55 #if defined(DEBUG) || defined (_DEBUG) 58 #include <spu_printf.h> 59 #define printf spu_printf 68 #define GJK_MAX_ITERATIONS 128 69 #define GJK_ACCURARY ((btScalar)0.0001) 70 #define GJK_MIN_DISTANCE ((btScalar)0.0001) 71 #define GJK_DUPLICATED_EPS ((btScalar)0.0001) 72 #define GJK_SIMPLEX2_EPS ((btScalar)0.0) 73 #define GJK_SIMPLEX3_EPS ((btScalar)0.0) 74 #define GJK_SIMPLEX4_EPS ((btScalar)0.0) 77 #define EPA_MAX_VERTICES 64 78 #define EPA_MAX_FACES (EPA_MAX_VERTICES*2) 79 #define EPA_MAX_ITERATIONS 255 80 #define EPA_ACCURACY ((btScalar)0.0001) 81 #define EPA_FALLBACK (10*EPA_ACCURACY) 82 #define EPA_PLANE_EPS ((btScalar)0.00001) 83 #define EPA_INSIDE_EPS ((btScalar)0.01) 87 typedef unsigned int U;
88 typedef unsigned char U1;
91 template <
typename btConvexTemplate>
144 template <
typename btConvexTemplate>
173 GJK(
const btConvexTemplate& a,
const btConvexTemplate& b)
234 { found=
true;
break; }
243 lastw[clastw=(clastw+1)&3]=w;
247 alpha=
btMax(omega,alpha);
276 for(
U i=0,ni=cs.
rank;i<ni;++i)
281 ns.
p[ns.
rank++] = weights[i];
282 m_ray += cs.
c[i]->
w*weights[i];
386 simplex.
p[simplex.
rank]=0;
392 return( a.
y()*b.
z()*c.
x()+a.
z()*b.
x()*c.
y()-
393 a.
x()*b.
z()*c.
y()-a.
y()*b.
x()*c.
z()+
394 a.
x()*b.
y()*c.
z()-a.
z()*b.
y()*c.
x());
405 if(t>=1) { w[0]=0;w[1]=1;m=2;
return(b.
length2()); }
406 else if(t<=0) { w[0]=1;w[1]=0;m=1;
return(a.length2()); }
407 else { w[0]=1-(w[1]=t);m=3;
return((a+d*t).length2()); }
416 static const U imd3[]={1,2,0};
432 if((mindist<0)||(subd<mindist))
435 m =
static_cast<U>(((subm&1)?1<<i:0)+((subm&2)?1<<j:0));
451 w[2] = 1-(w[0]+w[1]);
463 static const U imd3[]={1,2,0};
480 if((mindist<0)||(subd<mindist))
483 m =
static_cast<U>((subm&1?1<<i:0)+
497 w[0] =
det(c,b,d)/vl;
498 w[1] =
det(a,c,d)/vl;
499 w[2] =
det(b,a,d)/vl;
500 w[3] = 1-(w[0]+w[1]+w[2]);
525 template <
typename btConvexTemplate>
573 fa->
e[ea]=(
U1)eb;fa->
f[ea]=fb;
574 fb->
e[eb]=(
U1)ea;fb->
f[eb]=fa;
579 face->
l[1] = list.
root;
586 if(face->l[1]) face->l[1]->l[0]=face->l[0];
587 if(face->l[0]) face->l[0]->l[1]=face->l[1];
588 if(face==list.root) list.root=face->l[1];
620 if(gjk.
det( simplex.
c[0]->
w-simplex.
c[3]->
w,
621 simplex.
c[1]->
w-simplex.
c[3]->
w,
622 simplex.
c[2]->
w-simplex.
c[3]->
w)<0)
629 newface(simplex.
c[1],simplex.
c[0],simplex.
c[3],
true),
630 newface(simplex.
c[2],simplex.
c[1],simplex.
c[3],
true),
631 newface(simplex.
c[0],simplex.
c[2],simplex.
c[3],
true)};
638 bind(tetra[0],0,tetra[1],0);
639 bind(tetra[0],1,tetra[2],0);
640 bind(tetra[0],2,tetra[3],0);
641 bind(tetra[1],1,tetra[3],2);
642 bind(tetra[1],2,tetra[2],1);
643 bind(tetra[2],2,tetra[3],1);
652 best->
pass = (
U1)(++pass);
657 for(
U j=0;(j<3)&&valid;++j)
660 best->
f[j],best->
e[j],
663 if(valid&&(horizon.
nf>=3))
682 outer.
c[2]->w-projection).
length();
684 outer.
c[0]->w-projection).
length();
686 outer.
c[1]->w-projection).
length();
727 else if(b_dot_ba < 0)
793 for(
sFace* f=minf->
l[1];f;f=f->
l[1])
806 static const U i1m3[]={1,2,0};
807 static const U i2m3[]={2,0,1};
817 if(horizon.
cf)
bind(horizon.
cf,1,nf,2);
else horizon.
ff=nf;
827 if(
expand(pass,w,f->
f[e1],f->
e[e1],horizon)&&
828 expand(pass,w,f->
f[e2],f->
e[e2],horizon))
841 template <
typename btConvexTemplate>
842 static void Initialize(
const btConvexTemplate& a,
const btConvexTemplate& b,
865 template <
typename btConvexTemplate>
884 results.
witnesses[0] = a.getWorldTransform()*w0;
885 results.
witnesses[1] = a.getWorldTransform()*w1;
901 template <
typename btConvexTemplate>
903 const btConvexTemplate& b,
925 results.
