51 , m_frameInA(frameInA)
52 , m_frameInB(frameInB)
53 , m_rotateOrder(rotOrder)
456 for(i = 0; i < 3; i++)
485 int row =
setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
486 setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
494 for (
int i=0;i<3 ;i++ )
524 int indx1 = (i + 1) % 3;
525 int indx2 = (i + 2) % 3;
527 #define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION 1.0e-3 536 if( indx1Violated && indx2Violated )
540 row +=
get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
551 int row = row_offset;
554 int cIdx[] = {0, 1, 2};
557 case RO_XYZ : cIdx[0] = 0; cIdx[1] = 1; cIdx[2] = 2;
break;
558 case RO_XZY : cIdx[0] = 0; cIdx[1] = 2; cIdx[2] = 1;
break;
559 case RO_YXZ : cIdx[0] = 1; cIdx[1] = 0; cIdx[2] = 2;
break;
560 case RO_YZX : cIdx[0] = 1; cIdx[1] = 2; cIdx[2] = 0;
break;
561 case RO_ZXY : cIdx[0] = 2; cIdx[1] = 0; cIdx[2] = 1;
break;
562 case RO_ZYX : cIdx[0] = 2; cIdx[1] = 1; cIdx[2] = 0;
break;
566 for (
int ii = 0; ii < 3 ; ii++ )
589 row +=
get_limit_motor_info2(&
m_angularLimits[i],transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
610 for(
int i = 0; i < 3; i++)
626 J2[srow+0] = -ax1[0];
627 J2[srow+1] = -ax1[1];
628 J2[srow+2] = -ax1[2];
637 tmpA = relA.
cross(ax1);
638 tmpB = relB.
cross(ax1);
657 int srow = row * info->
rowskip;
661 btScalar vel = rotational ? angVelA.
dot(ax1) - angVelB.
dot(ax1) : linVelA.
dot(ax1) - linVelB.
dot(ax1);
663 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
673 if (bounceerror < info->m_constraintError[srow]) info->
m_constraintError[srow] = bounceerror;
682 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
687 if (bounceerror < info->m_constraintError[srow]) info->
m_constraintError[srow] = bounceerror;
703 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
714 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
747 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
762 lowLimit = error > 0 && curServoTarget>limot->
m_loLimit ? curServoTarget : limot->
m_loLimit;
763 hiLimit = error < 0 && curServoTarget<limot->
m_hiLimit ? curServoTarget : limot->
m_hiLimit;
771 info->
m_constraintError[srow] = mot_fact * targetvelocity * (rotational ? -1 : 1);
782 calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
795 btScalar vel = rotational ? angVelA.
dot(ax1) - angVelB.
dot(ax1) : linVelA.
dot(ax1) - linVelB.
dot(ax1);
801 btScalar angularfreq = sqrt(ks / m);
815 btScalar fd = -kd * (vel) * (rotational ? -1 : 1) * dt;
833 info->
cfm[srow] = cfm;
846 if((axis >= 0) && (axis < 3))
870 else if((axis >=3) && (axis < 6))
904 if((axis >= 0) && (axis < 3))
928 else if((axis >=3) && (axis < 6))
970 xAxis[1], yAxis[1], zAxis[1],
971 xAxis[2], yAxis[2], zAxis[2]);
982 btAssert((index >= 0) && (index < 6));
991 btAssert((index >= 0) && (index < 6));
1000 btAssert((index >= 0) && (index < 6));
1009 btAssert((index >= 0) && (index < 6));
1020 btAssert((index >= 0) && (index < 6));
1063 btAssert((index >= 0) && (index < 6));
1072 btAssert((index >= 0) && (index < 6));
1081 btAssert((index >= 0) && (index < 6));
1093 btAssert((index >= 0) && (index < 6));
1107 for( i = 0; i < 3; i++)
1109 for(i = 0; i < 3; i++)
1115 btAssert((index >= 0) && (index < 6));
1125 btAssert((index >= 0) && (index < 6));
1138 if(m_loLimit > m_hiLimit) {
1140 m_currentLimitError =
btScalar(0.f);
1142 else if(m_loLimit == m_hiLimit) {
1143 m_currentLimitError = test_value - m_loLimit;
1146 m_currentLimitError = test_value - m_loLimit;
1147 m_currentLimitErrorHi = test_value - m_hiLimit;
1156 btScalar loLimit = m_lowerLimit[limitIndex];
1157 btScalar hiLimit = m_upperLimit[limitIndex];
1158 if(loLimit > hiLimit) {
1159 m_currentLimitError[limitIndex] = 0;
1160 m_currentLimit[limitIndex] = 0;
1162 else if(loLimit == hiLimit) {
1163 m_currentLimitError[limitIndex] = test_value - loLimit;
1164 m_currentLimit[limitIndex] = 3;
1166 m_currentLimitError[limitIndex] = test_value - loLimit;
1167 m_currentLimitErrorHi[limitIndex] = test_value - hiLimit;
1168 m_currentLimit[limitIndex] = 4;
btScalar * m_constraintError
static bool matrixToEulerXYZ(const btMatrix3x3 &mat, btVector3 &xyz)
void setTargetVelocity(int index, btScalar velocity)
btScalar * m_J2angularAxis
static bool matrixToEulerZXY(const btMatrix3x3 &mat, btVector3 &xyz)
btVector3 m_maxMotorForce
const btVector3 & getAngularVelocity() const
#define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION
btVector3 m_springStiffness
void setMaxMotorForce(int index, btScalar force)
#define BT_6DOF_FLAGS_AXIS_SHIFT2
void testLimitValue(int limitIndex, btScalar test_value)
static bool matrixToEulerYXZ(const btMatrix3x3 &mat, btVector3 &xyz)
