*vv) /dt

+ nu* (dx(u)“dx(uu) + dy(uw)*dy(uu) + dx(v)*dx(vv) + dy(v)*dy(vv))

- p*pp*l.e-6
p*(dx(uu) + dy(vv))
- pp*(dx(u) + dy(v))

)
+ on(l, 2, 4, u=0, v=0)
+ on(3, u=1, v=0)

varf bb ([uold, vold, pold], [uu, vv, pp]l)
= int2d(Th) (
(uold*uu+vold*vv) /dt
)
//+ on(l, 2, 4, uold=0, vold=0)
//+ on(3, uold=1, vold=0)

varf bcl ([uold, vold, pold], [uu, vv, ppl)
= on(l, 2, 4, uold=0, vold=0)
+ on(3, uold=1, vold=0)

matrix A = aa(Xh, Xh, solver=UMFPACK);

(continues on next page)

94

Chapter 2.

Learning by Examples

28

29

FreeFEM Documentation, Release 4.13

(continued from previous page)
matrix B = bb(Xh, Xh);
real[int] b = bcl(0, Xh);

Note that the boundary conditions are not specified in bb. Removing the comment // would cause the compiler to
multiply the diagonal terms corresponding to a Dirichlet degree of freedom by a very large term (tgv); if so b would
not be needed, on the condition that uold = 1 on boundary 3 initially. Note also that b has a tgv on the Dirichlet nodes,
by construction, and so does A.

The loop will then be:

real[int] sol(Xh.ndof), aux(Xh.ndof);
for (m = O; m < M; m++){

aux = B*sol; aux += b;

sol = Ar-1 * aux;

}

There is yet a difficulty with the initialization of sol and with the solution from sol. For this we need a temporary
vector in X, and here is a solution:

Xh [wl, w2, wp] = [uold, vold, pp]l;
sol = wl[]; //cause also the copy of w2 and wp
for (m = O; m < M; m++){

aux = B*sol; aux += b;

sol = Ar-1 * aux;
}
wl[]=so0l; u=wl; v= w2; p=wp;
plot(p, [u, v], value=true, wait=true, cmm="t="+m*dt);

The freefem team agrees that the line sol=w1[]; is mysterious as it copies also w2 and wp into sol. Structured data
such as vectors of X}, here cannot be written component by component. Hence wl=u is not allowed.

2.19 Wifi Propagation

2.19.1 Summary

In this tutorial, we will study the wifi signal power in a flat. An awesome flat is especially designed for the experiment,
with 2 walls:

Fig. 2.19: Flat

2.19. Wifi Propagation 95

FreeFEM Documentation, Release 4.13

Even if the flat seems small enough to be covered by wifi everywhere, it is still interesting to study where the signal’s
power is the lowest. We will study where to put the hotspot to get the best coverage, and as we’re a bit lazy we will
only put it next to the left wall.

2.19.2 Physics

In a nutshell, the Wifi is a electromagnetic wave that contains a signal : Internet data. Electromagnetic waves are well
know by physicists and are ruled by the 4 Maxwell equations which give you the solution for E, the electrical field,
and B, the magnetic field, in space but also in time.

We don’t care about the time here, because the signal period is really short so our internet quality will not change
with time. Without time, we’re looking for stationaries solutions, and the Maxwell equations can be simplified to one
equation, the Helmholtz one :

2 k2
VZE+—E=0
n

Where £ is the angular wavenumber of the wifi signal, and n the refractive index of the material the wave is in.

Indeed, the main point of this study is the impact of walls on the signal’s power, where the 7 is different from air (where
itis 1). In walls, the refractive index is a complex number in which the two parts have a physic interpretation:

* The real part defines the reflexion of the wall (the amount of signal that doesn’t pass).
* The imaginary part defines the absorption of the wall (the amount that disappears).

The wifi hotspot (simulated by a simple circle) will be the boundary condition, with a non null value for our electrical
field.

2.19.3 Coding

The domain

In order to create the domain of experimentation, we need to create border objects, like this :

real a = 40, b = 40, c = 0.5;

border a00(t=0, 1) {x=a*t; y=0; label=1;}

border al10(t=0, 1) {x=a; y=b*t; label=1;}

border a20(t=1, 0) {x=a*t; y=b; label=1;}

border a30(t=1, 0) {x=0; y=b*t; label=1;}

border a®01(t=0, 1) {x=c+(a-c*2)*t; y=c; label=1;}
border all1(t=0, 1) {x=a-c; y=c+(b-c*2)*t; label=1;}
border a21(t=1, 0) {x=c+(a-c*2)*t; y=b-c; label=1;}
border a31(t=1, 0) {x=c; y=c+(b-c*2)*t; label=1;}
real p =5, q =20, d =34, e = 1;

border b®O(t=0, 1) {x=p+d*t; y=q; label=3;
border b10(t=0, 1) {x=p+d; y=g+e*t; label
border b20(t=1, 0) {x=p+d*t; y=q+e; label=
border b30(t=1, 0) {x=p; y=q+e*t; label=3;}

}
3;}
3;}

real r = 30, s =1, j =1, u= 15;

border c0®0(t=0, 1) {x=r+j*t; y=s; label=3;}
border c10(t=0, 1) {x=r+j; y=s+u*t; label=3;}
border c20(t=1, 0) {x=r+j*t; y=s+u; label=3;}
border c30(t=1, 0) {x=r; y=s+u*t; label=3;}

96 Chapter 2. Learning by Examples

IS

© 9 o w

FreeFEM Documentation, Release 4.13

Let’s create a mesh

int n=13;

mesh Sh = buildmesh(a®0(10*n) + al®(10*n) + a20(10*n) + a30(10*n)
+ a01(10*n) + all(10*n) + a21(10*n) + a31(10*n)
+ bOO(5*n) + blO(5*n) + b20(5*n) + b30(5*n)
+ c00(5*n) + cl0(5*n) + c20(5*n) + c30(5*n));

plot(Sh, wait=1);

So we are creating a mesh, and plotting it :

g -

AS) S
7l AR, A i i
A N AN i L) I i)
%

AN NAAT 7 VP SN PP P VP2 N

1 P W K P W

ASANE NN ¥ S AN

APV P} 7

LA AV Pk 1%
(YAl I

Fig. 2.20: Mesh

There is currently no wifi hotspot, and as we want to resolve the equation for a multiple number of position next to the
left wall, let’s do a for loop:

-

int bx;
for (bx = 1; bx <= 7; bx++){
border C(t=0, 2*pi){x=2+cos(t); y=bx*5+sin(t); label=2;}

mesh Th = buildmesh(a®0(10*n) + al®(10*n) + a20(10*n) + a30(10*n)
+ a01(10*n) + all(l0*n) + a21(10*n) + a31(10*n) + C(10)
+ b00(5*n) + blO(5*n) + b20(5*n) + b30(5*n)
+ c00(5*n) + cl0(5*n) + c20(5*n) + c30(5*n));

The border C is our hotspot and as you can see a simple circle. Th is our final mesh, with all borders and the hotspot.
Let’s resolve this equation !

fespace Vh(Th, P1);
func real wall(Q) {

if (Th(x,y).region == Th(0.5,0.5).region || Th(x,y).region == Th(7,20.5).region ||.
—Th(x,y) .region == Th(30.5,2).region) { return 1; }

else { return 0; }

}

(continues on next page)

2.19. Wifi Propagation 97

20

21

22

23

24

25

26

27

28

FreeFEM Documentation, Release 4.13

(continued from previous page)

Vh<complex> v,w;

randinit(900);

Vh wallreflexion = randreall();

Vh<complex> wallabsorption = randreall()*0.5i;
Vh k = 6;

cout << "Reflexion of walls min/max: << wallreflexion[].min << << wallreflexion[].
—max << "\n";
cout << "Absorption of walls min/max:

—.wallabsorption[].max << "\n";

<< wallabsorption[].min << << L

problem muwave(v,w) =
int2d(Th) (
(v*w*k*2) /(1+(wallreflexion+wallabsorption) *wall())+2
- (dx(v)*dx(w)+dy (v)*dy (w))
)
+ on(2, v=1)

muwave;
Vh vm = log(real(v)*2 + imag(v)*2);
plot(vm, wait=1, fill-true, value=0, nbiso=65);

}

A bit of understanding here :
» The fespace keyword defines a finite elements space, no need to know more here.
* The function wall return O if in air and 1 if in a wall (x and y are global variables).
* For this example, random numbers are used for the reflexion and the absorption.
¢ The problem is defined with problem and we solve it by calling it.
Finally, I plotted the log of the module of the solution v to see the signal’s power, and here we are :

Beautiful isn’t it ? This is the first position for the hotspot, but there are 6 others, and the electrical field is evolving
depending on the position. You can see the other positions here :

98 Chapter 2. Learning by Examples

FreeFEM Documentation, Release 4.13

(d) Point 5 (e) Point 6 (f) Point 7

Fig. 2.22: Wifi propagation

2.19. Wifi Propagation 99

20

21

22

23

24

25

FreeFEM Documentation, Release 4.13

2.20 Plotting in Matlab and Octave

2.20.1 Overview

In order to create a plot of a FreeFEM simulation in Matlab© or Octave two steps are necessary:

* The mesh, the finite element space connectivity and the simulation data must be exported into files

¢ The files must be imported into the Matlab / Octave workspace. Then the data can be visualized with the ffmatlib

library

The steps are explained in more detail below using the example of a stripline capacitor.

Note

Finite element variables must be in P1 or P2. The simulation data can be 2D or 3D.

2.20.2 2D Problem

Consider a stripline capacitor problem which is also shown in Fig. 2.23. On the two boundaries (the electrodes) C4,
Ck a Dirichlet condition and on the enclosure C'z a Neumann condition is set. The electrostatic potential u between

the two electrodes is given by the Laplace equation
Au(z,y) =0

and the electrostatic field E is calculated by

int CA=3, CK=4, CB=5;
real w2=1.0, h=0.4, d2=0.5;

border bottomA(t=-w2,w2){ x=t; y=d2; label=CA;};
border rightA(t=d2,d2+h){ x=w2; y=t; label=CA;};
border topA(t=w2,-w2){ x=t; y=d2+h; label=CA;};
border leftA(t=d2+h,d2){ x=-w2; y=t; label=CA;};

border bottomK(t=-w2,w2){ x=t; y=-d2-h; label=CK;};
border rightK(t=-d2-h,-d2){ x=w2; y=t; label=CK;};
border topK(t=w2,-w2){ x=t; y=-d2; label=CK;};

border leftK(t=-d2,-d2-h){ x=-w2; y=t; label=CK;};

border enclosure(t=0,2%*pi){x=5*cos(t); y=5%sin(t); label=CB;}

int n=15;

mesh Th = buildmesh(enclosure(3*n)+
bottomA(-w2*n)+topA(-w2*n)+rightA(-h*n)+leftA(-h*n)+
bottomK (-w2*n)+topK(-w2*n)+rightK(-h*n)+leftK(-h*n));

fespace Vh(Th,P1);

Vh u,v;
real u0=2.0;

(continues on next page)

100 Chapter 2. Learning by Examples

https://www.mathworks.com/
https://www.gnu.org/software/octave/
https://github.com/samplemaker/freefem_matlab_octave_plot

FreeFEM Documentation, Release 4.13

(continued from previous page)

problem Laplace(u,v,solver=LU) =
int2d(Th) (dx(u) *dx(v) + dy(w)*dy(v))
+ on(CA,u=u®)+on(CK,u=0);

real error=0.01;

for (int i=0;i<1;i++){
Laplace;
Th=adaptmesh(Th,u, err=error) ;
error=error/2.0;

}

Laplace;

Vh Ex, Ey;
Ex = -dx(w);
Ey = -dy(w;

plot(u, [Ex,Ey],wait=true);

2.20.3 Exporting Data

The mesh is stored with the FreeFEM command savemesh(), while the connectivity of the finite element space and
the simulation data are stored with the macro commands ££SaveVh() and ffSaveData(). These two commands are
located in the £fmatlib. idp file which is included in the ffmatlib. Therefore, to export the stripline capacitor data
the following statement sequence must be added to the FreeFEM code:

include "ffmatlib.idp"

//Save mesh

savemesh(Th, "capacitor.msh");

//Save finite element space connectivity
ffSaveVh(Th,Vh, "capacitor_vh.txt");
//Save some scalar data

ffSaveData(u, "capacitor_potential.txt");
//Save a 2D vector field
ffSaveData2 (Ex,Ey, "capacitor_field.txt");

2.20.4 Importing Data

The mesh file can be loaded into the Matlab / Octave workspace using the ffreadmesh() command. A mesh file
consists of three main sections:

1. The mesh points as nodal coordinates
2. A list of boundary edges including boundary labels
3. List of triangles defining the mesh in terms of connectivity

The three data sections mentioned are returned in the variables p, b and t. The finite element space connectivity and the
simulation data can be loaded using the ffreaddata() command. Therefore, to load the example data the following
statement sequence must be executed in Matlab / Octave:

%Add ffmatlib to the search path
addpath('add here the link to the ffmatlib');
%Load the mesh
(continues on next page)

2.20. Plotting in Matlab and Octave 101

1

1

1

FreeFEM Documentation, Release 4.13

%Load scalar data

%Load 2D vector field data

[p,b,t,nv,nbe,nt,labels]=ffreadmesh('capacitor.msh');
%Load the finite element space connectivity
vh=ffreaddata('capacitor_vh.txt');

u=ffreaddata('capacitor_potential.txt');

[Ex,Ey]l=ffreaddata('capacitor_field.txt');

(continued from previous page)

2.20.5 2D Plot Examples

ffpdeplot () is a plot solution for creating patch, contour, quiver, mesh, border, and region plots of 2D geometries.

The basic syntax is:

[[handles,varargout] = ffpdeplot(p,b,t,varargin)

J

varargin specifies parameter name / value pairs to control the plot behaviour. A table showing all options can be

found in the ffmatlib documentation. A small selection of possible plot commands is given as follows:

* Plot of the boundary and the mesh:

[ffpdeplot(p,b,t, 'Mesh', 'on', 'Boundary','on');

faVlavaodsaavs o N
N A

) PR

DR ORI
ORISR

PIRIREE R K

N ZAAYE 4vaN
L

Fig. 2.23: Boundary and Mesh

¢ Patch plot (2D map or density plot) including mesh and boundary:

ffpdeplot(p,b,t, 'VhSeq',vh, 'XYData',u, 'Mesh', 'on', 'Boundary', 'on',

'XLim',[-2 2], 'YLim',[-2 2]);

* 3D surf plot:

ffpdeplot(p,b,t, 'VhSeq',vh, 'XYData',u, 'ZStyle', 'continuous"',

'Mesh', 'off');
lighting gouraud;
view([-47,24]);
camlight('headlight');

102

Chapter 2. Learning by Examples

https://github.com/samplemaker/freefem_matlab_octave_plot

FreeFEM Documentation, Release 4.13

ulv]

2
15 :
1 .
05
=
a8 :
- '
A5
-2
2 48 1 408 0 08 1 15 2
X

Fig. 2.24: Patch Plot with Mesh

[}

Fig. 2.25: 3D Surf Plot

2.20. Plotting in Matlab and Octave 103

1

FreeFEM Documentation, Release 4.13

* Contour (isovalue) and quiver (vector field) plot:

ffpdeplot(p,b,t, 'VhSeq',vh, 'XYData',u, 'Mesh', 'off', 'Boundary', 'on',
'XLim',[-2 2], 'YLim',[-2 2], 'Contour','on', 'CColor','b',
'XYStyle', 'off', 'CGridParam',[150, 150],'ColorBar', 'off',
'FlowData', [Ex,Ey], 'FGridParam', [24, 24]);

Fig. 2.26: Contour and Quiver Plot

Download run through example:
Matlab / Octave file

FreeFEM script

2.20.6 3D Plot Examples

3D problems are handled by the ffpdeplot3D() command, which works similarly to the ffpdeplot() command.
In particular in three-dimensions cross sections of the solution can be created. The following example shows a cross-
sectional problem of a three-dimensional parallel plate capacitor.

Download run through example:
Matlab / Octave file

FreeFEM script

2.20.7 References
* Octave
* Matlab
* ffmatlib

104 Chapter 2. Learning by Examples

https://www.gnu.org/software/octave/
https://www.mathworks.com/
https://github.com/samplemaker/freefem_matlab_octave_plot

FreeFEM Documentation, Release 4.13

Fig. 2.27: Slice on a 3D Parallel Plate Capacitor

0.5

0.6

0.4

0.2

2.20. Plotting in Matlab and Octave

105

FreeFEM Documentation, Release 4.13

106 Chapter 2. Learning by Examples

CHAPTER
THREE

DOCUMENTATION

The fruit of a long maturing process, freefem, in its last avatar, FreeFEM , is a high level integrated development
environment (IDE) to solve numerically systems of partial differential equations (PDE) in dimension 1,2 3 and surfaces
embedded in a 3D domain and lines embedded in a 2D or 3D. It is the ideal tool for teaching the finite element method
but it is also perfect for research to quickly prototype and test new algorithmic ideas or solve multi-physics complex
applications.

FreeFEM has an advanced automatic mesh generator, capable of a posteriori mesh adaptivity; it has a general purpose
elliptic solver interfaced with fast algorithms, such as the multi-frontal method UMFPACK, SuperLU, MUMPS etc.
Hyperbolic and parabolic problems are solved by iterative algorithms prescribed by the user with the high level language
of FreeFEM. It has several triangular or tetraedral finite elements, including discontinuous elements. Everything is
there in FreeFEM to prepare research quality reports with online color display, zooming and other features as well as
postscript printouts, from within or using an external application like paraview.

This manual is meant for students at a Masters level or more, for researchers at any level, and for engineers (including
financial engineering) with some understanding of variational methods for partial differential equations.