witnesses[0] = a.getWorldTransform()*w0;
944 int btComputeGjkEpaPenetration2(
const btCollisionDescription& colDesc, btDistanceInfo* distInfo)
949 bool res = btGjkEpaSolver3::Penetration(colDesc.m_objA,colDesc.m_objB,
950 colDesc.m_transformA,colDesc.m_transformB,
951 colDesc.m_localSupportFuncA,colDesc.m_localSupportFuncB,
960 distInfo->m_distance = results.
distance;
961 distInfo->m_normalBtoA = results.
normal;
966 tmpNormalInB = results.
normal;
972 tmpNormalInB /=
btSqrt(lenSqr);
977 distInfo->m_distance = distance2;
978 distInfo->m_pointOnA= results.
witnesses[0];
979 distInfo->m_pointOnB= results.
witnesses[1];
980 distInfo->m_normalBtoA= tmpNormalInB;
992 template <
typename btConvexTemplate,
typename btDistanceInfoTemplate>
1004 distInfo->m_distance = results.
distance;
1005 distInfo->m_pointOnA= results.
witnesses[0];
1006 distInfo->m_pointOnB= results.
witnesses[1];
1007 distInfo->m_normalBtoA= results.
normal;
1016 #undef GJK_MAX_ITERATIONS 1018 #undef GJK_MIN_DISTANCE 1019 #undef GJK_DUPLICATED_EPS 1020 #undef GJK_SIMPLEX2_EPS 1021 #undef GJK_SIMPLEX3_EPS 1022 #undef GJK_SIMPLEX4_EPS 1024 #undef EPA_MAX_VERTICES 1025 #undef EPA_MAX_FACES 1026 #undef EPA_MAX_ITERATIONS 1029 #undef EPA_PLANE_EPS 1030 #undef EPA_INSIDE_EPS 1034 #endif //BT_GJK_EPA3_H static T sum(const btAlignedObjectArray< T > &items)
bool btGjkEpaSolver3_Penetration(const btConvexTemplate &a, const btConvexTemplate &b, const btVector3 &guess, btGjkEpaSolver3::sResults &results)
btScalar length(const btQuaternion &q)
Return the length of a quaternion.
btVector3 Support(const btVector3 &d) const
GJK< btConvexTemplate >::sSV m_sv_store[EPA_MAX_VERTICES]
eEpaStatus Evaluate(GJK< btConvexTemplate > &gjk, const btVector3 &guess)
int btComputeGjkDistance(const btConvexTemplate &a, const btConvexTemplate &b, const btGjkCollisionDescription &colDesc, btDistanceInfoTemplate *distInfo)
sFace m_fc_store[EPA_MAX_FACES]
#define GJK_MAX_ITERATIONS
btScalar length2() const
Return the length of the vector squared.
const btConvexTemplate * m_convexBPtr
btScalar btSqrt(btScalar y)
const btConvexTemplate * m_convexAPtr
static void append(sList &list, sFace *face)
static btScalar projectorigin(const btVector3 &a, const btVector3 &b, btScalar *w, U &m)
btVector3 btCross(const btVector3 &v1, const btVector3 &v2)
Return the cross product of two vectors.
static void Initialize(const btConvexTemplate &a, const btConvexTemplate &b, btGjkEpaSolver3::sResults &results, MinkowskiDiff< btConvexTemplate > &shape)
#define GJK_DUPLICATED_EPS
btMatrix3x3 transposeTimes(const btMatrix3x3 &m) const
void EnableMargin(bool enable)
static btScalar projectorigin(const btVector3 &a, const btVector3 &b, const btVector3 &c, btScalar *w, U &m)
eGjkStatus Evaluate(const MinkowskiDiff< btConvexTemplate > &shapearg, const btVector3 &guess)
const btScalar & x() const
Return the x value.
enum btGjkEpaSolver3::sResults::eStatus status
MinkowskiDiff(const btConvexTemplate &a, const btConvexTemplate &b)
static btScalar projectorigin(const btVector3 &a, const btVector3 &b, const btVector3 &c, const btVector3 &d, btScalar *w, U &m)
const btScalar & y() const
Return the y value.
const btScalar & z() const
Return the z value.
btVector3 Support1(const btVector3 &d) const
bool expand(U pass, typename GJK< btConvexTemplate >::sSV *w, sFace *f, U e, sHorizon &horizon)
GJK< btConvexTemplate >::sSV * c[3]
btVector3 can be used to represent 3D points and vectors.
MinkowskiDiff< btConvexTemplate > m_shape
btVector3 Support(const btVector3 &d, U index) const
static btScalar det(const btVector3 &a, const btVector3 &b, const btVector3 &c)
sFace * newface(typename GJK< btConvexTemplate >::sSV *a, typename GJK< btConvexTemplate >::sSV *b, typename GJK< btConvexTemplate >::sSV *c, bool forced)
bool btGjkEpaSolver3_Distance(const btConvexTemplate &a, const btConvexTemplate &b, const btVector3 &guess, btGjkEpaSolver3::sResults &results)
static void bind(sFace *fa, U ea, sFace *fb, U eb)
btVector3 Support0(const btVector3 &d) const
void getsupport(const btVector3 &d, sSV &sv) const
void appendvertice(sSimplex &simplex, const btVector3 &v)
void removevertice(sSimplex &simplex)
const T & btMax(const T &a, const T &b)
GJK< btConvexTemplate >::sSimplex m_result
#define EPA_MAX_ITERATIONS
bool getedgedist(sFace *face, typename GJK< btConvexTemplate >::sSV *a, typename GJK< btConvexTemplate >::sSV *b, btScalar &dist)
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
btScalar btDot(const btVector3 &v1, const btVector3 &v2)
Return the dot product between two vectors.
GJK(const btConvexTemplate &a, const btConvexTemplate &b)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar length() const
Return the length of the vector.
btScalar btFabs(btScalar x)