int get_limit_motor_info2(btRotationalLimitMotor2 *limot, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB, btConstraintInfo2 *info, int row, btVector3 &ax1, int rotational, int rotAllowed=false)
virtual btScalar getParam(int num, int axis=-1) const
return the local value of parameter
const btTransform & getCenterOfMassTransform() const
void setServo(int index, bool onOff)
const btRigidBody & getRigidBodyA() const
bool m_springStiffnessLimited[3]
bool m_springStiffnessLimited
btVector3 m_springDamping
static btScalar btGetMatrixElem(const btMatrix3x3 &mat, int index)
void setAxis(const btVector3 &axis1, const btVector3 &axis2)
void calculateLinearInfo()
int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB)
btScalar * m_J1angularAxis
bool m_springDampingLimited[3]
const btRigidBody & getRigidBodyB() const
static bool matrixToEulerZYX(const btMatrix3x3 &mat, btVector3 &xyz)
btTranslationalLimitMotor2 m_linearLimits
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
void calculateTransforms()
btVector3 normalized() const
Return a normalized version of this vector.
btVector3 m_currentLinearDiff
btVector3 getAxis(int axis_index) const
btVector3 m_calculatedLinearDiff
btVector3 getColumn(int i) const
Get a column of the matrix as a vector.
btScalar m_currentLimitError
btScalar * m_J1linearAxis
bool m_springDampingLimited
const btVector3 & getLinearVelocity() const
btScalar getInvMass() const
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
btScalar dot(const btVector3 &v) const
Return the dot product.
btScalar btAtan2(btScalar x, btScalar y)
btVector3 m_currentLimitErrorHi
void setValue(const btScalar &xx, const btScalar &xy, const btScalar &xz, const btScalar &yx, const btScalar &yy, const btScalar &yz, const btScalar &zx, const btScalar &zy, const btScalar &zz)
Set the values of the matrix explicitly (row major)
btTransform m_calculatedTransformB
btScalar m_currentLimitErrorHi
The btRigidBody is the main class for rigid body objects.
btTransform m_calculatedTransformA
void setEquilibriumPoint()
btVector3 m_equilibriumPoint
btScalar m_targetVelocity
btGeneric6DofSpring2Constraint(btRigidBody &rbA, btRigidBody &rbB, const btTransform &frameInA, const btTransform &frameInB, RotateOrder rotOrder=RO_XYZ)
2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev Added support for generic constrain...
virtual void setParam(int num, btScalar value, int axis=-1)
override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0...
virtual void buildJacobian()
internal method used by the constraint solver, don't use them directly
btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScalar angleLowerLimitInRadians, btScalar angleUpperLimitInRadians)
btVector3 m_currentLimitError
btVector3 can be used to represent 3D points and vectors.
static bool matrixToEulerXZY(const btMatrix3x3 &mat, btVector3 &xyz)
static btRigidBody & getFixedBody()
RotateOrder m_rotateOrder
void calculateJacobi(btRotationalLimitMotor2 *limot, const btTransform &transA, const btTransform &transB, btConstraintInfo2 *info, int srow, btVector3 &ax1, int rotational, int rotAllowed)
btVector3 m_calculatedAxis[3]
btScalar * m_J2linearAxis
TypedConstraint is the baseclass for Bullet constraints and vehicles.
btScalar getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact)
internal method used by the constraint solver, don't use them directly
void setStiffness(int index, btScalar stiffness, bool limitIfNeeded=true)
btVector3 m_targetVelocity
btScalar m_equilibriumPoint
btRotationalLimitMotor2 m_angularLimits[3]
static bool matrixToEulerYZX(const btMatrix3x3 &mat, btVector3 &xyz)
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
void testLimitValue(btScalar test_value)
btScalar m_currentPosition
void enableSpring(int index, bool onOff)
btScalar btAsin(btScalar x)
void setFrames(const btTransform &frameA, const btTransform &frameB)
btMatrix3x3 inverse() const
Return the inverse of the matrix.
virtual void getInfo1(btConstraintInfo1 *info)
internal method used by the constraint solver, don't use them directly
#define btAssertConstrParams(_par)
btScalar m_springStiffness
void setDamping(int index, btScalar damping, bool limitIfNeeded=true)
void calculateAngleInfo()
btVector3 m_calculatedAxisAngleDiff
void testAngularLimitMotor(int axis_index)
void setServoTarget(int index, btScalar target)
virtual void getInfo2(btConstraintInfo2 *info)
internal method used by the constraint solver, don't use them directly
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
int setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB)
void enableMotor(int index, bool onOff)
void setBounce(int index, btScalar bounce)