Introduction

A partial differential equation is a relation between a function of several variables and its (partial) derivatives. Many
problems in physics, engineering, mathematics and even banking are modeled by one or several partial differential
equations.

FreeFEM is a software to solve these equations numerically, based on the Finite Element Method. As its name implies,
it is a free software (see the copyrights for full detail) it is not a package, it is an integrated product with its own high
level programming language, referred below as a :index freefem script. This software runs on all UNIX OS (with g++
3.3 or later, and OpenGL), on Window XP, Vista and 7, 8, 10 and 11 and on MacOS 10 intel and arm.

Moreover FreeFEM is highly adaptive. Many phenomena involve several coupled systems, such as: Fluid-structure
interactions, Lorentz forces for aluminum casting and ocean-atmosphere problems, etc. These require different finite
element approximations and polynomial degrees, possibly on different meshes. Some algorithms like the Schwarz’
domain decomposition method also requires data interpolation on multiple meshes within one program. FreeFEM
can handle these difficulties, i.e. arbitrary finite element spaces on arbitrary unstructured and adapted bi and three
dimensional meshes.

The characteristics of FreeFEM are:

* Problem description (real or complex valued) by their variational formulations, with access to the internal vectors
and matrices if needed.

* Multi-variables, multi-equations, bi and three-dimensional static or time dependent, linear or nonlinear coupled
systems; however the user is required to describe the iterative procedures which reduce the problem to a set of
linear problems.

» Easy geometric input by analytic description of boundaries by pieces; however this part is not a CAD system; for
instance when two boundaries intersect, the user must specify the intersection points.

107

FreeFEM Documentation, Release 4.13

3.1

Automatic mesh generator, based on the Delaunay-Voronoi algorithm; the inner point density is proportional to
the density of points on the boundaries [GEORGE1996].

Metric-based anisotropic mesh adaptation. The metric can be computed automatically from the Hessian of any
FreeFEM function [HECHT1998].

High level user friendly typed input language with an algebra of analytic and finite element functions.

Multiple finite element meshes within one application with automatic interpolation of data on different meshes
and possible storage of the interpolation matrices.

A large variety of triangular finite elements: linear, quadratic Lagrangian elements and more, discontinuous P1
and Raviart-Thomas elements, elements of a non-scalar type, the mini-element,... (but no quadrangles).

Tools to define discontinuous Galerkin finite element formulations PO, P1dc, P2dc and keywords: jump, mean,
intalledges.

A large variety of linear direct and iterative solvers (LU, Cholesky, Crout, CG, GMRES, UMFPACK, MUMPS,
SuperLU, ...) and eigenvalue and eigenvector solvers (ARPARK) .

Near optimal execution speed (compared with compiled C++ implementations programmed directly).
Online graphics, generation of ,.txt,.eps,.gnu, mesh files for further manipulations of input and output data.

Many examples and tutorials: elliptic, parabolic and hyperbolic problems, Navier-Stokes flows, elasticity, fluid
structure interactions, Schwarz’s domain decomposition method, eigenvalue problem, residual error indicator,

A parallel version using MPI

Notations

Here mathematical expressions and corresponding FreeFEM commands are explained.

3.1.1 Generalities

[0i5] Kronecker delta (0 if ¢ # j, 1 if ¢ = j for integers ¢, j)

[V] for all

[d] there exists

[i.e.] that is

[PDE] partial differential equation (with boundary conditions)

[0] the empty set

[N] the set of integers (¢ € N < int a), int means long int inside FreeFEM
[R] the set of real numbers (¢ € R < real a), double inside FreeFEM

[C] the set of complex numbers (a € C < complex a), complex<double>

[R4] d-dimensional Euclidean space

3.1.2 Sets, Mappings, Matrices, Vectors
Let &, F, G be three sets and A the subset of F.

[{z € E| P}] the subset of F consisting of the elements possessing the property P
[E U F] the set of elements belonging to F or F’
[£ N F] the set of elements belonging to £ and F'

108

Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

[E\ Altheset {z € E| x & A}

[E+FIEUFwithENF =0

[E x F] the Cartesian product of £ and F

[E™] the n-th power of E (E? = E x E, E" = E x E"™1)

[f: E — F]the mapping form F into F,ie., E 3> 2+ f(x) € F
[Ig or I] the identity mapping in Ejie., [(z) =2 V€ FE
[foglforf: F—>Gandg: FE— F,E>xzw— (fog)(z) = f(g(x)) € G (see Elementary function)
[f|al the restriction of f : E — F to the subset A of

[{ax}] column vector with components aj,

[(ag)] row vector with components aj,

[(ax)T] denotes the transpose of a matrix (az), and is {az }

[{a;;}] matrix with components a;;, and (a;;)T = (aj;)

3.1.3 Numbers

For two real numbers a, b

a,b] is the interval {z € R| a < z < b}

[a,b]

la,b] is the interval {z € R| a < x < b}
[a, b] is the interval {z € R| a < z < b}
Ja, 0]

a, b| is the interval {z € R| a < = < b}

3.1.4 Differential Calculus

[0f /Ox] the partial derivative of f : R? — R with respect to x (dx(£))

[V f] the gradient of f : Q — Rii.e., Vf = (0f/0x, 0f/0y)

[div(f) or V.f] the divergence of f : Q@ — R%, i.e., div(f) = 0f,/0z + Of2/0y
[Af] the Laplacian of f : Q — R,i.e., Af = 92f/0z? + 6% f/0y?

3.1.5 Meshes

[€2] usually denotes a domain on which PDE is defined
[I'] denotes the boundary of Q,i.e., I' = 0f2 (keyword border, see Border)

[71] the triangulation of €2, i.e., the set of triangles T}, where h stands for mesh size (keyword mesh, buildmesh,
see Mesh Generation)

[n;] the number of triangles in 7}, (get by Th.nt)

[£2,] denotes the approximated domain 2, = UL, Tj, of Q. If is polygonal domain, then it will be Q = Qj,
[T'%] the boundary of €2,

[n,] the number of vertices in T}, (get by Th.nv)

[npe] the number of boundary element in 7, (get by Th.nbe)

[|12%|] the measure (area or volume) in 7, (get by Th.measure)

[|0€24]] the measure of the border (length or area) in 7, (get by Th.bordermeasure)

3.1. Notations 109

FreeFEM Documentation, Release 4.13

[Amin] the minimum edge size of T, (get by Th.hmin)

[Amaz] the maximum edge size of T;, (get by Th.hmax)

[[q*q”]] the segment connecting ¢* and ¢’

* [¢"1,q", "] the vertices of a triangle T, with anti-clock direction (get the coordinate of ¢* by
(Th[k-1]1[j-11.x, Th[k-11[j-11.y))

[Io] the set {i € N| ¢* ¢ T'1,}

3.1.6 Functional Spaces

e [L%(£2)] the set {w(x,y) ’ / lw(z,y)|*dzdy < oo}
Q

1/2
norm: o = ([ol Pasay
Q

scalar product: (v, w) = / vw
Q

s [HY(Q)] the set {w € L*(Q) ’ / (|ow/0z|* + |0w/dy|?) dzdy < oo}
Q

1/2
norm: ||wl|1,0 = (Ilelﬁg + [Vul§.a)

|ex]
o [H™(Q)] the set {weLQ(Q)’/aa v
Q

W GLQ(Q) Va:(a17a2) €N27 |a| :Oé1+042}

scalar product: (v, w)1.0 = Z /DavDaw
Q

la|<m

« [Hi(Q)] the set {w € H'(Q)|u=0 onT}
[L2()?] denotes L2(2) x L2(£2), and also H'(Q)? = HY(Q) x HY(Q)

3.1.7 Finite Element Spaces
* [V4] denotes the finite element space created by fespace Vh(Th, *) in FreeFEM (see Finite Elements for *)

* [II,, f] the projection of the function f into V}, (func f=x+2*y*3; Vh v = f;)means v = Pi,(f)*[{v}] for
FE-function v in V}, means the column vector (v, -+ ,var)? if v = v1¢1 + -+ - + vardar, which is shown by
fespace Vh(Th, P2); Vh v; cout << v[] << endl;

3.2 Mesh Generation

In this section, operators and tools on meshes are presented.
FreeFEM type for mesh variable:

¢ 1D mesh: meshL

¢ 2D mesh: mesh

¢ 3D volume mesh: mesh3

110 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

¢ 3D border meshes
— 3D surface meshS
— 3D curve meshL

Through this presentation, the principal commands for the mesh generation and links between mesh - mesh3 - meshS
- meshL are described.

3.2.1 The type mesh in 2 dimension

Commands for 2d mesh Generation
The FreeFEM type to define a 2d mesh object is mesh.
The command square

The command square triangulates the unit square.

The following generates a 4 x 5 grid in the unit square [0, 1]%. The labels of the boundaries are shown in Fig. 3.1.

| [mesh Th = square(4, 5);

label=3

label label

label=1

Fig. 3.1: Boundary labels of the mesh by square (10, 10)

To construct a n x m grid in the rectangle [zg, 21] X [yo, y1], proceed as follows:

i |real x0 = 1.2;

» |real x1 = 1.8;

3 |real y® = 0;

4+ |real y1 = 1;

s |int n = 5;

s |real m = 20;

7 |mesh Th = square(n, m, [x0+(x1-x0)*x, y0+(yl-y®)*y]);

Note

Adding the named parameter flags=icase with icase:

3.2. Mesh Generation 111

FreeFEM Documentation, Release 4.13

0. will produce a mesh where all quads are split with diagonal x — y = constant
1. will produce a Union Jack flag type of mesh
2. will produce a mesh where all quads are split with diagonal x + y = constant

3. same as in case 0, except two corners where the triangles are the same as case 2, to avoid having 3 vertices
on the boundary

4. same as in case 2, except two corners where the triangles are the same as case 0, to avoid having 3 vertices
on the boundary
mesh Th = square(n, m, [x0+(x1-x0)*x, y0+(yl-y0)*y], flags=icase);

Note

Adding the named parameter label=1abs will change the 4 default label numbers to labs[i-1], for example
int[int] labs=[11, 12, 13, 14], and adding the named parameter region=10 will change the region num-
ber to 10, for instance (v 3.8).

To see all of these flags at work, check Square mesh example:

for (int i = 0; 1 < 5; ++i){
int[int] labs = [11, 12, 13, 14];
mesh Th = square(3, 3, flags=i, label=labs, region=10);
plot(Th, wait=1, cmm="square flags = "+i);

The command buildmesh

mesh building with border

Boundaries are defined piecewise by parametrized curves. The pieces can only intersect at their endpoints, but it is
possible to join more than two endpoints. This can be used to structure the mesh if an area touches a border and create
new regions by dividing larger ones:

int upper = 1;
int others = 2;
int inner = 3;

border C01(t=0, 1){x=0; y=-1+t; label=upper;}

border C02(t=0, 1){x=1.5-1.5*t; y=-1; label=upper;}
border C03(t=0, 1){x=1.5; y=-t; label=upper;}

border C04(t=0, 1){x=1+0.5*t; y=0; label-others;}
border CO5(t=0, 1){x=0.5+0.5*t; y=0; label-others;}
border C06(t=0, 1){x=0.5%*t; y=0; label=others;}
border C11(t=0, 1){x=0.5; y=-0.5*t; label=inner;}
border C12(t=0, 1){x=0.5+0.5*t; y=-0.5; label=inner;}
border C13(t=0, 1){x=1; y=-0.5+0.5*t; label=inner;}

int n = 10;
plot(CO1(-n) + CO2(-n) + CO3(-n) + CO4(-n) + CO5(-n)
+ CO6(-n) + Cl1(n) + C12(n) + Cl3(n), wait=true);

(continues on next page)

112 Chapter 3. Documentation

20

21

22

23

24

25

FreeFEM Documentation, Release 4.13

(continued from previous page)
mesh Th = buildmesh(CO01(-n) + CO2(-n) + CO3(-n) + CO4(-n) + CO5(-n)
+ C06(-n) + Cll(n) + Cl2(m) + C13(n));

plot(Th, wait=true);

cout << "Part 1 has region number " << Th(0.75, -0.25).region << endl;
cout << "Part 2 has redion number " << Th(®.25, -0.25).region << endl;

Borders and mesh are respectively shown in Fig. 3.2a and Fig. 3.2b.

a4

(a) Multiple border ends intersect (b) Generated mesh

Fig. 3.2: Border

Triangulation keywords assume that the domain is defined as being on the left (resp right) of its oriented parameterized
boundary

Fj - {(x’y) | L= @x(t)a Y= @y(t)a a; <t < bj}

To check the orientation plot t — (@4 (t), (%)), to <t < t;1. Ifitis as in Fig. 3.3, then the domain lies on the shaded
area, otherwise it lies on the opposite side.

Fig. 3.3: Orientation of the boundary defined by (¢ (t), ¢, (%))

The general expression to define a triangulation with buildmesh is

3.2. Mesh Generation 113

R Y N T N

FreeFEM Documentation, Release 4.13

| [mesh Mesh_Name = buildmesh(Gammal(ml)+...+Gammal(mj), OptionalParameter);

where m; are positive or negative numbers to indicate how many vertices should be on I';, I" = U;’,lI‘ 7, and the
optional parameter (see also References), separated with a comma, can be:

e nbvx= int, to set the maximum number of vertices in the mesh.
» fixedborder= bool, to say if the mesh generator can change the boundary mesh or not (by default the boundary
mesh can change; beware that with periodic boundary conditions (see. Finite Element), it can be dangerous.
The orientation of boundaries can be changed by changing the sign of m;.

The following example shows how to change the orientation. The example generates the unit disk with a small circular

hole, and assigns “1” to the unit disk (“2” to the circle inside). The boundary label must be non-zero, but it can also
be omitted.

border a(t=0, 2*pi){x=cos(t); y=sin(t); label=1;}

border b(t=0, 2*pi){x=0.3+0.3*cos(t); y=0.3*sin(t); label=2;}
plot(a(50) + b(30)); //to see a plot of the border mesh

mesh Thwithouthole = buildmesh(a(50) + b(30));

mesh Thwithhole = buildmesh(a(50) + b(-30));
plot(Thwithouthole, ps="Thwithouthole.eps");

plot(Thwithhole, ps="Thwithhole.eps");

Note

Notice that the orientation is changed by b(-30) in the 5th line. In the 7th line, ps="fileName" is used to generate
a postscript file with identification shown on the figure.

WAVAYAYA
DOSOIIN
AT <>
R ZAVAIS vaAVAN AVAN
e R e St
SR AIIIAA NRREARETH NRAvGS
- NNRRAERNE KRS
NNIISKPPEE SRS
RS
SOk R
< S
s e
R RS
Lotarecas ey
AV
PRRRKRRERS
AN

(a) Mesh without hole

(b) Mesh with hole

Fig. 3.4: Mesh with a hole

114 Chapter 3. Documentation

22

23

24

25

FreeFEM Documentation, Release 4.13

Note

Borders are evaluated only at the time plot or buildmesh is called so the global variables are defined at this time.
In this case, since r is changed between the two border calls, the following code will not work because the first
border will be computed with r=0.3:

real r=1;

border a(t=0, 2*pi){x=r*cos(t); y=r*sin(t); label=1;}

r=0.3;

border b(t=0, 2*pi){x=r*cos(t); y=r*sin(t); label=1;}

mesh Thwithhole = buildmesh(a(50) + b(-30)); // bug (a trap) because
// the two circles have the same radius = :math:'0.3"

mesh building with array of border

Sometimes it can be useful to make an array of the border, but unfortunately it is incompatible with the FreeFEM
syntax. To bypass this problem, if the number of segments of the discretization n is an array, we make an implicit loop
on all of the values of the array, and the index variable ¢ of the loop is defined after the parameter definition, like in
border a(t=0, 2*pi; i) ...

A first very small example:

border a(t=0, 2*pi; i){x=(i+1)*cos(t); y=(i+1)*sin(t); label=1;}
int[int] nn = [10, 20, 30];
plot(a(nn)); //plot 3 circles with 10, 20, 30 points

And a more complex example to define a square with small circles:

real[int] xx = [0, 1, 1, 0],
yy = [0, 0, 1, 1];
//radius, center of the 4 circles
real[int] RC = [0.1, 0.05, 0.05, 0.1],
XC = [0.2, 0.8, 0.2, 0.8],
YC = [0.2, 0.8, 0.8, 0.2];
int[int] NC = [-10,-11,-12,13]; //list number of :math: \pm segments of the 4 circles.,
—borders

border bb(t=0, 1; i)

{
// 1 is the index variable of the multi border loop
int ii = (i+1)%4;
real tl1 = 1-t;
x = xx[1]*tl + xx[ii]l*t;
y = yy[il*tl + yy[ii]*t;
label = 0;

}

border cc(t=0, 2*pi; i)

{
x = RC[i]*cos(t) + XC[i];
y = RC[i]*sin(t) + YC[i];
label = i + 1;

}

int[int] nn = [4, 4, 5, 7]; //4 border, with 4, 4, 5, 7 segment respectively
(continues on next page)

3.2. Mesh Generation 115

26

27

28

20

21

22

23

24

25

26

27

28

29

30

31

32

40

41

42

43

44

FreeFEM Documentation, Release 4.13

(continued from previous page)
plot(bb(nn), cc(NC), wait=1);
mesh th = buildmesh(bb(nn) + cc(NC));
plot(th, wait=1);

Mesh Connectivity and data

The following example explains methods to obtain mesh information.

// Mesh
mesh Th = square(2, 2);

cout << "// Get data of the mesh" << endl;

{
int NbTriangles = Th.nt;
real MeshArea = Th.measure;
real BorderLength = Th.bordermeasure;
cout << "Number of triangle(s) = " << NbTriangles << endl;
cout << "Mesh area = " << MeshArea << endl;
cout << "Border length = " << BorderLength << endl;
// Th(i) return the vextex i of Th
// Th[k] return the triangle k of Th
// Th[k][i] return the vertex i of the triangle k of Th
for (int i = 0; i < NbTriangles; i++)
for (int j = 0; j < 3; j++)
cout << i << " " << j << " - Th[i][j] = " << Th[i][j]
<< ", x =" << Th[i][j].x
<< ", y= " << Th[il[j]l.y
<< ", label=" << Th[i][j].label << endl;
}
cout << "// Hack to get vertex coordinates" << endl;
{
fespace fempl(Th, P1);
fempl Thx=x,Thy=y;
int NbVertices = Th.nv;
cout << "Number of vertices = " << NbVertices << endl;
for (int i = ©; i < NbVertices; i++)
cout << "Th(" << i << ") : " << Th@@).x << " " << Th(i).y << " " << Th(i).label
<< endl << "\told method: " << Thx[][i] << " " << Thy[][i] << endl;
}

cout << "// Method to find information of point (0.55,0.6)" << endl;
{

int TNumber = Th(0.55, 0.6).nuTriangle; //the triangle number

int RLabel = Th(®.55, 0.6).region; //the region label

cout << "Triangle number in point (0.55, 0.6): " << TNumber << endl;
cout << "Region label in point (0.55, 0.6): " << RLabel << endl;

(continues on next page)

116 Chapter 3. Documentation

45

46

47

48

49

50

51

52

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

FreeFEM Documentation, Release 4.13

(continued from previous page)

}
cout << "// Information of triangle" << endl;
{
int TNumber = Th(0.55, 0.6).nuTriangle;
real TArea = Th[TNumber].area; //triangle area
real TRegion = Th[TNumber].region; //triangle region
real TLabel = Th[TNumber].label; //triangle label, same as region for triangles
cout << "Area of triangle " << TNumber << ": " << TArea << endl;
cout << "Region of triangle " << TNumber << ": " << TRegion << endl;
cout << "Label of triangle " << TNumber << ": " << TLabel << endl;
3
cout << "// Hack to get a triangle containing point x, y or region number (old method)" <
< endl;
{

fespace femp®(Th, PO);
femp® TNumbers; //a PO function to get triangle numbering
for (dint i = 0; i < Th.nt; i++)
TNumbers[][i] = i;
femp® RNumbers = region; //a PO function to get the region number

int TNumber = TNumbers(0.55, 0.6); // Number of the triangle containing (0.55, 0,6)
int RNumber = RNumbers(0.55, 0.6); // Number of the region containing (®.55, 0,6)

cout << "Point (0.55,0,6) :" << endl;

cout << "\tTriangle number = " << TNumber << endl;

cout << "\tRegion number = " << RNumber << endl;
}
cout << "// New method to get boundary information and mesh adjacent" << endl;
{

int k = 0;

int 1-=1;

int e=1;

// Number of boundary elements

int NbBoundaryElements = Th.nbe;

cout << "Number of boundary element = " << NbBoundaryElements << endl;

// Boundary element k in {0, ..., Th.nbe}

int BoundaryElement = Th.be(k);

cout << "Boundary element " << k << " = " << BoundaryElement << endl;

// Vertice 1 in {0, 1} of boundary element k

int Vertex = Th.be(k)[1];

cout << "Vertex " << 1 << " of boundary element " << k << " = " << Vertex << endl;

// Triangle containg the boundary element k

int Triangle = Th.be(k).Element;

cout << "Triangle containing the boundary element " << k << " = " << Triangle <<.
—endl;

// Triangle egde nubmer containing the boundary element k
int Edge = Th.be(k).whoinElement;

(continues on next page)

3.2. Mesh Generation 117

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

FreeFEM Documentation, Release 4.13

(continued from previous page)

" " n

cout << "Triangle edge number containing the boundary element " << k << " =" <<,
—Edge << endl;

// Adjacent triangle of the triangle k by edge e

int Adjacent = Th[k].adj(e); //The value of e is changed to the corresponding edge.
—1n the adjacent triangle

cout << "Adjacent triangle of the triangle
—Adjacent << endl;

cout << "\tCorresponding edge = " << e << endl;

// If there is no adjacent triangle by edge e, the same triangle is returned

//Th[k] == Th[k].adj(e)

// Else a different triangle is returned

//Th[k] != Th[k].adj(e)

" 1] no_on

<< k << " by edge " << e << L

}

cout << "// Print mesh connectivity " << endl;

{
int NbTriangles = Th.nt;
for (int k = 0; k < NbTriangles; k++)
cout << k << " : " << int(Th[k][0]) << " " << int(Th[k][1])
<< " " << int(Th[k][2])
<< ", label " << Th[k].label << endl;

for (int k = 0; k < NbTriangles; k++)
for (int e = 0, ee; e < 3; e++)
//set ee to e, and ee is change by method adj,
cout << k << " " << e << " <=> " << int(Th[k].adj((ee=e))) << " " << ee
<< ", adj: " << (Th[k].adj((ee=e)) != Th[k]) << endl;

int NbBoundaryElements = Th.nbe;
for (int k = 0; k < NbBoundaryElements; k++)
cout << k << " : " << Th.be(k)[0] << " " << Th.be(k)[1]
<< " , label " << Th.be(k).label
<< ", triangle " << int(Th.be(k).Element)
<< " " << Th.be(k) .whoinElement << endl;

real[int] bb(4);
boundingbox(Th, bb);
// bb[0] = xmin, bb[1] = xmax, bb[2] = ymin, bb[3] =ymax
cout << "boundingbox:" << endl;
cout << "xmin = " << bb[0]
<< ", xmax ' << bb[1]
<< ", ymin = " << bb[2]
<< ", ymax ' << bb[3] << endl;

¥

The output is:

// Get data of the mesh

Number of triangle = 8

Mesh area = 1

Border length = 4

0 0 - Th{iJ[j]l =0, x =0, y=0, label=4

(continues on next page)

118 Chapter 3. Documentation

21

22

23

24

25

26

27

42

43

44

45

46

47

48

49

50

52

53

54

55

56

FreeFEM Documentation, Release 4.13

1 - Thli][j] =
2 - Th[il[j] =
0 - Th[i][j] =
1 - Th{i][j] =
2 - Th[il[j] =
® - Th[il[j] =
1 - Thli][j] =
2 - Th[il[j] =
® - Th[il[j] =
1 - Th{i][j] =
2 - Th[il[j] =
® - Th[il[j] =
1
2
0
1
2
0
1
2
0
1
2

- Th[i][j] =
- Th[il[j] =
- Th[i][j] =
- Th[i]l[j] =
- Th[i]l[j] =
- Th[il[j] =
- Th[il[j] =
- Th[i][j] =
- Th[i][j] = ;
- Th[i]l[j] = » y= 1,

7 - Th[il[j] = 7, x 0.5, y=1,
// Hack to get vertex coordinates
Number of vertices = 9

Th(®) : 0 0 4

Y
y

N~Nooouviutu s AP WWWNNNNRR PR

OOV ONWND WDER R, UNRE WS R=

E T T T T - - - - T - - A - T - - I - -
|

.5, y= 0.

old
Th(1)
old
Th(2)
old
Th(3)
old
Th(4)
old

method:
: 0.50
method:

102

method:
: 0 0.5
method:
: 0.5 0.
method:

00
1
0.5 0

10
4

0 0.5
50

0.5 0.5

.5, label=0
, label=4

label=2
, label=2
label=1

5, label=0
label=3
label=4
label=3

labe1—4

.5, label=0

, label=2

label=3

5, label=0

label=3
label=3

(continued from previous page)

1 0.52
method:
: 014
method: 0 1
: 0.513
method: 0.5 1
Th(8) 113

old method: 1 1
// Method to find the information of point (0.55,0.6)
Triangle number in point (0.55, 0.6): 7
Region label in point (0.55, 0.6): 0
// Information of a triangle
Area of triangle 7: 0.125
Region of triangle 7: O
Label of triangle 7: 0
// Hack to get a triangle containing point x, y or region number (old method)
Point (0.55,0,6)

Th(5)
old

Th(6)
old

Th(7)
old

10.5

(continues on next page)

3.2. Mesh Generation 119

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

FreeFEM Documentation, Release 4.13

Triangle numb

er

=7

Region number = 0

// New method to get boundary information and mesh adjacent
Number of boundary element = 8

Boundary element 0 = 0

Vertex 1 of boundary element 0 = 1

Triangle containing the boundary element 0 = 0
Triangle edge number containing the boundary element 0 = 2
Adjacent triangle of the triangle 0 by edge 1

Corresponding edge = 2
// Print mesh connectivity

(continued from previous page)

O : 1 4, label O
1 : 0 4 3, label 0
2 : 125, label ©
3 : 15 4, label 0
4 : 3 47, label ©®
5 : 37 6, label 0
6 : 45 8, label 0
7 : 48 7, label 0
0 0 <=>31, adj: 1
01 <=>12, adj: 1
0 2<=>0 2, adj: 0
10 <=>42, adj: 1
11<=>11, adj: 0
12<=>01, adj: 1
20 <=> 20, adj: 0
2 1<=> 32, adj: 1
2 2<=> 22, adj: 0
30<=>62, adj: 1
31<=>00, adj: 1
32<=>21, adj: 1
40 <=>71, adj: 1
4 1<=>52, adj: 1
4 2 <=> 10, adj: 1
50 <=>50, adj: 0
51<=>51, adj: 0
52<=>41, adj: 1
6 0 <=>60, adj: 0
6 1 <=>7 2, adj: 1
6 2 <=> 30, adj: 1
70 <=>70, adj: 0
71<=>40, adj: 1
7 2<=>61, adj: 1
O : 01, label 1, triangle 0 2
1 1 2, label 1, triangle 2 2
2 : 25, label 2, triangle 2 O
3 : 58, label 2, triangle 6 0
4 : 6 7, label 3, triangle 5 0
5 :7 8 , label 3, triangle 7 0
6 : 0 3, label 4, triangle 1 1
7 : 36, label 4, triangle 5 1
boundingbox:

(continues on next page)
120 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

(continued from previous page)

10 {Xmin =0, xmax = 1, ymin = 0, ymax = 1

1

2

The real characteristic function of a mesh Th is chi (Th) in 2D and 3D where:
chi(Th) (P)=1if P € Th
chi(Th) (P)=0if P ¢ Th

The keyword “triangulate”

FreeFEM is able to build a triangulation from a set of points. This triangulation is a Delaunay mesh of the convex hull
of the set of points. It can be useful to build a mesh from a table function.

The coordinates of the points and the value of the table function are defined separately with rows of the form: x y
f(x,y) in a file such as:

.51387 0.175741 0.636237
.308652 0.534534 0.746765
.947628 0.171736 0.899823
.702231 0.226431 0.800819
.494773 0.12472 0.580623
.0838988 0.389647 0.456045

(a) Delaunay mesh of the convex hull of point set in file xy

(b) Isolvalue of table function

Fig. 3.5: Triangulate

The third column of each line is left untouched by the triangulate command. But you can use this third value to
define a table function with rows of the form: x y £(x,y).

The following example shows how to make a mesh from the file xyf with the format stated just above. The command
triangulate only uses the 1st and 2nd columns.

// Build the Delaunay mesh of the convex hull
mesh Thxy=triangulate("xyf"); //points are defined by the first 2 columns of file ‘xyf
(continues on next page)

3.2. Mesh Generation 121

FreeFEM Documentation, Release 4.13

(continued from previous page)

// Plot the created mesh
plot(Thxy);

// Fespace
fespace Vhxy(Thxy, P1);
Vhxy f£xy;

// Reading the 3rd column to define the function fxy

{

ifstream file("xyf");

real xx, yy;

for(int i = 0; i < fxy.n; i++)

file >> xx >> yy >> fxy[]l[il; //to read third row only.
//xx and yy are just skipped

}
// Plot
plot(£fxy);

One new way to build a mesh is to have two arrays: one for the x values and the other for the y values.

//set two arrays for the x's and y's
Vhxy xx=X, yy=Y;
//build the mesh
mesh Th = triangulate(xx[], yy[1);

2d Finite Element space on a boundary

To define a Finite Element space on a boundary, we came up with the idea of a mesh with no internal points (called
empty mesh). It can be useful to handle Lagrange multipliers in mixed and mortar methods.

So the function emptymesh removes all the internal points of a mesh except points on internal boundaries.

{
border a(t=0, 2*pi){x=cos(t); y=sin(t); label=1;}
mesh Th = buildmesh(a(20));
Th = emptymesh(Th);
plot(Th);
}

It is also possible to build an empty mesh of a pseudo subregion with emptymesh(Th, ssd) using the set of edges
from the mesh Th; an edge e is in this set when, with the two adjacent triangles e = t1 N2 and ssd[T'1] # ssd[T2]
where ssd refers to the pseudo region numbering of triangles, they are stored in the int [int] array of size “the number
of triangles”.

{
mesh Th = square(10, 10);
int[int] ssd(Th.nt);
//build the pseudo region numbering
for(int i = 0; i < ssd.n; i++){
int iq = i/2; //because 2 triangles per quad
int ix = iq%10;
(continues on next page)

122 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

(continued from previous page)

int iy = iq/10;
ssd[i] 1 + (ix>=5) + (Qy>=5)*2;

}
//build emtpy with all edges $e=T1 \cap T2$ and $ssd[T1] \neq ssd[T2]$

Th = emptymesh(Th, ssd);

//plot
plot(Th);
savemesh(Th, "emptymesh.msh");
}
(a) The empty mesh with boundary (b) An empty mesh defined from a pseudo region numbering
of triangle
Fig. 3.6: Empty mesh
Remeshing

The command movemesh

Meshes can be translated, rotated, and deformed by movemesh; this is useful for elasticity to watch the deformation
due to the displacement ®(x,y) = (P1(x,y), P2(x,y)) of shape.

It is also useful to handle free boundary problems or optimal shape problems.

If is triangulated as T} (€2), and ® is a displacement vector then ®(77},) is obtained by:

I [mesh Th = movemesh(Th, [Phil, Phi2]): J

Sometimes the transformed mesh is invalid because some triangles have flipped over (meaning it now has a negative
area). To spot such problems, one may check the minimum triangle area in the transformed mesh with checkmovemesh

before any real transformation.

For example:

Oy (x,y) = x4+ kxsin(yx*m)/10)
) y + k * cos(ym)/10)

for a big number k£ > 1.

1 |verbosity = 4;

s | // Parameters
s+ |real coef = 1;

(continues on next page)

3.2. Mesh Generation 123

FreeFEM Documentation, Release 4.13

(continued from previous page)

// Mesh

border a(t=0, 1){x=t; y=0; label=1;};

border b(t=0, 0.5){x=1; y=t; label=1;};

border c(t=0, 0.5){x=1-t; y=0.5; label=1;};

border d(t=0.5, 1){x=0.5; y=t; label=1;};

border e(t=0.5, 1){x=1-t; y=1; label=1;};

border f(t=0, 1){x=0; y=1-t; label=1;};

mesh Th = buildmesh(a(6) + b(4) + c(4) + d(4) + e(4) + £(6));
plot(Th, wait=true, fill-true, ps="Lshape.eps");

// Function
func uu = sin(y*pi)/10;
func vv = cos(x*pi)/10;

// Checkmovemesh
real minT® = checkmovemesh(Th, [x, y]); //return the min triangle area
while(1){ // find a correct move mesh
real minT = checkmovemesh(Th, [x+coef*uu, y+coef*vv]);
if (minT > minT®/5) break; //if big enough
coef /= 1.5;
}

// Movemesh
Th = movemesh(Th, [x+coef*uu, y+coef*vv]);
plot(Th, wait=true, fill-true, ps="MovedMesh.eps");

(a) L-shape (b) Moved L-shape

Fig. 3.7: Move mesh

Note

Consider a function v defined on a mesh Th. A statement like Th=-movemesh(Th. ..) does not change u and so

124 Chapter 3. Documentation

25

26

27

28

29

30

FreeFEM Documentation, Release 4.13

the old mesh still exists. It will be destroyed when no function uses it. A statement like u = u redefines u on the
new mesh Th with interpolation and therefore destroys the old Th, if u was the only function using it.

Now, we give an example of moving a mesh with a Lagrangian function v defined on the moving mesh.

// Parameters
int nn = 10;
real dt = 0.1;

// Mesh
mesh Th = square(nn, nn);

// Fespace
fespace Vh(Th, P1);
Vh u=y;

// Loop
real t=0;
for (dint 1 = 0; i < 4; i++){
t = i*dt;
Vh f=x*t;
real minarea = checkmovemesh(Th, [x, y+f]);
if (minarea > 0) //movemesh will be ok
Th = movemesh(Th, [x, y+£f]);

cout << " Min area = << minarea << endl;
real[int] tmp(u[].n);
tmp = ul[]; //save the value
u = 0;//to change the FEspace and mesh associated with u
u[] = tmp;//set the value of u without any mesh update
plot(Th, u, wait=true);

}

// In this program, since u is only defined on the last mesh, all the
// previous meshes are deleted from memory.

The command hTriangle

This section presents the way to obtain a regular triangulation with FreeFEM.

For a set S, we define the diameter of .S by
diam(S) = sup{|x — y|; x, y € S}

The sequence {7}, } o of Q is called regular if they satisfy the following:
1. limp,_,o max{diam(7T})| Ty € Tn} =0

2. There is a number o > 0 independent of & such that diZ Iilj(”gp)k) > o forall T € Ty, where p(T}) are the diameter
of the inscribed circle of 7},.

We put h(7x) = max{diam(7})| T € Tn}, which is obtained by

3.2. Mesh Generation 125

FreeFEM Documentation, Release 4.13

mesh Th = C

fespace Ph(Th, PO);

Ph h = hTriangle;

cout << "size of mesh = " << h[].max << endl;

The command adaptmesh
The function:
f(z,y) = 10.02 + y* + tan~' [/ (sin(5.0y) — 2.0z)], € = 0.0001

sharply varies in value and the initial mesh given by one of the commands in the Mesh Generation part cannot reflect
its sharp variations.

// Parameters

real eps = 0.0001;

real h = 1;

real hmin = 0.05;

func f = 10.0*x*3 + yA*3 + h*atan2(eps, sin(5.0%y)-2.0%X);

// Mesh
mesh Th = square(5, 5, [-1+2*%x, -1+2*y]);

// Fespace
fespace Vh(Th,P1);
Vh fh = £;
plot(fh);

// Adaptmesh

for (dnt i = 0; i < 2; i++){
Th = adaptmesh(Th, fh);
fh = £; //old mesh is deleted
plot(Th, fh, wait=true);

}

FreeFEM uses a variable metric/Delaunay automatic meshing algorithm.

The command:

1 [mesh ATh - adaptmesh(Th, £);

create the new mesh ATh adapted to the Hessian
D?f = (9*f/0a?, 8°f /028y, D” [| Oy°)
of a function (formula or FE-function).

Mesh adaptation is a very powerful tool when the solution of a problem varies locally and sharply.

Here we solve the Poisson’s problem, when f = 1 and {2 is an L-shape domain.

126 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

500 Xae) D40

Initial First _ Second

mesh adaptation adaptation
{0 0 0

be —

ba

(a) L-shape domain and its boundary name

(b) Final solution after 4-times adaptation

Fig. 3.9: Mesh adaptation

Tip

The solution has the singularity /2, = |2 — | at the point ~ of the intersection of two lines bc and bd (see Fig.
3.9a).

3.2. Mesh Generation 127

21

22

23

24

25

26

1

FreeFEM Documentation, Release 4.13

// Parameters
real error = 0.1;

// Mesh

border ba(t=0, 1){x=t; y=0; label=1;}

border bb(t=0, 0.5){x=1; y=t; label=1;}

border bc(t=0, 0.5){x=1-t; y=0.5; label=1;}

border bd(t=0.5, 1){x=0.5; y=t; label=1;}

border be(t=0.5, 1){x=1-t; y=1; label=1;}

border bf(t=0, 1){x=0; y=1-t; label=1;}

mesh Th = buildmesh(ba(6) + bb(4) + bc(4) + bd(4) + be(4) + bf(6));

// Fespace
fespace Vh(Th, P1);
Vh u, v;

// Function
func f = 1;

// Problem
problem Poisson(u, v, solver=CG, eps=1.e-6)
= int2d(Th)
dx (u) *dx (v)
+ dy(u)*dy (v)
)
- int2d(Th) (
f*v
)
+ on(l, u=0);

// Adaptmesh loop

for (dnt i = 0; i < 4; i++){
Poisson;
Th = adaptmesh(Th, u, err=error);
error = error/2;

}

// Plot
plot(u);

To speed up the adaptation, the default parameter err of adaptmesh is changed by hand; it specifies the required
precision, so as to make the new mesh finer or coarser.

The problem is coercive and symmetric, so the linear system can be solved with the conjugate gradient method (pa-
rameter solver=CG) with the stopping criteria on the residual, here eps=1.e-6).

By adaptmesh, the slope of the final solution is correctly computed near the point of intersection of bc and bd as in
Fig. 3.9b.

This method is described in detail in [HECHT1998]. It has a number of default parameters which can be modified.

If £1, £2 are functions and thold, Thnew are meshes:

Thnew = adaptmesh(Thold, f1 ...);
Thnew = adaptmesh(Thold, f1,f2 ... 1);

(continues on next page)

128 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

(continued from previous page)

; { Thnew = adaptmesh(Thold, [£1,£2] ...):

The additional parameters of adaptmesh are:
See Reference part for more inforamtions

¢ hmin= Minimum edge size.
Its default is related to the size of the domain to be meshed and the precision of the mesh generator.

¢ hmax= Maximum edge size.
It defaults to the diameter of the domain to be meshed.

» err= Pj interpolation error level (0.01 is the default).

¢ errg= Relative geometrical error.

By default this error is 0.01, and in any case it must be lower than 1/+/2. Meshes created with this option
may have some edges smaller than the -hmin due to geometrical constraints.

* nbvx= Maximum number of vertices generated by the mesh generator (9000 is the default).
¢ nbsmooth= number of iterations of the smoothing procedure (5 is the default).

* nbjacoby=number of iterations in a smoothing procedure during the metric construction, 0 means no smoothing,
6 is the default.

e ratio= ratio for a prescribed smoothing on the metric.
If the value is O or less than 1.1 no smoothing is done on the metric. 1.8 is the default. If ratio > 1.1,
the speed of mesh size variations is bounded by log(ratio).

Note

As ratio gets closer to 1, the number of generated vertices increases. This may be useful to control
the thickness of refined regions near shocks or boundary layers.

* omega- relaxation parameter for the smoothing procedure. 1.0 is the default.
 iso=If true, forces the metric to be isotropic. false is the default.

¢ abserror= If false, the metric is evaluated using the criteria of equi-repartion of relative error.
false is the default. In this case the metric is defined by:
1 H b
M 2 il
err coef? max(Cut0£ff, |n|)

Otherwise, the metric is evaluated using the criteria of equi-distribution of errors. In this case the metric is
defined by:

_ 1] :
M= (err coef? sup(n) — inf(n)) '

¢ cutoff= lower limit for the relative error evaluation. 1.0e-6 is the default.

¢ verbosity= informational messages level (can be chosen between 0 and co).
Also changes the value of the global variable verbosity (obsolete).

 inquire= To inquire graphically about the mesh. false is the default.

¢ splitpbedge= If true, splits all internal edges in half with two boundary vertices.
true is the default.

3.2. Mesh Generation 129

FreeFEM Documentation, Release 4.13

¢ maxsubdiv= Changes the metric such that the maximum subdivision of a background edge is bound by
val.
Always limited by 10, and 10 is also the default.
e rescaling= if true, the function, with respect to which the mesh is adapted, is rescaled to be between 0
and 1.
true is the default.
* keepbackvertices=if true, tries to keep as many vertices from the original mesh as possible.
true is the default.

e IsMetric= if true, the metric is defined explicitly.
false is the default. If the 3 functions mj1, m12, mes are given, they directly define a symmetric matrix
field whose Hessian is computed to define a metric. If only one function is given, then it represents the
isotropic mesh size at every point.

For example, if the partial derivatives fxx (= 02 f /0z?), £xy (= 0% f /0x20y), fyy (= 9* f /0y?) are given,
we can set Th = adaptmesh(Th, fxx, fxy, fyy, IsMetric=1, nbvx=10000, hmin=hmin);

» power= exponent power of the Hessian used to compute the metric.
1 is the default.

¢ thetamax= minimum corner angle in degrees.
Default is 10° where the corner is ABC' and the angle is the angle of the two vectors AB, BC, (0 imply
no corner, 90 imply perpendicular corner, ...).

¢ splitin2=boolean value.
If true, splits all triangles of the final mesh into 4 sub-triangles.

e metric= an array of 3 real arrays to set or get metric data information.
The size of these three arrays must be the number of vertices. So if m11,m12,m22 are three P1 fi-
nite elements related to the mesh to adapt, you can write: metric=[ml11[],m12[],m22[]] (see file
convect-apt.edp for a full example)

» nomeshgeneration= If true, no adapted mesh is generated (useful to compute only a metric).

¢ periodic= Writing periodic=[[4,y],[2,y],[1,x],[3,x]]; builds an adapted periodic mesh.
The sample builds a biperiodic mesh of a square. (see periodic finite element spaces, and see the Sphere
example for a full example)

We can use the command adaptmesh to build a uniform mesh with a constant mesh size. To build a mesh with a
constant mesh size equal to % try:

mesh Th=square(2, 2); //the initial mesh
plot(Th, wait=true, ps="square-0.eps");

Th = adaptmesh(Th, 1./30., IsMetric=1, nbvx=10000);
plot(Th, wait=true, ps="square-1.eps");

Th = adaptmesh(Th, 1./30., IsMetric=1, nbvx=10000); //More the one time du to
Th = adaptmesh(Th, 1./30., IsMetric=1, nbvx=10000); //Adaptation bound ‘maxsubdiv="
plot(Th, wait=true, ps="square-2.eps");

130 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

s
rlgr

1 ok
T N

A \VAYAYAVavAV.
TN AN AAAAL
R O0000%

(a) Initial mesh (b) First iteration

VA
VAl
\/
g’
N

q

K L7
OV
R

\ /N1
KK
RIS
VAVAVA
<A

%
3¢ AVAVA
S

%

2
<]

<]
K5
K7
SRR
RS
SRR

o
WA A V%
‘g i»{bg‘?
\Z

NAVAY:
4
7AN $§

AVAN

S

N

VAV
VAA

VAN
Tavy
AV

g

A\

</
g
Y

LRS
SRR

7‘4
1\

NN
\/

JAYAVAVAVa%
SRR O
Ay §>4§§

\/]
%
d
oy,
A%,
vy
S
K

A
AV

(V4
i
T~
<N
NN/
K

AN
N/

N
7
5
K7

NN

N
ININNS

N
N/

N

\VAVAVE,
AVAVAY

NN
NAPKY
SN
ivQ
20

</
<
<
<

N
VA
VAVA!

{7
INNAVAVAVA!
SN

N

IAVAN

AV
o0
S

VAVAN
R
5
2

]

A

A

5
K]

%)
Pava

4
g
5S
NVAVA

7AY
AVAY

VAV

N

WV
asey

NANavAY
Ky
avaval
VAV
R
<L

(c) Last iteration

Fig. 3.10: Mesh adaptation

The command trunc

Two operators have been introduced to remove triangles from a mesh or to divide them. Operator trunc has the
following parameters:

* boolean function to keep or remove elements
* label= sets the label number of new boundary item, one by default.

* split= sets the level n of triangle splitting.
Each triangle is split in n X n, one by default.

To create the mesh Th3 where all triangles of a mesh Th are split in 33, just write:

3.2. Mesh Generation 131

FreeFEM Documentation, Release 4.13

[mesh Th3 = trunc(Th, 1, split=3);]

The following example construct all “trunced” meshes to the support of the basic function of the space Vh
(cf. abs (u)>0), split all the triangles in 5x5, and put a label number to 2 on a new boundary.

// Mesh
mesh Th = square(3, 3);

// Fespace
fespace Vh(Th, P1);
Vh u=0;

// Loop on all degrees of freedom

int n-u.n;
for (dint i = 0; i < n; i++){
ull[i] = 1; // The basis function i

plot(u, wait=true);

mesh Shl = trunc(Th, abs(u)>1.e-10, split=5, label=2);
plot(Th, Shl, wait=true, ps="trunc"+i+".eps");

ull[i] = 0; // reset

(a) Mesh of support the function P1 number 0, split in 5x5 (b) Mesh of support the function P1 number 6, split in 5x5

Fig. 3.11: Trunc

The command change

This command changes the label of elements and border elements of a mesh.

Changing the label of elements and border elements will be done using the keyword change. The parameters for this
command line are for two dimensional and three dimensional cases:

e refe=is an array of integers to change the references on edges

o reft=is an array of integers to change the references on triangles

¢ label=is an array of integers to change the 4 default label numbers
e region-= is an array of integers to change the default region numbers

e renumv= is an array of integers, which explicitly gives the new numbering of vertices in the new mesh. By
default, this numbering is that of the original mesh

e renumt=is an array of integers, which explicitly gives the new numbering of elements in the new mesh, according
the new vertices numbering given by renumv=. By default, this numbering is that of the original mesh

132 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

» flabel=is an integer function given the new value of the label
¢ fregion= is an integer function given the new value of the region
« rmledges= is an integer to remove edges in the new mesh, following a label

e rmInternalEdges= is a boolean, if equal to true to remove the internal edges. By default, the internal edges
are stored

These vectors are composed of n; successive pairs of numbers O, N where n; is the number (label or region) that we
want to change. For example, we have :

label = [0y, Ny, ..., Op,, Ny,

) 3.1
region = [O1, Ny, ...,Op,, Ny, |

An application example is given here:

// Mesh
mesh Thl = square(10, 10);
mesh Th2 square(20, 10, [x+1, y1);

int[int] ri1=[2,0];
plot(Thl, wait=true);

Thl = change(Thl, label=rl); //change the label of Edges 2 in 0.
plot(Thl, wait=true);

// boundary label: 1 -> 1 bottom, 2 -> 1 right, 3->1 top, 4->1 left boundary label is 1
int[int] re=[1,1, 2,1, 3,1, 4,1]

Th2=change(Th2,refe-re);

plot(Th2,wait=1) ;

The command splitmesh

Another way to split mesh triangles is to use splitmesh, for example:

// Mesh

border a(t=0, 2*pi){x=cos(t); y=sin(t); label=1;}
mesh Th = buildmesh(a(20));

plot(Th, wait=true, ps="NotSplittedMesh.eps");

// Splitmesh
Th = splitmesh(Th, 1 + 5*(square(x-0.5) + y*y));
plot(Th, wait=true, ps="SplittedMesh.eps");

3.2. Mesh Generation 133

FreeFEM Documentation, Release 4.13

(a) Initial mesh (b) AIll left mesh triangle is split conformaly in
int (1+5*(square(x-0.5)+y*y) A2 triangles

Fig. 3.12: Split mesh

Meshing Examples

Ve

Tip

Two rectangles touching by a side

-

border a(t=0, 1){x=t; y=0;};

border b(t=0, 1){x=1; y=t;};

border c(t=1, 0){x=t; y=1;};

border d(t=1, 0){x=0; y=t;};

border c1(t=0, 1){x=t; y=1;};

border e(t=0, 0.2){x=1; y=1+t;};

border f(t=1, 0){x=t; y=1.2;};

border g(t=0.2, 0){x=0; y=1+t;};

int n=1;

mesh th = buildmesh(a(10*n) + b(10*n) + c(10*n) + d(10*n));
mesh TH = buildmesh(c1(10*n) + e(5*n) + £(10*n) + g(5*n));
plot(th, TH, ps="TouchSide.esp");

.

134

Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

(0,2) s

a th /\\/\b C
(0,0) REAARGERGS

g TH f
(0,-10) . (10,-10)

Fig. 3.13: Two rectangles touching by a side

Tip
NACAO0012 Airfoil

border upper(t=0, 1){x=t; y=0.17735*sqrt(t) - 0.075597*t - 0.212836*(t*2) + 0.
—17363*(t*3) - 0.06254*(t*4);}

border lower(t=1, 0){x = t; y=-(0.17735*sqrt(t) -0.075597*%t - 0.212836*(t*2) + 0.
—17363%(t*3) - 0.06254*(t*4));}

border c(t=0, 2*pi){x=0.8%cos(t) + 0.5; y=0.8%sin(t);}

mesh Th = buildmesh(c(30) + upper(35) + lower(35));

plot(Th, ps="NACA0012.eps", bw=true);

Fig. 3.14: NACAOQ0012 Airfoil

Tip
Cardioid

3.2. Mesh Generation 135

FreeFEM Documentation, Release 4.13

real b = 1, a = b;
border C(t=0, 2*pi){x=(a+b)*cos(t)-b*cos((a+b)*t/b); y=(a+b)*sin(t)-b*sin((a+b)*t/b);}

mesh Th = buildmesh(C(50));
plot(Th, ps="Cardioid.eps", bw=true);

S

""'%Ié:;g%' 0%

X
DS
' DAROA XN

\/
1%)

Fig. 3.15: Domain with Cardioid curve boundary

Tip
Cassini Egg
border C(t=0, 2*pi) {x=(2*cos(2*t)+3)*cos(t); y=(2*cos(2*t)+3)*sin(t);}

mesh Th = buildmesh(C(50));
plot(Th, ps="Cassini.eps", bw=true);

Fig. 3.16: Domain with Cassini egg curve boundary

Tip

By cubic Bezier curve

136 Chapter 3. Documentation

[N

FreeFEM Documentation, Release 4.13

// A cubic Bezier curve connecting two points with two control points
func real bzi(real p®, real pl, real ql, real g2, real t){

return p0*(
}

real[int] p0O®
real[int] pll
real[int] p21
real[int] q30
border G1(t=0,

1-t)A3 + qI*3*(1-t)A2*t + q2*3*(1-t)*tA2 + pl*tA3;

[0, 1], p®1 = [0, -1], 00 = [-2, 0.1], g01 = [-2, -0.5];
[1,-0.9], ql0 = [0.1, -0.95], ql1=[0.5, -1];
[2, 0.7], q20 = [3, -0.4], q21 = [4, 0.5];
[0.5, 1.1], q31 = [1.5, 1.2];
DA

X=bzi(p0O[0], pO®1[0], qO00[0], qO1[0], t);
y=bzi(p00[1], pO®1[1], q00[1], qO1[1], t);

}
border G2(t=0,

DA

x=bzi(p01[0], pl1[0], qlO[0], ql1[0], t);
y=bzi(pO®1[1], pl1[1], qlO[1], ql1f[1], t);

}
border G3(t=0,

D{

x=bzi(p11[0], p21[0], q20[0], q21[0], t);
y=bzi(p11[1], p21[1], q20[1], q21[1], t);

}
border G4(t=0,

D{

X=bzi(p21[0], pOO[0], g30[0], q31[0], t);

y=bzi(p21[1
3

int m = 5;

1, pOO[1], q30[1], g31[1], t);

mesh Th = buildmesh(Gl1(2*m) + G2(m) + G3(3*m) + G4(m));
plot(Th, ps="Bezier.eps", bw=true);

Fig. 3.17: Boundary drawn by Bezier curves

Tip
Section of Engine
real a=6., b

border L1(t=0,
border L2(t=0,
border L3(t=0,

=1., c = 0.5;

1) {x=-a; y=1+b-2%(1+b)*t;}
1) {x=-a+2*a*t; y=-1-b*(x/a)*(x/a)*(3-2*abs(x)/a);}
D{x=a; y=-1-b+(1+b)*t; }

3.2. Mesh Generation

137

FreeFEM Documentation, Release 4.13

border L4(t=0, 1){x=a-a*t; y=0;}

border L5(t=0, pi){x=-c*sin(t)/2; y=c/2-c*cos(t)/2;}

border L6(t=0, 1){x=a*t; y=c;}

border L7(t=0, 1){x=a; y=c+(1+b-c)*t;}

border L8(t=0, 1){x=a-2*a*t; y=1+b*(x/a)*(x/a)*(3-2*abs(x)/a);}

mesh Th = buildmesh(L1(8) + L2(26) + L3(8) + L4(20) + L5(8) + L6(30) + L7(8) +.
~L8(30));

plot(Th, ps="Engine.eps", bw=true);

L1

Th %‘s;‘_":'#:q |_ 3
Sl £
RGNS

Fig. 3.18: Section of Engine

Tip

Domain with U-shape channel

real d = 0.1; //width of U-shape
border L1(t=0, 1-d){x=-1; y=-d-t;}
border L2(t=0, 1-d){x=-1; y=1-t;
border B(t=0, 2){x=-1+t; y=-1;
border C1(t=0, 1){x=t-1; y=d;

border C2(t=0, 2*d){x=0; y=d-t;
border C3(t=0, 1){x=-t; y=-d;

border R(t=0, 2){x=1; y=-1+t;}
border T(t=0, 2){x=1-t; y=1;}

int n = 5;

mesh Th = buildmesh(L1(n/2) + L2(n/2) + B(m) + C1(n) + C2(3) + C3(m) + R(M) + T());
plot(Th, ps="U-shape.eps", bw=true);

(-ca,cb) T
L1;
C1 A (tip.d)
/C2 R
C3 (tip,-d)
L2 1
) (ca,cb)
B

Fig. 3.19: Domain with U-shape channel changed by d

138 Chapter 3. Documentation

© o N v A W N —

FreeFEM Documentation, Release 4.13

'a 0\
Tip
Domain with V-shape cut
'real dAg = 0.02; //angle of V-shape)
border C(t=dAg, 2*pi-dAg){x=cos(t); y=sin(t);};
real[int] pa(2), pb(2), pc(2);
pal0®] = cos(dAg);
pall] = sin(dAg);
pb[0] = cos(2*pi-dAg);
pb[1] = sin(2*pi-dAg);
pc[0] = 0;
pc[1] = 0;
border segl(t=0, 1){x=(C1-t)*pb[0]+t*pc[0]; y=(1-t)*pb[1]+t*pc[1];};
border seg2(t=0, 1){x=(1-t)*pc[0]+t*pa[0]; y=(1-t)*pc[1]+t*pal[l];};
mesh Th = buildmesh(seg1(20) + C(40) + seg2(20));
plot(Th, ps="V-shape.eps", bw=true);
seqg1
C seg?2
Fig. 3.20: Domain with V-shape cut changed by dAg
Tip
Smiling face
real d=0.1; int m = 5; real a = 1.5, b =2, ¢c = 0.7, e = 0.01;
border F(t=0, 2*pi){x=a*cos(t); y=b*sin(t);}
border E1(t=0, 2*pi){x=0.2%cos(t)-0.5; y=0.2*sin(t)+0.5;}
border E2(t=0, 2*pi){x=0.2*cos(t)+0.5; y=0.2*%sin(t)+0.5;}
func real st(real t){
return sin(pi*t) - pi/2;
}
border C1(t=-0.5, 0.5){x=(1-d)*c*cos(st(t)); y=(1-d)*c*sin(st(t));}
border C2(t=0, 1){x=((1-d)+d*t)*c*cos(st(0.5)); y=((1-d)+d*t)*c*sin(st(0.5));}
3.2. Mesh Generation 139

FreeFEM Documentation, Release 4.13

border C4(t=0,

border C3(t=0.5, -0.5){x=c*cos(st(t)); y=c*sin(st(t));}
D{x=(1-d*t)*c*cos(st(-0.5)); y=(1-d*t)*c*sin(st(-0.5));}
border CO(t=0, 2*pi){x=0.1%*cos(t); y=0.1*sin(t);}

mesh Th=buildmesh(F(10*m) + C1(2*m) + C2(3) + C3(2*m) + C4(3)
+ CO(m) + E1(-2*m) + E2(-2*m));
plot(Th, ps="SmileFace.eps", bw=true);

Fig. 3.21: Smiling face (Mouth is changeable)

Tip

real a

border
border
border
border
border
border
border
border
border

border

3 points bending
// Square for Three-Point Bend Specimens fixed on Fixl, Fix2
// It will be loaded on Load.

=1, b=5, c=0.1;

int n = 5, m = b*n;

Left(t=0, 2*a){x=-b; y=a-t;}
Botl(t=0, b/2-c){x=-b+t; y=-a;}
Fix1(t=0, 2*c){x=-b/2-c+t; y=-a;}
Bot2(t=0, b-2*c){x=-b/2+c+t; y=-a;}
Fix2(t=0, 2*c){x=b/2-c+t; y=-a;}
Bot3(t=0, b/2-c){x=b/2+c+t; y=-a;}
Right (t=0, 2*a){x=b; y=-a+t;}
Topl(t=0, b-c){x=b-t; y=a;}
Load(t=0, 2*c){x=c-t; y=a;}
Top2(t=0, b-c){x=-c-t; y=a;}

140

Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

s | mesh Th = buildmesh(Left(n) + Botl(m/4) + Fix1(5) + Bot2(m/2)
16 + Fix2(5) + Bot3(m/4) + Right(n) + Topl(m/2) + Load(10) + Top2(m/2));
7 | plot(Th, ps="ThreePoint.eps", bw=true);

(-b,a)__ Top2 S Loadgp1

VA

Left Right

Bot1 Bot2 \ Bot3 (P:-3)
“Fix1 Fix2—

Fig. 3.22: Domain for three-point bending test

3.2.2 The type mesh3 in 3 dimension

Note

Up to the version 3, FreeFEM allowed to consider a surface problem such as the PDE is treated like boundary
conditions on the boundary domain (on triangles describing the boundary domain). With the version 4, in particular
4.2.1, a completed model for surface problem is possible, with the definition of a surface mesh and a surface
problem with a variational form on domain (with triangle elements) and application of boundary conditions on
border domain (describing by edges). The keywords to define a surface mesh is meshS.

3d mesh generation

Note

For 3D mesh tools, put Ioad "msh3" at the top of the .edp script.

The command cube

The function cube like its 2d function square is a simple way to build cubic objects, it is contained in plugin msh3
(import with Ioad "msh3").

The following code generates a 3 x 4 x 5 grid in the unit cube [0, 1]3.

] [mesha Th = cube(3, 4, 5);

By default the labels are :
1. facey =0,

2. facex =1,

3. facey =1,

4. facex =0,

5

. face z =0,

3.2. Mesh Generation 141

23

24

25

26

27

28

29

FreeFEM Documentation, Release 4.13

6. facez =1
and the region number is 0.

A full example of this function to build a mesh of cube | — 1, 1[* with face label given by (ix+4* (iy+1)+16%(iz+1))
where (ix, iy, iz) are the coordinates of the barycenter of the current face, is given below.

load "msh3"

int[int] 16 = [37, 42, 45, 40, 25, 57];
int ri11 = 11;
mesh3 Th = cube(4, 5, 6, [x*2-1, y*2-1, z*2-1], label=16, flags =3, region-=ril);

cout << "Volume = << Th.measure << ", border area = << Th.bordermeasure << endl;
int err = 0;
for(int i = 0; i < 100; ++i){
real s = int2d(Th,i)(1.);
real sx = int2d(Th,i) (x);
real sy = int2d(Th,i) (y);
real sz int2d(Th,1) (2);

if(s){
int ix (sx/s+1.5);
int iy = (sy/s+1.5);
int iz (sz/s+1.5);
int ii (ix + 4*(dy+1) + 16*(dz+1));
//value of ix,iy,iz => face min 0, face max 2, no face 1
cout << "Label = " << 1 << ", s =" << s <" " <kix iy < iz <
<< endl;

if(i != ii) err++;

<< ii

}

}
real volrll = int3d(Th,r11)(1.);
cout << "Volume region = " << 11 <<
if((volrll - Th.measure)>1e-8) err++;
plot(Th, fill-false);

cout << "Nb err = " << err << endl;

assert(err==0);

<< volrll << endl;

The output of this script is:

Enter: BuildCube: 3
kind = 3 n tet Cube = 6 / n slip 6 19
Cube nv=210 nt=720 nbe=296
Out: BuildCube
Volume = 8, border area = 24

Label = 25, s = 4 110 : 25
Label = 37, s = 4 101 : 37
Label = 40, s = 4 011 : 40
Label = 42, s = 4 211 : 42
Label = 45, s = 4 121 : 45
Label = 57, s = 4 112 : 57
Volume region = 11: 8

Nb err = 0

142 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

o

X

o
1X

%
i

==

AY

N

i

T

I, ‘I
Y

l
]

SR

P

¥y
AN

Fig. 3.23: The 3D mesh of function cube(4, 5, 6, flags=3)

The command buildlayers

This mesh is obtained by extending a two dimensional mesh in the z-axis.
The domain 234 defined by the layer mesh is equal to Q34 = Qog X [zmin, zmaz] where Qa4 is the domain defined
by the two dimensional meshes. zmin and zmax are functions of {254 in R that defines respectively the lower surface

and upper surface of (23.
For a vertex of a two dimensional mesh V24 = (z;,;), we introduce the number of associated vertices in the z—axis

M; + 1.
We denote by M the maximum of M; over the vertices of the two dimensional mesh. This value is called the number
of layers (if Vi, M; = M then there are M layers in the mesh of 234). Vfd generated M + 1 vertices which are defined

by:

Vi=0,....M, V3 =(2;y:0i(2,)),

where (2; j);j—o.....a are the M + 1 equidistant points on the interval [zmin(V2%), zmax(V;24)):

VQd _ . ng
zi; = jda+ zmin(V2Y), da= zmaz(V;)Mzmm(f)

The function ¢;, defined on [zmin(V2?), zmax(V;2%)], is given by:
{ 0;0 if z = zmin(V29),

0i(z) = 0;; ifz€l0;;1,0;,],

with (6; ;)j—o.....m, are the M; + 1 equidistant points on the interval [zmin(V;??), zmax(V2?)].

Set a triangle K = (V;24, V24, V2%) of the two dimensional mesh. K is associated with a triangle on the upper surface
(resp. on the lower surface) of layer mesh:

(Vi?iflM J Vi%fiM ’ Vi?éflM) (resp. (Vi?i‘,iOa VZ%% g Vi%flo)-

Also K is associated with M volume prismatic elements which are defined by:

. _ 13d 13d 1s3d 1s3d 3d 3d
Vi=0,....,M, Hj;= (V3% Vi, Vis%, Vi1 Vissja1 Vissje1)-

Theses volume elements can have some merged point:

143

3.2. Mesh Generation

FreeFEM Documentation, Release 4.13

upper surface

1

Middle surface

/

Lower surfy

_

Fig. 3.24: Example of Layer mesh in three dimensions.

* 0 merged point : prism

* 1 merged points : pyramid

* 2 merged points : tetrahedra

* 3 merged points : no elements

The elements with merged points are called degenerate elements. To obtain a mesh with tetrahedra, we decompose the
pyramid into two tetrahedra and the prism into three tetrahedra. These tetrahedra are obtained by cutting the quadrilat-
eral face of pyramid and prism with the diagonal which have the vertex with the maximum index (see [HECHT1992]
for the reason of this choice).

The triangles on the middle surface obtained with the decomposition of the volume prismatic elements are the triangles
generated by the edges on the border of the two dimensional mesh. The label of triangles on the border elements and
tetrahedra are defined with the label of these associated elements.

The arguments of buildlayers is a two dimensional mesh and the number of layers M.
The parameters of this command are:

* zbound= [zmin, zmax] where zmin and zmax are functions expression.
Theses functions define the lower surface mesh and upper mesh of surface mesh.

¢ coef= A function expression between [0,1].
This parameter is used to introduce degenerate element in mesh.

The number of associated points or vertex V;2¢ is the integer part of coe f (V;24) M.
¢ region= This vector is used to initialize the region of tetrahedra.

This vector contains successive pairs of the 2d region number at index 27 and the corresponding 3d region number
at index 2¢ + 1, like change.

e labelmid= This vector is used to initialize the 3d labels number of the vertical face or mid face from the 2d
label number.

144 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

This vector contains successive pairs of the 2d label number at index 2¢ and the corresponding 3d label number
at index 2i + 1, like change.

¢ labelup= This vector is used to initialize the 3d label numbers of the upper/top face from the 2d region number.

This vector contains successive pairs of the 2d region number at index 2: and the corresponding 3d label number
atindex 2i + 1, like change.

¢ labeldown= Same as the previous case but for the lower/down face label.

Moreover, we also add post processing parameters that allow to moving the mesh. These parameters correspond to
parameters transfo, facemerge and ptmerge of the command line movemesh.

The vector region, labelmid, 1abelup and 1abeldown These vectors are composed of n; successive pairs of number
O;, N; where n; is the number (label or region) that we want to get.

An example of this command is given in the Build layer mesh example.

Tip

Cube
//Cube.idp
load "medit"
load "msh3"

func mesh3 Cube (int[int] &NN, real[int, int] &BB, int[int, int] &L){
real x0 = BB(0,0), x1 = BB(0,1);
real y® = BB(1,0), yl1 = BB(1,1);
real z0® BB(2,0), z1 BB(2,1);

int nx = NN[0O], ny = NN[1], nz = NN[2];

// 2D mesh
mesh Thx = square(nx, ny, [x0+(x1-x0)*x, y0+(yl-y0)*y]l);

// 3D mesh

int[int] rup = [0, L(2,1)], rdown=[0, L(2,0)];

int[int] rmid=[1, L(1,0), 2, L(0,1), 3, L(1,1), 4, LO,0];
mesh3 Th = buildlayers(Thx, nz, zbound=[z0,zl1],
labelmid=rmid, labelup = rup, labeldown = rdown);

return Th;

Tip

Unit cube
include "Cube.idp"

int[int] NN = [10,10,10]; //the number of step in each direction

real [int, int] BB = [[0,1],[0,1],[0,1]1]; //the bounding box

int [int, int] L = [[1,2],[3,4],[5,6]1]; //the label of the 6 face left,right, front,.
—back, down, right

3.2. Mesh Generation 145

=N

-

FreeFEM Documentation, Release 4.13

mesh3 Th = Cube(NN, BB, L);
medit("Th", Th);

Fig. 3.25: The mesh of a cube made with cube. edp

(N

Tip
Cone

An axisymtric mesh on a triangle with degenerateness
load "msh3"
load "medit"

// Parameters
real RR = 1;
real HH = 1;

int nn=10;

// 2D mesh

border Taxe(t=0, HH){x=t; y=0; label=0;}

border Hypo(t=1, 0){x=HH*t; y=RR*t; label=1;}

border Vert(t=0, RR){x=HH; y=t; label=2;}

mesh Th2 = buildmesh(Taxe(HH*nn) + Hypo(sqrt(HH*HH+RR*RR)*nn) + Vert(RR*nn));
plot(Th2, wait=true);

// 3D mesh

real h = 1./nn;

int MaxLayersT = (int(2*pi*RR/h)/4)*4;//number of layers
real zminT = 0;

real zmaxT = 2*pi; //height 2*pi

func fx = y*cos(z);

146 Chapter 3. Documentation

23

24

25

26

27

28

29

30

31

32

33

FreeFEM Documentation, Release 4.13

func fy = y*sin(z);

func fz = x;

int[int] rl1T = [0,0], r2T = [0,0,2,2], r4T = [0,2];

//trick function:

//The function defined the proportion

//of number layer close to axis with reference MaxLayersT

func deg = max(.01, y/max(x/HH, 0.4)/RR);

mesh3 Th3T = buildlayers(Th2, coef=deg, MaxLayersT,
zbound=[zminT, zmaxT], transfo-[fx, fy, fz],
facemerge=0, region-riT, labelmid-r2T);

medit("cone", Th3T);

Fig. 3.26: The mesh of a cone made with cone. edp

Tip

Buildlayer mesh
load "msh3"
load "TetGen"
load "medit"

// Parameters
int C1 = 99;
int C2 = 98;

// 2D mesh

border C01(t=0, pi){x=t; y=0; label=1;}

border C02(t=0, 2*pi){ x=pi; y=t; label=1;}
border C0O3(t=0, pi){ x=pi-t; y=2*pi; label-=1;}
border C04(t=0, 2*pi){ x=0; y=2*pi-t; label=1;}

border C11(t=0, 0.7){x=0.5+t; y=2.5; label=C1;}
border C12(t=0, 2){x=1.2; y=2.5+t; label=C1;}
border C13(t=0, 0.7){x=1.2-t; y=4.5; label=C1;}

3.2. Mesh Generation

147

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

FreeFEM Documentation, Release 4.13

border C14(t=0, 2){x=0.5; y=4.5-t; label=C1;}

border C21(t=0, 0.7){x=2.3+t; y=2.5; label=C2;}
border C22(t=0, 2){x=3; y=2.5+t; label=C2;}
border C23(t=0, 0.7){x=3-t; y=4.5; label=C2;}
border C24(t=0, 2){x=2.3; y=4.5-t; label=C2;}

mesh Th = buildmesh(C01(10) + CO2(10) + CO3(10) + CO4(10)
+ C11(5) + C12(5) + C13(5) + C14(5)
+ C21(-5) + C22(-5) + C23(-5) + C24(-5));

mesh Ths = buildmesh(C01(10) + CO2(10) + CO3(10) + CO4(10)
+ C11(5) + C12(5) + C13(5) + C14(5));

// Construction of a box with one hole and two regions
func zmin = 0.;

func zmax = 1.;

int MaxLayer = 10;

func XX = x*cos(y);
func YY = x*sin(y);
func 77 = z;

int[int] rl1 = [0, 41], r2 = [98, 98, 99, 99, 1, 56];

int[int] r3 [4, 12]; //the triangles of uppper surface mesh
//generated by the triangle in the 2D region
//of mesh Th of label 4 as label 12

[4, 45]; //the triangles of lower surface mesh
//generated by the triangle in the 2D region
//of mesh Th of label 4 as label 45.

int[int] r4

mesh3 Th3 = buildlayers(Th, MaxLayer, zbound-[zmin, zmax], region-ril,
labelmid=r2, labelup-=r3, labeldown-=r4);
medit("box 2 regions 1 hole", Th3);

// Construction of a sphere with TetGen
func XX1 = cos(y)*sin(x);

func YY1 sin(y)*sin(x);

func 7ZZ1 = cos(x);

real[int] domain = [0., 0., 0., 0, 0.001];

string test = "paACQ";

cout << "test = " << test << endl;

mesh3 Th3sph = tetgtransfo(Ths, transfo=[XX1, YY1, Zz1],
switch=test, nbofregions=1, regionlist=domain);

medit("sphere 2 regions", Th3sph);

Remeshing

(Note W

148 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

if an operation on a mesh3 is performed then the same operation is applyed on its surface part (its meshS associated)

The command change

This command changes the label of elements and border elements of a mesh. It’s the equivalent command in 2d mesh
case.

Changing the label of elements and border elements will be done using the keyword change. The parameters for this
command line are for two dimensional and three dimensional cases:

e reftet=is a vector of integer that contains successive pairs of the old label number to the new label number.
e refface=is a vector of integer that contains successive pairs of the old region number to new region number.
» flabel=is an integer function given the new value of the label.

« fregion= is an integer function given the new value of the region.

e rmInternalFaces=is a boolean, equal true to remove the internal faces.

» rmlfaces= is a vector of integer, where triangle’s label given are remove of the mesh

These vectors are composed of n; successive pairs of numbers O, N where n; is the number (label or region) that we
want to change. For example, we have:

label = [Ol,Nl, -~'7Onl,an]
region = [O1, Ny, ...,Op,, Ny,]

An example of use:

// Mesh
mesh3 Thl = cube(10, 10);
mesh3 Th2 cube(20, 10, [x+1, y,z]);

int[int] r1=[2,0];
plot(Thl, wait=true);

Thl = change(Thl, label=rl1); //change the label of Edges 2 in 0.
plot(Thl, wait=true);

// boundary label: 1 -> 1 bottom, 2 -> 1 right, 3->1 top, 4->1 left boundary label is 1
int[int] re=[1,1, 2,1, 3,1, 4,1]

Th2=change (Th2,refe=re);

plot(Th2,wait=1) ;

The command trunc

This operator have been introduce to remove a piece of mesh or/and split all element or for a particular label element
The three named parameter - boolean function to keep or remove elements - split= sets the level n of triangle splitting.
each triangle is splitted in n x n (one by default) - freefem:label= sets the label number of new boundary item (1 by
default)

An example of use

load "msh3"
load "medit"
int nn=8;

(continues on next page)

3.2. Mesh Generation 149

FreeFEM Documentation, Release 4.13

(continued from previous page)

mesh3 Th=cube(nn,nn,nn);

// remove the small cube $]1/2,1[42$

Th= trunc(Th, ((x<0.5) |(y< 0.5)| (2<0.5)), split=3, label=3);
medit("cube",Th);

The command movemesh

3D meshes can be translated, rotated, and deformed using the command line movemesh as in the 2D case (see section
movemesh). If () is tetrahedrized as T, (2), and ®(z,y) = (®1(x,y, 2), P2(x, y, 2), P3(z, y, 2)) is the transformation
vector then ®(T7},) is obtained by:

mesh3 Th = movemesh(Th, [Phil, Phi2, Phi3], ...);

mesh3 Th

movemesh3(Th, transfo=[Phil, Phi2, Phi3], ...); (syntax with transfo=)

The parameters of movemesh in three dimensions are:

transfo= sets the geometric transformation ®(z,y) = (®1(x, y, 2), P2(x, y, 2), P3(z, y, 2))

region= sets the integer labels of the tetrahedra.
0 by default.

label= sets the labels of the border faces.
This parameter is initialized as the label for the keyword change.

facemerge= An integer expression.
When you transform a mesh, some faces can be merged. This parameter equals to one if the merges’ faces
is considered. Otherwise it equals to zero. By default, this parameter is equal to 1.

ptmerge = A real expression.
When you transform a mesh, some points can be merged. This parameter is the criteria to define two
merging points. By default, we use

ptmerge = le — 7 Vol(B),
where B is the smallest axis parallel boxes containing the discretion domain of {2 and Vol(B) is the volume of

this box.

orientation = An integer expression equal 1, give the oientation of the triangulation, elements must be in the
reference orientation (counter clock wise) equal -1 reverse the orientation of the tetrahedra

Note

The orientation of tetrahedra are checked by the positivity of its area and automatically corrected during the building
of the adjacency.

An example of this command can be found in the Poisson’s equation 3D example.

load

"medit"

include "cube.idp"

int[int] Nxyz=[20,5,5];

real [int,int] Bxyz=[[0.,5.],[0.,1.],[0.,1.1];
int [int,int] Lxyz=[[1,2],[2,2]1,[2,2]1];

real E = 21.5e4;

real sigma = 0.29;

(continues on next page)

150

Chapter 3. Documentation

22

23

24

25

26

27

28

FreeFEM Documentation, Release 4.13

(continued from previous page)
real mu = E/(2*(l+sigma));
real lambda = E*sigma/((l+sigma)*(1-2*sigma));
real gravity = -0.05;
real sqrt2=sqrt(2.);

mesh3 Th=Cube (Nxyz,Bxyz,Lxyz);
fespace Vh(Th, [P1,P1,P1]);
Vh [ul,u2,u3], [vl,v2,v3];

macro epsilon(ul,u2,u3) [dx(ul),dy(u2),dz(u3), (dz(u2)+dy(u3))/sqrt2,(dz(ul)+dx(u3))/
—sqrt2, (dy(ul)+dx(u2))/sqrt2] // EOM
macro div(ul,u2,u3) (dx(ul)+dy(u2)+dz(u3)) // EOM

solve Lame([ul,u2,u3],[vl,v2,v3])=
int3d(Th) (
lambda*div(ul,u2,u3)*div(vl,v2,v3)
+2.*mu*(epsilon(ul,u2,ul3) '*epsilon(vl,v2,v3))
)
- int3d(Th) (gravity*v3)
+ on(l,ul=0,u2=0,u3=0);

real dmax= ul[].max;
real coef= 0.1/dmax;

int[int] ref2=[1,0,2,0]; // array

mesh3 Thm=movemesh(Th, [x+ul*coef,y+u2*coef,z+u3*coef],label=ref2);

// mesh3 Thm=movemesh3(Th, transfo=[x+ul*coef,y+u2*coef,z+u3*coef],label=ref2); older.
—ssyntax

Thm=change (Thm, label=ref2);

plot(Th,Thm, wait=1,cmm="coef amplification = "+coef);

movemesh doesn’t use the prefix tranfo= [.,.,.], the geometric transformation is directly given by [.,.,.] in the arguments
list

The command extract

This command offers the possibility to extract a boundary part of a mesh3

e refface, is a vector of integer that contains a list of triangle face references, where the extract function must
be apply.

¢ label , is a vector of integer that contains a list of tetrahedra label

load"msh3"

int nn = 30;

int[int] labs = [1, 2, 2, 1, 1, 2]; // Label numbering
mesh3 Th = cube(nn, nn, nn, label=labs);

// extract the surface (boundary) of the cube

int[int] 1llabs = [1, 2];

meshS ThS = extract(Th,label=11labs);

3.2. Mesh Generation 151

FreeFEM Documentation, Release 4.13

The command buildSurface

This new function allows to build the surface mesh of a volume mesh, under the condition the surface is the boundary of
the volume. By definition, a mesh3 is defined by a list of vertices, tetrahedron elements and triangle border elements.
buildSurface function create the meshS corresponding, given the list vertices which are on the border domain, the
triangle elements and build the list of edges. Remark, for a closed surface mesh, the edges list is empty.

The command movemesh23

A simple method to tranform a 2D mesh in 3D Surface mesh. The principe is to project a two dimensional domain in
a three dimensional space, 2d surface in the (X,y,z)-space to create a surface mesh 3D, meshS.

Warning

Since the release 4.2.1, the FreeFEM function movemesh23 returns a meshS type.

This corresponds to translate, rotate or deforme the domain by a displacement vector of this form ®(x,y) =
(2L(z,y), P2(z,y), P3(z,y)).

The result of moving a two dimensional mesh Th2 by this three dimensional displacement is obtained using:

| ["“*meshS*"‘ Th3 = movemesh23(Th2, transfo=[Phi(1l), Phi(2), Phi(3)1);

The parameters of this command line are:

o transfo= [®1, @2, @3] sets the displacement vector of transformation ®(x,y) =
[@1(z,y), P2(z,y), P3(z, y)].

¢ label= sets an integer label of triangles.

e orientation= sets an integer orientation to give the global orientation of the surface of mesh. Equal 1, give a
triangulation in the reference orientation (counter clock wise) equal -1 reverse the orientation of the triangles

* ptmerge= A real expression.
When you transform a mesh, some points can be merged. This parameter is the criteria to define two
merging points. By default, we use

ptmerge = le — 7 Vol(B),

where B is the smallest axis, parallel boxes containing the discretized domain of 2 and Vol(B) is the volume
of this box.

We can do a “gluing” of surface meshes using the process given in Change section. An example to obtain a three
dimensional mesh using the command line tetg and movemesh23 is given below.

load "msh3"
load "tetgen"

// Parameters

real x10 = 1.;
real x11 = 2.;
real y10 = 0.;
real yl11 = 2.%*pi;

func ZZ1lmin = 0;

(continues on next page)

152 Chapter 3. Documentation

20

21

22

23

24

25

26

27

28

29

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

57

58

59

60

61

FreeFEM Documentation, Release 4.13

(continued from previous page)

func ZZlmax = 1.5;

func XX1 = x;
func YY1 = y;
real x20 = 1.;
real x21 = 2.;
real y20-0.;

real y21=1.5;
func 772 = y;
func XX2 = x;

func YY2min = 0.;
func YY2max = 2*pi;

real x30=0.;
real x31=2%pi;
real y30=0.;
real y31=1.5;

func XX3min
func XX3max .3
func YY3 = x;
func 773 = vy;

1
N =

// Mesh

mesh Thsql = square(5, 35, [x10+(x11-x10)*x, y10+(yll-y10)*y]);
mesh Thsq2 = square(5, 8, [x20+(x21-x20)*x, y20+(y21-y20)*y]);
mesh Thsq3 = square(35, 8, [x30+(x31-x30)*x, y30+(y31-y30)*y]);

// Mesh 2D to 3D surface

meshS Th31h
meshS Th31b

meshS Th32h
meshS Th32b

meshS Th33h
meshS Th33b

movemesh23(Thsql, transfo=[XX1, YY1, ZZlmax], orientation=1);

movemesh23(Thsql, transfo=[XX1, YY1, ZZlmin], orientation=-1);
movemesh23(Thsq2, transfo=[XX2, YY2max, ZZ2], orientation=-1);
movemesh23(Thsq2, transfo=[XX2, YY2min, ZZ2], orientation=1);
movemesh23(Thsq3, transfo=[XX3max, YY3, ZZ3], orientation=1);
movemesh23(Thsq3, transfo=[XX3min, YY3, ZZ3], orientation=-1);

// Gluing surfaces
meshS Th33 = Th31lh + Th31b + Th32h + Th32b + Th33h + Th33b;
plot(Th33, cmm="Th33");

// Tetrahelize the interior of the cube with TetGen

real[int] domain =[1.5, pi, 0.75, 145, 0.0025];

meshS Thfinal = tetg(Th33, switch="paAAQY", regionlist=domain);
plot(Thfinal, cmm="Thfinal");

// Build a mesh of a half cylindrical shell of interior radius 1, and exterior radius 2.

—and a height of 1.5
func mv2x = x*cos(y);
func mv2y = x*sin(y);

(continues on next page)

3.2. Mesh Generation

153

62

63

64

FreeFEM Documentation, Release 4.13

func mv2z = z;
meshS Thmv2 = movemesh(Thfinal, transfo=[mv2x, mv2y, mv2z], facemerge=0);
plot(Thmv2, cmm="Thmv2");

(continued from previous page)

3d Meshing examples

Tip

Lake

load "msh3"
load "medit"

// Parameters
int nn = 5;

// 2D mesh

border cc(t=0, 2*pi){x=cos(t); y=sin(t); label=1;}

mesh Th2 = buildmesh(cc(100));

// 3D mesh

int[int] rup = [0, 2], rlow = [0, 1];
int[int] rmid = [1, 1, 2, 1, 3, 1, 4,
func zmin = 2-sqrt(4- (X*x+y*y));

func zmax = 2-sqrt(3.);

mesh3 Th = buildlayers(Th2, nn,

coef-max((zmax-zmin) /zmax, 1./nn),

zbound=[zmin, zmax],
labelmid=rmid,
labelup=rup,
labeldown=rlow) ;

medit("Th", Th);

11;

Ve

Tip

Hole region
load "msh3"
load "TetGen"
load "medit"

// 2D mesh

mesh Th = square(10, 20, [x*pi-pi/2, 2*y*pil); //]-pi/2, pi/2[X]0,2pi[

// 3D mesh
//parametrization of a sphere
func f1 = cos(x)*cos(y);

func £2 = cos(x)*sin(y);
func £3 = sin(x);
154 Chapter 3. Documentation

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

6

FreeFEM Documentation, Release 4.13

//partial derivative of the parametrization
func flx = sin(x)*cos(y);

func fly = -cos(x)*sin(y);

func f2x = -sin(x)*sin(y);

func f2y = cos(x)*cos(y);

func £3x = cos(x);

func f3y = 0;

//M = DFAt DF

func ml11 = f1x+2 + £2x22 + £3x12;

func m21 = fix*fly + £2x*f2y + f3x*f3y;
func m22 = fly*2 + f2y*2 + f3y+2;

func perio = [[4, y]1, [2, y1, [1, x], [3, x]];

real hh = 0.1;

real vv = 1/squareChh);

verbosity = 2;

Th = adaptmesh(Th, mll*vv, m21*vv, m22*vv, IsMetric=1, periodic=perio);
Th = adaptmesh(Th, mll*vv, m21*vv, m22*vv, IsMetric=1, periodic=perio);
plot(Th, wait=true);

//construction of the surface of spheres
real Rmin = 1.;

func flmin = Rmin*f1;

func f2min = Rmin*f2;

func f3min = Rmin*f3;

meshS ThSsph = movemesh23(Th, transfo=[flmin, f2min, f3min]);

real Rmax = 2.;

func flmax = Rmax*fl;
func f2max = Rmax*f2;
func f3max = Rmax*f3;

meshS ThSsph2 = movemesh23(Th, transfo=[flmax, f2max, f3max]);

//gluing meshes

meshS ThS = ThSsph + ThSsph2;

cout << " TetGen call without hole " << endl;
real[int] domain2 = [1.5, 0., 0., 145, 0.001, 0.5, 0., 0., 18, 0.001];

medit("Sphere with two regions", Th3fin);

cout << " TetGen call with hole " << endl;
real[int] hole = [0.,0.,0.];
real[int] domain = [1.5, 0., 0., 53, 0.001];
mesh3 Th3finhole = tetg(ThS, switch="paAAQYY",
nbofholes=1, holelist=hole, nbofregions=1, regionlist=domain);
medit("Sphere with a hole", Th3finhole);

&

mesh3 Th3fin = tetg(ThS, switch="paAAQYY", nbofregions=2, regionlist=domain2);

3.2. Mesh Generation

155

FreeFEM Documentation, Release 4.13

Ve

-
Tip

Build a 3d mesh of a cube with a balloon

load "msh3"

load "TetGen"

load "medit"

include "MeshSurface.idp"

// Parameters

real hs = 0.1; //mesh size on sphere

int[int] N = [20, 20, 20];

real [intyint] B = [[_1! 1]! [_1! 1]; [_1; 1]];

int [int,int] L = [[1, 2], [3, 41, [5, 6]11;

// Meshes

meshS ThH = SurfaceHex(N, B, L, 1);

meshS ThS = Sphere(0.5, hs, 7, 1);

meshS ThHS = ThH + ThS;

medit ("Hex-Sphere", ThHS);

real voltet = (hs*3)/6.;

cout << "voltet = " << voltet << endl;

real[int] domain = [0, ®, O, 1, voltet, O, O, 0.7, 2, voltet];

mesh3 Th = tetg(ThHS, switch="pgaAAYYQ", nbofregions=2, regionlist=domain);

medit("Cube with ball", Th);
. J

(a) The surface mesh of the hex with internal sphere (b) The tetrahedral mesh of the cube with internal ball
Fig. 3.27: Cube sphere
156 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

3.2.3 The type meshS in 3 dimension

Warning

Since the release 4.2.1, the surface mesh3 object (list of vertices and border elements, without tetahedra elements)
is remplaced by meshsS type.

Commands for 3d surface mesh generation

The command square3

The function square3 like the function square in 2d is the simple way to a build the unit square plan in the space
R¥. To use this command, it is necessary to load the pluging msh3 (need load "msh3"). A square in 3d consists in
building a 2d square which is projected from R” to R¥. The parameters of this command line are:

* n,m generates a nxm grid in the unit square
e [.,.,.1is[®1, 2, $3] is the geometric transformation from R¥ to R¥. By default, [&1, $2, $3] = [x,y,0]

e orientation= equal 1, gives the orientation of the triangulation, elements are in the reference orientation
(counter clock wise) equal -1 reverse the orientation of the triangles it’s the global orientation of the surface
1 extern (-1 intern)

real R = 3, r=1;
real h = 0.2; //
int nx = R*2%pi/h;
int ny = r*2*%pi/h;

func torex= (R+r*cos(y*pi*2))*cos(x*pi*2);
func torey= (R+r*cos(y*pi*2))*sin(x*pi*2);
func torez= r*sin(y*pi*2);

meshS ThS=square3(nx,ny, [torex,torey,torez],orientation=-1) ;

The following code generates a 3 x 4 x 5 grid in the unit cube [0, 1] with a clock wise triangulation.

surface mesh builders

Adding at the top of a FreeFEM script include "MeshSurface.idp", constructors of sphere, ellipsoid, surface mesh
of a 3d box are available.

e SurfaceHex(N, B, L, orient)

this operator allows to build the surface mesh of a 3d box

int[int] N=[nx,ny,nz]; // the number of seg in the 3 direction

real [int,int] B=[[xmin,xmax],[ymin,ymax],[zmin,zmax]]; // bounding bax

int [int,int] L=[[1,2],[3,4],[5,6]]; // the label of the 6 face left,right, front, back, down, right

orient the global orientation of the surface 1 extern (-1 intern),

returns a meshS type
e Ellipsoide (RX, RY, RZ, h, L, 0X, 0Y, 0Z, orient)
— his the mesh size

— L is the label

3.2. Mesh Generation 157

22

23

24

25

26

27

28

29

FreeFEM Documentation, Release 4.13

orient the global orientation of the surface 1 extern (-1 intern)

0X, OY, OZ are real numbers to give the Ellipsoide center (optinal, by default is (0,0,0))

where RX, RY, RZ are real numbers such as the parametric equations of the ellipsoid is:

returns a meshS type

T z=Rx cos(u)cos(v)+O0x
Yu € [—5 5[and v € [0, 27], | y=Ry voe(u)z”;(v)JrOy
z=Rz sin(v)+0z

e Sphere(R, h, L, 0X, 0Y, OZ, orient)
— where R is the raduis of the sphere,

0X, QY, OZ are real numbers to give the Ellipsoide center (optinal, by default is (0,0,0))

h is the mesh size of the shpere

L is the label the the sphere

orient the global orientation of the surface 1 extern (-1 intern)

returns a meshS type

func meshS SurfaceHex(int[int] & N,real[int,int] &B ,int[int,int] & L,int orientation){
real x0=B(0,0),x1=-B(0,1);
real y0=B(1,0),y1=B(1,1);
real z0=B(2,0),z1=B(2,1);

int nx=N[0],ny=N[1],nz=N[2];
mesh Thx square(ny,nz, [y0+(yl-y0)*x,z0+(z1-z0) *y]);

mesh Thy = square(nx,nz, [x0+(x1-x0)*x,z0+(z1-z0)*y]);
mesh Thz square(nx,ny, [x0+(x1-x0) “x,y0+(y1-y0) “y]);

int[int] refx=[0,L(0,0)],refX=[0,L(0,1)]; // Xmin, Ymax faces labels renumbering
int[int] refy=[0,L(1,0)],refY=[0,L(1,1)]; // Ymin, Ymax faces labesl renumbering
int[int] refz=[0,L(2,0)],refZ=[0,L(2,1)]; // Zmin, Zmax faces labels renumbering

meshS Thx0® = movemesh23(Thx,transfo=[x0,x,y],orientation=-orientation,label=refx);
meshS Thxl = movemesh23(Thx,transfo=[x1,x,y],orientation=+orientation,label=refX);
meshS Thy® = movemesh23(Thy,transfo-[x,y0,y],orientation-+orientation,label-refy);
meshS Thyl = movemesh23(Thy,transfo-[x,yl,y],orientation--orientation,label-refY);
meshS Thz® = movemesh23(Thz,transfo=[x,y,z0],orientation--orientation,label-refz);
meshS Thzl = movemesh23(Thz,transfo=[x,y,z1],orientation=+orientation,label=refZ7);
meshS Th= Thx0+Thx1+Thy0®+Thy1+Thz0+Thz1;

return Th;

}

func meshS Ellipsoide (real RX,real RY,real RZ,real h,int L,real Ox,real Oy,real Oz,int.
—orientation) {

mesh Th=square(10,20, [x*pi-pi/2,2*y*pil); // $]\frac{-pi}{2},frac{-pi}{2}[\
—times]®,2\pi[$

// a parametrization of a sphere

func f1 =RX*cos(x)*cos(y);

(continues on next page)

158 Chapter 3. Documentation

41

42

43

44

45

46

FreeFEM Documentation, Release 4.13

(continued from previous page)

func f2 =RY*cos(x)*sin(y);
func £f3 =RZ*sin(x);

// partiel derivative
func flx= -RX*sin(x)*cos(y);
func fly= -RX*cos(x)*sin(y);
func f2x= -RY*sin(x)*sin(y);
func f2y= +RY*cos(x)*cos(y);
func f3x=-RZ*cos(x);
func f3y=0;
// the metric on the sphere $ M = DFAt DF §
func m11=£f1x22+£2x42+£3x2;
func m21=f1x*fly+£2x*f2y+£f3x*£3y;
func m22=f1y*2+f2y*2+£3y*2;
func perio=[[4,y],[2,y],[1,x],[3,x]]; // to store the periodic condition
real hh=h;// hh mesh size on unite sphere
real vv= 1/squareChh);
Th=adaptmesh(Th,ml1*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,ml1*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,m11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,m11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
int[int] ref=[0,L];
meshS ThS=movemesh23(Th,transfo=[f1,f2,f3],orientation-orientation,refface=ref);
ThS=mmgs (ThS,hmin=h,hmax=h,hgrad=2.);

return ThS;

}

func meshS Ellipsoide (real RX,real RY,real RZ,real h,int L,int orientation) {
return Ellipsoide (RX,RY,RZ,h,L,0.,0.,0.,orientation);

}

func meshS Sphere(real R,real h,int L,int orientation) {

return Ellipsoide(R,R,R,h,L,orientation);

}

func meshS Sphere(real R,real h,int L,real Ox,real Oy,real 0z,int orientation) {
return Ellipsoide(R,R,R,h,L,0x,0y,0z,0orientation);

}

2D mesh generators combined with movemesh23

FreeFEM ‘s meshes can be built by the composition of the movemesh23 command from a 2d mesh generation. The
operation is a projection of a 2d plane in R¥ following the geometric transformation [®1, ®2, ®3].

load "msh3"

real 1 = 3;

border a(t=-1,1){x=t; y=-1;label=1;};

border b(t=-1,1){x=1; y=t;label=1;};

border c(t=1,-1){x=t; y=1;label=1;};

border d(t=1,-1){x=-1; y=t;label=1;};

int n = 100;

border i(t=0,2*pi){x=1.1%cos(t);y=1.1*%sin(t);label=5;};
mesh th= buildmesh(a(m)+b@)+c(m)+d(M)+i(-n));

meshS Th= movemesh23(th,transfo=[x,y,cos(x)*2+sin(y)*2]);

3.2. Mesh Generation 159

FreeFEM Documentation, Release 4.13

Remeshing

The command trunc

This operator allows to define a meshS by truncating another one, i.e. by removing triangles, and/or by splitting each
triangle by a given positive integer s. In a FreeFEM script, this function must be called as follows:

meshS TS2= trunc (TS1, boolean function to keep or remove elements, split = s, label = ...)

The command has the following arguments:
* boolean function to keep or remove elements
e split= sets the level n of triangle splitting. each triangle is splitted in n x n (one by default)
¢ label= sets the label number of new boundary item (1 by default)

An example of how to call the function

real R 3, r=1;

real h = 0.2; //

int nx = R*2*pi/h;

int ny = r*2*pi/h;

func torex= (R+r*cos(y*pi*2))*cos(x*pi*2);

func torey= (R+r*cos(y*pi*2))*sin(x*pi*2);

func torez= r*sin(y*pi*2);

// build a tore

meshS ThS=square3(nx,ny, [torex,torey,torez]) ;
ThS=trunc(ThS, (x < 0.5) | (y < 0.5) | (z > 1.), split=4);

The command movemesh

Like 2d and 3d type meshes in FreeFEM, meshS can be translated, rotated or deformated by an application [®1, $2,
®3]. The image T}, (1) is obtained by the command movemeshs.

The parameters of movemeshS are:
* transfo= sets the geometric transformation ®(x,y) = (®1(z,y, 2), P2(z, y, 2), P3(x,y, 2))

¢ region= sets the integer labels of the triangles.
0 by default.

¢ label= sets the labels of the border edges.
This parameter is initialized as the label for the keyword change.

« edgemerge= An integer expression.
When you transform a mesh, some triangles can be merged and fix the parameter to 1, else O By default,
this parameter is equal to 1.

e ptmerge = A real expression.
When you transform a mesh, some points can be merged. This parameter is the criteria to define two
merging points. By default, we use

ptmerge = le — 7 Vol(B),

where B is the smallest axis parallel boxes containing the discretion domain of 2 and Vol(B) is
the volume of this box.

160 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

e orientation = An integer expression
equal 1, give the oientation of the triangulation, elements must be in the reference orientation (counter
clock wise) equal -1 reverse the orientation of the triangles. It’s the global orientation of the normals at the
surface 1 extern (-1 intern)

Example of using

meshS Thl = square3(n,n,[2*X,y,1],orientation=-1);
meshS Th2=movemeshS(Thl, transfo=[x,y,z]);
meshS Th3=movemesh(Thl, [x,y,z]);

The command change

Equivalent for a 2d or 3d mesh, the command change changes the label of elements and border elements of a meshsS.
The parameters for this command line are:

e reftri=is a vector of integer that contains successive pairs of the old label number to the new label number for
elements.

» refedge= is a vector of integer that contains successive pairs of the old region number to new region number
for boundary elements.

e flabel= is an integer function given the new value of the label.
» fregion= is an integer function given the new value of the region.
« rmledges= is a vector of integer, where edge’s label given are remove of the mesh

These vectors are composed of n; successive pairs of numbers O, N where n; is the number (label or region) that we
want to change. For example, we have:

label = [01,]\/17 ...707“,an]
region = [O1, Ny, ...,Op,, Ny,]

Link with a mesh3

In topology and mathematics, the boundary of a subset S of a topological space X is the set of points which can be
approached both from S and from the outside of S. The general definitions to the boundary of a subset S of a topological
space X are:

* the closure of S without the interior of S 95 = .S \S .
* the intersection of the closure of S with the closure of its complement 95 = S N (X\S5).

* the set of points p of X such that every neighborhood of p contains at least one point of S and at least one point
not of S.

More concretely in FreeFEM, the gestion of a 3D mesh is as follows. Let be € a subset of R? and 052 is boundary, the
finite element discretization €2, of this domain gives:

« a mesh3 type, denotes Th3, meshing the volume domain. It contains all the nodes, the tetrahedrons €2; such as
Qp, = U;£2; and the list of triangles describing the boundary domain

* a meshS type, denotes ThS, meshing the boundary of the volume domain. Typically, containing the nodes be-
longing to the boundary of Th3 and, if it exists the boundary triangles and the edges.

Remark: Condition of meshS existence | In FreeFEM, a meshS can be defined in 2 cases such as:
* Th3 C ThS where it exactly describes the bounder of Th3.

* amehS is an explicite surface mesh given by a list of vertices, triangle finite elements and boundary edge elements
(can be optional follows the geometry domain)

3.2. Mesh Generation 161

FreeFEM Documentation, Release 4.13

Note

Hence, if an input mesh (.msh freefem or .mesh format) contains a list of vertices, tetrahedra, triangles and edges,
FreeFEM builds a mesh3 whitch contains explicitly a surface mesh type meshsS.

The command Gamma

The command Gamma allows to build and manipulate the border mesh independly of a volume mesh such as the surface
is described by triangle elements and edges border elements in 3d. Use this function, suppose that the mesh3 object
even contains the geometric description of its surface. That means, the input mesh explicitly contains the list of vertices,
tetrahedra, triangles and edges. In case where the surface mesh doesn’t exist, before calling Gamma, must build it by
calling the buildSurface function (see the next function description).

load "msh3"

int n= 10;

int nvb = (n+1)43 - (n-1)23;// Nb boundary vertices

int ntb = n*n*12; // Nb of Boundary triangle

mesh3 Th=cube(n,n,n);

Th = buildBdMesh(Th); // build the surface mesh

// build Thl, the surface of Th, defined by triangles elements and edges border.,
—elements list

meshS Thl = Th.Gamma;

The command buildBdMesh

Let Th3 a volume mesh (mesh3 type) ; such as the geometry description is a list of vertices, tetrahedra elements
and triangle border elements. FreeFEM can generate the surface mesh associated to Th3. The intern mechanism of
FreeFEM created directly the meshS associated to Th3 and accessible by the command meshS ThS = Th3.Gamma;.

The command savesurfacemesh

Available for 3d meshes, the command savesurfacemesh saves the entire surface of a 3d volume mesh3 at the format
.mesh. Two possibilies about the mesh3 surface:

* the geometric surface isn’t explicite, that means the mesh3 doesn’t contain surface elements (triangles) and border
surface elements (edge). The surface is defined by the border of the volume. Hence, savesurfacemesh returns
the list of vertices and faces of the volume mesh, according to a local numbring at the border mesh.

¢ the geometric surface is explicite and known by the mesh3 type. This may be due to the nature of the data
mesh (list of vertices, tetrahedra, triangles, edges) or a surface building by FreeFEM with the calling of
buildSurface operator. In this case, savesurfacemesh allows to save the real geometry of the surface 3d
mesh (list of vertices, triangles, edges)

Example of use

load "msh3"

mesh3 Th3=cube(10,15,5);

savemesh(Th3, "surf.mesh");
savesurfacemesh(Th3, "surfreal.mesh");
mesh3 ThS3 = trunc(Th3, 1, split=3);

meshS ThSS = ThS3.Gamma;
savesurfacemesh(ThS3, "surfacesplit.mesh");
savemesh(ThSS, "GammaSplit.mesh");

162 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

volume mesh and meshS=NULL

savesurfmesh(Th,filename_mesh) write in the file the vertices list and the triangle list (face of the volum mesh) accord-
ing to a numbering in local surface

savesurfmesh(Th,filename_points,filename_faces) The operation does the same thing that the first exept to

Glue of meshS meshes

A surface 3d mesh can be the result of the generation of several assembled meshes, with caution of the right orientation
at the merged interfaces.

meshS Thl = square3(n,n,[2*X,y,1],orientation=-1);
meshS Th2 = square3(n,n,[2*Xx,y,0],orientation=1);
meshS Thill square3(n,n,[2*x,1,y],orientation=1);
meshS Th22 square3(n,n,[2*x,0,y],orientation=-1);
meshS Th5 = square3(n,n,[1,y,x]);
meshS Th6 = square3(n,n,[2,y,x],orientation=1);
meshS Th = Th1+Th2+Th11+Th22+Th5+Th6;
assert (Th.nbnomanifold==40);

Warning

For the moment, the case of no manifold mesh are not considered in FreeFEM. To check if the meshS contains no
manifold elements, the command nbnomanifold.

3.2.4 The type meshL in 3 dimension

Commands for 3d curve mesh generation

The command segment

The function segment is a basic command to define a curve in 3D space.
The parameters of this command line are:
* n generates a n subsegments from the unit line

e [.,.,.1is[@1, 2, 3] is the geometric transformation from R¥ to R¥. By default, [®1, $2,
®31]=[x,0,0]

* orientation=equal 1, gives the orientation of the triangulation, elements are in the reference orien-
tation (counter clock wise) equal -1 reverse the orientation of the triangles it’s the global orientation
of the surface 1 extern (-1 intern)

¢ cleanmesh-= is a boolean, allowing remove the duplicated nodes
» removeduplicate= is a boolean, allowing remove the duplicated elements and border elements

* precismesh this parameter is the criteria to define two merging points.
By default, it value is le-7 and define the smallest axis parallel boxes containing the discretion
domain of)

By defaut, the border points are marked by label 1 and 2.

real R = 3, r=1;
real h = 0.1; //
int nx = R*2%pi/h;

(continues on next page)

3.2. Mesh Generation 163

FreeFEM Documentation, Release 4.13

(continued from previous page)
func torex= (R+r*cos(y*pi*2))*cos(x*pi*2);
func torey= (R+r*cos(y*pi*2))*sin(x*pi*2);
func torez= r*sin(y*pi*2);
meshL. Th=segment (nx, [torex,torey,torez],removeduplicate=true) ;

The following code generates a 10 subsegments from the unit line with a clock wise triangulation, according to the
geometric transformation [torex,torey,torez] and removing the duplicated points/elements

The command buildmesh

This operator allows to define a curve mesh from multi-borders. The domain can be defined by a parametrized curve
(keyword border), such as Th1 in the following example or piecewise by parametrized curves, such as the construction
of the mesh Th2.

The pieces can only intersect at their endpoints, but it is possible to join more than two endpoints.

load "msh3"

// conical helix
border E1(t=0, 10.*pi){x=(1.)*t*cos(t); y=-(1.)*t*sin(t); z=t;}
meshL Thl=buildmeshL(E1(1000));

int upper = 1, others = 2, inner = 3, n = 10;

border DO1(t=0, 1) {x=0; y=-1+t; }

border DO2(t=0, 1){x=1.5-1.5*t; y=-1; z=3;label=upper;}
border DO3(t=0, 1){x=1.5; y=-t; z=3;label=upper;}

border DO4(t=0, 1){x=1+0.5*t; y=0; z=3;label=others;}
border DO5(t=0, 1){x=0.5+0.5*t; y=0; z=3;label-others;}
border DO6(t=0, 1){x=0.5*t; y=0; z=3;label-others;}
border D11(t=0, 1){x=0.5; y=-0.5*t; z=3;label=inner;}
border D12(t=0, 1){x=0.5+0.5*t; y=-0.5; z=3;label=inner;}
border D13(t=0, 1){x=1; y=-0.5+0.5*t; z=3;label=inner;}

meshL Th2=buildmeshL(D®1(-n) + DO2(-n) + DO3(-n) + DO4(-n) + DO5(-n)
+ DO6(-n) + D11(n) + D12(n) + D13(n));

Remeshing

The command trunc

This operator allows to define a meshL by truncating another one, i.e. by removing segments, and/or by splitting each
element by a given positive integer s. Here, an example to use this function:

meshL ThL.2= trunc (ThL1, boolean function to keep or remove elements, split = s, label = ...)
The command has the following arguments:
* boolean function to keep or remove elements
» split= sets the level n of edge splitting, each edge is splitted in n subpart(one by default)
¢ label= sets the label number of new boundary item (1 by default)
* new2old

e 0ld2new

164 Chapter 3. Documentation

1

2

3

FreeFEM Documentation, Release 4.13

renum

orientation=
equal 1, gives the orientation of the triangulation, elements are in the reference orientation (counter clock
wise) equal -1 reverse the orientation of the triangles it’s the global orientation of the surface 1 extern (-1
intern)

cleanmesh-= is a boolean, allowing remove the duplicated nodes
removeduplicate= is a boolean, allowing remove the duplicated elements and border elements

precismesh this parameter is the criteria to define two merging points.
By default, it value is le-7 and define the smallest axis parallel boxes containing the discretion domain of

Q

An example of how to call this function

int nx=10;
meshL Th=segment(nx, [5.*x,cos(pi*x),sin(pi*x)]);
Th=trunc(Th, (x < 0.5) | (¥ < 0.5) | (z > 1.), split=4);

The command movemesh

This is the classical mesh transformation FreeFEM function, meshL can be deformed by an application [®1, 2, $3
]. The image T},(2) is obtained by the command movemeshL.

The parameters of movemesh are:

transfo= sets the geometric transformation ®(z,y) = (®1(x,y, 2), P2(x, y, 2), P3(z, y, 2))

refedge= sets the integer labels of the triangles.
0 by default.

refpoint= sets the labels of the border points.
This parameter is initialized as the label for the keyword change.

precismesh this parameter is the criteria to define two merging points.
By default, it value is 1e-7 and define the smallest axis parallel boxes containing the discretion domain of
Q

orientation = An integer expression
equal 1, give the oientation of the triangulation, elements must be in the reference orientation (counter
clock wise) equal -1 reverse the orientation of the triangles. It’s the global orientation of the normals at the
surface 1 extern (-1 intern)

cleanmesh-= is a boolean, allowing remove the duplicated nodes

removeduplicate= is a boolean, allowing remove the duplicated elements and border elements

Note

The definition of the geometric transformation depends on the space dimension of the studied problem. It means
that, with curve FEM, it’s possible to treat a real 1D problem (space coordinate is x) then the transformation is
given by x: ->F(x), that means [F_x] and F_y=F_z=0 in FreeFEM function.

Example of using

3.2. Mesh Generation 165

FreeFEM Documentation, Release 4.13

int nx=100;

meshl. Th=Sline(nx);

meshL Th31l-movemesh(Th, [x]);

meshL Th32-movemesh(Th, [x,-x*(x-1)1);
meshL Th3=Th31+Th32;

The command change

The command change changes the label of elements and border elements of a meshL.
The parameters for this command line are:

» refedge= is a vector of integer that contains successive pairs of the old label number to the new label number
for elements.

» refpoint=is a vector of integer that contains successive pairs of the old region number to new region number
for boundary elements.

» flabel= is an integer function given the new value of the label.
¢ fregion= is an integer function given the new value of the region.
» rmlpoint= is a vector of integer, where edge’s label given are remove of the mesh

These vectors are composed of n; successive pairs of numbers O, N where n; is the number (label or region) that we
want to change. For example, we have:

label = [0y, N1, ..., Oy, Ny,]
region = [0y, Ny, ..., Op;, Ny,

The commands buildBdMesh and Gamma

The command Gamma allows to extract the border mesh independly of a surface mesh. With this function, the con-
structed border mesh contains the full geometric description of th eboundary surface. In case where the border mesh
doesn’t exist, before calling Gamma, must build it by calling the buildBdMesh function (see the next function descrip-
tion).

load "msh3"

int n= 10;

meshS Th=square3(n,n);

Th = buildBdMesh(Th); // build the border mesh

// build Thl, the border of Th, defined by edges elements and point border elements
meshL Thl = Th.Gamma;

Glue of meshL meshes

An assembling of meshL is possible thanks to the operator +. The result returns a meshL, with caution of the right
orientation at the merged interfaces. Here, the function checkmesh can be called.

int n=10;

meshL Thl = segment(n);

meshL Th2 segment (n, [0,x,0],orientation=1);
meshl. Th3 = segment(n,[x,0,1],orientation=1);
meshL Th4 segment (n, [0,0,x],orientation=-1);

(continues on next page)

166 Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

(continued from previous page)

7 meshl. Th = Th1+Th2+Th3+Th4;
8 Th=rebuildBorder(Th, ridgeangledetection=pi/2.+0.0001);

Warning

For the moment, the case of no manifold mesh are not considered in FreeFEM. To check if the meshL contains no
manifold elements, the command nbnomanifold.

The command extract

This operator allows to extract a labeled piece or the entire border of a 2D mesh and project it in 3D. Optionally, a
geometic transformation can be applied.

| mesh Th=square(10,10);
2 int[int] 11=[4];
3 meshL ThL = extract(Th, [x+2,y*5],refedge=11);

The commands rebuildBorder

This operator, used in the last example, allows to reconstruted the border elements following a special criteria

ridgeangledetection. By default, it value is 3 % arctan(1) ~ 40, the diedral angle for a decahedron.

The commands checkmesh

This function is avalaible for all 3D meshes. It checkes and validates the a given mesh, allows to remove duplicate
vertices and/or elements and border elements. The possible arguments are

¢ precismesh= this parameter is the criteria to define two merging points.

By default, it value is 1e-7 and define the smallest axis parallel boxes containing the discretion domain of
Q

e removeduplicate= is a boolean, allowing remove the duplicated elements and border elements

* rebuildboundary= is a boolean, allowing rebuild the border elements (in case of incomplete list given by the
mesh)

Example:

| { mesh3 Th = checkmesh(Th);]

TetGen: A tetrahedral mesh generator

TetGen is a software developed by Dr. Hang Si of Weierstrass Institute for Applied Analysis and Stochastics in Berlin,
Germany [HANG2006]. TetGen is free for research and non-commercial use. For any commercial license utilization,
a commercial license is available upon request to Hang Si.

This software is a tetrahedral mesh generator of a three dimensional domain defined by its boundary (a surface). The
input domain takes into account a polyhedral or a piecewise linear complex. This tetrahedralization is a constrained
Delaunay tetrahedralization.

The method used in TetGen to control the quality of the mesh is a Delaunay refinement due to Shewchuk
[SHEWCHUK1998]. The quality measure of this algorithm is the Radius-Edge Ratio (see Section 1.3.1 [HANG2006]
for more details). A theoretical bound of this ratio of the Shewchuk algorithm is obtained for a given complex of

3.2. Mesh Generation 167

FreeFEM Documentation, Release 4.13

vertices, constrained segments and facets of surface mesh, with no input angle less than 90 degrees. This theoretical
bound is 2.0.

The launch of TetGen is done with the keyword tetg. The parameters of this command line is:

reftet= sets the label of tetrahedra.

label=is a vector of integers that contains the old labels number at index 2; and the new labels number

at index 2; + 1 of Triangles.
This parameter is initialized as a label for the keyword change.

switch= A string expression.
This string corresponds to the command line switch of TetGen see Section 3.2 of [HANG2006].

nbofholes= Number of holes (default value: “size of holelist /3”).

holelist= This array corresponds to holelist of TetGenio data structure [HANG2006].

A real vector of size 3 * nbofholes. In TetGen, each hole is associated with a point inside this domain.
h h

This vector is o, y%, 20, b yh 2B ... where 2, yl' 2! is the associated point with the i*" hole.
nbofregions= Number of regions (default value: “size of regionlist /5”).
regionlist= This array corresponds to regionlist of TetGenio data structure [HANG2006].

The attribute and the volume constraint of region are given in this real vector of size 5 * nbofregions. The
it region is described by five elements: z—coordinate, y—coordinate and z—coordinate of a point inside this
domain (x;, y;, 2;); the attribute (at;) and the maximum volume for tetrahedra (mwol;) for this region.

The regionlist vector is: x1,y1, 21, at1, mvoly, To, Yo, 22, ate, mvols, - - -.
nboffacetcl= Number of facets constraints “size of facetcl /2”).
facetcl= This array corresponds to facetconstraintlist of TetGenio data structure [HANG2006].

The i'" facet constraint is defined by the facet marker Re fif “ and the maximum area for faces marealf “. The

facetcl array is: Ref{, mareal® Ref]¢ mareal®, - .

This parameters has no effect if switch q is not selected.

Principal switch parameters in TetGen:

p Tetrahedralization of boundary.

q Quality mesh generation.
The bound of Radius-Edge Ratio will be given after the option q. By default, this value is 2.0.

a Constructs with the volume constraints on tetrahedra.
These volumes constraints are defined with the bound of the previous switch g or in the parameter
regionlist.

A Attributes reference to region given in the regionlist.
The other regions have label 0.

The option AA gives a different label at each region. This switch works with the option p. If option r is used,
this switch has no effect.

r Reconstructs and Refines a previously generated mesh.
This character is only used with the command line tetgreconstruction.

Y This switch preserves the mesh on the exterior boundary.
This switch must be used to ensure a conformal mesh between two adjacent meshes.
YY This switch preserves the mesh on the exterior and interior boundary.

C The consistency of the result’s mesh is testing by TetGen.

168

Chapter 3. Documentation

FreeFEM Documentation, Release 4.13

* CC The consistency of the result’s mesh is testing by TetGen and also constrained checks of Delaunay mesh (if
p switch is selected) or the consistency of Conformal Delaunay (if q switch is selected).

* V Give information of the work of TetGen.
More information can be obtained in specified VV or VVV.

* Q Quiet: No terminal output except errors
* M The coplanar facets are not merging.

¢ T Sets a tolerance for coplanar test.
The default value is 1e — 8.

¢ d Intersections of facets are detected.

To obtain a tetrahedral mesh with TetGen, we need the surface mesh of a three dimensional domain. We now give the
command line in FreeFEM to construct these meshes.

The keyword tetgtransfo

This keyword corresponds to a composition of command line tetg and movemesh23.

| [tetgtransfo(ThZ, transfo=[Phi(1), Phi(2), Phi(3)]), ...) = tetg(Th3surf, ...),

where Th3surf = movemesh23(Th2, transfo=[Phi(1), Phi(2), Phi(3)]) and Th2 is the input two dimen-
sional mesh of tetgtransfo.

The parameters of this command line are, on one hand, the parameters 1abel, switch, regionlist, nboffacetcl,
facetcl of keyword tetg and on the other hand, the parameter ptmerge of keyword movemesh23.

Note

To use tetgtransfo, the result’s mesh of movemesh23 must be a closed surface and define one region only.
Therefore, the parameter regionlist is defined for one region.

An example of this keyword can be found in line 61 of the Build layer mesh example.

The keyword tetgconvexhull

FreeFEM, using TetGen, is able to build a tetrahedralization from a set of points. This tetrahedralization is a Delaunay
mesh of the convex hull of the set of points.

The coordinates of the points can be initialized in two ways. The first is a file that contains the coordinate of points
X; = (i, yi, 2;). This file is organized as follows:

Ty
X1 Y1 Z1
X2 Y2 22

Tn, Yn, Z2n,

The second way is to give three arrays that correspond respectively to the x—coordinates, y—coordinates and
z—coordinates.

The parameters of this command line are :

¢ switch= A string expression.
This string corresponds to the command line switch of TetGen see Section 3.2 of [HANG2006].

e reftet= An integer expression.
Set the label of tetrahedra.

3.2. Mesh Generation 169

FreeFEM Documentation, Release 4.13

¢ label= An integer expression.
Set the label of triangles.

In the string switch, we can’t used the option p and q of TetGen.

Reconstruct/Refine a 3d mesh with TetGen
Meshes in three dimension can be refined using TetGen with the command line tetgreconstruction.
The parameter of this keyword are

* region= an integer array that changes the region number of tetrahedra.
This array is defined as the parameter reftet in the keyword change.

¢ label= an integer array that changes the label of boundary triangles.
This array is defined as the parameter 1abel in the keyword change.

* sizeofvolume= a reel function.
This function constraints the volume size of the tetrahedra in the domain (see Isotrope mesh adaption
section to build a 3d adapted mesh).

The parameters switch, nbofregions, regionlist, nboffacetcl and facetcl of the command line which call
TetGen (tetg) is used for tetgrefine.

In the parameter switch=, the character r should be used without the character p.
For instance, see the manual of TetGen [HANG20006] for effect of r to other character.

The parameter regionlist defines a new volume constraint in the region. The label in the regionlist will be the
previous label of region.

This parameter and nbofregions can’t be used with the parameter sizeofvolume.

Example refinesphere.edp

load "msh3"
load "tetgen"
load "medit"

mesh Th=square(10,20, [x*pi-pi/2,2*y*pil); // $]\frac{-pi}{2},frac{-pi}{2}[\times]0,2\
~pi[$

// a parametrization of a sphere

func f1 =cos(x)*cos(y);

func f2 =cos(x)*sin(y);

func f3 = sin(x);

// partiel derivative of the parametrization DF
func flx=sin(x)*cos(y);

func fly=-cos(x)*sin(y);

func f2x=-sin(x)*sin(y);

func f2y=cos(x)*cos(y);

func f3x=cos(x);

func £3y=0;

// $ M = DFAt DF §

func m11=f1x22+£2x22+£3x12;

func m21=f1x*fly+f2x*f2y+£3x*£f3y;

func m22=£f1y*2+£2y*2+£3y~2;

func perio=[[4,y],[2,y],[1,x],[3,x]];
real hh=0.1;

(continues on next page)

170 Chapter 3. Documentation

https://github.com/FreeFem/FreeFem-sources/blob/develop/examples/3d/refinesphere.edp

24

25

26

27

28

29

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

58

FreeFEM Documentation, Release 4.13

(continued from previous page)
real vv= 1/squareChh);
verbosity=2;
Th=adaptmesh(Th,m11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,ml1*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
plot(Th,wait=1);

verbosity=2;

// construction of the surface of spheres
real Rmin = 1.;

func flmin = Rmin*f1;

func f2min = Rmin*f2;

func f3min = Rmin*f3;

meshS ThS=movemesh23(Th, transfo=[flmin, f2min, £3min]);

real[int] domain = [0.,0.,0.,145,0.01];
mesh3 Th3sph-tetg(ThS, switch="paAAQYY" ,nbofregions=1,regionlist=domain);

int[int] newlabel = [145,18];

real[int] domainrefine = [0.,0.,0.,145,0.0001];

mesh3 Th3sphrefine=tetgreconstruction(Th3sph,switch="raAQ",region-newlabel,nbofregions=1,
—regionlist=-domainrefine,sizeofvolume=0.0001);

int[int] newlabel2 = [145,53];

func fsize = 0.01/((C 1 + 5*sqrt((x-0.5)22+(y-0.5)42+(z-0.5)22))*3);

mesh3 Th3sphrefine2=tetgreconstruction(Th3sph,switch="raAQ",region-newlabel2,
—,sizeofvolume=fsize);

medit("sphere",Th3sph,wait=1);
medit("sphererefinedomain" ,wait=1,Th3sphrefine);
medit("sphererefinelocal",wait=1,Th3sphrefine2);

// FFCS: testing 3d plots
plot(Th3sph);
plot(Th3sphrefine);
plot(Th3sphrefine2);

3.2.5 Read/Write Statements for meshes

2d case

format of mesh data

Users who want to read a triangulation made elsewhere should see the structure of the file generated below:

border C(t=0, 2*pi){x=cos(t); y=sin(t);}
mesh Thl = buildmesh(C(10));
savemesh(Thl, "mesh.msh");

mesh Th2=readmesh("mesh.msh");

The mesh is shown on Fig. 3.28.

The information about Th are saved in the file mesh.msh whose structure is shown on Table 3.1. An external file

3.2. Mesh Generation 171

FreeFEM Documentation, Release 4.13

contains a mesh at format .mesh can be read by the ommand readmesh(file_name).

There, n,, denotes the number of vertices, n; the number of triangles and ns the number of edges on boundary.

For each vertex ¢*, i = 1,- -, n,, denoted by (qZ, g;,) the z-coordinate and y-coordinate.
Each triangle T}, k = 1, - - - , n, has three vertices ¢*, ¢*2, ¢** that are oriented counter-clockwise.
The boundary consists of 10 lines L;, i = 1,--- , 10 whose end points